|
import os |
|
from xml.etree import ElementTree as ET |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {electric-scooters-tracking}, |
|
author = {TrainingDataPro}, |
|
year = {2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The dataset contains frames extracted from self-checkout videos, specifically focusing |
|
on **tracking products**. The tracking data provides the **trajectory of each product**, |
|
allowing for analysis of customer movement and behavior throughout the transaction. |
|
The dataset assists in detecting shoplifting and fraud, enhancing efficiency, accuracy, |
|
and customer experience. It facilitates the development of computer vision models for |
|
*object detection, tracking, and recognition* within a self-checkout environment. |
|
""" |
|
_NAME = "electric-scooters-tracking" |
|
|
|
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" |
|
|
|
_LICENSE = "" |
|
|
|
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" |
|
|
|
_LABELS = ["electric_scooter"] |
|
|
|
|
|
class ElectricScootersTracking(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="video_01", data_dir=f"{_DATA}video_01.zip"), |
|
datasets.BuilderConfig(name="video_02", data_dir=f"{_DATA}video_02.zip"), |
|
datasets.BuilderConfig(name="video_03", data_dir=f"{_DATA}video_03.zip"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "video_01" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"name": datasets.Value("string"), |
|
"image": datasets.Image(), |
|
"mask": datasets.Image(), |
|
"shapes": datasets.Sequence( |
|
{ |
|
"track_id": datasets.Value("uint32"), |
|
"label": datasets.ClassLabel( |
|
num_classes=len(_LABELS), |
|
names=_LABELS, |
|
), |
|
"type": datasets.Value("string"), |
|
"points": datasets.Sequence( |
|
datasets.Sequence( |
|
datasets.Value("float"), |
|
), |
|
), |
|
"rotation": datasets.Value("float"), |
|
"occluded": datasets.Value("uint8"), |
|
"attributes": datasets.Sequence( |
|
{ |
|
"name": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data = dl_manager.download_and_extract(self.config.data_dir) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data": data, |
|
}, |
|
), |
|
] |
|
|
|
@staticmethod |
|
def extract_shapes_from_tracks( |
|
root: ET.Element, file: str, index: int |
|
) -> ET.Element: |
|
img = ET.Element("image") |
|
img.set("name", file) |
|
img.set("id", str(index)) |
|
for track in root.iter("track"): |
|
shape = track.find(f".//*[@frame='{index}']") |
|
shape.set("label", track.get("label")) |
|
shape.set("track_id", track.get("id")) |
|
img.append(shape) |
|
|
|
return img |
|
|
|
@staticmethod |
|
def parse_shape(shape: ET.Element) -> dict: |
|
label = shape.get("label") |
|
track_id = shape.get("track_id") |
|
shape_type = shape.tag |
|
rotation = shape.get("rotation", 0.0) |
|
occluded = shape.get("occluded", 0) |
|
|
|
points = None |
|
|
|
if shape_type == "points": |
|
points = tuple(map(float, shape.get("points").split(","))) |
|
|
|
elif shape_type == "box": |
|
points = [ |
|
(float(shape.get("xtl")), float(shape.get("ytl"))), |
|
(float(shape.get("xbr")), float(shape.get("ybr"))), |
|
] |
|
|
|
elif shape_type == "polygon": |
|
points = [ |
|
tuple(map(float, point.split(","))) |
|
for point in shape.get("points").split(";") |
|
] |
|
|
|
attributes = [] |
|
|
|
for attr in shape: |
|
attr_name = attr.get("name") |
|
attr_text = attr.text |
|
attributes.append({"name": attr_name, "text": attr_text}) |
|
|
|
shape_data = { |
|
"label": label, |
|
"track_id": track_id, |
|
"type": shape_type, |
|
"points": points, |
|
"rotation": rotation, |
|
"occluded": occluded, |
|
"attributes": attributes, |
|
} |
|
|
|
return shape_data |
|
|
|
def _generate_examples(self, data): |
|
tree = ET.parse(f"{data}/annotations.xml") |
|
root = tree.getroot() |
|
|
|
for idx, file in enumerate(sorted(os.listdir(f"{data}/images"))): |
|
img = self.extract_shapes_from_tracks(root, file, idx) |
|
|
|
image_id = img.get("id") |
|
name = img.get("name") |
|
shapes = [self.parse_shape(shape) for shape in img] |
|
|
|
yield idx, { |
|
"id": image_id, |
|
"name": name, |
|
"image": f"{data}/images/{file}", |
|
"mask": f"{data}/boxes/{file}", |
|
"shapes": shapes, |
|
} |
|
|