annotations_creators:
- synthetic
language_creators:
- other
language:
- python
license:
- Apache 2.0 Licences
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other
task_categories:
- token-classification
- text-generation
task_ids:
- natural-language-inference
pretty_name: String Operations
tags:
- development
- NLU
- small scale
dataset_info:
- config_name: small
features:
- name: input
dtype: string
- name: output
dtype: string
- name: code
dtype: string
- name: res_var
dtype: string
- name: operation
dtype: string
- name: id
dtype: int32
splits:
- name: train
num_bytes: 3222948
num_examples: 33939
- name: test
num_bytes: 1392252
num_examples: 14661
download_size: 1178254
dataset_size: 4615200
- config_name: small10
features:
- name: input
dtype: string
- name: output
dtype: string
- name: code
dtype: string
- name: res_var
dtype: string
- name: operation
dtype: string
- name: id
dtype: int32
splits:
- name: train
num_bytes: 956996
num_examples: 11313
- name: test
num_bytes: 413404
num_examples: 4887
download_size: 312419
dataset_size: 1370400
- config_name: small15
features:
- name: input
dtype: string
- name: output
dtype: string
- name: code
dtype: string
- name: res_var
dtype: string
- name: operation
dtype: string
- name: id
dtype: int32
splits:
- name: train
num_bytes: 1074316
num_examples: 11313
- name: test
num_bytes: 464084
num_examples: 4887
download_size: 393420
dataset_size: 1538400
- config_name: small20
features:
- name: input
dtype: string
- name: output
dtype: string
- name: code
dtype: string
- name: res_var
dtype: string
- name: operation
dtype: string
- name: id
dtype: int32
splits:
- name: train
num_bytes: 1191636
num_examples: 11313
- name: test
num_bytes: 514764
num_examples: 4887
download_size: 472415
dataset_size: 1706400
Dataset Card for Small String Operations Dataset
Dataset Description
- Homepage: PaDaS Lab
- Repository:
- Paper:
- Leaderboard:
- Point of Contact: Michael Granitzer, michael.granitzer@uni-passau.de
Other Metadata
Dataset Summary
Minimal dataset for intended for LM development and testing using python string operations. The dataset is created by running different one line python string operations on random strings The idea is, that transformer implementation can learn the string operations and that this task is a good proxy tasks for other transformer operations on real languages and real tasks. Consequently, the data set is small and can be used in the development process without large scale infrastructures.
Dataset Structure
Data Instances
There are different configurations for the data set.
small
: contains below 50k instances of various string length and only contains slicing operations, i.e. all python operations expressable withs[i:j:s]
(which also includes string reversal).- you can further choose different subsets according to either length or the kind of operation
Data Fields
all data instances can be found under the field "data".
input
: input string, i.e. the string and the string operationoutput
: output of the string operationcode
: code for running the string operation in python,res_var
: name of the result variableoperation
: kind of operation:step_x
fors[::x]
char_at_x
fors[x]
slice_x:y
fors[x:y]
slice_step_x:y:z
fors[x:y:z]
slice_reverse_i:j:k
fors[i:i+j][::k]
Siblings of data
contain additional metadata information about the dataset.
prompt
describes possible prompts based on that data splitted into input prompts / output prompts
Data Splits
The dataset is split into a train and test split for different string lengths
Dataset Creation
The dataset is synthetically created
Licensing Information
MIT License
Citation Information
[More Information Needed]
Contributions
Chair of Data Science, University of Passau
- Michael Granitzer, University of Passau
Thanks to @mgrani for adding this dataset. """
Acknowledgements
This work is part of the OpenWebSearch.eu project and the SMAEGBot Project. The OpenWebSearch.eu Project is funded by the EU under the GA 101070014 and we thank the EU for their support. SMAEGBot is supported by funds of the Federal Ministry of Food and Agriculture (BMEL) based on a decision of the Parliament of the Federal Republic of Germany. The Federal Office for Agriculture and Food (BLE) provides coordinating support for artificial intelligence (AI) in agriculture as funding organisation, grant number 05119082.