|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{ho2020emotion, |
|
title={Emotion recognition for vietnamese social media text}, |
|
author={Ho, Vong Anh and Nguyen, Duong Huynh-Cong and Nguyen, Danh Hoang and Pham, Linh Thi-Van and Nguyen, Duc-Vu and Nguyen, Kiet Van and Nguyen, Ngan Luu-Thuy}, |
|
booktitle={Computational Linguistics: 16th International Conference of the Pacific Association for Computational Linguistics, PACLING 2019, Hanoi, Vietnam, October 11--13, 2019, Revised Selected Papers 16}, |
|
pages={319--333}, |
|
year={2020}, |
|
organization={Springer} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "uit_vsmec" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset consists of Vietnamese Facebook comments that were manually annotated for sentiment. |
|
There are seven possible emotion labels: enjoyment, sadness, fear, anger, disgust, surprise or other (for comments with no or neutral emotions). |
|
Two rounds of manual annotations were done to train annotators with tagging and editing guidelines. |
|
Annotation was performed until inter-annotator agreement reached at least 80%. |
|
""" |
|
|
|
_HOMEPAGE = "https://drive.google.com/drive/folders/1HooABJyrddVGzll7fgkJ6VzkG_XuWfRu" |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LANGUAGES = ["vie"] |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"train": "https://docs.google.com/spreadsheets/export?id=10VYzfK7JLg-vfmqH0UmKX62z_uaXU-Hp&format=csv", |
|
"valid": "https://docs.google.com/spreadsheets/export?id=1EsSFZ94fj2yTvFKO6EyxM0wBRcG0s1KE&format=csv", |
|
"test": "https://docs.google.com/spreadsheets/export?id=1D16FCKKgJ0T6t2aSA3biWVwvD9fa4G9a&format=csv", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.EMOTION_CLASSIFICATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class UITVSMECDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
This is the main class of SEACrowd dataloader for UIT-VSMEC, focusing on emotion/sentiment classification task. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_text", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_text", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
LABEL_NAMES = ["Other", "Disgust", "Enjoyment", "Anger", "Surprise", "Sadness", "Fear"] |
|
DEFAULT_CONFIG_NAME = "uit_vsmec_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features({"Emotion": datasets.Value("string"), "Sentence": datasets.Value("string")}) |
|
|
|
elif self.config.schema == "seacrowd_text": |
|
features = schemas.text_features(self.LABEL_NAMES) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
path_dict = dl_manager.download_and_extract(_URLS) |
|
train_path, valid_path, test_path = path_dict["train"], path_dict["valid"], path_dict["test"] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": train_path, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": test_path, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": valid_path, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
df = pd.read_csv(filepath).reset_index() |
|
if self.config.schema == "source": |
|
for row in df.itertuples(): |
|
ex = {"Emotion": row.Emotion, "Sentence": row.Sentence} |
|
yield row.index, ex |
|
|
|
elif self.config.schema == "seacrowd_text": |
|
for row in df.itertuples(): |
|
ex = {"id": str(row.index), "text": row.Sentence, "label": self.LABEL_NAMES.index(row.Emotion)} |
|
yield row.index, ex |
|
|