electric-scooters-tracking / electric-scooters-tracking.py
vkashko's picture
refactor: rename builder class
7a4880a
import os
from xml.etree import ElementTree as ET
import datasets
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {electric-scooters-tracking},
author = {TrainingDataPro},
year = {2023}
}
"""
_DESCRIPTION = """\
The dataset contains frames extracted from self-checkout videos, specifically focusing
on **tracking products**. The tracking data provides the **trajectory of each product**,
allowing for analysis of customer movement and behavior throughout the transaction.
The dataset assists in detecting shoplifting and fraud, enhancing efficiency, accuracy,
and customer experience. It facilitates the development of computer vision models for
*object detection, tracking, and recognition* within a self-checkout environment.
"""
_NAME = "electric-scooters-tracking"
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
_LICENSE = ""
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
_LABELS = ["electric_scooter"]
class ElectricScootersTracking(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="video_01", data_dir=f"{_DATA}video_01.zip"),
datasets.BuilderConfig(name="video_02", data_dir=f"{_DATA}video_02.zip"),
datasets.BuilderConfig(name="video_03", data_dir=f"{_DATA}video_03.zip"),
]
DEFAULT_CONFIG_NAME = "video_01"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("int32"),
"name": datasets.Value("string"),
"image": datasets.Image(),
"mask": datasets.Image(),
"shapes": datasets.Sequence(
{
"track_id": datasets.Value("uint32"),
"label": datasets.ClassLabel(
num_classes=len(_LABELS),
names=_LABELS,
),
"type": datasets.Value("string"),
"points": datasets.Sequence(
datasets.Sequence(
datasets.Value("float"),
),
),
"rotation": datasets.Value("float"),
"occluded": datasets.Value("uint8"),
"attributes": datasets.Sequence(
{
"name": datasets.Value("string"),
"text": datasets.Value("string"),
}
),
}
),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data = dl_manager.download_and_extract(self.config.data_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data": data,
},
),
]
@staticmethod
def extract_shapes_from_tracks(
root: ET.Element, file: str, index: int
) -> ET.Element:
img = ET.Element("image")
img.set("name", file)
img.set("id", str(index))
for track in root.iter("track"):
shape = track.find(f".//*[@frame='{index}']")
shape.set("label", track.get("label"))
shape.set("track_id", track.get("id"))
img.append(shape)
return img
@staticmethod
def parse_shape(shape: ET.Element) -> dict:
label = shape.get("label")
track_id = shape.get("track_id")
shape_type = shape.tag
rotation = shape.get("rotation", 0.0)
occluded = shape.get("occluded", 0)
points = None
if shape_type == "points":
points = tuple(map(float, shape.get("points").split(",")))
elif shape_type == "box":
points = [
(float(shape.get("xtl")), float(shape.get("ytl"))),
(float(shape.get("xbr")), float(shape.get("ybr"))),
]
elif shape_type == "polygon":
points = [
tuple(map(float, point.split(",")))
for point in shape.get("points").split(";")
]
attributes = []
for attr in shape:
attr_name = attr.get("name")
attr_text = attr.text
attributes.append({"name": attr_name, "text": attr_text})
shape_data = {
"label": label,
"track_id": track_id,
"type": shape_type,
"points": points,
"rotation": rotation,
"occluded": occluded,
"attributes": attributes,
}
return shape_data
def _generate_examples(self, data):
tree = ET.parse(f"{data}/annotations.xml")
root = tree.getroot()
for idx, file in enumerate(sorted(os.listdir(f"{data}/images"))):
img = self.extract_shapes_from_tracks(root, file, idx)
image_id = img.get("id")
name = img.get("name")
shapes = [self.parse_shape(shape) for shape in img]
yield idx, {
"id": image_id,
"name": name,
"image": f"{data}/images/{file}",
"mask": f"{data}/boxes/{file}",
"shapes": shapes,
}