task_type
stringclasses
1 value
dataset
stringclasses
1 value
input
sequence
output
stringlengths
19
428
situation
stringclasses
1 value
label
stringclasses
1 value
extra
stringclasses
1 value
instruction
stringclasses
2 values
generation
semeval-2014
[ "Moderate prices." ]
{'aspect_term': [['prices', 'neutral']], 'aspect_category': [[None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Wow over 100 beers to choose from." ]
{'aspect_term': [['beers', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "THE BIG COMPLAINT: NO TOASTING AVAILABLE." ]
{'aspect_term': [['TOASTING', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The quality of food at this restaurant accompanied by fantastic live jazz makes this place a perfect 10!" ]
{'aspect_term': [['quality of food', 'positive'], ['live jazz', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The plain pizza was soggy and the creative wild mushroom(third generation-Fornini) pizza we had was drenched with truffle oil in the middle( again making it soggy) and nothingon the rest." ]
{'aspect_term': [['plain pizza', 'negative'], ['truffle oil', 'neutral'], ['wild mushroom(third generation-Fornini) pizza', 'positive']], 'aspect_category': [[None, 'negative'], [None, 'neutral'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The selection changes frequently but the basic dishes are always available." ]
{'aspect_term': [['selection', 'neutral'], ['basic dishes', 'neutral']], 'aspect_category': [[None, 'neutral'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I've had pizza both times and the caprese salad appetizer." ]
{'aspect_term': [['pizza', 'neutral'], ['caprese salad appetizer', 'neutral']], 'aspect_category': [[None, 'neutral'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "While the new restaurant still features much of the same classical furniture that made Tiffin so attractive, the menu has been overhauled." ]
{'aspect_term': [['classical furniture', 'positive'], ['menu', 'negative']], 'aspect_category': [[None, 'positive'], [None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "my wife and i have been going to nyc for years and wouldn't miss roxy,s food is expensive but it's new york!" ]
{'aspect_term': [['food', 'conflict']], 'aspect_category': [[None, 'conflict']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "When you're sitting in their main dining room (which has a spectacular, hand-painted high ceiling) you'd never know there was a world outside." ]
{'aspect_term': [['main dining room', 'positive'], ['ceiling', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Just straight up cheap, good food." ]
{'aspect_term': [['food', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Our server was very helpful and friendly." ]
{'aspect_term': [['server', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Also, specify if you like your food spicy- its rather bland if you don't." ]
{'aspect_term': [['food', 'neutral']], 'aspect_category': [[None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "After dealing with subpar pizza all over the Kensington neighborhood - I've found little toninos." ]
{'aspect_term': [['pizza', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I understand the area and folks you need not come here for the romantic, alluring ambiance or the five star service featuring a sommlier and a complicated maze of captain and back waiters - you come for the authentic foods, the tastes, the experiance." ]
{'aspect_term': [['ambiance', 'positive'], ['service', 'positive'], ['foods', 'positive'], ['tastes', 'positive'], ['sommlier', 'positive'], ['captain', 'positive'], ['back waiters', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'positive'], [None, 'positive'], [None, 'positive'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Taxan delicious!" ]
{'aspect_term': [['Taxan', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Spreads and toppings are great - though a bit pricey." ]
{'aspect_term': [['Spreads', 'positive'], ['toppings', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Total hipster-wannabe attitude in an otherwise sweet spot." ]
{'aspect_term': [['spot', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "There is a downside if you're ordering in -- the delivery guys have MAJOR attitude." ]
{'aspect_term': [['delivery guys', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Regardless of whether there are two people or two hundred people ahead of you the hostess will take your name and tell you Five minutes." ]
{'aspect_term': [['hostess', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Great food and the prices are very reasonable." ]
{'aspect_term': [['food', 'positive'], ['prices', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "We had Pam's special fried fish and it was amazing." ]
{'aspect_term': [["Pam's special fried fish", 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Went on a 3 day oyster binge, with Fish bringing up the closing, and I am so glad this was the place it O trip ended, because it was so great!" ]
{'aspect_term': [['place', 'positive'], ['oyster', 'neutral'], ['Fish', 'neutral']], 'aspect_category': [[None, 'positive'], [None, 'neutral'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Late nite omelletes are not good here, there is no variety!" ]
{'aspect_term': [['omelletes', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "It's a shame that a nice, convenient place like the Pink Pony can be so ruined by lousy service." ]
{'aspect_term': [['place', 'positive'], ['service', 'negative']], 'aspect_category': [[None, 'positive'], [None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The food now is inconsistent." ]
{'aspect_term': [['food', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "A Thai restaurant out of rice during dinner?" ]
{'aspect_term': [['rice', 'neutral'], ['dinner', 'neutral']], 'aspect_category': [[None, 'neutral'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "As there were so many to choose from we wandered up and down the street looking in the windows and such noticicing many empty seats ,except at Taj Mahal." ]
{'aspect_term': [['seats', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The service was friendly and the atmosphere was casual." ]
{'aspect_term': [['service', 'positive'], ['atmosphere', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "If you've ever been along the river in Weehawken you have an idea of the top of view the chart house has to offer." ]
{'aspect_term': [['view', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I wouldn't even have complained at all if the food at least tasted good but the quality of food was crappy, too." ]
{'aspect_term': [['food', 'negative'], ['quality of food', 'negative']], 'aspect_category': [[None, 'negative'], [None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I liked the food at this quasi-thai restaurant." ]
{'aspect_term': [['food', 'positive'], ['quasi-thai', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Service was prompt, friendly and great." ]
{'aspect_term': [['Service', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Service is average." ]
{'aspect_term': [['Service', 'neutral']], 'aspect_category': [[None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "NO more reservations, expensive tips and annoying stuff." ]
{'aspect_term': [['reservations', 'positive'], ['tips', 'positive'], ['stuff', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The Thai food is good." ]
{'aspect_term': [['Thai food', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Check out the secret back room." ]
{'aspect_term': [['secret back room', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Note that they do not serve beer, you must bring your own." ]
{'aspect_term': [['beer', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "But that wasn't the icing on the cake: a tiramisu that resembled nothing I have ever had." ]
{'aspect_term': [['icing on the cake', 'negative'], ['tiramisu', 'negative']], 'aspect_category': [[None, 'negative'], [None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Service is friendly, prices are good - delivery time was a little slow, but for the way this pizza tastes, I'm willing to overlook it." ]
{'aspect_term': [['Service', 'positive'], ['prices', 'positive'], ['delivery time', 'negative'], ['pizza', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'negative'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The large selection of bruschettas, paninis, tramezzinis keep the palate from stagnating." ]
{'aspect_term': [['bruschettas', 'positive'], ['paninis', 'positive'], ['tramezzinis', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "For two people with tip was less than $25 bucks." ]
{'aspect_term': [['tip', 'neutral']], 'aspect_category': [[None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Of course this atmosphere is lacking, but what do you expect from a 24 hour bagel place anyways?" ]
{'aspect_term': [['atmosphere', 'negative'], ['bagel', 'neutral']], 'aspect_category': [[None, 'negative'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The fried dumplings are GREAT!" ]
{'aspect_term': [['fried dumplings', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Great wine, great food." ]
{'aspect_term': [['wine', 'positive'], ['food', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Looking around, I saw a room full of New Yorkers enjoying a real meal in a real restaurant, not a clubhouse of the fabulous trying to be seen." ]
{'aspect_term': [['meal', 'positive'], ['room', 'neutral'], ['clubhouse', 'negative']], 'aspect_category': [[None, 'positive'], [None, 'neutral'], [None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Incredible food at a very agreable price brings me back just about every other day to this authentic Thai restaurant." ]
{'aspect_term': [['food', 'positive'], ['price', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "You must have the crabmeat lasagna which is out of this world and the chocolate bread pudding for dessert." ]
{'aspect_term': [['crabmeat lasagna', 'positive'], ['chocolate bread pudding', 'positive'], ['dessert', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "We were told that the wait was about twenty minutes and there would be no problem for our 8:00 pm curtain call." ]
{'aspect_term': [['wait', 'neutral']], 'aspect_category': [[None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Winnie and her staff are the best crew you can find serving you." ]
{'aspect_term': [['crew', 'positive'], ['staff', 'positive'], ['serving', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The food is awesome - definitely try the striped bass." ]
{'aspect_term': [['food', 'positive'], ['striped bass', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The food, served in small tasting portions (as an option) is very good with each dish being better than the next." ]
{'aspect_term': [['food', 'positive'], ['served', 'neutral'], ['portions', 'positive'], ['dish', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'neutral'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Last memorial day, I tried to make reservations but was told they were closed that weekend (interesting, but...)." ]
{'aspect_term': [['reservations', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Make reservations but expect to be delayed 15-20 minutes as the hosting staff was having difficulty seating guests who arrived with a reservation because they probably had a lot of walk ins being so close to Time Square." ]
{'aspect_term': [['hosting staff', 'negative'], ['reservations', 'negative'], ['reservation', 'neutral'], ['seating', 'negative']], 'aspect_category': [[None, 'negative'], [None, 'negative'], [None, 'neutral'], [None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The Steak Tartare is a great bet, they fix it for you at the table." ]
{'aspect_term': [['Steak Tartare', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "They never brought us complimentary noodles, ignored repeated requests for sugar, and threw our dishes on the table." ]
{'aspect_term': [['noodles', 'negative'], ['sugar', 'negative'], ['dishes', 'negative']], 'aspect_category': [[None, 'negative'], [None, 'negative'], [None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I had a huge pastrami sandwich on a roll." ]
{'aspect_term': [['pastrami sandwich', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Overall A oh ya even though there is waiting it is deff worth it" ]
{'aspect_term': [['waiting', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The in-house lady DJ on Saturday nights has outrageously good taste in music, and moreover, takes requests." ]
{'aspect_term': [['music', 'positive'], ['in-house lady DJ', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "We were also seated promptly at the time of our reservation and the service was very quick and professional." ]
{'aspect_term': [['service', 'positive'], ['reservation', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Always popular, always full, always a wait." ]
{'aspect_term': [['wait', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The dim sum however was very good." ]
{'aspect_term': [['dim sum', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Prices are very good." ]
{'aspect_term': [['Prices', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The red sliding doors may be unique but they do not block off the cold air from the outside." ]
{'aspect_term': [['doors', 'conflict']], 'aspect_category': [[None, 'conflict']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "(and I have eaten my share) Which impresses me for having such a large amount of people to serve." ]
{'aspect_term': [['serve', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The waitress was very patient with us and the food is phenomenal!" ]
{'aspect_term': [['waitress', 'positive'], ['food', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The service is good and ambience is good for a date or group outing." ]
{'aspect_term': [['service', 'positive'], ['ambience', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "They don't seem to place an emphasis on specials or fresh ingredients which to me is necessary for good thai." ]
{'aspect_term': [['specials', 'negative'], ['ingredients', 'negative'], ['thai', 'neutral']], 'aspect_category': [[None, 'negative'], [None, 'negative'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "We won't go to this place again for a good meal." ]
{'aspect_term': [['meal', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "We had reservations at 9pm, but was not seated until 10:15pm." ]
{'aspect_term': [['reservations', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The steak was excellent and one of the best I have had (I tasted the butter intitally but in no way did it overwhelm the flavor of the meat)." ]
{'aspect_term': [['steak', 'positive'], ['butter', 'negative'], ['flavor', 'neutral'], ['meat', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'negative'], [None, 'neutral'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Plain and simple it's bad thai food." ]
{'aspect_term': [['thai food', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I have been there many times, and food is good and consistent." ]
{'aspect_term': [['food', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "We were seated and ignored by waitstaff." ]
{'aspect_term': [['waitstaff', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Anyway, the food is good, the price is right and they have a decent wine list." ]
{'aspect_term': [['food', 'positive'], ['price', 'positive'], ['wine list', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "We were told that they were booked solid and no other table was available." ]
{'aspect_term': [['table', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The prices are wonderfully low." ]
{'aspect_term': [['prices', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The service was attentive without being overbearing and each dish we tried was wonderful from the spring rolls to the cod with pineapple tempura." ]
{'aspect_term': [['service', 'positive'], ['dish', 'positive'], ['spring rolls', 'positive'], ['cod with pineapple tempura', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "There are much better places in NY with better prices." ]
{'aspect_term': [['prices', 'negative']], 'aspect_category': [[None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Hats off to the chef." ]
{'aspect_term': [['chef', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The food was delicious and the waiter was incredibly helpful and attentive (considering we were the only ones there for the first hour)." ]
{'aspect_term': [['food', 'positive'], ['waiter', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The sauce on the pizza is sooo good with garlic and fresh tomatoes and they don't skimp." ]
{'aspect_term': [['garlic', 'positive'], ['fresh tomatoes', 'positive'], ['sauce on the pizza', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "it's a perfect place to have a amanzing indian food." ]
{'aspect_term': [['indian food', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "It's easy to get a table for a large group and you don't get hustled out." ]
{'aspect_term': [['table', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "If you are someone who appreciates simplicity, elegance, and wonderfully presented and tasting seafood and vegetables regardless of portion size, Kai is your place." ]
{'aspect_term': [['seafood', 'positive'], ['vegetables', 'positive'], ['portion size', 'negative']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I highly recommend Caviar Russe to anyone who wants delicious top grade caviar and fantastic service." ]
{'aspect_term': [['caviar', 'positive'], ['service', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I ordered a Chicken Teriyaki dish and found that the chicken was extremely dry." ]
{'aspect_term': [['Chicken Teriyaki dish', 'negative'], ['chicken', 'negative']], 'aspect_category': [[None, 'negative'], [None, 'negative']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "I almost hesititate to write a review because the atmosphere was so great and I would hate for it too become to crowded." ]
{'aspect_term': [['atmosphere', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The restaurant was packed at first, so we waited at the bar for about 20 minutes before we were seated." ]
{'aspect_term': [['bar', 'neutral']], 'aspect_category': [[None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "We shared a bottle of sake, an order of edamames, and she had the sushi plate while I had the sashimi." ]
{'aspect_term': [['bottle of sake', 'neutral'], ['edamames', 'neutral'], ['sushi plate', 'neutral'], ['sashimi', 'neutral']], 'aspect_category': [[None, 'neutral'], [None, 'neutral'], [None, 'neutral'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The wait staff is pleasant, fun, and for the most part gorgeous (in the wonderful aesthetic beautification way, not in that she's-way-cuter-than-me-that-b@#$* way)." ]
{'aspect_term': [['wait staff', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Wine list selection is good and wine-by-the-glass was generously filled to the top." ]
{'aspect_term': [['Wine list selection', 'positive'], ['wine-by-the-glass', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Don't dine at Tamarind for the vegetarian dishes, they are simply not up to par with the non-veg selections." ]
{'aspect_term': [['vegetarian dishes', 'negative'], ['non-veg selections', 'positive']], 'aspect_category': [[None, 'negative'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "My wife had the fried shrimp which are huge and loved it." ]
{'aspect_term': [['fried shrimp', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "It is so easy to get a reservation at a top place in NYC with a week's notice." ]
{'aspect_term': [['reservation', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The best part of the experience was knowing that the manager (a bubbly, friendly young woman with a great smile) truly cared about how we were doing." ]
{'aspect_term': [['manager', 'positive']], 'aspect_category': [[None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The calamari comes with an incredible sauce, and the duck noodles are yummy as well." ]
{'aspect_term': [['calamari', 'positive'], ['sauce', 'positive'], ['duck noodles', 'positive']], 'aspect_category': [[None, 'positive'], [None, 'positive'], [None, 'positive']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "The menu is Prix Fixe, so be prepared to spend at least $60 per person, but it is Well worth itsuperb food." ]
{'aspect_term': [['menu', 'negative'], ['food', 'positive'], ['Prix Fixe', 'neutral']], 'aspect_category': [[None, 'negative'], [None, 'positive'], [None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Wine list is not huge but def well selected." ]
{'aspect_term': [['Wine list', 'conflict']], 'aspect_category': [[None, 'conflict']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}
generation
semeval-2014
[ "Instead of wasting your time here: SUPPORT RESTAURANTS THAT CARE ABOUT FOOD." ]
{'aspect_term': [['FOOD', 'neutral']], 'aspect_category': [[None, 'neutral']]}
none
Task: Extracting aspect terms , their aspect categories and their corresponding sentiment polarities in a dict. Input: A sentence. Output: a dict with keys: aspect_term and aspect_category , separate extraction a list of 2-tuples(aspect term , its corresponding sentiment polarity) and a list of 2-tuples(aspect category, its corresponding sentiment polarity). Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "The Pad Thai is excellent here, as well." Output: {'aspect_term': [['Pad Thai', 'positive']], 'aspect_category': [[None, 'positive']]}