emotcmt / README.md
holylovenia's picture
Upload README.md with huggingface_hub
a03ac08 verified
metadata
language:
  - ind
pretty_name: Emotcmt
task_categories:
  - emotion-classification
tags:
  - emotion-classification

EmotCMT is an emotion classification Indonesian-English code-mixing dataset created through an Indonesian-English code-mixed Twitter data pipeline consisting of 4 processing steps, i.e., tokenization, language identification, lexical normalization, and translation. The dataset consists of 825 tweets, 22.736 tokens with 11.204 Indonesian tokens and 5.613 English tokens. Each tweet is labelled with an emotion, i.e., cinta (love), takut (fear), sedih (sadness), senang (joy), or marah (anger).

Languages

ind

Supported Tasks

Emotion Classification

Dataset Usage

Using datasets library

from datasets import load_dataset
dset = datasets.load_dataset("SEACrowd/emotcmt", trust_remote_code=True)

Using seacrowd library

# Load the dataset using the default config
dset = sc.load_dataset("emotcmt", schema="seacrowd")
# Check all available subsets (config names) of the dataset
print(sc.available_config_names("emotcmt"))
# Load the dataset using a specific config
dset = sc.load_dataset_by_config_name(config_name="<config_name>")

More details on how to load the seacrowd library can be found here.

Dataset Homepage

https://github.com/ir-nlp-csui/emotcmt

Dataset Version

Source: 1.0.0. SEACrowd: 2024.06.20.

Dataset License

MIT

Citation

If you are using the Emotcmt dataloader in your work, please cite the following:

@inproceedings{barik-etal-2019-normalization,
    title = "Normalization of {I}ndonesian-{E}nglish Code-Mixed {T}witter Data",
    author = "Barik, Anab Maulana  and
      Mahendra, Rahmad  and
      Adriani, Mirna",
    booktitle = "Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)",
    month = nov,
    year = "2019",
    address = "Hong Kong, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D19-5554",
    doi = "10.18653/v1/D19-5554",
    pages = "417--424"
}

@article{Yulianti2021NormalisationOI,
  title={Normalisation of Indonesian-English Code-Mixed Text and its Effect on Emotion Classification},
  author={Evi Yulianti and Ajmal Kurnia and Mirna Adriani and Yoppy Setyo Duto},
  journal={International Journal of Advanced Computer Science and Applications},
  year={2021}
}


@article{lovenia2024seacrowd,
    title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages}, 
    author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
    year={2024},
    eprint={2406.10118},
    journal={arXiv preprint arXiv: 2406.10118}
}