Datasets:

Modalities:
Tabular
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
License:
Search is not available for this dataset
user_index
int64
1
10.5M
author_index
int64
1
5.19M
time_chunk
int64
0
728
3,593,395
2,261,177
194
3,717,054
3,828,817
200
9,256,841
824,138
699
6,609,334
821,321
256
3,032,127
3,087,953
561
7,570,266
4,614,984
392
2,142,798
4,614,984
634
540,935
5,169,894
696
9,855,627
1,394,555
337
2,414,960
2,417,141
652
7,584,827
905,830
682
6,405
5,078,794
619
5,615,661
4,614,984
542
9,918,890
4,304,405
212
1,459,983
1,182,267
34
4,319,833
2,563,729
588
8,365,406
2,706,945
130
3,103,649
5,169,894
683
571,033
5,169,894
670
6,240,464
1,664,612
456
8,370,091
4,360,845
71
9,078,716
40,768
629
8,997,522
1,514,953
246
1,953,432
3,488,690
329
9,010,602
582,323
712
4,530,441
3,990,906
371
2,052,124
1,146,218
576
5,446,036
2,615,373
309
7,047,042
712,583
338
728,751
2,282,843
72
3,422,212
905,830
569
2,800,041
1,204,054
198
8,742,489
4,095,905
106
7,358,166
5,169,894
599
7,540,966
712,583
205
3,913,596
3,167,657
454
5,719,247
5,169,894
598
2,903,982
905,830
702
8,311,745
4,761,429
202
9,625,667
917,018
632
6,719,153
1,518,059
616
1,336,783
970,379
198
850,008
4,856,050
548
8,589,430
4,614,984
335
10,220,216
4,061,885
258
9,567,312
1,518,059
581
5,003,208
689,133
234
4,829,183
712,583
184
4,245,625
944,958
242
4,727,604
1,232,457
109
4,039,702
2,479,422
542
3,243,024
2,909,217
266
27,687
5,169,894
671
824,286
651,483
49
3,377,406
2,261,177
260
8,295,538
2,615,373
481
4,834,149
2,171,749
156
7,014,918
4,614,984
377
1,818,519
5,169,894
697
2,909,204
1,514,953
195
6,797,692
4,761,429
683
5,578,919
3,020,110
678
2,906,784
4,359,177
598
3,523,726
3,551,279
501
661,719
4,405,527
657
1,571,275
3,619,144
602
2,575,979
1,518,059
602
4,561,154
4,279,044
436
5,549,955
2,152,663
55
5,078,389
905,830
620
8,743,957
3,059,627
673
10,468,363
4,306,918
55
7,269,431
4,423,880
171
8,650,103
3,876,872
351
7,324,768
3,152,733
533
905,546
1,963,382
490
8,750,486
5,094,005
365
8,595,702
3,525,790
433
832,742
5,169,894
638
8,235,898
1,394,555
293
2,428,297
1,011,111
145
3,213,433
824,138
589
2,730,705
905,830
569
742,887
712,583
140
8,129,722
1,569,241
667
2,712,529
2,199,560
243
1,591,428
3,937,950
580
67,254
1,394,555
605
6,059,204
549,708
247
6,473,025
3,216,503
512
1,635,369
3,975,184
509
4,436,460
2,631,723
440
2,869,124
2,264,031
656
864,247
3,497,473
547
7,891,657
4,663,243
588
2,432,439
1,514,953
138
89,621
2,882
324
3,512,652
2,433,494
239
9,269,316
3,975,184
509
7,555,767
3,595,658
196

kNN-Embed: Locally Smoothed Embedding Mixtures For Multi-interest Candidate Retrieval

PRs Welcome arXiv

This repo contains the TwitterFaveGraph dataset from our paper kNN-Embed: Locally Smoothed Embedding Mixtures For Multi-interest Candidate Retrieval.
[PDF] [HuggingFace Datasets]

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

TwitterFollowGraph

TwitterFollowGraph is a bipartite directed graph of users (consumer) nodes to author (producer) nodes where an edge represents a user "following" an author engagement. Each edge is binned into predetermined time chunks which are denoted with ordinals. These ordinals are contiguous and respect time ordering of engagements. In total TwitterFollowGraph has 261𝑀 edges and 15.5𝑀 vertices, with a max-degree of 900𝐾 and a min-degree of 5.

The data format is displayed below.

user_index author_index time_chunk
1 2 1
2 1 2
3 3 2

Citation

If you use TwitterFollowGraph in your work, please cite the following:

@article{el2022knn,
  title={kNN-Embed: Locally Smoothed Embedding Mixtures For Multi-interest Candidate Retrieval},
  author={El-Kishky, Ahmed and Markovich, Thomas and Leung, Kenny and Portman, Frank and Haghighi, Aria and Xiao, Ying},
  journal={arXiv preprint arXiv:2205.06205},
  year={2022}
}
Downloads last month
104