text
stringlengths
22
128k
assertiveness
float64
2.59
5.81
source
stringclasses
6 values
label
int64
0
1
We identified I kappa B alpha/MAD-3 as an immediate-early gene in human monocytes that is expressed in response to a variety of signals, including adhesion, lipopolysaccharide, and phorbol myristate acetate. Within 5 min of monocyte adhesion, the level of the I kappa B alpha protein is markedly diminished but is rapidly replaced in a cycloheximide-sensitive manner within 20 min. Accompanying the rapid turnover of the I kappa B alpha protein is simultaneous translocation of NF-kappa B-related transcription factors to nuclei of adhered monocytes. The demonstration that NF-kappa B can regulate I kappa B alpha/MAD-3 gene transcription in other cell types Nuclear run-on analyses The adherence-dependent increase in I kappa B alpha/MAD-3 mRNA levels was also Interestingly, while increases in both IL-1 beta and I kappa B alpha/MAD-3 mRNA levels were detected in nuclei of adherent monocytes, cytoplasmic levels of IL-1 beta mRNA increased during adherence whereas those of I kappa B alpha/MAD-3 mRNA did Taken together, our data We Moreover, since inhibition of protein synthesis leads to accumulation of I kappa B alpha/MAD-3 mRNA
4.84375
bioscope
0
The assessment of synovial lymphocyte reactivity to adenovirus antigen stimulation was undertaken in patients with persistent or recurrent inflammatory arthritis. The 3H-thymidine uptake procedure was employed, incorporating multiple microbiological antigens. Five patients were found with repeated maximal responses to adenovirus antigen; in one of these adenovirus nucleotide sequences were present in a synovial biopsy specimen. It is concluded that adenovirus
4.78125
bioscope
0
To evaluate this possibility, we examined in vitro the effects of two types of antioxidant molecules in terms of inhibition of HIV replication in monocytes, one of the main reservoirs of HIV, and also in terms of modulation of the immune competence as measured by PBMC proliferation. We tested the effects of BHA, a phenolic, lipid-soluble, chain-breaking antioxidant, and NAC, a known glutathione precursor with some direct free-radical scavenging properties as well, on the regulation of HIV-1 expression in latently infected U1 cells and in productively and chronically infected U937 cells. Both antioxidants inhibited TNF- or PMA-induced NF-kappa B activity in U1 cells, as well as the sustained NF-kappa B activity permanently induced by the virus itself in chronically HIV-infected U937 cells. This resulted in only a partial inhibition of TNF- or PMA- induced HIV replication in U1 cells, and This Another limitation is that antioxidant concentrations high enough to block NK-kappa B activation were shown to have a suppressive effect on immune functions in vitro, because NAC and BHA blocked IL-2-induced PBMC proliferation. These data warrant prudence in the design of antioxidant-based therapies aimed at suppressing HIV replication.
4.25
bioscope
0
The NK-kappa B transcription factor complex is sequestered in the cytoplasm by the inhibitory protein I kappa B-alpha (MAD-3). Various cellular stimuli relieve this inhibition by mechanisms largely unknown, leading to NF-kappa B nuclear localization and transactivation of its target genes. It is demonstrated here with human T lymphocytes and monocytes that different stimuli, including tumor necrosis factor alpha and phorbol 12-myristate 13-acetate, cause rapid degradation of I kappa B-alpha, with concomitant activation of NF-kappa B, followed by a dramatic increase in I kappa B-alpha mRNA and protein synthesis . Transfection studies reveal that the I kappa B-alpha mRNA and the encoded protein are potently induced by NF-kappa B and by homodimers of p65 and of c-Rel. We saturating amounts of the inhibitory I kappa B-alpha protein are destroyed upon stimulation, allowing rapid activation of NF-kappa B. Subsequently, I kappa B-alpha mRNA and protein levels are quickly induced by the activated NF-kappa B. This resurgence of I kappa B-alpha protein acts to restore an equilibrium in which NF-kappa B is again inhibited.
4.96875
bioscope
1
We investigated the clinical significance of glucocorticoid receptor determination in 20 patients with systemic lupus erythematosus (SLE) who afterwards developed nephrotic syndrome. Glucocorticoid receptor concentrations in mononuclear leukocytes (MNL) in these patients were comparable with those in both other patients with SLE and healthy persons. Improvement in urinary protein excretion and in disease activity, which was scored according to the SLE Disease Activity Index system of the University of Toronto, closely related to the glucocorticoid receptor concentrations in MNL isolated from the corresponding patients. In summary, glucocorticoid receptor determination in patients with lupus nephritis
5
bioscope
1
We have biochemically and functionally characterized a new transcription factor, NP-TCII, which is present in nuclei from unstimulated T and B lymphocytes but This factor has a DNA-binding specificity similar to that of NF-kappa B but is unrelated to this or other Rel proteins by functional and biochemical criteria. It can also be distinguished from other previously described lymphocyte-specific DNA-binding proteins.
5
bioscope
1
Cyclosporin A (CsA) Among these target genes is the gene encoding interleukin-2 (IL2), a cytokine facilitating progression through the G1 phase of the cell cycle. However, IL2 does The human G0/G1 switch gene, G0S2, has Using a sensitive, reverse transcription-polymerase chain reaction (RT-PCR) assay, G0S2 mRNA levels were assayed in cultured blood mononuclear cells. Freshly isolated cells contain high levels of G0S2 mRNA which rapidly decline. This "spontaneous stimulation" is also noted with some other G0S genes and has been attributed to some aspect of the isolation procedure. In cells that have been preincubated to lower mRNA levels, there is a transient increase in G0S2 mRNA, peaking between 1-2 h, in response to Concanavalin-A (ConA), or to the combination of phorbol ester (TPA), and the calcium ionophore, ionomycin. Both these responses are inhibited by CsA. Our results G0S2
4.96875
bioscope
1
Mononuclear phagocytes play a major role in immune and inflammatory responses. Bacterial lipopolysaccharide (LPS) induces monocytes to express a variety of genes by activating the NF-kappaB/Rel transcription factor family. Recently, we have reported that the tumor necrosis factor and interleukin 1 signaling pathways activate two kinases, IKK1 and IKK2. Phosphorylation of the IkappaB cytoplasmic inhibitors, IkappaBalpha, IkappaBbeta, and IkappaBepsilon, by these kinases triggers proteolytic degradation and the release of NF-kappaB/Rel proteins into the nucleus. At present, Here, we report that LPS induces IKK activity in human monocytes and THP-1 monocytic cells. The kinetics of activation of kinase activity in monocytic cells are relatively slow with maximal activity observed at 60 min, which coincides with the degradation of IkappaBs and the nuclear translocation of NF-kappaB. In transfection experiments, overexpression of wild type IKK1, a dominant negative mutant IKK1 (K44M), or wild type IKK2 did In contrast, a dominant negative mutant of IKK2 inhibited LPS induction of kappaB-dependent transcription in a dose-dependent manner. These results
4.71875
bioscope
0
Some antioxidants, including butylated hydroxyanisole (BHA), tetrahydropapaveroline (THP), nordihydroguiauretic acid, and 10,11-dihydroxyaporphine (DHA), were found to be potent inhibitors of the production of tumor necrosis factor (TNF)-alpha, IL-1 beta, and IL-6 by human peripheral blood mononuclear cells (PBMC) stimulated by lipopolysaccharide (LPS) (IC50s in the low micromolar range). Inhibition of cytokine production was gene selective and Inhibition of cytokine production by PBMC was observed also when other inducers were used (staphylococci, silica, zymosan). Much higher concentrations of other antioxidants--including ascorbic acid, trolox, alpha-tocopherol, butylated hydroxytoluene, and the 5-lipoxygenase inhibitor zileuton--did The active compounds did Antioxidant-mediated inhibition of cytokine production was correlated with low levels of the corresponding messenger RNAs. Nuclear run-on experiments showed that THP inhibited transcription of the IL-1 beta gene. THP decreased the concentration of the transcription factors NF-kappa B and AP-1 detected in nuclear extracts of PBMC cultured in the presence or THP and DHA markedly decreased the levels of TNF-alpha and IL-1 beta in the circulation of mice following LPS injection. Thus antioxidants vary widely in potency as inhibitors of the activation of transcription factors and of the transcription of genes for pro-inflammatory cytokines. Coordinate inhibition of the transcription of genes for inflammatory cytokines could provide a strategy for therapy of diseases with inflammatory pathogenesis and for septic shock.
3.5625
bioscope
0
The adoptive transfer of tumor-draining lymph node (LN) T cells activated ex vivo with anti-CD3 and interleukin 2 (IL-2) mediates the regression of the poorly immunogenic murine melanoma D5. The efficacy of the activated LN cells is augmented when the sensitizing tumor is a genetically modified variant (designated D5G6) that secretes granulocyte/macrophage-colony-stimulating factor. In contrast to anti-CD3/IL-2-activated LN cells, adoptive transfer of freshly isolated tumor-draining LN T cells has To determine The levels of p56lck and p59fyn were lower in tumor-draining than in normal LN T cells and production of tyrosine-phosphorylated substrates was markedly depressed following anti-CD3 stimulation. After 5-day anti-CD3/IL-2 activation, levels of p56lck and p59fyn and protein tyrosine kinase activity increased. Interestingly, the levels of p56lck, p59fyn, and tyrosine kinase activity were higher in activated T cells derived from LN that drained D5G6 than they were in those from D5 tumors. In contrast, the cytoplasmic levels of c-Rel and Rel A were normal in freshly isolated tumor-draining LN, as was nuclear kappaB DNA-binding activity induced by anti-CD3 mAb or phorbol myristate acetate. Stimulation of activated LN cells with D5 tumor cells induced the nuclear translocation of NF-kappaB. These findings
5.09375
bioscope
1
Acute inflammatory injury in rat lung induced by deposition of immunoglobulin G immune complexes requires expression of cytokines and chemokines as well as activation of the transcription factor nuclear factor (NF)-kappaB. There is little direct evidence regarding the role of alveolar macrophages in these activation events. In the present studies, rat lungs were depleted of alveolar macrophages by airway instillation of liposome-encapsulated dichloromethylene diphosphonate. These procedures, which greatly reduced the number of retrievable alveolar macrophages, suppressed activation of lung NF-kappaB in the inflammatory model. In addition, bronchoalveolar lavage levels of tumor necrosis factor-alpha (TNF-alpha) and the CXC chemokine, macrophage inflammatory protein-2, were substantially reduced. In parallel, upregulation of the lung vascular adhesion molecule, intercellular adhesion molecule-1, was greatly reduced by intrapulmonary instillation of phosphonate-containing liposomes. Neutrophil accumulation and development of lung injury were also substantially diminished. Lung instillation of TNF-alpha in alveolar macrophage-depleted rats restored the NF-kappaB activation response in whole lung. These data
5.15625
bioscope
1
(2E)-3-[5-(2,3-Dimethoxy-6-methyl-1,4-benzoquinoyl)]-2-nonyl-2- propenoic acid (E3330), is a novel agent with hepatoprotective activity. We report the effect of E3330 on transcriptional activation of tumor necrosis factor (TNF)-alpha gene and on nuclear factor (NF)-kappa B activation. Nuclear run-on experiments showed that E3330 decreases transcriptional activation of TNF-alpha gene induced by lipopolysaccharide (LPS) stimulation in human peripheral monocytes. To investigate the inhibitory mechanisms, we constructed a secreted-type placental alkaline phosphatase (PLAP) reporter gene whose transcription is controlled by a 1.4-kb human TNF-alpha promoter. A stable transformant of the PLAP reporter gene derived from human monocytic cell line showed very little activity on the promoter before stimulation, whereas LPS stimulation led to a dramatic increase in PLAP activity. E3330 inhibited this induced promoter activity in a dose-dependent manner. There are four putative NF-kappa B binding sites (kappa B-1, kappa B-2, kappa B-3, kappa B-4) in human TNF-alpha promoter. By using mutated promoter-PLAP plasmids, we established that these NF-kappa B sites were necessary for induction of TNF-alpha transcription on stimulation with LPS. A gel retardation experiment with synthetic double-stranded oligonucleotides showed that activated NF-kappa B consisting of p50/p65 heterodimer bound to all four putative NF-kappa B DNA probes, E3330 decreased activated NF-kappa B in nuclei, Western blotting analysis with anti-I kappa B-alpha antibody E3330
4.9375
bioscope
1
We have previously shown that minimally oxidized LDL (MM-LDL) activated endothelial cells to increase their interaction with monocytes but In the present studies we have examined the signaling pathways by which this monocyte-specific response is induced. A number of our studies Incubation of endothelial cells with MM- LDL caused a 173% increase in intracellular cAMP levels. Agents which increased cAMP levels, including cholera toxin, pertussis toxin, dibutyryl cAMP, and isoproterenol mimicked the actions of MM-LDL. Agents which elevated cAMP were also shown to activate NF kappa B, Although We present evidence that induction of neutrophil binding by LPS is actually suppressed by agents that elevated cAMP levels.
5
bioscope
1
Chromosomal translocations involving the genes encoding the alpha and beta subunits of the Pebp2/Cbf transcription factor have been associated with human acute myeloid leukemia and the preleukemic condition, myelodysplasia. Inv(16)(p13;q22) fuses the gene encoding the beta subunit of Pebp2 to the MYH11 gene encoding a smooth muscle myosin heavy chain (Smmhc). To examine the effect of the inv(16)(p13;q22) on myelopoiesis, we used the hMRP8 promoter element to generate transgenic mice expressing the Pebp2beta Smmhc chimeric fusion protein in myeloid cells. Neutrophil maturation was impaired in PEBP2betaMYH11 transgenic mice. Although the transgenic mice had normal numbers of circulating neutrophils, their bone marrow contained increased numbers of immature neutrophilic cells, which exhibited abnormal characteristics. In addition, PEBP2betaMYH11 inhibited neutrophilic differentiation in colonies derived from hematopoietic progenitors. Coexpression of both PEBP2betaMYH11 and activated NRAS induced a more severe phenotype characterized by abnormal nuclear morphology indicative of granulocytic dysplasia. These results show that PEBP2betaMYH11 can impair neutrophil development and provide evidence that alterations of Pebp2 can contribute to the genesis of myelodysplasia.
4.53125
bioscope
0
Molecular dissection of the B-cell-specific transcription coactivator OCA-B has revealed distinct regions important, respectively, for recruitment to immunoglobulin promoters through interaction with octamer-bound Oct-1 and for subsequent coactivator function. Further analysis of general coactivator requirements showed that selective removal of PC4 from the essential USA fraction severely impairs Oct-1 and OCA-B function in a cell-free system reconstituted with partially purified factors. Full activity can be restored by the combined action of recombinant PC4 and the PC4-depleted USA fraction, thus Indeed, USA-derived PC2 was found to act synergistically with PC4 in reproducing the function of intact USA in the assay system. Consistent with the requirement for PC4 in the reconstituted system, OCA-B was found to interact directly with PC4. Surprisingly, however, removal of PC4 from the unfractionated nuclear extract has These results lead to a general model for the synergistic function of activation domains in Oct-1 and OCA-B (mediated by the combined action of the multiple USA components) and, further,
4.90625
bioscope
1
A kappa B-site was identified in the promoter of the intercellular adhesion molecule-1 (ICAM-1) gene, which is involved in regulation of ICAM-1 expression by tumor necrosis factor alpha (TNF-alpha) and glucocorticoids. We now report on the transcription factors which bind and transactivate this enhancer sequence. In vitro, In addition, both RelA and c-Rel, but In monocytic THP-1 cells TNF-alpha induced two nuclear complexes which in vitro bound to the ICAM-1 kappa B site. Using antibodies in an electrophoretic mobility supershift assay, one of these complexes was shown to contain NF-kappa B1 and RelA, and to bind with higher affinity to the consensus kappa B site in the HIV long terminal repeat. The second complex contained RelA, and exhibited higher affinity towards the ICAM-1 kappa B than to the HIV kappa B site. The glucocorticoid receptor was shown to repress activity of both the RelA homodimer and the NF-kappa B1/RelA heterodimer. We argue that in vivo
4.28125
bioscope
0
Activation of CD40 is essential for thymus-dependent humoral immune responses and rescuing B cells from apoptosis. In addition to Bcl-x, a known CD40-regulated antiapoptotic molecule, we identified a related antiapoptotic molecule, A1/Bfl-1, as a CD40-inducible gene. Inhibition of the NF-kappaB pathway by overexpression of a dominant-active inhibitor of NF-kappaB abolished CD40-induced up-regulation of both the Bfl-1 and Bcl-x genes and also eliminated the ability of CD40 to rescue Fas-induced cell death. Within the upstream promoter region of Bcl-x, a potential NF-kappaB-binding sequence was found to support NF-kappaB-dependent transcriptional activation. Furthermore, expression of physiological levels of Bcl-x protected B cells from Fas-mediated apoptosis in the Thus, our results
4.46875
bioscope
0
Kappa B (kappa B) enhancer binding proteins isolated from the nuclei of activated human T cells produce two distinct nucleoprotein complexes when incubated with the kappa B element from the interleukin-2 receptor-alpha (IL-2R alpha) gene. These two DNA-protein complexes are composed of at least four host proteins (p50, p55, p75, p85), each of which shares structural similarity with the v-rel oncogene product. Nuclear expression of these proteins is induced with distinctly biphasic kinetics following phorbol ester activation of T cells (p55/p75 early and p50/p85 late). DNA-protein crosslinking studies have revealed that the more rapidly migrating B2 complex contains both p50 and p55 while the more slowly migrating B1 complex is composed of p50, p55, p75, and p85. Site-directed mutagenesis of the wild-type IL-2R alpha kappa B enhancer (GGGGAATCTCCC) has revealed that the binding of p50 and p55 (B2 complex) is particularly sensitive to alteration of the 5' triplet of deoxyguanosine residues. In contrast, formation of the B1 complex, reflecting the binding of p75 and p85, critically depends upon the more 3' sequences of this enhancer element. DNA binding by all four of these Rel-related factors is blocked by selective chemical modification of lysine and arginine residues, Similarly, covalent modification of free sulfhydryl groups with diamide (reversible) or N-ethylmaleimide (irreversible) results in a complete loss of DNA binding activity. In contrast, mild oxidation with glucose oxidase selectively inhibits p75 and p85 binding while These findings
5.125
bioscope
1
Neutral sphingomyelinase (SMase) can be activated by extracellular signals to produce ceramide, which Neutral SMase activity was assessed in membranes from Jurkat, a human T-cell line, and EL4, a murine T-cell line. Ara-C activated SMase with 10 minutes in both Jurkat and EL4 cells, while phorbol ester (PMA) had PMA, but PMA acted synergistically with ionomycin to activate JNK MAPKs in Jurkat and EL4 within 10 minutes. Ara-C activated JNKs only after prolonged incubation (90-120 minutes). Thus, ceramide is
5.09375
bioscope
1
Transcription of a human U2 small nuclear RNA ( snRNA ) -encoding gene in HeLa cells requires a distal enhancer element, which is composed of one octamer motif (Oct) and three Sp 1-binding sites. To study the transcription factor requirement in B-cells, different U2 enhancer constructions were transfected into the lymphoid cell line, BJA-B. The results showed that the activation of U2 snRNA transcription in B-cells also requires an enhancer comprising both the Oct and at least one Sp 1-binding site. Deletion of all the Sp 1-binding sites from the enhancer reduces transcription by 80-90% in HeLa, as well as in BJA-B cells, whereas the removal of the octamer-binding site reduces transcription to levels below detection in both cell types. Enhancers containing a single Oct have , nevertheless, the capacity to partially activate U2 snRNA transcription in both HeLa cells, in which only OTF-1 is expressed, and in BJA-B cells in which OTF-2 is the predominantly expressed octamer-binding factor. The most The results also revealed a similar functional cooperation between the transcription factors which bind to the Oct and the adjacent Sp 1-binding site in BJA-B cells, as has been observed in HeLa cells, since a template which contains a weak binding site for OTFs expresses wild-type levels of U2 snRNA in both cell types when the weak octamer-binding site is combined with a Sp 1-binding site.
5
bioscope
1
CD30, a member of the tumor necrosis factor (TNF) receptor family, is expressed constitutively on the surface of the human T cell line ACH-2, which is chronically infected with human immunodeficiency virus type-1 (HIV)-1. We demonstrate that cross-linking CD30 with an anti-CD30-specific monoclonal antibody, which mimics the described biological activities of the CD30 ligand (CD30L), results in HIV expression. CD30 cross-linking does Furthermore, cross-linking of CD30 leads to NF-kappa B activation and enhanced HIV transcription. Thus, CD30-CD30L interactions mediate the induction of HIV expression by a kappa B-dependent pathway that is independent of TNF. This mechanism
4.84375
bioscope
0
The flow of information from calcium-mobilizing receptors to nuclear factor of activated T cells (NFAT)-dependent genes is critically dependent on interaction between the phosphatase calcineurin and the transcription factor NFAT. A high-affinity calcineurin-binding peptide was selected from combinatorial peptide libraries based on the calcineurin docking motif of NFAT. This peptide potently inhibited NFAT activation and NFAT-dependent expression of endogenous cytokine genes in T cells, Substitution of the optimized peptide sequence into the natural calcineurin docking site increased the calcineurin responsiveness of NFAT. Compounds that interfere selectively with the calcineurin-NFAT interaction
4.9375
bioscope
1
This work aims at identifying the thymocyte subpopulation able to support human immunodeficiency virus (HIV) replication under the biological stimuli of the thymic microenvironment. In this report we demonstrate that interaction with thymic epithelial cells (TEC) induces a high-level replication of the T-tropic primary isolate HIV-1(B-LAIp) exclusively in the mature CD4(+) CD8(-) CD3(+) thymocytes. Tumor necrosis factor (TNF) and interleukin-7 (IL-7), secreted during this interaction, are critical cytokines for HIV long terminal repeat transactivation through NF-kappaB-dependent activation. TNF is the major inducer of NF-kappaB and particularly of the p50-p65 complex, whereas IL-7 acts as a cofactor by sustaining the expression of the p75 TNF receptor. The requirement for TNF is further confirmed by the observation that the inability of the intermediate CD4(+) CD8(-) CD3(-) thymocytes to replicate the virus is associated with a defect in TNF production during their interaction with TEC and correlates with the Addition of exogenous TNF to the intermediate thymocyte cultures induces NF-kappaB activity and is sufficient to promote HIV replication in the cocultures with TEC. The other major subpopulation expressing the CD4 receptor, namely, the double-positive (DP) CD4(+) CD8(+) CD3(+/-) thymocytes, despite the entry of the virus, do Together, these data However, under conditions of inflammatory response after infection, TNF
5.15625
bioscope
1
The A6H monoclonal antibody (mAb) recognizes a 120,000-140,000 MW antigen that is expressed at similar densities on 85-90% of human CD4+ and CD8+ T cells and on renal cell carcinomas. The binding of the A6H mAb induced a costimulatory signal in anti-CD3 activated T cells. In the present report, we show that A6H costimulated cell proliferation and cytokine production in purified CD4+ T cells. Unexpectedly, the CD8+ T-cell subpopulation CD4+ T cells costimulated with the A6H mAb upregulated CD80, CD86, CD71, interleukin-2 (IL-2)R alpha, IL-2R beta and IL-2R gamma, while In order to investigate the nature of the A6H mAb costimulus at the transcriptional level we have examined induction of the transcription factors OCT-1, AP-1 and NF-kappa B which are known to be transcriptional regulators of several cytokine and cytokine receptor genes, including the IL-2 and IL-2R genes. Co-ligation of the A6H antigen and the CD3 complex induced expression of the transcription factor AP-1 in CD4+ T cells, whereas Furthermore, These results Molecular differences of the A6H molecule or distinct regulation of the A6H transduced AP-1 activation pathway
4.84375
bioscope
0
Fetal and neonatal lymphocytes are relatively resistant to activation and cytokine production when stimulated either via their T-cell antigen receptors or lectins. We have We used reverse transcriptase-polymerase chain reaction to examine both fetal and term neonatal cord bloods for mRNA expression of three transcription factors implicated in T-cell activation: c-jun, c-fos, and NF kappa B (p50 subunit). We demonstrate that mRNAs for all three of these regulatory factors are expressed in fetal blood cells by the 27th week of gestation and in term cord bloods. Activation of term infant cord blood mononuclear cells with anti-CD3 monoclonal antibodies resulted in up-regulation of both c-jun and c-fos mRNAs within 15 min of stimulation. However, secretion of IL-2 by anti-CD3-stimulated cord blood mononuclear cells was still blunted compared with control cells from adults. We conclude that fetal nucleated blood cells constitutively express important genes for cytokine regulation and are able to increase intracellular accumulation of the mRNAs for these factors in response to anti-CD3 stimulation. Thus, Quantitative experiments comparing binding of these transcription factors to the IL-2 promoter are currently under investigation.
4.90625
bioscope
1
The control of cell survival and cell death is of central importance in tissues with high cell turnover such as the lymphoid system. We have examined the effect of cytokines on IL-2 deprivation-induced apoptosis of human antigen-specific T helper clones with different cytokine production profiles. We found that IL-2, interferon-alpha (IFN-alpha), and IFN-beta inhibited IL-2 deprivation apoptosis in Th0, Th1, and Th2 clones. We also found that IL-2 protects T cell clones from IL-2 deprivation apoptosis accompanying active proliferation and enhanced expression of P53, Rb and Bcl-xL proteins. In contrast, IFN-alpha/beta rescued T cell clones from apoptosis This IFN-alpha/beta specifically induced tyrosine phosphorylation and translocation into nucleus of signal transducers and activators of transcription (STAT) 2 protein in the T cell clones. In addition, over-expression of STAT2 by transfection of the cDNA prevented apoptosis of the T cell clones. Our present study shows that IFN-alpha and -beta mediate anti-apoptotic effect through other pathways than that of IL-2 in growth factor deprivation apoptosis.
4.96875
bioscope
1
CD30 is a recently described member of the tumor necrosis factor/nerve growth factor receptor superfamily. In this report, we show that following incubation of L540 cells (Hodgkin's disease-derived, T cell-like, CD30+ cells) with the agonistic anti-CD30 monoclonal antibodies (mAb) M44 and M67, two nuclear factor (NF)-kappa B DNA binding activities were induced in nuclear extracts, as determined in gel retardation assays. The effect of the mAb towards NF-kappa B activation was rapid, as it occurred within 20 min, and was sustained for up to 6 h. By comparison, an isotype-matched antibody had Moreover, in human T helper (Th) clones functionally characterized as being of the type 0, type 1 and type 2 (28%, < 1% und 93% CD30+, respectively), the extent of CD30-mediated NF-kappa B activation correlated with the proportion of CD30+ cells. In all cell lines investigated, the NF-kappa B complexes induced following CD30 engagement were shown to contain p50 NF-kappa B1, p65 RelA, and Collectively, our results demonstrate that nuclear translocation and activation of NF-kappa B rank among the short-term cellular responses elicited following CD30 ligation.
5.0625
bioscope
1
A variety of cytokines and growth factors act through an induction of gene expression mediated by a family of latent transcription factors called STAT (signal transducers and activators of transcription) proteins. Ligand-induced tyrosine phosphorylation of the STATs promotes their homodimer and heterodimer formation and subsequent nuclear translocation. We demonstrate here that STAT protein heterocomplexes exist prior to cytokine treatment. When unstimulated HeLa cells are ruptured in hypotonic buffer Similarly, STAT1-STAT3 heterocomplexes are coimmunoadsorbed from hypotonic cytosol. STAT1 and STAT2 or STAT1 and STAT3 translated in reticulocyte lysate spontaneously form heterocomplexes when the translation lysates are mixed at 0 degrees C. Our data Newly translated STAT1 binds in equilibrium fashion to STAT2 and STAT3, but we show that STAT2 and STAT3 exist in separate heterocomplexes with STAT1, consistent with a model in which STAT1 contains a common binding site for other STAT proteins.
4.9375
bioscope
1
Here we show that the lymphoid lineage-determining factors Ikaros and Aiolos can function as strong transcriptional repressors. This function is mediated through two repression domains and is dependent upon the promoter context and cell type. Repression by Ikaros proteins correlates with hypo-acetylation of core histones at promoter sites and is relieved by histone deacetylase inhibitors. Consistent with these findings, Ikaros and its repression domains can interact in vivo and in vitro with the mSin3 family of co-repressors which bind to histone deacetylases. Based on these and our recent findings of associations between Ikaros and Mi-2-HDAC, we
4.25
bioscope
0
The transcriptionally regulatory regions of the lymphomagenic Akv and SL3-3 murine leukemia retroviruses (MLVs) contain two types of E-box consensus motifs, CAGATG. One type, EA/S, is located in the upstream promoter region, and the other, E(gre), is located in a tandem repeat with enhancer properties. We have examined the requirements of the individual E-boxes in MLV transcriptional regulation. In lymphoid cell lines only, the E(gre)-binding protein complexes included ALF1 or HEB and E2A basic helix-loop-helix proteins. Ectopic ALF1 and E2A proteins required intact E(gre) motifs for mediating transcriptional activation. ALF1 transactivated transcription of Akv MLV through the two E(gre) motifs equally, whereas E2A protein required the promoter-proximal E(gre) motif. In T- and B-cell lines, the E(gre) motifs were of major importance for Akv MLV transcriptional activity, while the EA/S motif had some effect. In contrast, The Id1 protein was found to repress ALF1 activity in vitro and in vivo. Moreover, ectopic Id1 repressed E(gre)-directed but In conclusion, E(gre) motifs and interacting basic helix-loop-helix proteins are important determinants for MLV transcriptional activity in lymphocytic cell lines.
5.21875
bioscope
1
The STP oncoproteins of the herpesvirus saimiri (HVS) subgroup A strain 11 and subgroup C strain 488 are now found to be stably associated with tumor necrosis factor receptor-associated factor (TRAF) 1, 2, or 3. Mutational analyses identified residues of PXQXT/S in STP-A11 as critical for TRAF association. In addition, a somewhat divergent region of STP-C488 is critical for TRAF association. Mutational analysis also revealed that STP-C488 induced NF-kappaB activation that was correlated with its ability to associate with TRAFs. The HVS STP-C488 P10-->R mutant was deficient in human T-lymphocyte transformation to interleukin-2-independent growth but showed wild-type phenotype for marmoset T-lymphocyte transformation in vitro and in vivo. The STP-C488 P10-->R mutant was also defective in Rat-1 fibroblast transformation, and fibroblast cell transformation was blocked by a TRAF2 dominant-negative mutant. These data implicate TRAFs in STP-C488-mediated transformation of human lymphocytes and rodent fibroblasts. Other factors are implicated in immortalization of common marmoset T lymphocytes and
4.9375
bioscope
1
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV), or human herpesvirus 8, is a lymphotropic virus strongly linked to several AIDS-related neoplasms. The primary reservoir of infection consists of latently infected B lymphocytes and Here we show that deregulated expression of a single viral gene, ORF 50, which encodes a transactivator able to selectively upregulate delayed-early viral genes, suffices to disrupt latency and induce the lytic gene cascade in latently infected B cells. The identification of this gene opens the way to studies of the physiologic mechanisms controlling reactvation of KSHV from latency. Copyright 1998 Academic Press.
4.625
bioscope
0
Antioxidants have been proposed to be anti-atherosclerotic agents; however, the mechanisms underlying their beneficial effects are poorly understood. We have examined the effect of alpha-tocopherol (alpha-tcp) on one cellular event in atherosclerotic plaque development, monocyte adhesion to stimulated endothelial cells (ECs). Human umbilical vein ECs were pretreated with alpha-tcp before stimulation with known agonists of monocyte adhesion: IL-1 (10 ng/ml), LPS (10 ng/ml), thrombin (30 U/ml), or PMA (10 nM). Agonist-induced monocytic cell adhesion, but The IC50 of alpha-tcp on an IL-1-induced response was 45 microM. The inhibition correlated with a decrease in steady state levels of E-selectin mRNA and cell surface expression of E-selectin which is consistent with the ability of a monoclonal antibody to E-selectin to inhibit monocytic cell adhesion in this system. Probucol (50 microM) and N-acetylcysteine (20 mM) also inhibited agonist-induced monocytic cell adhesion; whereas, several other antioxidants had Activation of the transcription factor NF-kappa B is reported to be necessary but Electrophoretic mobility shift assays It has been Our results point to a novel alternative mechanism of action of alpha-tcp.
4.84375
bioscope
0
In contrast to the purely enhancer-dependent effect of cytokines such as TNF on the activity of the HIV regulatory region (LTR), we observed that okadaic acid (OKA) activates HIV transcription through both the enhancer, responding to the factor NF-kappa B, and the promoter domain of the LTR. The inducibility of HIV LTR-driven luciferase expression constructs in lymphoblastoid cells stimulated by OKA depended on both functional Sp1 binding elements and the ability of the TATA box to bind the protein TBP. In both transformed and normal lymphocytes, OKA stimulation induced intense phosphorylation of the constitutively expressed Sp1 protein in the nucleus, a property of OKA Responsiveness of LTR constructs deleted of kappa B elements to HIV Tat expression was increased upon OKA but Our results The formation of this complex would increase, independently of an in synergy with NF-kappa B, the low basal activity of the HIV LTR observed in normal T lymphocytes.
4.09375
bioscope
0
TCR engagement stimulates the activation of the protein kinase Raf-1. Active Raf-1 phosphorylates and activates the mitogen-activated protein (MAP) kinase/extracellular signal-regulated kinase kinase 1 (MEK1), which in turn phosphorylates and activates the MAP kinases/extracellular signal regulated kinases, ERK1 and ERK2. Raf-1 activity promotes IL-2 production in activated T lymphocytes. Therefore, we sought to determine Expression of constitutively active Raf-1 or MEK1 in Jurkat T cells enhanced the stimulation of IL-2 promoter-driven transcription stimulated by a calcium ionophore and PMA, and together with a calcium ionophore the expression of each protein was sufficient to stimulate NF-AT activity. Expression of MEK1-interfering mutants inhibited the stimulation of IL-2 promoter-driven transcription and blocked the ability of constitutively active Ras and Raf-1 to costimulate NF-AT activity with a calcium ionophore. Expression of the MAP kinase-specific phosphatase, MKP-1, which blocks ERK activation, inhibited IL-2 promoter and NF-AT-driven transcription stimulated by a calcium ionophore and PMA, and in addition, MKP-1 neutralized the transcriptional enhancement caused by active Raf-1 and MEK1 expression. We conclude that the MAP kinase signal transduction pathway consisting of Raf-1, MEK1, and ERK1 and ERK2 functions in the stimulation IL-2 gene transcription in activated T lymphocytes.
5
bioscope
1
The Wilms' tumor suppressor gene ( WT1 ) was previously identified as being imprinted, with frequent maternal expression in human placentae and fetal brains. We examined the allele-specific expression of WT1 in cultured human fibroblasts from 15 individuals. Seven of 15 fibroblast lines were heterozygous for polymorphic alleles, and the expression patterns were variable, i.e., equal, unequal or monoallelic paternal expression in three, two and two cases, respectively. Exclusive paternal expression of WT1 was also shown in non-cultured peripheral lymphocytes from the latter two individuals. The allele-specific expression profiles of other imprinted genes, IGF2 and H19, on human chromosome 11 were constant and consistent with those in other tissues. Our unexpected observations of paternal or biallelic expression of WT1 in fibroblasts and lymphocytes, together with the previous findings of maternal or biallelic expression in placentae and brains,
5.125
bioscope
1
Chromosomal translocation resulting in abnormal expression of the LAZ3/BCL6 gene in B cells has been implicated in the tumorigenesis of non-Hodgkin lymphoma (NHL). Therefore we studied the expression pattern of LAZ3/BCL6 by in situ hybridization with synthetic oligonucleotide probes in frozen tissue sections from five reactive lymph nodes and 38 B cell and non-B NHL. In addition, we investigated the expression of LAZ3/BCL6 by Northern blot analysis on multiple human tissues. The LAZ3/BCL6 transcript was found in a variety of tissues, including skeletal muscle, peripheral blood leukocytes, and weakly in normal lymph nodes. In the tumor samples, expression of LAZ3/BCL6 was observed in 68% of all B cell NHL and All cases of follicular, mixed small and large cell lymphomas showed LAZ3/BCL6 expression confined to the neoplastic follicles. A follicular expression pattern was also found in all non-malignant reactive lymph nodes. Hence, the expression of LAZ3/BCL6 does
5.09375
bioscope
1
T cell hybridomas respond to activation signals by undergoing apoptotic cell death, and Previous studies using antisense oligonucleotides implicated the c-Myc protein in the phenomenon of activation-induced apoptosis. This role for c-Myc in apoptosis is now confirmed in studies using a dominant negative form of its heterodimeric binding partner, Max, which we show here inhibits activation-induced apoptosis. Further, coexpression of a reciprocally mutant Myc protein capable of forming functional heterodimers with the mutant Max can compensate for the dominant negative activity and restore activation-induced apoptosis. These results
4.4375
bioscope
0
Vaccination with synthetic peptides representing cytotoxic T lymphocyte (CTL) epitopes We now report that vaccination with a CTL epitope derived from the human adenovirus type 5 E1A-region (Ad5E1A234-243), which can serve as a target for tumor-eradicating CTL, enhances This adverse effect of peptide vaccination was rapidly evoked, required low doses of peptide (10 micrograms), and was achieved by a mode of peptide delivery that induces protective T-cell-mediated immunity in other models. In contrast to peptide vaccination, immunization with adenovirus, expressing Ad5E1A, induced Ad5E1A-specific immunity and prevented the outgrowth of Ad5E1A-expressing tumors. These results show that immunization with synthetic peptides These findings are important for the design of safe peptide-based vaccines against tumors, allogeneic organ transplants, and T-cell-mediated autoimmune diseases.
5.28125
bioscope
1
The Tat protein of human immunodeficiency virus type 1 (HIV-1) is essential for productive infection and is a potential target for antiviral therapy. Tat, a potent activator of HIV-1 gene expression, serves to greatly increase the rate of transcription directed by the viral promoter. This induction, Much attention has been focused on the interaction of Tat with a specific RNA target termed TAR (transactivation responsive) which is present in the leader sequence of all HIV-1 mRNAs. In this report we demonstrate that in certain CNS-derived cells Tat is capable of activating HIV-1 through a TAR-independent pathway. A Tat-responsive element is found upstream within the viral promoter that in glial-derived cell lines allows transactivation in the absence of TAR. Deletion mapping and hybrid promoter constructs demonstrate that the newly identified Tat-responsive element corresponds to a sequence within the viral long terminal repeat (LTR) previously identified as the HIV-1 enhancer, or NF-kappa B domain. DNA band-shift analysis reveals NF-kappa B binding activity in glial cells that differs from that present in T lymphoid cells. Further, we observe that TAR-deleted mutants of HIV-1 demonstrate normal late gene expression in glial cells as evidenced by syncytia formation and production of viral p24 antigen.(ABSTRACT TRUNCATED AT 250 WORDS)
5.0625
bioscope
1
The human immunodeficiency virus (HIV) Rev protein is essential for viral structural protein expression (Gag, Pol, and Env) and , hence , for viral replication. In transient transfection assays, mutant forms of Rev have been identified that inhibit wild-type Rev activity and therefore suppress viral replication. To determine While all the M10-expressing cell lines remained infectable by HIV-1, these same cells In addition, two out of three M10-expressing CEM clones were also resistant to highly productive infection by a heterogeneous HIV-1 pool. Expression of M10 did Importantly, constitutive expression of Rev M10 did The inhibition of HIV infection in cells stably expressing a transdominant Rev protein, in the absence of any deleterious effect on T cell function,
5.1875
bioscope
1
Interleukin-10 (IL-10) protects animals from lethal endotoxemia. This beneficial effect is mediated, in part, by inhibition of inflammatory cytokine production, including tumor necrosis factor-alpha (TNF-alpha). Evidence NF-kappaB activation in response to inflammatory signals is dependent upon degradation of its associated inhibitory peptide, inhibitory kappaB-alpha (IkappaB-alpha). We The purpose of this study was to determine the effect of IL-10 on lipopolysaccharide (LPS)-induced human monocyte TNF-alpha production, NF-kappaB activation, and IkappaB-alpha degradation. Monocytes were isolated from human donors. Cells were stimulated with endotoxin (LPS, 100 ng/mL) with and Following stimulation, TNF-alpha was measured in cell supernatants by ELISA, NF-kappaB activity by electrophoretic mobility shift assay, and IkappaB-alpha levels by Western blot. We observed that after LPS stimulation of human monocytes, TNF-alpha increased to 798+/-67 pg/mL (p < .001 versus control). IL-10 attenuated LPS-stimulated TNF-alpha production (297+/-54; p < .001 versus LPS alone). After LPS stimulation in human monocytes, IkappaB-alpha protein levels decreased, and NF-kappaB DNA binding increased. IL-10 pretreatment prevented LPS-induced decreases in IkappaB-alpha protein levels and attenuated NF-kappaB DNA binding.
5
bioscope
1
We have described the isolation of chemically induced CEM subclones that express CD4 receptors and bind soluble gp120, yet show a markedly reduced susceptibility to infection with HIV-1. Two subclones were found to have an abnormal response to the protein kinase C (PKC) activator PMA. PMA treatment induced CD3 and CD25 (IL-2R) receptors on the parental line and on other ethyl-methanesulfonate-derived subclones, but Direct assays of PKC activity were conducted. Total cellular PKC enzymatic activity was found to be normal in these subclones. PMA-induced CD4 down-modulation occurred normally. In addition, activation of c-raf kinase was normal. Since HIV-1 long terminal repeat contains two functional nuclear factor kB (NF-kB) regulatory elements, we studied the ability of PMA to induce NF-kB binding activity by different assays. Chloramphenicol acetyl transferase (CAT) assays using the HIV-1 ( -139 ) long terminal repeat-CAT construct showed Okadaic acid, an inhibitor of phosphatases 1 and 2A, did Gel retardation assays, using a 32P-probe containing the HIV-1 NF-kB probe and nuclear extracts from PMA-treated cells, showed significantly reduced induction of nuclear NF-kB binding proteins in these two subclones compared with wild type CEM and a control subclone. Deoxycholate treatment of cytoplasmic extracts from these subclones released much reduced NF-kB binding proteins from their cytoplasmic pools. Thus, reduced levels of PKC-induced nuclear NF-kB activity in two T cell subclones did
5.125
bioscope
1
IL-12 is a powerful skewer of CD4+ T cell responses toward the Th1 phenotype by inducing IFN-gamma production in naive Th cells. In the present study we To this aim, allergen-specific CD4+ T cell clones (TCC) were generated from the peripheral blood of three atopic patients, and their cytokine profiles were analyzed. The majority of these TCC exhibited a strongly polarized Th2 cytokine profile, and Only those TCC with low IFN-gamma levels in the absence of IL-12 responded to IL-12 by additional enhancement of IFN-gamma production. The IL-12 nonresponsiveness of the Th2 clones was further evident by the total Consequently, IL-12 also failed to induce the DNA-binding activity of STAT4-containing complexes in the nuclei of these Th2 clones. All TCC expressed equal levels of the low-affinity IL-12R beta1 subunit. Our results The
5.15625
bioscope
1
Plasma cortisol concentration and blood leukocyte content of glucocorticoid receptors (GCR) were assayed in 20 patients with deficiency syndromes, 10 cold in property (deficiency-cold), the other 10 hot in property (deficiency-heat), and also in 10 healthy individuals as normal control for the purpose of investigating the nature of cold and heat syndromes. As a result, the cases of deficiency-cold syndrome (DCS) had a normal concentration of plasma cortisol but a lowered content of GCR in leukocytes when compared with the normal control (P less than 0.05); the cases of deficiency-heat syndrome (DHS) had a higher concentration of plasma cortisol than the normal control (P less than 0.05) and a slightly higher content of GCR in leukocytes. It was concluded that the DCS is characterized by diminished biological effects of adrenocortical activity, while the DHS, by augmented biological effects of adrenocortical activity.
4.78125
bioscope
0
Recent studies from our laboratory have Since TNF is one of the major inducers of various adhesion molecules in human endothelial cells and their expression is known to require the activation of NF-kappa B, we examined the effect of PTPase inhibitors on the TNF-mediated induction of intracellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1 and endothelial leukocyte adhesion molecule (ELAM)-1. Like ML-1a, human dermal microvessel endothelial cells (MVEC) treated with TNF rapidly activated (within 30 min) NF-kappa B; this effect was completely abolished by co-treatment with phenylarsine oxide (PAO), a specific inhibitor of PTPase. The induction of ICAM-1, VCAM-1, and ELAM-1 by TNF in MVEC occurred within 6 h and was also completely down-regulated by PAO in a dose-dependent manner. PAO was found to be effective even when added 3 h after TNF, Besides PAO, other inhibitors of PTPase, including pervanadate and diamide, also blocked TNF-dependent NF-kappa B activation and induction of all the three adhesion proteins. Consistent with these results, the attachment of monocytes to MVEC was also blocked by the PTPase inhibitors. Thus, overall, our results demonstrate that a PTPase is involved Because of their role in cell adhesion, PTPase
5.0625
bioscope
1
In vitro studies on hematopoietic control mechanisms have been hampered by the heterogeneity of the analyzed cell populations, ie, We developed unicellular culture systems for unilineage differentiation of purified hematopoietic progenitor cells followed by daughter cell analysis at cellular and molecular level. In the culture system reported here, (1) the growth factor (GF) stimulus induces cord blood (CB) progenitor cells to proliferate and differentiate/mature exclusively along the erythroid lineage; (2) this erythropoietic wave is characterized by less than 4% apoptotic cells; (3) Single-cell reverse transcriptase-polymerase chain reaction (RT-PCR) analysis was applied to this culture system to investigate gene expression of diverse receptors, markers of differentiation, and transcription factors (EKLF, GATA-1, GATA-2, p45 NF-E2, PU.1, and SCL/Tal1) at discrete stages of erythropoietic development. Freshly isolated CD34(+) cells expressed CD34, c-kit, PU.1, and GATA-2 but did In early to intermediate stages of erythroid differentiation we monitored the induction of CD36, Tal1, EKLF, NF-E2, and GATA-1 that preceeded expression of EpoR. In late stages of erythroid maturation, GPA was upregulated, whereas CD34, c-kit, PU.1, and GATA-2 were barely or In addition, competitive single-cell RT-PCR was used to assay CD34 mRNA transcripts in sibling CD34(+) CD38(-) cells differentiating in unilineage erythroid cultures: this analysis allowed us to semiquantitate the gradual downmodulation of CD34 mRNA from progenitor cells through their differentiating erythroid progeny. It is concluded that this novel culture system, coupled with single-cell RT-PCR analysis,
4.84375
bioscope
0
The mechanism of action of the immunosuppressive drug cyclosporin A (CsA) is the inactivation of the Ca2+/calmodulin-dependent serine-threonine phosphatase calcineurin by the drug-immunophilin complex. Inactive calcineurin is IL-2 production by CsA-treated cells is therefore dramatically reduced. We demonstrate here, however, that NFAT can be activated, and significant levels of IL-2 can be produced by the CsA-resistant CD28-signaling pathway. In transient transfection assays, both multicopy NFAT- and IL-2 promoter-beta-galactosidase reporter gene constructs could be activated by phorbol 12-myristate 13-acetate ( PMA ) /alpha-CD28 stimulation, and this activation was resistant to CsA. Electrophoretic mobility shift assay showed the induction of a CsA-resistant NFAT complex in the nuclear extracts of peripheral blood T cells stimulated with PMA plus alphaCD28. Peripheral blood T cells stimulated with PMA/alphaCD28 produced IL-2 in the presence of CsA. Collectively, these data
4.78125
bioscope
0
Ca2+-modulating cyclophilin ligand (CAML) was originally described as a cyclophilin B-binding protein whose overexpression in T cells causes a rise in intracellular calcium, thus activating transcription factors responsible for the early immune response. As reported here, structure-function analysis of the CAML gene in Jurkat T cells We These findings define a novel protein motif that functions in intracellular calcium signaling.
4.78125
bioscope
0
We have examined binding of the nuclear protein HMG-I to the human gamma-globin promoter. We find that HMG-I binds preferentially to the more 3' of a pair of GATA motifs in the gamma-globin promoter; this paired motif is bound by the erythroid factor GATA-1. A naturally occurring mutation (-175 T-C) in the area bound by HMG-I results in overexpression of gamma-globin in adult red blood cells (HPFH) and up-regulation of the gamma-globin promoter in in vitro expression assays; HMG-I does A survey of GATA motifs from other globin cis-elements demonstrates HMG-I binding to most of them. These findings implicate HMG-I in the HPFH phenotype; we
4.625
bioscope
0
This study concerns 9 iv drug abusers with acquired immunodeficiency syndrome (AIDS) who developed hypercortisolism All patients were characterized by an Addisonian picture (weakness, weight loss, hypotension, hyponatremia, and intense mucocutaneous melanosis). We, therefore, examined glucocorticoid receptor characteristics on mononuclear leukocytes by measuring [3H]dexamethasone binding and the effect of dexamethasone on [3H]thymidine incorporation, which is one of the effects of glucocorticoid receptor activation. Glucocorticoid receptor density was increased in AIDS patients with an Addisonian picture (group 1; 16.2 ± 9.4 fmol/million cells) compared to values in 12 AIDS patients The affinity of glucocorticoid receptors (Kd) was strikingly decreased (9.36 ± 3.44 nM in group 1; 3.2 ± 1.5 nM in group 2; 2.0 ± 0.8 nM in controls; P less than 0.01). [3H]Thymidine incorporation was decreased dose-dependently by dexamethasone in controls and patients; the effect was significantly blunted (P less than 0.05) in group 1 patients, which In conclusion, AIDS patients with hypercortisolism and clinical features of peripheral resistance to glucocorticoids are characterized by abnormal glucocorticoid receptors on lymphocytes. Resistance to glucocorticoids
5.09375
bioscope
1
We determined We showed that the interaction of SS RBC at 2% concentration in the presence of multimers of von Willebrand factor (vWf), derived from endothelial cell-derived conditioned medium (E-CM) with cultured human umbilical vein endothelial cells (HUVEC), resulted in a fivefold increased formation of thiobarbituric acid-reactive substances (TBARS) and activation of the transcription factor NF-kB, both indicators of cellular oxidant stress. Normal RBC show The oxidant stress-induced signaling resulted in an increased surface expression of a subset of CAMs, ICAM-1, E-selectin, and VCAM-1 in HUVEC. The addition of oxygen radical scavenger enzymes (catalase, superoxide dismutase) and antioxidant (probucol) inhibited these events. Additionally, preincubation of HUVEC with a synthetic peptide Arg-Gly-Asp (RGD) that prevents vWf-mediated adhesion of SS RBC reduced the surface expression of VCAM-1 and NF-kB activation. Furthermore, SS RBC-induced oxidant stress resulted in a twofold increase in the transendothelial migration of both monocyte-like HL-60 cells and human peripheral blood monocytes, and approximately a sixfold increase in platelet-endothelial cell adhesion molecule-1 (PECAM-1) phosphorylation, each of which was blocked by protein kinase C inhibitor and antioxidants. These results
5.09375
bioscope
1
Induction of apoptosis in lymphocytes, which However, A prevailing In this study, we show that an activation-deficient glucocorticoid receptor mutant is as effective as the wild-type receptor in repression of AP-1 activity, inhibition of interleukin-2 production, inhibition of c-myc expression and induction of apoptosis. Furthermore, we show that retinoic acid can also induce apoptosis in these cells through the retinoic acid receptor, whose repressive functions but Therefore, the primary effect of the receptor in glucocorticoid-mediated apoptosis correlates with transcriptional repression
4.84375
bioscope
0
The kappa B sequence (GGGACTTTCC) binds a factor, NF-kappa B, that is constitutively found in its functional, DNA binding form only in B lymphocytes. A factor with apparently indistinguishable sequence specificity can be induced in many other cell types, where it is used to regulate inducible gene expression. For example, kappa B-related sequences have been shown to be important for the transcription of a few inducible genes, such as the interleukin 2 receptor alpha-chain gene and the beta-interferon gene. However, these genes are We have investigated the constitutive and inducible transcriptional activity mediated by five kappa B-related sequence elements in two different cell types. We show that in S194 plasma cells the activity of each element correlates well with the relative affinity of B-cell-derived NF-kappa B for that element. This leads to significantly lower transcription enhancement by sites derived from the interleukin 2 receptor or T-cell receptor genes in S194 cells. However, in either EL-4 ( T ) cells or S194 cells, both lower-affinity sites can be significantly induced by the tax gene product of human T-cell leukemia virus type I, showing that NF-kappa B activity can be modulated even in a B-cell line that constitutively expresses this factor.
5.0625
bioscope
1
Immunoglobulin molecules on the surface of a B lymphocyte are the endogenous " receptors " to which specific antigens bind. Studies in mice have shown that a monoclonal antibody, conjugated with palmitate to provide a lipid tail, can be inserted into the cell membrane to provide a " surrogate " antigen receptor. We have investigated Using flow cytometry, we detected surrogate TG receptors on non-T ( but In contrast, endogenous TG receptors could only be detected on non-T cells from 1 of 3 Hashimoto patients and from 0 of 4 control donors. Because of the efficient binding of TG by surrogate receptors on non-T cells, we assessed the ability of such cells to present TG to T cells. Proliferation in response to TG was observed in T cells from only 1 of 5 Hashimoto patients. This low frequency of response was Therefore, Furthermore, the significance of the present study is that the T cells,
4.9375
bioscope
1
Using the coiled-coil region of Stat5b as the bait in a yeast two-hybrid screen, we identified the association of Nmi, a protein of We further show that Nmi interacts with all STATs except Stat2. We evaluated two cytokine systems, IL-2 and IFNgamma, and demonstrate that Nmi augments STAT-mediated transcription in response to these cytokines. Interestingly, Nmi Therefore, our data not only reveal that Nmi can potentiate STAT-dependent transcription, but also
4.8125
bioscope
0
The expression of thrombospondin 1 (TSP 1), a member of the TSP gene family, is rapidly induced by growth factors. We tested the ability of human TSP 1-chloramphenicol acetyltransferase constructs to respond to serum in stably transfected NIH-3T3 cells. Two transcriptional elements in the TSP 1 promoter, a distal element at -1280 and a proximal element at -65, were required for the response of the human TSP 1 gene to serum. The distal element contains the 5'-CC(A+T)6GG-3' consensus sequence characteristic of a serum-response element (SRE). Deletions or mutations in this element reduced the serum response of the TSP 1 gene by 80-90%. In gel-shift assays, the -1280 element and the c-fos SRE cross-competed, whereas their functional and binding mutants did The proximal element contains the sequence 5'-GGCCAATGGG-3', which closely resembles the consensus binding motif for the CCAAT-binding factor NF-Y (CBF, CP1, alpha CP1). Deletions or mutations in this element also reduced the serum response by 80-90%. Methylation interference analysis of the -65 region identified a pattern of contacts with nuclear factors resembling that for NF-Y, and an NF-Y-binding site and the proximal TSP 1 element cross-competed in gel-shift assays, whereas their binding mutants did Finally, an abbreviated TSP 1 promoter/5'-flank, containing the SRE- and NF-Y-binding sites, mediated a serum response that was close in magnitude to that of the parent promoter. We conclude that the serum response of the human TSP 1 gene requires the coordinated function of an SRE- and NF-Y-binding site.
5.0625
bioscope
1
Glucocorticoids (GCS) profoundly inhibit several aspects of T cell immunity largely through inhibition of cytokine expression at the transcriptional and posttranscriptional levels. GCS were also reported to act indirectly by inducing transforming growth factor-beta expression, which in turn blocks T cell immunity. In exerting their antiproliferative effects, GCS diffuse into target cells where they bind their cytoplasmic receptor, which in turn translocates to the nucleus where it inhibits transcription of cytokine genes In contrast to their inhibitory effects on cytokine expression, GCS up-regulate cytokine receptor expression that correlates with enhanced cytokine effects on target cells. In this review, we summarize the current state of knowledge of the mechanism of action of GCS, including the phenomenon of steroid-induced rebound, which ensues upon GCS withdrawal.
4.5
bioscope
0
Activation of NF-kappa B by various cellular stimuli involves the phosphorylation and subsequent degradation of its inhibitor, I kappa B alpha, although In the present study, the role of serine/threonine phosphatases in the regulation of I kappa B alpha phosphorylation was investigated. Our studies demonstrate that incubation of human T cells with low concentrations (approximately 1-5 nM) of calyculin A or okadaic acid, potent inhibitors of protein phosphatase type 1 (PP-1) and type 2A (PP-2A), induces the phosphorylation of I kappa B alpha even in the Furthermore, the phosphorylated I kappa B alpha from calyculin A-treated cells, but However, induction of I kappa B alpha phosphorylation by both TNF-alpha and the phosphatase inhibitors is associated with the subsequent degradation of I kappa B alpha. We further demonstrate that TNF-alpha- and calyculin A-induced I kappa B alpha degradation exhibits similar but Together, these results
5.125
bioscope
1
Coordination of the immune response to injury or disease in the brain is postulated to involve bi-directional discourse between the immune system and the central nervous system. This cross communication involves soluble mediators, including various growth factors, cytokines, and neuropeptides. In this report, we demonstrate that the supernatant from activated T-lymphocytes is able to induce the transcription of a potent cytokine, TGF-beta 2 in glial cells. The activating stimulus invokes signaling mechanisms distinct from known kinase or protease pathways. Activation of TGF-beta 2 transcription correlates with the loss of binding activity for an 80 kDA glial labile repressor protein, GLRP, to a responsive region within the TFG-beta 2 promoter. Although GLRP shares some characteristics with the inducible transcription factor AP-1, These data along with previous observations demonstrating the potent immunosuppressive activity of TGF-beta 2, support a model for a feedback mechanism between the activated T-lymphocytes and astrocytes via TGF-beta 2 to regulate the immune response.
4.4375
bioscope
0
Tobacco smoke (TS) exposure is a major risk factor for human disease, and macrophages of healthy smokers have a depressed capacity to release cytokines, including tumor necrosis factor (TNF)alpha. TS induces the synthesis of heat shock (HS)/stress proteins (HSP), and, in particular, of Hsp70. We determined HSF activation has been shown to inhibit NFkappaB. Thus, we also determined the effects of TS on NFkappaB. U937 cells and human peripheral blood monocytes were exposed to TS, binding activities of the respective transcription factors were analyzed, and Hsp70 expression and TNFalpha release were determined in parallel. TS activated HSF, which was associated with Hsp70 overexpression and inhibition of NFkappaB binding activity and TNFalpha release. The altered cytokine profile observed in smokers Copyright 1998 Academic Press.
5.0625
bioscope
1
Lipopolysaccharide (LPS) potently stimulates human immunodeficiency virus type 1-long terminal repeat (HIV-1-LTR) CAT constructs transfected into monocyte/macrophage-like cell lines but Electrophoretic mobility shift assays demonstrate that LPS induces a DNA binding activity indistinguishable from NF-kappa B in U937 and THP-1 cells. LPS is also shown to dramatically increase HIV-1 production from a chronically infected monocyte/macrophage-like cloned cell line, U1, which produces very low levels of HIV-1 at baseline. The stimulation of viral production from this cell line occurs only if these cells are treated with granulocyte/macrophage colony-stimulating factor (GM-CSF) before treatment with LPS. This stimulation of HIV-1 production is correlated with an increase in the level of HIV-1 RNA and and activation of NF-kappa B. LPS is The effect of LPS on HIV-1 replication occurs at picogram per milliliter concentrations and
5.09375
bioscope
1
The v-erb A oncogene of avian erythroblastosis virus is a mutated and virally transduced copy of a host cell gene encoding a thyroid hormone receptor. The protein expressed by the v-erb A oncogene binds to DNA and acts as a dominant negative inhibitor of both the thyroid hormone receptor and the closely related retinoic acid receptor. The v-erb A protein has sustained two amino acid alterations within its DNA-binding domain relative to that of c-erb A, one of which, at serine 61, is known to be important for v-erb A function in the neoplastic cell. We report here that the second alteration, at threonine 78, also plays an important, although more indirect, role: alteration of the sequence at threonine 78 such that it resembles that of c-erb A can act as an intragenic suppressor and can partially restore function to a v-erb A protein rendered defective due to a mutation at position 61. Threonine 78 lies within the D-box of the v-erb A protein, It therefore
4.71875
bioscope
0
The intracellular dioxin receptor mediates signal transduction by dioxin and functions as a ligand-activated transcription factor. It contains a basic helix-loop-helix (bHLH) motif contiguous with a Per-Arnt-Sim (PAS) homology region. In extracts from nonstimulated cells the receptor is recovered in an inducible cytoplasmic form associated with the 90-kDa heat shock protein (hsp90), a molecular chaperone. We have reconstituted ligand-dependent activation of the receptor to a DNA-binding form by using the dioxin receptor and its bHLH-PAS partner factor Arnt expressed by in vitro translation in reticulocyte lysate. Deletion of the PAS domain of the receptor resulted in constitutive dimerization with Arnt. In contrast, this receptor mutant showed low levels of xenobiotic response element-binding activity, It was In line with these observations, reticulocyte lysate but At least two distinct domains of the receptor mediated interaction with hsp90: the ligand-binding domain located within the PAS region and, surprisingly, the bHLH domain. Whereas ligand-binding activity correlated with association with hsp90, Thus, the dioxin receptor system provides a complex and interesting model of the regulation of transcription factors by hsp90.
5.125
bioscope
1
The ferritin H-chain gene promoter regulation was analyzed in heme-treated Friend leukemia cells (FLCs) and during monocyte-to-macrophage differentiation. In the majority of cell lines studied, the regulation of ferritin expression was exerted mostly at the translational level. However, in differentiating erythroid cells, which must incorporate high levels of iron to sustain hemoglobin synthesis, and in macrophages, which are involved in iron storage, We show here that the minimum region of the ferritin H-gene promoter that is able to confer transcriptional regulation by heme in FLCs to a reporter gene is 77 nucleotides upstream of the TATA box. This cis element binds a protein complex referred to as HRF (heme-responsive factor), which is greatly enhanced both in heme-treated FLCs and during monocyte-to-macrophage differentiation. The CCAAT element present in reverse orientation in this promoter region of the ferritin H-chain gene is necessary for binding and for gene activity, since a single point mutation is able to abolish the binding of HRF and the transcriptional activity in transfected cells. By competition experiments and supershift assays, we identified the induced HRF as containing at least the ubiquitous transcription factor NF-Y. NF-Y is formed by three subunits, A, B, and C, all of which are necessary for DNA binding. Cotransfection with a transdominant negative mutant of the NF-YA subunit abolishes the transcriptional activation by heme, We have also observed a differential expression of the NF-YA subunit in heme-treated and control FLCs and during monocyte-to-macrophage differentiation.
5.1875
bioscope
1
The immunoglobulin heavy chain (IgH) class switch recombination of B lymphocytes preferentially targets unrearranged IgH genes that have already been rendered transcriptionally active. Transcription of the germ-line IgH genes is controlled by intervening (I) regions upstream of their switch regions. The I alpha1 promoter activates transcription of the human germ-line C alpha1 gene for IgA1 and mediates the transforming growth factor (TGF)-beta1 responsiveness of this locus. Here we show that the I alpha1 promoter contains several binding sites for the AML/PEBP2/CBF family of transcription factors and that AML and Ets proteins are major regulators of the basal and TGF-beta-inducible promoter activity. Our data constitute a starting point for studies to elucidate the molecular mechanism by which TGF-beta regulates IgA production.
4.1875
bioscope
0
Leukocyte integrins are fundamentally important in modulating adhesion to extracellular matrix components and to other cells. This integrin-mediated adhesion controls leukocyte arrest and extravasation during the onset of inflammatory responses. Moreover, integrin-ligand interactions trigger signaling pathways that In the current studies, we evaluated the combinatorial effects of monocyte adhesion and IFN-gamma on intracellular signaling pathways. IFN-gamma triggers a well-defined signal transduction pathway, which although not directly stimulated by monocyte adherence to fibronectin or arginine-glycine-aspartate (RGD)-coated substrata, was enhanced significantly in these matrix-adherent cells. Compared with monocytes in suspension or adherent on plastic surfaces, monocytes adherent to fibronectin or RGD exhibited a greater than threefold increase in steady state levels of IFN-gamma-induced mRNA for the high affinity Fc gammaRI receptor. By electrophoretic mobility shift assays, this increase in mRNA was associated with a 5- to 10-fold increase in the STAT1-containing DNA-binding complex that binds to Fc gammaRI promoter elements. Furthermore, the tyrosine phosphorylation of STAT1 and the tyrosine kinases JAK1 and JAK2 was enhanced significantly in RGD-adherent monocytes compared with control cells. These results
4.9375
bioscope
1
The Oct-2 transcription factor is a member of the POU (Pit-Oct-Unc) family of transcription factors and is expressed only in B lymphocytes and in neuronal cells but The primary RNA transcript of the gene is subject to alternative splicing to yield different variants which can either activate or repress gene expression. The forms produced in B lymphocytes have a predominantly activating effect on gene expression whereas those produced in neuronal cells have a predominantly inhibitory effect and can repress the expression of both the herpes simplex virus immediate-early genes and the cellular tyrosine hydroxylase gene. Thus Oct-2 plays an important role in the regulation of cellular gene expression in both B cells and neuronal cells as well as in the control of viral latency.
5.0625
bioscope
1
A new approach to facilitate immobilization and affinity purification of recombinant proteins and selected human B lymphocytes has been developed. Using magnetic beads with attached DNA containing the Escherichia coli lac operator, The results show for the first time that a DNA-binding protein can be used for affinity purification of fusion proteins as exemplified by the specific and gentle recovery of beta-galactosidase and alkaline phosphatase from bacterial lysates using immunomagnetic separation. The approach was further extended to cell separation by the efficient recovery and elution of human CD37 B lymphocytes from peripheral blood.
4.6875
bioscope
0
The effects mediated by a combined stimulation of cAMP- and protein kinase C ( PKC ) -dependent pathways have been investigated in different cellular systems, and it has been shown that they In this report, we show that upon the stimulation of both pathways T lymphocytes became refractory to activation via the CD3/T cell receptor ( TcR ) complex. T cells preincubated with phorbol 12-myristate 13-acetate (PMA) and dibutyryl cAMP (Bt2cAMP) displayed a deficient proliferative ability in response to anti-CD3 mAb stimulation, whereas lymphocytes treated individually with either Bt2cAMP or PMA responded comparably to untreated samples. We detected an association between the reduced mitogenic response and low expression of both interleukin-2 (IL-2) and the alpha chain (CD25) of the IL-2 receptor (IL-2R). Analysis of intracellular Ca2+ mobilization Remarkably, we observed that these samples displayed a persistent expression of the c-fos protooncogene, associated to an increased AP-1 DNA-binding activity, whereas Altogether, the data provide the evidence that both pathways complement each other in regulating gene expression and, conversely, downregulate the TcR transduction mechanisms.
5.09375
bioscope
1
In a previous study, we demonstrated that bufalin, which is an active principle of Chinese medicine, chan'su, caused apoptosis in human leukemia U937 cells by anomalous activation of mitogen-activated protein kinase (MAPK) via the signaling pathway of Ras, Raf-1, and MAPK kinase-1. Here, we report the effect of overexpression of bcl-2 in U937 cells on the signaling pathway of apoptosis that is induced by bufalin. The results Bufalin treatment activated activator protein-1 transcriptional activity; however, this activation was decreased to 40% in bcl-2-overexpressed U937 cells. These results
5
bioscope
1
A region between-3134 and -2729 bp upstream from the transcription site of the human pro-interleukin 1beta (proIL-1beta) gene was identified as an LPS-responsive enhancer element. In this study, the influence of the sequences located between -3134 and -2987 on the transcriptional activity of the proIL-1beta gene in LPS-stimulated Raw 264.7 cells was examined in detail. The results obtained by transient transfection of fos -CAT constructs that contained serial 5'-deletion mutations showed that Gel shift assay studies with synthetic oligonucleotides corresponding to partial sequences of the latter region and nuclear extracts from stimulated cells revealed specific protein binding sites between -3110 and -3090 and between -3079 and -3059. These specific bindings were time and LPS dose dependent. The results of supershift analysis using specific antibodies against transcription factors Mutation of either of the putative NF-kappaB-binding sites in the enhancer element decreased the LPS-stimulated transcriptional activity. These data Copyright 1999 Academic Press.
5.125
bioscope
1
A family of transcriptional activating proteins, the GATA factors, has been shown to bind to a consensus motif through a highly conserved C4 zinc finger DNA binding domain. One member of this multigene family, GATA-3, is most abundantly expressed in T lymphocytes, a cellular target for human immunodeficiency virus type 1 (HIV-1) infection and replication. In vitro DNase I footprinting analysis revealed six hGATA-3 binding sites in the U3 region (the transcriptional regulatory domain) of the HIV-1 LTR. Cotransfection of an hGATA-3 expression plasmid with a reporter plasmid whose transcription is directed by the HIV-1 LTR resulted in 6- to 10-fold stimulation of LTR-mediated transcription, whereas site specific mutation of these GATA sites resulted in virtual abrogation of the activation by hGATA-3. Further, deletion of the hGATA-3 transcriptional activation domain abolished GATA-dependent HIV-1 trans-activation, showing that the stimulation of viral transcription observed is a direct effect of cotransfected hGATA-3. Introduction of the HIV-1 plasmids in which the GATA sites have been mutated into human T lymphocytes also caused a significant reduction in LTR-mediated transcription at both the basal level and in (PHA- plus PMA-) stimulated T cells. These observations
5.1875
bioscope
1
A site in the Epstein-Barr virus (EBV) transforming protein LMP1 that constitutively associates with the tumor necrosis factor receptor 1 (TNFR1)-associated death domain protein TRADD to mediate NF-kappaB and c-Jun N-terminal kinase activation is critical for long-term lymphoblastoid cell proliferation. We now find that LMP1 signaling through TRADD differs from TNFR1 signaling through TRADD. LMP1 needs only 11 amino acids to activate NF-kappaB or synergize with TRADD in NF-kappaB activation, while TNFR1 requires approximately 70 residues. Further, LMP1 does LMP1 is partially blocked for NF-kappaB activation by a TRADD mutant consisting of residues 122 to 293. Unlike TNFR1, LMP1 can interact directly with receptor-interacting protein (RIP) and stably associates with RIP in EBV-transformed lymphoblastoid cell lines. Surprisingly, LMP1 does Despite constitutive association with TRADD or RIP, LMP1 does These results add a different perspective to the molecular interactions through which LMP1, TRADD, and RIP participate in B-lymphocyte activation and growth.
4.96875
bioscope
1
The human tumor necrosis factor alpha (TNF-alpha) gene is one of the earliest genes transcribed after the stimulation of a B cell through its antigen receptor or via the CD-40 pathway. In both cases, induction of TNF-alpha gene transcription can be blocked by the immunosuppressants cyclosporin A and FK506, which Furthermore, in T cells, two molecules of NFATp bind to the TNF-alpha promoter element kappa 3 in association with ATF-2 and Jun proteins bound to an immediately adjacent cyclic AMP response element (CRE) site. Here, using the murine B-cell lymphoma cell line A20, we show that the TNF-alpha gene is regulated in a cell-type-specific manner. In A20 B cells, Instead, ATF-2 and Jun proteins bind to the composite kappa 3/CRE site and NFATp binds to a newly identified second NFAT site centered at -76 nucleotides relative to the TNF-alpha transcription start site. This new site plays a critical role in the calcium-mediated, cyclosporin A-sensitive induction of TNF-alpha in both A20 B cells and Ar-5 cells. Consistent with these results, quantitative DNase footprinting of the TNF-alpha promoter using increasing amounts of recombinant NFATp demonstrated that the -76 site binds to NFATp with a higher affinity than the kappa 3 site. Two other previously unrecognized NFATp-binding sites in the proximal TNF-alpha promoter were also identified by this analysis. Thus, through the differential use of the same promoter element, the composite kappa 3/CRE site, the TNF-alpha gene is regulated in a cell-type-specific manner in response to the same extracellular signal.
5.03125
bioscope
1
G0S24 is a member of a set of genes ( Comparison of a full-length cDNA sequence with the corresponding genomic sequence reveals an open reading frame of 326 amino acids, distributed across two exons. Potential phosphorylation sites include the sequence PSPTSPT, which resembles an RNA polymerase II repeat reported to be a target of the cell cycle control kinase cdc2. Comparison of the derived protein sequence with those of rodent homologs allows classification into three groups. Group 1 contains G0S24 and the rat and mouse TIS11 genes (also known as TTP, Nup475, and Zfp36). Members of this group have three tetraproline repeats. Groups 1 and 2 have a serine-rich region and an " arginine element " (RRLPIF) at the carboxyl terminus. All groups contain cysteine- and histidine-rich Comparison of group 1 human and mouse genomic sequences shows high conservation in the 5' flank and exons. A CpG island G0S24 has potential sites for transcription factors in the 5' flank and intron; these include a serum response element. Protein and genomic sequences show similarities with those of a variety of proteins involved in transcription,
4.625
bioscope
0
The E2A gene encodes transcription factors of the helix-loop-helix family that are implicated in cell-specific gene expression as part of dimeric complexes that interact with E box enhancer elements. It has previously been shown that transcripts of the E2A gene can be detected in a wide range of cell types. We have now examined expression of the mouse E2A gene at the protein level using polyclonal antisera directed against distinct portions of the E2A protein to probe blots of cellular extracts. A 73 kDa protein was identified by this analysis: this protein is highly enriched in cell lines of B lymphoid origin as compared to pancreatic beta-cells and fibroblast cells. The detection of this protein selectively in extracts of lymphoid cells correlates with the presence of the E box-binding activity LEF1/BCF1 in these cells; this binding activity was previously shown to be efficiently recognized by antiserum directed against E2A gene products. Transfection of cells with full length E2A cDNA leads to appearance of protein co-migrating with the 73 kDa protein on SDS gel electrophoresis and co-migrating with LEF1/BCF1 on mobility shift analysis. Our results are consistent with the view that the DNA-binding activity LEF1/BCF1 is a homodimer of E2A proteins;
5.03125
bioscope
1
Lymphoid cells transformed by Abelson murine leukemia virus have provided one of the classic models for study of early B-cell development and immunoglobulin rearrangement. Most of these cells have rearranged their heavy-chain locus but To test this hypothesis, light-chain gene structure was examined in pre-B cells transformed by temperature-sensitive mutants of the Abelson virus and in derivatives that survive at the nonpermissive temperature because they express a human BCL-2 gene. Our studies reveal that inactivation of the v-abl protein tyrosine kinase triggers high-frequency rearrangement of kappa and lambda light-chain genes. These events are accompanied by marked increases in the expression of RAG-1 and RAG-2 RNAs. These increases occur in the As documented in the accompanying paper (Klug et al., this issue), an active v-abl protein also suppresses the activity of NF-kappa B/rel and expression controlled by the kappa intron enhancer. Together these data demonstrate that the v-abl protein specifically interferes with light-chain gene rearrangement by suppressing at least two pathways essential for this stage of B-cell differentiation and
5
bioscope
1
Nuclear factor kappa B (NF-kappa B) is a pleiotropic transcription factor which is involved in the transcriptional regulation of several specific genes. Recent reports demonstrated that ionizing radiation in the dose range of 2-50 Gy results in expression of NF-kappa B in human KG-1 myeloid leukemia cells and human B-lymphocyte precursor cells; The present report demonstrates that even lower doses of ionizing radiation, 0.25-2.0 Gy, are capable of inducing expression of NF-kappa B in EBV-transformed 244B human lymphoblastoid cells. These results are in a dose range where the viability of the cells remains very high. After exposure to 137Cs gamma rays at a dose rate of 1.17 Gy/min, a maximum in expression of NF-kappa B was seen at 8 h after a 0.5-Gy exposure. Time-course studies revealed a biphasic time-dependent expression after 0.5-, 1- and 2-Gy exposures. However, for each time examined, the expression of NF-kappa B was maximum after the 0.5-Gy exposure. The expression of the p50 and p65 NF-kappa B subunits was also shown to be regulated differentially after exposures to 1.0 and 2.0 Gy.
5.15625
bioscope
1
To investigate the mechanisms of transcriptional activation of interleukin-1beta (IL-1beta) in non-monocytic cells, we constructed a series of reporter plasmids with the bacterial chloramphenicol acetyltransferase gene linked to various parts of the human IL-1beta promoter and performed transient transfection experiments. We identified a promoter segment that activates transcription most efficiently in keratinocytes. Electrophoretic mobility shift assays (EMSA) with a 43-mer oligonucleotide derived from the functionally identified cis-acting element revealed specific complexes. By competition analysis with transcription factor consensus sequence oligonucleotides and by immunosupershift, The closest match to the known SP-1 consensus sequence within the respective region is a TCCCCTCCCCT motif. Mutation of this motif almost completely, and specifically, abolished the binding of two low-mobility complexes and led to a 95 % decrease of constitutive transcriptional activation of a reporter construct IL-1beta (-170/+108). Likewise, activation of this reporter construct by tumor necrosis factor-alpha depended on the SP-1 site. These observations
5.03125
bioscope
1
NF-kappa B is a rapidly inducible transcriptional activator that responds to a variety of signals and influences the expression of many genes involved in the immune response. Protein tyrosine kinases transmit signals from cytokine and immune receptors. Very little information exists linking these two important classes of signaling molecules. We now demonstrate that v-src expression correlates with nuclear expression of a kappa B binding complex similar to that induced by phorbol ester and ionomycin, as detected by electrophoretic mobility shift assay using a variety of kappa B sites. This complex was blocked by the tyrosine kinase inhibitor, herbimycin A. The v-src-induced complex comprised the p50 and p65 components of NF-kappa B, as determined by supershift and immunoblot analysis. As a functional correlate of this finding, transient co-transfection of HIV-1 LTR reporter constructs in a different T cell line demonstrated that v-src activated this promoter in a kappa B-dependent manner. We found that transactivation of the HIV-1 LTR by v-src was more sensitive to mutations of the proximal, The implications for T cell receptor signaling and HIV-1 gene expression are considered.
5
bioscope
1
The development of resistance to host defense mechanisms such as tumor necrosis factor (TNF)- and Fas-mediated apoptosis of transformed or virus-infected cells To find genes that protect cells from apoptosis, we used an expression cloning strategy and identified BHRF1, an Epstein-Barr virus (EBV) early-lytic-cycle protein with distant homology to Bcl-2, as an anti-apoptosis protein. Expression of BHRF1 in MCF-Fas cells conferred nearly complete resistance against both anti-Fas antibody and TNF-mediated apoptosis. In addition, BHRF1 protected these cells from monocyte-mediated killing but The ability of BHRF1 to protect MCF-Fas cells from apoptosis induced by various stimuli was identical to that of Bcl-2 and Bcl-xL. Moreover, the mechanism of action of BHRF1 resembled that of Bcl-2 and Bcl-xL as it inhibited TNF- and anti-Fas-induced activation of two enzymes participating in the apoptosis pathway, cytosolic phospholipase A2 and caspase-3/CPP32, but did A Surprisingly, expression of Thus, the protective role of BHRF1 against apoptosis resembles that of Bcl-2 in being cell type specific and dependent on the apoptotic stimulus.
5
bioscope
1
Monochloramine derivatives are long lived physiological oxidants produced by neutrophils during the respiratory burst. The effects of chemically prepared monochloramine (NH2Cl) on protein kinase C (PKC) and PKC-mediated cellular responses were studied in elicited rat peritoneal neutrophils and human Jurkat T cells. Neutrophils pretreated with NH2Cl (30-50 microM) showed a marked decrease in the respiratory burst activity induced by phorbol 12-myristate 13-acetate (PMA), which is a potent PKC activator. These cells, however, were viable and showed a complete respiratory burst upon arachidonic acid stimulation, which induces the respiratory burst by a PKC-independent mechanism. The NH2Cl-treated neutrophils showed a decrease in both PKC activity and PMA-induced phosphorylation of a 47-kDa protein, which corresponds to the cytosolic factor of NADPH oxidase, p47(phox). Jurkat T cells pretreated with NH2Cl (20-70 microM) showed a decrease in the expression of the interleukin-2 receptor alpha chain following PMA stimulation. This was also accompanied by a decrease in both PKC activity and nuclear transcription factor-kappaB activation, also These results show that NH2Cl inhibits PKC-mediated cellular responses through inhibition of the inducible PKC activity.
5.1875
bioscope
1
The regulation of interleukin-2 receptor alpha chain (IL-2R alpha) expression and nuclear factor (NF) activation by protein kinase C (PKC) in resting T cells, has been studied. Treatment of human resting T cells with phorbol esters strongly induced the expression of IL-2R alpha and the activation of NF.kappa B. This activation was due to the translocation of p65 and c-Rel NF.kappa B proteins from cytoplasmic stores to the nucleus, where they bound the kappa B sequence of the IL-2R alpha promoter either as p50.p65 or as p50.c-Rel heterodimers. Interestingly, all of those events were largely indirect and mediated by endogenously secreted tumor necrosis factor alpha (TNF alpha), as they were strongly inhibited by a neutralizing anti-TNF alpha monoclonal antibody. Furthermore, cyclosporin A, which blocked TNF alpha production induced by PKC, strongly inhibited IL-2R alpha and NF.kappa B activation. The addition of either TNF alpha or IL-2 partially recovered cyclosporin A-induced IL-2R alpha inhibition, but only TNF alpha completely recovered NF.kappa B activation. Those results
5
bioscope
1
Nuclear factor-kappa B (NF-kappa B) plays a broad role in gene regulation, but it is We report here that the signaling cascade triggered by interleukin-4 (IL-4) or anti-CD40 monoclonal antibody (mAb) participates in NF-kappa B activation responsible for germline C epsilon transcription in a human Burkitt lymphoma B cell line, DND39. Both IL-4 and anti-CD40 mAb induced activation of phosphatidylinositol 3-kinase (PI3-kinase), translocation of a zeta isoform of protein kinase C, and nuclear expression of NF-kappa B. All such events were abrogated by treatment with LY294002, a specific inhibitor of PI3-kinase. In addition, N-acetyl-L-cysteine (NAC), a potent antioxidant, decreased NF-kappa B activation caused by NAC was also effective in diminishing germline C epsilon transcription, and its potency was higher in cultures costimulated with IL-4 and anti-CD40 mAb than in those stimulated with IL-4 alone. These results
5.03125
bioscope
1
Retinoid-like receptors play a central role in hormonal responses by forming heterodimers with other nuclear hormone receptors. In this study we have identified the peroxisome proliferator-activated receptor (PPAR) as a new thyroid hormone receptor (THR) auxiliary nuclear protein, heterodimerizing with THR in solution. Although these heterodimers do However, a TH-dependent positive effect is elicited by selective interaction of the THR beta-PPAR but The critical region of THR beta was mapped to 3 amino acids in the distal box of the DNA binding domain. Hence, PPAR can positively or negatively influence TH action depending on TRE structure and THR isotype.
4.4375
bioscope
0
We demonstrate that JunD, a component of the AP-1 transcription factor complex, activates transcription of the human proenkephalin gene in a fashion that is completely dependent upon the cAMP-dependent protein kinase, protein kinase A. Activation of proenkephalin transcription by JunD is dependent upon a previously characterized cAMP-, phorbol ester- , and Ca(2+)-inducible enhancer, and JunD is shown to bind the enhancer as a homodimer. Another component of the AP-1 transcription complex, JunB, is shown to inhibit activation mediated by JunD. As a homodimer JunB is Furthermore, JunD is shown to activate transcription of genes linked to both cAMP and phorbol ester response elements in a protein kinase A-dependent fashion, further blurring the distinction between these response elements. These results demonstrate that the transcriptional activity of an AP-1-related protein is regulated by the cAMP-dependent second-messenger pathway and
4.90625
bioscope
1
GM-CSF gene activation in T cells is known to involve the transcription factors nuclear factor-kappa B, AP-1, NFAT, and Sp1. Here we demonstrate that the human GM-CSF promoter and enhancer also encompass binding sites for core-binding factor (CBF). Significantly, the CBF sites are in each case contained within the minimum essential core regions required for inducible activation of transcription. Furthermore, these core regions of the enhancer and promoter each encompass closely linked binding sites for CBF, AP-1, and NFATp. The GM-CSF promoter CBF site TGTGGTCA is located 51 bp upstream of the transcription start site and also overlaps a YY-1 binding site. A 2-bp mutation within the CBF site resulted in a 2-3-fold decrease in the activities of both a 69-bp proximal promoter fragment and a 627-bp full-length promoter fragment. Stepwise deletions into the proximal promoter also revealed that the CBF site, but The AML1 and CBF beta genes that encode CBF each have the ability to influence cell growth and differentiation and have been implicated as proto-oncogenes in acute myeloid leukemia. This study adds GM-CSF to a growing list of cytokines and receptors that are regulated by CBF and which control the growth, differentiation, and activation of hemopoietic cells. The GM-CSF locus
5.03125
bioscope
1
We studied the role of the immediate early gene c-jun in cell proliferation and phorbol 12-myristate 13-acetate ( PMA ) -induced differentiation in U937 human monoblastic cells, using c-jun-specific antisense (AS) phosphorothioate oligonucleotides. In selecting the most specific and potent oligonucleotide sequence, we performed extensive analyses for the binding specificity between all candidates of c-jun AS oligonucleotides and the whole sequences in GenBank database, using a computer program. Among the 20 selected oligonucleotides, two potent 15-mer AS oligonucleotides (C-JUN AS oligonucleotides) exhibited significant inhibition of cell growth in a dose-dependent manner between 2 and 10 microM. Reverse transcription-PCR and Western blot analysis demonstrated that 10 microM of C-JUN AS oligonucleotides reduced c-jun expression at both the mRNA and protein levels. More importantly, C-JUN AS oligonucleotides showed distinct effects on two markers of PMA-induced differentiation; the C-JUN AS oligonucleotides inhibited cell adhesion, whereas they did These results
5.125
bioscope
1
T lymphocytes express several low molecular weight transmembrane adaptor proteins that recruit src homology (SH)2 domain-containing intracellular molecules to the cell membrane via tyrosine-based signaling motifs. We describe here a novel molecule of this group termed SIT (SHP2 interacting transmembrane adaptor protein). SIT is a disulfide-linked homodimeric glycoprotein that is expressed in lymphocytes. After tyrosine phosphorylation by src and Overexpression of SIT in Jurkat cells downmodulates T cell receptor- and phytohemagglutinin-mediated activation of the nuclear factor of activated T cells (NF-AT) by interfering with signaling processes that are However,
5.0625
bioscope
1
The human T cell-specific transcription factor TCF-1 alpha plays a key role in the tissue-specific activation of the T cell receptor ( TCR ) C alpha enhancer and binds to pyrimidine-rich elements (5'-PyCTTTG-3') present in a variety of other T cell-specific control regions. Using amino acid sequence information derived from the DNA affinity-purified protein, we have now isolated cDNA clones encoding TCF-1 alpha. The TCF-1 alpha cDNA contains a single 68-amino-acid domain that is homologous to a region conserved among high-mobility group (HMG) and nonhistone chromosomal proteins. Expression of full-length and mutant cDNA clones in bacteria reveal that the single HMG motif, Northern blot experiments demonstrate further that TCF-1 alpha mRNA is highly tissue specific, found primarily in the thymus or T cell lines. The immature CEM T cell line expresses relatively low levels of TCF-1 alpha mRNA, which are increased upon activation of these cells by phorbol esters. Interestingly, the cloned TCF-1 alpha protein is a potent transcriptional activator of the human TCR alpha enhancer in nonlymphoid cell lines, whereas the activity of the endogenous protein in T cell lines is strongly dependent on an additional T cell-specific protein that interacts with the core enhancer. TCF-1 alpha is currently unique among the newly emerging family of DNA-binding regulatory proteins that share the HMG motif in that it is a highly tissue-specific RNA polymerase II transcription factor.
5.03125
bioscope
1
OBJECTIVE: The NF-kappa B/Rel family of transcription factors regulates the expression of many genes involved in the immune or inflammatory response at the transcriptional level. The aim of this study was to determine METHODS: The DNA binding activity of these nucleoproteins was examined in purified synovial and peripheral T cells from patients with various chronic rheumatic diseases (12: four with rheumatoid arthritis; five with spondyloarthropathies; and three with osteoarthritis). RESULTS: Electrophoretic mobility shift assays disclosed two specific complexes bound to a NF-kappa B specific 32P-labelled oligonucleotide in nucleoproteins extracted from purified T cells isolated from synovial fluid and peripheral blood of patients with rheumatoid arthritis. The complexes consisted of p50/p50 homodimers and p50/p65 heterodimers. Increased NF-kappa B binding to DNA in synovial T cells was observed relative to peripheral T cells. In non-rheumatoid arthritis, binding of NF-kappa B in synovial T cells was exclusively mediated by p50/p50 homodimers. CONCLUSION: Overall, the results The activation of this nuclear factor is qualitatively different in rheumatoid synovial T cells to that in other forms of non-rheumatoid arthritis (for example, osteoarthritis, spondyloarthropathies).
5.09375
bioscope
1
To further clarify the complex transcriptional regulation of the human GM-CSF gene, which was extensively investigated in activated T cells, we have studied the role of an upstream NF-kappaB like site in the 5637 non-lymphoid cell line, which derives from a bladder carcinoma and constitutively produces GM-CSF. This sequence, named the A element, has an active role on GM-CSF transcription and is responsive to the tumor promoter PMA in transient transfection experiments. We describe here a heterodimeric binding complex of NF-kappaB subunits (c-Rel and p65) which is identical to the one obtained using the HIV-LTR-kappaB site as recognition sequence and different from the one (c-Rel and p50) observed with nuclear extracts from Mo T-lymphoid HTLV-II infected cells.
5.28125
bioscope
1
Type II major histocompatibility complex combined immune deficiency (type II MHC CID or bare lymphocyte syndrome) is a congenital immunodeficiency disease characterized by Four distinct complementation groups have been identified. Recently, the defective gene in group II type II MHC CID has been isolated and termed CIITA. Here, we demonstrate that CIITA is an MHC class II gene-specific transcription activator. The transcription activation function is provided by the N-terminal acidic domain (amino acids 26-137), which is experimentally exchangeable with a heterologous viral transcription-activating domain. The specificity of CIITA for three major MHC class II genes, DR, DQ and DP, is mediated by its remaining C-terminal residues (amino acids 317-1130). The transactivation of multiple cis elements, especially S and X2, of the DR alpha proximal promoter in group II CID cells is CIITA dependent. Since CIITA overexpression in normal cells did
5.125
bioscope
1
We have determined that the developmental control of immunoglobulin kappa 3' enhancer ( kappa E3' ) activity is the result of the combined influence of positive- and negative-acting elements. We show that a central core in the kappa E3' enhancer is active at the pre-B-cell stage but is repressed by flanking negative-acting elements. The negative-acting sequences repress enhancer activity in a position- and orientation-independent manner at the pre-B-cell stage. We have isolated a human cDNA clone encoding a zinc finger protein (NF-E1) that binds to the negative-acting segment of the kappa E3' enhancer. This protein also binds to the immunoglobulin heavy-chain enhancer mu E1 site. NF-E1 is encoded by the same gene as the YY-1 protein, which binds to the adeno-associated virus P5 promoter. NF-E1 is also the human homologue of the mouse delta protein, which binds to ribosomal protein gene promoters. The predicted amino acid sequence of this protein contains features characteristic of transcriptional activators as well as transcriptional repressors. Cotransfection studies with this cDNA The
5.1875
bioscope
1
We have isolated the 5' region of the ecto-5'-nucleotidase (low K(m) 5'-NT) gene and established that a 969-base pair (bp) fragment confers cell-specific expression of a CAT reporter gene that correlates with the expression of endogenous ecto-5'-NT mRNA and enzymatic activity. A 768-bp upstream negative regulatory region has been identified that conferred lymphocyte-specific negative regulation in a heterologous system with a 244-bp deoxycytidine kinase core promoter. DNase I footprinting identified several protected areas including Sp1, Sp1/AP-2, and cAMP response element (CRE) binding sites within the 201-bp core promoter region and Sp1, NRE-2a, TCF-1/LEF-1, and Sp1/NF-AT binding sites in the upstream regulatory region. Whereas the CRE site was essential in mediating the negative activity of the upstream regulatory region in Jurkat but Electrophoretic mobility shift assay analysis of proteins binding to the CRE site identified both ATF-1 and ATF-2 in Jurkat cells. Finally, phorbol 12-myristate 13-acetate increased the activity of both the core and the 969-bp promoter fragments, and this increase was abrogated by mutations at the CRE site. In summary, we have identified a tissue-specific regulatory region 5' of the ecto-5'-NT core promoter that requires the presence of a functional CRE site within the basal promoter for its suppressive activity.
5
bioscope
1
General transcription factors are required for accurate initiation of transcription by RNA polymerase II. Human cDNAs encoding subunits of these factors have been cloned and sequenced. Using fluorescence in situ hybridization (FISH), we show here that the genes encoding the TATA-box binding protein (TBP), TFIIB, TFIIE alpha, TFIIE beta, RAP30, RAP74 and the 62 kDa subunit, of TFIIH are located at the human chromosomal bands 6q26-27, 1p21-22, 3q21-24, 8p12, 13q14, 19p13.3 and 11p14-15.1, respectively. This dispersed localization of a group of functionally related gene provides insights into the molecular mechanism of human genome evolution and their
4.84375
bioscope
0
We have previously described a mutant B lymphoblastoid cell line, Clone-13, that expresses HLA-DQ in the Several criteria Indeed, transient transfection of HLA-DRA and DQB reporter constructs A series of hybrid DRA/DQB reporter constructs was generated to further map the relevant cis-elements in this system. Insertion of oligonucleotides spanning the DQB X-box (but Substitution promoters were then generated where the entire X-box, or only the X1- or X2-boxes of HLA-DRA were replaced with the analogous regions of HLA-DQB. The DQB X2-box was able to restore expression to the silent DRA reporter construct. Moreover, replacement of the DQB X2-box with the DRA X2-box markedly diminished the activity of the DQB promoter in the mutant cell. These studies
4.96875
bioscope
1
The transcription factor NF-kappa B controls the induction of numerous cytokine promoters during the activation of T lymphocytes. Inhibition of T cell activation by the immunosuppressants cyclosporin A (CsA) and FK506 exerts a suppressive effect on the induction of these NF-kappa B-controlled cytokine promoters. We show for human Jurkat T leukemia cells, as well as human and mouse primary T lymphocytes, that this inhibitory effect is accompanied by an impaired nuclear translocation of the Rel proteins c-Rel, RelA/p65 and NF-kappa B1/p50, whereas the nuclear appearance of RelB remains unaffected. CsA does CsA These results
5.125
bioscope
1
Effects of oxidative stress on stimulation-dependent signal transduction, leading to IL-2 expression, were studied. Purified quiescent human blood T lymphocytes were subjected to: (i) acute exposure to hydrogen peroxide; (ii) chronic exposure to hydrogen peroxide; and (iii) acute exposure to ionizing radiation. The cells were then stimulated for 6 h. DNA-binding activities (determined by the electrophoretic mobility shift assay) of three transcription factors: NFkappaB, AP-1 and NFAT, were abolished in the lymphocytes by all three modes of oxidative stress. The lymphocytes exhibited lipid peroxidation only upon exposure to the lowest level of hydrogen peroxide used (20 microM). All three modes of oxidative stress induced catalase activity in the lymphocytes. The only exception was hydrogen peroxide at 20 microM, which did We conclude that: (i) suppression of specific transcription factor functions can
5.03125
bioscope
1