File size: 6,246 Bytes
dc2f917 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import json
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import Tasks
_CITATION = """\
@article{majewska2022cross,
title={Cross-lingual dialogue dataset creation via outline-based generation},
author={Majewska, Olga and Razumovskaia, Evgeniia and Ponti, Edoardo Maria and Vuli{\'c}, Ivan and Korhonen, Anna},
journal={arXiv preprint arXiv:2201.13405},
year={2022}
}
"""
_LANGUAGES = ["ind"]
_LOCAL = False
_DATASETNAME = "cod"
_DESCRIPTION = """\
Cross-lingual Outline-based Dialogue (COD) is a dataset comprised of manually generated, localized, and cross-lingually aligned Task-Oriented-Dialogue (TOD) data that served as the source of dialogue prompts.
COD enables natural language understanding, dialogue state tracking, and end-to-end dialogue modeling and evaluation.
Majewska et al. (2022) create COD using a novel outline-based annotation pipeline for multilingual TOD by Majewska et al. (2022).
English Schema-Guided Dialogue (SGD; Shah et al., 2018; Rastogi et al., 2020) dataset is automatically sampled and mapped into outlines. The outlines are then paraphrased and adapted to the local target domain by human subjects.
"""
_HOMEPAGE = "https://github.com/cambridgeltl/COD"
_LICENSE = "Unknown"
_URLS = {
_DATASETNAME: {
"validation": "https://raw.githubusercontent.com/cambridgeltl/COD/main/id_dev.json",
"test": "https://raw.githubusercontent.com/cambridgeltl/COD/main/id_test.json",
},
}
_SUPPORTED_TASKS = [Tasks.DIALOGUE_SYSTEM]
_SOURCE_VERSION = "1.0.0"
_NUSANTARA_VERSION = "1.0.0"
class NewDataset(datasets.GeneratorBasedBuilder):
"""Cross-lingual Outline-based Dialogue (COD) is a dataset comprises manually generated, localised, and cross-lingually aligned Task-Oriented-Dialogue (TOD) data which served as the source of dialogue prompts."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
BUILDER_CONFIGS = [
NusantaraConfig(
name="cod_source",
version=SOURCE_VERSION,
description="Cross-lingual Outline-based Dialogue (COD) source schema",
schema="source",
subset_id="cod",
),
]
DEFAULT_CONFIG_NAME = "cod_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"index": datasets.Value("string"),
"dialogue_id": datasets.Value("string"),
"services": [datasets.Value("string")],
"turns": [
{
"speaker": datasets.Value("string"),
"utterance": datasets.Value("string"),
"frames": [
{
"actions": [
{
"act": datasets.Value("string"),
"slot": datasets.Value("string"),
"values": [datasets.Value("string")],
}
],
"service": datasets.Value("string"),
"slots": [
{
"exclusive_end": datasets.Value("int32"),
"slot": datasets.Value("string"),
"start": datasets.Value("int32"),
}
],
"state": {
"active_intent": datasets.Value("string"),
"requested_slots": [datasets.Value("string")],
"slot_values": [
{"slot": datasets.Value("string"), "values": [datasets.Value("string")]},
],
},
}
],
}
],
}
)
else:
raise NotImplementedError()
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir["test"],
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir["validation"],
"split": "dev",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
with open(filepath, "r+") as fw:
data = json.loads(fw.read())
if self.config.schema == "source":
for idx, example in enumerate(data):
example["index"] = str(idx)
for turn in example["turns"]:
for frame in turn["frames"]:
if "state" not in frame:
continue
ls_slot_values = []
for slot in frame["state"]["slot_values"]:
ls_slot_values.append({"slot": slot, "values": frame["state"]["slot_values"][slot]})
frame["state"]["slot_values"] = ls_slot_values
yield str(idx), example
|