question_id
int64
40
4.72k
documents
sequencelengths
7
68
1,601
[ "MOTIVATION: A number of programs have been developed to predict the eukaryotic gene structures in DNA sequences. However, gene finding is still a challenging problem.RESULTS: We have explored the effectiveness when the results of several gene-finding programs were re-analyzed and combined. We studied several methods with four programs (FEXH, GeneParser3, GEN-SCAN and GRAIL2). By HIGHEST-policy combination method or BOUNDARY method, approximate correlation (AC) improved by 3-5% in comparison with the best single gene-finding program. From another viewpoint, OR-based combination of the four programs is the most reliable to know whether a candidate exon overlaps with the real exon or not, although it is less sensitive than GENSCAN for exon-intron boundaries. Our methods can easily be extended to combine other programs.AVAILABILITY: We have developed a server program (Shirokane System) and a client program (GeneScope) to use the methods. GeneScope is available through a WWW site (http://gf.genome.ad.jp/).CONTACT: (katsu,takagi)@ims.u-tokyo.ac.jp", "BACKGROUND: In Western Europe, a previously subtype B HIV-1 restricted area, BC recombinants have been rarely reported.OBJECTIVE: To describe an outbreak of HIV-1 BC recombinants in southern Italy.STUDY DESIGN: We analyzed pol (protease/reverse transcriptase) sequences from 135 newly diagnosed HIV-1-infected patients during the years 2009-2011. For phylogenetic relationships, sequences were aligned to the most recent reference data set from the Los Alamos database using BioEdit (version 7.1.3). The resulting alignment was analyzed with the Phylip package (version 3.67) building a neighbor-joining tree based on the Kimura two-parameter substitution model. The reliability of the tree topology was assessed through bootstrapping using 1000 replicates. The recombination pattern was characterized using SimPlot 3.5.1 and SplitsTree 4.RESULTS: At phylogenetic analysis, 22 (16.2%) isolates whose sequences were not unequivocally assigned to a pure subtype or known CRF, formed a distinct monophyletic clade (100% of bootstrap value). For these isolates, the recombination analysis identified a BC mosaic pattern with two breakpoints at positions 2778±5 and 3162±8 (HXB2 numbering) which differed from those of known BC CRFs. All patients from whom these sequences were derived were highly educated youth Italians, 91% males and 82% MSM. Sequences of pol integrase, gp120 and gp41 from these same patients were classified as C subtype.CONCLUSIONS: This outbreak which further reflects the increasing heterogeneity of HIV epidemic in our country is the first report of an Italian outbreak of a BC recombinant, possibly a novel candidate CRF.", "PURPOSE: Patient co-payments for medicines subsidised under the Australian Pharmaceutical Benefits Scheme (PBS) increased by 24% in January 2005. We investigated whether this increase and two related co-payment changes were associated with changes in dispensings of selected subsidised medicines in Australia.METHOD: We analysed national aggregate monthly prescription dispensings for 17 medicine categories, selected to represent a range of treatments (e.g. for diabetes, cardiovascular diseases, gout). Trends in medication dispensings from January 2000 to December 2004 were compared with those from January 2005 to September 2007 using segmented regression analysis.RESULTS: Following the January 2005 increase in PBS co-payments, significant decrease in dispensing volumes were observed in 12 of the 17 medicine categories (range: 3.2-10.9%), namely anti-epileptics, anti-Parkinson's treatments, combination asthma medicines, eye-drops, glaucoma treatments, HmgCoA reductase inhibitors, insulin, muscle relaxants, non-aspirin antiplatelets, osteoporosis treatments, proton-pump inhibitors (PPIs) and thyroxine. The largest decrease was observed for medicines used in treating asymptomatic conditions or those with over-the-counter (OTC) substitutes. Decrease in dispensings to social security beneficiaries was consistently greater than for general beneficiaries following the co-payment changes (range: 1.8-9.4% greater, p = 0.028).CONCLUSIONS: The study findings suggest that recent increase in Australian PBS co-payments have had a significant effect on dispensings of prescription medicines. The results suggest large increase in co-payments impact on patients' ability to afford essential medicines. Of major concern is that, despite special subsidies for social security beneficiaries in the Australian system, the recent co-payment increase has particularly impacted on utilisation for this group.", "Absolute protein quantification using mass spectrometry (MS)-based proteomics delivers protein concentrations or copy numbers per cell. Existing methodologies typically require a combination of isotope-labeled spike-in references, cell counting, and protein concentration measurements. Here we present a novel method that delivers similar quantitative results directly from deep eukaryotic proteome datasets without any additional experimental steps. We show that the MS signal of histones can be used as a \"proteomic ruler\" because it is proportional to the amount of DNA in the sample, which in turn depends on the number of cells. As a result, our proteomic ruler approach adds an absolute scale to the MS readout and allows estimation of the copy numbers of individual proteins per cell. We compare our protein quantifications with values derived via the use of stable isotope labeling by amino acids in cell culture and protein epitope signature tags in a method that combines spike-in protein fragment standards with precise isotope label quantification. The proteomic ruler approach yields quantitative readouts that are in remarkably good agreement with results from the precision method. We attribute this surprising result to the fact that the proteomic ruler approach omits error-prone steps such as cell counting or protein concentration measurements. The proteomic ruler approach is readily applicable to any deep eukaryotic proteome dataset-even in retrospective analysis-and we demonstrate its usefulness with a series of mouse organ proteomes.", "Author information:(1)Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan. hdoi@yokohama-cu.ac.jp.(2)Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.(3)Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.(4)Clinical Genetics Department, Yokohama City University Hospital, Yokohama, 236-0004, Japan.(5)Department of Pharmacology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.(6)Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.(7)Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.(8)Department of Pediatrics, National Hospital Organization Higashisaitama Hospital, Hasuda, 4147 Kurohama, Saitama, 349-0196, Japan.(9)Department of Neurology, National Hospital Organization Higashisaitama Hospital, Hasuda, 4147 Kurohama, Saitama, 349-0196, Japan.(10)Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.(11)Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan. ftanaka@yokohama-cu.ac.jp.", "Advances in understanding of the immune microenvironment have highlighted the role of immunosuppressive T cell, myeloid, dendritic and monocytic sub-populations in inhibition of the anti-tumor immune response. The role of B cells in modulating the immune response to solid tumors as well as lymphoid malignancies is less well understood. Murine models of autoimmune disease have defined B regulatory cell (Breg) subsets with immune suppressive activity, including B cell subsets that express IL-10, and transforming growth factor-β, which can facilitate T regulatory cell recruitment and expansion. Multiple murine tumor models point to the existence of similar immune suppressive B cell sub-populations that can migrate into tumor deposits and acquire an immune suppressive phenotype, which then leads to attenuation of the local anti-tumor immune response. Other murine models of viral or chemically induced skin carcinogenesis have identified a pivotal role for B cells in promoting inflammation and carcinogenesis. While many human solid tumors demonstrate significant B cell infiltration and/or tertiary lymphoid structure formation, the functional properties of tumor-infiltrating B cells and their effects on immunity are poorly understood. Recent successes in early Phase I/II trials using anti-checkpoint inhibitor antibodies such as nivolumab or pidilizumab directed against PD-1 in the setting of Hodgkin's and non-Hodgkin's lymphomas validate the therapeutic utility of reversing B cell-mediated immune suppression. Further studies to define Breg subsets, and mechanisms of suppression, may provide new avenues for modulation of the immune response and meaningful therapeutic intervention in both lymphoid and solid tumors.", "Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) is a novel minimally invasive modality that uses heat from laser probes to destroy tissue. Advances in probe design, cooling mechanisms, and real-time MR thermography have increased laser utilization in neurosurgery. The authors perform a systematic analysis of two commercially available MRgLITT systems used in neurosurgery: the Visualase® thermal therapy and NeuroBlate® Systems. Data extraction was performed in a blinded fashion. Twenty-two articles were included in the quantitative synthesis. A total of 223 patients were identified with the majority having undergone treatment with Visualase (n=154, 69%). Epilepsy was the most common indication for Visualase therapy (n=8 studies, 47%). Brain mass was the most common indication for NeuroBlate therapy (n=3 studies, 60%). There were no significant differences, except in age, wherein the NeuroBlate group was nearly twice as old as the Visualase group (p<0.001). Frame, total complications, and length-of-stay (LOS) were non-significant when adjusted for age and number of patients. Laser neurosurgery has evolved over recent decades. Clinical indications are currently being defined and will continue to emerge as laser technologies become more sophisticated. Head-to-head comparison of these systems was difficult given the variance in indications (and therefore patient population) and disparate literature." ]
1,604
[ "Genetic engineering has emerged as a powerful mechanism for understanding biological systems and a potential approach for redressing congenital disease. Alongside, the emergence of these technologies in recent decades has risen the complementary analysis of the ethical implications of genetic engineering techniques and applications. Although viral-mediated approaches have dominated initial efforts in gene transfer (GT) methods, an emerging technology involving engineered restriction enzymes known as zinc finger nucleases (ZFNs) has become a powerful new methodology for gene editing. Given the advantages provided by ZFNs for more specific and diverse approaches in gene editing for basic science and clinical applications, we discuss how ZFN research can address some of the ethical and scientific questions that have been posed for other GT techniques. This is of particular importance, given the momentum currently behind ZFNs in moving into phase I clinical trials. This study provides a historical account of the origins of ZFN technology, an analysis of current techniques and applications, and an examination of the ethical issues applicable to translational ZFN genetic engineering in early phase clinical trials.", "PURPOSE: Conventional postoperative photon-beam radiotherapy to the spine in children with medulloblastoma/PNET is associated with severe late effects. This morbidity (growth and developmental) is related to the exit dose of the beams and is particularly severe in young children. With the purpose of reducing this toxicity, a dosimetric study was undertaken in which proton therapy was compared to standard megavoltage photon treatment.METHODS AND MATERIALS: The results of a comparative dosimetric study are presented in such a way that the dose distribution achievable with a posterior modulated 100 MeV proton beam (spot scanning method) is compared with that of a standard set of posterior 6 MV x-ray fields. The potential improvements with protons are evaluated, using dose-volume histograms to examine the coverage of the target as well as the dose to the vertebral bodies (growth plates), lungs, heart, and liver.RESULTS: The target (i.e., the spinal dural sac) received the full prescribed dose in both treatment plans. However, the proportions of the vertebral body volume receiving > or = 50% of the prescribed dose were 100 and 20% for 6 MV x-rays and protons, respectively. For 6 MV x-rays > 60% of the dose prescribed to the target was delivered to 44% of the heart volume, while the proton beam was able to completely avoid the heart, the liver, and in all likelihood the thyroid and gonads as well.CONCLUSION: The present study demonstrates a potential role of proton therapy in decreasing the dose (and toxicity) to the critical structures in the irradiation of the spinal neuraxis in medulloblastoma/PNET. The potential bone marrow and growth arrest sparing effects make this approach specially attractive for intensive chemotherapy protocols and for very young children. Sparing the thyroid gland, the posterior heart wall, and the gonads may be additional advantages in assuring a long-term posttreatment morbidity-free survival.", "Pseudofam (http://pseudofam.pseudogene.org) is a database of pseudogene families based on the protein families from the Pfam database. It provides resources for analyzing the family structure of pseudogenes including query tools, statistical summaries and sequence alignments. The current version of Pseudofam contains more than 125,000 pseudogenes identified from 10 eukaryotic genomes and aligned within nearly 3000 families (approximately one-third of the total families in PfamA). Pseudofam uses a large-scale parallelized homology search algorithm (implemented as an extension of the PseudoPipe pipeline) to identify pseudogenes. Each identified pseudogene is assigned to its parent protein family and subsequently aligned to each other by transferring the parent domain alignments from the Pfam family. Pseudogenes are also given additional annotation based on an ontology, reflecting their mode of creation and subsequent history. In particular, our annotation highlights the association of pseudogene families with genomic features, such as segmental duplications. In addition, pseudogene families are associated with key statistics, which identify outlier families with an unusual degree of pseudogenization. The statistics also show how the number of genes and pseudogenes in families correlates across different species. Overall, they highlight the fact that housekeeping families tend to be enriched with a large number of pseudogenes.", "BACKGROUND: Plasmodium falciparum the main causative agent of malaria is an important public health vector. With the use of PCR, its genetic diversity has been extensively studied with dearth information from Nigeria.METHODS: In this study, 100 P. falciparum strains merozoite surface protein 1(msp-1), merozoite surface protein 2 (msp-2) and Glutamate rich protein (Glurp) from Ogun State General Hospitals were characterized. The genetic diversity of P. falciparum isolates was analyzed by restriction fragment length polymorphism following gel electrophoresis of DNA products from nested polymerase chain reactions (PCR) of their respective allelic families KI, MAD 20, RO33 (MSP-1);FC27, 3D7 (MSP-2) and Glutamate rich protein respectively.RESULTS: Majority of the patients showed monoclonal infections while multiplicity of the infection for msp-1 and msp-2 were 1.1 and 1.2 respectively. The estimated number of genotypes was 8 msp-1 (4 KI; 3 MAD; 1 RO33) and 6 msp-2 (3 FC27; 3 3D7). 80% of the isolates coded for Glurp with allelic size ranged between 700 and 900 bp.CONCLUSION: The allelic distributions however were similar to those previously reported in other endemic malaria countries. Future studies will be designed to include other malaria endemic regions of Nigeria such as the oil exploration regions.", "Hirschsprung's disease (HSCR) is a fairly frequent cause of intestinal obstruction in children. It is characterized as a sex-linked heterogonous disorder with variable severity and incomplete penetrance giving rise to a variable pattern of inheritance. Although Hirschsprung's disease occurs as an isolated phenotype in at least 70% of cases, it is not infrequently associated with a number of congenital abnormalities and associated syndromes, demonstrating a spectrum of congenital anomalies. Certain of these syndromic phenotypes have been linked to distinct genetic sites, indicating underlying genetic associations of the disease and probable gene-gene interaction, in its pathogenesis. These associations with HSCR include Down's syndrome and other chromosomal anomalies, Waardenburg syndrome and other Dominant sensorineural deafness, the Congenital Central Hypoventilation and Mowat-Wilson and other brain-related syndromes, as well as the MEN2 and other tumour associations. A number of other autosomal recessive syndromes include the Shah-Waardenburg, the Bardet-Biedl and Cartilage-hair hypoplasia, Goldberg-Shprintzen syndromes and other syndromes related to cholesterol and fat metabolism among others. The genetics of Hirschsprung's disease are highly complex with the majority of known genetic sites relating to the main susceptibility pathways (RET an EDNRB). Non-syndromic non-familial, short-segment HSCR appears to represent a non-Mendelian condition with variable expression and sex-dependent penetrance. Syndromic and familial forms, on the other hand, have complex patterns of inheritance and being reported as autosomal dominant, recessive and polygenic patterns of inheritance. The phenotypic variability and incomplete penetrance observed in Hirschsprung's disease could also be explained by the involvement of modifier genes, especially in its syndromic forms. In this review, we look at the chromosomal and Mendelian associations and their underlying signalling pathways, to obtain a better understanding of the pathogenetic mechanisms involved in developing aganglionosis of the distal bowel.", "In the alternative splicing, intron retention, of histamine H(3) receptors in rats and mice, the short transcript isoforms that are excised alternatively spliced introns are easily detected in a very low level in rats and are undetectable in mice using the regular PCR protocol. The retained introns have common 5' splice site and different 3' splice sites. The detailed mechanism for the special alternative splicing remains largely unclear. In this study, we developed a minigene splicing system to recapitulate natural alternative splicing of the receptors and investigated the effects of 5' and 3' splice sites on intron retention in HeLa cells. Mutating weak 5' and 3' splice sites of the alternatively spliced introns toward the canonical consensus sequences promoted the splicing of the corresponding introns in rat and mouse minigenes. The effect of splice site strength was context-dependent and much more significant for the 3' splice site of the longer alternative intron than for the 3' splice site of the shorter alternative intron and the common 5' splice sites; it was also more significant in the rat minigene than in the mouse minigene. Mutating the 3' splice site of the longer alternative intron resulted in almost complete splicing of the intron and made the corresponding isoform to become the nearly exclusive transcript in the rat minigene.", "The potential anticancer activities of histone deacetylase (HDAC) inhibitors and DNA methyltransferase (DNMT) inhibitors have been extensively studied in recent years. HDAC inhibitors suppress the activities of multiple HDACs, leading to an increase in histone acetylation. This histone acetylation induces an enhancement of the expression of specific genes that elicit extensive cellular morphologic and metabolic changes, such as growth arrest, differentiation and apoptosis. DNMT inhibitors, such as 5-aza-cytidine (5-aza-CR) and 5-aza-2'-deoxycytidine (5-aza-CdR) are also widely studied because DNA hypomethylation induces the re-activation of tumor suppressor genes that are silenced by methylation-mediated mechanisms. Recently, the combination of HDAC inhibitors or demethylating agents with other chemo-therapeutics has gained increasing interest as a possible molecularly targeted therapeutic strategy. In particular, the combination of HDAC inhibitors with demethylating agents has become attractive since histones are connected to DNA by both physical and functional interactions. To date, the accumulating evidence has confirmed the hypothesis that the combination of HDAC and DNMT inhibition is very effective (and synergistic) in inducing apoptosis, differentiation and/or cell growth arrest in human lung, breast, thoracic, leukemia and colon cancer cell lines. This review will discuss the in vitro effects of HDAC inhibitors, such as trichostatin A (TSA), sodium butyrate, depsipeptide (FR901228, FK228), valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA), and the demethylating agent, 5-aza-CdR used alone and in combination treatment of human cancer cells and the possible mechanisms involved." ]
1,622
[ "BACKGROUND: Ewing's sarcoma/peripheral primitive neuroectodermal tumor (ES/pPNET) is often difficult to distinguish from other small round cell tumors. The EWS-Ets gene fusions that result from chromosomal translocations in this tumor provide potential molecular diagnostic markers. To apply these molecular markers to commonly available archival materials, we evaluated the feasibility of detecting EWS-Ets including EWS-Fli1 and EWS-ERG fusion transcripts in paraffin-embedded tissues and its diagnostic value for detecting ES/pPNET.METHODS: Thirteen paraffin-embedded samples of ES/pPNETs were retrieved from archives. Thirteen cases of other tumors with small round cell features (including rhabdomyosarcoma, neuroblastoma, lymphoma, small cell carcinoma, and desmoplastic small round cell tumor) were used as negative controls. Beta-actin and beta2-microglobulin were used as internal controls. A nested reverse transcriptase-polymerase chain reaction (RT-PCR)-based assay was performed to detect the EWS-Fli1 and EWS-ERG fusion transcripts.RESULTS: Beta-actin and beta2-microglobulin were detected in 10/13 and 13/13 ES/pPNETs, respectively. EWS-Fli1 fusion transcripts were detected in 11 of 13 (85%) ES/pPNETs. Three chimeric transcripts, all EWS-Fli1, were detected in ES/pPNET samples. Among 11 EWS-Fli1-positive cases, 7 cases had a type I fusion transcript involving fusion of EWS exon 7 with Fli1 exon 6, 2 cases had a type II fusion transcript involving EWS exon 7 with Fli1 exon 5, and 2 cases expressed fusion transcripts involving EWS exon 7 and Fli1 exon 8. Type I EWS-Fli1 fusion predominated over other types. Fusion types could not be distinguished in the remaining 2 cases. Thirteen negative controls did not show detectable chimeric messages. There was a significant relationship between EWS-Fli1 fusion transcripts and CD99 expression.CONCLUSIONS: Molecular detection of EWS-Fli1 fusion transcripts in formalin-fixed paraffin-embedded material by nested RT-PCR is feasible and is useful for the diagnosis and differential diagnosis of ES/pPNETs.", "Belgrade rats exhibit microcytic, hypochromic anemia and systemic iron deficiency due to a glycine-to-arginine mutation at residue 185 in a metal ion transporter of a divalent metal transporter/divalent cation transporter/solute carrier 11 group A member 2 or 3 (DMT1/DCT1/SLC11A2), a member of the natural-resistance-associated macrophage protein (Nramp) family. By use of rabbit duodenal tissue, a calcein fluorescence assay has previously been developed to assess transport of divalent metal ions across the small-intestinal brush border membrane (BBM). The assay was readily applied here to rat BBM to learn if it detects DMT1 activity. The results demonstrate protein-mediated transport across the BBM of all tested ions: Mn(2+), Fe(2+), and Ni(2+). Transport into BBM vesicles (BBMV) from (b/b) Belgrade rats was below the detection limit. BBMV of +/b origin had substantial activity. The kinetic rate constant for Ni(2+) membrane transport for +/b BBMV was within the range for normal rabbit tissue. Vesicles from +/b basolateral membranes (BLM) showed similar activity to BBMV while b/b BLM vesicles (BLMV) lacked transport activity. Immunoblots using isoform-specific antibodies demonstrated that intestinal levels of b/b DMT1 were increased compared to +/b DMT1, reflecting iron deficiency. Immunoblots on BBMV indicated that lack of activity in b/b vesicles was not due to a failure of DMT1 to localize to the BBMV; an excess of specific isoforms was present compared to +/b BBMV or duodenal extracts. Immunoblots from BLMV also exhibited enrichment in DMT1 isoforms, despite their distinct origin. Immunofluorescent staining of thin sections of b/b and +/b proximal intestines confirmed that DMT1 localized similarly in mutant and control enterocytes and showed that DMT1 isoforms have distinct distributions within intestinal tissue.", "A comparative biochemical analysis was performed using recombinant human protein kinase Chk2 (checkpoint kinase 2) expressed in bacteria and insect cells. Dephosphorylated, inactive, recombinant human Chk2 could be reactivated in a concentration-dependent manner. Despite distinct time-dependent autophosphorylation kinetics by monitoring the phosphorylation of amino acid residues T68, S19, S33/35, T432, in Chk2 wildtype and Chk2 mutants (T68A, T68D and Q69E) they gave identical specific activities. However, upon gel filtration of Chk2 wildtype and the mutants, only Chk2 wildtype and the T68D mutant led to the formation of a 'pure' dimer; dephosphorylated wildtype Chk2 eluted as a monomer. Transfection of HEK293 cells with Chk2 wildtype and Chk2 mutants in the absence or presence of DNA damage showed significant T68 phosphorylation already in the absence of DNA damaging reagents. Upon DNA damage, phosphorylation of additional Chk2 sites was observed (S19, S33/35). A comparison of ATM+/+ and ATM-/- cells with respect to phosphorylation of residues T68, S19, S33/35 in the absence and presence of DNA damage showed in all cases phosphorylation of T68, although signal intensity was increased ca. three-fold after DNA damage. Mass spectrometric analyses of human recombinant Chk2 isolated from bacteria and insect cells showed distinct differences. The number of phosphorylated residues in human recombinant Chk2 isolated from bacteria was 16, whereas in the case of the recombinant human Chk2 from insect cells it was 8. Except for phosphorylated amino acid T378 which was not found in the Chk2 isolated from bacteria, all other phosphorylated residues identified in human Chk2 from insect cells were present also in Chk2 from bacteria.", "The underrepresentation of non-Europeans in human genetic studies so far has limited the diversity of individuals in genomic datasets and led to reduced medical relevance for a large proportion of the world's population. Population-specific reference genome datasets as well as genome-wide association studies in diverse populations are needed to address this issue. Here we describe the pilot phase of the GenomeAsia 100K Project. This includes a whole-genome sequencing reference dataset from 1,739 individuals of 219 population groups and 64 countries across Asia. We catalogue genetic variation, population structure, disease associations and founder effects. We also explore the use of this dataset in imputation, to facilitate genetic studies in populations across Asia and worldwide.", "Most animals have two centrioles in spermatids (the distal and proximal centrioles), but insect spermatids seem to contain only one centriole (Fuller 1993), which functionally resembles the distal centriole. Using fluorescent centriolar markers, we identified a structure near the fly distal centriole that is reminiscent of a proximal centriole (i.e., proximal centriole-like, or PCL). We show that the PCL exhibits several features of daughter centrioles. First, a single PCL forms near the proximal segment of the older centriole. Second, the centriolar proteins SAS-6, Ana1, and Bld10p/Cep135 are in the PCL. Third, PCL formation depends on SAK/PLK4 and SAS-6. Using a genetic screen for PCL defect, we identified a mutation in the gene encoding the conserved centriolar protein POC1, which is part of the daughter centriole initiation site (Kilburn et al. 2007) in Tetrahymena. We conclude that the PCL resembles an early intermediate structure of a forming centriole, which may explain why no typical centriolar structure is observed under electron microscopy. We propose that, during the evolution of insects, the proximal centriole was simplified by eliminating the later steps in centriole assembly. The PCL may provide a unique model to study early steps of centriole formation.", "The identification of the critical role of proprotein convertase subtilisin/kexin type 9 (PCSK9) has rapidly led to the development of PCSK9 inhibition with monoclonal antibodies (mAbs). PCSK9 mAbs are already in limited clinical use and are the subject of major cardiovascular outcomes trials, which, if universally positive, could see much wider clinical application of these agents. Patients with familial hypercholesterolaemia are the most obvious candidates for these drugs, but other patients with elevated cardiovascular risk, statin intolerance or hyperlipoproteinaemia(a) may also benefit. PCSK9 mAbs, administered once or twice monthly, reduce LDL cholesterol levels by 50% to 70%, and appear to be safe and acceptable to patients over at least 2 years of treatment; however, treatment-emergent adverse effects are not always identified in clinical trials, as well-evidenced by statin myopathy. Inclisiran is a promising RNA-based therapy that promotes the degradation of PCSK9 mRNA transcripts and has similar efficacy to mAbs, but with a much longer duration of action. The cost-effectiveness and long-term safety of therapies targeted at inhibiting PCSK9 remain to be demonstrated if they are to be used widely in coronary prevention.", "We compared the optic nerve head topography and retinal nerve fiber layer (RNFL) thickness of the strabismic and anisometropic amblyopic eyes with the normal fellow eyes and age-matched controls and concluded that, although amblyopia is a functional visual loss, RNFL thickness and optic nerve head topographic changes in strabismic and anisometropic amblyopic eyes may be affected by amblyopia. Further histopathological and clinic confirmations are needed." ]
1,631
[ "The HER2/neu oncogene is overexpressed in human pancreatic cancer, but the clinical significance of that overexpression is uncertain. In the present study we investigated the antitumor efficacy of Herceptin, a new recombinant humanized anti-HER2/neu antibody, which exhibits cytostatic activity on breast and prostate cancer cells that overexpress the HER2 oncogene. That antibody may retard tumor growth in certain patients with those diseases. We quantified HER2 expression in various human pancreatic cancer cell lines and studied the bioactivity of this antibody both in vitro and in vivo. Growth inhibition by Herceptin was observed in vitro in cell lines with high levels of HER2/neu expression. Cell lines with low levels of this protein did not respond significantly to the antibody. In vivo we studied two different pancreatic cancer cell lines in an orthotopic mouse model of the disease. Herceptin treatment suppressed tumor growth in the MIA PaCa-2 tumor cell line, which expressed high levels of HER2/neu. These data suggest that Herceptin treatment of patients with pancreatic cancer who express high levels of the HER2/neu oncogene may be reasonable.", "Despite the increased attention that the syndrome of pseudodementia is receiving, several important questions regarding diagnostic criteria and accuracy, etiology, and even the appropriateness of the term itself remain unanswered. The author reviews the literature on this topic, including published case reports. On the basis of the available data, it appears that there may be at least two categories of pseudodementia and that the cognitive impairment associated with depressive illness is more appropriately viewed as a depression-induced organic mental disorder. Directions for future research are suggested.", "Soft-tissue sarcoma (STS) is a heterogeneous group of tumors that arise from mesenchymal tissue. The prognosis of metastatic STS is poor with a life expectancy of 12-18 months. The mainstay of treatment is chemotherapy with an anthracycline. The addition of other chemotherapeutic agents to an anthracycline has been studied with limited success in improving outcomes for STS patients. Olaratumab is a fully human IgG1 monoclonal antibody that binds to platelet-derived growth factor receptor α (PDGFR-α) preventing binding of its ligands and receptor activation. This drug recently received the US Food and Drug Administration's accelerated approval for the treatment of advanced STS when combined with doxorubicin. This approval was based upon an improvement in overall survival of patients receiving the combination of doxorubicin and olaratumab compared to those receiving doxo-rubicin alone. In this review, we have analyzed the available literature on the development of olaratumab, its clinical utility, and its place in therapy. Based on early-phase clinical trials, olaratumab appears to be a promising agent for the treatment of STS.", "This article describes a method developed for predicting transmembrane beta-barrel regions in membrane proteins using machine learning techniques: artificial neural network (ANN) and support vector machine (SVM). The ANN used in this study is a feed-forward neural network with a standard back-propagation training algorithm. The accuracy of the ANN-based method improved significantly, from 70.4% to 80.5%, when evolutionary information was added to a single sequence as a multiple sequence alignment obtained from PSI-BLAST. We have also developed an SVM-based method using a primary sequence as input and achieved an accuracy of 77.4%. The SVM model was modified by adding 36 physicochemical parameters to the amino acid sequence information. Finally, ANN- and SVM-based methods were combined to utilize the full potential of both techniques. The accuracy and Matthews correlation coefficient (MCC) value of SVM, ANN, and combined method are 78.5%, 80.5%, and 81.8%, and 0.55, 0.63, and 0.64, respectively. These methods were trained and tested on a nonredundant data set of 16 proteins, and performance was evaluated using \"leave one out cross-validation\" (LOOCV). Based on this study, we have developed a Web server, TBBPred, for predicting transmembrane beta-barrel regions in proteins (available at http://www.imtech.res.in/raghava/tbbpred).", "Repressed PHO5 gene chromatin, isolated from yeast in the native state, was remodeled by yeast extract in a gene activator-dependent, ATP-dependent manner. The product of the reaction bore the hallmark of the process in vivo, the selective removal of promoter nucleosomes, without effect on open reading frame nucleosomes. Fractionation of the extract identified a single protein, chromodomain helicase DNA binding protein 1 (Chd1), capable of the remodeling activity. Deletion of the CHD1 gene in an isw1Δ pho80Δ strain abolished PHO5 gene expression, demonstrating the relevance of the remodeling reaction in vitro to the process in vivo.", "Exosomes are extracellular vesicles released upon fusion of multivesicular bodies(MVBs) with the cellular plasma membrane. They originate as intraluminal vesicles (ILVs) during the process of MVB formation. Exosomes were shown to contain selectively sorted functional proteins, lipids, and RNAs, mediating cell-to-cell communications and hence playing a role in the physiology of the healthy and diseased organism. Challenges in the field include the identification of mechanisms sustaining packaging of membrane-bound and soluble material to these vesicles and the understanding of the underlying processes directing MVBs for degradation or fusion with the plasma membrane. The investigation into the formation and roles of exosomes in viral infection is in its early years. Although still controversial, exosomes can, in principle, incorporate any functional factor, provided they have an appropriate sorting signal, and thus are prone to viral exploitation.This review initially focuses on the composition and biogenesis of exosomes. It then explores the regulatory mechanisms underlying their biogenesis. Exosomes are part of the endocytic system,which is tightly regulated and able to respond to several stimuli that lead to alterations in the composition of its sub-compartments. We discuss the current knowledge of how these changes affect exosomal release. We then summarize how different viruses exploit specific proteins of endocytic sub-compartments and speculate that it could interfere with exosome function, although no direct link between viral usage of the endocytic system and exosome release has yet been reported. Many recent reports have ascribed functions to exosomes released from cells infected with a variety of animal viruses, including viral spread, host immunity, and manipulation of the microenvironment, which are discussed. Given the ever-growing roles and importance of exosomes in viral infections, understanding what regulates their composition and levels, and defining their functions will ultimately provide additional insights into the virulence and persistence of infections.", "The human body is composed of diverse cell types with distinct functions. Although it is known that lineage specification depends on cell-specific gene expression, which in turn is driven by promoters, enhancers, insulators and other cis-regulatory DNA sequences for each gene, the relative roles of these regulatory elements in this process are not clear. We have previously developed a chromatin-immunoprecipitation-based microarray method (ChIP-chip) to locate promoters, enhancers and insulators in the human genome. Here we use the same approach to identify these elements in multiple cell types and investigate their roles in cell-type-specific gene expression. We observed that the chromatin state at promoters and CTCF-binding at insulators is largely invariant across diverse cell types. In contrast, enhancers are marked with highly cell-type-specific histone modification patterns, strongly correlate to cell-type-specific gene expression programs on a global scale, and are functionally active in a cell-type-specific manner. Our results define over 55,000 potential transcriptional enhancers in the human genome, significantly expanding the current catalogue of human enhancers and highlighting the role of these elements in cell-type-specific gene expression.", "The identification of transcriptional regulatory modules within mammalian genomes is a prerequisite to understanding the mechanisms controlling regulated gene expression. While high-throughput microarray- and sequencing-based approaches have been used to map the genomic locations of sites of nuclease hypersensitivity or target DNA sequences bound by specific protein factors, the identification of regulatory elements using functional assays, which would provide important complementary data, has been relatively rare. Here we present a method that permits the functional identification of active transcriptional regulatory modules using a simple procedure for the isolation and analysis of DNA derived from nucleosome-free regions (NFRs), the 2% of the cellular genome that contains these elements. The more than 100 new active regulatory DNAs identified in this manner from F9 cells correspond to both promoter-proximal and distal elements, and display several features predicted for endogenous transcriptional regulators, including localization within DNase-accessible chromatin and CpG islands, and proximity to expressed genes. Furthermore, comparison with published ChIP-seq data of ES-cell chromatin shows that the functional elements we identified correspond with genomic regions enriched for H3K4me3, a histone modification associated with active transcriptional regulatory elements, and that the correspondence of H3K4me3 with our promoter-distal elements is largely ES-cell specific. The majority of the distal elements exhibit enhancer activity. Importantly, these functional DNA fragments are an average 149 bp in length, greatly facilitating future applications to identify transcription factor binding sites mediating their activity. Thus, this approach provides a tool for the high-resolution identification of the functional components of active promoters and enhancers.", "Histone modifications are now well-established mediators of transcriptional programs that distinguish cell states. However, the kinetics of histone modification and their role in mediating rapid, signal-responsive gene expression changes has been little studied on a genome-wide scale. Vascular endothelial growth factor A (VEGFA), a major regulator of angiogenesis, triggers changes in transcriptional activity of human umbilical vein endothelial cells (HUVECs). Here, we used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to measure genome-wide changes in histone H3 acetylation at lysine 27 (H3K27ac), a marker of active enhancers, in unstimulated HUVECs and HUVECs stimulated with VEGFA for 1, 4, and 12 h. We show that sites with the greatest H3K27ac change upon stimulation were associated tightly with EP300, a histone acetyltransferase. Using the variation of H3K27ac as a novel epigenetic signature, we identified transcriptional regulatory elements that are functionally linked to angiogenesis, participate in rapid VEGFA-stimulated changes in chromatin conformation, and mediate VEGFA-induced transcriptional responses. Dynamic H3K27ac deposition and associated changes in chromatin conformation required EP300 activity instead of altered nucleosome occupancy or changes in DNase I hypersensitivity. EP300 activity was also required for a subset of dynamic H3K27ac sites to loop into proximity of promoters. Our study identified thousands of endothelial, VEGFA-responsive enhancers, demonstrating that an epigenetic signature based on the variation of a chromatin feature is a productive approach to define signal-responsive genomic elements. Further, our study implicates global epigenetic modifications in rapid, signal-responsive transcriptional regulation.", "PURPOSE: To provide an overview of burning mouth syndrome (BMS), describe the role of the clinician when a patient presents with the burning mouth complaint, offer guidance in differentiating the cause of the complaint, and identify potential treatment options for the patient suffering from BMS.DATA SOURCES: A search of MD Consult, Medline, and EBSCO Host Research Databases with the terms \"burning mouth\" and \"BMS.\"CONCLUSIONS: BMS is a common, chronic disorder of unknown etiology with no underlying or systemic causes or oral signs identified. It affects more than 1 million people in the United States, predominantly postmenopausal women. Despite the common nature of the disorder, it is often misunderstood. Palliative treatment, education, and support should be offered to the patient with idiopathic BMS. A variety of treatment options exist, including benzodiazepines, tricyclic antidepressants, anticonvulsants, alpha-lipoic acid, topical capsaicin, and cognitive therapy can be added to the medication regimen for greater benefit.IMPLICATIONS FOR PRACTICE: The role of the clinician is to obtain a meticulous history and physical examination of the patient, order relevant diagnostic tests, and rule out treatable conditions that may be causing the burning mouth symptom. If secondary causes of BMS are ruled out, the clinician should present treatment options to the patient and consider referral to specialists as necessary. A combination of medications may be more effective than a single medication.", "In this large (616 patients), double-blind, placebo-controlled, dose-ranging study of mepolizumab (a monoclonal antibody that blocks IL-5 binding to its receptor), patients were given placebo, 75-, 250- or 750-mg mepolizumab by intravenous infusion every 4 weeks for 1 year. Exacerbation rates at all doses were 50% less than those in the placebo group. There were no changes in any other asthma measures (symptoms, quality of life or lung function). This may be a useful advance for a subgroup of severe asthma with frequent exacerbations and persistent eosinophilia, which may be about half of severe asthmatics. More information on patient selection and cost-benefit will be required.", "The regulation of gene expression during thymocyte development provides an ideal experimental system to study lineage-commitment processes. In particular, expression of the CD4, CD8A and CD8B genes seems to correlate well with the cell-fate decisions that are taken by thymocytes, and elucidating the molecular mechanisms that underlie the differential expression of these genes could reveal key events in differentiation processes. Here, we review examples of how gene cis elements (such as promoters, enhancers and locus control regions) and trans elements (such as transcription factors, chromatin-remodelling complexes and histone-modification enzymes) come together to orchestrate a finely tuned sequence of events that results in the complex pattern of CD4, CD8A and CD8B gene expression that is observed during thymocyte development.", "BACKGROUND: Both glucose-insulin-potassium (GIK) and tri-iodothyronine (T3) may improve cardiovascular performance after coronary artery surgery (CABG) but their effects have not been directly compared and the effects of combined treatment are unknown.METHODS AND RESULTS: In 2 consecutive randomized double-blind placebo-controlled trials, in patients undergoing first time isolated on-pump CABG between January 2000 and September 2004, 440 patients were recruited and randomized to either placebo (5% dextrose) (n=160), GIK (40% dextrose, K+ 100 mmol.L(-1), insulin 70 u.L(-1)) (0.75 mL.kg(-1) h(-1)) (n=157), T3 (0.8 microg.kg(-1) followed by 0.113 microg.kg(-1) h(-1)) (n=63) or GIK+T3 (n=60). GIK/placebo therapy was administered from start of operation until 6 hours after removal of aortic cross-clamp (AXC) and T3/placebo was administered for a 6-hour period from removal of AXC. Serial hemodynamic measurements were taken up to 12 hours after removal of AXC and troponin I (cTnI) levels were assayed to 72 hours. Cardiac index (CI) was significantly increased in both the GIK and GIK/T3 group in the first 6 hours compared with placebo (P<0.001 for both) and T3 therapy (P=0.009 and 0.029, respectively). T3 therapy increased CI versus placebo between 6 and 12 hours after AXC removal (P=0.01) but combination therapy did not. Release of cTnI was lower in all treatment groups at 6 and 12 hours after removal of AXC.CONCLUSIONS: Treatment with GIK, T3, and GIK/T3 improves hemodynamic performance and results in reduced cTnI release in patients undergoing on-pump CABG surgery. Combination therapy does not provide added hemodynamic effect.", "BACKGROUND: Many recent studies have investigated the role of drug interventions for coronavirus disease 2019 (COVID-19) infection. However, an important question has been raised about how to select the effective and secure medications for COVID-19 patients. The aim of this analysis was to assess the efficacy and safety of the various medications available for severe and non-severe COVID-19 patients based on randomized placebo-controlled trials (RPCTs).METHODS: We did an updated network meta-analysis. We searched the databases from inception until July 31, 2021, with no language restrictions. We included RPCTs comparing 49 medications and placebo in the treatment of severe and non-severe patients (aged 18 years or older) with COVID-19 infection. We extracted data on the trial and patient characteristics, and the following primary outcomes: all-cause mortality, the ratios of virological cure, and treatment-emergent adverse events. Odds ratio (OR) and their 95% confidence interval (CI) were used as effect estimates.RESULTS: From 3,869 publications, we included 61 articles related to 73 RPCTs (57 in non-severe COVID-19 patients and 16 in severe COVID-19 patients), comprising 20,680 patients. The mean sample size was 160 (interquartile range 96-393) in this study. The median duration of follow-up drugs intervention was 28 days (interquartile range 21-30). For increase in virological cure, we only found that proxalutamide (OR 9.16, 95% CI 3.15-18.30), ivermectin (OR 6.33, 95% CI 1.22-32.86), and low dosage bamlanivimab (OR 5.29, 95% CI 1.12-24.99) seemed to be associated with non-severe COVID-19 patients when compared with placebo, in which proxalutamide seemed to be better than low dosage bamlanivimab (OR 5.69, 95% CI 2.43-17.65). For decrease in all-cause mortality, we found that proxalutamide (OR 0.13, 95% CI 0.09-0.19), imatinib (OR 0.49, 95% CI 0.25-0.96), and baricitinib (OR 0.58, 95% CI 0.42-0.82) seemed to be associated with non-severe COVID-19 patients; however, we only found that immunoglobulin gamma (OR 0.27, 95% CI 0.08-0.89) was related to severe COVID-19 patients when compared with placebo. For change in treatment-emergent adverse events, we only found that sotrovimab (OR 0.21, 95% CI 0.13-0.34) was associated with non-severe COVID-19 patients; however, we did not find any medications that presented a statistical difference when compared with placebo among severe COVID-19 patients.CONCLUSION: We conclude that marked variations exist in the efficacy and safety of medications between severe and non-severe patients with COVID-19. It seems that monoclonal antibodies (e.g., low dosage bamlanivimab, baricitinib, imatinib, and sotrovimab) are a better choice for treating severe or non-severe COVID-19 patients. Clinical decisions to use preferentially medications should carefully consider the risk-benefit profile based on efficacy and safety of all active interventions in patients with COVID-19 at different levels of infection.", "The effect of expressing human huntingtin fragments containing polyglutamine (polyQ) tracts of varying lengths was assessed in Caenorhabditis elegans ASH sensory neurons in young and old animals. Expression of a huntingtin fragment containing a polyQ tract of 150 residues (Htn-Q150) led to progressive ASH neurodegeneration but did not cause cell death. Progressive cell death and enhanced neurodegeneration were observed in ASH neurons that coexpressed Htn-Q150 and a subthreshold dose of a toxic OSM-10::green fluorescent protein (OSM-10::GFP) fusion protein. Htn-Q150 huntingtin protein fragments formed protein aggregates in ASH neurons, and the number of ASH neurons containing aggregates increased as animals aged. ASH neuronal cell death required ced-3 caspase function, indicating that the observed cell death is apoptotic. Of interest, ced-3 played a critical role in Htn-Q150-mediated neurodegeneration but not in OSM10::GFP-mediated ASH neurodegeneration. ced-3 function was important but not essential for the formation of protein aggregates. Finally, behavioral assays indicated that ASH neurons, coexpressing Htn-Q150 and OSM10::GFP, were functionally impaired at 3 days before the detection of neurodegeneration, cell death, and protein aggregates.", "Peptidylarginine deiminases (PADs)-mediated post-translational citrullination processes play key roles in protein functions and structural stability through the conversion of arginine to citrulline in the presence of excessive calcium concentrations. In brain, PAD2 is abundantly expressed and can be involved in citrullination in disease. Recently, we have reported pathological characterization of PAD2 and citrullinated proteins in scrapie-infected mice, but the implication of protein citrullination in the pathophysiology in human prion disease is not clear. In the present study, we explored the molecular and biological involvement of PAD2 and the pathogenesis of citrullinated proteins in frontal cortex of patients with sporadic Creutzfeldt-Jakob disease (sCJD). We found increased expression of PAD2 in reactive astrocytes that also contained increased levels of citrullinated proteins. In addition, PAD activity was significantly elevated in patients with sCJD compared to controls. From two-dimensional gel electrophoresis and MALDI-TOF mass analysis, we found various citrullinated candidates, including cytoskeletal and energy metabolism-associated proteins such as vimentin, glial fibrillary acidic protein, enolase, and phosphoglycerate kinase. Based on these findings, our investigations suggest that PAD2 activation and aberrant citrullinated proteins could play a role in pathogenesis and have value as a marker for the postmortem classification of neurodegenerative diseases.", "Amifostine (Ethyoltrade mark, Alza Pharmaceuticals) is an inorganic thiophosphate cytoprotective agent known chemically as ethanethiol, 2-[3- aminopropyl)amino]dihydrogen phosphate. It is a prodrug of free thiol (WR-1065) that may act as a scavenger of free radicals generated in tissues exposed to cytotoxic drugs and binds to reactive metabolites of such drugs. Amifostine was originally developed as a radioprotective agent in a classified nuclear warfare project. Following declassification of the project it was evaluated as a cytoprotective agent against toxicity of the alkylating drugs and cisplatin. Differences in the alkaline phosphatase concentration of normal versus tumour tissues can result in greater conversion of amifostine in normal tissues. Inside the cell, WR-1065 provides an alternative target to DNA and RNA for the reactive molecules of alkylating or platinum agents and acts as a potent scavenger of the oxygen free radicals induced by ionizing radiation and some chemotherapy agents. Preclinical animal studies have demonstrated that the administration of amifostine protects against a variety of chemotherapy-related toxicities including cisplatin-induced nephrotoxicity, cisplatin-induced neurotoxicity, cyclophosphamide- and bleomycin-induced pulmonary toxicity and the cytotoxicities (including cardiotoxicity) induced by doxorubicin and related chemotherapeutic agents. Amifostine has been shown to protect a variety of animal species from lethal doses of radiation. Amifostine gives haematological protection from cyclophosphamide, carboplatin, mitomycin C, fotemustine and radiotherapy; renal and peripheral nerve protection from cisplatin; mucosa, skin and salivary gland protection from radiotherapy. Multiple Phase I studies were carried out with amifostine in combination with chemotherapy for various neoplasms. Appropriate doses of amifostine were found to be 740 - 910 mg/m(2) in single-dose regimens and 340 mg/m(2) in multiple-dose regimens. In radioprotection, doses are generally 200 - 350 mg/m(2). For all these characteristics, amifostine has been recently approved and suggested in ASCO clinical practice guidelines as a radioprotector for head and neck cancer treatment and supportive agent during cisplatin-based chemotherapy, in lymphomas and solid tumours. Moreover, its spectrum of possible applications is enlarging. As data have been provided indicating that amifostine stimulates haematopoiesis, it has been employed with intriguing results in the treatment of myelodysplastic syndromes (MDS).", "Enhancers play a pivotal role in regulating the transcription of distal genes. Although certain chromatin features, such as the histone acetyltransferase P300 and the histone modification H3K4me1, indicate the presence of enhancers, only a fraction of enhancers are functionally active. Individual chromatin marks, such as H3K27ac and H3K27me3, have been identified to distinguish active from inactive enhancers. However, the systematic identification of the most informative single modification, or combination thereof, is still lacking. Furthermore, the discovery of enhancer RNAs (eRNAs) provides an alternative approach to directly predicting enhancer activity. However, it remains challenging to link chromatin modifications to eRNA transcription. Herein, we develop a logistic regression model to unravel the relationship between chromatin modifications and eRNA synthesis. We perform a systematic assessment of 24 chromatin modifications in fetal lung fibroblast and demonstrate that a combination of four modifications is sufficient to accurately predict eRNA transcription. Furthermore, we compare the ability of eRNAs and H3K27ac to discriminate enhancer activity. We demonstrate that eRNA is more indicative of enhancer activity. Finally, we apply our fibroblast trained model to six other cell-types and successfully predict eRNA synthesis. Thus, we demonstrate the learned relationships are general and independent of cell-type. We provided a powerful tool to identify active enhancers and reveal the relationship between chromatin modifications, eRNA production and enhancer activity.", "Wernicke's encephalopathy and Korsakoff's psychosis represent a continuum of the same pathologic process. The etiology is an absolute deficiency of thiamine rather than a direct toxic effect of alcohol. The triad of Wernicke's encephalopathy--global confusional state, ophthalmoplegia and nystagmus, and ataxia--is occasionally seen in chronic alcoholics and is often attenuated by immediate thiamine treatment. The triad of Korsakoff's psychosis--memory loss, learning deficits and confabulation--may be seen in either the acute or the long-term care setting.", "IMPORTANCE: In phase 2 studies, evolocumab, a fully human monoclonal antibody to PCSK9, reduced LDL-C levels in patients receiving statin therapy.OBJECTIVE: To evaluate the efficacy and tolerability of evolocumab when used in combination with a moderate- vs high-intensity statin.DESIGN, SETTING, AND PATIENTS: Phase 3, 12-week, randomized, double-blind, placebo- and ezetimibe-controlled study conducted between January and December of 2013 in patients with primary hypercholesterolemia and mixed dyslipidemia at 198 sites in 17 countries.INTERVENTIONS: Patients (n = 2067) were randomized to 1 of 24 treatment groups in 2 steps. Patients were initially randomized to a daily, moderate-intensity (atorvastatin [10 mg], simvastatin [40 mg], or rosuvastatin [5 mg]) or high-intensity (atorvastatin [80 mg], rosuvastatin [40 mg]) statin. After a 4-week lipid-stabilization period, patients (n = 1899) were randomized to compare evolocumab (140 mg every 2 weeks or 420 mg monthly) with placebo (every 2 weeks or monthly) or ezetimibe (10 mg or placebo daily; atorvastatin patients only) when added to statin therapies.MAIN OUTCOMES AND MEASURES: Percent change from baseline in low-density lipoprotein cholesterol (LDL-C) level at the mean of weeks 10 and 12 and at week 12.RESULTS: Evolocumab reduced LDL-C levels by 66% (95% CI, 58% to 73%) to 75% (95% CI, 65% to 84%) (every 2 weeks) and by 63% (95% CI, 54% to 71%) to 75% (95% CI, 67% to 83%) (monthly) vs placebo at the mean of weeks 10 and 12 in the moderate- and high-intensity statin-treated groups; the LDL-C reductions at week 12 were comparable. For moderate-intensity statin groups, evolocumab every 2 weeks reduced LDL-C from a baseline mean of 115 to 124 mg/dL to an on-treatment mean of 39 to 49 mg/dL; monthly evolocumab reduced LDL-C from a baseline mean of 123 to 126 mg/dL to an on-treatment mean of 43 to 48 mg/dL. For high-intensity statin groups, evolocumab every 2 weeks reduced LDL-C from a baseline mean of 89 to 94 mg/dL to an on-treatment mean of 35 to 38 mg/dL; monthly evolocumab reduced LDL-C from a baseline mean of 89 to 94 mg/dL to an on-treatment mean of 33 to 35 mg/dL. Adverse events were reported in 36%, 40%, and 39% of evolocumab-, ezetimibe-, and placebo-treated patients, respectively. The most common adverse events in evolocumab-treated patients were back pain, arthralgia, headache, muscle spasms, and pain in extremity (all <2%).CONCLUSIONS AND RELEVANCE: In this 12-week trial conducted among patients with primary hypercholesterolemia and mixed dyslipidemia, evolocumab added to moderate- or high-intensity statin therapy resulted in additional LDL-C lowering. Further studies are needed to evaluate the longer-term clinical outcomes and safety of this approach for LDL-C lowering.TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01763866.", "BACKGROUND: Approximately 50% of melanomas harbor activating (V600) mutations in the serine-threonine protein kinase B-RAF (BRAF). The oral BRAF inhibitor vemurafenib (PLX4032) frequently produced tumor regressions in patients with BRAF V600-mutant metastatic melanoma in a phase 1 trial and improved overall survival in a phase 3 trial.METHODS: We designed a multicenter phase 2 trial of vemurafenib in patients with previously treated BRAF V600-mutant metastatic melanoma to investigate the efficacy of vemurafenib with respect to overall response rate (percentage of treated patients with a tumor response), duration of response, and overall survival. The primary end point was the overall response rate as ascertained by the independent review committee; overall survival was a secondary end point.RESULTS: A total of 132 patients had a median follow-up of 12.9 months (range, 0.6 to 20.1). The confirmed overall response rate was 53% (95% confidence interval [CI], 44 to 62; 6% with a complete response and 47% with a partial response), the median duration of response was 6.7 months (95% CI, 5.6 to 8.6), and the median progression-free survival was 6.8 months (95% CI, 5.6 to 8.1). Primary progression was observed in only 14% of patients. Some patients had a response after receiving vemurafenib for more than 6 months. The median overall survival was 15.9 months (95% CI, 11.6 to 18.3). The most common adverse events were grade 1 or 2 arthralgia, rash, photosensitivity, fatigue, and alopecia. Cutaneous squamous-cell carcinomas (the majority, keratoacanthoma type) were diagnosed in 26% of patients.CONCLUSIONS: Vemurafenib induces clinical responses in more than half of patients with previously treated BRAF V600-mutant metastatic melanoma. In this study with a long follow-up, the median overall survival was approximately 16 months. (Funded by Hoffmann-La Roche; ClinicalTrials.gov number, NCT00949702.).", "Post-translational histone modifications, acting alone or in a context-dependent manner, influence numerous cellular processes via their regulation of gene expression. Monomethylation of histone H3 lysine 27 (K27me1) is a poorly understood histone modification. Some reports describe depletion of K27Me1 at promoters and transcription start sites (TSS), implying its depletion at TSS is necessary for active transcription, while others have associated enrichment of H3K27me1 at TSS with increased levels of mRNA expression. Tissue- and gene-specific patterns of H3K27me1 enrichment and their correlation with gene expression were determined via chromatin immunoprecipitation on chip microarray (ChIP-chip) and human mRNA expression array analyses. Results from erythroid cells were compared with those in neural and muscle cells. H3K27me1 enrichment varied depending on levels of cell-type specific gene expression, with highest enrichment over transcriptionally active genes. Over individual genes, the highest levels of H3K27me1 enrichment were found over the gene bodies of highly expressed genes. In contrast to H3K4me3, which was highly enriched at the TSS of actively transcribing genes, H3K27me1 was selectively depleted at the TSS of actively transcribed genes. There was markedly decreased to no H3K27me1 enrichment in genes with low expression. At some locations, H3K27 monomethylation was also found to be associated with chromatin signatures of gene enhancers.", "Genetic factors play an important role in determining the risk of multiple sclerosis (MS). The strongest genetic association in MS is located within the major histocompatibility complex class II region (MHC), but more than 50 MS loci of modest effect located outside the MHC have now been identified. However, the relative candidate genes that underlie these associations and their functions are largely unknown. We conducted a protein-protein interaction (PPI) analysis of gene products coded in loci recently reported to be MS associated at the genome-wide significance level and in loci suggestive of MS association. Our aim was to identify which suggestive regions are more likely to be truly associated, which genes are mostly implicated in the PPI network and their expression profile. From three recent independent association studies, SNPs were considered and divided into significant and suggestive depending on the strength of the statistical association. Using the Disease Association Protein-Protein Link Evaluator tool we found that direct interactions among genetic products were significantly higher than expected by chance when considering both significant regions alone (p<0.0002) and significant plus suggestive (p<0.007). The number of genes involved in the network was 43. Of these, 23 were located within suggestive regions and many of them directly interacted with proteins coded within significant regions. These included genes such as SYK, IL-6, CSF2RB, FCLR3, EIF4EBP2 and CHST12. Using the gene portal BioGPS, we tested the expression of these genes in 24 different tissues and found the highest values among immune-related cells as compared to non-immune tissues (p<0.001). A gene ontology analysis confirmed the immune-related functions of these genes. In conclusion, loci currently suggestive of MS association interact with and have similar expression profiles and function as those significantly associated, highlighting the fact that more common variants remain to be found to be associated to MS.", "Author information:(1)Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. dung.nguyen@ndm.ox.ac.uk.(2)Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam. cuongnv@oucru.org.(3)Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. david.bonsall@ndm.ox.ac.uk.(4)Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam. tuent@oucru.org.(5)Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam. jcarrique-mas@oucru.org.(6)Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK. jcarrique-mas@oucru.org.(7)Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam. anhph@oucru.org.(8)Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), 69365 Lyon CEDEX 07, France. juliet.bryant@fondation-merieux.org.(9)Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam. gthwaites@oucru.org.(10)Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK. gthwaites@oucru.org.(11)Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam. sbaker@oucru.org.(12)Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK. sbaker@oucru.org.(13)The London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK. sbaker@oucru.org.(14)Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK. mark.woolhouse@ed.ac.uk.(15)Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. peter.simmonds@ndm.ox.ac.uk.", "BACKGROUND: Recent genomic scale survey of epigenetic states in the mammalian genomes has shown that promoters and enhancers are correlated with distinct chromatin signatures, providing a pragmatic way for systematic mapping of these regulatory elements in the genome. With rapid accumulation of chromatin modification profiles in the genome of various organisms and cell types, this chromatin based approach promises to uncover many new regulatory elements, but computational methods to effectively extract information from these datasets are still limited.RESULTS: We present here a supervised learning method to predict promoters and enhancers based on their unique chromatin modification signatures. We trained Hidden Markov models (HMMs) on the histone modification data for known promoters and enhancers, and then used the trained HMMs to identify promoter or enhancer like sequences in the human genome. Using a simulated annealing (SA) procedure, we searched for the most informative combination and the optimal window size of histone marks.CONCLUSION: Compared with the previous methods, the HMM method can capture the complex patterns of histone modifications particularly from the weak signals. Cross validation and scanning the ENCODE regions showed that our method outperforms the previous profile-based method in mapping promoters and enhancers. We also showed that including more histone marks can further boost the performance of our method. This observation suggests that the HMM is robust and is capable of integrating information from multiple histone marks. To further demonstrate the usefulness of our method, we applied it to analyzing genome wide ChIP-Seq data in three mouse cell lines and correctly predicted active and inactive promoters with positive predictive values of more than 80%. The software is available at http://http:/nash.ucsd.edu/chromatin.tar.gz.", "BACKGROUND: Nitric oxide (NO), a key macrophage antimycobacterial mediator that ameliorates immunopathology, is measurable in exhaled breath in individuals with pulmonary tuberculosis. We investigated relationships between fractional exhale NO (FENO) and initial pulmonary tuberculosis severity, change during treatment, and relationship with conversion of sputum culture to negative at 2 months.METHODS: In Papua, we measured FENO in patients with pulmonary tuberculosis at baseline and serially over 6 months and once in healthy controls. Treatment outcomes were conversion of sputum culture results at 2 months and time to conversion of sputum microscopy results.RESULTS: Among 200 patients with pulmonary tuberculosis and 88 controls, FENO was lower for patients with pulmonary tuberculosis at diagnosis (geometric mean FENO, 12.7 parts per billion [ppb]; 95% confidence interval [CI], 11.6-13.8) than for controls (geometric mean FENO, 16.6 ppb; 95% CI, 14.2-19.5; P = .002), fell further after treatment initiation (nadir at 1 week), and then recovered by 6 months (P = .03). Lower FENO was associated with more-severe tuberculosis disease, with FENO directly proportional to weight (P < .001) and forced vital-capacity (P = .001) and inversely proportional to radiological score (P = .03). People whose FENO increased or remained unchanged by 2 months were 2.7-fold more likely to achieve conversion of sputum culture than those whose FENO decreased (odds ratio, 2.72; 95% CI, 1.05-7.12; P = .04).CONCLUSIONS: Among patients with pulmonary tuberculosis, impaired pulmonary NO bioavailability is associated with more-severe disease and delayed mycobacterial clearance. Measures to increase pulmonary NO warrant investigation as adjunctive tuberculosis treatments.", "Aneurysmal subarachnoid hemorrhage (SAH) is a neurological emergency with high risk of neurological decline and death. Although the presentation of a thunderclap headache or the worst headache of a patient's life easily triggers the evaluation for SAH, subtle presentations are still missed. The gold standard for diagnostic evaluation of SAH remains noncontrast head computed tomography (CT) followed by lumbar puncture if the CT is negative for SAH. Management of patients with SAH follows standard resuscitation of critically ill patients with the emphasis on reducing risks of rebleeding and avoiding secondary brain injuries.", "BACKGROUND: Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist) and reducing smoking satisfaction (acting as an antagonist). Varenicline was developed as a nicotine receptor partial agonist from cytisine, a drug widely used in central and eastern Europe for smoking cessation. The first trial reports of varenicline were released in 2006, and further trials have now been published or are currently underway.OBJECTIVES: The primary objective of this review is to assess the efficacy and tolerability of nicotine receptor partial agonists, including varenicline and cytisine, for smoking cessation.SEARCH STRATEGY: We searched the Cochrane Tobacco Addiction Group's specialised register for trials, using the terms ('varenicline' or 'cytisine' or 'Tabex' or 'nicotine receptor partial agonist') and 'smoking' in the title or abstract, or as keywords. We also searched MEDLINE, EMBASE, PsycINFO and CINAHL using MeSH terms and free text, and we contacted authors of trial reports for additional information where necessary. The latest search was in September 2010.SELECTION CRITERIA: We included randomized controlled trials which compared the treatment drug with placebo. We also included comparisons with bupropion and nicotine patches where available. We excluded trials which did not report a minimum follow-up period of six months from start of treatment.DATA COLLECTION AND ANALYSIS: We extracted data on the type of participants, the dose and duration of treatment, the outcome measures, the randomization procedure, concealment of allocation, and completeness of follow up.The main outcome measured was abstinence from smoking after at least six months from the beginning of treatment. We used the most rigorous definition of abstinence, and preferred biochemically validated rates where they were reported. Where appropriate we performed meta-analysis to produce a risk ratio, using the Mantel-Haenszel fixed-effect model.MAIN RESULTS: We found 11 trials of varenicline compared with placebo for smoking cessation; three of these included a bupropion experimental arm. We also found one relapse prevention trial, comparing varenicline with placebo, and two open-label trials comparing varenicline with nicotine replacement therapy (NRT). We also include one trial in which all the participants were given varenicline, but received behavioural support either online or by phone calls, or by both methods. This trial is not included in the analyses, but contributes to the data on safety and tolerability. The included studies covered >10,300 participants, 6892 of whom used varenicline. We identified one trial of cytisine (Tabex) for inclusion.The pooled risk ratio (RR) (10 trials, 4443 people, excluding one trial evaluating long term safety) for continuous abstinence at six months or longer for varenicline at standard dosage versus placebo was 2.31 (95% confidence interval [CI] 2.01 to 2.66). Varenicline at lower or variable doses was also shown to be effective, with an RR of 2.09 (95% CI 1.56 to 2.78; 4 trials, 1272 people). The pooled RR for varenicline versus bupropion at one year was 1.52 (95% CI 1.22 to 1.88; 3 trials, 1622 people). The RR for varenicline versus NRT for point prevalence abstinence at 24 weeks was 1.13 (95% CI 0.94 to 1.35; 2 trials, 778 people). The two trials which tested the use of varenicline beyond the 12-week standard regimen found the drug to be well-tolerated during long-term use. The main adverse effect of varenicline was nausea, which was mostly at mild to moderate levels and usually subsided over time. Post-marketing safety data raised questions about a possible association between varenicline and depressed mood, agitation, and suicidal behaviour or ideation. The labelling of varenicline was amended in 2008, and the manufacturers produced a Medication Guide. Thus far, surveillance reports and secondary analyses of trial data lend little support to a causal relationship.The one cytisine trial included in this review found that more participants taking cytisine stopped smoking compared with placebo at two-year follow up, with an RR of 1.61 (95% CI 1.24 to 2.08).AUTHORS' CONCLUSIONS: Varenicline at standard dose increased the chances of successful long-term smoking cessation between two- and threefold compared with pharmacologically unassisted quit attempts. Lower dose regimens also conferred benefits for cessation, while reducing the incidence of adverse events. More participants quit successfully with varenicline than with bupropion. Two open-label trials of varenicline versus NRT suggested a modest benefit of varenicline but confidence intervals did not rule out equivalence. Limited evidence suggests that varenicline may have a role to play in relapse prevention. The main adverse effect of varenicline is nausea, but mostly at mild to moderate levels and tending to subside over time. Possible links with serious adverse events, including depressed mood, agitation and suicidal thoughts, have been reported but are so far not substantiated.There is a need for further independent community-based trials of varenicline, to test its efficacy and safety in smokers with varying co-morbidities and risk patterns. There is a need for further trials of the efficacy of treatment extended beyond 12 weeks. Cytisine may also increase the chances of quitting, but the evidence at present is inconclusive.", "The regulatory elements that direct tissue-specific gene expression in the developing mammalian embryo remain largely unknown. Although chromatin profiling has proven to be a powerful method for mapping regulatory sequences in cultured cells, chromatin states characteristic of active developmental enhancers have not been directly identified in embryonic tissues. Here we use whole-transcriptome analysis coupled with genome-wide profiling of H3K27ac and H3K27me3 to map chromatin states and enhancers in mouse embryonic forelimb and hindlimb. We show that gene-expression differences between forelimb and hindlimb, and between limb and other embryonic cell types, are correlated with tissue-specific H3K27ac signatures at promoters and distal sites. Using H3K27ac profiles, we identified 28,377 putative enhancers, many of which are likely to be limb specific based on strong enrichment near genes highly expressed in the limb and comparisons with tissue-specific EP300 sites and known enhancers. We describe a chromatin state signature associated with active developmental enhancers, defined by high levels of H3K27ac marking, nucleosome displacement, hypersensitivity to sonication, and strong depletion of H3K27me3. We also find that some developmental enhancers exhibit components of this signature, including hypersensitivity, H3K27ac enrichment, and H3K27me3 depletion, at lower levels in tissues in which they are not active. Our results establish histone modification profiling as a tool for developmental enhancer discovery, and suggest that enhancers maintain an open chromatin state in multiple embryonic tissues independent of their activity level.", "Intercellular adhesion molecule-1 (ICAM-1) is a member of an immunoglobulin-like superfamily of adhesion molecules that mediate leukocyte adhesion to vascular endothelium and are involved in several cardiovascular diseases, including ischemia-reperfusion injury, myocardial infarction, and atherosclerosis. However, the role of ICAM-1 in angiotensin II (ANG II)-induced cardiac remodeling in mice remains unclear. Wild-type mice were administered an IgG control or ICAM-1 neutralizing antibody (1 and 2 mg/mouse, respectively) and ANG II (1,000 ng·kg-1·min-1) for up to 14 days. Cardiac contractile function and structure were detected by echocardiography. Hypertrophy, fibrosis, and inflammation were assessed by histological examination. The infiltration of lymphocyte function-associated antigen-1 (LFA-1+) monocytes/macrophages was assessed by immunostaining. The mRNA expression of genes was evaluated by quantitative RT-PCR analysis. Protein levels were tested by immunoblotting. We found that ICAM-1 expression in ANG II-infused hearts and ICAM-1 levels in serum from human patients with heart failure were significantly increased. Moreover, ANG II infusion markedly enhanced ANG II-induced hypertension, caused cardiac contractile dysfunction, and promoted cardiac hypertrophy, fibrosis, and LFA-1+ macrophage infiltration. Conversely, blockage of ICAM-1 with a neutralizing antibody dose-dependently attenuated these effects. Moreover, our in vitro data further demonstrated that blocking ICAM-1 inhibited ANG II-induced LFA-1+ macrophage adhesion to endothelial cells and migration. In conclusion, these results provide novel evidence that blocking ICAM-1 exerts a protective effect in ANG II-induced cardiac remodeling at least in part through the modulation of adhesion and infiltration of LFA-1+ macrophages in the heart. Inhibition of ICAM-1 may represent a new therapeutic approach for hypertrophic heart diseases.NEW & NOTEWORTHY Leukocyte adhesion to vascular endothelium is a critical step in cardiovascular diseases. ICAM-1 is a member of immunoglobulin-like superfamily of adhesion molecules that binds LFA-1 to mediate leukocytes adhesion and migration. However, the significance of ICAM-1 in ANG II-induced cardiac remodeling remains unclear. This study reveals that blocking of ICAM-1 prevents ANG II-induced cardiac remodeling via modulating adhesion and migration of LFA-1+ monocytes, may serve as a novel therapeutic target for hypertensive cardiac diseases.", "The gene coding for the metabolically stable 6S RNA of Escherichia coli has been cloned, sequenced, and partially characterized in expression analyses. The DNA sequence results confirm the accuracy of the previously established RNA sequence and, with genomic hybridization data, reveal that there is only one copy of the 6S DNA in the chromosome. Consistent with its relaxed mode of expression, the promoter region of the 6S RNA gene was found to lack the hypothetical GC-rich discriminator domain common to other stable RNA genes under stringent control. The sequence results also revealed the occurrence of a 540-base-pair open reading frame immediately downstream from the 6S RNA coding region. Results from the expression analyses show that the protein and RNA coding regions are cotranscribed in vitro and that the open reading frame is translated in vivo.", "DEAD-box proteins are the largest family of nucleic acid helicases, and are crucial to RNA metabolism throughout all domains of life. They contain a conserved 'helicase core' of two RecA-like domains (domains (D)1 and D2), which uses ATP to catalyse the unwinding of short RNA duplexes by non-processive, local strand separation. This mode of action differs from that of translocating helicases and allows DEAD-box proteins to remodel large RNAs and RNA-protein complexes without globally disrupting RNA structure. However, the structural basis for this distinctive mode of RNA unwinding remains unclear. Here, structural, biochemical and genetic analyses of the yeast DEAD-box protein Mss116p indicate that the helicase core domains have modular functions that enable a novel mechanism for RNA-duplex recognition and unwinding. By investigating D1 and D2 individually and together, we find that D1 acts as an ATP-binding domain and D2 functions as an RNA-duplex recognition domain. D2 contains a nucleic-acid-binding pocket that is formed by conserved DEAD-box protein sequence motifs and accommodates A-form but not B-form duplexes, providing a basis for RNA substrate specificity. Upon a conformational change in which the two core domains join to form a 'closed state' with an ATPase active site, conserved motifs in D1 promote the unwinding of duplex substrates bound to D2 by excluding one RNA strand and bending the other. Our results provide a comprehensive structural model for how DEAD-box proteins recognize and unwind RNA duplexes. This model explains key features of DEAD-box protein function and affords a new perspective on how the evolutionarily related cores of other RNA and DNA helicases diverged to use different mechanisms.", "CIS43 is a potent neutralizing human mAb that targets a highly conserved \"junctional\" epitope in the Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP). Enhancing the durability of CIS43 in vivo will be important for clinical translation. Here, 2 approaches were used to improve the durability of CIS43 in vivo while maintaining potent neutralization. First, the Fc domain was modified with the LS mutations (CIS43LS) to increase CIS43 binding affinity for the neonatal Fc receptor (FcRn). CIS43LS and CIS43 showed comparable in vivo protective efficacy. CIS43LS had 9- to 13-fold increased binding affinity for human (6.2 nM versus 54.2 nM) and rhesus (25.1 nM versus 325.8 nM) FcRn at endosomal pH 6.0 compared with CIS43. Importantly, the half-life of CIS43LS in rhesus macaques increased from 22 days to 39 days compared with CIS43. The second approach for sustaining antibody levels of CIS43 in vivo is through adeno-associated virus (AAV) expression. Mice administered once with AAV-expressing CIS43 had sustained antibody levels of approximately 300 μg/mL and mediated protection against sequential malaria challenges up to 36 weeks. Based on these data, CIS43LS has advanced to phase I clinical trials, and AAV delivery provides a potential next-generation approach for malaria prevention.", "Colorectal cancer (CRC) is the 3rd most common type of cancer worldwide. Late detection plays role in one-third of annual mortality due to CRC. Therefore, it is essential to find a precise and optimal diagnostic and prognostic biomarker for the identification and treatment of colorectal tumorigenesis. Covalently closed, circular RNAs (circRNAs) are a class of non-coding RNAs, which can have the same function as microRNA (miRNA) sponges, as regulators of splicing and transcription, and as interactors with RNA-binding proteins (RBPs). Therefore, circRNAs have been investigated as specific targets for diagnostic and prognostic detection of CRC. These non-coding RNAs are also linked to metastasis, proliferation, differentiation, migration, angiogenesis, apoptosis, and drug resistance, illustrating the importance of understanding their involvement in the molecular mechanisms of development and progression of CRC. In this review, we present a detailed summary of recent findings relating to the dysregulation of circRNAs and their potential role in CRC.", "We reported previously that well-characterized enhancers but not promoters for typical tissue-specific genes, including the classic Alb1 gene, contain unmethylated CpG dinucleotides and evidence of pioneer factor interactions in embryonic stem (ES) cells. These properties, which are distinct from the bivalent histone modification domains that characterize the promoters of genes involved in developmental decisions, raise the possibility that genes expressed only in differentiated cells may need to be marked at the pluripotent stage. Here, we demonstrate that the forkhead family member FoxD3 is essential for the unmethylated mark observed at the Alb1 enhancer in ES cells, with FoxA1 replacing FoxD3 following differentiation into endoderm. Up-regulation of FoxD3 and loss of CpG methylation at the Alb1 enhancer accompanied the reprogramming of mouse embryonic fibroblasts (MEFs) into induced pluripotent stem (iPS) cells. Studies of two genes expressed in specific hematopoietic lineages revealed that the establishment of enhancer marks in ES cells and iPS cells can be regulated both positively and negatively. Furthermore, the absence of a pre-established mark consistently resulted in resistance to transcriptional activation in the repressive chromatin environment that characterizes differentiated cells. These results support the hypothesis that pluripotency and successful reprogramming may be critically dependent on the marking of enhancers for many or all tissue-specific genes.", "Deafness or hearing loss is a major issue in human health. Inner ear hair cells are the main sensory receptors responsible for hearing. Defects in hair cells are one of the major causes of deafness. A combination of induced pluripotent stem cell (iPSC) technology with genome-editing technology may provide an attractive cell-based strategy to regenerate hair cells and treat hereditary deafness in humans. Here, we report the generation of iPSCs from members of a Chinese family carrying MYO15A c.4642G>A and c.8374G>A mutations and the induction of hair cell-like cells from those iPSCs. The compound heterozygous MYO15A mutations resulted in abnormal morphology and dysfunction of the derived hair cell-like cells. We used a CRISPR/Cas9 approach to genetically correct the MYO15A mutation in the iPSCs and rescued the morphology and function of the derived hair cell-like cells. Our data demonstrate the feasibility of generating inner ear hair cells from human iPSCs and the functional rescue of gene mutation-based deafness by using genetic correction.", "BACKGROUND: The creation of lymphoblastoid cell lines (LCLs) through Epstein-Barr virus (EBV) transformation of B-lymphocytes can result in a valuable biomaterial for cell biology research and a renewable source of DNA. While LCLs have been used extensively in cellular and genetic studies, the process of cell transformation and expansion during culturing may introduce genomic changes that may impact their use and the interpretation of subsequent genetic findings.RESULTS: We performed whole exome sequencing on a tetrad family using DNA derived from peripheral blood mononuclear cells (PBMCs) and LCLs from each individual. We generated over 4.7 GB of mappable sequence to a 125X read coverage per sample. An average of 19,354 genetic variants were identified. Comparison of the two DNA sources from each individual showed an average concordance rate of 95.69%. By lowering the variant calling parameters, the concordance rate between the paired samples increased to 99.82%. Sanger sequencing of a subset of the remaining discordant variants did confirm the presence of de novo mutations arising in LCLs.CONCLUSIONS: By varying software stringency parameters, we identified 99% concordance between DNA sequences derived from the two different sources from the same donors. These results suggest that LCLs are an appropriate representation of the genetic material of the donor and suggest that EBV transformation can result in low-level generation of de novo mutations. Therefore, use of PBMC or early passage EBV-transformed cells is recommended. These findings have broad-reaching implications, as there are thousands of LCLs in public biorepositories and individual laboratories.", "Developmental programs are controlled by transcription factors and chromatin regulators, which maintain specific gene expression programs through epigenetic modification of the genome. These regulatory events at enhancers contribute to the specific gene expression programs that determine cell state and the potential for differentiation into new cell types. Although enhancer elements are known to be associated with certain histone modifications and transcription factors, the relationship of these modifications to gene expression and developmental state has not been clearly defined. Here we interrogate the epigenetic landscape of enhancer elements in embryonic stem cells and several adult tissues in the mouse. We find that histone H3K27ac distinguishes active enhancers from inactive/poised enhancer elements containing H3K4me1 alone. This indicates that the amount of actively used enhancers is lower than previously anticipated. Furthermore, poised enhancer networks provide clues to unrealized developmental programs. Finally, we show that enhancers are reset during nuclear reprogramming.", "Pore forming toxins (PFTs) are proteins which form unregulated oligomeric pores on target plasma membranes to cause ion leakage and cell death and represent the largest class of bacterial virulence factors. With increasing antibiotic-resistant bacterial strains, alternate therapies are being developed to target toxin pore formation rather than the bacteria themselves. One strategy is to undermine the stability of these multimeric pores, whose subunits are held together by complex amino acid interaction networks, by identifying key residues in these networks which could be plausible drug or mutagenesis targets. However, this requires a quantitative assessment of per residue contributions towards pore stability, which cannot be reliably gleaned from static crystal/cryo-EM pore structures. In this study, we overcome this limitation by developing a computational screening algorithm that employs fully atomistic molecular dynamics simulations coupled with energy-based screening that can predict 'hot-spot' residues which engage in persistent and stabilizing hydrogen bonds or salt bridges across protein-protein interfaces. Application of this algorithm to prototypical α-PFT (cytolysin A) and β-PFT (α-hemolysin) membrane-inserted pores yielded a small predicted set of highly interacting residues, blocking of which could destabilize pore complexes. Previous mutagenesis studies validate some of our in silico predictions. The algorithm could be applied to all pores with known structures to generate a database of destabilizing mutations, which could then serve as a basis for experimental validation and rational structure-based inhibitor design.Communicated by Ramaswamy H. Sarma.", "Author information:(1)Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 157 01, Greece. Electronic address: etsiolaki@biol.uoa.gr.(2)Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 157 01, Greece. Electronic address: gnasi@biol.uoa.gr.(3)Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 157 01, Greece. Electronic address: fbaltoumas@biol.uoa.gr.(4)Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 157 01, Greece. Electronic address: nlouros@biol.uoa.gr.(5)Department of Pharmacy, University of Patras, Patras 26504, Greece. Electronic address: magafa@upatras.gr.(6)Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 157 01, Greece. Electronic address: shamodr@biol.uoa.gr.(7)Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 157 01, Greece. Electronic address: veconom@biol.uoa.gr." ]
1,632
[ "Voltage-dependent anion-selective channel (VDAC) is a beta-barrel protein in the outer mitochondrial membrane that is necessary for metabolite exchange with the cytosol and is proposed to be involved in certain forms of apoptosis. We studied the biogenesis of VDAC in human mitochondria by depleting the components of the mitochondrial import machinery by using RNA interference. Here, we show the importance of the translocase of the outer mitochondrial membrane (TOM) complex in the import of the VDAC precursor. The deletion of Sam50, the central component of the sorting and assembly machinery (SAM), led to both a strong defect in the assembly of VDAC and a reduction in the steady-state level of VDAC. Metaxin 2-depleted mitochondria had reduced levels of metaxin 1 and were deficient in import and assembly of VDAC and Tom40, but not of three matrix-targeted precursors. We also observed a reduction in the levels of metaxin 1 and metaxin 2 in Sam50-depleted mitochondria, implying a connection between these three proteins, although Sam50 and metaxins seemed to be in different complexes. We conclude that the pathway of VDAC biogenesis in human mitochondria involves the TOM complex, Sam50 and metaxins, and that it is evolutionarily conserved.", "We recently showed that diencephalic TRH may mediate the central leptin-induced pressor effect. Here, to study the role of TRH in obesity-induced hypertension (OIH), we used a model of OIH produced by a high-fat diet (HFD, 45 days) in male Wistar rats. After 4 wk, body weight and systolic arterial blood pressure (SABP) increased in HFD animals. Plasma leptin was correlated with peritoneal adipose tissue. Then, we treated OIH animals with an antisense oligodeoxynucleotide and small interfering (si)RNA against the prepro-TRH. Antisense significantly decreased diencephalic TRH content and SABP at 24 and 48 h posttreatment. Similar effects were observed with siRNA against prepro-TRH but for up to 4 wk. Conversely, vehicle, an inverted antisense sequence and siRNA against green fluorescence protein, produced no changes. SABP decrease seems to be owing to an inhibition of the obesity-enhanced sympathetic outflow but not to an alteration in thyroid status. Using a simple OIH model we demonstrated, for the first time, that central TRH participates in the hypertension induced by body weight gain probably through its well-known action on sympathetic activity. Thus the TRH-leptin interaction may contribute to the strong association between hypertension and obesity.", "Statins are the current basis of lipid-lowering therapy, despite which may have limitations on efficacy and safety. In high risk patients who do not achieve current lipid goals, in those intolerant to statins or those with atherogenic dyslipidemia, it is possible combine two or more lipid lowering drugs, including statins, ezetimibe, bile acid sequestrants, fibrates, niacin and prescription omega-3 fatty acids. However, for most of these combination therapies pivotal data on clinical outcomes are still lacking.", "In Arabidopsis a SWI2/SNF2 chromatin remodeling factor-related protein DDM1 and a cytosine methyltransferase MET1 are required for maintenance of genomic cytosine methylation. Mutations in either gene cause global demethylation. In this work we have assessed the effects of these mutations on the PAI tryptophan biosynthetic gene family, which consists of four densely methylated genes arranged as a tail-to-tail inverted repeat plus two unlinked singlet genes. The methylation mutations caused only partial demethylation of the PAI loci: ddm1 had a strong effect on the singlet genes but a weaker effect on the inverted repeat, whereas met1 had a stronger effect on the inverted repeat than on the singlet genes. The double ddm1 met1 mutant also displayed partial demethylation of the PAI genes, with a pattern similar to the ddm1 single mutant. To determine the relationship between partial methylation and expression for the singlet PAI2 gene we constructed a novel reporter strain of Arabidopsis in which PAI2 silencing could be monitored by a blue fluorescent plant phenotype diagnostic of tryptophan pathway defects. This reporter strain revealed that intermediate levels of methylation correlate with intermediate suppression of the fluorescent phenotype.", "BACKGROUND: The role of brain natriuretic peptide (BNP) after traumatic brain injury (TBI) remains unclear, and its relationship with hyponatremia is still controversial. The aim of this study is to investigate the secretion pattern of N-terminal (NT)-proBNP in patients with TBI and to assess the relationship between NT-proBNP, sodium balance, and intracranial pressure (ICP).METHODS: We measured serum NT-proBNP levels of 84 patients with isolated TBI on a daily basis from day 1 to day 14 after injury.RESULTS: In average, the peak of BNP level was measured at 703.9 pg/mL±179.1 pg/mL on day 3 after injury, which was correlated to the severity of TBI. Among patients with severe TBI, plasma NT-proBNP concentrations in patients with hyponatremia were statistically higher than those without hyponatremia (p<0.05). In the hyponatremic group, the plasma NT-proBNP increased to a peak of 1001.16 pg/mL±131.52 pg/mL within 48 hours after injury and maintained at a high level for 3 days. In the normonatremic group, the plasma NT-proBNP reached a peak of 826.43 pg/mL±337.43 pg/mL on day 5 and quickly decreased thereafter. In addition, we found plasma NT-proBNP concentrations in patients with ICP>15 mm Hg were significantly higher than those in patients with ICP≤15 mm Hg (p<0.01).CONCLUSIONS: This study provides evidence that BNP plasma concentrations increase rapidly after TBI. Plasma BNP concentrations are correlated with hyponatremia in severe TBI patients but not in mild and moderate TBI patients. Furthermore, patients with elevated ICP have a higher serum BNP level in first 4 days after injury.", "Metaxin, a novel gene located between the glucocerebrosidase and thrombospondin 3 genes in the mouse, is essential for survival of the postimplantation mouse embryo. In this study, the subcellular location, domain structure, and biochemical function of metaxin were investigated. Anti-recombinant metaxin antibodies recognized 35- and 70-kDa proteins in mitochondria from various tissues; the 35-kDa protein is consistent in size with the predicted translation product of metaxin cDNA. When metaxin cDNA was transfected into COS cells, immunofluorescence staining demonstrated that the protein is located in mitochondria. Metaxin contains a putative mitochondrial outer membrane signal anchor domain at its C terminus, and a truncated form of metaxin lacking this signal anchor domain had a reduced association with mitochondria. In addition, metaxin was highly susceptible to proteases in intact mitochondria. We therefore conclude that metaxin is a mitochondrial protein that extends into the cytosol while anchored into the outer membrane at its C terminus. In its N-terminal region, metaxin shows significant sequence identity to Tom37, a component of the outer membrane portion of the mitochondrial preprotein translocation apparatus in Saccharomyces cerevisiae, but important structural differences, including apparently different mechanisms of targeting to membranes, also exist between the two proteins. Given the similar subcellular locations of metaxin and Tom37, the possible role of metaxin in mitochondrial preprotein import was investigated. Antibodies against metaxin, when preincubated with mitochondria, partially inhibited the uptake of radiolabeled preadrenodoxin into mitochondria. Metaxin is therefore the second mammalian component of the protein translocation apparatus of the mitochondrial outer membrane to be characterized at the molecular level and the first for which an inherited mutation has been described. The early embryonic lethal phenotype of mice lacking metaxin demonstrates that efficient import of proteins into mitochondria is crucial for cellular survival. The characterization of metaxin provides an opportunity to elucidate similarities and possible differences in the mechanisms of protein import between fungi and mammals and in the phenotypes of fungi and mammals lacking mitochondrial import receptors.", "Metaxin is an outer membrane protein of mammalian mitochondria which is suggested to be involved in protein import into the organelle. RNA blot analysis showed that distribution of metaxin mRNA in human tissues differs from that of mRNA for the translocase component Tom20. Effect of overexpression of human metaxin on mitochondrial preprotein import and processing in COS-7 cells was studied. Overexpression of metaxin resulted in impaired mitochondrial import of natural and chimeric preproteins and in their accumulation. We previously reported that overexpression of Tom20 in cultured cells causes inhibition of import of mitochondrial preprotein. Coexpression of metaxin with Tom20 had no further effect on the preprotein import. Overexpression of the cytosolic domain of metaxin also caused inhibition of preprotein import, although less strongly than the full-length metaxin. In blue native PAGE, Tom40, Tom22, and a portion of Tom20 migrated as a complex of approximately 400 kDa, and the other portion of Tom20 migrated in smaller forms of approximately 100 and approximately 40 kDa. On the other hand, metaxin migrated at a position of approximately 50 kDa. These results confirm earlier in vitro results that metaxin participates in preprotein import into mammalian mitochondria, and indicates that it does not associate with the Tom complex.", "Eosinophils, prominent cells in asthmatic inflammation, undergo apoptosis or programmed cell death following deprivation of contact with survival-promoting cytokines such as IL-5 and GM-CSF. The aim of this study was to assess a number of techniques for the quantification of apoptosis in human eosinophils cultured with or without IL-5 or GM-CSF and following staurosporine treatment. The relationship between apoptosis and necrosis in eosinophils was also determined. Eosinophils 'aged' in vitro for 48 h exhibited endonuclease DNA degradation, apoptotic morphology, increased red autofluorescence and externalisation of phosphatidylserine (PS) as assessed by binding of FITC-labelled annexin V. Annexin V-FITC binding was first detectable in eosinophils maintained at 37 degrees C for 5 h post-purification. This method proved to be the most sensitive marker of apoptosis. Morphological assessment of wet preparations of eosinophils by Kimura staining was found to be the next most-sensitive marker followed by increased red autofluorescence. The latter was a relatively insensitive method for the detection of apoptosis. At 5, 20 and 24 h of culture trypan blue exclusion indicated that eosinophil viability was high (85-90% viable cells). However, propidium iodide (PI) staining and flow cytometry revealed that, by 24 h, approximately 75% of cells had compromised membrane integrity. Eosinophils maintained in IL-5 or GM-CSF exhibited a non-apoptotic morphology and levels of annexin V-FITC binding and PI uptake similar to that of freshly isolated cells. Staurosporine (10(-5) M) treatment of eosinophils maintained in IL-5 or GM-CSF resulted in significant levels of apoptotic morphology at 2 h (23.8% +/- 6.9, p < 0.025) which was associated with negligible annexin binding. At 6 h post-staurosporine treatment significant annexin-FITC binding (38% +/- 1.5, p < 0.025) was observed compared with 93% +/- 1.2 of eosinophils displaying apoptotic morphology. Exclusion of PI demonstrated membrane integrity at all time points up to 6 h. Thus, eosinophils aged in vitro in the absence of viability-promoting cytokines exhibit evidence of both apoptosis and necrosis simultaneously. In contrast, staurosporine-treated eosinophils exhibited both membrane integrity and rapid apoptosis-associated morphological changes detected by single step Kimura staining which preceded externalisation of PS.", "A monoclonal antibody (mAb) has been produced which reacts with human mitofilin, a mitochondrial inner membrane protein. This mAb immunocaptures its target protein in association with six other proteins, metaxins 1 and 2, SAM50, CHCHD3, CHCHD6 and DnaJC11, respectively. The first three are outer membrane proteins, CHCHD3 has been assigned to the matrix space, and the other two proteins have not been described in mitochondria previously. The functional role of this new complex is uncertain. However, a role in protein import related to maintenance of mitochondrial structure is suggested as mitofilin helps regulate mitochondrial morphology and at least four of the associated proteins (metaxins 1 and 2, SAM50 and CHCHD3) have been implicated in protein import, while DnaJC11 is a chaperone-like protein that may have a similar role.", "BACKGROUND: In 2016, the Magnetic Resonance Imaging in Multiple Sclerosis (MAGNIMS) network proposed modifications to the MRI criteria to define dissemination in space (DIS) and time (DIT) for the diagnosis of multiple sclerosis in patients with clinically isolated syndrome (CIS). Changes to the DIS definition included removal of the distinction between symptomatic and asymptomatic lesions, increasing the number of lesions needed to define periventricular involvement to three, combining cortical and juxtacortical lesions, and inclusion of optic nerve evaluation. For DIT, removal of the distinction between symptomatic and asymptomatic lesions was suggested. We compared the performance of the 2010 McDonald and 2016 MAGNIMS criteria for multiple sclerosis diagnosis in a large multicentre cohort of patients with CIS to provide evidence to guide revisions of multiple sclerosis diagnostic criteria.METHODS: Brain and spinal cord MRI and optic nerve assessments from patients with typical CIS suggestive of multiple sclerosis done less than 3 months from clinical onset in eight European multiple sclerosis centres were included in this retrospective study. Eligible patients were 16-60 years, and had a first CIS suggestive of CNS demyelination and typical of relapsing-remitting multiple sclerosis, a complete neurological examination, a baseline brain and spinal cord MRI scan obtained less than 3 months from clinical onset, and a follow-up brain scan obtained less than 12 months from CIS onset. We recorded occurrence of a second clinical attack (clinically definite multiple sclerosis) at months 36 and 60. We evaluated MRI criteria performance for DIS, DIT, and DIS plus DIT with a time-dependent receiver operating characteristic curve analysis.FINDINGS: Between June 16, 1995, and Jan 27, 2017, 571 patients with CIS were screened, of whom 368 met all study inclusion criteria. At the last evaluation (median 50·0 months [IQR 27·0-78·4]), 189 (51%) of 368 patients developed clinically definite multiple sclerosis. At 36 months, the two DIS criteria showed high sensitivity (2010 McDonald 0·91 [95% CI 0·85-0·94] and 2016 MAGNIMS 0·93 [0·88-0·96]), similar specificity (0·33 [0·25-0·42] and 0·32 [0·24-0·41]), and similar area under the curve values (AUC; 0·62 [0·57-0·67] and 0·63 [0·58-0·67]). Performance was not affected by inclusion of symptomatic lesions (sensitivity 0·92 [0·87-0·96], specificity 0·31 [0·23-0·40], AUC 0·62 [0·57-0·66]) or cortical lesions (sensitivity 0·92 [0·87-0·95], specificity 0·32 [0·24-0·41], AUC 0·62 [0·57-0·67]). Requirement of three periventricular lesions resulted in slightly lower sensitivity (0·85 [0·78-0·90], slightly higher specificity (0·40 [0·32-0·50], and similar AUC (0·63 [0·57-0·68]). Inclusion of optic nerve evaluation resulted in similar sensitivity (0·92 [0·87-0·96]), and slightly lower specificity (0·26 [0·18-0·34]) and AUC (0·59 [0·55-0·64]). AUC values were also similar for DIT (2010 McDonald 0·61 [0·55-0·67] and 2016 MAGNIMS 0·61 [0·55-0·66]) and DIS plus DIT (0·62 [0·56-0·67] and 0·64 [0·58-0·69]).INTERPRETATION: The 2016 MAGNIMS criteria showed similar accuracy to the 2010 McDonald criteria in predicting the development of clinically definite multiple sclerosis. Inclusion of symptomatic lesions is expected to simplify the clinical use of MRI criteria without reducing accuracy, and our findings suggest that needing three lesions to define periventricular involvement might slightly increase specificity, suggesting that these two factors could be considered during further revisions of multiple sclerosis diagnostic criteria.FUNDING: UK MS Society, National Institute for Health Research University College London Hospitals Biomedical Research Centre, Dutch MS Research Foundation.", "Author information:(1)Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, Toronto, ON, Canada.(2)Department of Pediatrics, Yokohama City University, School of Medicine, Yokohama, Kanagawa, Japan.(3)Division of Clinical Research Planning, Department of Development Strategy, Center for Clinical Research and Development, National Center for Child Health and Development, Tokyo, Japan.(4)Institute of Cellular Medicine, Newcastle University and Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK.(5)Department of Haematology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.(6)Division of Pediatric Hematology/Oncology/BMT, Nationwide Children's Hospital, Columbus, OH, US.(7)Division of Pediatric Hematology/Oncology, Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, US.(8)Assistance Publique Hôpitaux de Paris, Hôpital Necker Enfants Malades, Unité Médico-Chirurgicale de Cardiologie Congénitale et Pédiatrique, Centre de référence M3C, Paris, France.(9)University Paris Descartes, Paris, France.(10)Université Paris Descartes, Inserm Unité Mixte de Recherche (UMR)-S, Paris, France.(11)University Paris Descartes, INSERM UMR 1147, Paris, France.(12)Influenza and Emerging Respiratory Pathogens, BC Centre for Disease Control, Vancouver, BC, Canada.(13)Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.(14)Department of Medical Sciences, Clinical Pharmacology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.(15)Department of Pediatrics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.(16)Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.(17)Department of Cardiology, Kanagawa Children's Medical Center, Yokohama, Japan.(18)Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan.(19)Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.(20)Division of Pediatric Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.(21)Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, Toronto, ON, Canada. shinya.ito@sickkids.ca.", "Automated methods for NMR structure determination of proteins are continuously becoming more robust. However, current methods addressing larger, more complex targets rely on analyzing 6-10 complementary spectra, suggesting the need for alternative approaches. Here, we describe 4D-CHAINS/autoNOE-Rosetta, a complete pipeline for NOE-driven structure determination of medium- to larger-sized proteins. The 4D-CHAINS algorithm analyzes two 4D spectra recorded using a single, fully protonated protein sample in an iterative ansatz where common NOEs between different spin systems supplement conventional through-bond connectivities to establish assignments of sidechain and backbone resonances at high levels of completeness and with a minimum error rate. The 4D-CHAINS assignments are then used to guide automated assignment of long-range NOEs and structure refinement in autoNOE-Rosetta. Our results on four targets ranging in size from 15.5 to 27.3 kDa illustrate that the structures of proteins can be determined accurately and in an unsupervised manner in a matter of days.", "Darolutamide is a novel, nonsteroidal androgen receptor (AR)-signaling inhibitor. It serves as a second-generation antiandrogen and is currently indicated for the treatment of patients with nonmetastatic castration-resistant prostate cancer (nmCRPC). The product was approved by the United States Food and Drug Administration (FDA) in July 2019 and by the Japanese Ministry of Health, Labour and Welfare (MHLW) in January 2020 for the treatment of men with nmCRPC, and is awaiting approval in the E.U. for the same indication. This review will cover the background, preclinical development, safety, pharmacokinetics, pharmacodynamics and clinical studies that led to the approval of darolutamide. The key clinical data, ongoing trials and future directions for darolutamide are also discussed herein.", "Fibrosis is the result of the abnormal accumulation of the extracellular matrix and ineffective clearance of fibroplasia. CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) are immunosuppressive lymphocytes that are highly expressed in the fibrotic tissues and peripheral blood of patients with cirrhosis or hepatocellular carcinoma. The role of Tregs in the progression of liver fibrosis is not well understood. Our experiments reveal that abundant of Tregs was scattered around sites of fibroplasia. Conversely, the depletion of Tregs promoted the resolution of liver fibrosis. As a consequence of Tregs depletion, the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) was altered; mmp9 and timp1 were reduced, whereas mmp2 and mmp14 were enhanced. The mmp9/timp1, mmp13/timp1, and mmp14/timp2 ratios were significantly increased in association with fibrosis resolution. Kupffer cells (KCs) are the main source of MMP. We observed that when KCs were cocultured with Tregs, the Tregs were able to inhibit MMP expression of KCs even at a low ratio; and anti-transforming growth factor-β (TGF-β) significantly reversed the inhibition of Tregs on MMP. Meanwhile, we also found that after Tregs depletion, TGF-β levels decreased in the mice liver, unlike in fibrosis. Furthermore, double depletion of both KCs and Tregs did not cause fiber resolution in mice. Thus, our results demonstrate that the persistence of liver cirrhosis is maintained by increased Tregs in the sites of fibroplasia and the subsequent regulation of the MMP/TIMP balance and that the suppression of KC-mediated MMP expression contributed to the regulatory process.", "Mutations in MBTPS2 have been reported to cause a broad phenotypic spectrum of X-linked genodermatoses, including IFAP (ichthyosis follicularis; atrichia and photophobia) syndrome (OMIM 308205) with or without BRESHECK (brain anomalies, retardation of mentality and growth, ectodermal dysplasia, skeletal malformations, Hirschsprung disease, ear deformity and deafness, eye hypoplasia, cleft palate, cryptorchidism, and kidney dysplasia/hypoplasia) syndrome, keratosis follicularis spinulosa decalvans (KFSD; OMIM 308800) and an X-linked form of Olmsted syndrome. We report a recurrent intronic mutation in MBTPS2 (c.671-9T>G) in a Chinese patient with the typical triad of IFAP syndrome (i.e. ichthyosis, atrichia and photophobia), along with pachyonychia, palmoplantar and periorificial keratoderma, which were reminiscent of Olmsted syndrome. Interestingly, this mutation was previously reported in two cases of IFAP without keratoderma, which suggests clinical heterogeneicity of the same mutation in MBTPS2. The concomitance of Olmsted syndrome-like features in this patient with IFAP may challenge the existence of the X-linked form of Olmsted syndrome as an independent condition.", "The role of plant mitochondrial outer membrane proteins in the process of preprotein import was investigated, as some of the principal components characterized in yeast have been shown to be absent or evolutionarily distinct in plants. Three outer membrane proteins of Arabidopsis thaliana mitochondria were studied: TOM20 (translocase of the outer mitochondrial membrane), METAXIN, and mtOM64 (outer mitochondrial membrane protein of 64 kD). A single functional Arabidopsis TOM20 gene is sufficient to produce a normal multisubunit translocase of the outer membrane complex. Simultaneous inactivation of two of the three TOM20 genes changed the rate of import for some precursor proteins, revealing limited isoform subfunctionalization. Inactivation of all three TOM20 genes resulted in severely reduced rates of import for some but not all precursor proteins. The outer membrane protein METAXIN was characterized to play a role in the import of mitochondrial precursor proteins and likely plays a role in the assembly of beta-barrel proteins into the outer membrane. An outer mitochondrial membrane protein of 64 kD (mtOM64) with high sequence similarity to a chloroplast import receptor was shown to interact with a variety of precursor proteins. All three proteins have domains exposed to the cytosol and interacted with a variety of precursor proteins, as determined by pull-down and yeast two-hybrid interaction assays. Furthermore, inactivation of one resulted in protein abundance changes in the others, suggesting functional redundancy. Thus, it is proposed that all three components directly interact with precursor proteins to participate in early stages of mitochondrial protein import.", "Posttransplant lymphoproliferative disorder (PTLD)-associated Epstein-Barr virus (EBV)+ B cell lymphomas are serious complications of solid organ and bone marrow transplantation. The EBV protein LMP2a, a B cell receptor (BCR) mimic, provides survival signals to virally infected cells through Syk tyrosine kinase. Therefore, we explored whether Syk inhibition is a viable therapeutic strategy for EBV-associated PTLD. We have shown that R406, the active metabolite of the Syk inhibitor fostamatinib, induces apoptosis and cell cycle arrest while decreasing downstream phosphatidylinositol-3'-kinase (PI3K)/Akt signaling in EBV+ B cell lymphoma PTLD lines in vitro. However, Syk inhibition did not inhibit or delay the in vivo growth of solid tumors established from EBV-infected B cell lines. Instead, we observed tumor growth in adjacent inguinal lymph nodes exclusively in fostamatinib-treated animals. In contrast, direct inhibition of PI3K/Akt significantly reduced tumor burden in a xenogeneic mouse model of PTLD without evidence of tumor growth in adjacent inguinal lymph nodes. Taken together, our data indicate that Syk activates PI3K/Akt signaling which is required for survival of EBV+ B cell lymphomas. PI3K/Akt signaling may be a promising therapeutic target for PTLD, and other EBV-associated malignancies.", "Ehlers-Danlos syndrome type 4, the vascular type, is a rare, life-threatening inherited disorder of the connective tissue. Affected patients are at risk of arterial, bowel and uterine rupture during pregnancy. Generally, this syndrome remains undiagnosed until a sudden, acute presentation with organ rupture, and results in premature death, even if the patients survive the first and second major complications. An early diagnosis with genetic assays can help to plan the best treatment, which is often challenging due to the frailty of the arterial tissue. We report on a 28-year-old lady who presented with spontaneous rupture of a pseudoaneurysm of the posterior tibial artery.", "Lung cancer is the most common cancer worldwide and the most common cause of cancer-related death. Non-small-cell lung cancer comprises ~87% of newly diagnosed cases of lung cancer, and nearly one-third of these patients have stage III disease. Despite improvements in the treatment of stage IV lung cancer, particularly with the introduction and dissemination of checkpoint inhibitors, very little progress has been made in the treatment of stage III lung cancer. In this article, we discuss the general staging criteria and treatment options for stage III lung cancer. We review how concurrent radiation and chemotherapy can have immunomodulatory effects, supporting the rationale for incorporating immunotherapy into existing treatment paradigms. Finally, we discuss the results of the PACIFIC trial and implications for the treatment of stage III lung cancer. In the PACIFIC trial, adding durvalumab as a maintenance therapy following the completion of chemoradiotherapy improved progression-free survival in patients with locally advanced unresectable stage III lung cancer. On the strength of these results, durvalumab has been approved by the US Food and Drug Administration for use in this setting, representing the first advance in the treatment of stage III lung cancer in nearly a decade.", "The Rho GTPases organize the actin cytoskeleton and are involved in cancer metastasis. Previously, we demonstrated that RhoC GTPase was required for PC-3 prostate cancer cell invasion. Targeted down-regulation of RhoC led to sustained activation of Rac1 GTPase and morphological, molecular and phenotypic changes reminiscent of epithelial to mesenchymal transition. We also reported that Rac1 is required for PC-3 cell diapedesis across a bone marrow endothelial cell layer. In the current study, we queried whether Rac3 and RhoG GTPases also have a role in prostate tumor cell diapedesis. Using specific siRNAs we demonstrate roles for each protein in PC-3 and C4-2 cell adhesion and diapedesis. We have shown that the chemokine CCL2 induces tumor cell diapedesis via Rac1 activation. Here we find that RhoG partially contributes to CCL2-induced tumor cell diapedesis. We also find that Rac1 GTPase mediates tight binding of prostate cancer cells to bone marrow endothelial cells and promotes retraction of endothelial cells required for tumor cell diapedesis. Finally, Rac1 leads to β1 integrin activation, suggesting a mechanism that Rac1 can mediate tight binding with endothelial cells. Together, our data suggest that Rac1 GTPase is key mediator of prostate cancer cell-bone marrow endothelial cell interactions.", "We used EPR spectroscopy to probe directly the interaction between phospholamban (PLB) and its regulatory target, the sarcoplasmic reticulum Ca-ATPase (SERCA). Synthetic monomeric PLB was prepared with a single cytoplasmic cysteine at residue 11, which was then spin labeled. PLB was reconstituted into membranes in the presence or absence of SERCA, and spin label mobility and accessibility were measured. The spin label was quite rotationally mobile in the absence of SERCA, but became more restricted in the presence of SERCA. SERCA also decreased the dependence of spin label mobility on PLB concentration in the membrane, indicating that SERCA reduces PLB-PLB interactions. The spin label MTSSL, attached to Cys11 on PLB by a disulfide bond, was stable at position 11 in the absence of SERCA. In the presence of SERCA, the spin label was released and a covalent bond was formed between PLB and SERCA, indicating direct interaction of one or more SERCA cysteine residues with Cys11 on PLB. The accessibility of the PLB-bound spin label IPSL to paramagnetic agents, localized in different phases of the membrane, indicates that SERCA greatly reduces the level of interaction of the spin label with the membrane surface. We propose that the cytoplasmic domain of PLB associates with the lipid surface, and that association with SERCA induces a major conformational change in PLB in which the cytoplasmic domain is drawn away from the lipid surface by SERCA.", "Translocator protein (18 kDa, TSPO), previously known as the peripheral-type benzodiazepine receptor, is an outer mitochondrial membrane (OMM) protein necessary for cholesterol import and steroid production. We reconstituted the mitochondrial targeting and insertion of TSPO into the OMM to analyze the signals and mechanisms required for this process. Initial studies indicated the formation of a mitochondrial 66 kDa complex through Blue Native-PAGE analysis. The formation of this complex was found to be dependent on the presence of ATP and the cytosolic chaperone Hsp90. Through mutational analysis we identified two areas necessary for TSPO targeting, import, and function: amino acids 103-108 (Schellman motif), which provide the necessary structural orientation for import, and the cholesterol-binding C-terminus required for insertion. Although the translocase of the outer mitochondrial membrane (TOM) complex proteins Tom22 and Tom40 were present in the OMM, the TOM complex did not interact with TSPO. In search of proteins involved in TSPO import, we analyzed complexes known to interact with TSPO by mass spectrometry. Formation of the 66 kDa complex was found to be dependent on an identified protein, Metaxin 1, for formation and TSPO import. The level of import of TSPO into steroidogenic cell mitochondria was increased following treatment of the cells with cAMP. These findings suggest that the initial targeting of TSPO to mitochondria is dependent upon the presence of cytosolic chaperones interacting with the import receptor Tom70. The C-terminus plays an important role in targeting TSPO to mitochondria, whereas its import into the OMM is dependent upon the presence of the Schellman motif. Final integration of TSPO into the OMM occurs via its interaction with Metaxin 1. Import of TSPO into steroidogenic cell mitochondria is regulated by cAMP.", "Pancreatic cancer is almost invariably associated with mutations in the KRAS gene, most commonly KRASG12D, that result in a dominant-active form of the KRAS GTPase. However, how KRAS mutations promote pancreatic carcinogenesis is not fully understood, and whether oncogenic KRAS is required for the maintenance of pancreatic cancer has not been established. To address these questions, we generated two mouse models of pancreatic tumorigenesis: mice transgenic for inducible KrasG12D, which allows for inducible, pancreas-specific, and reversible expression of the oncogenic KrasG12D, with or without inactivation of one allele of the tumor suppressor gene p53. Here, we report that, early in tumorigenesis, induction of oncogenic KrasG12D reversibly altered normal epithelial differentiation following tissue damage, leading to precancerous lesions. Inactivation of KrasG12D in established precursor lesions and during progression to cancer led to regression of the lesions, indicating that KrasG12D was required for tumor cell survival. Strikingly, during all stages of carcinogenesis, KrasG12D upregulated Hedgehog signaling, inflammatory pathways, and several pathways known to mediate paracrine interactions between epithelial cells and their surrounding microenvironment, thus promoting formation and maintenance of the fibroinflammatory stroma that plays a pivotal role in pancreatic cancer. Our data establish that epithelial KrasG12D influences multiple cell types to drive pancreatic tumorigenesis and is essential for tumor maintenance. They also strongly support the notion that inhibiting KrasG12D, or its downstream effectors, could provide a new approach for the treatment of pancreatic cancer.", "In December 2013 Bexsero® became available in Germany for vaccination against serogroup B meningococci (MenB). In August 2015 the German Standing Committee on Vaccination (STIKO) endorsed a recommendation for use of this vaccine in persons at increased risk of invasive meningococcal disease (IMD). This background paper summarizes the evidence underlying the recommendation. Bexsero® is based on surface protein antigens expressed by about 80% of circulating serogroup B meningococci in Germany. The paper reviews available data on immunogenicity and safety of Bexsero® in healthy children and adolescents; data in persons with underlying illness and on the effectiveness in preventing clinical outcomes are thus far unavailable.STIKO recommends MenB vaccination for the following persons based on an individual risk assessment: (1) Persons with congenital or acquired immune deficiency or suppression. Among these, persons with terminal complement defects and properdin deficiency, including those under eculizumab therapy, are at highest risk with reported invasive meningococcal disease (IMD) incidences up 10,000-fold higher than in the general population. Persons with asplenia were estimated to have a ~ 20-30-fold increased risk of IMD, while the risk in individuals with other immune defects such as HIV infection or hypogammaglobulinaemia was estimated at no more than 5-10-fold higher than the background risk. (2) Laboratory staff with a risk of exposure to N. meningitidis aerosols, for whom an up to 271-fold increased risk for IMD has been reported. (3) Unvaccinated household (-like) contacts of a MenB IMD index case, who have a roughly 100-200-fold increased IMD risk in the year after the contact despite chemoprophylaxis. Because the risk is highest in the first 3 months and full protective immunity requires more than one dose (particularly in infants and toddlers), MenB vaccine should be administered as soon as possible following identification of the serogroup of the index case.", "Cereblon (CRBN) is a substrate recognition protein in the E3-ligase ubiquitin complex. The binding target of CRBN varies according to tissues and cells, and the protein regulates various biological functions by regulating tissue-specific targets. As new endogenous targets of CRBN have been identified over the past decade, the physiological and pathological functions of CRBN and its potential as a therapeutic target in various diseases have greatly expanded. For this purpose, in this review article, we introduce the basic principle of the ubiquitin-proteasome system, the regulation of physiological/pathological functions related to the endogenous substrate of CRBN, and the discovery of immunomodulatory imide drug-mediated neo-substrates of CRBN. In addition, the development of CRBN-based proteolysis-targeting chimeras, which has been actively researched recently, and strategies for developing therapeutic agents using them are introduced. These recent updates on CRBN will be useful in the establishment of strategies for disease treatment and utilization of CRBNs in biomedical engineering and clinical medicine.", "Melanoma is a frequent and therapy-resistant human disease. Malignant melanocytes modulate their microenvironment in order to penetrate the dermal/epidermal junction and eventually invade the dermis. The small leucine-rich proteoglycans (SLRPs) constitute important constituents of the dermis extracellular matrix (ECM), participating in both the structural and the functional organization of the skin. The role of a keratan sulphate SLRP lumican, has recently been investigated in the growth and metastasis of several cancers. In this study, the expression of lumican was studied in two human melanoma cell lines (WM9, M5) as well as in normal neonatal human melanocytes (HEMN) using real time PCR, western blotting with antibodies against the protein core and keratan sulfate, and treatments with specific enzymes. Both human metastatic melanoma cell lines were found to express lumican mRNA and effectively secrete lumican in a proteoglycan form, characterized to be substituted mostly with keratan sulfate chains. Lumican mRNA was not detected in normal melanocytes. This is the first time that the synthesis and secretion of lumican in human melanoma cell lines is reported. The role of this proteoglycan in the development and progression of malignant melanoma has to be further investigated.", "We studied 36 drop seizures in 5 patients with myoclonic astatic epilepsy of early childhood (MAEE) with simultaneous split-screen video recording and polygraph. Sixteen were falling attacks and 20 were either less severe attacks exhibiting only deep head nodding or seizures equivalent to drop attacks in terms of ictal pattern but recorded in the supine position. All seizures except those that occurred in patients in the supine position showed sudden momentary head dropping or collapse of the whole body downward. Recovery to the preictal position was observed in 0.3-1 s. As a result of carefully repeated observations, the 36 seizures were classified as myoclonic flexor type in 9, myoclonic atonic type in 2, and atonic type, with and without transient preceding symptoms in the remaining 25. The MF seizure was characterized by sudden forward flexion of the head and trunk as well as both arms, which caused the patient to fall. In the myoclonic atonic seizure, patients showed brief myoclonic flexor spasms, immediately followed by atonic falling. The AT seizure showed abrupt atonic falling, with and without transient preceding facial expression change and/or twitching of extremities. The ictal EEGs of all 36 seizures exhibited generalized bilaterally synchronous single or multiple spike(s) and wave discharges. Atonic drop attacks appear to be a common cause of ictal epileptic falling in MAEE.", "Author information:(1)Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Langone Medical Center, New York, NY 10016, USA; Helen L. and Martin S. Kimmel Center for Biology and Medicine, NYU Langone Medical Center, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA; Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.(2)Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Langone Medical Center, New York, NY 10016, USA; Helen L. and Martin S. Kimmel Center for Biology and Medicine, NYU Langone Medical Center, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA.(3)Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.(4)Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Langone Medical Center, New York, NY 10016, USA; Helen L. and Martin S. Kimmel Center for Biology and Medicine, NYU Langone Medical Center, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY 10016, USA; Department of Biology, New York University, New York, NY 10003, USA.(5)Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Langone Medical Center, New York, NY 10016, USA; Helen L. and Martin S. Kimmel Center for Biology and Medicine, NYU Langone Medical Center, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA; Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA. Electronic address: mas4011@med.cornell.edu.", "A recently described protein, metaxin 1, serves as a component of a preprotein import complex in the outer membrane of the mammalian mitochondrion. A yeast two-hybrid screen with metaxin 1 as bait has now identified a novel protein, which we have termed metaxin 2, as a metaxin 1-binding protein. Metaxin 2 shares 29% identity with metaxin 1 at the amino acid level, but metaxin 2, unlike metaxin 1, lacks a C-terminal mitochondrial outer membrane signal-anchor domain. Two C. elegans hypothetical proteins, CelZC97.1 and CelF39B2.i, share high sequence similarity with metaxin 2 and metaxin 1, respectively, and likely represent the C. elegans orthologs. Affinity-purified antibodies against metaxin 2 were prepared against the recombinant protein produced in E. coli and were used to analyze the subcellular distribution of metaxin 2. In subcellular fractions of mouse liver, a 29 kD immunoreactive protein, consistent in size with the predicted translation product of metaxin 2 cDNA, was found solely in mitochondria. Alkali extraction of mitochondria indicated that metaxin 2 is peripherally associated with mitochondrial membranes. Metaxin 2 in intact mitochondria was susceptible to digestion with proteinase K, indicating that metaxin 2 is located on the cytosolic face of the mitochondrial outer membrane. Finally, baculoviruses encoding a His6-tagged metaxin 2 and an untagged metaxin 1 lacking its C-terminal transmembrane domain were produced and used separately or in combination to infect Sf21 insect cells. Metaxin 1 bound to a Ni2+-chelate affinity column only in the presence of metaxin 2, indicating that metaxin 1 and metaxin 2 interact when overexpressed in insect cells. These results suggest that metaxin 2 is bound to the cytosolic face of the mitochondrial outer membrane by means of its interaction with membrane-bound metaxin 1, and that this complex may play a role in protein import into mammalian mitochondria.", "Membranes determine two-dimensional and three-dimensional biochemical reaction spaces in living systems. Defining size and shape of surfaces and volumes encompassed by membrane is of key importance for cellular metabolism and homeostasis, and the maintenance and controlled transformation of membrane shapes are coordinated by a large number of different protein assemblies. The orchestration of spatial elements over distances orders of magnitudes larger than protein molecules, as required for cell division, is a particularly challenging task, requiring large-scale ordered protein filaments and networks. The structure and function of these networks, particularly of cytoskeletal elements, have been characterized extensively in cells and reconstituted systems. However, their co-reconstitution with membranes from the bottom-up under defined conditions, to elucidate their mode of action in detail, is still a relatively new field of research. In this short review, we discuss recent approaches and achievements with regard to the study of cytoskeletal protein assemblies on model membranes, with specific focus on contractile elements as those based on the bacterial division FtsZ protein and eukaryotic actomyosin structures.", "Toxoplasma gondii was discovered by scientists working in North Africa and Brazil around 100 years ago. The parasite has since been found to be capable of infecting all warm-blooded animals including humans making it one of the most successful parasitic organisms worldwide. The pathogenic potential of T. gondii was recognized in the 1920s and 1930s, in congenitally infected children presenting with the classic triad of symptoms, namely hydrocephalus, retinochoroiditis and encephalitis. In addition, around the same time T. gondii parasites were found to be associated with severe intraocular inflammation. In the 1980s, T. gondii emerged as a major cause of death in patients with acquired immunodeficiency syndrome, illustrating the importance of the immune system in controlling T. gondii infection. T. gondii was reported as a major cause of abortion in sheep in New Zealand in the 1950s, which raised questions about potential new transmission routes for the parasite. The discovery of the cat as the definitive host in the 1960s was a very important finding as it helped to complete our understanding of the parasite's life cycle, and the oocyst stage of T. gondii shed in the faeces of infected cats was found to be an important source of infection for many intermediate hosts and helped to explain infection in herbivorous animals and people with a vegetarian diet. In addition, this stage of the parasite was very robust and could survive in the environment, depending on the climatic conditions, for up to 12-18 months. Knowledge of the parasite's life cycle, transmission routes, risk groups and host immune responses has helped in the development of strategies to control the disease, reduce transmission of the parasite and limit environmental contamination.", "Thrombospondin 3 (TSP3) is a secreted, pentameric glycoprotein whose regulation of expression and function are not well understood. Mouse Thbs3 is located just downstream from the divergently transcribed metaxin gene (Mtx), which encodes an outer mitochondrial membrane import protein. Although Thbs3 and Mtx share a common promoter region, previous studies showed that Mtx is regulated by proximal elements that had little effect on Thbs3 expression. In this study, transient transfection of rat chondrosarcoma cells and NIH-3T3 fibroblasts demonstrated that Thbs3 is regulated in a cell type-specific manner by a position- and orientation-independent far upstream enhancer located within intron 6 of Mtx. Despite its greater proximity to the transcription start site of Mtx, the Thbs3 enhancer did not have a significant effect on Mtx expression. Two DNA-protein complexes, which were both required for activity, were identified when nuclear extracts were assayed with a probe containing the enhancer sequence. The protein in one of these complexes was identified as Sp1, while the other DNA-protein complex remains uncharacterized. A 6-kilobase pair promoter containing the enhancer was able to direct specific expression of the E. coli lacZ gene in transgenic mice, whereas a 2-kilobase pair promoter that lacked the enhancer was inactive. Thus, despite their close proximity, the genes of the Mtx/Thbs3 gene cluster are regulated independently." ]
1,642
[ "The new information presented in Digestive Disease Week has allowed us to speculate on the future of inflammatory bowel disease. Manipulation of diet and the microbioma will probably play an increasingly important role in the treatment of this disease and, in the long term, in its prevention. Biological agents will probably be used earlier and more widely; new information on levels of biological agents, mucosal healing and new comparative studies will also allow these agents to be used in a more precise and personalized way. In addition to infliximab, adalimumab, natalizumab and certolizumab, other biological agents will be employed; among the first of these to be used will be ustekinumab, golimumab and vedolizumab. In the near future, biological agents will be used as frequently in ulcerative colitis as in Crohn's disease. New healthcare models will be developed that will progressively include greater participation among patients and nurses. The ability to predict new diagnostic and prognostic models will allow decisions to be more individualized.", "Dabigatran, rivaroxaban, and apixaban are the new oral anticoagulants (NOAC) which have been investigated in patients with atrial fibrillation (AF) for primary and secondary prevention of stroke and thromboembolism. In these trials NOAC had a similar efficacy and safety profile compared to traditional vitamin-K-antagonists such as warfarin. We advise caution in the use of NOAC in patients with stroke or cerebral hemorrhage because of the following reasons: 1) Patients with cerebral bleeding were excluded from the trials. 2) Stroke within 14 days and severe stroke within 6 months before screening were exclusion criteria in the trials investigating dabigatran and rivaroxaban. 3) There is no antidote for reversal and no reliable laboratory monitoring of the anticoagulant effect for emergency situations. 4) NOAC are either substrates of the P-glycoprotein (P-gp) or are metabolized by the cytochrome P450 (CYP) system, or both. Drug-drug interactions between NOAC and P-gp and CYP-affecting drugs are largely unknown. 5) Long-term effects of thrombin generation inhibition on the occurrence of infections, malignancies, dementia, and other diseases are unknown. Based on these considerations it is our opinion that studies of NOAC in patients with stroke compared with other prevention strategies, as well as more post marketing surveillance data, are required.", "Transcription-coupled repair (TCR) is a subpathway of nucleotide excision repair (NER) that acts specifically on lesions in the transcribed strand of expressed genes. First reported in mammalian cells, TCR was then documented in Escherichia coli. In this organism, an RNA polymerase arrested at a lesion is displaced by the transcription repair coupling factor, Mfd. This protein recruits the NER lesion-recognition factor UvrA, and then dissociates from the DNA. UvrA binds UvrB, and the assembled UvrAB* complex initiates repair. In mutants lacking active Mfd, TCR is absent. A gene transcribed by the bacteriophage T7 RNA polymerase in E. coli also requires Mfd for TCR. The CSB protein (missing or defective in cells of patients with Cockayne syndrome, complementation group B) is essential for TCR in humans. CSB and its homologs in higher eukaryotes are likely functional equivalents of Mfd.", "O6-Alkylguanine DNA-alkyltransferase (ATase) repairs toxic, mutagenic and carcinogenic O6-alkylguanine (O6-alkG) lesions in DNA by a highly conserved reaction involving the stoichiometric transfer of the alkyl group to the active centre cysteine residue of the ATase protein. In the Escherichia coli Ada ATase, which is effectively refactory to inhibition by O6-benzylguanine (O6-BzG), the residue corresponding to glycine-160 (G160) for the mammalian proteins of this class is replaced by a tryptophan (W). Therefore, to investigate the potential role of the G160 of the human ATase (hAT) protein in determining sensitivity to O6-BzG, site-directed mutagenesis was used to produce a mutant protein (hATG160W) substituted at position 160 with a W residue. The hATG160W mutant was found to be stably expressed and was 3- and 5-fold more sensitive than hAT to inactivation by O6-BzG, in the absence and presence of additional calf-thymus DNA respectively. A similar, DNA dependent increased sensitivity of the hATG160W mutant relative to wild-type was also found for O6-methylguanine mediated inactivation. The potential role of the W160 residue in stabilising the binding of the O6-alkG to the protein is discussed in terms of a homology model of the structure of hAT. The region occupied by G/W-160 forms the site of a putative hinge that could be important in the conformational change that is likely to occur on DNA binding. Three sequence motifs have been identified in this region which may influence O6-BzG access to the active site; YSGG or YSGGG in mammals (YAGG in E. coli Ogt, YAGS in Dat from Bacillus subtilis), YRWG in E. coli Ada and Salmonella typhimurium (but YKWS in Saccharomyces cerevisiae) or YRGGF in AdaB from B. Subtilis. Finally,conformational and stereoelectronic analysis of the putative transition states for the alkyl transfer from a series of inactivators of hAT, including O6-BzG was undertaken to rationalise the unexpected weak inhibition shown by the alpha-pi-unsaturated electrophiles.", "The molecular determinants that direct gene expression to the ventricles of the heart are for the most part unknown. Additionally, little data is available on how the anterior/posterior axis of the heart tube is determined and whether the left and right atrial and ventricular chambers are assigned as part of this process. Utilizing myosin light chain-2 ventricular promoter/beta-galactosidase reporter transgenes, we have determined the minimal cis-acting sequences required for ventricular-specific gene expression. In multiple independent transgenic mouse lines, we found that both a 250 base pair myosin light chain-2 ventricular promoter fragment, as well as a dimerized 28 bp sub-element (HF-1) containing binding sites for HF1a and HF1b/MEF2 factors, directed ventricular-specific reporter expression from as early as the endogenous gene, at day 7.5-8.0 post coitum. While the endogenous gene is expressed uniformly throughout both ventricles, the transgenes were expressed in a right ventricular/conotruncal dominant fashion, suggesting that they contain only a subset of the elements which respond to positional information in the developing heart tube. Expression of the transgene was cell autonomous and its temporospatial characteristics not affected by mouse strain/methylation state of the genome. To determine whether ventricular-specific expression of the transgene was dependent upon regulatory genes required for correct ventricular differentiation, the 250 base pair transgene was bred into both retinoid X receptoralpha and Nkx2-5 null backgrounds. The transgene was expressed in both mutant backgrounds, despite the absence of endogenous myosin light chain-2 ventricular transcript in Nkx2-5 null embryos. Ventricular specification, as judged by transgene expression, appeared to occur normally in both mutants. Thus, the HF-1 element, directs chamber-specific transcription of a transgene reporter independently of retinoid X receptoralpha and Nkx2-5, and defines a minimal combinatorial pathway for ventricular chamber gene expression. The patterned expression of this transgene may provide a model system in which to investigate the cues that dictate anterior-posterior (right ventricle/left ventricle) gradients during mammalian heart development.", "The recognition by Escherichia coli Uvr nucleotide excision repair proteins of a variety of lesions with diverse chemical structures and the presence of helicase activity in the UvrAB complex which can displace short oligonucleotides annealed to single-stranded DNA led to a model in which this activity moves UvrAB along undamaged DNA to damaged sites where the lesion blocks further translocation and the protein-DNA pre-incision complex is formed. To evaluate this mechanism for damage recognition, we constructed substrates with oligonucleotides of different lengths annealed to single-stranded DNA circles and placed a single 2-(acetylamino)fluorene (AAF) lesion either on the oligonucleotide or on the circle. For the substrates with no lesion, the UvrAB complex effectively displaced a 22-mer but not a 27-mer or longer fragments. The presence of AAF on the oligonucleotide significantly increased the release of the 27-mer but oligomers of 30 or longer were not separated. Placing the lesion on the circular strand did not block the release of the fragments. Instead, the releasing activity of UvrAB was stimulated and also depended on the length of the annealed oligonucleotide. These observations do not agree with the predictions of a damage recognition mechanism that depends on helicase-driven translocation. Most likely, the strand-separating activity of UvrAB is a consequence of local changes occurring during the formation of a DNA-protein pre-incision complex at the damaged site and is not due to translocation of the protein along undamaged DNA to locate a lesion.", "BACKGROUND: Autosomal-recessive hereditary spastic paraplegias (AR-HSP) consist of a genetically diverse group of neurodegenerative diseases characterised by pyramidal tracts dysfunction. The causative genes for many types of AR-HSP remain elusive. We tried to identify the gene mutation for AR-HSP with cerebellar ataxia and neuropathy.METHODS: This study included two patients in a Japanese family with their parents who are first cousins. Neurological examination and gene analysis were conducted in the two patients and two normal family members. We undertook genome-wide linkage analysis employing single nucleotide polymorphism arrays using the two patients' DNAs and exome sequencing using one patient's sample.RESULTS: We detected a homozygous missense mutation (c.4189T>G, p.F1397V) in the lysosomal trafficking regulator (LYST) gene, which is described as the causative gene for Chédiak-Higashi syndrome (CHS). CHS is a rare autosomal-recessive syndrome characterised by hypopigmentation, severe immune deficiency, a bleeding tendency and progressive neurological dysfunction. This mutation was co-segregated with the disease in the family and was located at well-conserved amino acid. This LYST mutation was not found in 200 Japanese control DNAs. Microscopic observation of peripheral blood in the two patients disclosed large peroxidase-positive granules in both patients' granulocytes, although they had no symptoms of immune deficiency or bleeding tendency.CONCLUSIONS: We diagnosed these patients as having adult CHS presenting spastic paraplegia with cerebellar ataxia and neuropathy. The clinical spectrum of CHS is broader than previously recognised. Adult CHS must be considered in the differential diagnosis of AR-HSP.", "BACKGROUND: Calcific uraemic arteriolopathy (CUA, calciphylaxis) is a rare disease predominantly in dialysis patients and associated with high mortality. Painful skin ulcerations and calcification of cutaneous arterioles characterize calciphylaxis.METHODS: We established an observational, Internet-based registry allowing online notification for all German CUA cases. The registry recorded data about patient characteristics, biochemistry and therapies. Blood samples were stored in a central biobank.RESULTS: Between 2006 and 2015, 253 CUA patients were recorded: median age 70 [interquartile range (IQR) 61-76] years, 60% females and 86% ( n = 207) dialysis patients, translating into an estimated annual incidence rate of 0.04% in German dialysis patients. Fifty-two per cent received vitamin K antagonists (VKAs) prior to CUA. Skin lesions were localized in 71% on the legs or gluteal region. In dialysis CUA patients median total serum calcium was 2.20 (IQR 2.06-2.37) mmol/L, phosphorus 1.67 (IQR 1.35-2.03) mmol/L, intact parathyroid hormone 147 (IQR 72-276) pg/mL and fetuin-A 0.21 (IQR 0.16-0.26) g/L (normal range 0.35-0.95). Median sclerostin, osteoprotegerin, TRAP5b, bone-specific alkaline phosphatase and c-terminal FGF23 levels were all elevated. The most frequently recorded therapeutic procedures in dialysis CUA patients were as follows: wound debridement (29% of cases), stopping VKA (25%), lowering calcium supply (24%), sodium thiosulphate (22%), application of vitamin K (18%), increase of dialysis duration/frequency (17%) and stoping active vitamin D (16%).CONCLUSIONS: Approximately 50% of CUA patients used VKA. Our data suggest that uncontrolled hyperparathyroidism is not the key determinant of calciphylaxis. Therapeutic strategies were heterogeneous. The experience of the German registry will help substantially to initiate a large-scale multinational CUA registry.", "TAS-102 is a novel oral nucleoside antitumor agent consisting of trifluridine and tipiracil hydrochloride at a molar ratio of 1:0.5. TAS-102 was approved in Japan in March 2014 for the treatment of patients with unresectable, advanced or recurrent colorectal cancer that is refractory to standard therapies. In the present study, enhancement of the therapeutic efficacy using a combination therapy of TAS-102 and irinotecan hydrochloride (CPT-11) was evaluated in a colorectal and gastric cancer xenograft-bearing nude mouse model. TAS-102 was orally administered twice a day from day 1 to 14, and CPT-11 was administered intravenously on days 1 and 8. The growth-inhibitory activity was evaluated based on the tumor volume and the growth-delay period, which was estimated based on the period required to reach a tumor volume that was five-times greater than the initial volume (RTV5). The tumor growth-inhibitory activity and the RTV5 of the group receiving TAS-102 with CPT-11 were significantly superior to those of both agents as monotherapy for mice with KM12C, KM12C/5-FU, DLD-1/5-FU, and SC-2 xenografts (p<0.01). No significant decrease in body weight was observed. The present pre-clinical findings indicated that the combination of TAS-102 and CPT-11 is a promising treatment option for colorectal or gastric cancer, not only for chemo-naïve tumors, but also for recurrent tumors after 5-fluorouracil (5-FU)-based chemotherapy.", "Clostridium is a large genus of obligate anaerobes belonging to the Firmicutes phylum of bacteria, most of which have a Gram-positive cell wall structure. The genus includes significant human and animal pathogens, causative of potentially deadly diseases such as tetanus and botulism. Despite their relevance and many studies suggesting that they are not a monophyletic group, the taxonomy of the group has largely been neglected. Currently, species belonging to the genus are placed in the unnatural order defined as Clostridiales, which includes the class Clostridia. Here, we used genomic data from 779 strains to study the taxonomy and evolution of the group. This analysis allowed us to 1) confirm that the group is composed of more than one genus, 2) detect major differences between pathogens classified as a single species within the group of authentic Clostridium spp. (sensu stricto), 3) identify inconsistencies between taxonomy and toxin evolution that reflect on the pervasive misclassification of strains, and 4) identify differential traits within central metabolism of members of what has been defined earlier and confirmed by us as cluster I. Our analysis shows that the current taxonomic classification of Clostridium species hinders the prediction of functions and traits, suggests a new classification for this fascinating class of bacteria, and highlights the importance of phylogenomics for taxonomic studies.", "RNA expression profiles produced by next-generation sequencing (NGS) technology (RNA-seq) allow comprehensive investigation of transcribed sequences within a cell or tissue. RNA-seq is rapidly becoming more cost-effective for transcriptome profiling. However, its usage will expand dramatically if one starts with low amount of RNA and obtains transcript directionality during the analysis. Here, we describe a detailed protocol for the creation of a directional RNA-seq library from 100 ng of starting total RNA.", "The dual-incision nature of the reaction of UV-irradiated DNA catalyzed by the UvrABC complex potentially leads to excision of a damaged fragment. However, neither fragment release under nondenaturing conditions nor the UvrBC proteins are turned over. The addition of the UvrD protein to the incised DNA-UvrBC complex results in excision of the incised damaged strand and in the turnover of the UvrC protein. In an effort to better understand the involvement of UvrD in the excision step, immunoprecipitation was used to detect interacting proteins with UvrD in the DNA repair. In this communication, it is shown that UvrA and UvrB are precipitated with UvrD in solution but the UvrAB complex is not. In the incision complex, UvrB could be precipitated and the preincubation of UvrD with UvrB revealed an inhibitory effect on the turnover of the incision complex. These data imply that UvrB in the incision complex seems to recruit UvrD to the 3' incised site of the incised strand by protein-protein interaction and to allow initiation of unwinding by UvrD from the resulting nick in a 3' to 5' direction.", "Transcription when coupled to nucleotide excision repair specifies the location in active genes where preferential DNA repair is to take place. During DNA damage-induced recruitment of RNA polymerase (RNAP), there is a physical association of the beta subunit of Escherichia coli RNAP and the UvrA component of the repair apparatus (G. C. Lin and L. Grossman, submitted for publication). This molecular affinity is reflected in the ability of the RNAP to increase, in a promoter-dependent manner, DNA supercoiling by the UvrAB complex. In the presence of the RNAP, the UvrAB complex is able to bind to promoter regions and to translocate in a 5' to 3' direction along the non-transcribed strand. As a consequence of this helicase-catalyzed translocation, preferential incision of DNA damaged sites occurs downstream on the transcribed strand. Because of the helicase directionality, the initial binding of the UvrAB complex to the transcribed strand would inevitably lead to its collision with the RNAP. These results imply that the RNAP-induced DNA structure in the vicinity of the transcription start site signals a landing or entry site for the UvrAB complex on DNA.", "The TWIST gene maps to 7p21 and mutations in the gene have been reported in the Saethre-Chotzen form of craniosynostosis. The position of the Saethre-Chotzen gene has previously been refined by FISH analysis of four patients carrying balanced translocations involving 7p21 which suggested that it was located between D7S488 and D7S503. We report here that the breakpoints in four translocation patients do not interrupt the coding sequence of the TWIST gene and thus most likely act through a positional effect. Twelve Saethre-Chotzen cases were found to have TWIST mutations. Four of these families had been used as part of the linkage study of the Saethre-Chotzen locus. The mutations detected included missense and nonsense mutations and three cases of a 21 bp duplication. Although phenotypically diagnosed as having Saethre-Chotzen syndrome, three families were found to have a pro250arg mutation of FGFR3.", "OBJECTIVE: High neuroticism has been associated with a greater risk of dementia, and an active/socially integrated lifestyle with a lower risk of dementia. The aim of the current study was to explore the separate and combined effects of neuroticism and extraversion on the risk of dementia, and to examine whether lifestyle factors may modify this association.METHODS: A population-based cohort of 506 older people with no dementia from the Kungsholmen Project, Stockholm, Sweden, was followed up for an average of 6 years. Personality traits were assessed using the Eysenck Personality Inventory. Dementia was diagnosed by specialists according to DSM-III-R criteria.RESULTS: Neither high neuroticism nor low extraversion alone was related to significantly higher incidence of dementia. However, among people with an inactive or socially isolated lifestyle, low neuroticism was associated with a decreased dementia risk (hazard ratio [HR] = 0.51, 95% confidence interval [CI] = 0.27-0.96). When compared to persons with high neuroticism and high extraversion, a decreased risk of dementia was detected in individuals with low neuroticism and high extraversion (HR = 0.51, 95% CI = 0.28-0.94), but not among persons with low neuroticism and low extraversion (HR = 0.95, 95% CI = 0.57-1.60), nor high neuroticism and low extraversion (HR = 0.97 95% CI = 0.57-1.65). Stratified analysis by lifestyle showed that the inverse association of low neuroticism and high extraversion in combination was present only among the inactive or socially isolated persons.CONCLUSION: Low neuroticism in combination with high extraversion is the personality trait associated with the lowest dementia risk; however, among socially isolated individuals even low neuroticism alone seems to decrease dementia risk.", "Glutamate is the major neurotransmitter of the brain, whose extracellular levels are tightly controlled by glutamate transporters. Five glutamate transporters in the human brain (EAAT1-5) are present on both astroglia and neurons. We characterize the profile of three different human astroglial progenitors in vitro: human glial restricted precursors (HGRP), human astrocyte precursors (HAPC), and early-differentiated astrocytes. EAAT 1, EAAT3, and EAAT4 are all expressed in GRPs with a subsequent upregulation of EAAT1 following differentiation of GRPs into GRP-derived astrocytes in the presence of bone morphogenic protein (BMP-4). This corresponds to a significant increase in the glutamate transport capacity of these cells. EAAT2, the transporter responsible for the bulk of glutamate transport in the adult brain, is not expressed as a full-length protein, nor does it appear to have functional significance (as determined by the EAAT2 inhibitor dihydrokainate) in these precursors. A splice variant of EAAT2, termed EAAT2b, does appear to be present in low levels, however. EAAT3 and EAAT4 expression is reduced as glial maturation progresses both in astrocyte precursors and early-differentiated astrocytes and is consistent with their role in adult tissues as primarily neuronal glutamate transporters. These human glial precursors offer several advantages as tools for understanding glial biology because they can be passaged extensively in the presence of mitogens, afford the potential to study the temporal changes in glutamate transporter expression in a tightly controlled fashion, and are cultured in the absence of neuronal coculture, allowing for the independent study of astroglial biology.", "Neurotensin (NT), an intestinal peptide secreted from N cells in the small bowel, regulates a variety of physiological functions of the gastrointestinal tract, including secretion, gut motility, and intestinal growth. The class IA phosphatidylinositol 3-kinase (PI3K) family, which comprised of p110 catalytic (α, β and δ) and p85 regulatory subunits, has been implicated in the regulation of hormone secretion from endocrine cells. However, the underlying mechanisms remain poorly understood. In particular, the role of PI3K in intestinal peptide secretion is not known. Here, we show that PI3K catalytic subunit, p110α, negatively regulates NT secretion in vitro and in vivo. We demonstrate that inhibition of p110α, but not p110β, induces NT release in BON, a human endocrine cell line, which expresses NT mRNA and produces NT peptide in a manner analogous to N cells, and QGP-1, a pancreatic endocrine cell line that produces NT peptide. In contrast, overexpression of p110α decreases NT secretion. Consistently, p110α-inhibition increases plasma NT levels in mice. To further delineate the mechanisms contributing to this effect, we demonstrate that inhibition of p110α increases NT granule trafficking by up-regulating α-tubulin acetylation; NT secretion is prevented by overexpression of HDAC6, an α-tubulin deacetylase. Moreover, ras-related protein Rab27A (a small G protein) and kinase D-interacting substrate of 220 kDa (Kidins220), which are associated with NT granules, play a negative and positive role, respectively, in p110α-inhibition-induced NT secretion. Our findings identify the critical role and novel mechanisms for the PI3K signaling pathway in the control of intestinal hormone granule transport and release.", "We have determined the structure of Pvu II methyltransferase (M. Pvu II) complexed with S -adenosyl-L-methionine (AdoMet) by multiwavelength anomalous diffraction, using a crystal of the selenomethionine-substituted protein. M. Pvu II catalyzes transfer of the methyl group from AdoMet to the exocyclic amino (N4) nitrogen of the central cytosine in its recognition sequence 5'-CAGCTG-3'. The protein is dominated by an open alpha/beta-sheet structure with a prominent V-shaped cleft: AdoMet and catalytic amino acids are located at the bottom of this cleft. The size and the basic nature of the cleft are consistent with duplex DNA binding. The target (methylatable) cytosine, if flipped out of the double helical DNA as seen for DNA methyltransferases that generate 5-methylcytosine, would fit into the concave active site next to the AdoMet. This M. Pvu IIalpha/beta-sheet structure is very similar to those of M. Hha I (a cytosine C5 methyltransferase) and M. Taq I (an adenine N6 methyltransferase), consistent with a model predicting that DNA methyltransferases share a common structural fold while having the major functional regions permuted into three distinct linear orders. The main feature of the common fold is a seven-stranded beta-sheet (6 7 5 4 1 2 3) formed by five parallel beta-strands and an antiparallel beta-hairpin. The beta-sheet is flanked by six parallel alpha-helices, three on each side. The AdoMet binding site is located at the C-terminal ends of strands beta1 and beta2 and the active site is at the C-terminal ends of strands beta4 and beta5 and the N-terminal end of strand beta7. The AdoMet-protein interactions are almost identical among M. Pvu II, M. Hha I and M. Taq I, as well as in an RNA methyltransferase and at least one small molecule methyltransferase. The structural similarity among the active sites of M. Pvu II, M. Taq I and M. Hha I reveals that catalytic amino acids essential for cytosine N4 and adenine N6 methylation coincide spatially with those for cytosine C5 methylation, suggesting a mechanism for amino methylation.", "The aim of the present investigation was to find factors critical for the co-existence of prolamellar bodies and prothylakoids in etioplasts of wheat (Triticum aestivum L. cv Starke II). The lipid composition of the prolamellar body and prothylakoid fractions was qualitatively similar. However, the molar ratio of monogalactosyl diacylglycerol to digalactosyl diacylglycerol was higher in the prolamellar body fraction (1.6 +/- 0.1), as was the lipid content on a protein basis. Protochlorophyllide was present in both fractions. The dominating protein of the prolamellar body fraction was protochlorophyllide oxidoreductase. This protein was present also in prothylakoid fractions. The other major protein of the prothylakoid fraction was the coupling factor 1, subunit of the chloroplast ATPase. From the lipid and protein data, we conclude that prolamellar bodies are formed when monogalactosyl diacylglycerol is present in larger amounts than can be stabilized into planar bilayer prothylakoid membranes by lamellar lipids or proteins.", "Author information:(1)Department of Endocrinology, Medwin Hospital, Hyderabad, Andhra Pradesh, India.", "The uvrA, uvrB, and uvrC genes of Escherichia coli control the initial steps of nucleotide excision repair. The uvrC gene product is involved in at least one of the dual incisions produced by the UvrABC complex. Using single-stranded (ss) DNA affinity chromatography, we have separated two forms of UvrC from both wild-type E. coli cells and overproducing cells. UvrCI elutes at 0.4 M KCl, and UvrCII elutes at 0.6 M KCl. In general, both forms, in the presence of UvrA and UvrB, actively incise UV-irradiated and CC-1065-modified DNA in the same fashion; i.e., they incise six to eight nucleotides 5' to and three to five nucleotides 3' to a photoproduct or a CC-1065-N3-adenine adduct. They produce different incisions, however, at a CC-1065-N3-adenine adduct in the sequence 5'-GATTACG- present in the MspI-BstNI 117 bp fragment of M13mp1. UvrABCI incises at both the 5' and 3' sides of the adduct (UvrABCI cut), while UvrABCII incises only at the 5' side (UvrABCII cut). Mixing UvrCI and UvrCII results in both UvrABCI and UvrABCII cuts, and the levels of these two types of cutting are proportional to the amount of UvrCI and UvrCII. DNase I footprints of the MspI-BstNI 117 bp DNA fragment containing a site-directed CC-1065-adenine adduct at the 5'-GATTACG- site show that UvrCII, but not UvrCI, binds to the adduct site. Furthermore, the pattern of DNase I footprints induced by UvrCII binding differs from the pattern of the footprints induced by UvrA, UvrAB, and UvrABCI binding. Interestingly, while the presence of unirradiated DNA enhances the efficiency of UvrABCII in incising UV-irradiated DNA, it does not enhance UvrABCII incision of the CC-1065-N3-adenine adduct formed at 5'-GATTACG-. These results show that two different forms of UvrC differ in DNA binding properties as well as incision modes at some kinds of DNA damage.", "INTRODUCTION: The metabolic syndrome (MS) components, such as dyslipidemia, prothrombotic status, and increased blood pressure, are risk factors for patients with renal disease. Visceral fat mass is closely related to the MS and atherosclerosis. We investigated the effects of body compositions and MS on anemia parameters and recombinant human erythropoietin (rHuEPO) requirements in maintenance hemodialysis patients.METHODS: Body composition (body mass index and bioimpedance analysis) and laboratory data were obtained from 110 dialysis patients. The MS was identified according to ATP-III criteria. Anemia parameters, hemoglobin (Hgb), albumin, C-reactive protein (CRP), calcium, phosphorus, parathormone levels, and rHuEPO requirements over the last 6 months were retrospectively analyzed.RESULTS: Patients with the MS seem to reach target Hgb levels more frequently (10-12 g/dL; 66.3% vs 84.8%; P = .03) without any difference in total intravenous iron therapy dosage. MS patients also required lower rHuEPO for reaching similar Hgb levels compared with patients without MS (2679.3 ± 1936.1 vs 3702.5 ± 2213.0 U/kg/6 mo; P = .02). There were no differences in serum CRP, albumin, or Hgb levels between the 2 groups (P > .05). We observed that patients with MS had significantly higher fat mass and visceral fat ratio, but similar muscle mass values compared with no-MS counterparts (P = .0001 and .001, respectively). However, when we compared the ratios of these parameters we observed a significant reduction in muscle ratios and a significant increase in fat ratios of MS patients (P = .0001).CONCLUSION: Our results indicate that MS might be an advantage for reaching higher Hgb levels with lower rHuEPO dosages. The possible reason for this might be the good nutritional state and increased fat mass of patients with MS.", "The three main mutations in gene HFE (C282Y, H63D, S65C) are the cause of development of 97% of cases of inherent hemochromatosis. It is known that about 85% of patients with inherent hemochromatosis are either homo-zygotic agents of mutation C282Y or carry compound-heterozygote C282Y/H63D. Therefore, the molecular genetic study intended for detection of these three mutations in gene HFE takes important place in diagnostic of inherent hemochromatosis. The study was organized to develop methods for detection of mutations C282Y, H63D, S65C on the basis of two molecular genetic methods - polymerase chain reaction in real-time and pyrosequenation. As reference method was used published method by Moyses C.B. et al. (2008). These methods were applied to analyzing 129 DNA samples. There were no discordant results. Among analyzed clinical DNA samples, mutant alleles of gene HFE were detected in 42 samples (32.5%)ю The mutation C282Y is detected in heterozygotic condition in 4 samples (3.1%); mutation H63D was detected in heterozygotic condition in 31 samples (24%) and in homo-zygotic condition in 4 samples (4%). The mutation S65C encountered in heterozygotic condition in one sample (0.8%) and in one sample compound-heterozygote H63D/S65C was detected (0.8%). The comparative characteristic of these three methods was made according the following parameters: time, number of analysis stages and convenience of interpretation of results. The main merit of method based on polymerase chain reaction in real-time is time of analysis implementation. The main merit of method based on pyrosequenation is automatic identification of genotype.", "OBJECTIVE: This open-label study investigated potential drug-drug interactions between empagliflozin and metformin.METHODS: 16 healthy men received treatment A (empagliflozin 50 mg q.d. for 5 days), treatment B (empagliflozin 50 mg q.d. for 4 days with metformin 1,000 mg b.i.d. for 3 days and 1,000 mg q.d. on Day 4) and treatment C (metformin 1,000 mg b.i.d. for 3 days and 1,000 mg q.d .on Day 4) in the sequence AB then C, or C then AB.RESULTS: Metformin had no clinically relevant effect on the area under the steady state plasma concentration-time curve (AUC(τ,ss) geometric mean ratio (GMR): 96.9; 90% CI: 92.3 - 101.7) or the maximum plasma concentration at steady state (C(max,ss) GMR: 100.5; 90% CI: 88.8 - 113.7) of empagliflozin. Similarly, empagliflozin had no clinically relevant effect on AUC(τ,ss) (GMR: 100.7; 90% CI: 95.9 - 105.6) or C(max,ss) (GMR: 103.6; 90% CI: 96.5 - 111.2) of metformin. The renal clearance of empagliflozin and metformin were unaffected by co-administration. Both drugs were well tolerated alone and in combination and did not cause hypoglycemia.CONCLUSIONS: These data support co-administration of empagliflozin and metformin without dose adjustment.", "Cytoplasmic inclusions containing TAR DNA-binding protein of 43 kDa (TDP-43) or Fused in sarcoma (FUS) are a hallmark of amyotrophic lateral sclerosis (ALS) and several subtypes of frontotemporal lobar degeneration (FTLD). FUS-positive inclusions in FTLD and ALS patients are consistently co-labeled with stress granule (SG) marker proteins. Whether TDP-43 inclusions contain SG markers is currently still debated. We determined the requirements for SG recruitment of FUS and TDP-43 and found that cytoplasmic mislocalization is a common prerequisite for SG recruitment of FUS and TDP-43. For FUS, the arginine-glycine-glycine zinc finger domain, which is the protein's main RNA binding domain, is most important for SG recruitment, whereas the glycine-rich domain and RNA recognition motif (RRM) domain have a minor contribution and the glutamine-rich domain is dispensable. For TDP-43, both the RRM1 and the C-terminal glycine-rich domain are required for SG localization. ALS-associated point mutations located in the glycine-rich domain of TDP-43 do not affect SG recruitment. Interestingly, a 25-kDa C-terminal fragment of TDP-43, which is enriched in FTLD/ALS cortical inclusions but not spinal cord inclusions, fails to be recruited into SG. Consistently, inclusions in the cortex of FTLD patients, which are enriched for C-terminal fragments, are not co-labeled with the SG marker poly(A)-binding protein 1 (PABP-1), whereas inclusions in spinal cord, which contain full-length TDP-43, are frequently positive for this marker protein.", "Dairy cows mobilise body tissues to support milk production and, because glucose supplies are limited, lipids are used preferentially for energy production. Lipogenic activity is switched off and lipolytic mechanisms in adipose tissue increase through changes in the expression of several key enzymes. This results in a loss of body condition, together with high circulating concentrations of non-esterified fatty acids. Changes in the synthesis, secretion and signalling pathways of somatotrophic hormones (insulin, growth hormone, insulin-like growth factor 1) and adipokines (e.g. leptin) are central to the regulation of these processes. A high reliance on fatty acids as an energy source in the peripartum period causes oxidative damage to mitochondria in metabolically active tissues, including the liver and reproductive tract. The expression of genes involved in insulin resistance (PDK4, AHSG) is increased, together with expression of TIEG1, a transcription factor that can induce apoptosis via the mitochondrial pathway. Polymorphisms in TFAM and UCP2, two autosomal mitochondrial genes, have been associated with longevity in dairy cows. Polymorphisms in many other genes that affect lipid metabolism also show some associations with fertility traits. These include DGAT1, SCD1, DECR1, CRH, CBFA2T1, GH, LEP and NPY. Excess lipid accumulation in oocytes and the regenerating endometrium reduces fertility via reductions in embryo survival and increased inflammatory changes, respectively.", "How DNA repair proteins sort through a genome for damage is one of the fundamental unanswered questions in this field. To address this problem, we uniquely labeled bacterial UvrA and UvrB with differently colored quantum dots and visualized how they interacted with DNA individually or together using oblique-angle fluorescence microscopy. UvrA was observed to utilize a three-dimensional search mechanism, binding transiently to the DNA for short periods (7 s). UvrA also was observed jumping from one DNA molecule to another over approximately 1 microm distances. Two UvrBs can bind to a UvrA dimer and collapse the search dimensionality of UvrA from three to one dimension by inducing a substantial number of UvrAB complexes to slide along the DNA. Three types of sliding motion were characterized: random diffusion, paused motion, and directed motion. This UvrB-induced change in mode of searching permits more rapid and efficient scanning of the genome for damage.", "The etiology of amyotrophic lateral sclerosis (ALS) is unknown. The presence of mutations in the superoxide dismutase gene (SOD1) has led to theories regarding a role for oxidative stress in the pathogenesis of this disease. A primary cause of oxidative stress is perturbations in cellular iron homeostasis. Cellular iron mismanagement and oxidative stress are associated with a number of neurodegenerative diseases. One mechanism by which cells fail to properly regulate their iron status is through a mutation in the Hfe gene. Mutations in the Hfe gene are associated with the iron overload disease, hemochromatosis. In the current study, 31% of patients with sporadic ALS carried a mutation in the Hfe gene, compared to only 14% of patients without identifiable neuromuscular disease, or with neuromuscular diseases other than ALS (p<0.005). To determine the cellular consequences of carrying an Hfe mutation, a human neuronal cell line was transfected with genes carrying the Hfe mutation. The presence of the Hfe mutation disrupted expression of tubulin and actin at the protein levels potentially consistent with the disruption of axonal transport seen in ALS and was also associated with a decrease in CuZnSOD1 expression. These data provide compelling evidence for a role for the Hfe mutation in etiopathogenesis of ALS and warrant further investigation.", "Illegitimate recombination is a major cause of genetic instability in prokaryotes as well as in eukaryotes. This recombination usually occurs at a low frequency, but it is greatly enhanced by UV irradiation or other environmental stresses. DNA damages produced by these environmental stresses are thought to induce DNA double-strand breaks, leading to illegitimate recombination. In this paper we show that UV-induced illegitimate recombination is enhanced by mutations of nucleotide excision repair genes, uvrA or uvrB, and partially by uvrC mutation, but not by uvrD mutation. Unexpectedly, the recombination was enhanced by the uvrA uvrB double mutation even without UV irradiation, but the uvrB uvrC double mutation has not shown this effect, suggesting that illegitimate recombination is mostly suppressed by UvrA and UvrB. Moreover, illegitimate recombination was synergistically enhanced by the recQ uvrA double mutation. In addition, overproduction of the UvrA protein suppressed the hyperrecombination phenotype of the recQ or uvrB mutant, but it did not affect the UV-sensitive phenotype of the uvrB mutant. We concluded that the UvrAB complex suppresses illegitimate recombination in a pathway shared with RecQ helicase. In addition, UvrA protein alone can suppress illegitimate recombination in the pathway, in which RecQ helicase and UvrAB complex work. Possible functions of the proteins involved in these pathways are also discussed.", "A systematic review of the more than 2,000 genetic loci of man cataloged by McKusick indicated that approximately 7% may play a role in modulating the rates of development of various aspects of the senescent phenotype. Assuming an upper limit of about 100,000 loci in man, numerous alleles at approximately 7,000 loci could be contributing to characteristic patterns of aging in individual human beings. Point mutations or chromosomal aberrations involving such loci may result in various progeroid syndromes. These have been classified into two categories: segmental progeroid syndromes, which involve multiple aspects of the senescent phenotype, and unimodal progeroid syndromes, in which predominantly one aspect of the phenotype is involved. Two different examples of segmental progeroid syndromes were discussed: the Werner syndrome (an autosomal recessive) and the Down syndrome (trisomy 21). Examples of unimodal progeroid syndromes included familial hypercholesterolemia (accelerated atherogenesis), xeroderma pigmentosum (acceleration of skin aging, including age-related neoplasms), and certain forms of intestinal polyposis (acceleration of adenocarcinoma of the colon). It is remarkable and encouraging that the biochemical genetic basis of many progeroid syndromes, including all of those mentioned above, may be amenable to investigation with cultured mesenchymal somatic cells from individual subjects. For example, cells from patients with the Werner's syndrome have a striking limitation of their in vitro replicative life-spans and undergo extensive chromosomal rearrangements. These abnormalities are presumably related to an enzyme deficiency which, in principle, could be identified by biochemical studies of cultured cells.", "82 consecutive outpatients with Crohn's disease (n = 52) and ulcerative colitis (n = 30) were examined ambulatory. Rheumatic complaints, objective results and diagnosis were correlated to the activity of the underlying illness and the extent of the bowel affected. 61% of the examined patients complaint about rheumatic pains. In two thirds this could be attributed to noninflammatory causes (30% insertion tendinitis. 16% degenerative arthritis, 16% wrong carriage), which appeared to be independent of the activity and severity of the underlying disease. One fourth of the rheumatic complaints was caused by inflammation (21% arthritis, 5% sacroileitis). In these cases a dependency on the disease activity and the extent of the colon involvement could be found. No cause was found for 12% of the rheumatic complaints. In patients with ulcerative colitis suffering from arthritis a significant increase of disease activity (Rachmilewitz index) could be shown as compared to ulcerative colitis patients without arthritis (p < 0.02). For patients with Crohn's disease no significant correlation between arthritis and disease activity could be established. In these cases the occurrence of arthritis was associated with the colon involvement (Chi2 = 8.48). The data indicate the high frequency of rheumatic complaints in inflammatory bowel diseases due to noninflammatory causes.", "Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB) domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular and organismal levels. Representative point mutations associated with Marfan syndrome in affected individuals have been introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a structural and functional level. Mutations which impair folding of cbEGF domains can affect protein trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome. Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights into the pathogenic molecular mechanisms exerted by mutated fibrillin-1.", "Accurate DNA replication requires a complex interplay of many regulatory proteins at replication origins. The CMG (Cdc45·Mcm2-7·GINS) complex, which is composed of Cdc45, Mcm2-7, and the GINS (Go-Ichi-Ni-San) complex consisting of Sld5 and Psf1 to Psf3, is recruited by Cdc6 and Cdt1 onto origins bound by the heterohexameric origin recognition complex (ORC) and functions as a replicative helicase. Trypanosoma brucei, an early branched microbial eukaryote, appears to express an archaea-like ORC consisting of a single Orc1/Cdc6-like protein. However, unlike archaea, trypanosomes possess components of the eukaryote-like CMG complex, but whether they form an active helicase complex, associate with the ORC, and regulate DNA replication remains unknown. Here, we demonstrated that the CMG complex is formed in vivo in trypanosomes and that Mcm2-7 helicase activity is activated by the association with Cdc45 and the GINS complex in vitro. Mcm2-7 and GINS proteins are confined to the nucleus throughout the cell cycle, whereas Cdc45 is exported out of the nucleus after DNA replication, indicating that nuclear exclusion of Cdc45 constitutes one mechanism for preventing DNA re-replication in trypanosomes. With the exception of Mcm4, Mcm6, and Psf1, knockdown of individual CMG genes inhibits DNA replication and cell proliferation. Finally, we identified a novel Orc1-like protein, Orc1b, as an additional component of the ORC and showed that both Orc1b and Orc1/Cdc6 associate with Mcm2-7 via interactions with Mcm3. All together, we identified the Cdc45·Mcm2-7·GINS complex as the replicative helicase that interacts with two Orc1-like proteins in the unusual origin recognition complex in trypanosomes.", "Appendix-containing inguinal hernias are known as Amyand hernias. Traditionally, these hernias have been diagnosed at surgery but are increasingly diagnosed on abdominal computed tomography scans. The classification of Amyand hernias determines their subsequent surgical management; as such, it is important for the radiologist to be familiar with the appearances of the subtypes of Amyand hernias.", "Circular RNAs (circRNAs) belong to a recently re-discovered species of RNA that emerge during RNA maturation through a process called back-splicing. A downstream 5' splice site is linked to an upstream 3' splice site to form a circular transcript instead of a canonical linear transcript. Recent advances in next-generation sequencing (NGS) have brought circRNAs back into the focus of many scientists. Since then, several studies reported that circRNAs are differentially expressed across tissue types and developmental stages, implying that they are actively regulated and not merely a by-product of splicing. Though functional studies have shown that some circRNAs could act as miRNA-sponges, the function of most circRNAs remains unknown. To expand our understanding of possible roles of circular RNAs, we propose a new pipeline that could fully characterizes candidate circRNA structure from RNAseq data-FUCHS: FUll CHaracterization of circular RNA using RNA-Sequencing. Currently, most computational prediction pipelines use back-spliced reads to identify circular RNAs. FUCHS extends this concept by considering all RNA-seq information from long reads (typically >150 bp) to learn more about the exon coverage, the number of double break point fragments, the different circular isoforms arising from one host-gene, and the alternatively spliced exons within the same circRNA boundaries. This new knowledge will enable the user to carry out differential motif enrichment and miRNA seed analysis to determine potential regulators during circRNA biogenesis. FUCHS is an easy-to-use Python based pipeline that contributes a new aspect to the circRNA research.", "Abnormal tau-immunoreactive filaments are a hallmark of tauopathies, including Alzheimer's disease (AD). A higher phosphorylation (\"hyperphosphorylation\") state of tau protein may represent a critical event. To determine the potential role of tau hyperphosphorylation in these disorders, mutated tau proteins were produced where serine/threonine residues known to be highly phosphorylated in tau filaments isolated from AD patients were substituted for glutamate to simulate a paired helical filament (PHF)-like tau hyperphosphorylation. We demonstrate that, like hyperphosphorylation, glutamate substitutions induce compact structure elements and SDS-resistant conformational domains in tau protein. Hyperphosphorylation-mimicking glutamate-mutated tau proteins display a complete functional loss in its ability to promote microtubule nucleation which can partially be overcome by addition of the osmolyte trimethylamine N-oxide (TMAO), which is similar to phosphorylated tau. In addition, glutamate-mutated tau proteins fail to interact with the dominant brain protein phosphatase 2A isoform ABalphaC, and exhibit a reduced ability to assemble into filaments. Interestingly, wild-type tau and phosphorylation-mimicking tau similarly bind to microtubules when added alone, but the mutated tau is almost completely displaced from the microtubule surface by equimolar concentrations of wild-type tau. The data indicate that glutamate-mutated tau proteins provide a useful model for analyzing the functional consequences of tau hyperphosphorylation. They suggest that several mechanisms contribute to the abnormal tau accumulation observed during tauopathies, in particular a selective displacement of hyperphosphorylated tau from microtubules, a functional loss in promoting microtubule nucleation, and a failure to interact with phosphatases.", "OBJECTIVES: To evaluate the impact of neutralizing monoclonal antibody (mAb) treatment and to determine whether the selective pressure of mAbs could facilitate the proliferation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with spike protein mutations that might attenuate mAb effectiveness.PATIENTS AND METHODS: We evaluated the impact of mAbs on the nasopharyngeal (NP) viral load and virus quasispecies of mAb-treated patients using single-molecule real-time sequencing. The mAbs used were: Bamlanivimab alone (four patients), Bamlanivimab/Etesevimab (23 patients) and Casirivimab/Imdevimab (five patients).RESULTS: The NP SARS-CoV-2 viral load of mAb-treated patients decreased from 8.2 log10 copies/mL before administration to 4.3 log10 copies/mL 7 days after administration. Five immunocompromised patients given Bamlanivimab/Etesevimab were found to have mAb activity-reducing spike mutations. Two patients harboured SARS-CoV-2 variants with a Q493R spike mutation 7 days after administration, as did a third patient 14 days after administration. The fourth patient harboured a variant with a Q493K spike mutation 7 days post-treatment, and the fifth patient had a variant with a E484K spike mutation on day 21. The emergence of the spike mutation was accompanied by stabilization or rebound of the NP viral load in three of five patients.CONCLUSION: Two-mAb therapy can drive the selection of resistant SARS-CoV-2 variants in immunocompromised patients. Patients given mAbs should be closely monitored and measures to limit virus spread should be reinforced.", "BACKGROUND: Many patients admitted to a Department of Internal Medicine have different degrees of heart and kidney dysfunction. Mortality, morbidity and cost of care greatly increase when cardiac and renal diseases coexist.METHODS: A retrospective cohort study was conducted on 1,087 patients admitted from December 2009 to December 2012 to evaluate the prevalence of the cardiorenal syndrome (CRS) and clinical features.RESULTS: Out of 1,087 patients discharged from our unit during the study period, 190 (17.5%) were diagnosed as having CRS and classified into five types. CRS was more common in males (68.9%). CRS type 1 was associated with higher age (79.9 ± 8.9 years) and accounted for 61.5% of all deaths (p < 0.001), representing a risk factor for mortality (OR 4.23, 95% CI 1.8-10). Congestive heart failure was significantly different among the five CRS types (p < 0.0001) with a greater frequency in type 1 patients. Infectious diseases were more frequent in CRS types 1, 3 and 5 (p < 0.05). Pneumonia presented a statistically higher frequency in CRS types 1 and 5 compared to other classes (p < 0.01), and community-acquired infections were statistically more frequent in CRS types 1 and 5 (p < 0.05). The distribution of community-acquired pneumonia was different among the classes (p < 0.01) with a higher frequency in CRS types 1, 3 and 5.CONCLUSION: CRS is a condition that is more frequently observed in the clinical practice. The identification of predisposing trigger factors, such as infectious diseases, particularly in the elderly, plays a key role in reducing morbidity and mortality. An early recognition can be useful to optimize therapy, encourage a multidisciplinary approach and prevent complications.", "p73 has significant homology to p53. However, tumor-associated up-regulation of p73 and genetic data from human tumors and p73-deficient mice exclude a classical Knudson-type tumor suppressor role. We report that the human TP73 gene generates an NH(2) terminally truncated isoform. DeltaNp73 derives from an alternative promoter in intron 3 and lacks the transactivation domain of full-length TAp73. DeltaNp73 is frequently overexpressed in a variety of human cancers, but not in normal tissues. DeltaNp73 acts as a potent transdominant inhibitor of wild-type p53 and transactivation-competent TAp73. DeltaNp73 efficiently counteracts transactivation function, apoptosis, and growth suppression mediated by wild-type p53 and TAp73, and confers drug resistance to wild-type p53 harboring tumor cells. Conversely, down-regulation of endogenous DeltaNp73 levels by antisense methods alleviates its suppressive action and enhances p53- and TAp73-mediated apoptosis. DeltaNp73 is complexed with wild-type p53, as demonstrated by coimmunoprecipitation from cultured cells and primary tumors. Thus, DeltaNp73 mediates a novel inactivation mechanism of p53 and TAp73 via a dominant-negative family network. Deregulated expression of DeltaNp73 can bestow oncogenic activity upon the TP73 gene by functionally inactivating the suppressor action of p53 and TAp73. This trait might be selected for in human cancers.", "UvrB plays a key role in bacterial nucleotide excision repair. It is the ultimate damage-binding protein that interacts with both UvrA and UvrC. The oligomeric state of UvrB and the UvrAB complex have been subject of debate for a long time. Using fluorescence resonance energy transfer (FRET) between GFP and YFP fused to the C-terminal end of Escherichia coli UvrB, we unambiguously show that in solution two UvrB subunits bind to UvrA, most likely as part of a UvrA2B2 complex. This complex is most stable when both UvrA and UvrB are in the ATP-bound form. Analysis of a truncated form of UvrB shows that binding to UvrA promotes dimerization of the two C-terminal domain 4 regions of UvrB. The presence of undamaged DNA leads to dissociation of the UvrA2B2 complex, but when the ATPase site of UvrB is inactivated, the complex is trapped on the DNA. When the complex is bound to a damaged site, FRET between the two UvrB subunits could still be detected, but only as long as UvrA remains associated. Dissociation of UvrA from the damage-bound UvrB dimer leads to the reduction of the magnitude of the FRET signal, indicating that the domain 4 regions no longer interact. We propose that the UvrA-induced dimerization of the domain 4 regions serves to shield these domains from premature UvrC binding. Only after specific binding of the UvrB dimer to a damaged site and subsequent release of UvrA is the contact between the domain 4 regions broken, allowing recruitment of UvrC and subsequent incisions.", "Escherichia coli nucleotide excision repair (NER) is responsible for removing bulky DNA adducts by dual incisions of the UvrABC endonuclease. Although the activity of the UvrAB complex which can induce DNA conformational change is employed in NER, the involvement of DNA topology and DNA topoisomerases remains unclear. We examined the effect of topoisomerase inhibitions on a NER in vivo system. The repair analysis of intracellular plasmid revealed that the DNA damage on positive supercoils generated by gyrase inhibition remained unrepaired, whereas the DNA damage was repaired in topoisomerase I mutants. These results suggest that DNA topology affects the NER process and the removal of positive supercoils by gyrase is vital for the efficiency of the E. coli NER system.", "Idiopathic pulmonary fibrosis (IPF) is a progressive, life-threatening and interstitial lung disease with the median survival of only 3-5 years. However, due to the unclear etiology and problems in accurate diagnosis, up to now only two drugs were approved by FDA for the treatment of IPF and their outcome responses are limited. Numerous studies have shown that TGF-β is the most important cytokine in the development of pulmonary fibrosis and plays a role through its downstream signaling molecule TGF-binding receptor Smads protein. In this paper, compounds bearing 2(1H)-quinolone scaffold were designed and their anti-fibrosis effects were evaluated. Of these compounds, 20f was identified as the most active one and could inhibit TGF-β-induced collagen deposition of NRK-49F cells and mouse fibroblasts migration with comparable activity and lower cytotoxicity than nintedanib in vitro. Further mechanism studies indicated that 20f reduced the expression of fibrogenic phenotypic protein α-SMA and collagen Ⅰ by inhibiting the TGF-β/Smad dependent pathways and ERK1/2 and p38 pathways. Moreover, compared with the nintedanib, 20f (100 mg/kg/day, p.o) more effectively alleviated collagen deposition in lung tissue and delayed the destruction of lung tissue structure both in bleomycin-induced prevention and treatment mice pulmonary fibrosis models. The immunohistochemical experiments further showed that 20f could block the expression level of phosphorylated Smad3 in the lung tissue cells, which resulted in its anti-fibrosis effects in vivo. In addition, 20f demonstrated good bioavailability (F = 41.55% vs 12%, compare with nintedanib) and an appropriate elimination half-life (T1/2 = 3.5 h), suggesting that 20f may be a potential drug candidate for the treatment of pulmonary fibrosis.", "The long-term clinical success of autologous vein and synthetic vascular grafts are limited because of the development of anastomotic intimal hyperplasia (IH). We have previously published data suggesting that cyclosporine (CyA) may reduce the development of IH in a canine model (Hirko et al., J Vasc Surg 1993;17:877-887). However, systemic administration of CyA could create serious adverse effects. Therefore, it is our long-term goal to test the hypothesis that the controlled local release of CyA from a polymeric vascular wrap would prevent the development of IH. To test this hypothesis, we developed a controlled release polymeric ring that could be placed around anastomotic sites to deliver therapeutic drugs locally. The ring is a composite polymeric device consisting of poly(DL-lactide-co-glycolide) (PLGA) microspheres embedded in a poly(ethylene glycol) hydrogel. Several in vitro studies were conducted to evaluate the effects of different sterilization procedures on the properties of the device. It was determined that gamma sterilization was the preferred sterilization method of choice for this device. In vivo studies were conducted on a swine model to evaluate the biocompatibility of the ring. The histological findings of the ring implants at 2 and 4 weeks demonstrate the biocompatibility of this device.", "Ultraviolet light induced pyrimidine dimers in DNA are recognized and repaired by a number of unique cellular surveillance systems. At the highest level of complexity Escherichia coli (E. coli) has a uvr DNA repair system comprising the UvrA, UvrB and UvrC proteins responsible for incision. There are several preincision steps governed by this pathway which includes an ATP-dependent UvrA dimerization reaction required for UvrAB nucleoprotein formation. This complex formation driven by ATP binding, is associated with localized topological unwinding of DNA. This protein complex can catalyze an ATP-dependent 5'----3' directed strand displacement of D-loop DNA or short single strands annealed to a single stranded circular or linear DNA. This putative translocational process is arrested when damaged sites are encountered. The complex is now primed for dual incision catalyzed by UvrC. The remainder of the repair process involves UvrD (helicase II) and DNA polymerase I for a coordinately controlled \"excision resynthesis\" step accompanied by UvrABC turnover. Furthermore, it is proposed that levels of repair proteins can be regulated by proteolysis. UvrB is converted to truncated UvrB* by a stress induced protease which also acts at similar sites on the E. coli Ada protein. Although UvrB* can bind with UvrA to DNA it cannot participate in helicase or incision reactions. It is also a DNA-dependent ATPase.", "To study the activity of the Escherichia coli UvrA and UvrB nucleotide excision repair proteins during the formation of the pre-incision complex at a damaged DNA site, we used substrates with modifications around a single 2-(acetylamino)fluorene (AAF) lesion. Based on the release of AAF-containing oligonucleotides from a single-stranded DNA circle, we conclude that during interaction with our substrates UvrAB introduces changes in DNA which are localized at the lesion and are limited to 1-3 bp. Since these changes might include a denaturation of DNA at the lesion site and, consequently, a bubble structure might be present in a pre-incision complex, we studied incision activity of UvrABC excinuclease on substrates with 1-4 unpaired bases next to an AAF adduct. Opening more than one base on either or both sides of the lesion caused a significant decrease in the incision activity of UvrABC, but did not change the position of the incision sites. We conclude that the UvrAB action leading to a pre-incision complex does not include the formation of a bubble intermediate generated by extensive denaturation of base pairs.", "Poly(A)-binding protein 1 (PABP1) has a fundamental role in the regulation of mRNA translation and stability, both of which are crucial for a wide variety of cellular processes. Although generally a diffuse cytoplasmic protein, it can be found in discrete foci such as stress and neuronal granules. Mammals encode several additional cytoplasmic PABPs that remain poorly characterised, and with the exception of PABP4, appear to be restricted in their expression to a small number of cell types. We have found that PABP4, similarly to PABP1, is a diffusely cytoplasmic protein that can be localised to stress granules. However, UV exposure unexpectedly relocalised both proteins to the nucleus. Nuclear relocalisation of PABPs was accompanied by a reduction in protein synthesis but was not linked to apoptosis. In examining the mechanism of PABP relocalisation, we found that it was related to a change in the distribution of poly(A) RNA within cells. Further investigation revealed that this change in RNA distribution was not affected by PABP knockdown but that perturbations that block mRNA export recapitulate PABP relocalisation. Our results support a model in which nuclear export of PABPs is dependent on ongoing mRNA export, and that a block in this process following UV exposure leads to accumulation of cytoplasmic PABPs in the nucleus. These data also provide mechanistic insight into reports that transcriptional inhibitors and expression of certain viral proteins cause relocation of PABP to the nucleus.", "Heptaplatin, cis-malonato [(4R,5R)-4,5-bis (amino-methyl)-2-isopropyl-1,3-dioxolane] platinum(II) (SKI-2053R, Sunpla) is a new platinum derivative with anti-tumor activity comparable to cisplatin on various cancer cell lines. Preclinical studies suggest that it is less nephrotoxic than cisplatin. This study was undertaken to examine the combined effect of heptaplatin and ionizing radiation on two established human squamous carcinoma cell lines (NCI-H520, SQ20B). The cytotoxic activity of heptaplatin was concentration-dependent in both cell lines. When low dose heptaplatin was combined with high dose ionizing radiation, there was an additive cytotoxic effect on NCI-H520 cells (P < 0.05), while a moderate dose of heptaplatin and a low dose of ionizing radiation had an additive cytotoxic effect on the growth of SQ20B cells (P < 0.05). FACS analysis and DAPI staining showed that their additive cytotoxic effects were correlated with the induction of apoptosis. Further studies are warranted using heptaplatin and ionizing radiation in squamous cell carcinoma as a substitute for cisplatin.", "X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.", "AIM: Several studies indicate that use of hormone replacement therapy (HRT) is associated with an increased risk of intracranial meningioma, while associations between HRT use and risk of other brain tumors have been less explored. We investigated the influence of HRT use on the risk of glioma in a nationwide setting.METHODS: Using population-based registries we conducted a case-control study nested in the Danish female population. We identified all women aged 55-84 years with a first diagnosis of histologically verified brain glioma during 2000-2009. Using risk-set sampling, each case was matched on birth year to eight population controls. Ever use of HRT was defined as ≥2 HRT prescriptions and categorized according to type (oestrogens only, combined oestrogen-progestagen and progestagen only) and duration of use (<1, ≥1 to <5, ≥5 to <10, and ≥10 years). We used conditional logistic regression to compute odds ratios (ORs), with 95% confidence intervals (CIs), for glioma associated with HRT use, adjusting for potential confounders.RESULTS: We identified 658 cases and 4350 controls. Ever use of HRT was associated with an OR of 0.9 (95% CI: 0.8-1.1) for glioma. For long-term use (≥10 years) we found ORs of 1.1 (95% CI: 0.7-1.7) for HRT overall, 1.6 (95% CI: 0.9-2.6) for oestrogen only, 0.8 (0.4-1.6) for combined oestrogen-progestagen, and 2.2 (0.9-5.5) for progestagen. Tests for trends were statistically non-significant in all strata.CONCLUSION: Use of HRT overall was not associated with an increased risk of glioma. However, our findings indicate that prolonged use of oestrogen only or progestagen may be associated with an increased risk of glioma.", "The Escherichia coli Uvr(A)BC endonuclease (Uvr(A)BC) initiates nucleotide excision repair of a large variety of DNA damages. The damage recognition and incision steps by the Uvr(A)BC is a complex process utilizing an ATP-dependent DNA helix-tracking activity associated with the UvrA2B1 complex. The latter activity leads to the generation of highly positively supercoiled DNA in the presence of E. coli topoisomerase I in vitro. Such highly positively supercoiled DNA, containing ultraviolet irradiation-induced photoproducts (uvDNA), is resistant to the incision by Uvr(A)BC, whereas the negatively supercoiled and relaxed forms of the uvDNA are effectively incised. The E. coli gyrase can contribute to the above reaction by abolishing the accumulation of highly positively supercoiled uvDNA thereby restoring Uvr(A)BC-catalyzed incision. Eukaryotic (calf thymus) topoisomerase I is able to substitute for gyrase in restoring this Uvr(A)BC-mediated incision reaction. The inability of Uvr(A)BC to incise highly positively supercoiled uvDNA results from the failure of the formation of UvrAB-dependent obligatory intermediates associated with the DNA conformational change. In contrast to Uvr(A)BC, the Micrococcus luteus UV endonuclease efficiently incises uvDNA regardless of its topological state. The in vitro topodynamic system proposed in this study may provide a simple model for studying a topological aspect of nucleotide excision repair and its interaction with other DNA topology-related processes in E. coli.", "OBJECTIVE: Large randomized clinical trials have shown the efficacy of aspirin, ACE (angiotensin converting enzyme) inhibitors and statins as secondary prevention measures in patients after an acute coronary syndrome with and without ST elevations. Therefore we aimed to determine the effect of a combination therapy with these three drugs on 1-year mortality after acute myocardial infarction (AMI).METHODS: We prospectively followed 9998 survivors of acute myocardial infarction treated with a beta-blocker for 1 year. Patients were divided into three groups according to their therapy with aspirin, ACE inhibitors and statins: 3 drugs, 2 drugs or 0-1 drug.RESULTS: The majority of patients (n = 6260, 62.6%) were treated with 3 drugs, 2986 (29.9%) with 2 drugs and 752 (7.5%) with 0-1 drug. In the univariate analysis 1-year mortality was 4.9%, 9.7% and 13.6%, respectively. After adjusting for confounding factors in the propensity score analysis the odds ratios for 1-year mortality were significantly increased with 0-1 drug (odds ratio 1.67, 95% CI 1.24-2.27) and with 2 drugs (odds ratio 1.54, 95% CI 1.26-1.87) in comparison with the group treated with all 3 drugs. However, in the ACOS registry the treatment was left to the discretion of the physician. This could lead to a selection bias, which cannot be fully eliminated by using multiple regression analysis.CONCLUSIONS: A combination therapy with aspirin, an ACE inhibitor and a statin reduces 1-year mortality in patients after AMI. Therefore a polypill approach with these three agents should be considered to increase drug compliance and reduce mortality after acute myocardial infarction.", "It is generally accepted that the damage recognition complex of nucleotide excision repair in Escherichia coli consists of two UvrA and one UvrB molecule, and that in the preincision complex UvrB binds to the damage as a monomer. Using scanning force microscopy, we show here that the damage recognition complex consists of two UvrA and two UvrB subunits, with the DNA wrapped around one of the UvrB monomers. Upon binding the damage and release of the UvrA subunits, UvrB remains a dimer in the preincision complex. After association with the UvrC protein, one of the UvrB monomers is released. We propose a model in which the presence of two UvrB subunits ensures damage recognition in both DNA strands. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one of the UvrB monomers, which will subsequently probe one of the DNA strands for the presence of a lesion. When no damage is found, the DNA will wrap around the second UvrB subunit, which will check the other strand for aberrations." ]
1,643
[ "Cellular eukaryotic mRNAs are capped at their 5' ends with a 7-methylguanosine nucleotide, a structural feature that has been shown to be important for conferring mRNA stability, stimulating mRNA biogenesis (splicing, poly(A) addition, nucleocytoplasmic transport), and increasing translational efficiency. Whereas yeast mRNAs have no additional modifications to the cap, called cap0, higher eukaryotes are methylated at the 2'-O-ribose of the first or the first and second transcribed nucleotides, called cap1 and cap2, respectively. In the present study, we identify the methyltransferase responsible for cap1 formation in human cells, which we call hMTr1 (also known as FTSJD2 and ISG95). We show in vitro that hMTr1 catalyzes specific methylation of the 2'-O-ribose of the first nucleotide of a capped RNA transcript. Using siRNA-mediated knockdown of hMTr1 in HeLa cells, we demonstrate that hMTr1 is responsible for cap1 formation in vivo.", "We investigated the involvement of the recently described staphylococcal enterotoxins G and I in toxic shock syndrome. We reexamined Staphylococcus aureus strains isolated from patients with menstrual and nonmenstrual toxic shock syndrome (nine cases) or staphylococcal scarlet fever (three cases). These strains were selected because they produced none of the toxins known to be involved in these syndromes (toxic shock syndrome toxin 1 and enterotoxins A, B, C, and D), enterotoxin E or H, or exfoliative toxin A or B, despite the fact that superantigenic toxins were detected in a CD69-specific flow cytometry assay measuring T-cell activation. Sets of primers specific to the enterotoxin G and I genes (seg and sei, respectively) were designed and used for PCR amplification. All of the strains were positive for seg and sei. Sequence analysis confirmed that the PCR products, corresponded to the target genes. We suggest that staphylococcal enterotoxins G and I may be capable of causing human staphylococcal toxic shock syndrome and staphylococcal scarlet fever.", "The long noncoding RNA (lncRNA) NEAT1 (nuclear enriched abundant transcript 1) is the architectural component of nuclear paraspeckles, and it has recently gained considerable attention as it is abnormally expressed in pathological conditions such as cancer and neurodegenerative diseases. NEAT1 and paraspeckle formation are increased in cells upon exposure to a variety of environmental stressors and believed to play an important role in cell survival. The present study was undertaken to further investigate the role of NEAT1 in cellular stress response pathways. We show that NEAT1 is a novel target gene of heat shock transcription factor 1 (HSF1) and is up-regulated when the heat shock response pathway is activated by sulforaphane (SFN) or elevated temperature. HSF1 binds specifically to a newly identified conserved heat shock element in the NEAT1 promoter. In line with this, SFN induced the formation of NEAT1-containing paraspeckles via an HSF1-dependent mechanism. HSF1 plays a key role in the cellular response to proteotoxic stress by promoting the expression of a series of genes, including those encoding molecular chaperones. We have found that the expression of HSP70, HSP90, and HSP27 is amplified and sustained during heat shock in NEAT1-depleted cells compared with control cells, indicating that NEAT1 feeds back via an unknown mechanism to regulate HSF1 activity. This interrelationship is potentially significant in human diseases such as cancer and neurodegenerative disorders.", "A monoclonal antibody (mAb) has been produced which reacts with human mitofilin, a mitochondrial inner membrane protein. This mAb immunocaptures its target protein in association with six other proteins, metaxins 1 and 2, SAM50, CHCHD3, CHCHD6 and DnaJC11, respectively. The first three are outer membrane proteins, CHCHD3 has been assigned to the matrix space, and the other two proteins have not been described in mitochondria previously. The functional role of this new complex is uncertain. However, a role in protein import related to maintenance of mitochondrial structure is suggested as mitofilin helps regulate mitochondrial morphology and at least four of the associated proteins (metaxins 1 and 2, SAM50 and CHCHD3) have been implicated in protein import, while DnaJC11 is a chaperone-like protein that may have a similar role.", "PURPOSE: With the increased incidence of low stage renal cancers, thermal ablation technology has emerged as a viable treatment option. Current AUA (American Urological Association) guidelines include thermal ablation as a treatment modality for select individuals. We compared the laparoscopic and percutaneous approach for the radio frequency ablation of renal tumors under the guidance of urological surgeons.MATERIALS AND METHODS: We reviewed our radio frequency ablation database of patients with renal masses undergoing laparoscopic or computerized tomography guided percutaneous radio frequency ablation with simultaneous peripheral fiberoptic thermometry from November 2001 to January 2011 at a single tertiary care center. Data were collected on patient demographics, and surgical and clinicopathological outcomes stratified by approach.RESULTS: A total of 298 patients with 316 renal tumors underwent laparoscopic (122 tumors) or computerized tomography guided (194 tumors) radio frequency ablation. There were no statistically significant differences between the laparoscopic and computerized tomography guided radio frequency ablation groups with respect to patient demographics, complication rates and renal functional outcomes (p>0.05). The 3-year Kaplan-Meier estimation of radiographic recurrence-free probability was 95% for computerized tomography guided radio frequency ablation and 94% for laparoscopic radio frequency ablation (p=0.84). Subanalysis of the 212 (67%) renal cell carcinoma tumors showed a 3-year Kaplan-Meier estimation of oncologic recurrence-free probability (post-ablation biopsy proven viable tumor) of 94% for computerized tomography guided radio frequency ablation and 100% for laparoscopic radio frequency ablation (p=0.16). Median followup was 21 months for laparoscopic radio frequency ablation) and 19 months for computerized tomography guided radio frequency ablation.CONCLUSIONS: Laparoscopic and computerized tomography guided radio frequency ablation appear safe and effective with statistically equivalent rates of complications and recurrence.", "B- and T-cell subtypes of prolymphocytic leukemia (PLL) are rare, aggressive lymphoid malignancies with characteristic morphologic, immunophenotypic, cytogenetic, and molecular features. Prognosis for these patients remains poor, with short survival times and no curative therapy. The advent of mAbs has improved treatment options. In B-PLL, rituximab-based combination chemoimmunotherapy is effective in fitter patients. TP53 abnormalities are common and, as for chronic lymphocytic leukemia, these patients should generally be managed using an alemtuzumab-based therapy. Currently, the best treatment for T-PLL is IV alemtuzumab, which has resulted in very high response rates of more than 90% when given as frontline treatment and a significant improvement in survival. Consolidation of remissions with autologous or allogeneic stem cell transplantation further prolongs survival times, and the latter may offer potential cure. The role of allogeneic transplantation with nonmyeloablative conditioning needs to be explored further in both T- and B-PLL to broaden the patient eligibility for what may be a curative treatment.", "We propose that stabilizing ryanodine receptor type 2 (RyR2) may be a novel strategy for the treatment of atrial fibrillation (AF). Sarcoplasmic reticulum (SR) dysfunction caused by hyperphosphorylation of RyR2 and/or partial depletion of the stabilizing subunit calstabin2 has been indicated in AF. RyR2 stabilization may prevent SR dysfunction and thereby protect the heart from damage. Hypertrophy, hyperthyroidism and heart failure, three common pathological conditions associated with AF, result in increased SR Ca(2+) leak via RyR2. RyR2 stabilization may prevent SR Ca(2+) leak and thereby prevent AF. Triggered activity appears to underlie atrial ectopic foci, which cause AF. Diastolic Ca(2+) leak from SR via RyR2 may initiate triggered activity. Therefore, modulating RyR2 opening probability would be predicted to protect against triggered activity. Atrial oxidative stress plays a contributing role in the pathogenesis of AF. RyR2 is a target of reactive oxygen species, and chronic RyR2 oxidation increases RyR2 opening probability in a more sustained, less reversible manner. Strategies that attenuate oxidative stress and protect against AF may also contribute to RyR2 stabilization. Finally, KN-3 and JTV519, two compounds that stabilize RyR2 in the closed state, prevent the induction of triggered activity and suppress the inducibility of sustained AF. Thus, it is reasonable to speculate that experimental approaches designed to improve RyR2 stabilization will drive a novel conceptual revolution in AF drug development and lead to new clinical investigations." ]
1,649
[ "Insomnia has become a major public health issue in recent times. Although quality of sleep is affected by environmental, psychophysiological, and pharmacological factors, diet and nutrient intake also contribute to sleep problems. This study investigated the association between nutrient intake and co-morbid symptoms associated with sleep status among selected adults. Subjects in this study included 87 men and women aged 21-45 years. Presence of insomnia was assessed using the Insomnia Screening Questionnaire, and dietary intake was measured over three consecutive days by dietary survey. Descriptive analysis, ANOVA, and Chi-Square tests were performed to compute and interpret the data. Approximately 60% of the participants were insomniacs. People with insomnia consumed significantly lesser quantities of nutrients as compared to normal sleepers. Differences in intakes of energy, carbohydrates, folic acid, and B(12) were highly significant (P < 0.002). Further, intakes of protein, fat, and thiamine were significantly different (P < 0.021) between insomniacs and normal sleepers. The nutrient intake pattern of the insomniacs with co-morbid symptoms was quite different from that of the normal sleepers. Based on these results, it is probable that there is an association between nutrition deficiency, co-morbid symptoms, and sleep status. More studies are required to confirm these results.", "BACKGROUND: Sleep deprivation is a risk factor for cardiovascular disease. Cocoa flavonoids exert cardiovascular benefits and neuroprotection. Whether chocolate consumption may mitigate detrimental effects of sleep loss on cognitive performance and cardiovascular parameters has never been studied.AIM: We investigated the effects of flavanol-rich chocolate consumption on cognitive skills and cardiovascular parameters after sleep deprivation.METHODS: Thirty-two healthy participants underwent two baseline sessions after one night of undisturbed sleep and two experimental sessions after one night of total sleep deprivation. Two hours before each testing session, participants were randomly assigned to consume high or poor flavanol chocolate bars. During the tests were evaluated, the Psychomotor Vigilance Task and a working memory task, office SBP and DBP, flow-mediated dilation and pulse-wave velocity.RESULTS: Sleep deprivation increased SBP/DBP. SBP/DBP and pulse pressure were lower after flavanol-rich treatment respect to flavanol-poor treatment (SBP: 116.9 ± 1.6 vs. 120.8 ± 1.9 mmHg, respectively, P = 0.00005; DBP: 70.5 ± 1.2 vs. 72.3 ± 1.2 mmHg, respectively, P = 0.01; pulse pressure: 46.4 ± 1.3 vs. 48.4 ± 1.5 mmHg, P = 0.004). Sleep deprivation impaired flow-mediated dilation (5.5 ± 0.5 vs. 6.5 ± 0.6%, P = 0.02), flavanol-rich, but not flavanol-poor chocolate counteracted this alteration (flavanol-rich/flavanol-poor chocolate: 7.0 ± 0.6 vs. 5.0 ± 0.4%, P = 0.000001). Flavanol-rich chocolate mitigated the pulse-wave velocity increase (P = 0.001). Flavanol-rich chocolate preserved working memory accuracy in women after sleep deprivation. Flow-mediated dilation correlated with working memory performance accuracy in the sleep condition (P = 0.04).CONCLUSION: Flavanol-rich chocolate counteracted vascular impairment after sleep deprivation and restored working memory performance. Improvement in cognitive performance could be because of the effects of cocoa flavonoids on blood pressure and peripheral and central blood flow.", "Gray platelet syndrome (GPS) is an inherited bleeding disorder associated with macrothrombocytopenia and α-granule-deficient platelets. GPS has been linked to loss of function mutations in NEABL2 (neurobeachin-like 2), and we describe here a murine GPS model, the Nbeal2(-/-) mouse. As in GPS, Nbeal2(-/-) mice exhibit splenomegaly, macrothrombocytopenia, and a deficiency of platelet α-granules and their cargo, including von Willebrand factor (VWF), thrombospondin-1, and platelet factor 4. The platelet α-granule membrane protein P-selectin is expressed at 48% of wild-type levels and externalized upon platelet activation. The presence of P-selectin and normal levels of VPS33B and VPS16B in Nbeal2(-/-) platelets suggests that NBEAL2 acts independently of VPS33B/VPS16B at a later stage of α-granule biogenesis. Impaired Nbeal2(-/-) platelet function was shown by flow cytometry, platelet aggregometry, bleeding assays, and intravital imaging of laser-induced arterial thrombus formation. Microscopic analysis detected marked abnormalities in Nbeal2(-/-) bone marrow megakaryocytes, which when cultured showed delayed maturation, decreased survival, decreased ploidy, and developmental abnormalities, including abnormal extracellular distribution of VWF. Our results confirm that α-granule secretion plays a significant role in platelet function, and they also indicate that abnormal α-granule formation in Nbeal2(-/-) mice has deleterious effects on megakaryocyte survival, development, and platelet production.", "Mirabegron (YM-178), currently in development by Astellas Pharma Inc, is an orally active β₃-adrenoceptor (AR) agonist for the potential symptomatic treatment of overactive bladder (OAB). Mirabegron demonstrates nanomolar EC50 values against the human β₃-AR in biochemical assays with potent selectivity over the β₁- and β₂-ARs. Originally developed as a treatment for diabetes, the development of mirabegron was later refocused to OAB. Cystometric experiments in rats reported a reduction in resting intravesical pressure and contraction frequency in anesthetized rats, without any effect on the amplitude of micturition contraction. Mirabegron also reduced non-micturition bladder contractions in an awake rat model of bladder outlet obstruction. Top-line results from clinical trials to date indicate that mirabegron has been well tolerated with significant efficacy in reducing the number of incontinence episodes and mean micturition frequency in patients. Evidence of cytochrome P450 (CYP)2D6 inhibition in clinical trials highlighted a concern for pharmacokinetic interaction with other drugs that are CYP2D6 substrates, as confirmed by a rise in the pharmacokinetic parameters of desipramine with concomitant administration of mirabegron. Mirabegron exhibits a novel mode of action in targeting the β₃-AR for bladder relaxation, and the studies and trials conducted to date suggest mirabegron as a promising new treatment in the management of OAB symptoms, such as increased urinary urgency and frequency, and urgency incontinence.", "OBJECTIVES: Mast cells (MCs) may play an important role in plaque destabilization and atherosclerotic coronary complications. Here, we have studied the presence of MCs in the intima and media of unstable and stable coronary lesions at different time points after myocardial infarction (MI).METHODS: Coronary arteries were obtained at autopsy from patients with acute MI (up to 5 days old; n=27) and with chronic MI (5-14 days old; n=18), as well as sections from controls without cardiac disease (n=10). Herein, tryptase-positive MCs were quantified in the intima and media of both unstable and stable atherosclerotic plaques in infarct-related and non-infarct-related coronary arteries.RESULTS: In the media of both acute and chronic MI patients, the number of MCs was significantly higher than in controls. This was also found when evaluating unstable and stable plaques separately. In patients with chronic MI, the number of MCs in unstable lesions was significantly higher than in stable lesions. This coincided with a significant increase in the relative number of unstable plaques in patients with chronic MI compared with control and acute MI. No differences in MC density were found between infarct-related and non-infarct-related coronary arteries in patients with MI.CONCLUSION: The presence of MCs in the media of both stable and unstable atherosclerotic coronary lesions after MI suggests that MCs may be involved in the onset of MI and, on the other hand, that MI triggers intra-plaque infiltration of MCs especially in unstable plaques, possibly increasing the risk of re-infarction.", "Although DNA methylation was originally thought to only affect transcription, emerging evidence shows that it also regulates alternative splicing. Exons, and especially splice sites, have higher levels of DNA methylation than flanking introns, and the splicing of about 22% of alternative exons is regulated by DNA methylation. Two different mechanisms convey DNA methylation information into the regulation of alternative splicing. The first involves modulation of the elongation rate of RNA polymerase II (Pol II) by CCCTC-binding factor (CTCF) and methyl-CpG binding protein 2 (MeCP2); the second involves the formation of a protein bridge by heterochromatin protein 1 (HP1) that recruits splicing factors onto transcribed alternative exons. These two mechanisms, however, regulate only a fraction of such events, implying that more underlying mechanisms remain to be found.", "Although the pathophysiology of facioscapulohumeral dystrophy (FSHD) has been controversial over the last decades, progress in recent years has led to a model that incorporates these decades of findings and is gaining general acceptance in the FSHD research community. Here we review how the contributions from many labs over many years led to an understanding of a fundamentally new mechanism of human disease. FSHD is caused by inefficient repeat-mediated epigenetic repression of the D4Z4 macrosatellite repeat array on chromosome 4, resulting in the variegated expression of the DUX4 retrogene, encoding a double-homeobox transcription factor, in skeletal muscle. Normally expressed in the testis and epigenetically repressed in somatic tissues, DUX4 expression in skeletal muscle induces expression of many germline, stem cell, and other genes that might account for the pathophysiology of FSHD. Although some disagreements regarding the details of mechanisms remain in the field, the coalescing agreement on a central model of pathophysiology represents a pivot-point in FSHD research, transitioning the field from discovery-oriented studies to translational studies aimed at developing therapies based on a sound model of disease pathophysiology.", "Gray platelet syndrome (GPS) is a predominantly recessive platelet disorder that is characterized by mild thrombocytopenia with large platelets and a paucity of α-granules; these abnormalities cause mostly moderate but in rare cases severe bleeding. We sequenced the exomes of four unrelated individuals and identified NBEAL2 as the causative gene; it has no previously known function but is a member of a gene family that is involved in granule development. Silencing of nbeal2 in zebrafish abrogated thrombocyte formation.", "OBJECTIVE: To describe the clinical features, treatment and prognosis of acquired thrombotic thrombocytopenic purpura (TTP) in children based on a single institution experience.METHODS: This study is a retrospective review of all 12 children with TTP seen at New York Medical College- Westchester Medical Center during a period of 15 y from 1993 to 2008.RESULTS: There were 7 females and 5 males with acquired TTP, with a median age of 13 (range, 6-17); and no cases of congenital TTP. The classic pentad of TTP (microangiopathic hemolytic anemia, thrombocytopenia, neurologic symptoms, renal dysfunction and fever) was seen in only three patients. Nine had renal involvement; eight had neurologic symptoms; and four had fever. All 12 patients had thrombocytopenia, anemia, and elevated LDH. Nine had idiopathic TTP. Three patients had one of the following underlying disorders: systemic lupus erythematosus, mixed connective tissue disorder, and aplastic anemia (post-bone marrow transplant on cyclosporine). ADAMTS13 level was decreased in 7 of 8 patients studied. Eight of 10 patients achieved remission with plasmapheresis alone. Two needed additional treatment before achieving remission. Two had one or more relapses, requiring immunosupressive treatment with vincrisine, prednisone, or rituximab. The patient with aplastic anemia died of pulmonary hypertension 5 y after bone marrow transplantation. All other 11 patients are alive and free of TTP for a median follow-up of 12 mo (range, 3-72 mo).CONCLUSIONS: Acquired pediatric TTP responds well to plasmapheresis. However, many patients do require additional treatment because of refractoriness to plasmapheresis or relapse. The clinical features, response to treatment, and relapse rate of pediatric TTP appear similar to those of adult TTP.", "The gray platelet syndrome is a hereditary, usually autosomal recessive bleeding disorder caused by a deficiency of alpha granules in platelets. We detected a nonsense mutation in the gene encoding the transcription factor GFI1B (growth factor independent 1B) that causes autosomal dominant gray platelet syndrome. Both gray platelets and megakaryocytes had abnormal marker expression. In addition, the megakaryocytes had dysplastic features, and they were abnormally distributed in the bone marrow. The GFI1B mutant protein inhibited nonmutant GFI1B transcriptional activity in a dominant-negative manner. Our studies show that GFI1B, in addition to being causally related to the gray platelet syndrome, is key to megakaryocyte and platelet development.", "Gray platelet syndrome (GPS) is an autosomal recessive bleeding disorder that is characterized by large platelets that lack α-granules. Here we show that mutations in NBEAL2 (neurobeachin-like 2), which encodes a BEACH/ARM/WD40 domain protein, cause GPS and that megakaryocytes and platelets from individuals with GPS express a unique combination of NBEAL2 transcripts. Proteomic analysis of sucrose-gradient subcellular fractions of platelets indicated that NBEAL2 localizes to the dense tubular system (endoplasmic reticulum) in platelets.", "Netherton syndrome (NS, OMIM 256500) is a rare autosomal recessive disorder manifesting with congenital ichthyosis, a specific hair shaft abnormality named trichorrhexis invaginata, and atopic manifestations. Because of severe complications frequently occurring in the neonatal period, NS prognosis can be poor in infancy. NS is due to loss-of-function mutations in the SPINK5 gene and to the consequent lack of expression of its encoded protein LEKTI in the skin and all stratified epithelial tissues. Following the identification of the NS causative gene and protein, specific diagnostic tools have been developed, thus breaking up the challenge of distinguishing NS from other congenital ichthyoses with overlapping features, and from severe, early-onset forms of atopic dermatitis or psoriasis. Intensive efforts to extend the knowledge into the pathomechanisms of NS have also been made. However, NS management is still problematic due to the lack of specific treatment and unmet needs. This overview summarizes the current state of the art in NS research with an emphasis on the progress made toward disease-specific innovative therapy development.", "Most copy number variations are neutral, but some are deleterious and associated with various human diseases. Copy number variations are distributed non-randomly in vertebrate genomes, and it was recently reported that ohnologs, which are duplicated genes derived from whole genome duplication, are refractory to copy number variations. However, it is unclear what genomic factors affect the deleterious effects of copy number variations and the biological significance of the biased genomic distribution of copy number variations remains poorly understood. Here we show that non-ohnologs neighbouring ohnologs are unlikely to have copy number variations, resulting in ohnolog-rich regions in vertebrate genomes being copy number variation deserts. Our results suggest that the genomic location of ohnologs is a determining factor in the retention of copy number variations and that the dosage-balanced ohnologs are likely to cause the deleterious effects of copy number variations in these regions. We propose that investigating copy number variation of genes in regions that are typically copy number variation deserts is an efficient means to find disease-related copy number variations.", "Idecabtagene vicleucel (ide-cel, bb2121), a chimeric antigen receptor (CAR) T cell therapy, has been investigated in patients with relapsed and refractory multiple myeloma (RRMM) who have received an immunomodulatory drug, proteasome inhibitor, and anti-CD38 antibody in the single-arm phase 2 KarMMa clinical trial. Two therapies with distinct mechanisms of action - selinexor plus dexamethasone (Sd) and belantamab mafodotin (BM) - are currently approved in the United States for heavily pretreated patients, including those who are triple-class refractory. To compare ide-cel versus Sd and ide-cel versus BM, matching-adjusted indirect comparisons were performed. Ide-cel extended progression-free survival (PFS) and overall survival (OS) versus both Sd and BM (hazard ratio (HR); 95% confidence interval (CI)). PFS: ide-cel versus Sd, 0.46; 0.28-0.75; ide-cel versus BM, 0.45; 0.27-0.77. OS: ide-cel versus Sd, 0.23; 0.13-0.42; ide-cel versus BM, 0.35; 0.14-0.87. These results suggest ide-cel offers clinically meaningful improvements over currently approved regimens for patients with heavily pretreated RRMM.", "Next-generation RNA sequence analysis of platelets from an individual with autosomal recessive gray platelet syndrome (GPS, MIM139090) detected abnormal transcript reads, including intron retention, mapping to NBEAL2 (encoding neurobeachin-like 2). Genomic DNA sequencing confirmed mutations in NBEAL2 as the genetic cause of GPS. NBEAL2 encodes a protein containing a BEACH domain that is predicted to be involved in vesicular trafficking and may be critical for the development of platelet α-granules.", "Idiopathic toe walking is a relatively common developmental condition often leading to secondary problems such as pain and muscle contractures in the lower extremities. The cause of idiopathic toe walking is unknown, which hinders the development of treatment strategies. To test whether children with idiopathic toe walking have functional alterations in their spinal motor circuits, we studied the properties of the soleus H-reflex and its modulation with vibration in 26 idiopathic toe walkers and 16 typically developing children. At the group level, the H-reflex properties did not differ, but at the individual level, in 7 of 25 idiopathic toe walkers, some of the H-reflex parameters fell out of normal limits of typically developing children. However, the H-reflex was suppressed by vibration to the Achilles tendon similarly in both the idiopathic toe walkers and typically developing children. In conclusion, idiopathic toe walking in some children can be associated with functional alterations in their spinal motor circuits.", "BACKGROUND: The small-molecule phosphodiesterase 4 inhibitor apremilast modulates cytokines that are up-regulated in Behçet's syndrome. In a phase 2 trial involving patients with Behçet's syndrome, apremilast reduced the incidence and severity of oral ulcers. Data on the efficacy and safety of apremilast in patients with Behçet's syndrome who had active oral ulcers and had not previously received biologic agents are limited.METHODS: In a phase 3 trial, we randomly assigned, in a 1:1 ratio, patients who had Behçet's syndrome with active oral ulcers but no major organ involvement to receive either apremilast at a dose of 30 mg or placebo, administered orally, twice daily for 12 weeks, followed by a 52-week extension phase. The primary end point was the area under the curve (AUC) for the total number of oral ulcers during the 12-week placebo-controlled period (with lower values indicating fewer ulcers). There were 13 secondary end points, including complete response of oral ulcers, change from baseline in pain associated with oral ulcers, disease activity, and change from baseline in the Behçet's Disease Quality of Life score (range, 0 to 30, with higher scores indicating greater impairment in quality of life). Safety was also assessed.RESULTS: A total of 207 patients underwent randomization (104 patients to the apremilast group and 103 to the placebo group). The AUC for the number of oral ulcers was 129.5 for apremilast, as compared with 222.1 for placebo (least-squares mean difference, -92.6; 95% confidence interval [CI], -130.6 to -54.6; P<0.001). The change from baseline in the Behçet's Disease Quality of Life score was -4.3 points in the apremilast group, as compared with -1.2 points in the placebo group (least-squares mean difference, -3.1 points; 95% CI, -4.9 to -1.3). Adverse events with apremilast included diarrhea, nausea, and headache.CONCLUSIONS: In patients with oral ulcers associated with Behçet's syndrome, apremilast resulted in a greater reduction in the number of oral ulcers than placebo but was associated with adverse events, including diarrhea, nausea, and headache. (Funded by Celgene; ClinicalTrials.gov number, NCT02307513.).", "This paper discusses the problematic and sometimes implicit nature of some central notions and criteria used in debates about inclusion (or exclusion) of health care services in the health care benefit package. An analysis of discussions about four health care services--lungtransplantation, statins, (sildenafil (viagra) and rivastigmine--illustrates a case-by-case approach and inconsistent use of criteria, which present a challenge to develop a decision-making procedure in which important criteria or central notions can be discussed explicitly.", "BACKGROUND: Tuberous sclerosis complex (TSC) is a rare monogenic disorder characterized by benign tumors in multiple organs as well as a high prevalence of epilepsy, intellectual disability and autism. TSC is caused by inactivating mutations in the TSC1 or TSC2 genes. Heterozygocity induces hyperactivation of mTOR which can be inhibited by mTOR inhibitors, such as rapamycin, which have proven efficacy in the treatment of TSC-associated symptoms. The aim of the present study was (1) to identify molecular changes associated with social and cognitive deficits in the brain tissue of Tsc1+/- mice and (2) to investigate the molecular effects of rapamycin treatment, which has been shown to ameliorate genotype-related behavioural deficits.METHODS: Molecular alterations in the frontal cortex and hippocampus of Tsc1+/- and control mice, with or without rapamycin treatment, were investigated. A quantitative mass spectrometry-based shotgun proteomic approach (LC-MSE) was employed as an unbiased method to detect changes in protein levels. Changes identified in the initial profiling stage were validated using selected reaction monitoring (SRM). Protein Set Enrichment Analysis was employed to identify dysregulated pathways.RESULTS: LC-MSE analysis of Tsc1+/- mice and controls (n = 30) identified 51 proteins changed in frontal cortex and 108 in the hippocampus. Bioinformatic analysis combined with targeted proteomic validation revealed several dysregulated molecular pathways. Using targeted assays, proteomic alterations in the hippocampus validated the pathways \"myelination\", \"dendrite,\" and \"oxidative stress\", an upregulation of ribosomal proteins and the mTOR kinase. LC-MSE analysis was also employed on Tsc1+/- and wildtype mice (n = 34) treated with rapamycin or vehicle. Rapamycin treatment exerted a stronger proteomic effect in Tsc1+/- mice with significant changes (mainly decreased expression) in 231 and 106 proteins, respectively. The cellular pathways \"oxidative stress\" and \"apoptosis\" were found to be affected in Tsc1+/- mice and the cellular compartments \"myelin sheet\" and \"neurofilaments\" were affected by rapamycin treatment. Thirty-three proteins which were altered in Tsc1+/- mice were normalized following rapamycin treatment, amongst them oxidative stress related proteins, myelin-specific and ribosomal proteins.CONCLUSIONS: Molecular changes in the Tsc1+/- mouse brain were more prominent in the hippocampus compared to the frontal cortex. Pathways linked to myelination and oxidative stress response were prominently affected and, at least in part, normalized following rapamycin treatment. The results could aid in the identification of novel drug targets for the treatment of cognitive, social and psychiatric symptoms in autism spectrum disorders. Similar pathways have also been implicated in other psychiatric and neurodegenerative disorders and could imply similar disease processes. Thus, the potential efficacy of mTOR inhibitors warrants further investigation not only for autism spectrum disorders but also for other neuropsychiatric and neurodegenerative diseases.", "The gray platelet syndrome is a rare inherited bleeding disorder characterized by macrothrombocytopenia and deficiency of alpha (α)-granules in platelets. The genetic defect responsible for gray platelet syndrome was recently identified in biallelic mutations in the NBEAL2 gene. We studied 11 consecutive families with inherited macrothrombocytopenia of unknown origin and α-granule deficiency. All of them underwent NBEAL2 DNA sequencing and evaluation of the platelet phenotype, including a systematic assessment of the α-granule content by immunofluorescence analysis for α-granule secretory proteins. We identified 9 novel mutations hitting the two alleles of NBEAL2 in 4 probands. They included missense, nonsense and frameshift mutations, as well as nucleotide substitutions that altered the splicing mechanisms as determined at the RNA level. All the individuals with NBEAL2 biallelic mutations showed almost complete absence of platelet α-granules. Interestingly, the 13 individuals assumed to be asymptomatic because carriers of a mutated allele had platelet macrocytosis and significant reduction of the α-granule content. However, they were not thrombocytopenic. In the remaining 7 probands, we did not identify any NBEAL2 alterations, suggesting that other genetic defect(s) are responsible for their platelet phenotype. Of note, these patients were characterized by a lower severity of the α-granule deficiency than individuals with two NBEAL2 mutated alleles. Our data extend the spectrum of mutations responsible for gray platelet syndrome and demonstrate that macrothrombocytopenia with α-granule deficiency is a genetic heterogeneous trait. In terms of practical applications, the screening of NBEAL2 is worthwhile only in patients with macrothrombocytopenia and severe reduction of the α-granules. Finally, individuals carrying one NBEAL2 mutated allele have mild laboratory abnormalities, suggesting that even haploinsufficiency has an effect on platelet phenotype.", "A number of environmental factors, such as tobacco and alcohol, have been implicated, through oxidative DNA damage, in the development of squamous cell carcinomas of the head and neck (SCCHN). Several pathways are involved in the repair of DNA lesions caused by oxidative stress, such as the base excision repair system (BER), which repairs mutation involving 8-oxoguanine and comprises the MUTYH, OGG1 and MTH1 genes. We analysed 29 patients, assessing germline polymorphisms or mutations in these genes by complete genomic sequencing of exons and adjacent intronic regions. Thirty healthy blood donors served as controls. No pathogenic germline mutations were identified. We found common and rare new variants in the coding and adjacent intronic regions. In summary, our data do not support a major role for MUTYH, OGG1 and MTH1 variants in the etiology of sporadic squamous oral/oropharyngeal carcinomas. This does not exclude the involvement of the three BER genes in the tumorigenesis of SCCHN through other mechanisms such as promotor hypermethylation, genomic rearrangements or mutations involving regulatory sequences.", "Tryptophan hydroxylase (L-tryptophan, tetrahydropteridine:oxygen oxidoreductase [5-hydroxylating]; EC 1.14.16.4; TPH), the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter serotonin, was inhibited directly by benserazide, an inhibitor of aromatic-L-amino-acid decarboxylase (3,4-dihydroxy-L-phenylalanine carboxy-lyase; EC 4.1.1.28; AAAD). Benserazide was a competitive inhibitor for the pterin cofactor tetrahydrobiopterin and an uncompetitive inhibitor for the substrate tryptophan. NSD 1015, another decarboxylase inhibitor, did not directly inhibit TPH. Other compounds with catechol moieties in their structures such as 3,4-dihydroxyphenylalanine (DOPA), dopamine, apomorphine, and SKF 38393 were also found to be potent inhibitors of TPH. These results indicate that drugs or neurotransmitters with catechol structures directly inhibit the activity of TPH and add to a growing body of evidence indicating that endogenous dopamine can exert untoward effects on serotonin neurons, including inhibition of TPH. Furthermore, the use of decarboxylase inhibitors to cause the accumulation of 5-hydroxytryptophan as an in vivo measure of TPH activity could be problematic, particularly when drugs with catechol structures or dopamine-releasing compounds are also administered.", "BACKGROUND: Protein complexes are important entities to organize various biological processes in the cell, like signal transduction, gene expression, and molecular transmission. In most cases, proteins perform their intrinsic tasks in association with their specific interacting partners, forming protein complexes. Therefore, an enriched catalog of protein complexes in a cell could accelerate further research to elucidate the mechanisms underlying many biological processes. However, known complexes are still limited. Thus, it is a challenging problem to computationally predict protein complexes from protein-protein interaction networks, and other genome-wide data sets.METHODS: Macropol et al. proposed a protein complex prediction algorithm, called RRW, which repeatedly expands a current cluster of proteins according to the stationary vector of a random walk with restarts with the cluster whose proteins are equally weighted. In the cluster expansion, all the proteins within the cluster have equal influences on determination of newly added protein to the cluster. In this paper, we extend the RRW algorithm by introducing a random walk with restarts with a cluster of proteins, each of which is weighted by the sum of the strengths of supporting evidence for the direct physical interactions involving the protein. The resulting algorithm is called NWE (Node-Weighted Expansion of clusters of proteins). Those interaction data are obtained from the WI-PHI database.RESULTS: We have validated the biological significance of the results using curated complexes in the CYC2008 database, and compared our method to RRW and MCL (Markov Clustering), a popular clustering-based method, and found that our algorithm outperforms the other algorithms.CONCLUSIONS: It turned out that it is an effective approach in protein complex prediction to expand a cluster of proteins, each of which is weighted by the sum of the strengths of supporting evidence for the direct physical interactions involving the protein.", "PURPOSE: Testicular germ cell tumors (TGCT) have a unique epigenetic profile distinct from that of other types of cancer. Elucidation of these properties has a potential to identify novel markers for TGCTs.EXPERIMENTAL DESIGN: We conducted comprehensive analysis of DNA methyltransferase (DNMT) gene expression in TGCTs. Based on the expression profiles of DNMT genes in TGCTs, we generated a rabbit polyclonal anti-human DNMT3L antibody. We then studied the role of DNMT3L in TGCTs by the treatment of two embryonal carcinoma (EC) cell lines with a small interfering RNA system. Finally, we evaluated the immunohistochemical detection of DNMT3L in TGCT tissues. We also compared the patterns of DNMT3L immunohistochemistry with those of CD30 and SOX2.RESULTS: Among the DNMT genes, we found that mRNA for DNMT3L was specifically expressed in TGCTs, but neither in normal testicular tissues nor in cancer cells of somatic tissue origin. DNMT3L protein was strongly expressed in two EC cell lines, but not in the cell lines of somatic tissue origin. Transfection of small interfering RNA for DNMT3L significantly reduced DNMT3L expression and resulted in growth suppression and apoptosis in EC cells. Immunohistochemical analysis showed that DNMT3L protein was present only in EC cells, but not in the other types of TGCT components and cancer cells of somatic tissue origin. DNMT3L staining was more prominent and specific than CD30 or SOX2 staining for detecting EC cells.CONCLUSION: DNMT3L is a novel marker and is essential for the growth of human embryonal carcinoma.", "BACKGROUND: Hirschsprung's Disease (HD) is a developmental disorder of enteric nervous system characterised by the absence of ganglion cells in submucosal (Meissner's) and myenteric (Aurbach's) plexuses of distal bowel. The purpose of the present study was to observe and report the morphological patterns of ganglion related enteric neuronal abnormalities in children presented with clinical features of (HD) in a Pakistani population.METHODS: A total of 92 patients with clinical presentation of HD were enrolled between March 2009 and October 2009. Among them, 8 were excluded according to the exclusion criteria. After detailed history and physical examination, paraffin embedded H and E stained sections were prepared from the serial open biopsies from colorectum. The data was analysed using SPSS-17. Frequencies and percentages are given for qualitative variables. Non-parametric Binomial Chi-Square test was applied to observe within group associations and p<0.05 was considered statistically significant.RESULTS: Among 84 patients, 13 (15.5%) proved to be normally ganglionic whereas 71 (84.5%) showed ganglion related enteric neuronal abnormalities namely isolated hypoganglionosis 9 (12.7%), immaturity of ganglion cells 9 (12.7%), isolated hyperganglionosis (IND Type B) 2 (2.8%) and Hirschsprung's disease 51 (71.8%). Among HD group, 34 (66.7%) belonged to isolated form and 17 (33.3%) showed combined ganglion related abnormalities.CONCLUSIONS: Hirschsprung's disease is common in Pakistani population, followed by hypoganglionosis, immaturity of ganglion cells and IND type B. The presence of hypertrophic nerve fibres was significant in HD, hyperganglionosis and hypoganglionosis, whereas, no hypertrophic nerve fibres were appreciated in immaturity of ganglion cell group.", "We identified a family with gray platelet syndrome (GPS) segregating as a sex-linked trait. Affected males had a mild bleeding disorder, thrombocytopenia, and large agranular platelets characteristic of GPS, while obligate carrier females were asymptomatic but had dimorphic platelets on peripheral smear. Associated findings included mild erythrocyte abnormalities in affected males. Linkage analysis revealed a 63 cM region on the X chromosome between markers G10578 and DXS6797, which segregated with the platelet phenotype and included the GATA1 gene. Sequencing of GATA1 revealed a G-to-A mutation at position 759 corresponding to amino acid change Arg216Gln. This mutation was previously described as a cause of X-linked thrombocytopenia with thalassemia (XLTT) but not of gray platelet syndrome. Our findings suggest that XLTT is within a spectrum of disorders constituting the gray platelet syndrome, and we propose that GATA1 is an upstream regulator of the genes required for platelet alpha-granule biogenesis.", "Distal hereditary motor neuropathy (dHMN) or distal spinal muscular atrophy (OMIM #182960) is a heterogeneous group of disorders characterized by an almost exclusive degeneration of motor nerve fibers, predominantly in the distal part of the limbs. Silver syndrome (OMIM #270685) is a rare form of hereditary spastic paraparesis mapped to chromosome 11q12-q14 (SPG17) in which spasticity of the legs is accompanied by amyotrophy of the hands and occasionally also the lower limbs. Silver syndrome and most forms of dHMN are autosomal dominantly inherited with incomplete penetrance and a broad variability in clinical expression. A genome-wide scan in an Austrian family with dHMN-V (ref. 4) showed linkage to the locus SPG17, which was confirmed in 16 additional families with a phenotype characteristic of dHMN or Silver syndrome. After refining the critical region to 1 Mb, we sequenced the gene Berardinelli-Seip congenital lipodystrophy (BSCL2) and identified two heterozygous missense mutations resulting in the amino acid substitutions N88S and S90L. Null mutations in BSCL2, which encodes the protein seipin, were previously shown to be associated with autosomal recessive Berardinelli-Seip congenital lipodystrophy (OMIM #269700). We show that seipin is an integral membrane protein of the endoplasmic reticulum (ER). The amino acid substitutions N88S and S90L affect glycosylation of seipin and result in aggregate formation leading to neurodegeneration.", "Pathological gambling (PG) is a potential complication related to the treatment of Parkinson disease (PD) with dopamine agonists (DA). The cause of this disorder is unknown, but altered dopamine neurotransmission may be involved.OBJECTIVE: We evaluated the efficacy and tolerability of the opioid antagonist naltrexone in the treatment of PG in PD.METHODS: Our cases included 3 patients with PD who developed PG after DA treatment.RESULTS: Pathological gambling did not improve after reduction or discontinuation of DA. These patients responded poorly to serotonin reuptake inhibitors, whereas treatment with opioid antagonist naltrexone resulted in the remission of PG. Naltrexone treatment was well tolerated. In one patient, higher dose of naltrexone resulted in hepatic abnormalities, which resolved after dosage reduction.CONCLUSIONS: The opioid antagonist naltrexone could be an effective option for the treatment of PG in PD." ]
1,650
[ "Although neuraminidase inhibitors are active against most 2009-2010 pandemic influenza A (H1N1) swine-origin strains, sporadic cases of oseltamivir resistance have been described. Since April 2009, 54 cases of oseltamivir-resistant H1N1 swine-origin have been reported in the USA (http://www.cdc.gov/flu/weekly/; accessed 1 February 2010). Approximately 1.4% of tested isolates are oseltamivir resistant. We report a patient with an underlying hematological malignancy who was hospitalized with influenza A (H1N1) swine-origin and whose strain developed oseltamivir resistance during therapy.", "BACKGROUND: In order to understand how biological systems function it is necessary to determine the interactions and associations between proteins. Gene fusion prediction is one approach to detection of such functional relationships. Its use is however known to be problematic in higher eukaryotic genomes due to the presence of large homologous domain families. Here we introduce CODA (Co-Occurrence of Domains Analysis), a method to predict functional associations based on the gene fusion idiom.METHODOLOGY/PRINCIPAL FINDINGS: We apply a novel scoring scheme which takes account of the genome-specific size of homologous domain families involved in fusion to improve accuracy in predicting functional associations. We show that CODA is able to accurately predict functional similarities in human with comparison to state-of-the-art methods and show that different methods can be complementary. CODA is used to produce evidence that a currently uncharacterised human protein may be involved in pathways related to depression and that another is involved in DNA replication.CONCLUSIONS/SIGNIFICANCE: The relative performance of different gene fusion methodologies has not previously been explored. We find that they are largely complementary, with different methods being more or less appropriate in different genomes. Our method is the only one currently available for download and can be run on an arbitrary dataset by the user. The CODA software and datasets are freely available from ftp://ftp.biochem.ucl.ac.uk/pub/gene3d_data/v6.1.0/CODA/. Predictions are also available via web services from http://funcnet.eu/.", "Preclinical studies have shown that zolmitriptan is a selective serotonin 5-HT(1B/1D) receptor agonist (triptan). Randomised, placebo-controlled, double-blind trials in patients with migraine have shown that zolmitriptan has good efficacy measured using 2 h response and pain-free rates. Migraine-associated symptoms, including nausea, photophobia and phonophobia, are also improved with zolmitriptan. Oral zolmitriptan (2.5 and 5 mg) has an onset of action within 45 min and efficacy is sustained in most patients who respond at 2 h. The orally-disintegrating zolmitriptan tablet has the advantage that it may be taken immediately, without the need for additional fluids, any time a migraine headache occurs. Patients may benefit in terms of improved efficacy from the convenience of the disintegrating tablet, since there is evidence that taking triptan therapy as early as possible in an attack is advantageous. For similar reasons, as well as improved efficacy, a nasal spray formulation is in development. Zolmitriptan is effective in the treatment of migraine associated with menses and migraine with aura. There is no tachyphylaxis following repeated doses for multiple attacks of migraine over a prolonged period of time. Compared to placebo, the incidence of persistent migraine headache is reduced by zolmitriptan and recurrent migraine headache occurs less frequently. Zolmitriptan has also shown efficacy in the treatment of persistent and/or recurrent migraine headache. Comparative clinical studies have shown overall that zolmitriptan has similar or superior efficacy to sumatriptan in the treatment of migraine. Specifically, zolmitriptan 2.5 mg was significantly more effective than sumatriptan 25 or 50 mg according to a number of end points, including headache response at 2 h. Oral zolmitriptan is also effective in the acute treatment of cluster headache. Zolmitriptan is generally well tolerated, with most adverse events being mild-to-moderate, transient and resolving without intervention or the need for treatment withdrawal. The consistent efficacy in treating all types of migraine and the choice of available formulations make zolmitriptan acceptable to patients and a suitable first-line therapy for the treatment of migraine.", "Genomic imprinting, the differential expression of autosomal genes based on their parent of origin, is observed in all eutherian mammals that have been examined. In most instances the genes that are imprinted in one species are imprinted in others as well, suggesting that imprinting predated eutherian radiation. For example, the RNA-coding H19 gene is repressed upon paternal inheritance in all species examined to date. Thus, it is surprising that there is remarkably little sequence conservation among the cis-acting DNA regulatory elements that are required for imprinting of H19 and the tightly linked Igf2 gene. The most conserved characteristic in the imprinting control region (ICR) is the presence of multiple binding sites for the zinc finger protein CTCF, raising the possibility that CTCF binding might be sufficient for the reciprocal imprinting of H19 and Igf2. To investigate whether a human H19 transgene, harboring seven CTCF sites, is correctly recognized and imprinted in the mouse, a 100 kb transgene containing the human H19 gene was introduced into the mouse germline. The human transgene was specifically methylated after passage through the male germline in a copy number-dependent manner, but the methylation was unstable, undergoing progressive loss during development. Consequently, the transgene was highly expressed upon both maternal and paternal inheritance. These results argue that the signals for both the acquisition and maintenance of methylation imprinting are diverging rapidly.", "BACKGROUND: A wide variety of short-read alignment programmes have been published recently to tackle the problem of mapping millions of short reads to a reference genome, focusing on different aspects of the procedure such as time and memory efficiency, sensitivity, and accuracy. These tools allow for a small number of mismatches in the alignment; however, their ability to allow for gaps varies greatly, with many performing poorly or not allowing them at all. The seed-and-extend strategy is applied in most short-read alignment programmes. After aligning a substring of the reference sequence against the high-quality prefix of a short read--the seed--an important problem is to find the best possible alignment between a substring of the reference sequence succeeding and the remaining suffix of low quality of the read--extend. The fact that the reads are rather short and that the gap occurrence frequency observed in various studies is rather low suggest that aligning (parts of) those reads with a single gap is in fact desirable.RESULTS: In this article, we present libgapmis, a library for extending pairwise short-read alignments. Apart from the standard CPU version, it includes ultrafast SSE- and GPU-based implementations. libgapmis is based on an algorithm computing a modified version of the traditional dynamic-programming matrix for sequence alignment. Extensive experimental results demonstrate that the functions of the CPU version provided in this library accelerate the computations by a factor of 20 compared to other programmes. The analogous SSE- and GPU-based implementations accelerate the computations by a factor of 6 and 11, respectively, compared to the CPU version. The library also provides the user the flexibility to split the read into fragments, based on the observed gap occurrence frequency and the length of the read, thereby allowing for a variable, but bounded, number of gaps in the alignment.CONCLUSIONS: We present libgapmis, a library for extending pairwise short-read alignments. We show that libgapmis is better-suited and more efficient than existing algorithms for this task. The importance of our contribution is underlined by the fact that the provided functions may be seamlessly integrated into any short-read alignment pipeline. The open-source code of libgapmis is available at http://www.exelixis-lab.org/gapmis.", "Chromatin immunoprecipitation combined with massively parallel sequencing methods (ChIP-seq) is becoming the standard approach to study interactions of transcription factors (TF) with genomic sequences. At the example of public STAT1 ChIP-seq data sets, we present novel approaches for the interpretation of ChIP-seq data.We compare recently developed approaches to determine STAT1 binding sites from ChIP-seq data. Assessing the content of the established consensus sequence for STAT1 binding sites, we find that the usage of \"negative control\" ChIP-seq data fails to provide substantial advantages. We derive a single refined probabilistic model of STAT1 binding sequences from these ChIP-seq data. Contrary to previous claims, we find no evidence that STAT1 binds to multiple distinct motifs upon interferon-gamma stimulation in vivo. While a large majority of genomic sites with high ChIP-seq signal is associated with a nucleotide sequence resembling a STAT1 binding site, only a very small subset of the over 5 million potential STAT1 binding sites in the human genome is covered by ChIP-seq data. Furthermore a surprisingly large fraction of the ChIP-seq signal (5%) is absorbed by a small family of repetitive sequences (MER41). The observation of the binding of activated STAT1 protein to a specific repetitive element bolsters similar reports concerning p53 and other TFs, and strengthens the notion of an involvement of repeats in gene regulation. Incidentally MER41 are specific to primates, consequently, regulatory mechanisms in the IFN-STAT pathway might fundamentally differ between primates and rodents. On a methodological aspect, the presence of large numbers of nearly identical binding sites in repetitive sequences may lead to wrong conclusions about intrinsic binding preferences of TF as illustrated by the spacing analysis STAT1 tandem motifs. Therefore, ChIP-seq data should be analyzed independently within repetitive and non-repetitive sequences.", "Early diagnosis of sepsis is a difficult problem for intensivists and new biomarkers for early diagnosis have been difficult to come by. Here we discuss the potential of adapting a technology from the electronics industry, surface acoustic wave (SAW) sensors, for diagnosis of multiple markers of sepsis in real time, using non-invasive assays of exhaled breath condensate. The principles and advantages of the SAW technology are reviewed as well as a proposed plan for adapting this flexible technology to early sepsis detection.", "Huntington disease (HD) is a dominantly inherited disorder caused by a CAG expansion mutation in the huntingtin (HTT) gene, which results in the HTT protein that contains an expanded polyglutamine tract. The adult form of HD exhibits a late onset of the fully symptomatic phase. However, there is also a long presymptomatic phase, which has been increasingly investigated and recognized as important for the disease development. Moreover, the juvenile form of HD, evoked by a higher number of CAG repeats, resembles a neurodevelopmental disorder and has recently been the focus of additional interest. Multiple lines of data, such as the developmental necessity of HTT, its role in the cell cycle and neurogenesis, and findings from pluripotent stem cells, suggest the existence of a neurodevelopmental component in HD pathogenesis. Therefore, we discuss the early molecular pathogenesis of HD in pluripotent and neural stem cells, with respect to the neurodevelopmental aspects of HD.", "BACKGROUND: Non-invasive prenatal testing (NIPT) by massively parallel sequencing is a useful clinical test for the detection of common fetal aneuploidies. While the accuracy of aneuploidy detection can approach 100%, results discordant with the fetus are occasionally reported. In this study we investigated the basis of a discordant T21 positive and T18 negative NIPT result associated with a T18 fetus confirmed by karyotyping.METHODS: Massively parallel sequencing was used to detect fetal DNA in maternal circulating plasma. The parental origin and nature of the fetal and placental aneuploidies were investigated by quantitative fluorescent PCR of short tandem repeat (STR) sequences and by copy number variation (CNV) sequencing.RESULTS: There was no evidence of T21 maternal mosaicism, T21 microchimerism or a vanishing twin to explain the discordant NIPT result. However, examination of multiple placental biopsies showed both T21 and T18 mosaicism, including one confined region with a significantly higher proportion of T21 cells. Based on fetal DNA fractions and average mosaicism levels, the effective T21 and T18 fetal DNA fractions should have been sufficient for the detection of both trisomies.CONCLUSIONS: In this pregnancy, we speculate that confined placental region(s) with higher proportions of T21 cells were preferentially releasing fetal DNAs into the maternal circulation. This study highlights placental mosaicism as a significant risk factor for discordant NIPT results.", "OBJECTIVE: To investigate the inhibitory effects of dasatinib on proliferation, function, and signaling events on CD8+T cells.MATERIALS AND METHODS: Carboxyfluorescein diacetate succinimidyl ester and 5-bromo-2-deoxyuridine were used to detect proliferation and cell cycle of CD8+T cells treated with dasatinib, respectively. Frequency and function of viral and leukemia-antigen-specific CD8+T cells from healthy donors were measured by tetramer staining and ELISPOT assay. Western blotting analysis was performed to detect T-cell receptor (TCR), nuclear factor kappa B (NF-kappaB) and Src signaling events in T cells treated with dasatinib or imatinib.RESULTS: Dasatinib inhibited proliferation of CD8+T cells in a dose-dependent manner, which was associated with lower secretion of interferon-gamma and granzyme B, as well as with arrest of CD8+T cells in the G0/G1 phase of cell cycle. Inhibition of CD8+T cells was proven for blood samples from a patient under dasatinib medication when compared with their T-cell status without dasatinib. Western blotting confirmed that these effects were mediated through downregulation of the phosphorylation level of molecules from the TCR and the NF-kappaB signaling transduction cascade. Dasatinib proved to be more potent than imatinib on Src and TCR signaling events in Jurkat T cells.CONCLUSION: Our study demonstrated that dasatinib impaired proliferation and function of CD8+T cells via TCR and NF-kappaB signaling events without inducing apoptosis. Therefore, dasatinib might alter the graft-vs-leukemia effect and the graft-vs-host disease after allogeneic stem cell transplantation sustained by CD8+T cells. Dasatinib might also be used as a novel immunosuppressant agent.", "BACKGROUND: Calcitonin gene-related peptide (CGRP) is a validated target for the treatment of episodic migraine. Here we assess the safety, tolerability, and efficacy of TEV-48125, a monoclonal anti-CGRP antibody, in the preventive treatment of high-frequency episodic migraine.METHODS: In this multicentre, randomised, double-blind, placebo-controlled, phase 2b study, we enrolled men and women (aged 18-65 years) from 62 sites in the USA who had migraine headaches 8-14 days per month. Using a randomisation list generated by a central computerised system and an interactive web response system, we randomly assigned patients (1:1:1; stratified by sex and use of concomitant preventive drugs) after a 28 day run-in period to three 28 day treatment cycles of subcutaneous 225 mg TEV-48125, 675 mg TEV-48125, or placebo. Investigators, patients, and the funder were blinded to treatment allocation. Patients reported headache information daily using an electronic diary. Primary endpoints were change from baseline in migraine days during the third treatment cycle (weeks 9-12) and safety and tolerability. The secondary endpoint was change relative to baseline in headache-days during weeks 9-12. Efficacy endpoints were analysed for the intention-to-treat population. Safety and tolerability were analysed using descriptive statistics. This trial is registered at ClinicalTrials.gov, number NCT02025556.FINDINGS: Between Jan 8, 2014, and Oct 15, 2014, we enrolled 297 participants: 104 were randomly assigned to receive placebo, 95 to receive 225 mg TEV-48125, and 96 to receive 675 mg TEV-48125. The least square mean (LSM) change in number of migraine-days from baseline to weeks 9-12 was -3.46 days (SD 5.40) in the placebo group, -6.27 days (5.38) in the 225 mg dose group, and -6.09 days (5.22) in the 675 mg dose group. The LSM difference in the reduction of migraine-days between the placebo and 225 mg dose groups was -2.81 days (95% CI -4.07 to -1.55; p<0.0001), whereas the difference between the placebo and 675 mg dose group was -2.64 days (-3.90 to -1.38; p<0.0001). LSM differences in the reduction of headache-days were -2.63 days (-3.91 to -1.34; p<0.0001) between the placebo group and 225 mg dose group and -2.58 days (-3.87 to 1.30; p <0.0001) between the placebo group and the 675 mg dose group. Adverse events occurred in 58 (56%) patients in the placebo group, 44 (46%) patients in the 225 mg dose group, and 57 (59%) patients in the 675 mg dose group; moderate or severe adverse events were reported for 29 (27%) patients, 24 (25%) patients, and 26 (27%) patients, respectively.INTERPRETATION: TEV-48125, at doses of 225 mg and 675 mg given once every 28 days for 12 weeks, was safe, well tolerated, and effective as a preventive treatment of high-frequency episodic migraine, thus supporting advancement of the clinical development programme to phase 3 clinical trials.FUNDING: Teva Pharmaceuticals.", "The recent report of positive results from a Phase IIa clinical trial of PBT2, a novel drug that targets amyloid-beta-metal interactions, underscores the value of abnormal transition metal metabolism as a potential therapeutic target in Alzheimer's disease. The Metals Hypothesis of Alzheimer's disease is based upon observations of the precipitation of amyloid-beta by zinc and its radicalization by copper. Both metals are markedly enriched in plaques. The Hypothesis involves the perturbance of these endogenous brain metals, and it does not consider toxicological exposure part of pathogenesis. Recent descriptions of the release of ionic zinc and copper in the cortical glutamatergic synapse, modulating the response of the NMDA receptor, may explain the vulnerability of amyloid-beta to abnormal interaction with these metal ions in the synaptic region leading to aggregation and fostering toxicity. Increasingly sophisticated medicinal chemistry approaches are being tested which correct the abnormalities without causing systemic disturbance of these essential minerals. PBT2, clioquinol and related compounds are ionophores rather than chelators. PBT2 is a once per day, orally bioavailable, second generation 8-OH quinoline derivative of clioquinol. It has performed very satisfactorily in toxicology and Phase I clinical trials and is advancing as a disease-modifying candidate drug for Alzheimer's disease.", "Epigenetic control, which includes DNA methylation and histone modifications, leads to chromatin remodeling and regulated gene expression. Remodeling of chromatin constitutes a critical interface of transducing signals, such as light or nutrient availability, and how these are interpreted by the cell to generate permissive or silenced states for transcription. CLOCK-BMAL1-mediated activation of clock-controlled genes (CCGs) is coupled to circadian changes in histone modification at their promoters. Several chromatin modifiers, such as the deacetylases SIRT1 and HDAC3 or methyltransferase MLL1, have been shown to be recruited to the promoters of the CCGs in a circadian manner. Interestingly, the central element of the core clock machinery, the transcription factor CLOCK, also possesses histone acetyltransferase activity. Rhythmic expression of the CCGs is abolished in the absence of these chromatin modifiers. Here we will discuss the evidence demonstrating that chromatin remodeling is at the crossroads of circadian rhythms and regulation of metabolism and cellular proliferation.", "CD4+CD25+ regulatory T cells (Tregs) can influence various immune responses. Little is known about the effects of the Abl/Src kinase inhibitor dasatinib on Tregs which regulate anti-tumor/leukaemia immune responses. The present study demonstrated that dasatinib inhibited proliferation of Tregs and CD4+CD25- T cells in a dose-dependent manner, which was associated with the decreased production of corresponding cytokines. Treatment of Tregs with dasatinib inhibited the suppressive capacity of Tregs. The mechanisms of this inhibition included arrest of cells in the G0/G1 phase of cell cycle, down-regulation of the transcription factor forkhead box P3, glucocorticoid-induced tumour necrosis factor receptor and the cytotoxic T lymphocyte associated protein 4 as well as inhibition of signaling events through Src and nuclear factor kappaB. Dasatinib showed an inhibitory effect on the proliferation and function of both Tregs and CD4+CD25- T cells at therapeutically relevant concentrations of the drug. Clinical administration of dasatinib might influence not only the graft-versus-leukaemia effect but also the graft-versus-host-disease in patients receiving dasatinib after allogeneic stem cell transplantation and/or donor lymphocytes infusion as the function of both Tregs and effector T cells are hampered in a similar way by dasatinib.", "The \"hygiene hypothesis\" is a theory try to explain the dramatic increases in the prevalence of autoimmune and allergic diseases over the past two to three decades in developed countries. According to this theory, reduced exposure to parasites and microorganisms in childhood is the main cause for the increased incidences of both T helper 1 (Th1)-mediated autoimmunity and Th2-mediated allergy. In this study, we investigated the impact of Schistosoma japonicum infection on the allergic airway inflammation induced by repeated intracheal inoculations of house dust mites (HDM), which is a Th17 and neutrophils dominant murine asthma model, mimicking severe asthma. We found that S. japonicum infection downregulated airway hyperresponsiveness. The infiltrating cells, Th17 and Th2 effector cytokines in the bronchoalveolar lavage (BAL) fluids and lungs were significantly reduced in the infected mice. Our findings indicated that S. japonicum infection was able to effectively inhibit host's allergic airway inflammation, which may be related to the upregulated Treg cells upon infection. To our knowledge, it is the first study to reveal the impact of S. japonicum infection on house dust mite induced severe asthma. More in depth investigation is need to elucidate the underlying mechanisms.", "Fanconi anemia (FA), an autosomal recessive disorder characterized by a progressive pancytopenia associated with congenital anomalies and high predisposition to malignancies, is a genetically and clinically heterogeneous disease. At least eight complementation groups (FA-A to FA-H) have been identified. Previously, we studied mutations of the FANCA gene, responsible for FA-A, and found pathogenic mutations in 12 of 15 unclassified Japanese FA patients. Here, we further studied an additional 5 FA patients for sequence alterations of the FANCA gene and found pathogenic mutations in 2 of them. We further analyzed mutations of the FANCC and FANCG genes, responsible for FA-C and FA-G, respectively, in the remaining 6 FA patients. Although there was no alterations in the FANCC gene in these 6 patients, two novel mutations of the FANCG gene, causing aberrant RNA splicing, were detected in 2 FA patients. One was a base substitution from G to C of the invariant GT dinucleotides at the splice donor site of intron 3, resulting in the skipping of exon 3, as well as the skipping of exons 3 and 4. The other was a base substitution from C to T in exon 8, creating a nonsense codon (Q356X). This mutation resulted in the exclusion of a sequence of 18 nucleotides containing the mutation from the mRNA, without affecting the splicing potential of either the authentic or the cryptic splice donor site. Collectively, 14 of the 20 unclassified Japanese FA patients belong to the FA-A group, 2 belong to the FA-G group, and none belongs to the FA-C group.", "Dasatinib is an oral small molecule inhibitor of Abl and Src family tyrosine kinases (SFK), including p56(Lck) (Lck). Given the central importance of Lck in transmitting signals from the T-cell receptor (TCR) signaling complex and the potent ability of dasatinib to inhibit Lck activity, we hypothesized this agent could provide a novel route of immunomodulation via targeted inhibition of antigen-induced signaling. Herein, we show that dasatinib inhibits TCR-mediated signal transduction, cellular proliferation, cytokine production, and in vivo T-cell responses. However, dasatinib-mediated inhibition does not induce apoptosis because the effect is reversible or may be overcome by signals bypassing the TCR, such as phorbol ester. Signal transduction and proliferative responses via IL-2 remain essentially unperturbed, suggesting that dasatinib displays specificity for TCR signaling. In addition, dasatinib combined with cyclosporine A or rapamycin led to a much more potent inhibition of T-cell activation, suggesting that targeted inhibition of Lck could be a useful adjunct for enhanced immunomodulation. In combination with currently available immunomodulatory agents, SFK inhibition could potentially increase immunomodulatory efficacy while minimizing toxicity of individual agents.", "Dasatinib, a dual tyrosine kinase inhibitor, is known to modulate or suppress T-cell activation and proliferation. We report a series of 8 patients who developed chronic peripheral lymphocytosis, identified as natural killer cells or natural killer/T-cells based on their large granular lymphocyte morphologies and CD16(+), CD56(+), CD3(-) or CD3(+) immunophenotypic profiles, out of 18 patients receiving dasatinib therapy. All cases that developed large granular lymphocyte lymphocytosis achieved optimal molecular response (8/8 in large granular lymphocyte(+) patients vs. 3/10 in large granular lymphocyte(-) patients, p=0.002). A (51)Cr release assay demonstrated that natural killer cell cytotoxicity has been enhanced in a case of large granular lymphocyte lymphocytosis compared to normal healthy donors, and that natural killer cell cytotoxicity in dasatinib-responders was superior to that in non-responders. In summary, the present study suggests that natural killer or natural killer/T cell lineage large granular lymphocyte lymphocytosis develops in association with dasatinib therapy and that large granular lymphocyte might have a therapeutic effect on Ph(+) leukemic cells.", "The sarcoplasmic reticulum (SR) plays a critical role in mediating cardiac contractility and its function is abnormal in the diabetic heart. However, the mechanisms underlying SR dysfunction in the diabetic heart are not clear. Because protein phosphorylation regulates SR function, this study examined the phosphorylation state of phospholamban, a key SR protein that regulates SR calcium (Ca2+) uptake in the heart. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (STZ; 65 mg kg(-1) i.v.), and the animals were humanely killed after 6 weeks and cardiac SR function was examined. Depressed cardiac performance was associated with reduced SR Ca2+-uptake activity in diabetic animals. The reduction in SR Ca2+-uptake was consistent with a significant decrease in the level of SR Ca2+-pump ATPase (SERCA2a) protein. The level of phospholamban (PLB) protein was also decreased, however, the ratio of PLB to SERCA2a was increased in the diabetic heart. Depressed SR Ca2+-uptake was also due to a reduction in the phosphorylation of PLB by the Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA). Although the activities of the SR-associated Ca2+-calmodulin-dependent protein kinase (CaMK), cAMP-dependent protein kinase (PKA) were increased in the diabetic heart, depressed phosphorylation of PLB could partly be attributed to an increase in the SR-associated protein phosphatase activities. These results suggest that there is increased inhibition of SERCA2a by PLB and this appears to be a major defect underlying SR dysfunction in the diabetic heart.", "Dasatinib (BMS-354825) is a Src/ABL tyrosine kinase inhibitor currently approved for the treatment of chronic myeloid leukemia. Dasatinib has increased potency against ABL compared to the current therapy imatinib, and is effective in many cases where disease is resistant to imatinib. Dasatinib also inhibits many Src-family tyrosine kinases. We have demonstrated in this study that dasatinib is able to block the function of normal human T-lymphocytes in vitro at clinically relevant concentrations. T-cell functions including proliferation, activation and cytokine production were all uniformly inhibited in the presence of dasatinib. We also demonstrated inhibition of TCR signalling through Src-family kinase LCK, and predicted that inhibition of LCK and other kinases involved in T-cell signalling by dasatinib is responsible for the suppression of T-cell function. These findings raise the concern about potential T-cell inhibition in patients taking dasatinib, and suggest a possible application for the treatment of T-cell mediated immune disorders.", "The incidence and rate of recurrence of bladder cancer is high, particularly in developed countries, however current methods for diagnosis are limited to detecting high-grade tumours using often invasive methods. A panel of biomarkers to characterise tumours of different grades that could also distinguish between patients exhibiting the disease with first incidence or recurrence could be useful for bladder cancer diagnostics. In this study, potential metabolic biomarkers have been discovered through mass spectrometry based metabolomics of urine. Pre-treatment urine samples were collected from 48 patients diagnosed of urothelial bladder cancer. Patients were followed-up through the hospital pathological charts to identify whether and when the disease recurred or progressed. Subsequently, they were classified according to whether or not they suffered a tumour recurrence (recurrent or stable) as well as their risk group according to tumour grade and stage. Identified metabolites have been analysed in terms of disease characteristics (tumour stage and recurrence) and have provided an insight into bladder cancer progression. Using both liquid chromatography and capillary electrophoresis-mass spectrometry, a total of 27 metabolite features were highlighted as significantly different between patient groups. Some, for example histidine, phenylalanine, tyrosine and tryptophan have been previously linked with bladder cancer, however until now their connection with bladder cancer progression has not been previously reported. The candidate biomarkers revealed in this study could be useful in the clinic for diagnosis of bladder cancer and, through characterising the stage of the disease, could also be useful in prognostics.", "Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Mutations in related RNA-binding proteins TDP-43, FUS/TLS and TAF15 have been connected to ALS. These three proteins share several features, including the presence of a bioinformatics-predicted prion domain, aggregation-prone nature in vitro and in vivo and toxic effects when expressed in multiple model systems. Given these commonalities, we hypothesized that a related protein, EWSR1 (Ewing sarcoma breakpoint region 1), might also exhibit similar properties and therefore could contribute to disease. Here, we report an analysis of EWSR1 in multiple functional assays, including mutational screening in ALS patients and controls. We identified three missense variants in EWSR1 in ALS patients, which were absent in a large number of healthy control individuals. We show that disease-specific variants affect EWSR1 localization in motor neurons. We also provide multiple independent lines of in vitro and in vivo evidence that EWSR1 has similar properties as TDP-43, FUS and TAF15, including aggregation-prone behavior in vitro and ability to confer neurodegeneration in Drosophila. Postmortem analysis of sporadic ALS cases also revealed cytoplasmic mislocalization of EWSR1. Together, our studies highlight a potential role for EWSR1 in ALS, provide a collection of functional assays to be used to assess roles of additional RNA-binding proteins in disease and support an emerging concept that a class of aggregation-prone RNA-binding proteins might contribute broadly to ALS and related neurodegenerative diseases.", "The prokaryotic genetic code has been influenced by directional mutation pressure (GC/AT pressure) that has been exerted on the entire genome. This pressure affects the synonymous codon choice, the amino acid composition of proteins and tRNA anticodons. Unassigned codons would have been produced in bacteria with extremely high GC or AT genomes by deleting certain codons and the corresponding tRNAs. A high AT pressure together with genomic economization led to a change in assignment of the UGA codon, from stop to tryptophan, in Mycoplasma.", "BACKGROUND: Solid tumors are angiogenesis dependent, and elevated levels of proangiogenic cytokines have been reported in a variety of histologies. Endostatin is an antiangiogenic fragment of the basement membrane protein, collagen XVIII. Because antiangiogenic protein fragments may be generated by tumor-derived proteases, the authors sought to determine whether circulating levels of endostatin were elevated in patients with localized soft tissue sarcoma.METHODS: The authors analyzed preoperative serum levels of endostatin, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) in 25 patients (14 males and 11 females; mean age, 44 years) with soft tissue sarcoma. For each serum sample, two aliquots were assayed in duplicate using a competitive enzyme immunoassay. Serum levels were compared with levels from 34 age-matched and gender-matched volunteer blood donors.RESULTS: Endostatin levels were significantly higher in sera from sarcoma patients than in sera from healthy controls (43.0 ng/mL vs. 25.8 ng/mL, respectively; P = 0.0002; Mann-Whitney U test). Significant elevations also were noted in VEGF and bFGF levels (P = 0.0002 and P = 0.0001, respectively). Furthermore, endostatin levels > 2 standard deviations above the control mean (55 ng/mL) were associated with an increased risk of tumor recurrence after resection (P = 0.047; log-rank test).CONCLUSIONS: Serum endostatin, VEGF, and bFGF levels are elevated in patients with soft tissue sarcoma. Elevated endostatin levels appear to be associated with tumor aggressiveness. The role of these cytokines in sarcoma angiogenesis and as potential targets for therapy warrants further study.", "PURPOSE: The dual BCR-ABL/SRC kinase inhibitor dasatinib entered the clinic for the treatment of chronic myeloid leukemia and Ph+ acute lymphoblastic leukemia. Because SRC kinases are known to play an important role in physiologic T-cell activation, we analyzed the immunobiological effects of dasatinib on T-cell function. The effect of dasatinib on multiple T-cell effector functions was examined at clinically relevant doses (1-100 nmol/L); the promiscuous tyrosine kinase inhibitor staurosporine was used as a comparator.EXPERIMENTAL DESIGN: Purified human CD3+ cells and virus-specific CD8+ T cells from healthy blood donors were studied directly ex vivo; antigen-specific effects were confirmed in defined T-cell clones. Functional outcomes included cytokine production (interleukin-2, IFN gamma, and tumor necrosis factor alpha), degranulation (CD107a/b mobilization), activation (CD69 up-regulation), proliferation (carboxyfluorescein diacetate succinimidyl ester dilution), apoptosis/necrosis induction, and signal transduction.RESULTS: Both dasatinib and staurosporine inhibited T-cell activation, proliferation, cytokine production, and degranulation in a dose-dependent manner. Mechanistically, this was mediated by the blockade of early signal transduction events and was not due to loss of T-cell viability. Overall, CD4+ T cells seemed to be more sensitive to these effects than CD8+ T cells, and naïve T cells more sensitive than memory T-cell subsets. The inhibitory effects of dasatinib were so profound that all T-cell effector functions were shut down at therapeutically relevant concentrations.CONCLUSION: These findings indicate that caution is warranted with use of this drug in the clinical setting and provide a rationale to explore the potential of dasatinib as an immunosuppressant in the fields of transplantation and T-cell-driven autoimmune diseases.", "The worldwide epidemic of obesity and type 2 diabetes has greatly increased interest in the biology and physiology of adipose tissues. Adipose (fat) cells are specialized for the storage of energy in the form of triglycerides, but research in the last few decades has shown that fat cells also play a critical role in sensing and responding to changes in systemic energy balance. White fat cells secrete important hormone-like molecules such as leptin, adiponectin, and adipsin to influence processes such as food intake, insulin sensitivity, and insulin secretion. Brown fat, on the other hand, dissipates chemical energy in the form of heat, thereby defending against hypothermia, obesity, and diabetes. It is now appreciated that there are two distinct types of thermogenic fat cells, termed brown and beige adipocytes. In addition to these distinct properties of fat cells, adipocytes exist within adipose tissue, where they are in dynamic communication with immune cells and closely influenced by innervation and blood supply. This review is intended to serve as an introduction to adipose cell biology and to familiarize the reader with how these cell types play a role in metabolic disease and, perhaps, as targets for therapeutic development.", "Parkinson disease psychosis (PDP) is a common phenomenon in Parkinson disease (PD) patients treated with dopaminergic drugs, and is associated with high morbidity and mortality. It also correlates with depression and dementia, and can contribute to considerable caregiver stress and burnout. While symptoms can be relieved by decreasing doses or number of anti-PD medications, this may lead to an unacceptable worsening of motor function. When general medical or psychiatric conditions have been ruled out, and decreasing dopaminergic agents is not effective in treating psychosis, therapies include atypical antipsychotics, primarily clozapine and quetiapine. Of these, clozapine is effective but is associated with a poor side-effect profile and the necessity for frequent blood draws. Clinicians prefer quetiapine for its theoretically better safety profile, although there is no evidence for efficacy in treating psychosis. All atypical antipsychotics are associated with increased mortality in this patient population. Cholinesterase inhibitors can ameliorate psychosis symptoms. The serotonin 5-HT2A receptor inverse agonist pimavanserin was recently approved by the US FDA for the treatment of PDP and may prove to be a more targeted therapy without the downsides of atypical antipsychotics.", "OBJECTIVE: Dasatinib (BMS-354825) is a small molecule Src/Abl tyrosine kinase inhibitor approved for the treatment of chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Members of the Src family of kinases are involved in the induction of innate and adaptive immunity. The purpose of this study was to evaluate the inhibitory action of dasatinib on antigen-specific CD8(+) and CD4(+) T-cell function, as well as natural killer (NK) cell cytotoxicity.MATERIALS AND METHODS: To assess dasatinib-mediated inhibition of antigen-specific T-cell proliferation, transgenic CD4(+) and CD8(+) T cells specific for ovalbumin were utilized. Endogenous CD4(+) and CD8(+) T-cell responses were determined following immunization of dasatinib-treated or control mice with a nonreplicating recombinant virus. Clearance of the RMA-S cells, a major histocompatibility complex (MHC) class I-deficient thymoma sensitive to NK-cell lysis, was analyzed in mice undergoing dasatinib treatment.RESULTS: Dasatinib inhibited antigen-specific proliferation of murine CD4(+) and CD8(+) transgenic T cells in vitro and in vivo. Endogenous antigen-specific helper T-cell recall responses and induction of T-cell-mediated cytotoxicity following immunization with a nonreplicating recombinant virus were also inhibited. So to was the ability of NK cells to eliminate MHC class I-deficient cells in vivo.CONCLUSIONS: These findings suggest that dasatinib has the potential to modulate the host immune response at clinical doses and highlights scope for off target applications, e.g., therapeutic immunosuppression in the context of autoimmune pathogenesis and allogeneic tissue transplantation." ]
1,651
[ "The classical functions of p53 protein are those related to its role on DNA damage, cell growth arrest, senescence and apoptosis. For this reason it is called 'the guardian of the genome' and is considered one of the most important players in the development of cancer. However, more recently it has been show that p53 is not only involved in cancer, but also in ageing. p53 is stimulated by stress, which in turn results in the activation of a wide range of transcriptional targets. Low-intensity stress will activate p53 in a manner which results in antioxidant response, thus protecting against ageing because of its antioxidant function. On the contrary, high-intensity activation of p53 will result in an increase of oxidative stress by activation of p53-mediated pro-oxidant targets, thus increasing the rate of ageing, but protecting against cancer.", "Insulin resistance syndrome (IRS), also termed syndrome X, is a distinctive constellation of risk factors for the development of type 2 diabetes mellitus and cardiovascular disease. The syndrome's hallmarks are glucose intolerance, hyperinsulinemia, a characteristic dyslipidemia (high triglycerides; low high-density lipoprotein cholesterol, and small, dense low-density lipoprotein cholesterol), obesity, upper-body fat distribution, hypertension, and increased prothrombotic and antifibrinolytic factors. Insulin resistance, caused by a complex of genetic and environmental influences, is now recognized not just as a mechanism contributing to hyperglycemia in type 2 diabetes, but also as an early metabolic abnormality that precedes the development of overt diabetes. The clinical definition of insulin resistance is the impaired ability of insulin (either endogenous or exogenous) to lower blood glucose. In some insulin-resistant individuals, insulin secretion will begin to deteriorate under chronic stress (glucose toxicity) and overt diabetes will result. If not, individuals will remain hyperinsulinemic, with perhaps some degree of glucose intolerance, together with other hallmarks of the IRS. The statistical correlation between hypertension and impaired glucose tolerance is clear, although the mechanism is not yet fully understood. Epidemiologic evidence of insulin resistance as an independent risk factor for atherosclerosis and coronary heart disease (CHD) completed the evolving concept of IRS as the common soil for the development of both diabetes and CHD. No single laboratory test exists for diagnosis of IRS. Rather, IRS remains a clinically evident syndrome that can be suspected on the basis of physical and laboratory findings. This identifies individual patients whom the clinician should screen for associated comorbid conditions, aggressively control cardiovascular risk factors, and tailor drug therapy for optimal benefit. This article provides practical guidelines to achieve these goals and specific strategies to ameliorate cardiovascular and metabolic risk in the IRS.", "After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related to advanced stages of tumour progression and invasiveness. But the key roles of these proteins in crosstalk with the Hippo and liver kinase B1 (LKB1)-AMPK pathways and in epithelial function and proliferation indicate that they may also be associated with the early stages of tumorigenesis. For example, deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.", "BACKGROUND: Regulated gene expression controls organismal development, and variation in regulatory patterns has been implicated in complex traits. Thus accurate prediction of enhancers is important for further understanding of these processes. Genome-wide measurement of epigenetic features, such as histone modifications and occupancy by transcription factors, is improving enhancer predictions, but the contribution of these features to prediction accuracy is not known. Given the importance of the hematopoietic transcription factor TAL1 for erythroid gene activation, we predicted candidate enhancers based on genomic occupancy by TAL1 and measured their activity. Contributions of multiple features to enhancer prediction were evaluated based on the results of these and other studies.RESULTS: TAL1-bound DNA segments were active enhancers at a high rate both in transient transfections of cultured cells (39 of 79, or 56%) and transgenic mice (43 of 66, or 65%). The level of binding signal for TAL1 or GATA1 did not help distinguish TAL1-bound DNA segments as active versus inactive enhancers, nor did the density of regulation-related histone modifications. A meta-analysis of results from this and other studies (273 tested predicted enhancers) showed that the presence of TAL1, GATA1, EP300, SMAD1, H3K4 methylation, H3K27ac, and CAGE tags at DNase hypersensitive sites gave the most accurate predictors of enhancer activity, with a success rate over 80% and a median threefold increase in activity. Chromatin accessibility assays and the histone modifications H3K4me1 and H3K27ac were sensitive for finding enhancers, but they have high false positive rates unless transcription factor occupancy is also included.CONCLUSIONS: Occupancy by key transcription factors such as TAL1, GATA1, SMAD1, and EP300, along with evidence of transcription, improves the accuracy of enhancer predictions based on epigenetic features.", "The most common chromosomal abnormalities in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are -5/del(5q) and -7/del(7q). When -5/del(5q) and -7/del(7q) coexist in patients, a poor prognosis is typically associated. Given that -5/del(5q) and/or -7/del(7q) often are accompanied with additional recurrent chromosomal alterations, genetic change(s) on the accompanying chromosome(s) other than chromosomes 5 and 7 may be important factor(s) affecting leukemogenesis and disease prognosis. Using an integrated analysis of karyotype, FISH and array CGH results in this study, we evaluated the smallest region of overlap (SRO) of chromosomes 5 and 7 as well as copy number alterations (CNAs) on the other chromosomes. Moreover, the relationship between the CNAs and del(5q) and -7/del(7q) was investigated by categorizing the cases into three groups based on the abnormalities of chromosomes 5 and 7 [group I: cases only with del(5q), group II: cases only with -7/del(7q) and group III: concurrent del(5q) and del(7q) cases]. The overlapping SRO of chromosome 5 from groups I and III was 5q31.1-33.1 and of chromosome 7 from groups II and III was 7q31.31-q36.1. A total of 318 CNAs were observed; ~ 78.3% of them were identified on chromosomes other than chromosomes 5 and 7, which were defined as 'other CNAs'. Group III was a distinctive group carrying the most high number (HN) CNAs, cryptic CNAs and 'other CNAs'. The loss of TP53 was highly associated with del(5q). The loss of ETV6 was specifically associated with group III. These CNAs or genes may play a secondary role in disease progression and should be further evaluated for their clinical significance and influence on therapeutic approaches in patients with MDS/AML carrying del(5q) and/or -7/del(7q) in large-scale, patient population study.", "Analysis of lineage segregation during mammalian neural crest development has not been sufficiently performed due to technical difficulties. In the present study, therefore, we established a clonal culture system of mouse neural crest cells in order to analyze developmental potentials of individual neural crest cells and their patterns of lineage segregation. 12-O-Tetradecanoylphorbol-13-acetate (TPA) and cholera toxin (CT) were applied to culture medium to trigger melanogenic differentiation of mouse neural crest cells. Three morphologically distinct types of clones were observed. (1) \"Pigmented clones\" consisted of melanocytes only, suggesting that the clone-forming cells were committed to the melanogenic lineage. These clones were observed only in the presence of TPA and CT. The proportion of this type of clone (8%) was much lower than that of the equivalent type of clone in quail trunk neural crest (40-60%; Sieber-Blum and Cohen, 1980, Dev. Biol. 80, 96-106). It therefore appears that the segregation pattern to the melanogenic lineage during mouse neural crest development in vitro differs quantitatively from that in the quail. (2) \"Mixed clones\" consisted of pigmented and unpigmented cells. Like pigmented clones, they were observed only in the presence of TPA and CT. The clones contained up to four types of cells: melanocytes, S100-positive cells (Schwann cells or melanogenic precursor cells), serotonin (5-HT)-positive autonomic neuron-like cells, and substance P (SP)-immunoreactive sensory neuron-like cells. Thus, at least some mixed clone-forming cells are pluripotent. (3) Two classes of \"unpigmented clones\" were observed that consisted of unpigmented cells only. These clones developed in the presence and absence of TPA and CT. Unpigmented clones in one class contained up to three types of cells as well as other, as yet unidentified cells: S100-, 5-HT-, and SP-positive cells. This observation suggests that at least some of these clones originate from cells with a partially restricted developmental potential. Clones in another class consisted of S100- or SP-positive cells only. These clones might be derived from cells restricted to the SP-positive neuronal cell or melanocyte/Schwann cell lineage. The present data indicate that at initiation of migration, the mouse neural crest of the trunk region is a heterogeneous population of cells containing pluripotent cells, cells with a restricted developmental potential, and cells apparently committed to the melanogenic cell lineage.", "Drosophila Discs large (Dlg), Scribble (Scrib) and Lethal giant larvae (Lgl) act in concert as regulators of epithelial polarity, and human homologs of Drosophila dlg, scrib, and lgl are cancer-associated genes. LLGL1, LLGL2, and LLGL3/STXBP5 genes, encoding LGL1, LGL2, and LGL3/Tomosyn, respectively, are human homologs of Drosophila lgl gene. Here, we identified and characterized LLGL4 (also known as STXBP5L) gene encoding LGL4 protein, by using bioinformatics. Uncharacterized human KIAA1006 cDNA (AB023223) was derived from human LLGL4 gene. LLGL4 mRNA was expressed in kidney, brain hippocampus, and also in lung carcinoid, and germ cell tumors. LLGL4 gene, consisting of 28 exons, was mapped to human chromosome 3q13.33. Mouse A830015P08Rik cDNA (NM_172440.1) was a 3'-truncated partial Llgl4 cDNA. Nucleotide sequence of full-length mouse Llgl4 cDNA was determined in silico by assembling A830015P08Rik cDNA, BU609516 EST and last two exons of Llgl4 gene within mouse genome clone RP24-174G4 (AC118742.3). Human LGL4 showed 95.8% total-amino-acid identity with mouse Lgl4, and 68.4% total-amino-acid identity with human LGL3. LGLH1 domain (codon 1-11 of LGL4), LGLH2 domain (codon 52-98) and LGLH3 domain (codon 994-1054) were identified as novel conserved regions among LGL family members. LGL1 and LGL2 consist of LGLH1, LGLH2, LGLH3 domains and five WD40 repeats, while LGL3 and LGL4 consist of LGLH1, LGLH2, LGLH3 domains, five WD40 repeats and the C-terminal Syntaxin-binding SNARE domain. This is the first report on identification and characterization of human LLGL4 and mouse Llgl4 genes.", "BACKGROUND: Advanced diagnostic imaging has provided tremendous benefits; however, increased use of ionizing radiation modalities such as cranial computed tomography (CT) may be associated with an increased risk of developing central nervous system tumors.METHODS: A literature review identified studies published for more than the last 50 years from 1968 to 2018 that explored the association between head CT scans and developing central nervous system tumors in pediatrics. We reviewed seven studies that described and analyzed the risk of brain tumors.RESULTS: A positive correlation between exposure to CT scans and developing central nervous system tumors was evident in all cohorts. The strength of the association varied across the studies. Exclusion of patients with predisposing factors to central nervous system tumors was examined in four studies with a decreased risk to develop central nervous system tumors noted in three studies. Two studies reported nonsignificant reduction in the excess relative risk per milliGray of brain dose after adjusting for predisposing factors, whereas the reduction was significant in one study. The frequency of CT exposure was proportional to the risk of developing tumors in two studies although not significantly maintained in two other studies. Gender had no significant effect on the central nervous system tumor risk. The calendar year at the time of imaging showed decreasing risk in those exposed to CT in more recent years compared with prior decades.CONCLUSIONS: Prospective epidemiologic studies are needed to examine the precise carcinogenic effect of exposure to ionizing radiation and help tailor further preventive measures.", "Structural variations between great ape and human chromosomes due to pericentric inversions and translocations have created at apparent controversy during the reconstruction of hominoid phylogeny. One such variation involves human chromosome 5, which is equivalent to chromosome 4 in chimpanzee and orangutan but equivalent to segments of chromosomes 4 and 19 in gorilla. Obviously, neither banding patterns nor centromeric indecies in these chromosomes match. The pathological condition of cri du chat syndrome is due to the cytogenetic deletion of band p15.2 of chromosome 5. Is this region involved during pericentric inversion of apes chromosome 4? We used a human cosmid probe for cri du chat syndrome as a phylogenetic marker in search of the aforementioned question. The genomic sequences for cri du chat syndrome region were conserved in chimpanzee (PTR4) and orangutan (PPY4) but displayed a positional divergence in gorilla on chromosome 19(GG019). In addition, we used a human cosmid DNA probe for DiGeorge syndrome which is located on chromosome 22 band q11.2 and was conserved within band 23q11.2 in apes. The loci specific human genomic probes may help to describe the inversions and translocations for other chromosomes.", "OBJETIVO: Determinamos la validez de la técnica antigénica rápida (TAR) OSOM StrepA Genzyme en el diagnóstico de la faringitis aguda causada por estreptococo betahemolítico del grupo A (EBHGA).DISEÑO: Estudio de pruebas diagnósticas.EMPLAZAMIENTO: Equipo urbano de atención primaria.PARTICIPANTES: Todos los pacientes mayores de 14 años atendidos en 6 consultas con síntomas de odinofagia y 2 o más de los criterios de Centor (exudado faringoamigdalar, adenopatías laterocervicales dolorosas, ausencia de tos y/o historia o presencia de fiebre).MEDICIONES PRINCIPALES: A todos los pacientes se les tomó una muestra faringoamigdalar con 2 hisopos, uno para TAR y otro que fue remitido al servicio de microbiología para realizar cultivo.RESULTADOS: Fueron evaluables 182 sujetos, con una edad media de 30,6 ± 12,1 años, 116 mujeres (63,7%). Presentaron 2, 3 y 4 criterios de Centor 63, 83 y 36 sujetos, respectivamente. El cultivo fue positivo en 102 casos (56%), observándose infección por EBHGA en 40 pacientes (22%; intervalo de confianza [IC] del 95%, 21,2-22,8); en 26 casos se aisló estreptococo del grupo C (14,3%). La infección por EBHGA presentó una mayor prevalencia entre los pacientes con 4 criterios (un 38,9% frente a un 25,3% observado con 3 criterios y frente al 7,9% con 2 criterios; p < 0,001). La TAR tuvo una sensibilidad del 95%, una especificidad del 93%, un valor predictivo positivo del 79,2% y un valor predictivo negativo del 98,5%.CONCLUSIONES: Estos resultados demuestran la utilidad de la TAR para el diagnóstico de la faringitis estreptocócica. Su uso debería extenderse a todas las consultas de atención primaria.", "Although human cancers have complex genotypes and are genomically unstable, they often remain dependent on the continued presence of single-driver mutations-a phenomenon dubbed \"oncogene addiction.\" Such dependencies have been demonstrated in mouse models, where conditional expression systems have revealed that oncogenes able to initiate cancer are often required for tumor maintenance and progression, thus validating the pathways they control as therapeutic targets. Here, we implement an integrative approach that combines genetically defined mouse models, transcriptional profiling, and a novel inducible RNAi platform to characterize cellular programs that underlie addiction to MLL-AF9-a fusion oncoprotein involved in aggressive forms of acute myeloid leukemia (AML). We show that MLL-AF9 contributes to leukemia maintenance by enforcing a Myb-coordinated program of aberrant self-renewal involving genes linked to leukemia stem cell potential and poor prognosis in human AML. Accordingly, partial and transient Myb suppression precisely phenocopies MLL-AF9 withdrawal and eradicates aggressive AML in vivo without preventing normal myelopoiesis, indicating that strategies to inhibit Myb-dependent aberrant self-renewal programs hold promise as effective and cancer-specific therapeutics. Together, our results identify Myb as a critical mediator of oncogene addiction in AML, delineate relevant Myb target genes that are amenable to pharmacologic inhibition, and establish a general approach for dissecting oncogene addiction in vivo.", "Author information:(1)Cell Cycle and Cancer Genetics, Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.(2)1] Cell Cycle and Cancer Genetics, Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia [2] The Sir Peter MacCallum Department of Oncology, Melbourne, Victoria, Australia.(3)Cell Signaling and Cell Death Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.(4)1] The Sir Peter MacCallum Department of Oncology, Melbourne, Victoria, Australia [2] Translational Research Laboratory, Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.(5)1] Cell Cycle and Cancer Genetics, Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia [2] The Sir Peter MacCallum Department of Oncology, Melbourne, Victoria, Australia [3] Department of Pathology, University of Melbourne, Parkville, Victoria, Australia [4] Department of Molecular Biology and Biochemistry, University of Melbourne, Parkville, Victoria, Australia.", "Recently, we demonstrated that hydrogen peroxide (H2O2) inhibits the internalization of the epidermal growth factor (EGF) receptor and the EGF-induced mono-ubiquitination of EGF receptor pathway substrate clone #15 (Eps15) in fibroblasts. In addition, it was suggested that EGF receptor internalization might be inhibited by H2O2 by inhibition of ubiquitination of proteins involved in endocytosis. Here, we show that H2O2 also inhibits the poly-ubiquitination of the EGF receptor in fibroblasts. Furthermore, recovery of the cells resulted in re-establishment of ubiquitination of both the EGF receptor and Eps15 and coincided with restoration of internalization of those receptors that had bound EGF in the presence of H2O2. In addition, EGF receptor internalization was inhibited by the sulphydryl reagent N-ethylmaleimide (NEM), indicating that intact SH groups might be required for receptor-mediated endocytosis. Furthermore, H2O2 rapidly induced an increase in the cellular ratio of GSSG:GSH (oxidized glutathione:reduced glutathione) and removal of H2O2 resulted in a fast restoration of the ratio of GSSG:GSH. Therefore, these results suggest a relation between the inhibition of internalization ubiquitination and an increase in GSSG:GSH ratio, which strengthens the hypothesis that H2O2 inhibits EGF receptor internalization by an inhibition of ubiquitination of proteins involved in EGF receptor-mediated endocytosis.", "Patients with high low-density lipoprotein cholesterol (LDLC) and asymptomatic high creatine kinase (CK) (>or=250 but <2500 IU/L, 10x the laboratory upper normal limit [UNL]) are often not started on statins or have statins stopped because of concern about myositis-rhabdomyolysis. In the current report, we prospectively examined the hypothesis that asymptomatic patients with high CK (>or=250 but <2500 IU/L) tolerate statins well at doses reducing LDLC to target, less than 100 mg/dL, without development of myalgia-myositis. We assessed outcomes of 3 groups of patients referred to us because of asymptomatic high CK (>or=250 but <2500 IU/L)--1 group (n = 29) on statins at referral and continued on statins, 1 group (n = 20) not on statins and started on statins, and 1 group (n = 19) not on statins and not given statins--all restudied 1 month after entry and then every 3 months. Of the 68 patients, 59 (87%) had CK greater than 1 to 3 times the UNL, 7 (10%) had CK greater than 3 to 5 times the UNL, and 2 (3%) had CK greater than 5 to 10 times the UNL. After 1.2 months of follow-up in 29 statin-->statin patients, median CK fell from 353 to 301 (P = .0018) and was 287 (P = .015) after 4 months. After 1.3 months of follow-up in 20 no statin-->statin patients, median CK fell from 397 to 292 (P = .0094) and was 419 after 4.1 months. After 1.1 months of follow-up in 19 no statin-->no statin patients, median CK fell from 392 to 323 (P = .14) and was 271 (P = .029) after 4.2 months. By repeated-measures analysis, there were no differences in entry CK among the 3 treatment groups; CK fell (P = .04) in the no statin-->no statin patients. Despite high baseline CK (48 patients with CK 1-5x the UNL, 1 with CK 5-10x UNL), no patients during follow-up on statins developed CK greater than 10 times the UNL (2500 IU/L), none discontinued statins or reduced statin dose because of myalgia-myositis, and there was no rhabdomyolysis. High pretreatment CK, particularly 1 to 5 times the UNL, should not be an impediment to start or continue statins to lower LDLC.", "BACKGROUND: Previous reports of suicide risk in patients with anxiety disorders have been inconsistent.METHODS: Using the FDA database, we assessed suicide and suicide attempt risk among patients, participating in recent clinical trials evaluating new anti-anxiety medications, with diagnosis of panic disorder (PD), social anxiety disorder or social phobia (SP), generalized anxiety disorder (GAD), post traumatic stress disorder (PTSD), and obsessive compulsive disorder (OCD).RESULTS: Overall, among 20076 participating anxious patients, 12 committed suicide and 28 attempted suicide. The annual suicide risk rate was 193/100000 patients and annual suicide attempt risk was 1350/100000 patients.LIMITATIONS: Clinical trial data have limited applicability to clinical practice. Participants in clinical trials are a highly selected, nonrepresentative sample of the clinical population. A number of patients never complete clinical trials and thus data are based on a limited sub-sample. These trials were not primarily designed to assess suicide risk.CONCLUSIONS: Suicide risk in patients with anxiety disorders is higher than previously thought. Patients with anxiety disorders warrant explicit evaluation for suicide risk.", "Human Scribble (Scrib) is an evolutionary-conserved cell polarity protein, but its potential role in human cancer is controversial. Herein, we show that Scrib is nearly universally overexpressed in cultured tumor cell lines and genetically disparate cancer patient series compared with matched normal tissues in vivo. Instead of a membrane association seen in normal epithelia, tumor-associated Scrib is mislocalized and found predominantly in the cytosol. Small-interfering RNA silencing of Scrib in model lung adenocarcinoma A549 cells inhibited cell migration in wound-healing assays, suppressed tumor cell invasion across Matrigel-coated inserts, and down-regulated the expression of cell motility markers and mediators of epithelial-mesenchymal transition. These data uncover a previously unrecognized exploitation of Scrib for aberrant tumor cell motility and invasion, thus potentially contributing to disease progression in humans.", "Although postmortem morphological changes in the lateral geniculate nucleus (LGN) have been reported in human amblyopia, LGN function during monocular viewing by amblyopic eyes has not been documented in humans. We used functional magnetic resonance imaging (fMRI) to study monocular visual activation of the LGN in a patient with anisometropic amblyopia. Four normal subjects, a patient with optic neuritis and a patient with anisometropic amblyopia were studied with fMRI at 1.5 T during monocular checkerboard stimulation. Activated areas in the LGN and visual cortex were identified after data processing (motion correction and spatial normalization) with SPM99. In the 4 normal subjects, comparable activation of the LGN and visual cortex was obtained by stimulation of either the right or left eye. In the patient with unilateral optic neuritis, activation of the LGN and visual cortex was markedly decreased when the affected eye was stimulated. Similarly, decreased activation of the LGN as well as the visual cortex by the affected eye was demonstrated in the patient with anisometropic amblyopia. Our preliminary results suggest that activation of the LGN is diminished during monocular viewing by affected eyes in anisometropic amblyopia. fMRI appears to be a feasible method to study LGN activity in human amblyopia.", "Activating mutations in genes of the Ras-mitogen-activated protein kinase (MAPK) pathway occur in approximately 30% of all human cancers; however, mutation of Ras alone is rarely sufficient to induce tumour development. Scribble is a polarity regulator recently isolated from a Drosophila screen for events that cooperate with Ras mutation to promote tumour progression and cell invasion. In mammals, Scribble regulates directed cell migration and wound healing in vivo; however, no role has been identified for mammalian Scribble in oncogenic transformation. Here we show that in human epithelial cells expressing oncogenic Ras or Raf, loss of Scribble promotes invasion of cells through extracellular matrix in an organotypic culture system. Further, we show that the mechanism by which this occurs is in the regulation of MAPK signalling by Scribble. The suppression of MAPK signalling is a highly conserved function of Scribble as it also prevents Raf-mediated defects in Drosophila wing development. Our data identify Scribble as an important mediator of MAPK signalling and provide a molecular basis for the observation that Scribble expression is decreased in many invasive human cancers.", "The γ subunit of the major histocompatibility complex (MHC) class II complex, CD74, is overexpressed in a significant proportion of metastatic breast tumors, but the mechanistic foundation and biologic significance of this phenomenon are not fully understood. Here, we show that when CD74 is overexpressed in human cancer and noncancerous epithelial cells, it interacts and interferes with the function of Scribble, a product of a well-known tumor suppressor gene. Furthermore, using epithelial cell lines expressing CD74 under the control of tetracycline-inducible promoter and quantitative high-resolution mass spectrometry, we demonstrate that, as a result of CD74 overexpression, the phosphorylation pattern of the C-terminal part of Scribble undergoes specific changes. This is accompanied with a translocation of the protein from the sites of cell-to-cell contacts at the plasma membrane to the cytoplasm, which is likely to effectively enhance the motility and invasiveness of the cancer cells.", "Organic cation transporters (OCTs) are carrier-type permeases known to participate in general detoxification functions in peripheral tissues. Previous in vitro studies have suggested that OCTs ensure Uptake2, a low-affinity, corticosteroid-sensitive catecholamine removal system, which was characterized initially in sympathetically innervated tissues. Although the presence of both Uptake(2)-like transport and most OCT subtypes has also been demonstrated in the brain, the physiological role of this family of transporters in CNS remained totally unknown. In the present work, we show that the OCT3 transporter is found throughout the brain and highly expressed in regions regulating fluid exchange, including circumventricular organs such as area postrema and subfornical organ (SFO), and in other structures implicated in the sensing of changes in blood osmolarity and regulation of salt and water ingestion. OCT3/Slc22a3-deficient mice show an increase in the level of ingestion of hypertonic saline under thirst and salt appetite conditions, as well as alterations of the neural response in the SFO after sodium deprivation, as monitored by Fos immunoreactivity. This work demonstrates that the presence of OCT3 is critical for the balanced neural and behavioral responses to environmentally induced variations in osmolarity and provides for the first time physiological evidence of the importance of OCTs for CNS function.", "We present a clinical case of a female infant with multiple anomalies and distinctive facial features, with an exceptionally severe clinical course of Hirschsprung disease. The girl was also diagnosed with Mowat-Wilson syndrome, confirmed by molecular analysis as a heterozygous deletion of the ZEB2 gene. Moreover, molecular karyotyping revealed a deletion involving further genes (KYNU, ARHGAP15, and GTDC1).", "Loss of cell polarity proteins such as Scribble induces neoplasia in Drosophila by promoting uncontrolled proliferation. In mammals, the role that polarity proteins play during tumorigenesis is not well understood. Here, we demonstrate that depletion of Scribble in mammary epithelia disrupts cell polarity, blocks three-dimensional morphogenesis, inhibits apoptosis, and induces dysplasia in vivo that progress to tumors after long latency. Loss of Scribble cooperates with oncogenes such as c-myc to transform epithelial cells and induce tumors in vivo by blocking activation of an apoptosis pathway. Like depletion, mislocalization of Scribble from cell-cell junction was sufficient to promote cell transformation. Interestingly, spontaneous mammary tumors in mice and humans possess both downregulated and mislocalized Scribble. Thus, we demonstrate that scribble inhibits breast cancer formation and that deregulation of polarity pathways promotes dysplastic and neoplastic growth in mammals by disrupting morphogenesis and inhibiting cell death.", "The expression of small, non-coding RNA or microRNAs (miR), is frequently deregulated in human cancer, but how these pathways affect disease progression is still largely elusive. Here, we report on a miR, miR-296, which is progressively lost during tumor progression and correlates with metastatic disease in colorectal, breast, lung, gastric, parathyroid, liver and bile ducts cancers. Functionally, miR-296 controls a global cell motility gene signature in epithelial cells by transcriptionally repressing the cell polarity-cell plasticity module, Scribble (Scrib). In turn, loss of miR-296 causes aberrantly increased and mislocalized Scrib in human tumors, resulting in exaggerated random cell migration and tumor cell invasiveness. Re-expression of miR-296 in MDA-MB231 cells inhibits tumor growth in vivo. Finally, miR-296 or Scrib levels predict tumor relapse in hepatocellular carcinoma patients. These data identify miR-296 as a global repressor of tumorigenicity and uncover a previously unexplored exploitation of Scrib in tumor progression in humans.", "Loss of cellular polarity is a hallmark of epithelial cancers, raising the possibility that regulators of polarity have a role in suppressing tumorigenesis. The Scribble complex is one of at least three interacting protein complexes that have a critical role in establishing and maintaining epithelial polarity. In human colorectal, breast, and endometrial cancers, expression of the Scribble complex member SCRIB is often mislocalized and deregulated. Here, we report that Scrib is indispensable for prostate homeostasis in mice. Scrib heterozygosity initiated prostate hyperplasia, while targeted biallelic Scrib loss predisposed mice to prostate intraepithelial neoplasia. Mechanistically, Scrib was shown to negatively regulate the MAPK cascade to suppress tumorigenesis. Further analysis revealed that prostate-specific loss of Scrib in mice combined with expression of an oncogenic Kras mutation promoted the progression of prostate cancer that recapitulated the human disease. The clinical significance of the work in mice was highlighted by our observation that SCRIB deregulation strongly correlated with poor survival in human prostate cancer. These data suggest that the polarity network could provide a new avenue for therapeutic intervention.", "The basic genetic defect in the Hutchinson-Gilford Progeria Syndrome (progeria), a premature aging syndrome, is unknown. To investigate possible defects in hyaluronic acid (HA) metabolism in this disease, the urinary excretion of HA was studied. Urine specimens from 11 patients with this disorder were examined for HA by a novel high performance liquid chromatography (HPLC) technique. In patients with progeria, HA excretion ranged from 169 micrograms HA/g creatinine to 1440 micrograms HA/g creatinine. In normal age-matched controls, HA excreted ranged from 0 to 77 micrograms HA/g creatinine. In all, a mean 17-fold increase in HA excretion was observed in patients with progeria when compared with age-matched normal controls. Total glycosaminoglycan (GAG) excretion was not elevated. Amongst normal controls, a modest age-related increase in HA excretion was observed. These results suggest that urinary HA levels are abnormally elevated in progeria.", "BACKGROUND: Placement of an elastic biodegradable patch onto a subacute myocardial infarct (MI) provides temporary elastic support that may act to effectively alter adverse left ventricular (LV) remodeling processes.METHODS: Two weeks after permanent left coronary ligation in Lewis rats, the infarcted anterior wall was covered with polyester urethane urea (MI + PEUU; n = 15) or expanded polytetrafluoroethylene (MI + ePTFE; n = 15) patches, or had no implantation (MI + sham; n = 12). Eight weeks after surgery, cardiac function and histology were assessed.RESULTS: The ventricular wall in the MI + ePTFE and MI + sham groups was composed of fibrous tissue, whereas PEUU implantation induced α-smooth muscle actin-positive muscle bundles coexpressing sarcomeric α-actinin and cardiac-specific troponin-T. This pattern of colocalization was also found in developing embryonic myocardium. Cardiac transcription factors Nkx-2.5 and GATA-4 were strongly expressed in the muscle bundles. In the MI + sham group, end-diastolic LV cavity area (EDA) increased and the percentage of fractional area change (%FAC) decreased. For ePTFE patched animals, both EDA and %FAC decreased. In contrast, with MI + PEUU patching, %FAC increased and EDA was maintained. With dobutamine-stress echocardiography, MI + PEUU patched LVs possessed contractile reserve significantly larger than the MI + sham group.CONCLUSIONS: MI + PEUU patch implantation onto subacute infarcted myocardium induced muscle cellularization with characteristics of early developmental cardiomyocytes as well as providing a functional reserve.", "Muenke syndrome is a nonsyndromic coronal craniosynostosis, characterised by clinical and radiological variability, with occurrence of both familial and sporadic cases. Pro250Arg (P250R) is a pathogenic mutation, causing this highly clinically heterogeneous syndrome reported worldwide irrespective of race and ethnicity. The authors describe three Indian cases in two different families showing phenotypic spectrum of the disease, which was later confirmed by genetic testing.", "The prostacyclin (IP) receptor agonists, treprostinil, iloprost and the selexipag metabolite, MRE-269 (ACT-333679) were evaluated in rat distal pulmonary blood vessels. Small pulmonary arteries and veins were pre-contracted with the thromboxane mimetic, U46619 (25 and 100nM, respectively), and relaxation determined with and without IP receptor antagonists, RO1138452 and RO3244794. In arteries, treprostinil was a more potent vasorelaxant than iloprost, while the efficacy of iloprost was greater. In pulmonary arteries, treprostinil-induced relaxation was essentially abolished by both IP antagonists (1μM), while responses to iloprost were partially inhibited. Both treprostinil and iloprost were equipotent, prominently relaxing pulmonary veins with responses being similarly and partially sensitive to IP antagonists. In contrast, RO1138452 failed to inhibit relaxations to MRE-269 in either pulmonary arteries or veins, suggesting no involvement of typical IP receptors. Thus, rat pulmonary tissues cannot be considered appropriate to assess classical IP receptors using the proposed highly selective non-prostanoid agonist MRE-269, contrasting with the IP receptor agonism profile of prostacyclin analogues, iloprost and treprostinil.", "BACKGROUND: Atherosclerosis is a complex process involving both genetic and epigenetic factors. The monoamine oxidase A (MAOA) gene regulates the metabolism of key neurotransmitters and has been associated with cardiovascular risk factors. This study investigates whether MAOA promoter methylation is associated with atherosclerosis, and whether this association is confounded by familial factors in a monozygotic (MZ) twin sample.METHODS: We studied 84 monozygotic (MZ) twin pairs drawn from the Vietnam Era Twin Registry. Carotid intima-media thickness (IMT) was measured by ultrasound. DNA methylation in the MAOA promoter region was quantified by bisulfite pyrosequencing using genomic DNA isolated from peripheral blood leukocytes. The association between DNA methylation and IMT was first examined by generalized estimating equation, followed by matched pair analyses to determine whether the association was confounded by familial factors.RESULTS: When twins were analyzed as individuals, increased methylation level was associated with decreased IMT at four of the seven studied CpG sites. However, this association substantially reduced in the matched pair analyses. Further adjustment for MAOA genotype also considerably attenuated this association.CONCLUSIONS: The association between MAOA promoter methylation and carotid IMT is largely explained by familial factors shared by the twins. Because twins reared together share early life experience, which may leave a long-lasting epigenetic mark, aberrant MAOA methylation may represent an early biomarker for unhealthy familial environment. Clarification of familial factors associated with DNA methylation and early atherosclerosis will provide important information to uncover clinical correlates of disease.", "Proteomic profiling of heart tissue might help to discover the molecular events related to or even causing cardiovascular diseases in human. However, this material is rare and only available from biopsies taken for diagnostics, e.g., assessment of inflammatory events or virus persistence. Within this chapter, we describe a workflow for the quantitative proteome analysis of heart biopsies. Starting with 1-2 mg of tissue material, crude protein extracts were prepared, digested with LysC and trypsin, and then analyzed by LC-ESI-tandem mass spectrometry. Due to the low technical variance, the method can be used for label-free quantitation of disease-specific alterations in the human heart. Methods discussed include homogenization of biopsy tissue, sample preparation, proteolytic digestion, as well as data analysis for label-free quantitation.", "Huntington's disease is an inherited disorder caused by expanded stretch of consecutive trinucleotides (cytosine-adenosine-guanine, CAG) within the first exon of the huntingtin (HTT) gene on chromosome 4 (p16.3). The mutated huntingtin (mHTT) gains toxic function, probably through mechanisms that involve aberrant interactions in several pathways, causing cytotoxicity. Pathophysiology of disease involves several tissues; indeed it has been shown that there is a broad toxic effect of mHTT in the peripheral tissue of patients with HD, not only in the central nervous system. In this study we compared gene expression profiles (GEP) of HD fibroblasts and matched controls using microarray technology. We used RT-PCR to test the consistency of the microarray data and we found four genes up-regulated in HD patients with respect to control individuals. The genes appear to be involved in different pathways that have been shown to be perturbed even in HD models and patients. Although our study is preliminary and has to be extended to a larger cohort of HD patients and controls, nevertheless it shows that gene expression profiles seem to be altered in the fibroblasts of HD patients. Validation of the differential expressions at the protein level is required to ascertain if this cell type can be considered a suitable model for the identification of HD biomarkers.", "Adenylyl cyclase (AC) is a key enzyme that synthesizes cyclic AMP (cAMP) at the onset of the signaling pathway to activate sperm motility. Here, we showed that both transmembrane AC (tmAC) and soluble AC (sAC) are distinctly involved in the regulation of sperm motility in the ascidian Ciona intestinalis. A tmAC inhibitor blocked both cAMP synthesis and the activation of sperm motility induced by the egg factor sperm activating and attracting factor (SAAF), as well as those induced by theophylline, an inhibitor of phoshodiesterase. It also significantly inhibited cAMP-dependent phosphorylation of a set of proteins at motility activation. On the other hand, a sAC inhibitor does not affect on SAAF-induced transient increase of cAMP, motility activation or protein phosphorylation, but it reduced swimming velocity to half in theophylline-induced sperm. A sAC inhibitor KH-7 induced circular swimming trajectory with smaller diameter and significantly suppressed chemotaxis of sperm to SAAF. These results suggest that tmAC is involved in the basic mechanism for motility activation through cAMP-dependent protein phosphorylation, whereas sAC plays distinct roles in increase of flagellar beat frequency and in the Ca2+-dependent chemotactic movement of sperm.", "Minisatellites are repetitive sequences of DNA that are present throughout the genome. Although the origin and function of these minisatellites is still unknown, they found clinical applications as markers of many diseases, including cancer. Also, they are useful tools for DNA fingerprinting and linkage analysis. Kallikreins are serine proteases that appear to be involved in many diseases including brain disorders and malignancy. We have recently characterized the human kallikrein gene locus on chromosome 19q13.4, which includes 15 kallikrein genes. In this study, we examined the kallikrein locus ( approximately 300 Kb) for all known repeat elements. About 50% of this genomic area is occupied by different repeat elements. We also identified unique minisatellite elements that are restricted to chromosome 19q13. Ten clusters of these minisatellites are distributed along the locus on either DNA strand. The clusters are located in the promoters and enhancers of genes, in introns, and in untranslated regions of the mRNA. Analysis of these elements indicates that they are polymorphic, thus they can be useful in linkage analysis and DNA fingerprinting. Our preliminary results indicate also that the distribution of the different alleles of these minisatellites might be associated with malignancy.", "Psychotic symptoms related to mental and medical disorders can pose a medical emergency. Selecting an appropriate antipsychotic medication to treat this emergency is based on the clinical situation, preferred route of administration, pharmacokinetic profile of the antipsychotic and the medications currently being taken by the patient. Intramuscular preparations are usually preferred over oral medication when the patients are not co-operative and require drugs with a faster onset of action and good bioavailability. High potency antipsychotics such as haloperidol and fluphenazine are effective in stabilising patients with psychotic symptoms quickly. Loxapine is an alternative when sedation is necessary and molindone is useful if a short-acting antipsychotic is required. Rapid neuroleptisation with intramuscular preparations of antipsychotic achieves therapeutic drug concentrations more rapidly, and also provides optimal control of psychotic symptoms. If the patient is cooperative, liquid oral preparations can be used; they are as effective as intramuscular formulations. If long term treatment with an antipsychotic in necessary and patients are stabilised, they can be switched from intramuscular to oral preparations. The oral dose is usually 1.5 to 5 times the total intramuscular dose per day, based on the bioavailability of the antipsychotic medication. If the patient is currently taking antipsychotic medication when the emergency situation occurs, it is usually adequate to increase the dose of antipsychotic drug. Appropriate dose adjustment or antipsychotic selection is necessary when drug interactions are expected. An in-depth knowledge of the pharmacokinetic profile and drug interaction profile of antipsychotic in necessary for the selection of the appropriate antipsychotic for any given emergency situation.", "PURPOSE: CYLD is a tumor suppressor that has been linked to the development of various human malignancies, including colon cancer. The tumor-suppressing function of CYLD is associated with its deubiquitinating activity, which maps to the carboxyl-terminal region of the protein. In the present study we evaluated the role of intestinal epithelial CYLD in colitis-associated cancer using a conditional mouse CYLD inactivation model.METHODS: In order to evaluate the role of CYLD in intestinal epithelial carcinogenesis, mice (IEC-Cyld (Δ9) mice) that carry a mutation that eliminates the deubiquitinating domain of CYLD in intestinal epithelial cells (IEC) were generated by crossing Villin-Cre transgenic mice to previously generated mice carrying a loxP-flanked Cyld exon 9 (Cyld (flx9) mice).RESULTS: We found that IEC-Cyld (Δ9) mice did not present spontaneous intestinal abnormalities up to one year of age. However, upon challenge with a combination of genotoxic (AOM) and pro-inflammatory (DSS) agents we found that the number of adenomas in the IEC-Cyld (Δ9) mice was dramatically increased compared to the control mice. Inactivation of CYLD in intestinal epithelial cells did not affect the classical nuclear factor-kappaB (NF-κB) and c-Jun kinase (JNK) activation pathways under physiological conditions, suggesting that these pathways do not predispose CYLD-deficient intestinal epithelia to colorectal cancer development before the onset of genotoxic and/or pro-inflammatory stress.CONCLUSIONS: Our findings underscore a critical tumor-suppressing role for functional intestinal epithelial CYLD in colitis-associated carcinogenesis. CYLD expression and its associated pathways in intestinal tumors may be exploited for future prognostic and therapeutic purposes.", "This commentary briefly argues that the four prima facie principles of beneficence, non-maleficence, respect for autonomy and justice enable a clinician (and anybody else) to make ethical sense of the author's proposed reliance on professional guidance and rules, on law, on professional integrity and on best interests, and to subject them all to ethical analysis and criticism based on widely acceptable basic prima facie moral obligations; and also to confront new situations in the light of those acceptable principles." ]
1,656
[ "Ribosomes bypass a 50 nucleotide non-coding segment of mRNA between the two open reading frames of bacteriophage T4 gene 60 in order to synthesize a topoisomerase subunit. While nearly all ribosomes appear to initiate bypassing, only 50 % resume translation in the second open reading frame. Failure to bypass is shown here to be independent of the stop codon at the end of the first open reading frame and to be amplified by mutant variants of tRNA(Gly)(2) known to diminish bypassing efficiency. Unproductive bypassing may result from premature dissociation of peptidyl-tRNAs from ribosomes (drop-off) or resumption of translation at inappropriate sites. Assessment of the influence of factors known to induce drop-off reveals that ribosome recycling factor accounts for a small fraction of unproductive bypassing products, but none of the other known factors appear to play a significant role. Resumption of translation at inappropriate sites appears to be minimal, which suggests that spontaneous release of the peptidyl-tRNA may account for the remaining unproductive bypassing products and may be inherent to the gene 60 bypassing mechanism.", "Frailty is a geriatric syndrome characterized by muscle weakness, sarcopenia, and fatigue, and is associated with several adverse health outcomes, including disability. Design of therapeutic interventions for geriatric frailty has been challenging and may be because of inadequate understanding of its biological underpinnings. Carnitine is important for energy production in skeletal muscles and there seems to be a negative correlation between advancing age and muscle carnitine levels. Carnitine deficiency may therefore contribute to geriatric frailty. Age-associated carnitine deficiency from a variety of etiologies, including organic cation transporter (OCTN2) mutation and carnitine palmitoyltransferase II (CPT) deficiency, may potentially explain the relationship between carnitine-associated mitochondrial dysfunction and geriatric frailty. Development of therapeutic agents capable of prevention or reversal of carnitine deficiency in older adults may minimize the occurrence of frailty in geriatric populations.", "Across a broad range of human cancers, gain-of-function mutations in RAS genes (HRAS, NRAS, and KRAS) lead to constitutive activity of oncoproteins responsible for tumorigenesis and cancer progression. The targeting of RAS with drugs is challenging because RAS lacks classic and tractable drug binding sites. Over the past 30 years, this perception has led to the pursuit of indirect routes for targeting RAS expression, processing, upstream regulators, or downstream effectors. After the discovery that the KRAS-G12C variant contains a druggable pocket below the switch-II loop region, it has become possible to design irreversible covalent inhibitors for the variant with improved potency, selectivity and bioavailability. Two such inhibitors, sotorasib (AMG 510) and adagrasib (MRTX849), were recently evaluated in phase I-III trials for the treatment of non-small cell lung cancer with KRAS-G12C mutations, heralding a new era of precision oncology. In this review, we outline the mutations and functions of KRAS in human tumors and then analyze indirect and direct approaches to shut down the oncogenic KRAS network. Specifically, we discuss the mechanistic principles, clinical features, and strategies for overcoming primary or secondary resistance to KRAS-G12C blockade.", "Huntington's disease (HD) is an incurable, fatal neurodegenerative disorder that is caused by a polyglutamine expansion in the huntingtin (Htt) protein. Neuronal death in the striatum-the most obvious manifestation of the disease-is likely to result from widespread dysregulation of gene expression in various brain regions. To date, several potential mechanisms for this have been discovered, including one involving REST (RE1-Silencing Transcription Factor), a master regulator of neuronal genes. Recently, independent studies have demonstrated that post-transcriptional gene regulation by microRNAs is also disrupted in HD. Expression of key neuronal microRNAs-including mir-9/9*, mir-124 and mir-132-is repressed in the brains of human HD patients and mouse models. These changes occur downstream of REST, and are likely to result in major disruption of mRNA regulation and neuronal function. In this study we will discuss these findings and their implications for our understanding of HD. Using updated bioinformatic analysis, we predict 21 new candidate microRNAs in HD. We propose future strategies for unifying large-scale transcriptional and microRNA datasets with the aim of explaining HD aetiology. By way of example, we show how available genomic datasets can be integrated to provide independent, analytical validation for dysregulation of REST and microRNA mir-124 in HD. As a consequence, gene ontology analysis indicates that HD is characterised by a broad-based depression of neural genes in the caudate and motor cortex. Thus, we propose that a combination of REST, microRNAs and possibly other non-coding RNAs profoundly affect the neuronal transcriptome in HD.", "Poliovirus protease 2A (2A(pro)) obstructs host gene expression by reprogramming transcriptional and post-transcriptional regulatory events during infection. Here we demonstrate that expression of 2A(pro) induces a selective nucleo-cytoplasm translocation of several important RNA binding proteins and splicing factors. Subcellular fractionation studies, together with immunofluorescence microscopy revealed an asymmetric distribution of HuR and TIA1/TIAR in 2A(pro) expressing cells, which modulates splicing of the human Fas exon 6. Consistent with this result, knockdown of HuR or overexpression of TIA1/TIAR, leads to Fas exon 6 inclusion in 2A(pro)-expressing cells. Therefore, poliovirus 2A(pro) can target alternative pre-mRNA splicing by regulating protein shuttling between the nucleus and the cytoplasm.", "Huntington's disease (HD) is a genetic neurodegenerative disease caused by abnormal CAG expansion. MicroRNAs (miRNAs) are short RNA molecules regulating gene expression, and are implicated in a variety of diseases including HD. However, the profiles and regulation of miRNAs in HD are not fully understood. Here, we analyzed the miRNA expression and miRNA regulators in two transgenic models of HD, YAC128 and R6/2 mice, and in a 3-nitropropionic acid (3NP)-induced striatal degeneration rat model. After characterizing the phenotypes by behavioral tests and histological analyses, we profiled striatal miRNAs using a miRNA microarray and we measured the key molecules involved in miRNA biogenesis and function. YAC128 mice showed upregulation-dominant miRNA expressions at 5 months and downregulation-dominant expressions at 12 months. Concomitantly, the expressions of Drosha-DGCR8, Exportin-5, and Dcp1 were increased at 5months, and the expression of Dicer was decreased at 12 months. In 10-week-old R6/2 mice, downregulation was dominant in the miRNA expressions and the level of Drosha decreased concomitantly. Nine miRNAs (miR-22, miR-29c, miR-128, miR-132, miR-138, miR-218, miR-222, miR-344, and miR-674*) were commonly down-regulated in both the 12-month-old YAC128 and 10-week-old R6/2 mice. Meanwhile, 3NP rats showed dynamic changes in the miRNA profiles during disease development and a few miRNAs with altered expression. Our results show that transgenic HD mice have abnormal miRNA biogenesis. This information should aid in future studies on therapeutic application of miRNAs in HD.", "Interferon (INF)-α was the maintenance treatment of choice after autologous stem cell transplantation in multiple myeloma in the past, but currently Thalidomide is commonly used. In this prospective study, the implications of the various types of maintenance therapy on the patients T cell pattern and activation status were assessed. T cells were analyzed for expression of surface molecules, cytokine secretion, the presence of regulatory T cells, and the specific activation against the multiple myeloma antigen HM1.24. T cells from 69 multiple myeloma patients were analyzed: 19 patients were treated with IFN-α; 26 were treated with Thalidomide; and 24 patients received no maintenance therapy. Specific T cell activation with an immunogenic HLA-A2(+)-restricted peptide from the myeloma-associated antigen HM1.24 was impaired in the Thalidomide group. In accordance with this observation, there was a trend toward a higher amount of regulatory T cells in the Thalidomide group. Furthermore, patients treated with IFN-α showed high rates of naive T cells, whereas a high rate of effector memory T cells was observed in the Thalidomide group. Importantly, after cessation of Thalidomide therapy, this effect was reversible in the CD8 compartment. In conclusion, Thalidomide maintenance therapy has profound implications on T cell pattern and activation status, which compromise antigen specific antitumor immunity.", "Modern antiretroviral therapy has demonstrated effectiveness in preexposure prophylaxis (PrEP) and treatment of HIV infection. There is a demand for prevention and treatment regimens that could overcome challenges of improving adherence, toxicity, and dosing convenience. Cabotegravir is an integrase strand transfer inhibitor and an analog of dolutegravir. Unlike dolutegravir, cabotegravir has a long half-life and can be formulated into a long-acting nanosuspension for parenteral administration. Initial pharmokinetic studies in humans have demonstrated adequate drug levels with intramuscular (IM) administration at 4 weekly and 8 weekly intervals, with few interactions with commonly used concomitant medications. Preliminary animal PrEP studies have shown that IM cabotegravir can prevent simian/HIV acquisition from rectal, vaginal, and intravenous challenge. Currently, there are two ongoing Phase II studies assessing cabotegravir as a PrEP agent in humans: ÉCLAIR and HPTN077. Cabotegravir has been studied in combination with rilpivirine as long-acting IM maintenance therapy. The Long-Acting Antiretroviral Treatment Enabling study demonstrated that those switching to oral cabotegravir/rilpivirine once virologically suppressed were more likely to maintain suppression than those continuing standard efavirenz-based therapy (82% vs 71% at 24 weeks). Initial results of the Long-Acting Antiretroviral Treatment Enabling-2 study of parenteral regimens found that 12 weeks after randomization to parenteral or oral regimens, there was no difference in proportions virologically suppressed on cabotegravir/rilpivirine daily orally vs IM every 4 weeks or 8 weeks (91% vs 94% vs 95%). The injections were well tolerated as, although they caused injection site pain in most recipients, most participants reported satisfaction with parenteral therapy. Cabotegravir offers a new member of the integrase strand transfer inhibitor class with potential for alternative mode of delivery. We await Phase III studies to define its efficacy and real-world experience to learn which patient groups stand to benefit most from the novel mode of delivery of treatment and PrEP.", "Author information:(1)Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August-University Göttingen, Göttingen, Germany.(2)The Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom.(3)Unilever, Research and Development, Bedford, United Kingdom.(4)The Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom nigel.minton@nottingham.ac.uk.", "BACKGROUND: The approval of the tyrosine kinase inhibitor sorafenib in 2007 marked a milestone in the treatment of hepatocellular carcinoma, as sorafenib was the first systemic therapy to show a survival benefit in patients with advanced hepatocellular carcinoma. Since then many drugs failed in the first- and second-line setting and it took almost another decade until further tyrosine kinase inhibitors succeeded in phase III trials.AIM: To summarise the evolving field of systemic therapy of hepatocellular carcinoma.METHODS: We reviewed recently published studies identified from PubMed and data presented at recent meetings. Main search terms included hepatocellular carcinoma, tyrosine kinase inhibitors, immunotherapy, immune checkpoint inhibitors, sorafenib, regorafenib, lenvatinib, cabozantinib, ramucirumab, and nivolumab.RESULTS: We discuss the evolution of targeted therapies since the approval of sorafenib including failures and recent advances. We also elaborate the unmet need of biomarkers to guide treatment decisions and discuss the emerging field of immunotherapy in hepatocellular carcinoma.CONCLUSIONS: The tyrosine kinase inhibitors sorafenib (first line) and regorafenib (second line) have been approved for hepatocellular carcinoma, and the immune checkpoint inhibitor nivolumab obtained conditional approval for sorafenib-experienced patients in the United States. With lenvatinib in the first line, and cabozantinib and ramucirumab in sorafenib-experienced patients, three more targeted therapies reached their primary endpoint in phase III trials and may soon be added to the treatment armamentarium.", "Idecabtagene vicleucel (ide-cel, bb2121), a chimeric antigen receptor (CAR) T cell therapy, has been investigated in patients with relapsed and refractory multiple myeloma (RRMM) who have received an immunomodulatory drug, proteasome inhibitor, and anti-CD38 antibody in the single-arm phase 2 KarMMa clinical trial. Two therapies with distinct mechanisms of action - selinexor plus dexamethasone (Sd) and belantamab mafodotin (BM) - are currently approved in the United States for heavily pretreated patients, including those who are triple-class refractory. To compare ide-cel versus Sd and ide-cel versus BM, matching-adjusted indirect comparisons were performed. Ide-cel extended progression-free survival (PFS) and overall survival (OS) versus both Sd and BM (hazard ratio (HR); 95% confidence interval (CI)). PFS: ide-cel versus Sd, 0.46; 0.28-0.75; ide-cel versus BM, 0.45; 0.27-0.77. OS: ide-cel versus Sd, 0.23; 0.13-0.42; ide-cel versus BM, 0.35; 0.14-0.87. These results suggest ide-cel offers clinically meaningful improvements over currently approved regimens for patients with heavily pretreated RRMM.", "When an otherwise harmful insult to the brain is preceded by a brief, noninjurious stimulus, the brain becomes tolerant, and the resulting damage is reduced. Epileptic tolerance develops when brief seizures precede an episode of prolonged seizures (status epilepticus). MicroRNAs (miRNAs) are small, noncoding RNAs that function as post-transcriptional regulators of gene expression. We investigated how prior seizure preconditioning affects the miRNA response to status epilepticus evoked by intra-amygdalar kainic acid in mice. The miRNA was extracted from the ipsilateral CA3 subfield 24 hours after focal-onset status epilepticus in animals that had previously received either seizure preconditioning (tolerance) or no preconditioning (injury), and mature miRNA levels were measured using TaqMan low-density arrays. Expression of 21 miRNAs was increased, relative to control, after status epilepticus alone, and expression of 12 miRNAs was decreased. Increased miR-132 levels were matched with increased binding to Argonaute-2, a constituent of the RNA-induced silencing complex. In tolerant animals, expression responses of >40% of the injury-group-detected miRNAs differed, being either unchanged relative to control or down-regulated, and this included miR-132. In vivo microinjection of locked nucleic acid-modified oligonucleotides (antagomirs) against miR-132 depleted hippocampal miR-132 levels and reduced seizure-induced neuronal death. Thus, our data strongly suggest that miRNAs are important regulators of seizure-induced neuronal death.", "OBJECTIVE: The aim of this study was to evaluate the effects of using ACE inhibitors on insulin resistance, glucose metabolism, body fat composition, and lipid profile in children over 10 years of age with obesity-associated metabolic syndrome (MS).METHODS: A total of 53 children with MS, who had been followed for at least one year were included in the study. The sample was divided into two groups: Group 1-30 obese children (13 female, 17 male) who were not using an ACE inhibitor and Group 2-23 obese children (13 female, 10 male) who were using an ACE inhibitor. Anthropometric and laboratory data obtained at baseline and at the 3rd, 6th, and 12th months of follow-up were compared in the two groups.RESULTS: Comparison of the data in the two groups at 3rd, 6th, and 12th months revealed no statistically significant differences in terms of weight standard deviation score (SDS), body mass index SDS, weight for height percentile, body fat percentage, and very low-density lipoprotein (VLDL)values. However, there were statistically significant differences in mean glucose and insulin levels, homeostasis model assessment for insulin resistance, LDL and high-density lipoprotein values, and highly significant differences in mean triglyceride values.CONCLUSIONS: The positive effects of ACE inhibitor drugs, particularly on hypertriglyceridemia and insulin resistance, might bring them forth as first-line drugs in the treatment of obese and hypertensive children. Randomized, controlled, double-blind, and long-term studies are needed for a definitive conclusion.", "Atrial fibrillation is a major risk factor for first and recurrent ischaemic stroke, and anticoagulation, mainly by use of coumarin medications, is an effective strategy for reducing ischaemic stroke occurrence in these patients. However, the coumarin medications have disadvantages. Over the past decade, important strides have been made towards developing improved anticoagulant medications. This review discusses these new developments and what they mean for the future of primary and secondary ischaemic stroke prevention in patients with atrial fibrillation. Relevant papers were identified with electronic searches of the Medline and EMBASE databases. Ongoing trials were checked using the Trials Results Centre website. The direct thrombin inhibitors, and the factor Xa inhibitors are the two major new anticoagulant drug classes under development at present. In phase III trials, dabigatran and rivaroxaban demonstrated at least as good performance as warfarin at reducing the rate of ischaemic stroke, systemic embolus, and haemorrhagic ischaemic stroke, whilst maintaining a comparable or lower rate of major bleeding events. Drug level monitoring was not required due to stable pharmacodynamics. AZD0837, apixaban, YM-150, edoxaban and betrixaban all showed promising results in phase II trials, as did S35972 in animal, in vitro and ex vivo models. The future of these new anticoagulants looks encouraging, although there are still some significant challenges to overcome. We need to consider the accumulation of long-term safety and efficacy data, and the development of effective means of reversal of anticoagulation for the direct thrombin inhibitors and factor Xa inhibitors.", "Prion diseases typically have long pre-clinical incubation periods during which time the infectious prion particle and infectivity steadily propagate in the brain. Abnormal neuritic sprouting and synaptic deficits are apparent during pre-clinical disease, however, gross neuronal loss is not detected until the onset of the clinical phase. The molecular events that accompany early neuronal damage and ultimately conclude with neuronal death remain obscure. In this study, we used laser capture microdissection to isolate hippocampal CA1 neurons and determined their pre-clinical transcriptional response during infection. We found that gene expression within these neurons is dynamic and characterized by distinct phases of activity. We found that a major cluster of genes is altered during pre-clinical disease after which expression either returns to basal levels, or alternatively undergoes a direct reversal during clinical disease. Strikingly, we show that this cluster contains a signature highly reminiscent of synaptic N-methyl-D-aspartic acid (NMDA) receptor signaling and the activation of neuroprotective pathways. Additionally, genes involved in neuronal projection and dendrite development were also altered throughout the disease, culminating in a general decline of gene expression for synaptic proteins. Similarly, deregulated miRNAs such as miR-132-3p, miR-124a-3p, miR-16-5p, miR-26a-5p, miR-29a-3p and miR-140-5p follow concomitant patterns of expression. This is the first in depth genomic study describing the pre-clinical response of hippocampal neurons to early prion replication. Our findings suggest that prion replication results in the persistent stimulation of a programmed response that is mediated, at least in part, by synaptic NMDA receptor activity that initially promotes cell survival and neurite remodelling. However, this response is terminated prior to the onset of clinical symptoms in the infected hippocampus, seemingly pointing to a critical juncture in the disease. Manipulation of these early neuroprotective pathways may redress the balance between degeneration and survival, providing a potential inroad for treatment.", "Schizophrenia is characterized by affective, cognitive, neuromorphological, and molecular abnormalities that may have a neurodevelopmental origin. MicroRNAs (miRNAs) are small noncoding RNA sequences critical to neurodevelopment and adult neuronal processes by coordinating the activity of multiple genes within biological networks. We examined the expression of 854 miRNAs in prefrontal cortical tissue from 100 control, schizophrenic, and bipolar subjects. The cyclic AMP-responsive element binding- and NMDA-regulated microRNA miR-132 was significantly down-regulated in both the schizophrenic discovery cohort and a second, independent set of schizophrenic subjects. Analysis of miR-132 target gene expression in schizophrenia gene-expression microarrays identified 26 genes up-regulated in schizophrenia subjects. Consistent with NMDA-mediated hypofunction observed in schizophrenic subjects, administration of an NMDA antagonist to adult mice results in miR-132 down-regulation in the prefrontal cortex. Furthermore, miR-132 expression in the murine prefrontal cortex exhibits significant developmental regulation and overlaps with critical neurodevelopmental processes during adolescence. Adult prefrontal expression of miR-132 can be down-regulated by pharmacologic inhibition of NMDA receptor signaling during a brief postnatal period. Several key genes, including DNMT3A, GATA2, and DPYSL3, are regulated by miR-132 and exhibited altered expression either during normal neurodevelopment or in tissue from adult schizophrenic subjects. Our data suggest miR-132 dysregulation and subsequent abnormal expression of miR-132 target genes contribute to the neurodevelopmental and neuromorphological pathologies present in schizophrenia.", "Solanezumab (LY2062430) is a humanized monoclonal antibody that binds to the central region of β-amyloid, a peptide believed to play a key role in the pathogenesis of Alzheimer's disease (AD). Eli Lilly & Co is developing an intravenous formulation of solanezumab for the treatment of mild-to-moderate AD. Acute and subchronic treatment with solanezumab of transgenic mice attenuated or reversed memory deficits with no effects on incidence or severity of cerebral amyloid angiopathy-associated microhemorrhages, a severe side effect associated with bapineuzumab, another monoclonal antibody. Phase II studies in AD patients have shown a good safety profile with encouraging indications on cerebrospinal and plasma biomarkers. The drug is currently being investigated in Phase III trials. While there is a strong hope that solanezumab may represent the first effective passive vaccine for AD treatment, skepticism still exists on the ability of the drug to slow the rate of deterioration in patients with fully established disease.", "Recent reports of microRNA (miR) modulators of both neuronal and immune processes (here termed NeurimmiRs) predict therapeutic potential for manipulating NeurimmiR levels in diseases affecting both the immune system and higher brain functions, such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and anxiety-related disorders. In our opinion, NeurimmiRs that function within both the nervous and the immune systems, such as miR-132 and miR-124, may act as 'negotiators' between these two interacting compartments. We suggest that NeurimmiRs primarily target transcriptional or other regulatory genes, which enables modulation of both immune and cognitive processes through direct or indirect alterations of neuron-glia and/or brain-to-body signaling. Thus, manipulating NeurimmiR control over the immune contributions to cognitive pathways may offer new therapeutic targets.", "Mammalian genomes contain numerous genes for long noncoding RNAs (lncRNAs). The functions of the lncRNAs remain largely unknown but their evolution appears to be constrained by purifying selection, albeit relatively weakly. To gain insights into the mode of evolution and the functional range of the lncRNA, they can be compared with much better characterized protein-coding genes. The evolutionary rate of the protein-coding genes shows a universal negative correlation with expression: highly expressed genes are on average more conserved during evolution than the genes with lower expression levels. This correlation was conceptualized in the misfolding-driven protein evolution hypothesis according to which misfolding is the principal cost incurred by protein expression. We sought to determine whether long intergenic ncRNAs (lincRNAs) follow the same evolutionary trend and indeed detected a moderate but statistically significant negative correlation between the evolutionary rate and expression level of human and mouse lincRNA genes. The magnitude of the correlation for the lincRNAs is similar to that for equal-sized sets of protein-coding genes with similar levels of sequence conservation. Additionally, the expression level of the lincRNAs is significantly and positively correlated with the predicted extent of lincRNA molecule folding (base-pairing), however, the contributions of evolutionary rates and folding to the expression level are independent. Thus, the anticorrelation between evolutionary rate and expression level appears to be a general feature of gene evolution that might be caused by similar deleterious effects of protein and RNA misfolding and/or other factors, for example, the number of interacting partners of the gene product.", "Paroxysmal haematoma of the fingers (Achenbach's syndrome) is a rarely reported entity. It often occurs spontaneously or subsequent to minor injuries. Because of the sudden onset of intense burning pain and the subsequent development of haematoma, the patients are frequently alarmed. The etiology is still unknown. We report on 3 cases of paroxysmal haematoma of the fingers. The harmless nature of the condition is emphasized.", "Early stages of many neurodegenerative diseases, such as Alzheimer's disease, vascular and frontotemporal dementia, and Parkinson's disease, are frequently associated with Mild Cognitive Impairment (MCI). A minimally invasive screening test for early detection of MCI may be used to select optimal patient groups in clinical trials, to monitor disease progression and response to treatment, and to better plan patient clinical care. Here, we examined the feasibility of using pairs of brain-enriched plasma microRNA (miRNA), at least one of which is enriched in synapses and neurites, as biomarkers that could differentiate patients with MCI from age-matched controls. The identified biomarker pairs fall into two sets: the \"miR-132 family\" (miR-128/miR-491-5p, miR-132/miR-491-5p and mir-874/miR-491-5p) and the \"miR-134 family\" (miR-134/miR-370, miR-323-3p/miR-370 and miR-382/miR-370). The area under the Receiver-Operating Characteristic curve for the differentiation of MCI from controls using these biomarker pairs is 0.91-0.95, with sensitivity and specificity at 79%-100% (miR-132 family) and 79%-95% (miR-134 family), and p〈0.001. In a separate longitudinal study, the identified miRNA biomarker pairs successfully detected MCI in majority of patients at asymptomatic stage 1-5 years prior to clinical diagnosis. The reported biomarker pairs also appear useful for detecting age-related brain changes. Further testing in a larger study is necessary for validation of these results.", "We explored genetic influences on the perception of taste and smell stimuli. Adult twins rated the chemosensory aspects of water, sucrose, sodium chloride, citric acid, ethanol, quinine hydrochloride, phenylthiocarbamide (PTC), potassium chloride, calcium chloride, cinnamon, androstenone, Galaxolide™, cilantro, and basil. For most traits, individual differences were stable over time and some traits were heritable (h(2) from 0.41 to 0.71). Subjects were genotyped for 44 single nucleotide polymorphisms within and near genes related to taste and smell. The results of these association analyses confirmed previous genotype-phenotype results for PTC, quinine, and androstenone. New associations were detected for ratings of basil and a bitter taste receptor gene, TAS2R60, and between cilantro and variants in three genes (TRPA1, GNAT3, and TAS2R50). The flavor of ethanol was related to variation within an olfactory receptor gene (OR7D4) and a gene encoding a subunit of the epithelial sodium channel (SCNN1D). Our study demonstrates that person-to-person differences in the taste and smell perception of simple foods and drinks are partially accounted for by genetic variation within chemosensory pathways.", "PURPOSE: There is no standard of therapy for the treatment of Waldenström macroglobulinemia (WM), therefore there is a need for the development of new agents. Fibroblast growth factor receptor 3 (FGFR3) was shown to play a major role in several types in cancer. Dovitinib, an inhibitor of FGFR3, was effective in hematologic malignancies. In this study, we tested FGFR3 as a therapeutic target in WM and tested the effect of dovitinib on cell proliferation and apoptosis of WM cells in the context of BM microenvironment.METHODS: The expression of FGFR3 in WM cells was tested using immunofluorescence and flow cytometry. Cell signaling in response to stimulation with FGF3 and stromal cells, and its inhibition by dovitinib was performed using immunoblotting. Cell survival and cell proliferation were assessed by MTT and BrdU assays. Apoptosis was measured by detection of APO-2.7 and cleavage of caspase-3 using flow cytometry. Cell cycle was performed by PI staining of cells and flow cytometry. The combinatory effect of dovitinib with other drugs was analyzed using Calcusyn software. The effect of dovitinib was tested in vivo.RESULTS: FGFR3 was overexpressed in WM cells and its activation induced cell proliferation. Inhibition of FGFR3 with dovitinib decreased cell survival, increased apoptosis, and induced cell cycle arrest. Inhibition of FGFR3 by dovitinib reduced the interaction of WM to bone marrow components, and reversed its proliferative effect. Dovitinib had an additive effect with other drugs. Moreover, dovitinib reduced WM tumor progression in vivo.CONCLUSION: We report that FGFR3 is a novel therapeutic target in WM, and suggest dovitinib for future clinical trial the treatment of patients with WM.", "Secretion of spore coat proteins from the prespore secretory vesicles (PSVs) in Dictyostelium discoideum is a signal mediated event that underlies terminal cell differentiation, and represents an important case of developmentally regulated secretion. In order to study the biochemical mechanisms that govern the regulated fusion of the PSVs with the plasma membrane and the subsequent secretion of their cargo, we purified this organelle from prespore cells. Analysis of protein extracts of highly purified PSVs indicated that, in addition to the cargo of structural spore coat proteins, many more proteins are associated with the PSVs. Their identification is paramount to the understanding of the mechanism of regulated secretion in this system. In this study we have taken the first comprehensive proteomic approach to the analysis of an entire, previously uncharacterized, organelle, with the goal of identifying the major proteins associated with the PSVs. We show that in addition to the structural spore coat proteins, the PSVs contain the enzymes needed for proper spore coat assembly (thioredoxin 2 and 3), regulatory proteins which we predict receive and transduce the developmental signal for secretion (rab7 GTPase, PI-3 kinase, NDP kinase and the calcium binding proteins calfumirin-1 and calreticulin) as well as proteins that interact with the cytoskeleton to mediate movement of the PSVs to the plasma membrane (actin binding proteins coactosin and profilin 1). In addition, the results suggest that proteins can play multiple roles in the cell, and that protein function can be dictated in part by subcellular localization. The identification of the PSV proteins is allowing us to develop testable hypotheses about the roles of these proteins within the functional context of developmentally regulated secretion.", "Considerable attention and an enormous amount of resources have been dedicated to cancer biomarker discovery and validation. However, there are still a limited number of useful biomarkers available for clinical use. An ideal biomarker should be easily assayed with minimally invasive medical procedures but possess high sensitivity and specificity. Commonly used circulating biomarkers are proteins in serum, most of which require labor-intensive analysis hindered by low sensitivity in early tumor detection. Since the deregulation of microRNA (miRNA) is associated with cancer development and progression, profiling of circulating miRNAs has been used in a number of studies to identify novel minimally invasive miRNA biomarkers. In this review, we discuss the origin of the circulating cell-free miRNAs and their carriers in blood. We summarize the clinical use and function of potentially promising miRNA biomarkers in a variety of different cancers, along with their downstream target genes in tumor initiation and development. Additionally, we analyze some technical challenges in applying miRNA biomarkers to clinical practice.", "Hunter disease, Mucopolysaccharidosis type II, is an X-linked recessive lysosomal storage disorder caused by a deficiency in iduronate sulfatase activity. We studied at molecular level a Neapolitan family with the disease. We report, in patient, the delta 139 mutation on the third exon of the gene, on female family members, the DNA analysis that allowed to assess or exclude their carrier status and on fetal DNA from a pregnancy of patient's mother, a prenatal diagnosis that resulted negative.", "Whole-genome hybridization studies have suggested that the nuclear genomes of accessions (natural strains) of Arabidopsis thaliana can differ by several percent of their sequence. To examine this variation, and as a first step in the 1001 Genomes Project for this species, we produced 15- to 25-fold coverage in Illumina sequencing-by-synthesis (SBS) reads for the reference accession, Col-0, and two divergent strains, Bur-0 and Tsu-1. We aligned reads to the reference genome sequence to assess data quality metrics and to detect polymorphisms. Alignments revealed 823,325 unique single nucleotide polymorphisms (SNPs) and 79,961 unique 1- to 3-bp indels in the divergent accessions at a specificity of >99%, and over 2000 potential errors in the reference genome sequence. We also identified >3.4 Mb of the Bur-0 and Tsu-1 genomes as being either extremely dissimilar, deleted, or duplicated relative to the reference genome. To obtain sequences for these regions, we incorporated the Velvet assembler into a targeted de novo assembly method. This approach yielded 10,921 high-confidence contigs that were anchored to flanking sequences and harbored indels as large as 641 bp. Our methods are broadly applicable for polymorphism discovery in moderate to large genomes even at highly diverged loci, and we established by subsampling the Illumina SBS coverage depth required to inform a broad range of functional and evolutionary studies. Our pipeline for aligning reads and predicting SNPs and indels, SHORE, is available for download at http://1001genomes.org.", "The Canadian Institutes of Health Research and the Multiple Sclerosis (MS) Society of Canada recently convened an Invitational Panel to consider the scientific evidence linking chronic cerebrospinal venous insufficiency (CCSVI) and MS. The panel supported studies to determine whether CCSVI causes MS, but felt that there is currently so much uncertainty about the relationship between CCSVI and MS that a clinical trial is not indicated at this time. This commentary argues that the decision about whether a clinical trial is warranted must be informed by science, but should be addressed from a broader societal perspective. We suggest that members of the public should be more actively involved in scientifically based, but patient-relevant and emotionally charged issues considered by organizations that fund health research.", "OBJECTIVE: To review the literature pertaining to the efficacy of alteplase for restoration of patency of occluded venous and dialysis catheters in pediatric patients.DATA SOURCES: A MEDLINE search was conducted and cross-referenced with an EMBASE search through November 2012. Search terms included alteplase, tissue plasminogen activator, and catheter.STUDY SELECTION AND DATA EXTRACTION: Search results were limited to humans, English language, and ages from neonates to 18 years. Pertinent studies discussing efficacy of alteplase for restoration of occluded venous or dialysis catheter function were included. Case reports, review articles, and studies that specified inclusion of hemophilia patients or more than 75% of children with malignancy were excluded.DATA SYNTHESIS: Fibrinolytics are the drug class of choice for restoration of patency (defined as the ability to withdraw a blood sample) of thrombus-occluded catheters. The trials used to support Food and Drug Administration approval of alteplase for central venous catheter (CVC) occlusions generally had low pediatric enrollment; however, additional small studies are available that support use of alteplase for this indication in children. Alteplase doses of 0.5-2 mg instilled into the lumen of a CVC with dwell times ranging from 30 to more than 240 minutes plus the potential for repeat dosing were reported. Overall efficacy ranged from approximately 50% to 90%, with greater efficacy generally reported with larger doses and longer dwell times. Alteplase doses of 2-2.5 mg with dwell times of 60-120 minutes were observed in 2 studies of occluded peritoneal or hemodialysis catheters, in which efficacy was reported in 57-100% of cases. Limitations of current studies of alteplase for catheter occlusion in children include small study populations and relative lack of pediatric-specific prospective trials.CONCLUSIONS: Alteplase appears to show efficacy for treatment of thrombus-related venous catheter occlusion in pediatric patients; however, data regarding its use in occluded dialysis catheters are limited.", "The presence of an incarcerated vermiform appendix within a femoral hernia defect, a De Garengeot hernia, is distinctly different than an inguinal hernia containing the appendix, an Amyand hernia. The De Garengeot hernia is a rare finding with few reported cases. We present a 35-year-old female with a painful groin mass palpable below the inguinal ligament. An ultrasound of the groin revealed a thin-walled fluid collection medial to the femoral vessels. No additional imaging at the time was obtained. Intra-operatively, the patient was found to have her distal appendix incarcerated within the transected hernia sac thus altering the planned surgical procedure. We present a unique operative approach for managing a De Garengeot hernia.", "BACKGROUND & AIMS: Haemochromatosis type 4, also known as ferroportin disease, is an autosomal dominant genetic disorder caused by pathogenic mutations in the SLC40A1 gene, which encodes ferroportin 1 (FPN1). We have identified a novel SLC40A1 p.Y333H mutation in our previous study. In the present study, we tried to investigate the frequency and pathogenicity of the SLC40A1 p.Y333H mutation in haemochromatosis in China.METHODS: Patients were analysed for SLC40A1 p.Y333H as well as mutations in the other classic haemochromatosis-related genes by Sanger sequencing. To analyse iron export capacity of the SLC40A1 p.Y333H mutant, the 293T cells were transfected with the SLC40A1 p.Y333H construct and then treated with hepcidin after exposure to ferric ammonium citrate. Cellular localization of mutant FPN1, expression of FPN1 and intracellular ferritin were analysed by immunofluorescence and Western blotting.RESULTS: Of 22 unrelated cases with primary iron overload, three cases (3/22, 13.6%) harboured the SLC40A1 p.Y333H, with no missense mutations identified in any other classical haemochromatosis-related genes including HFE, HJV, HAMP and TFR2. Pedigree analysis showed that three probands and the son of one proband had haemochromatosis of stage 3, while the son of another proband with age of 16 showed elevated transferrin saturation but normal serum ferritin level. In vitro studies showed the mutant p.Y333H ferroportin was resistant to hepcidin, affecting the subsequent internalization and degradation of FPN1, and was associated with ferroportin gain of function.CONCLUSIONS: The SLC40A1 p.Y333H mutation is associated with gain of function of ferroportin, representing one of the major aetiological factors of haemochromatosis in China.", "Activity-dependent changes in gene-expression are believed to underlie the molecular representation of memory. In this study, we report that in vivo activation of neurons rapidly induces the CREB-regulated microRNA miR-132. To determine if production of miR-132 is regulated by neuronal activity its expression in mouse brain was monitored by quantitative RT-PCR (RT-qPCR). Pilocarpine-induced seizures led to a robust, rapid, and transient increase in the primary transcript of miR-132 (pri-miR-132) followed by a subsequent rise in mature microRNA (miR-132). Activation of neurons in the hippocampus, olfactory bulb, and striatum by contextual fear conditioning, odor-exposure, and cocaine-injection, respectively, also increased pri-miR-132. Induction kinetics of pri-miR-132 were monitored and found to parallel those of immediate early genes, peaking at 45 min and returning to basal levels within 2 h of stimulation. Expression levels of primary and mature-miR-132 increased significantly between postnatal Days 10 and 24. We conclude that miR-132 is an activity-dependent microRNA in vivo, and may contribute to the long-lasting proteomic changes required for experience-dependent neuronal plasticity.", "Skin side effects following XRT take place more often in patients with skin disorders. In this study six patients with psoriatic lesions were evaluated. The total/daily XRT dose to the tumor site was 50-70/1.8-2.0 Gy. No debilitating effect of XRT was observed in both the psoriatic lesions and in the surrounding normal skin.", "The α-synuclein has been implicated in the pathophysiology of Parkinson's disease (PD), because mutations in the alpha-synuclein gene cause autosomal-dominant hereditary PD and fibrillary aggregates of alpha-synuclein are the major component of Lewy bodies. Since presynaptic accumulation of α-synuclein aggregates may trigger synaptic dysfunction and degeneration, we have analyzed alterations in synaptosomal proteins in early symptomatic α-synuclein(A30P)-transgenic mice by two-dimensional differential gel electrophoresis. Moreover, we carried out microRNA expression profiling using microfluidic chips, as microRNA have recently been shown to regulate synaptic plasticity in rodents and to modulate polyglutamine-induced protein aggregation and neurodegeneration in flies. Differentially expressed proteins in α-synuclein(A30P)-transgenic mice point to alterations in mitochondrial function, actin dynamics, iron transport, and vesicle exocytosis, thus partially resembling findings in PD patients. Oxygen consumption of isolated brain mitochondria, however, was not reduced in mutant mice. Levels of several microRNA (miR-10a, -10b, -212, -132, -495) were significantly altered. One of them (miR-132) has been reported to be highly inducible by growth factors and to be a key regulator of neurite outgrowth. Moreover, miR-132-recognition sequences were detected in the mRNA transcripts of two differentially expressed proteins. MicroRNA may thus represent novel biomarkers for neuronal malfunction and potential therapeutic targets for human neurodegenerative diseases.", "The study of homeotic-transformation mutants in model organisms such as Drosophila revolutionized the field of developmental biology, but how these mutants relate to human developmental defects remains to be elucidated. Here, we show that Liebenberg syndrome, an autosomal-dominant upper-limb malformation, shows features of a homeotic limb transformation in which the arms have acquired morphological characteristics of a leg. Using high-resolution array comparative genomic hybridization and paired-end whole-genome sequencing, we identified two deletions and a translocation 5' of PITX1. The structural changes are likely to remove active PITX1 forelimb suppressor and/or insulator elements and thereby move active enhancer elements in the vicinity of the PITX1 regulatory landscape. We generated transgenic mice in which PITX1 was misexpressed under the control of a nearby enhancer and were able to recapitulate the Liebenberg phenotype.", "Micro-RNAs constitute a family of small noncoding ribonucleic acids that are posttranscriptional regulators of messenger RNA activity. Although micro-RNAs are known to be dynamically regulated during neural development, the role of micro-RNAs in brain aging and neurodegeneration is not known. This study examined micro-RNA abundance in the hippocampal region of fetal, adult and Alzheimer's disease brain. The data indicate that micro-RNAs encoding miR-9, miR-124a, miR-125b, miR-128, miR-132 and miR-219 are abundantly represented in fetal hippocampus, are differentially regulated in aged brain, and an alteration in specific micro-RNA complexity occurs in Alzheimer hippocampus. These data are consistent with the idea that altered micro-RNA-mediated processing of messenger RNA populations may contribute to atypical mRNA abundance and neural dysfunction in Alzheimer's disease brain.", "We describe the synthesis and properties of five dinucleotide fluorescent cap analogues labelled at the ribose of the 7-methylguanosine moiety with either anthraniloyl (Ant) or N-methylanthraniloyl (Mant), which have been designed for the preparation of fluorescent mRNAs via transcription in vitro. Two of the analogues bear a methylene modification in the triphosphate bridge, providing resistance against either the Dcp2 or DcpS decapping enzymes. All these compounds were prepared by ZnCl2-mediated coupling of a nucleotide P-imidazolide with a fluorescently labelled mononucleotide. To evaluate the utility of these compounds for studying interactions with cap-binding proteins and cap-related cellular processes, both biological and spectroscopic features of those compounds were determined. The results indicate acceptable quantum yields of fluorescence, pH independence, environmental sensitivity, and photostability. The cap analogues are incorporated by RNA polymerase into mRNA transcripts that are efficiently translated in vitro. Transcripts containing fluorescent caps but unmodified in the triphosphate chain are hydrolysed by Dcp2 whereas those containing a α-β methylene modification are resistant. Model studies exploiting sensitivity of Mant to changes of local environment demonstrated utility of the synthesized compounds for studying cap-related proteins.", "OBJECTIVE: To evaluate the cost-effectiveness of 70-gene MammaPrint signature (Agendia Inc, Huntington Beach, CA) vs Adjuvant! Online software (AS) (http://www.adjuvantonline.com) in patients 60 years or younger with early-stage breast cancer.STUDY DESIGN: Cost-effectiveness and cost-utility analyses from a US payer perspective.METHODS: A Markov model with 3 health states was constructed. In the base case model, risk classification and patient outcomes were based on a 70-gene signature validation study. Efficacy of chemotherapy was derived from a published meta-analysis of clinical trials. An alternative model using data from AS and from the Surveillance, Epidemiology and End Results registry was built to examine the external validity of the base case model. The incremental benefits, costs, and cost-effectiveness of treatment guided by 70-gene signature were calculated.RESULTS: In the base case model, 70-gene signature reclassified 29% of patients and spared 10% of patients from chemotherapy. Compared with the AS strategy, the 70-gene signature strategy was associated with $1440 higher total cost per patient and with 0.14 additional life-year or 0.15 additional quality-adjusted life-year. Overall, the incremental cost-effectiveness ratios were approximately $10,000 per life-year or quality-adjusted life-year in the base case model and $700 in the alternative model. The model results were sensitive to estrogen receptor status, the proportion of patients classified as high risk vs low risk, and the overall survival in each risk group.CONCLUSION: A 70-gene signature is likely to be a cost-effective strategy to guide adjuvant chemotherapy treatment in younger patients with early-stage breast cancer.", "DNA polymerase theta (pol θ) is encoded in the genomes of many eukaryotes, though not in fungi. Pol θ is encoded by the POLQ gene in mammalian cells. The C-terminal third of the protein is a family A DNA polymerase with additional insertion elements relative to prokaryotic homologs. The N-terminal third is a helicase-like domain with DNA-dependent ATPase activity. Pol θ is important in the repair of genomic double-strand breaks (DSBs) from many sources. These include breaks formed by ionizing radiation and topoisomerase inhibitors, breaks arising at stalled DNA replication forks, breaks introduced during diversification steps of the mammalian immune system, and DSB induced by CRISPR-Cas9. Pol θ participates in a route of DSB repair termed \"alternative end-joining\" (altEJ). AltEJ is independent of the DNA binding Ku protein complex and requires DNA end resection. Pol θ is able to mediate joining of two resected 3' ends harboring DNA sequence microhomology. \"Signatures\" of Pol θ action during altEJ are the frequent utilization of longer microhomologies, and the insertion of additional sequences at joining sites. The mechanism of end-joining employs the ability of Pol θ to tightly grasp a 3' terminus through unique contacts in the active site, allowing extension from minimally paired primers. Pol θ is involved in controlling the frequency of chromosome translocations and preserves genome integrity by limiting large deletions. It may also play a backup role in DNA base excision repair. POLQ is a member of a cluster of similarly upregulated genes that are strongly correlated with poor clinical outcome for breast cancer, ovarian cancer and other cancer types. Inhibition of pol θ is a compelling approach for combination therapy of radiosensitization.", "Understanding of the role of radiation as a cause of kidney cancer remains limited. The most common types of kidney cancer are renal cell carcinoma and renal pelvis carcinoma. It has been posited that these entities differ in their degree of radiogenicity. Recent analyses of cancer incidence and mortality in the Life Span Study (LSS) of Japanese atomic bomb survivors have examined associations between ionizing radiation and renal cell carcinoma, but these analyses have not reported results for cancer of the renal pelvis and ureters. This paper reports the results of analyses of kidney cancer incidence during the period 1958-1998 among 105,427 atomic bomb survivors. Poisson regression methods were used to derive estimates of associations between radiation dose (in sievert, Sv) and cancer of the renal parenchyma (n = 167), and cancer of the renal pelvis and ureter (n = 80). Heterogeneity by cancer site was tested by joint modeling of cancer risks. Radiation dose was positively associated with cancers of the renal pelvis and ureter [excess relative rate (ERR)/Sv = 1.65; 90% confidence interval (CI): 0.37, 3.78]. The magnitude of this association was larger than the estimated association between radiation dose and cancer of the renal parenchyma (ERR/Sv = 0.27; 90% CI = -0.19, 0.98). While the association between radiation and cancer of the renal parenchyma was of greater magnitude at ages <55 years (ERR/Sv = 2.82; 90% CI = 0.45, 8.89) than at older attained ages (ERR/Sv = -0.11; 90% CI = nd, 0.53), the association between radiation and cancers of the renal pelvis and ureter varied minimally across these categories of attained age. A test of heterogeneity of type-specific risks provides modest support for the conclusion that risks vary by kidney cancer site (LRT = 2.34, 1 d.f., P = 0.13). Since some studies of radiation-exposed populations examine these sites in aggregate, results were also derived for the combined category of cancer of the renal parenchyma, renal pelvis and ureters. Overall, there was a positive association between radiation and the combined category of cancer of the renal parenchyma, renal pelvis and ureters (ERR/Sv = 0.60, 90% CI: 0.09, 1.30). Updated follow-up of the LSS cohort provides substantial additional information on the association between radiation and cancer of the renal pelvis and ureter, a site not examined in recent reports on analyses of these data. The results are suggestive of differences between the different regions of the kidney in sensitivity to the carcinogenic effects of ionizing radiation.", "BACKGROUND: Morton's neuroma is a common cause of pain that radiates from between the third and fourth metatarsals and which, when symptomatic, creates sensations of burning or sharp pain and numbness on the forefoot. Many conservative and surgical interventions are employed to reduce associated pain, but not enough research has been conducted to recommend patients to any one approach as the most reliable source of pain management.PURPOSE: The objective of this case report is to describe the effect of massage therapy on one woman with symptomatic Morton's neuroma.PARTICIPANT: A physically active 25-year-old female with diagnosed symptomatic Morton's neuroma who has not found relief with previous conservative intervention.INTERVENTION: Six session of massage therapy once weekly for 60-75 minutes focused on postural alignment and localized foot and leg treatment. The client also completed an at-home exercise each day. Change was monitored each week by the massage therapist reassessing posture and by the client filling out a pain survey based on a Visual Analog Scale.RESULTS: The client reported progressive change in the character of the pain from burning and stabbing before the first session to a dull, pulsing sensation after the third session. She also recorded a reduction in pain during exercise from a 5/10 to 0/10 (on a scale where 10 is extreme pain).CONCLUSION: This study describes how massage therapy reduced pain from Morton's neuroma for one client; however, larger randomized control studies need to be done in order to determine the short- and long-term effects of massage therapy on this painful condition.", "Intravesical Bacillus Calmette-Guerin (BCG) is the best treatment modality for progression of non-muscle invasive bladder cancer. We aimed to monitor changes at the proteome level to identify putative protein biomarkers associated with the response of urothelial precancerous lesions to intravesical BCG treatment. The rats were divided into three groups (n = 10/group): control, non-treated, and BCG-treated groups. The non-treated and BCG-treated groups received N-methyl-N-nitrosourea intravesically. BCG Tice-strain was instilled into bladder in BCG-treated group. At the endpoint of experiment, all surviving rat bladders were collected and equally divided into two portions vertically from dome to neck. Half of each bladder was assessed immunohistopathologically and the other half was used for 2D-based comparative proteomic analysis. Differentially expressed proteins were validated by Western blot analysis. Precancerous lesions of bladder cancer were more common in non-treated group (77.8%) than in BCG-treated group (50%) and the control group (0%). Greater than twofold changes occurred in the expression of a number of proteins. Among them, Rab-GDIβ, aldehyde dehydrogenase 2 (ALDH2) and 14-3-3 zeta/delta were important since they were previously reported to be associated with cancer and their expression levels were found to be lower in BCG-treated group in comparison to the non-treated group. ALDH2 and 14-3-3 zeta/delta were also found to be highly expressed in the non-treated group compared to the control group. The down-regulation of these proteins and Rab-GDIβ was achieved with BCG; this result indicates that they may be used as putative biomarkers for monitoring changes in bladder carcinogenesis in response to BCG immunotherapy.", "The fractal globule, a self-similar compact polymer conformation where the chain is spatially segregated on all length scales, has been proposed to result from a sudden polymer collapse. This state has gained renewed interest as one of the prime candidates for the non-entangled states of DNA molecules inside cell nuclei. Here, we present Monte Carlo simulations of collapsing polymers. We find through studying polymers of lengths between 500 and 8000 that a chain collapses into a globule, which is neither fractal, nor as entangled as an equilibrium globule. To demonstrate that the non-fractalness of the conformation is not just the result of the collapse dynamics, we study in addition the dynamics of polymers that start from fractal globule configurations. Also in this case the chain moves quickly to the weakly entangled globule where the polymer is well mixed. After a much longer time the chain entangles reach its equilibrium conformation, the molten globule. We find that the fractal globule is a highly unstable conformation that only exists in the presence of extra constraints such as cross-links.", "Alzheimer's disease and Lewy body diseases are the most common causes of neurodegeneration and dementia. Amyloid-beta (Aβ) and alpha-synuclein (αSyn) are two key proteins involved in the pathogenesis of these neurodegenerative diseases. Immunotherapy aims to reduce the harmful effects of protein accumulation by neutralising toxic species and facilitating their removal. The results of the first immunisation trial against Aβ led to a small percentage of meningoencephalitis cases which revolutionised vaccine design, causing a shift in the field of immunotherapy from active to passive immunisation. While the vast majority of immunotherapies have been developed for Aβ and tested in Alzheimer's disease, the field has progressed to targeting other proteins including αSyn. Despite showing some remarkable results in animal models, immunotherapies have largely failed final stages of clinical trials to date, with the exception of Aducanumab recently licenced in the US by the FDA. Neuropathological findings translate quite effectively from animal models to human trials, however, cognitive and functional outcome measures do not. The apparent lack of translation of experimental studies to clinical trials suggests that we are not obtaining a full representation of the effects of immunotherapies from animal studies. Here we provide a background understanding to the key concepts and challenges involved in therapeutic design. This review further provides a comprehensive comparison between experimental and clinical studies in Aβ and αSyn immunotherapy and aims to determine the possible reasons for the disconnection in their outcomes.", "Tauopathies represent a large class of neurological and movement disorders characterized by abnormal intracellular deposits of the microtubule-associated protein tau. It is now well established that mis-splicing of tau exon 10, causing an imbalance between three-repeat (3R) and four-repeat (4R) tau isoforms, can cause disease; however, the underlying mechanisms affecting tau splicing in neurons remain poorly understood. The small noncoding microRNAs (miRNAs), known for their critical role in posttranscriptional gene expression regulation, are increasingly acknowledged as important regulators of alternative splicing. Here, we identified a number of brain miRNAs, including miR-124, miR-9, miR-132 and miR-137, which regulate 4R:3R-tau ratios in neuronal cells. Analysis of miRNA expression profiles from sporadic progressive supranuclear palsy (PSP) patients, a major 4R-tau tauopathy, showed that miR-132 is specifically down-regulated in disease. We demonstrate that miR-132 directly targets the neuronal splicing factor polypyrimidine tract-binding protein 2 (PTBP2), which protein levels were increased in PSP patients. miR-132 overexpression or PTBP2 knockdown similarly affected endogenous 4R:3R-tau ratios in neuronal cells. Finally, we provide evidence that miR-132 is inversely correlated with PTBP2 during post-natal brain development at the time when 4R-tau becomes expressed. Taken together, these results suggest that changes in the miR-132/PTBP2 pathway could contribute to the abnormal splicing of tau exon 10 in the brain, and sheds light into the potential role played by miRNAs in a subset of tauopathies.", "Birdshot chorioretinopathy is a rare ocular inflammation whose genetic association with HLA-A*29:02 is the highest between a disease and a major histocompatibility complex (MHC) molecule. It belongs to a group of MHC-I-associated inflammatory disorders, also including ankylosing spondylitis, psoriasis, and Behçet's disease, for which endoplasmic reticulum aminopeptidases (ERAP) 1 and/or 2 have been identified as genetic risk factors. Since both enzymes are involved in the processing of MHC-I ligands, it seems reasonable that common peptide-mediated mechanisms may underlie the pathogenesis of these diseases. In this study, comparative immunopeptidomics was used to characterize >5000 A*29:02 ligands and quantify the effects of ERAP1 polymorphism and expression on the A*29:02 peptidome in human cells. The peptides predominant in an active ERAP1 context showed a higher frequency of nonamers and bulkier amino acid side chains at multiple positions, compared with the peptides predominant in a less active ERAP1 background. Thus, ERAP1 polymorphism has a large influence, shaping the A*29:02 peptidome through length-dependent and length-independent effects. These changes resulted in increased affinity and hydrophobicity of A*29:02 ligands in an active ERAP1 context. The results reveal the nature of the functional interaction between A*29:02 and ERAP1 and suggest that this enzyme may affect the susceptibility to birdshot chorioretinopathy by altering the A*29:02 peptidome. The complexity of these alterations is such that not only peptide presentation but also other potentially pathogenic features could be affected.", "OBJECTIVE: The aim of our study was to determine the rate of participation in genetic testing, to determine the reasons for non-participation and to identify the factors affecting participation in BRCA genetic testing for high-risk patients.METHODS: This study was performed through a retrospective review of 804 individuals who underwent genetic counseling for BRCA1/2 gene mutations at Seoul National University Bundang Hospital between July 2003 and September 2012.RESULTS: In total, 728 (90.5%) individuals underwent BRCA1/2 mutation screening after the initial genetic counseling; 88.2% of 647 probands and 100% of 157 family members were screened. In multivariate analysis, family history of breast cancer and younger age were independent variables affecting participation in genetic testing. Of the 132 people who initially declined genetic testing, 58 (43.9%) postponed the decision, 30 (22.7%) needed time to discuss the issue with family members, 22 (16.7%) did not want to know if they had a BRCA1/2 mutation, and 22 (16.7%) declined the test because of financial problems. When analyzing refusal of testing according to the time period before and after the implementation of national health insurance coverage for BRCA1/2 genetic testing, the critical reason given for refusal was different. After insurance coverage, refusal for financial reason was decreased from 61.1 to 9.6%.CONCLUSIONS: A family history of breast cancer and a younger age were important factors associated with participation in genetic testing. National health insurance decreased the proportion of individuals who did not participate in testing owing to a financial reason. In genetic counseling, we have to understand these issues and consider several factors that may influence an individual's decision to be tested.", "Preconditioning describes the ischemic stimulus that triggers an endogenous, neuroprotective response that protects the brain during a subsequent severe ischemic injury, a phenomenon known as 'tolerance'. Ischemic tolerance requires new protein synthesis, leads to genomic reprogramming of the brain's response to subsequent ischemia, and is transient. MicroRNAs (miRNAs) regulate posttranscriptional gene expression by exerting direct effects on messenger RNA (mRNA) translation. We examined miRNA expression in mouse cortex in response to preconditioning, ischemic injury, and tolerance. The results of our microarray analysis revealed that miRNA expression is consistently altered within each group, but that preconditioning was the foremost regulator of miRNAs. Our bioinformatic analysis results predicted that preconditioning-regulated miRNAs most prominently target mRNAs that encode transcriptional regulators; methyl-CpG binding protein 2 (MeCP2) was the most prominent target. No studies have linked MeCP2 to preconditioning or tolerance, yet miR-132, which regulates MeCP2 expression, is decreased in preconditioned cortex. Downregulation of miR-132 is consistent with our finding that preconditioning ischemia induces a rapid increase in MeCP2 protein, but not mRNA, in mouse cortex. These studies reveal that ischemic preconditioning regulates expression of miRNAs and their predicted targets in mouse brain cortex, and further suggest that miRNAs and MeCP2 could serve as effectors of ischemic preconditioning-induced tolerance." ]
1,684
[ "BACKGROUND: With the introduction of molecularly targeted therapy for gastrointestinal stromal tumors (GISTs), it became important to distinguish GISTs from leiomyosarcomas (LMSs). The authors sought to characterize the clinicopathologic features of these tumors in pediatric patients.METHODS: The authors reviewed the medical records of 11 patients for whom GIST or LMS was diagnosed between March 1962 and July 2002 at St. Jude Children's Research Hospital and reclassified the tumors according to current histologic and immunophenotypic criteria. The authors also reviewed the literature pertaining to pediatric GISTs and LMSs.RESULTS: Seven patients had GISTs, and four had LMS. The median age of the patients at diagnosis was 11.5 years. At diagnosis, metastases were present in one patient with GISTs and in another with LMS. Unlike the focal distribution of CD117 (KIT) in LMS, diffuse and strong immunostaining was observed in GISTs. Only GISTs expressed CD34. Six patients underwent complete resection (four with GISTs and two with LMS), four patients underwent incomplete resection (three with GISTs and one with LMS), and one patient (with LMS) underwent a biopsy only. Radiotherapy or chemotherapy was used to treat one patient with GISTs and three patients with LMS. One patient with a high-risk GIST (largest dimension of 32 cm and high mitotic count) was treated with adjuvant imatinib mesylate outside the preferred setting of a clinical trial, due to concerns regarding the high risk of tumor recurrence. Four patients with GISTs and two with LMS survived median disease-free a median of 10.4 years and 4.3 years after diagnosis, respectively. Tumors in all but one survivor were completely resected.CONCLUSIONS: KIT staining helped to distinguish GISTs from LMSs. Surgery was the treatment of choice for both entities, and tumor resectability was a key prognostic factor.", "INTRODUCTION: Psoriasis is a chronic inflammatory skin disease characterized by dysregulation of the immune system and release of pro-inflammatory mediators. Drugs available for psoriasis show some limits as tolerability and route of administration. Apremilast , Otezla®, is an oral small molecule recently approved for the treatment of patients with moderate-to-severe plaque psoriasis. Compared to biologics that target a single cytokine, apremilast, degrading phosphodiesterase 4 (PDE4), interferes with cyclic anti-microbial peptides, which is involved in the transduction of intracellular signals, controlling the balance of pro-inflammatory and anti-inflammatory signals.AREAS COVERED: This review reported the latest data available from Phase I, II and III trials on apremilast for the treatment of plaque psoriasis. A focus on the clinical management of apremilast, safety and clinical efficacy based on two pivotal clinical trials (ESTEEM 1 and ESTEEM 2) currently ongoing was described. A systematic search was conducted using the PubMed Medline database for primary articles.EXPERT OPINION: Apremilast treatment was demonstrated effective and well tolerated in Phase II and III clinical trials. Several drug peculiarities, such as the low frequency of adverse events and the oral route of administration, make apremilast an innovative treatment for moderate-to-severe psoriasis.", "Effects of chronic stress are not completely understood. They may underlie depression and dementia. This study assessed the association between chronic stress, glutamate levels, tau-protein phosphorylation, and nitric-oxide in old rats exposed to chronic mild stress (CMS). Old (>15 months) male Wistar rats were exposed to CMS. Comparison groups included old and young control rats, young CMS-exposed, and old CMS-exposed rats treated with the neuronal nitric-oxide synthase (nNOS) enzyme inhibitor, 7-nitroindazole (20 mg/kg/day i.p.). Hippocampal glutamate levels and glutamate decarboxylase (GAD) activity were determined and tau protein phosphorylation was assessed. Age was a significant (p=0.025) source of variation in glutamate level [811.71+/-218.1, 665.9+/-124.9 micromol/g tissue protein (M+/-SD) in young and old control rats, respectively]. Old rats exposed to CMS were characterized by an increased risk to develop anhedonia. There was significant (p=0.035) decrease in GAD enzyme activity (-60.06%) and increased tau protein hyperphosphorylation in old rats exposed to CMS compared to control. Administration of 7-nitroindazole to CMS-exposed old rats significantly (p=0.002) increased GAD activity, decreased glutamate levels (7.19+/-3.19 vs. 763.9+/-91 micromol/g tissue protein; p=0.0005), and decreased phosphorylation of tau proteins compared to CMS exposed rats.", "Gluten-free diets have been used in the treatment of patients with dermatitis herpetiformis in our department since 1967. Of the 212 patients with dermatitis herpetiformis attending between 1967 and 1992, 133 managed to take the diet, and 78 of these achieved complete control of their rash by diet alone. Of the remaining 55 patients taking a gluten-free diet, all but three were taking partial diets; over half of these patients managed to substantially reduce the dose of medication required. Of the 77 patients taking a normal diet, eight entered spontaneous remission, giving a remission rate of 10%; a further two patients who had been taking gluten-free diets were found to have remitted when they resumed normal diets. Loss of IgA from the skin was observed in 10 of 41 (24%) patients taking strict gluten-free diets. These patients had been taking their diets for an average of 13 years (range 5-24 years), and their rash had been controlled by diet alone for an average of 10 years (range 3-16 years). The advantages of a gluten-free diet in the management of patients with dermatitis herpetiformis are: (i) the need for medication is reduced or abolished; (ii) there is resolution of the enteropathy, and (iii) patients experience a feeling of well-being after commencing the diet. Thus, we propose that a gluten-free diet is the most appropriate treatment for patients with dermatitis herpetiformis.", "Proteins on the surface of parasite-infected erythrocytes (PIESPs) have been one of the major focuses of malaria research due to their role in pathogenesis and their potential as targets for immunity and drug intervention. Despite intense scrutiny, only a few surface proteins have been identified and characterized. We report the identification of two novel surface proteins from Plasmodium falciparum-infected erythrocytes. Surface proteins were fractionated through biotin-streptavidin interaction and analyzed by shotgun proteomics. From a list of 36 candidates, two were selected for further characterization. The surface location of both proteins was confirmed by confocal microscopy using specific antibodies. PIESP1 and PIESP2 are unlikely to be associated with knobs, the protrusions on the parasite-infected erythrocyte (PIE) surface. In contrast to other known PIESPs, such as PfEMP1 and Rifin, these novel proteins are encoded by single copy genes, highly conserved across Plasmodium ssp., making them good targets for interventions with a broad specificity to various P. falciparum isolates.", "Spinal muscular atrophy (SMA) is one of the leading genetic diseases of children and infants. SMA is caused by deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, cannot compensate for the loss of SMN1 due to predominant skipping of exon 7. While various regulatory elements that modulate SMN2 exon 7 splicing have been proposed, intronic splicing silencer N1 (ISS-N1) has emerged as the most promising target thus far for antisense oligonucleotide-mediated splicing correction in SMA. Upon procuring exclusive license from the University of Massachussets Medical School in 2010, Ionis Pharmaceuticals (formerly ISIS Pharamaceuticals) began clinical development of Spinraza™ (synonyms: Nusinersen, IONIS-SMNRX, ISIS-SMNRX), an antisense drug based on ISS-N1 target. Spinraza™ showed very promising results at all steps of the clinical development and was approved by US Food and Drug Administration (FDA) on December 23, 2016. Spinraza™ is the first FDA-approved treatment for SMA and the first antisense drug to restore expression of a fully functional protein via splicing correction. The success of Spinraza™ underscores the potential of intronic sequences as promising therapeutic targets and sets the stage for further improvement of antisense drugs based on advanced oligonucleotide chemistries and delivery protocols.", "The activity of protein phosphatase (PP)-2A, which regulates tau phosphorylation, is compromised in Alzheimer disease brain. Here we show that the transient transfection of PC12 cells with inhibitor-2 (I2PP2A) of PP2A causes abnormal hyperphosphorylation of tau at Ser396/Ser404 and Ser262/Ser356. This hyperphosphorylation of tau is observed only when a sub-cellular shift of I2PP2A takes place from the nucleus to the cytoplasm and is accompanied by cleavage of I2PP2A into a 20 kDa fragment. Memantine, an un-competitive inhibitor of N-methyl-D-aspartate receptors, inhibits this abnormal phosphorylation of tau and cell death and prevents the I2PP2A-induced inhibition of PP2A activity in vitro. These findings demonstrate novel mechanisms by which I2PP2A regulates the intracellular activity of PP2A and phosphorylation of tau, and by which Memantine modulates PP2A signaling and inhibits neurofibrillary degeneration.", "There is strong pharmacological, biological, and genetic evidence supporting the role of N-type calcium channels (CaV2.2) in nociception. There is also human validation data from ziconotide, the CaV2.2-selective peptidyl inhibitor used clinically to treat refractory pain. Unfortunately, ziconotide utility is limited by its narrow therapeutic window and required intrathecal route of administration. A major focus has been placed on identifying state-dependent CaV2.2 inhibitors to improve safety margins. Much less attention, however, has been given to characterizing the kinetics of CaV2.2 inhibitors as a means to further differentiate compounds and maximize therapeutic potential. Here we provide a detailed characterization of the CaV2.2 inhibitor T4 in terms of its state-dependence, use-dependence, kinetics, and mechanism of inhibition. Compound T4 displayed a >20-fold difference in potency when measured under inactivating conditions (IC50=1.1 μM) as compared to closed-state conditions (IC50=25 μM). At 3 μM, T4 produced a 15-fold hyperpolarizing shift in the inactivation curve for CaV2.2 while having no effect on channel activation. To assess the kinetic properties of T4 in a more physiological manner, its inhibition kinetics were assessed at 32°C using 2 mM Ca(2+) as the charge carrier. Surprisingly, the repriming rate for CaV2.2 channels at hyperpolarized potentials was similar in both the presence and absence of T4. This was in contrast to other compounds which markedly delayed repriming. Furthermore, T4 inhibited CaV2.2 channels more potently when channel inactivation was driven through a tonic sub-threshold depolarization rather than through a use-dependent protocol, despite similar levels of inactivation.", "Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC) have a potential therapeutic role in the treatment of neurological disorders, but their current clinical usage and mechanism of action has yet to be ascertained in Alzheimer's disease (AD). Here we report that hUCB-MSC transplantation into amyloid precursor protein (APP) and presenilin1 (PS1) double-transgenic mice significantly improved spatial learning and memory decline. Furthermore, amyloid-β peptide (Aβ) deposition, β-secretase 1 (BACE-1) levels, and tau hyperphosphorylation were dramatically reduced in hUCB-MSC transplanted APP/PS1 mice. Interestingly, these effects were associated with reversal of disease-associated microglial neuroinflammation, as evidenced by decreased microglia-induced proinflammatory cytokines, elevated alternatively activated microglia, and increased anti-inflammatory cytokines. These findings lead us to suggest that hUCB-MSC produced their sustained neuroprotective effect by inducing a feed-forward loop involving alternative activation of microglial neuroinflammation, thereby ameliorating disease pathophysiology and reversing the cognitive decline associated with Aβ deposition in AD mice.", "Starting with multipotent progenitors, hematopoietic lineages are specified by lineage-restricted transcription factors. The transcription factors that determine the decision between lymphoid and myeloid cell fates, and the underlying mechanisms, remain largely unknown. Here, we report that enforced expression of C/EBPalpha and C/EBPbeta in differentiated B cells leads to their rapid and efficient reprogramming into macrophages. C/EBPs induce these changes by inhibiting the B cell commitment transcription factor Pax5, leading to the downregulation of its target CD19, and synergizing with endogenous PU.1, an ETS family factor, leading to the upregulation of its target Mac-1 and other myeloid markers. The two processes can be uncoupled, since, in PU.1-deficient pre-B cells, C/EBPs induce CD19 downregulation but not Mac-1 activation. Our observations indicate that C/EBPalpha and beta remodel the transcription network of B cells into that of macrophages through a series of parallel and sequential changes that require endogenous PU.1.", "METHOD: In a randomized, double-blind, two-period crossover study, pantoprazole 40 mg or placebo were given orally to 12 male volunteers for 2 weeks each. There was a wash-out period of at least 1 week between the two treatment periods. The effects of pantoprazole or placebo on cortisol and testosterone (primary criteria), and tri-iodothyronine, thyroxine, thyroid-stimulating hormone, thyronine-binding protein, parathyroid hormone, insulin, glucagon, renin, aldosterone, follicle-stimulating hormone, luteotrophic hormone, prolactin and somatotrophic hormone were compared. In addition, intragastric 24-h pH, 24-h H(+)-activity, and volume of nocturnal gastric juice were determined by gastric aspiration technique.RESULTS: Pantoprazole did not influence plasma levels of testosterone, circadian cortisol concentrations or plasma cortisol levels after exogenous adrenocorticotropic hormone stimulation, as compared to placebo (P > 0.05, Koch's test). Furthermore, there were no clinically relevant changes with any of the other endocrine parameters. Pantoprazole significantly increased the median 24-h pH (group median 4.3 vs. 1.8; P < 0.001) and decreased 24-h H(+)-activity (4.0 vs. 22.6 mmol/L; P < 0.001). The volume of nocturnal gastric juice did not significantly differ between the two treatments. Pantoprazole was well tolerated and the frequency of adverse events was similar to placebo. No drug-related changes in laboratory values were observed.CONCLUSION: Pantoprazole did not influence endocrine function in healthy male volunteers during short-term treatment.", "OBJECTIVE: To evaluate the effectiveness of entacapone in the management of levodopa wearing-off in Parkinson's disease (PD) in a naturalistic, real-life setting.RESEARCH DESIGN AND METHODS: This prospective, open-label, observational study included patients with idiopathic PD. Patients were eligible for inclusion if they had been taking 3-5 doses of levodopa per day for ≥2 months and had shown signs of levodopa wearing-off for ≥1 month. Subjects received entacapone (recommended dose: 1 × 200 mg tablet with each levodopa dose) for 28 days. Patients were asked to complete a wearing-off questionnaire and the eight-question Parkinson's Disease Questionnaire Quality of Life assessment (PDQ-8). Activities of daily living (both in the on and off states) were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS) part II. Clinical Global Impression (CGI) of severity of PD-related symptoms was assessed using a modified CGI tool. Patient global assessment of severity of PD symptoms was also obtained.RESULTS: A total of 341 patients were enrolled by 68 physicians across Canada. At Day 28, 56.9% of the subjects indicated improvement compared to baseline on the modified CGI of change (CGI-C); 21.4% reported no change. Improvements were also observed on the UPDRS II and the PDQ-8. Benefit from entacapone appeared to be relatively uniform across subgroups (e.g., number of daily levodopa doses, use of other anti-PD medications).STUDY LIMITATIONS: The results of this study may be biased due to factors inherent in open-label, community-based trials (e.g., compliance). This is, however, reflective of everyday clinical practice.CONCLUSIONS: In this naturalistic, real-life study, the addition of entacapone to levodopa therapy provided benefits in quality of life and activities of daily living for a substantial proportion of PD patients experiencing wearing-off.", "Glycogen synthase kinase-3 (GSK-3) is a ubiquitously expressed serine/threonine kinase that is particularly abundant in the CNS. Dysregulation of GSK-3 activity is believed to play a key role in the pathogenesis of CNS chronic disorders such as Alzheimer's disease (AD), bipolar disorder, and Huntington's disease, and of metabolic disorders such as type II diabetes. Accordingly, GSK-3 inhibitors have been postulated as therapeutic tools for these diseases. Interestingly, pathophysiological and pharmacological regulation of GSK-3 is affected by an amplification mechanism that applies both to inhibition and activation. The possibility therefore exists that sustained inhibition or activation might persist after cessation of the initial trigger. Regarding AD, GSK-3 has been shown to accumulate in pretangle neurons. Furthermore, GSK-3 phosphorylates tau in most serine and threonine residues hyperphosphorylated in PHF (paired helical filament)-tau and GSK-3 activity contributes both to beta-amyloid production and to beta-amyloid-mediated neuronal death. In good agreement, mice with conditional overexpression of GSK-3 in forebrain neurons (Tet/GSK-3beta mice) recapitulate aspects of AD neuropathology such as tau hyperphosphorylation, apoptotic neuronal death, and reactive astrocytosis as well as spatial learning deficit. Here, we exploit the conditional system used to generate Tet/GSK-3beta mice to explore whether the biochemical, histopathological, and behavioral consequences of increased GSK-3 activity are susceptible to revert after restoration of normal GSK-3 levels. Here, we show that transgene shutdown in symptomatic mice leads to normal GSK-3 activity, normal phospho-tau levels, diminished neuronal death, and suppression of the cognitive deficit, thus further supporting the potential of GSK-3 inhibitors for AD therapeutics.", "Cystic fibrosis (CF) is a life-limiting disease caused by defective or deficient cystic fibrosis transmembrane conductance regulator (CFTR) activity. The recent US Food and Drug Administration (FDA) approval of lumacaftor combined with ivacaftor (Orkambi) targets patients with the F508del-CFTR. The question remains: Is this breakthrough combination therapy the \"magic-bullet\" cure for the vast majority of patients with CF? This review covers the contemporary clinical and scientific knowledge-base for lumacaftor/ivacaftor and highlights the emerging issues from recent conflicting literature reports.", "Magnetic resonance (MR) cholangiopancreatography has proved a robust and noninvasive imaging modality for evaluating the biliary and pancreatic ducts without the use of ionizing radiation. Although MR cholangiopancreatography reliably depicts the main extrahepatic and intrahepatic bile ducts, it does not depict the segmental intrahepatic ducts unless they are dilated. The segmental ducts are difficult to visualize with MR cholangiopancreatography because of their small caliber and the limited spatial resolution and signal-to-noise ratio achievable with standard MR pulse sequences. However, visualization of the normal (ie, nondistended) biliary system is necessary for the evaluation of donor candidates for living related liver transplantation. Because of the prevalence of variant biliary anatomy, MR cholangiopancreatography is often used for preoperative evaluation of prospective liver donors. Intravenous morphine administered prior to MR cholangiopancreatography can improve image quality by causing the sphincter of Oddi to contract, which increases pressure in and distention of the biliary and pancreatic ducts. Morphine administration may also be particularly helpful for the evaluation of patients with primary sclerosing cholangitis, malignant neoplasms such as cholangiocarcinoma, or cystic and non-organ-deforming benign pancreatic neoplasms.", "Agrin signals through the muscle-specific receptor tyrosine kinase (MuSK) to cluster acetylcholine receptors (AChRs) on the postsynaptic membrane of the neuromuscular junction (NMJ). This stands as the prevailing model of synapse induction by a presynaptic factor, yet the agrin-dependent MuSK signaling cascade is largely undefined. Abl1 (previously known as Abl) and the Abl1-related gene product Abl2 (previously known as Arg) define a family of tyrosine kinases that regulate actin structure and presynaptic axon guidance. Here we show that the Abl kinases are critical mediators of postsynaptic assembly downstream of agrin and MuSK. In mouse muscle, Abl kinases were localized to the postsynaptic membrane of the developing NMJ. In cultured myotubes, Abl kinase activity was required for agrin-induced AChR clustering and enhancement of MuSK tyrosine phosphorylation. Moreover, MuSK and Abl kinases effected reciprocal tyrosine phosphorylation and formed a complex after agrin engagement. Our findings suggest that Abl kinases provide the developing synapse with the kinase activity required for signal amplification and the intrinsic cytoskeletal regulatory capacity required for assembly and remodeling.", "Capillaria hepatica (C. hepatica) is a parasitic nematode causing hepatic capillariasis in numerous mammals. Ecologic studies showed that the first hosts of C. hepatica were rodents, among which rats had relatively high infection rates, which explains why C. hepatica spreads globally. Anatomical studies showed that the liver was the principal site of colonization by these parasites and physical damage tended to occur. Although C. hepatica might lead to serious liver disorders, relevant clinical reports were rare, because of the non-specific nature of clinical symptoms, leading to misdiagnosis. This review mainly focuses on the biological characteristics and epidemiology of C. hepatica in China and histopathologic changes in the liver, with expectation of gaining a better understanding of the disease and seeking more effective treatment.", "BACKGROUND: Runt-related transcription factor 1 (RUNX1T1) isoforms are involved in adipogenesis. RUNX1T1 is mediated by the fat mass and obesity-associated (FTO). However, the extent to which RUNX1T1 single-nucleotide polymorphisms (SNPs) are associated with obesity risk or metabolic abnormalities in a community population basis is unknown.METHODS: Samples were obtained from the Australian Crossroads study bio-bank. SNPs located in the coding region and 3'untranslated regions of RUNX1T1 with minor allele frequency ≥0.05 were analysed using Taqman genotyping assays.RESULTS: Eight candidate SNPs were genotyped successfully in 1440 participants. Of these SNPs only rs34269950 located in the 'RRACH' motif, the most common N6-methyladenosine (m6A) methylation modification site (recognized by FTO), was significantly associated with obesity risk and metabolic abnormalities. Specifically, compared to AA genotype, rs34269950 del/del genotype was associated with a 1.47 [95% confidence interval (CI): 1.01-2.14, P = 0.042] fold higher rate of obesity risk. Additionally, the del/del genotype was associated with a 60% increased risk of metabolic syndrome (MetS) [odds ratio (OR) = 1.60, 95% CI: 1.10-2.32, P = 0.015], in comparison to the AA genotype. Finally, rs34269950 del/del increased the risk of a larger waist circumference (OR = 1.65, 95% CI: 1.15-2.36, P = 0.007), but not other components of MetS.CONCLUSION: Our study demonstrates that RUNX1T1 rs34269950, located in a potential FTO recognition motif, is significantly associated with waist circumference. This provides novel evidence to suggest SNPs located in RRACH motif may be involved in RNA m6A modification and mechanistic pathways that influence abdominal obesity.", "The M1 muscarinic agonists AF102B (Cevimeline, EVOXACTM: prescribed in USA and Japan for Sjogren's Syndrome), AF150(S) and AF267B--1) are neurotrophic and synergistic with neurotrophins such as nerve growth factor and epidermal growth factor; 2) elevate the non-amyloidogenic amyloid precursor protein (alpha-APPs) in vitro and decrease beta-amyloid (A beta) levels in vitro and in vivo; and 3) inhibit A beta- and oxidative-stress-induced cell death and apoptosis in PC12 cells transfected with the M1 muscarinic receptor. These effects can be combined with the beneficial effects of these compounds on some other major hallmarks of Alzheimer's disease (AD) (e.g. tau hyperphosphorylation and paired helical filaments [PHF]; and loss of cholinergic function conducive to cognitive impairments.) These drugs restored cognitive impairments in several animal models for AD, mimicking different aspects of AD, with a high safety margin (e.g. AF150[S] >1500 and AF267B >4500). Notably, these compounds show a high bioavailability and a remarkable preference for the brain vs. plasma following p.o. administration. In mice with small hippocampi, unlike rivastigmine and nicotine, AF150(S) and AF267B restored cognitive impairments also on escape latency in a Morris water maze paradigm in reversal learning. Furthermore, in aged and cognitively impaired microcebes (a natural animal model that mimics AD pathology and cognitive impairments), prolonged treatment with AF150(S) restored cognitive and behavioral impairments and decreased tau hyperphosphorylation, PHF and astrogliosis. Our M1 agonists, alone or in polypharmacy, may present a unique therapy in AD due to their beneficial effects on major hallmarks of AD.", "Exosomes are small membrane vesicles originating from late endosomes and secreted by hematopoietic and epithelial cells in culture. Exosome proteic and lipid composition is unique and might shed some light into exosome biogenesis and function. Exosomes secreted from professional antigen-presenting cells (i.e., B lymphocytes and dendritic cells) are enriched in MHC class I and II complexes, costimulatory molecules, and hsp70-90 chaperones, and have therefore been more extensively studied for their immunomodulatory capacities in vitro and in vivo. This review will present the main biological features pertaining to tumor or DC-derived exosomes, will emphasize their immunostimulatory function, and will discuss their implementation in cancer immunotherapy." ]
1,691
[ "Structural maintenance of chromosomes (SMC) protein complexes, including cohesin and condensin, play key roles in the regulation of higher-order chromosome organization. Even though SMC proteins are thought to mechanistically determine the function of the complexes, their native conformations and dynamics have remained unclear. Here, we probe the topology of Smc2-Smc4 dimers of the S. cerevisiae condensin complex with high-speed atomic force microscopy (AFM) in liquid. We show that the Smc2-Smc4 coiled coils are highly flexible polymers with a persistence length of only ∼ 4 nm. Moreover, we demonstrate that the SMC dimers can adopt various architectures that interconvert dynamically over time, and we find that the SMC head domains engage not only with each other, but also with the hinge domain situated at the other end of the ∼ 45-nm-long coiled coil. Our findings reveal structural properties that provide insights into the molecular mechanics of condensin complexes.", "Pulmonary hypertension is one of the well-known clinical manifestations of polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes (POEMS) syndrome, occurring in approximately 25-30% of the affected individuals. However, the histopathologic spectrum of pulmonary hypertension associated with POEMS syndrome has not been fully documented in the literature. Herein, we report an autopsy case of POEMS syndrome in a patient whose lung tissues showed histopathology indistinguishable from that of idiopathic pulmonary arterial hypertension with abundant plexiform lesions in the small pulmonary arteries.", "BACKGROUND: Monoamine oxidase-A (MAO-A) is a treatment target in neurodegenerative illness and mood disorders that increases oxidative stress and predisposition toward apoptosis. Increased MAO-A levels in prefrontal cortex (PFC) and anterior cingulate cortex (ACC) occur in rodent models of depressive behavior and human studies of depressed moods. Extreme dysphoria is common in borderline personality disorder (BPD), especially when severe, and the molecular underpinnings of severe BPD are largely unknown. We hypothesized that MAO-A levels in PFC and ACC would be highest in severe BPD and would correlate with symptom magnitude.METHODS: [(11)C] Harmine positron emission tomography measured MAO-A total distribution volume (MAO-A VT), an index of MAO-A density, in severe BPD subjects (n = 14), moderate BPD subjects (n = 14), subjects with a major depressive episode (MDE) only (n = 14), and healthy control subjects (n = 14). All subjects were female.RESULTS: Severe BPD was associated with greater PFC and ACC MAO-A VT compared with moderate BPD, MDE, and healthy control subjects (multivariate analysis of variance group effect: F6,102 = 5.6, p < .001). In BPD, PFC and ACC MAO-A VT were positively correlated with mood symptoms (PFC: r = .52, p = .005; ACC: r = .53, p = .004) and suicidality (PFC: r = .40, p = .037; ACC: r = .38, p = .046), while hippocampus MAO-A VT was negatively correlated with verbal memory (r = -.44, p = .023).CONCLUSIONS: These results suggest that elevated MAO-A VT is associated with multiple indicators of BPD severity, including BPD symptomatology, mood symptoms, suicidality, and neurocognitive impairment.", "Recent clinical trials using rapalogues in tuberous sclerosis complex show regression in volume of typically vascularised tumours including angiomyolipomas and subependymal giant cell astrocytomas. By blocking mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signalling, rapalogue efficacy is likely to occur, in part, through suppression of hypoxia-inducible factors (HIFs) and vascular endothelial growth factors (VEGFs). We show that rapamycin reduces HIF-1α protein levels, and to a lesser extent VEGF-A levels, in renal cystadenoma cells in a Tsc2+/- mouse model. We established that mTORC1 drives HIF-1α protein accumulation through enhanced transcription of HIF-1α mRNA, a process that is blocked by either inhibition or knockdown of signal transducer and activation of transcription 3 (STAT3). Furthermore, we demonstrated that STAT3 is directly phosphorylated by mTORC1 on Ser727 during hypoxia, promoting HIF-1α mRNA transcription. mTORC1 also regulates HIF-1α synthesis on a translational level via co-operative regulation of both initiation factor 4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase-1 (S6K1), whereas HIF-1α degradation remains unaffected. We therefore proposed that mTORC1 drives HIF-1α synthesis in a multifaceted manner through 4E-BP1/eIF4E, S6K1 and STAT3. Interestingly, we observed a disconnect between HIF-1α protein levels and VEGF-A expression. Although both S6K1 and 4E-BP1 regulate HIF-1α translation, VEGF-A is primarily under the control of 4E-BP1/eIF4E. S6K1 inhibition reduces HIF-1α but not VEGF-A expression, suggesting that mTORC1 mediates VEGF-A expression via both HIF-1α-dependent and -independent mechanisms. Our work has important implications for the treatment of vascularised tumours, where mTORC1 acts as a central mediator of STAT3, HIF-1α, VEGF-A and angiogenesis via multiple signalling mechanisms.", "Nutrient overload is associated with the development of obesity, insulin resistance, and type 2 diabetes. However, the underlying mechanisms for developing insulin resistance in the presence of excess nutrients are incompletely understood. We investigated whether activation of AMP-activated protein kinase (AMPK) prevents the hepatic insulin resistance that is induced by the consumption of a high-protein diet (HPD) and the presence of excess amino acids. Exposure of HepG2 cells to excess amino acids reduced AMPK phosphorylation, upregulated Notch1 expression, and impaired the insulin-stimulated phosphorylation of Akt Ser(473) and insulin receptor substrate-1 (IRS-1) Tyr(612). Inhibition of Notch1 prevented amino acid-induced insulin resistance, which was accompanied by reduced expression of Rbp-Jk, hairy and enhancer of split-1, and forkhead box O1. Mechanistically, mTORC1 signaling was activated by excess amino acids, which then positively regulated Notch1 expression through the activation of the signal transducer and activator of transcription 3 (STAT3). Activation of AMPK by metformin inhibited mTORC1-STAT3 signaling, thereby preventing excess amino acid-impaired insulin signaling. Finally, HPD feeding suppressed AMPK activity, activated mTORC1/STAT3/Notch1 signaling, and induced insulin resistance. Chronic administration of either metformin or rapamycin inhibited the HPD-activated mTORC1/STAT3/Notch1 signaling pathway and prevented hepatic insulin resistance. We conclude that the upregulation of Notch1 expression by hyperactive mTORC1 signaling is an essential event in the development of hepatic insulin resistance in the presence of excess amino acids. Activation of AMPK prevents amino acid-induced insulin resistance through the suppression of the mTORC1/STAT3/Notch1 signaling pathway.", "The mechanistic (or mammalian) target of rapamycin (mTOR) is a kinase that regulates key cellular functions linked to the promotion of cell growth and metabolism. This kinase, which is part of two protein complexes termed mTOR complex 1 (mTORC1) and 2 (mTORC2), has a fundamental role in coordinating anabolic and catabolic processes in response to growth factors and nutrients. Of the two mTOR complexes, mTORC1 is by far the best characterized. When active, mTORC1 triggers cell growth and proliferation by promoting protein synthesis, lipid biogenesis, and metabolism, and by reducing autophagy. The fact that mTORC1 deregulation is associated with several human diseases, such as type 2 diabetes, cancer, obesity and neurodegeneration, highlights its importance in the maintenance of cellular homeostasis. Over the last years, several groups observed that mTORC1 inhibition, in addition to reducing protein synthesis, deeply affects gene transcription. Here, we review the connections between mTORC1 and gene transcription by focusing on its impact in regulating the activation of specific transcription factors including including STAT3, SREBPs, PPARγ, PPARα, HIF1α, YY1–PGC1α and TFEB. We also discuss the importance of these transcription factors in mediating the effects of mTORC1 on various cellular processes in physiological and pathological contexts.", "Parkinson's disease, also known as paralysis agitans, is a progressive degenerative disorder of the central nervous system, with onset usually between the ages of 50 and 65 years, and is associated with loss of dopaminergic neurons in the subsantia nigra and the presence of Lewy bodies. It is characterized by the triad of resting tremor, muscular rigidity and bradykinesia. Often-accompanying abnormalities include disorders of equilibrium, posture and autonomic function, including micturition. Symptoms from the lower urinary tract add a significant comorbidity factor in these patients. The incidence and prevalence of lower urinary tract dysfunction rise with increasing progression of the underlying neurological disease. They present a troublesome and difficult to treat health issue with a profound impact on the patient's quality of life. Storage symptoms seem to predominate. In the long term, renal function might be compromised, mainly as a result of elevated intravesical pressure. Various conservative, minimally-invasive and surgical treatment options are available to prevent harmful sequelae, and to improve the quality of life of these patients. We present an overview of current and prospective treatment strategies.", "There has been substantial progress in the management of patients with osteoporosis and the prevention of osteoporotic fractures. Currently available strong anti-resorptive agents are bisphosphonates and an anti-receptor activator of nuclear factor-kappa B ligand (RANKL) antibody, denosumab. Although bisphosphonates and denosumab both inhibit bone resorption and prevent vertebral and non-vertebral fractures, their mechanisms of action are different. Whereas bisphosphonates' effects on bone mineral density and fracture peak around 3 to 5 years and become plateaued, those of denosumab are maintained for up to 10 years. There are differences in the modes of action of these two drugs. Bisphosphonates accumulate on the mineralized bone surface and are released by the acid environment under osteoclastic bone resorption, whereas denosumab is not accumulated on bone but directly binds RANKL and inhibits its binding to the receptor RANK. Thus, the reduction in denosumab concentration 4 to 6 months after injection may enable RANK to bind to RANKL, where it is highly expressed, such as in damaged bone regions. As anabolic agents, only teriparatide has been available for a long time, but abaloparatide, a synthetic analog of PTHrP(1-34), is currently under development. Because of the difference in the preferential binding conformations of PTH1 receptor between teriparatide and abaloparatide, the latter shows anabolic effects with fewer bone resorptive effects. Romosozumab, an anti-sclerostin antibody, inhibits the action of sclerostin, a canonical Wnt signal inhibitor secreted from osteocytes, and enhances canonical Wnt signaling. Romosozumab robustly increases vertebral and proximal femoral bone mineral density within 12 months and inhibits vertebral and clinical fractures in patients with osteoporosis by enhancing bone formation and inhibiting bone resorption. In this review, we summarize the recent advances in therapeutic agents for the treatment of osteoporosis and discuss future prospects with their use.", "Reactive oxygen species (ROS) have been known for a long time to play important roles in host defense against microbial infections. In addition, it has become apparent that they also perform regulatory roles in signal transduction and cell proliferation. The source of these chemicals are members of the NOX family of NADPH oxidases that are found in a variety of tissues. NOX1, an NADPH oxidase homologue that is most abundantly expressed in colon epithelial cells, requires the regulatory subunits NOXO1 (NOX organizing protein 1) and NOXA1 (NOX activating protein 1), as well as the flavocytochrome component p22(phox) for maximal activity. Unlike NOX2, the phagocytic NADPH oxidase whose activity is tightly repressed in the resting state, NOX1 produces superoxide constitutively at low levels. These levels can be further increased in a stimulus-dependent manner, yet the molecular details regulating this activity are not fully understood. Here we present the first quantitative characterization of the interactions made between the cytosolic regulators NOXO1 and NOXA1 and membrane-bound p22(phox). Using isothermal titration calorimetry we show that the isolated tandem SH3 domains of NOXO1 bind to p22(phox) with high affinity, most likely adopting a superSH3 domain conformation. In contrast, complex formation is severely inhibited in the presence of the C-terminal tail of NOXO1, suggesting that this region competes for binding to p22(phox) and thereby contributes to the regulation of superoxide production. Furthermore, we provide data indicating that the molecular details of the interaction between NOXO1 and NOXA1 is significantly different from that between the homologous proteins of the phagocytic oxidase, suggesting that there are important functional differences between the two systems. Taken together, this study provides clear evidence that the assembly of the NOX1 oxidase complex can be regulated through reversible protein-protein interactions.", "DNA methylation plays a critical role in controlling states of gene activity in most eukaryotic organisms, and it is essential for proper growth and development. Patterns of methylation are established by de novo methyltransferases and maintained by maintenance methyltransferase activities. The Dnmt3 family of de novo DNA methyltransferases has recently been characterized in animals. Here we describe DNA methyltransferase genes from both Arabidopsis and maize that show a high level of sequence similarity to Dnmt3, suggesting that they encode plant de novo methyltransferases. Relative to all known eukaryotic methyltransferases, these plant proteins contain a novel arrangement of the motifs required for DNA methyltransferase catalytic activity. The N termini of these methyltransferases contain a series of ubiquitin-associated (UBA) domains. UBA domains are found in several ubiquitin pathway proteins and in DNA repair enzymes such as Rad23, and they may be involved in ubiquitin binding. The presence of UBA domains provides a possible link between DNA methylation and ubiquitin/proteasome pathways.", "The pre-synaptic protein alpha-synuclein is the main component of Lewy bodies and Lewy neurites, the defining neuropathological characteristics of Parkinson's disease and dementia with Lewy bodies. Mutations in the alpha-synuclein gene cause familial forms of Parkinson's disease and dementia with Lewy bodies. We previously described a transgenic mouse line expressing truncated human alpha-synuclein(1-120) that develops alpha-synuclein aggregates, striatal dopamine deficiency and reduced locomotion, similar to Parkinson's disease. We now show that in the striatum of these mice, as in Parkinson's disease, synaptic accumulation of alpha-synuclein is accompanied by an age-dependent redistribution of the synaptic SNARE proteins SNAP-25, syntaxin-1 and synaptobrevin-2, as well as by an age-dependent reduction in dopamine release. Furthermore, the release of FM1-43 dye from PC12 cells expressing either human full-length alpha-synuclein(1-140) or truncated alpha-synuclein(1-120) was reduced. These findings reveal a novel gain of toxic function of alpha-synuclein at the synapse, which may be an early event in the pathogenesis of Parkinson's disease.", "OBJECTIVE: Although the quest for longevity is as old as civilization itself, only recently have technical and conceptual advances in genomics research brought us to the point of understanding the precise molecular events that make us age. This heralds an era when manipulations of these will enable us to live longer, healthier lives. The present review describes how recent experimental strategies have identified key genes and intracellular pathways that are responsible for ageing and longevity.FINDINGS: In diverse species transcription factors belonging to the forkhead/winged helix box gene, group O (FOXO) subfamily have been found to be crucial in downstream suppression of the life-shortening effects of insulin/insulin-like growth factor-I receptor signalling pathways that, when upregulated, accelerate ageing by suppression of FOXO. The various adverse processes activated upon FOXO suppression include increased generation of reactive oxygen species (ROS). ROS are pivotal for the onset of various common conditions, including hypertension, atherosclerosis, type 2 diabetes, cancer and Alzheimer's disease, each of which shortens lifespan. In humans, FOXO3a, as well as FOXO1 and -4, and their downstream effectors, could hold the key to counteracting ageing and common diseases. An understanding of the processes controlled by these FOXOs should permit development of novel classes of agents that will more directly counteract or prevent the damage associated with diverse life-threatening conditions, and so foster a life of good health to a ripe old age. Just like caloric restriction, lifespan can be increased in various species by plant-derived polyphenols, such as resveratrol, via activation of sirtuins in cells. Sirtuins, such as SIRT1 in mammals, utilize FOXO and other pathways to achieve their beneficial effects on health and lifespan.CONCLUSION: Lifespan is tractable and basic mechanisms are now known. Longevity research complements and overlaps research in most major medical disciplines. Current progress bodes well for an ever-increasing length of healthy life for those who adapt emerging knowledge personally (so-called 'longevitarians').", "Until recently there was no effective systemic therapy for metastatic melanoma. Increased understanding of tumor biology and immune regulation has led to the development of drugs targeting the mitogen-activated protein kinase (MAPK) pathway (BRAF inhibitors and MEK inhibitors) and T-cell regulation (CTLA4 antibodies). These drugs are the new standard of care, however barriers to better patient outcomes include limited responses and significant toxicities (CTLA4 antibodies) and lack of durability in the majority of cases (BRAF and MEK inhibitors). This review discusses the next stages of development of treatments in melanoma, including immune checkpoint blocking drugs targeting the PD-1/PD-L1 axis, and the use of BRAF and MEK inhibitors in combination. Both approaches lead to a higher proportion of durable responses coupled with less toxicity. In an effort to improve outcomes even further, clinical trials of combinations of MAPK inhibitors, immunotherapies and other signal pathway inhibitors are underway. Adjuvant studies of many of these drugs have commenced, with the hope of also improving outcomes in patients with early-stage melanoma.", "Long-acting antiretroviral implants could help protect high-risk individuals from HIV infection. We describe the design and testing of a long-acting reservoir subcutaneous implant capable of releasing cabotegravir for several months. We compressed cabotegravir and excipients into cylindrical pellets and heat-sealed them in tubing composed of hydrophilic poly(ether-urethane) -. The implants have a 47 mm lumen length, 3.6 mm outer diameter, and 200 μm wall thickness. Four cabotegravir pellets were sealed in the membrane, with a total drug loading of 274 ± 3 mg. In vivo, the implants released 348 ± 107 μg/day (median value per implant, N = 41) of cabotegravir in rhesus macaques. Five implants generated an average cabotegravir plasma concentration of 373 ng/ml in rhesus macaques. The non-human primates tolerated the implant without gross pathology or microscopic signs of histopathology compared to placebo implants. Cabotegravir plasma levels in macaques dropped below detectable levels within two weeks after the removal of the implants.", "Signal transduction occurs by the reversible assembly of oligomeric protein complexes that include both enzymatic proteins and proteins without known enzymatic activity. These nonenzymatic components can serve as scaffolds or anchors and regulate the efficiency, specificity, and localization of the signaling pathway. Here we report the identification of MORG1 (mitogen-activated protein kinase organizer 1), a member of the WD-40 protein family that was isolated as a binding partner of the extracellular signal-regulated kinase (ERK) pathway scaffold protein MP1. MORG1 specifically associates with several components of the ERK pathway, including MP1, Raf-1, MEK, and ERK, and stabilizes their assembly into an oligomeric complex. MORG1 facilitates ERK activation when cells are stimulated with lysophosphatidic acid, phorbol 12-myristate 13-acetate, or serum, but not in response to epidermal growth factor. Suppression of MORG1 by short interfering RNA leads to a marked reduction in ERK activity when cells are stimulated with serum. We propose that MORG1 is a component of a modular scaffold system that participates in the regulation of agonist-specific ERK signaling.", "MicroRNAs (miRNAs) are a class of non-coding small RNAs representing one of the most exciting areas of modern medical science. miRNAs modulate a large and complex regulatory network of gene expression of the majority of the protein-coding genes. Currently, evidences suggest that miRNAs play a crucial role in the pathogenesis of heart failure. Some miRNAs as miR-1, miR-133 and miR-208a are highly expressed in the heart and strongly associated with the development of cardiac hypertrophy. Recent data indicate that these miRNAs as well as miR-206 change their expression quickly in response to physical activity. The differential regulation of miRNAs in response to exercise suggests a potential value of circulating miRNAs (c-miRNAs) as biomarkers of physiological mediators of the cardiovascular adaptation induced by exercise. Likewise, serum levels of c-miRNAs such as miR-423-5p have been evaluated as potential biomarkers in the diagnosis and prognosis of heart failure. On the other hand, the manipulation of miRNAs levels using techniques such as 'miR mimics' and 'antagomiRs' is becoming evident the enormous potential of miRNAs as promising therapeutic strategies in heart failure.", "Aberrant activation of mammalian target of rapamycin complex 1 (mTORC1), caused by loss or inactivation of TSC1/TSC2 protein complex, leads to negative feedback inhibition of Akt. The exact mechanisms of this process are still not fully understood. Here we present evidence for the involvement of STAT3, a known mTORC1 regulated transcription factor, in this process. We demonstrate that STAT3 promotes the transcription of PTEN by directly binding on the PTEN promoter. Elevated PTEN then inhibits the proliferation of Tsc1(-/-) or Tsc2(-/-) cells through down-regulation of Akt signaling. Activation of PTEN in this pathway may thus serve as a protective mechanism against hyper-activated mTORC1 mediated tumorigenesis and contribute to the benign nature of tumors caused by loss of either TSC1 or TSC2.", "The dishevelled gene of Drosophila is required to establish coherent arrays of polarized cells and is also required to establish segments in the embryo. Here, we show that loss of dishevelled function in clones, in double heterozygotes with wingless mutants and in flies bearing a weak dishevelled transgene leads to patterning defects which phenocopy defects observed in wingless mutants alone. Further, polarized cells in all body segments require dishevelled function to establish planar cell polarity, and some wingless alleles and dishevelled; wingless double heterozygotes exhibit bristle polarity defects identical to those seen in dishevelled alone. The requirement for dishevelled in establishing polarity in cell autonomous. The dishevelled gene encodes a novel intracellular protein that shares an amino acid motif with several other proteins that are found associated with cell junctions. Clonal analysis of dishevelled in leg discs provides a unique opportunity to test the hypothesis that the wingless dishevelled interaction species at least one of the circumferential positional values predicted by the polar coordinate model. We propose that dishevelled encodes an intracellular protein required to respond to a wingless signal and that this interaction is essential for establishing both cell polarity and cell identity.", "Optimal adoptive cell therapy (ACT) should contribute to effective cancer treatment. The unique ability of natural killer (NK) cells to kill cancer cells independent of major histocompatibility requirement makes them suitable as ACT tools. Herceptin, an antihuman epidermal growth factor receptor-2 (anti-HER2) monoclonal antibody, is used to treat HER2+ breast cancer. However, it has limited effectiveness and possible severe cardiotoxicity. Given that Herceptin may increase the cytotoxicity of lymphocytes, we explored the possible augmentation of NK cell cytotoxicity against HER2+ breast cancer cells by Herceptin. We demonstrated that Herceptin could interact with CD16 on NK cells to expand the cytotoxic NK (specifically, CD56dim) cell population. Additionally, Herceptin increased NK cell migration and cytotoxicity against HER2+ breast cancer cells. In a pilot study, Herceptin-treated NK cells shrunk lung nodular metastasis in a woman with HER2+ breast cancer who could not tolerate the cardiotoxic side effects of Herceptin. Our findings support the therapeutic potential of Herceptin-treated NK cells in patients with HER2+ and Herceptin-intolerant breast cancer.", "The mammalian target of rapamycin (mTOR) signaling pathway integrates environmental cues to regulate cell growth and survival through various mechanisms. However, how mTORC1 responds to acute inflammatory signals to regulate bowel regeneration is still obscure. In this study, we investigated the role of mTORC1 in acute inflammatory bowel disease. Inhibition of mTORC1 activity by rapamycin treatment or haploinsufficiency of Rheb through genetic modification in mice impaired intestinal cell proliferation and induced cell apoptosis, leading to high mortality in dextran sodium sulfate- and 2,4,6-trinitrobenzene sulfonic acid-induced colitis models. Through bone marrow transplantation, we found that mTORC1 in nonhematopoietic cells played a major role in protecting mice from colitis. Reactivation of mTORC1 activity by amino acids had a positive therapeutic effect in mTORC1-deficient Rheb(+/-) mice. Mechanistically, mTORC1 mediated IL-6-induced Stat3 activation in intestinal epithelial cells to stimulate the expression of downstream targets essential for cell proliferation and tissue regeneration. Therefore, mTORC1 signaling critically protects against inflammatory bowel disease through modulation of inflammation-induced Stat3 activity. As mTORC1 is an important therapeutic target for multiple diseases, our findings will have important implications for the clinical usage of mTORC1 inhibitors in patients with acute inflammatory bowel disease." ]
1,692
[ "The activation of telomerase, which specifically occurs in neoplastic cells to avoid telomere attrition at each cell division, is a necessary event in tumorigenesis. The evidence that telomerase is also present in normal B cells at different levels according to their differentiation and activation state makes the study of telomerase activity in B cell tumors particularly interesting. This review summarizes data concerning telomerase activity in chronic lymphoproliferative disorders of B-cell lineage (B-CLD), making suggestions regarding B-cell development and B-cell tumor histogenesis. The role of telomerase activity as a potential prognostic marker, as well as a target of new antineoplastic strategies is discussed.", "Protein synthesis is a key regulated cellular process that links nutrient availability and organismal growth. It has long been known that some cellular proteins continue to be synthesized under conditions where global translation is severely compromised. One prominent example is the selective translation of heat shock proteins (Hsps) under stress conditions. Although the transcriptional regulation of Hsp genes has been well established, neither the specific translation-promoting features nor the regulatory mechanism of the translation machinery have been clearly defined. Here we show that the stress-induced preferential translation of Hsp70 mRNA is negatively regulated by PI3K-mTORC1 signaling. Despite the transcriptional up-regulation, the translation of Hsp70 mRNA is deficient in cells lacking tuberous sclerosis complex 2. Conversely, Hsp70 synthesis is enhanced under the reduced PI3K-mTORC1 signaling. We found that the 5' UTR of Hsp70 mRNA contributes to cap-independent translation without exhibiting typical features of internal ribosome entry site. Our findings imply a plausible mechanism for how persistent PI3K-mTORC1 signaling favors the development of age-related pathologies by attenuating stress resistance.", "Cerebral vasospasm is the classic cause of delayed neurological deterioration leading to cerebral ischemia and infarction, and thus, poor outcome and occasionally death, after aneurysmal subarachnoid hemorrhage (SAH). Advances in diagnosis and treatment, principally nimodipine, intensive care management, hemodynamic manipulations, and endovascular neuroradiology procedures, have improved the prospects for these patients, but outcomes remain disappointing. A phase 2b clinical trial (CONSCIOUS-1) demonstrated marked prevention of vasospasm with the endothelin antagonist, clazosentan, yet patient outcome was not improved. The most likely explanation is that the study was underpowered to detect the relatively small improvements in outcome that would be seen with prevention of vasospasm, especially when assessed using relatively insensitive measures such as the modified Rankin and Glasgow outcome scales. Other possible explanations for this result are that adverse effects of treatment affected the beneficial effects of the drug. It also is possible that alternative causes of neurological deterioration and poor outcome after SAH, including delayed effects of acute global cerebral ischemia, thromboembolism, microcirculatory dysfunction, and cortical spreading depression, play a role. Clazosentan reduced angiographic vasospasm in a dose-dependent manner in patients with aneurysmal SAH following coiling or clipping of the aneurysm. Reducing the incidence of vasospasm should have an important effect on clinical outcome. A phase 3 clinical trial (CONSCIOUS-2) will focus on quantifying this outcome in patients undergoing aneurysm clipping receiving placebo or 5 mg/h of clazosentan.", "Can ultrasound be of any help in the diagnosis of alveolar-interstitial syndrome? In a prospective study, we examined 250 consecutive patients in a medical intensive care unit: 121 patients with radiologic alveolar-interstitial syndrome (disseminated to the whole lung, n = 92; localized, n = 29) and 129 patients without radiologic evidence of alveolar-interstitial syndrome. The antero-lateral chest wall was examined using ultrasound. The ultrasonic feature of multiple comet-tail artifacts fanning out from the lung surface was investigated. This pattern was present all over the lung surface in 86 of 92 patients with diffuse alveolar-interstitial syndrome (sensitivity of 93.4%). It was absent or confined to the last lateral intercostal space in 120 of 129 patients with normal chest X-ray (specificity of 93.0%). Tomodensitometric correlations showed that the thickened sub-pleural interlobular septa, as well as ground-glass areas, two lesions present in acute pulmonary edema, were associated with the presence of the comet-tail artifact. In conclusion, presence of the comet-tail artifact allowed diagnosis of alveolar-interstitial syndrome.", "The status of phospholamban (PLB) phosphorylation in the ischemia-reperfused hearts remains controversial. Although a decrease in the phosphorylation of both PLB residues (Ser16, PKA site, and Thr17, CaMKII site) was previously reported, experiments from our laboratory failed to detect this decrease. In an attempt to elucidate the cause for this discrepancy, experiments were performed in Langendorff-perfused rat hearts with two main goals: (1) To determine whether keeping pacing during ischemia, a protocol followed in other ischemia-reperfusion models, decreases the phosphorylation of PLB residues, below pre-ischemic values; (2) To investigate whether a maximal beta-adrenergic challenge allows to detect a decrease in the ability of PLB to be phosphorylated in ischemia-reperfused hearts. Hearts were submitted to a global ischemia/reperfusion protocol (20/30 min) with (P) or without (NP) pacing during ischemia, and phosphorylation of PLB residues was assessed by immunodetection. The recovery of contractility upon reperfusion was lower in P vs. NP hearts. Ser16 of PLB, was phosphorylated at the end of ischemia in NP hearts. This increase appeared earlier in P hearts and was significantly diminished by catecholamine depletion and beta-blockade. Thr17 site was phosphorylated at the beginning of ischemia and the onset of reperfusion. The ischemia-induced phosphorylation of Thr17 was higher and more sustained in P vs. NP hearts, and inhibited by the calcium channel blocker, nifedipine, whereas the reperfusion-induced increase in Thr17 phosphorylation was similar in P and NP hearts and was significantly diminished by the Na+/Ca2+ exchanger inhibitor KB-R7943. Phosphorylation of PLB residues did not decrease below basal levels at any time during ischemia and reperfusion. However, the phosphorylation, inotropic and lusitropic response to beta-adrenergic stimulation was significantly decreased both in P and NP hearts.", "Colorectal cancer risk is increased in shift workers with presumed circadian disruption. Intestinal epithelial cell proliferation is gated throughout each day by the circadian clock. Period 2 (Per2) is a key circadian clock gene. Per2 mutant (Per2(m/m)) mice show an increase in lymphomas and deregulated expression of cyclin D and c-Myc genes that are key to proliferation control. We asked whether Per2 clock gene inactivation would accelerate intestinal and colonic tumorigenesis. The effects of PER2 on cell proliferation and beta-catenin were studied in colon cancer cell lines by its down-regulation following RNA interference. The effects of Per2 inactivation in vivo on beta-catenin and on intestinal and colonic polyp formation were studied in mice with Per2 mutation alone and in combination with an Apc mutation using polyp-prone Apc(Min/+) mice. Down-regulation of PER2 in colon cell lines (HCT116 and SW480) increases beta-catenin, cyclin D, and cell proliferation. Down-regulation of beta-catenin along with Per2 blocks the increase in cyclin D and cell proliferation. Per2(m/m) mice develop colonic polyps and show an increase in small intestinal mucosa beta-catenin and cyclin D protein levels compared with wild-type mice. Apc(Min/+)Per2(m/m) mice develop twice the number of small intestinal and colonic polyps, with more severe anemia and splenomegaly, compared with Apc(Min/+) mice. These data suggest that Per2 gene product suppresses tumorigenesis in the small intestine and colon by down-regulation of beta-catenin and beta-catenin target genes, and this circadian core clock gene may represent a novel target for colorectal cancer prevention and control.", "The authors present a 21-year-old woman who has been receiving rapamycin for 5 months for bilateral subependymal giant cell astrocytomas. The patient was started at a dose of 0.2 mg/kg/day. Levels were maintained between 11 and 13 ng/mL. Magnetic resonance imaging of the brain 2(1/2) months after initiating rapamycin demonstrated a decrease in size of both astrocytomas (11 to 7.5 mm on the right and 8 to 5 mm on the left). Further studies are needed with prolonged observation to confirm these findings, determine the length of necessary treatment, and evaluate recurrence risk after discontinuation of rapamycin." ]
1,694
[ "INTRODUCTION: Allgrove syndrome (AS) is a rare autosomal recessive disorder characterized by achalasia cardia, alacrimia, and adrenocorticotropic hormone-resistant adrenal insufficiency which is sometimes associated with autonomic dysfunction. It has also been referred to as the triple A syndrome in view of the cardinal symptoms described above. First described by Allgrove et al in 1978, the disorder usually presents mostly during the first decade of life. These patients have the threat of adrenal crisis, shock, and hypoglycemia and are usually on steroid supplementation.CASE REPORT: The anesthesiologist's encounter with such patients, although rare, is mostly for repair of the achalasia cardia. We thus report a similar case of AS in a 2-year-old girl who was scheduled to undergo Heller myotomy along with the preoperative evaluation and intraoperative management of the same.CONCLUSION: Being aware of the pathophysiology of AS gives useful insight about the disease and successful perioperative management in the form of the triple S strategy, that is, stress dose of steroids, slow induction and positioning, and finally maintenance of stable hemodynamics and euglycemia.", "Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease primarily affecting motor neurons. Mutations in the gene encoding TDP-43 cause some forms of the disease, and cytoplasmic TDP-43 aggregates accumulate in degenerating neurons of most individuals with ALS. Thus, strategies aimed at targeting the toxicity of cytoplasmic TDP-43 aggregates may be effective. Here, we report results from two genome-wide loss-of-function TDP-43 toxicity suppressor screens in yeast. The strongest suppressor of TDP-43 toxicity was deletion of DBR1, which encodes an RNA lariat debranching enzyme. We show that, in the absence of Dbr1 enzymatic activity, intronic lariats accumulate in the cytoplasm and likely act as decoys to sequester TDP-43, preventing it from interfering with essential cellular RNAs and RNA-binding proteins. Knockdown of Dbr1 in a human neuronal cell line or in primary rat neurons is also sufficient to rescue TDP-43 toxicity. Our findings provide insight into TDP-43-mediated cytotoxicity and suggest that decreasing Dbr1 activity could be a potential therapeutic approach for ALS.", "During the cell cycle, duplicated sister chromatids become physically connected during S phase through a process called sister-chromatid cohesion. Cohesion is terminated during the metaphase-to-anaphase transition to trigger sister-chromatid segregation. The establishment and dissolution of cohesion are highly regulated by the cohesin complex and its multitude of regulators. In particular, the cohesin regulator Wapl promotes the release of cohesin from chromosomes during both interphase and mitosis. Here, we describe in vitro protein binding assays between Wapl and a cohesin subcomplex, and cellular assays in human cells that probe the functions of Wapl in cohesin release.", "Ca2+ release from the sarcoplasmic reticulum mediated by the cardiac ryanodine receptor (RyR2) is a fundamental event in cardiac muscle contraction. RyR2 mutations suggested to cause defective Ca2+ channel function have recently been identified in catecholaminergic polymorphic ventricular tachycardia (CPVT) and arrhythmogenic right ventricular dysplasia (ARVD) affected individuals. We report expression of three CPVT-linked human RyR2 (hRyR2) mutations (S2246L, N4104K, and R4497C) in HL-1 cardiomyocytes displaying correct targeting to the endoplasmic reticulum. N4104K also localized to the Golgi apparatus. Phenotypic characteristics including intracellular Ca2+ handling, proliferation, viability, RyR2:FKBP12.6 interaction, and beat rate in resting HL-1 cells expressing mutant hRyR2 were indistinguishable from wild-type (WT) hRyR2. However, Ca2+ release was augmented in cells expressing mutant hRyR2 after RyR activation (caffeine and 4-chloro-m-cresol) or beta-adrenergic stimulation (isoproterenol). RyR2:FKBP12.6 interaction remained intact after caffeine or 4-CMC activation, but was dramatically disrupted by isoproterenol or forskolin, an activator of adenylate cyclase. Isoproterenol and forskolin elevated cyclic-AMP to similar magnitudes in all cells and were associated with equivalent hyperphosphorylation of mutant and WT hRyR2. CPVT-linked mutations in hRyR2 did not alter resting cardiomyocyte phenotype but mediated augmented Ca2+ release on RyR-agonist or beta-AR stimulation. Furthermore, equivalent interaction between mutant and WT hRyR2 and FKBP12.6 was demonstrated.", "Heart failure is a common entity encountered in healthcare with a vast socioeconomic impact. Recent advances in pharmacotherapy have led to the development of novel therapies with mortality benefits, improvement in heart failure symptoms and hospitalizations. This article is intended to explore those newer pharmacotherapies and summarize the evidence behind guideline directed medical therapy (GDMT) for heart failure with reduced ejection fraction (HFrEF). It has been several years since any significant advances in pharmacotherapy of heart failure have resulted in survival benefit. Angiotensin-neprilysin inhibitors through the PARADIGM-HF and PIONEER-HF trials have shown mortality benefits and a reduction in heart failure hospitalizations and are considered landmark trials in heart failure. Vericiguat is an oral guanylate cyclase stimulator that through the recent VICTORIA trial showed a 10% relative difference in death from cardiovascular cause or hospitalization for heart failure. The sodium-glucose transport protein 2 (SGLT2) inhibitors are another class of medications that have shown promise in the treatment of patients with HFrEF and diabetes mellitus. The CANVAS and EMPA-REG OUTCOME trials showed the potential benefit of SGLT2 inhibitors on cardiovascular mortality, DECLARE-TIMI 58 trial showed that treatment with dapagliflozin reduced the risk of cardiovascular death or hospitalization for heart failure to a greater extent in patients with reduced ejection fraction (EF). Although novel pharmacotherapy is the current focus of intense research, there have been numerous studies on potential benefit of iron supplementation in ferropenic patients with heart failure. Another rapidly expanding area of research in the realm of heart failure is precision medicine and its impact on the development, progression, and treatment of heart failure. The field of heart failure is dynamic and with the influx of data from recent and ongoing trials, newer therapies with morbidity and mortality benefits in HFrEF are now available, nonetheless, much work is still needed.", "BACKGROUND: We report a proof-of-mechanism study of RG7112, a small-molecule MDM2 antagonist, in patients with chemotherapy-naive primary or relapsed well-differentiated or dedifferentiated MDM2-amplified liposarcoma who were eligible for resection.METHODS: Patients with well-differentiated or dedifferentiated liposarcoma were enrolled at four centres in France. Patients received up to three 28-day neoadjuvant treatment cycles of RG7112 1440 mg/m(2) per day for 10 days. If a patient progressed at any point after the first cycle, the lesion was resected or, if unresectable, an end-of-study biopsy was done. The primary endpoint was to assess markers of RG7112-dependent MDM2 inhibition and P53 pathway activation (P53, P21, MDM2, Ki-67, macrophage inhibitory cytokine-1 [MIC-1], and apoptosis). All analyses were per protocol. This trial is registered with EudraCT, number 2009-015522-10.RESULTS: Between June 3, and Dec 14, 2010, 20 patients were enrolled and completed pretreatment and day 8 biopsies. 18 of 20 patients had TP53 wild-type tumours and two carried missense TP53 mutations. 14 of 17 assessed patients had MDM2 gene amplification. Compared with baseline, P53 and P21 concentrations, assessed by immunohistochemistry, had increased by a median of 4·86 times (IQR 4·38-7·97; p=0·0001) and 3·48 times (2·05-4·09; p=0·0001), respectively, at day 8 (give or take 2 days). At the same timepoint, relative MDM2 mRNA expression had increased by a median of 3·03 times (1·23-4·93; p=0·003) that at baseline. The median change from baseline for Ki-67-positive tumour cells was -5·05% (IQR -12·55 to 0·05; p=0·01). Drug exposure correlated with blood concentrations of MIC-1 (p<0·0001) and haematological toxicity. One patient had a confirmed partial response and 14 had stable disease. All patients experienced at least one adverse event, mostly nausea (14 patients), vomiting (11 patients), asthenia (nine patients), diarrhoea (nine patients), and thrombocytopenia (eight patients). There were 12 serious adverse events in eight patients, the most common of which were neutropenia (six patients) and thrombocytopenia (three patients).DISCUSSION: MDM2 inhibition activates the P53 pathway and decreases cell proliferation in MDM2-amplified liposarcoma. This study suggests that it is feasible to undertake neoadjuvant biopsy-driven biomarker studies in liposarcoma.FUNDING: F Hoffmann-La Roche.", "Turcot syndrome (TS) is a rare hereditary disorder clinically characterized by the occurrence of primary tumors of the colon and the central nervous system (CNS). Here we present the case of an 11-year-old boy with a synchronous clinical presentation of both glioblastoma multiforme (GBM) and colonic adenocarcinoma. A molecular genetic study revealed microsatellite instability in the DNA mismatch repair (MMR) gene. This patient ultimately survived for 13 months after clinical presentation. Based on this case study, the synchronous presentation of glioblastoma multiforme and adenocarcinoma of the colon might suggest a shorter survival rate for patients with Turcot syndrome. A literature review complements this paper." ]
1,697
[ "The Set3 histone deacetylase complex (Set3C) binds histone H3 dimethylated at lysine 4 (H3K4me2) to mediate deacetylation of histones in 5'-transcribed regions. To discern how Set3C affects gene expression, genome-wide transcription was analyzed in yeast undergoing a series of carbon source shifts. Deleting SET3 primarily caused changes during transition periods, as genes were induced or repressed. Surprisingly, a majority of Set3-affected genes are overlapped by noncoding RNA (ncRNA) transcription. Many Set3-repressed genes have H3K4me2 instead of me3 over promoter regions, due to either reduced H3K4me3 or ncRNA transcription from distal or antisense promoters. Set3C also represses internal cryptic promoters, but in different regions of genes than the Set2/Rpd3S pathway. Finally, Set3C stimulates some genes by repressing an overlapping antagonistic antisense transcript. These results show that overlapping noncoding transcription can fine-tune gene expression, not via the ncRNA but by depositing H3K4me2 to recruit the Set3C deacetylase.", "We previously described a modification of the whole genome PCR method which allowed us to characterize several genes whose expression is regulated by thyroid hormone in the mouse liver. Following this procedure, we now report the identification of the mitochondrial NADH dehydrogenase subunit 3 (ND3) gene as target of thyroid hormone. ND3 gene expression is regulated by thyroid hormone in rat brain and heart. Sequencing and electrophoretic mobility shift assays confirmed the presence of a thyroid hormone receptor (TR)/c-erbA specific binding site in the mitochondrial ND3 gene. Hypothyroidism decreases ND3 mRNA levels in several brain areas such as cortex and hippocampus during the early postnatal development. In line with the recent findings showing the presence of TR/c-erbA alpha and beta proteins inside the mitochondria, our results suggest the possibility of direct transcriptional regulation of mitochondrial genes by thyroid hormone.", "Thyroid hormone plays an important role in bone development and metabolism. We used a polymerase chain reaction (PCR)-based mRNA differential display (DD) analysis to obtain a profile of thyroid hormone-responsive genes in osteoblast-like cells (ROS 17/2.8). ROS 17/2.8 cells were treated with 10(-8) M triiodothyronine (T(3)) for 2 and 24 hours. Total RNA was isolated, reverse-transcribed, and amplified using a total of 72 combinations (2 hours) and 240 combinations (24 hours) of 5' and 3' primers. At the 2-hour time point, 1 true-positive novel clone was identified and shown to be the mitochondrial gene, subunit 6 of ATP synthase (ATPase-6). At the 24-hour time point, 3 differentially expressed (DE) mRNAs were confirmed as true-positives including; nonmuscle alkali myosin light chain (NM aMLC), ATPase-6, and one novel clone. T(3)-induction of ATPase-6 mRNA in ROS 17/2.8 cells was seen at 2 and 4 hours, but was maximal at 24 hours (2.1-fold). T(3) induction of ATPase-6 mRNA was increased to fourfold in ROS 17/2.8 cells cultured at a low density. NM aMLC mRNA was modestly upregulated by T(3) in ROS 17/2.8 cells by 1.4-fold, and induction was augmented at low cell density to 1.7-fold. T(3) action on NM aMLC and on the mitochondrial gene ATPase 6, represent novel targets and potential mediators of thyroid hormone action on bone. Cell type, and the extent of cell differentiation, influences T(3) regulation of genes in osteoblast-derived cells.", "Biogenesis of mitochondria involves the expression of genes located on nuclear chromosomes as well as on mitochondrial DNA. We studied the coordination of the two genomes by measuring transcript levels for nuclear (IV, Va, and VIc) and mitochondrial (II and III) subunits of cytochrome-c oxidase after altering the mitochondrial content of rat muscle and liver by altering the thyroid state of the animals. Tissue levels of these mRNAs were generally decreased in hypothyroid animals and were up-regulated again after thyroid hormone (T3) treatment. However, significant increases in the levels of all nuclear transcripts were observed in the liver 24 h after T3 treatment, but were delayed or remained unaltered (VIc) in muscle. In contrast, levels of mitochondrial transcripts were elevated early in muscle and late in liver. The abundance of the corresponding polypeptides, which were analyzed by immunoblotting, changed in direction and magnitude according to the changes in their mRNAs, indicating pretranslational control. We conclude that the two genomes are regulated by T3 not through a common coordinating mechanism, but via two separate pathways, which respond to T3 with tissue-specific kinetics. S1-nuclease protection analysis showed that probably only one transcript for subunit VIc is present in both tissues, thus excluding the possibility that the tissue-specific response is due to the expression of two isogenes. The abundance of mitochondrial DNA was unaltered despite the observed changes in mitochondrial transcripts, indicating that mitochondrial gene expression is regulated by transcriptional mechanisms and not by gene dosage as has been postulated by others.", "Dapagliflozin (SGLT-2 inhibitor) and sotagliflozin (SGLT1/2 inhibitor) are two of the drugs of SGLT inhibitor class which have been recommended by the National Institute for Health and Care Excellence (NICE) in people with type 1 diabetes with BMI ≥27 kg/m2 . Dapagliflozin is licensed in the UK for use in the NHS while sotagliflozin may be available in future. These and possibly other SGLT inhibitors may be increasingly used in people with type 1 diabetes as new licences are obtained. These drugs have the potential to improve glycaemic control in people with type 1 diabetes with the added benefit of weight loss, better control of blood pressure and more time in optimal glucose range. However, SGLT inhibitors are associated with a higher incidence of diabetic ketoacidosis without significant hyperglycaemia. The present ABCD/Diabetes UK joint updated position statement is to guide people with type 1 diabetes and clinicians using these drugs help mitigate this risk and other potential complications. Particularly, caution needs to be exercised in people who are at risk of diabetic ketoacidosis due to low calorie diets, illnesses, injuries, starvation, excessive exercise, excessive alcohol consumption and reduced insulin administration among other precipitating factors for diabetic ketoacidosis.", "OBJECTIVE: To evaluate the efficacy of gamolenic acid provided by evening primrose oil in treating hot flushes and sweating associated with the menopause.DESIGN: Randomised, double blind, placebo controlled study.SETTING: District general hospital and teaching hospital.SUBJECTS: 56 menopausal women suffering hot flushes at least three times a day.INTERVENTION: Four capsules twice a day of 500 mg evening primrose oil with 10 mg natural vitamin E or 500 mg liquid paraffin for six months.MAIN OUTCOME MEASURES: Change in the number of hot flushes or sweating episodes a month.RESULTS: 56 diaries were analysed, 28 from women taking gamolenic acid and 28 from those taking placebo. Only 18 women given gamolenic acid and 17 given placebo completed the trial. The mean (SE) improvement in the number of flushes in the last available treatment cycle compared with the control cycle was 1.9 (0.4) (P < 0.001) for daytime flushes and 0.7 (0.3) (P < 0.05) for night time flushes in women taking placebo; the corresponding values for women taking gamolenic acid were 0.5 (0.4) and 0.5 (0.3). In women taking gamolenic acid the only significant improvement was a reduction in the maximum number of night time flushes (1.4 (0.6); P < 0.05).CONCLUSION: Gamolenic acid offers no benefit over placebo in treating menopausal flushing.", "To assess B-cell function in patients under immunoglobulin (IgG)-replacement therapy, the non-licensed artificial bacteriophage (ΦX174)-neo-antigen may be used despite limited availability and experience. Active immunization against tick-borne encephalitis (TBE) is performed in few European countries. To test the feasibility of using licensed TBE vaccination as (neo-)antigen to determine residual or restored B-cell function in patients under regular IgG substitution, TBE-IgG levels were analyzed in 18 patients with ≥ 1-2 years of regular intravenous or subcutaneous IgG substitution and in pharmaceutical IgG-preparations (n=21 batches, 10 products). Six individuals were boosted against TBE. Although TBE-specific IgG was detectable in concentrates (281-57,100 VieU/0.5 μL), levels were only borderline in patient sera (n=31, 18 individuals; median 132 VieU; positive >155). Thus, TBE vaccination may be used to test B-cell function under IgG replacement therapy because IgG substitution appears insufficient to yield protective TBE-specific antibody levels in children.", "Many members of the mucin family are evolutionarily conserved and are often aberrantly expressed and glycosylated in various benign and malignant pathologies leading to tumor invasion, metastasis, and immune evasion. The large size and extensive glycosylation present challenges to study the mucin structure using traditional methods, including crystallography. We offer the hypothesis that the functional versatility of mucins may be attributed to the presence of intrinsically disordered regions (IDRs) that provide dynamism and flexibility and that the IDRs offer potential therapeutic targets. Herein, we examined the links between the mucin structure and function based on IDRs, posttranslational modifications (PTMs), and potential impact on their interactome. Using sequence-based bioinformatics tools, we observed that mucins are predicted to be moderately (20%-40%) to highly (>40%) disordered and many conserved mucin domains could be disordered. Phosphorylation sites overlap with IDRs throughout the mucin sequences. Additionally, the majority of predicted O- and N- glycosylation sites in the tandem repeat regions occur within IDRs and these IDRs contain a large number of functional motifs, that is, molecular recognition features (MoRFs), which directly influence protein-protein interactions (PPIs). This investigation provides a novel perspective and offers an insight into the complexity and dynamic nature of mucins.", "The recent identification of germline and somatic mutations in BAP1 as well as in multiple members of the ASXL (additional sex combs-like) family of genes has highlighted the role of these proteins in a diverse array of biological functions. A diverse number of possible functions have previously been ascribed to ASXL1 in non-hematopoietic contexts, including physical co-operativity with HP1a and LSD1. Here we discuss new evidence for a BAP1-independent function of ASXL1 in regulating histone H3 lysine 27 methylation through interactions with the Polycomb-repressive complex 2 (PRC2). BAP1, a nuclear-localized deubiquitinase, has been shown to interact with a number of proteins, including ASXL1 and/or ASXL2, but the functional importance of this interaction has remained elusive. Here, we highlight recent work revealing the critical function of BAP1 in restricting myelopoiesis and in regulating hematopoietic stem cell function. These data provide evidence that BAP1 and ASXL1 function as a novel class of tumor suppressors in myeloid malignancies. BAP1 functions through effects on stability of host cell factor-1, and O-GlcNAcylation, and ASXL1 impacts histone post-translational modifications through interaction with PRC2. Future studies investigating the mechanism of transformation by loss of BAP1 and ASXL1 may result in new therapeutic approaches to treat hematological malignancies.", "Author information:(1)Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA. Electronic address: elodiey_hatchi@dfci.harvard.edu.(2)Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.(3)Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA.(4)Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT, Cambridge, MA 02139, USA.(5)Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.(6)Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA. Electronic address: david_livingston@dfci.harvard.edu.", "BACKGROUND: Recent data from genome-wide chromosome conformation capture analysis indicate that the human genome is divided into conserved megabase-sized self-interacting regions called topological domains. These topological domains form the regulatory backbone of the genome and are separated by regulatory boundary elements or barriers. Copy-number variations can potentially alter the topological domain architecture by deleting or duplicating the barriers and thereby allowing enhancers from neighboring domains to ectopically activate genes causing misexpression and disease, a mutational mechanism that has recently been termed enhancer adoption.RESULTS: We use the Human Phenotype Ontology database to relate the phenotypes of 922 deletion cases recorded in the DECIPHER database to monogenic diseases associated with genes in or adjacent to the deletions. We identify combinations of tissue-specific enhancers and genes adjacent to the deletion and associated with phenotypes in the corresponding tissue, whereby the phenotype matched that observed in the deletion. We compare this computationally with a gene-dosage pathomechanism that attempts to explain the deletion phenotype based on haploinsufficiency of genes located within the deletions. Up to 11.8% of the deletions could be best explained by enhancer adoption or a combination of enhancer adoption and gene-dosage effects.CONCLUSIONS: Our results suggest that enhancer adoption caused by deletions of regulatory boundaries may contribute to a substantial minority of copy-number variation phenotypes and should thus be taken into account in their medical interpretation.", "PURPOSE: T-prolymphocytic leukemia (T-PLL) is an aggressive malignancy of mature T cells refractory to conventional chemotherapy, with a median survival duration of 7.5 months. We report here promising results with the use of a genetically reshaped human CD52 antibody, CAMPATH-1H.PATIENTS AND METHODS: Fifteen patients with T-PLL, most of whom had received the purine analog deoxycoformycin (DCF), were treated with CAMPATH-1H. Results were compared with those of 25 patients treated with DCF.RESULTS: Major responses occurred in 11 patients (73%) treated with CAMPATH-1H compared with 40% with DCF. Complete remissions (CRs) were documented in nine (60%) of the CAMPATH-1H cases and only three (12%) were obtained with DCF. CRs with CAMPATH-1H were durable, and re-treatment with the antibody resulted in second CRs in three relapsed patients. Two of them were successfully autografted with peripheral-blood and bone marrow stem cells collected during the first CR. Apart from first-dose reactions, infusions of CAMPATH-1H were well tolerated. However, two responding patients developed severe bone marrow aplasia that was fatal in one; the second remained moderately pancytopenic 21 weeks after stopping CAMPATH-1H therapy. The cause of this adverse effect is unknown.CONCLUSION: CAMPATH-1H is an effective agent in T-PLL and represents a significant improvement over other types of therapy. However, CAMPATH-1H alone is not sufficient for long-term remissions, and the role of autologous stem-cell transplantation needs further investigation." ]
1,721
[ "Immediate early gene expression in the cerebellar vermis of cats and squirrel monkeys was stimulated by prolonged whole body rotations. Continuous, earth-horizontal axis rotations that excited only otoliths or high velocity vertical axis rotations that excited only semicircular canals resulted in c-fos immunoreactive nuclei concentrated in the granular layer of lobules X and ventral IX (the nodulus and ventral uvula), which represent the medial parts of the vestibulo-cerebellum. Large clusters of labeled nuclei consisting mainly of granule cells and calretinin-positive unipolar brush cells were present in the granular layer, whereas Purkinje cell nuclei were unlabeled, and labeled basket and stellate cell nuclei were scattered in the molecular layer. In other vermal lobules there was a significant but less dense label than in the nodulus and ventral uvula. Generally, the extent of c-fos labeling of molecular layer interneurons was in relation to nuclear labeling of granular layer neurons: labeling of both basket and stellate cells accompanied nuclear labeling of neurons throughout the depth of the granular layer, whereas only stellate cells were labeled when nuclear labeling was restricted to the superficial granular layer. Yaw horizontal or roll vertical rotations each stimulated c-fos expression in the cat medial vestibulo-cerebellum to approximately the same extent. Low-velocity rotations resulted in much less c-fos expression. Similar, albeit less intense, patterns of c-fos activation were observed in monkeys. Concentrated c-fos expression in the medial vestibulo-cerebellum after exposure to a strong head velocity signal that could originate from either otolith or canal excitation suggests that granule and unipolar brush cells participate in a neuronal network for estimating head velocity, irrespective of the signal source.", "The phosphorylation of rat cardiac microsomal proteins was investigated with special attention to the effects of okadaic acid (an inhibitor of protein phosphatases), inhibitor 2 of protein phosphatase 1 and inhibitor of cyclic AMP-dependent protein kinase (protein kinase A). The results showed that okadaic acid (5 microM) modestly but reproducibly augmented the protein kinase A-catalyzed phospholamban (PLN) phosphorylation, although exerted little effect on the calcium/calmodulin kinase-catalyzed PLN phosphorylation. Microsomes contained three other substrates (M(r) 23, 19 and 17 kDa) that were phosphorylated by protein kinase A but not by calcium/calmodulin kinase. The protein kinase A-catalyzed phosphorylation of these three substrates was markedly (2-3 fold) increased by 5 microM okadaic acid. Calmodulin was found to antagonize the action of okadaic acid on such phosphorylation. Protein kinase A inhibitor was found to decrease the protein kinase A-catalyzed phosphorylation of microsomal polypeptides. Unexpectedly, inhibitor 2 was also found to markedly decrease protein kinase A-catalyzed phosphorylation of phospholamban as well these other microsomal substrates. These results are consistent with the views that protein phosphatase 1 is capable of dephosphorylating membrane-associated phospholamban when it is phosphorylated by protein kinase A, but not by calcium/calmodulin kinase, and that under certain conditions, calcium/calmodulin-stimulated protein phosphatase (protein phosphatase 2B) is also able to dephosphorylate PLN phosphorylated by protein kinase A. Additionally, the observations show that protein phosphatase 1 is extremely active against the three protein kinase A substrates (M(r) 23, 19 and 17 kDa) that were present in the isolated microsomes and whose state of phosphorylation was particularly affected in the presence of dimethylsulfoxide. Protein phosphatase 2B is also capable of dephosphorylating these three substrates.", "3'-untranslated regions of various mRNAs have been shown to contain sequence motifs which control mRNA stability, translatability, and efficiency of translation as well as intracellular localization. We aimed to identify protein binding regions of the long and highly conserved 3'UTR of the mRNA coding for neurofibromin, a well-known tumor suppressor protein, whose genetic deficiency causes the autosomal dominant disease neurofibromatosis type 1 (NF1). We discovered five RNA fragments that were able to undergo specific binding to proteins from cell lysates (NF1-PBRs, NF1-protein-binding regions). Additionally we identified the Elav-like protein HuR binding to NF1-PBR1. HuR interacts with AU-rich elements in the 3'UTR of many protooncogenes, cytokines, and transcription factors, thereby regulating the expression of these mRNAs on the posttranscriptional level. Transfection assays with a CAT reporter construct revealed reduced expression of the reporter, suggesting that HuR may be involved in the fine-tuning of the expression of the NF1 gene.", "The protein phosphatases which dephosphorylate native, sarcoplasmic reticulum (SR)-associated phospholamban were studied in cardiac muscle extracts and in a Triton fraction prepared by detergent extraction of myofibrils, the latter fraction containing 70-80% of the SR-associated proteins present in the tissue. At physiological concentrations of free Mg2+ (1 mM), protein phosphatase 1 (PP1) accounted for approximately 70% of the total phospholamban phosphatase activity in these fractions towards either Ser-16 (the residue labelled by cAMP-dependent protein kinase, PK-A) or Thr-17 (the residue phosphorylated by an SR-associated Ca2+/calmodulin-dependent protein kinase). Protein phosphatase 2A (PP2A) and protein phosphatase 2C (PP2C) accounted for the remainder of the activity. A major form of cardiac PP1, present in comparable amounts in both the extract and Triton fraction, was similar, if not identical, to skeletal muscle protein phosphatase 1G (PP1G), which is composed of the PP1 catalytic (C) subunit complexed to a G subunit of approximately 160 kDa, responsible for targeting PP1 to both the SR and glycogen particles of skeletal muscle. This conclusion was based on immunoblotting experiments using antibody to the G subunit, ability to bind to glycogen and the release of PP1 activity from glycogen upon incubation with PK-A and MgATP. PP1 accounted for approximately 90% of the phospholamban (Ser-16 or Thr-17) phosphatase activity in the material sedimented by centrifugation at 45,000 x g, a fraction prepared from cardiac extracts which is enriched in SR membranes. The G subunit in this fraction could be solubilised by Triton X-100, but not with 0.5 M NaCl or digestion with alpha-amylase, indicating that it is bound to membranes and not to glycogen. By analogy with the situation in skeletal muscle, the PK-A catalysed phosphorylation of the G subunit, with ensuing release of the C subunit from the SR, may prevent PP1 from dephosphorylating SR-bound substrates and represent one of the mechanisms by which adrenalin increases the phosphorylation of cardiac phospholamban (Ser-16 and Thr-17) in vivo. Hearts left in situ post mortem lose 85-95% of their PP1 activity within 20-30 min. This remarkable disappearance of PP1 may partly explain why the importance of this enzyme in cardiac muscle metabolism has not been recognized previously.", "Involvement of the Na+/Ca2+ exchanger in ouabain-induced inotropy and arrhythmogenesis was examined with a specific inhibitor, SEA0400. In right ventricular papillary muscle isolated from guinea-pig ventricle, 1 microM SEA0400, which specifically inhibits the Na+/Ca2+ exchanger by 80%, reduced the ouabain (1 microM)-induced positive inotropy by 40%, but had no effect on the inotropy induced by 100 microM isobutyl methylxantine. SEA0400 significantly inhibited the contracture induced by low Na+ solution. In HEK293 cells expressing the Na+/Ca2+ exchanger, 1 microM ouabain induced an increase in intracellular Ca2+, which was inhibited by SEA0400. The arrhythmic contractions induced by 3 microM ouabain were significantly reduced by SEA0400. These results provide pharmacological evidence that the Na+/Ca2+ exchanger is involved in ouabain-induced inotropy and arrhythmogenesis.", "Radiation-induced sarcomas are recognized complications of radiation therapy and are associated with poor prognosis. Radiation-induced osteosarcoma is one of the rare types of radiation-induced sarcomas, with the risk of radiation-induced osteosarcomas being only 0.01%-0.03% among all patients treated with radiotherapy. There have been only four reported cases of radiation-induced osteosarcomas after radiotherapy for gliomas. Here, we report a unique case of radiation-induced osteosarcomas arising on the skull and extending to the skin, with a short latent period. We also review the clinical features of the previously reported cases.", "The human Transducin-like Enhancer of Split (TLE) and mouse homologue, Groucho gene-related protein (GRG), represent a family of conserved non-DNA binding transcriptional modulatory proteins divided into two subgroups based upon size. The long TLE/GRGs consist of four pentadomain proteins that are dedicated co-repressors for multiple transcription factors (TF). The second TLE/GRG subgroup is composed of the Amino-terminal Enhancer of Split (AES) in humans and its mouse homolog GRG5 (AES/GRG5). In contrast to the dedicated co-repressor function of long TLE/GRGs, AES/GRG5 can both positively or negatively modulate various TF as well as non-TF proteins in a long TLE/GRG-dependent or -independent manner. Therefore, AES/GRG5 is a functionally dynamic protein that is not exclusively defined by its role as a long TLE/GRG antagonist. AES/GRG5 may function in various developmental and pathological processes but the functional characteristics of endogenous AES/GRG5 in a physiologically relevant context remains to be determined.", "In multiple sclerosis (MS), B cell-depleting therapy using monoclonal anti-CD20 Abs, including rituximab (RTX) and ocrelizumab, effectively reduces disease activity. Based on indirect evidence, it is generally believed that elimination of the Ag-presenting capabilities and Ag nonspecific immune functions of B cells underlie the therapeutic efficacy. However, a small subset of T lymphocytes (T cells) was shown to also express CD20, but controversy prevails surrounding the true existence of this T cell subpopulation. Using single-cell imaging flow cytometry and expression profiling of sorted lymphocyte subsets, we unequivocally demonstrate the existence of CD3(+)CD20(dim) T cells. We show that in MS patients, increased levels of CD3(+)CD20(dim) T cells are effectively depleted by RTX. The pathological relevance of this T cell subset in MS remains to be determined. However, given their potential proinflammatory functionality, depletion of CD20-expressing T cells may also contribute to the therapeutic effect of RTX and other mAbs targeting CD20." ]
1,722
[ "Author information:(1)Departments of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.(2)University of South Florida Epidemiology Center, Tampa, Florida, USA.(3)MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK.(4)Departments of Neurology, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy.(5)Departments of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA.(6)Departments of Neurology, University of Sydney & Children's Hospital, Sydney, Australia.(7)Departments of Neurology, Stanford University, Stanford, California, USA.(8)Departments of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA Departments of Neurology, Wayne State University, Detroit, Michigan, USA.(9)Departments of Neurology, Nemours Children's Hospital, Orlando, Florida, USA.(10)Departments of Neurology, University of Rochester, Rochester, New York, USA.(11)Departments of Neurology, Vanderbilt University, Nashville, Tennessee, USA.(12)Departments of Neurology, John Hopkins University, Baltimore, Maryland, USA.(13)Departments of Neurology, UCL Institute of Child Health & Great Ormond Street Hospital, London, UK.(14)Departments of Neurology, Wayne State University, Detroit, Michigan, USA Departments of Neurology, University of Michigan, Ann Arbor, Michigan, USA.(15)Departments of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA Departments of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.(16)Departments of Neurology, Center for Human Molecular Genomics, University of Miami, Miami, Florida, USA.(17)Departments of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.", "Chronic recurrent multifocal osteomyelitis (CRMO) is an autoinflammatory disorder that primarily affects bone but is often accompanied by inflammation of the skin and/or gastrointestinal tract. The etiology is unknown but evidence suggests a genetic component to disease susceptibility. Although most cases of CRMO are sporadic, there is an autosomal recessive syndromic form of the disease, called Majeed syndrome, which is due to homozygous mutations in LPIN2. In addition, there is a phenotypically similar mouse, called cmo (chronic multifocal osteomyelitis) in which the disease is inherited as an autosomal recessive disorder. The cmo locus has been mapped to murine chromosome 18. In this report, we describe phenotypic abnormalities in the cmo mouse that include bone, cartilage and skin inflammation. Utilizing a backcross breeding strategy, we refined the cmo locus to a 1.3 Mb region on murine chromosome 18. Within the refined region was the gene pstpip2, which shares significant sequence homology to the PSTPIP1. Mutations in PSTPIP1 have been shown to cause the autoinflammatory disorder PAPA syndrome (pyogenic arthritis, pyoderma gangrenosum and acne). Mutation analysis, utilizing direct sequencing, revealed a single base pair change c.293T --> C in the pstpip2 gene resulting in a highly conserved leucine at amino acid 98 being replaced by a proline (L98P). No other mutations were found in the coding sequence of the remaining genes in the refined interval, although a 50 kb gap remains unexplored. These data suggest that mutations in pstpip2 may be the genetic explanation for the autoinflammatory phenotype seen in the cmo mouse.", "The profound effects of thyroid hormone (TH) on heart development and function are mediated by the thyroid hormone receptors (TR) alpha(1) and beta(1). While numerous patients with TRbeta(1) mutations have been identified, patients with similar mutations in TRalpha(1) are yet to be discovered. Recently generated heterozygous mice with a dominant negative mutation in TRalpha(1) (TRalpha(1)+/m mice) have normal TH levels, which may have hampered the discovery of patients with such mutations. We now measure intracellular Ca(2+) and contraction in cardiomyocytes isolated from TRalpha(1)+/m mice and wildtype littermates (WT). TRalpha(1)+/m cardiomyocytes showed a phenotype similar to that in hypothyroidism with significant slowing of voltage-activated Ca(2+) transients and contractions. Increased stimulation frequency (from 0.5 to 3 Hz) or beta-adrenergic stimulation reduced the differences between TRalpha(1)+/m and WT cardiomyocytes. However, in TRalpha(1)+/m cells stimulation at 3 Hz gave a marked increase in diastolic Ca(2+) and beta-adrenergic stimulation triggered spontaneous Ca(2+) release events during relaxation. Both TRalpha(1)+/m and WT cardiomyocytes responded to TH treatment by displaying a \"hyperthyroid\" phenotype with faster and larger Ca(2+) transients and contractions. Excised TRalpha(1)+/m hearts showed an increased expression of phospholamban (PLB). In conclusion, isolated TRalpha(1)+/m cardiomyocytes display major dysfunctions with marked slowing of the Ca(2+) transients and contractions.", "A compilation of the pre-mRNA ends of the genes of nuclear encoded mitochondrial proteins resulted in a consensus sequence of the type (T/A)NTTNNNNNTTTNAATAAA. Nucleotide positions +8, +13, +14, +16 and +17 downstream of the AATAAA sequence show also a predominance of nucleotide T. This consensus sequence suggests the importance of the immediate surroundings of the cannonical polyadenylation signal sequence AATAAA on the efficiency of the cleavage and polyadenylation of this specific group of pre-mRNAs.", "BACKGROUND: We previously showed that Cidec was localized on the surface of lipid droplets and could promote the differentiation of human adipocytes, but the molecular mechanism was still unknown.METHODS & RESULTS: In this study, we first sought to identify proteins that interact with Cidec using yeast two-hybrid system. The results revealed that Cidec could directly interact with AMPKα1 subunit. We further showed that AMPKα levels decreased while Cidec increased during the adipogenic differentiation of human adipocytes. Meanwhile, we observed that the increased Cidec could reduce AMPKα level in adipocytes, and the downregulation of AMPKα could help to promote the differentiation of adipocytes. The results of co-immunoprecipitation and immunofluorescent proved that Cidec biochemically interacted and co-localized with AMPKα1, which meant Cidec was a regulator for AMPKα stability through an ubiquitin-proteasome pathway.CONCLUSION: Our data suggested that Cidec could interact with and down-regulate AMPKα through an ubiquitin-proteasome degradation pathway, which provided a possible mechanism of Cidec in promoting human adipocytes differentiation.GENERAL SIGNIFICANCE: Our work proposed a new possible mechanism for human adipogenesis, and also provided a potential role of AMPKα as a target in treating obesity or obesity-related diseases.", "Drug development against Leishmania donovani, the pathogen that causes visceral leishmaniasis in humans, is currently an active area of research given the widespread prevalence of the disease and the emergence of resistant strains. The immunosuppressive drug cyclosporin is known to have antiparasitic activity against a variety of pathogens. The receptor for cyclosporin is the protein cyclophilin, which is a ubiquitous peptidylprolyl isomerase. The crystal structure of cyclophilin from L. donovani complexed with cyclosporin has been solved at 2.6 A resolution. The thermodynamic parameters of the interaction have been determined using spectroscopic and calorimetric techniques. A detailed effort has been made to predict the thermodynamic parameters of binding from computations based on the three-dimensional crystal structure. These results were in good agreement with the corresponding experimental values. Furthermore, the structural and biophysical results have been discussed in the context of leishmanial drug resistance and could also set the stage for the design of potent non-immunosuppressive antileishmanials.", "Flaviviruses are enveloped viruses with a single-stranded, 10.7kb positive-sense RNA genome. The genomic RNA, which has a 5' cap but no poly(A) tail, is translated as a single polyprotein that is then cleaved into three structural proteins and seven non-structural (NS) proteins by both viral and host proteases. The NS proteins include an RNA-dependent RNA polymerase (NS5), a helicase/protease (NS3), and other proteins that form part of the viral replication complex. Sequences and structures in the 5' and 3' untranslated regions (UTR) and capsid gene, including the cyclization sequences, the upstream AUG region, and the terminal 3' stem-loop, regulate translation, RNA synthesis and viral replication. We have also found that an RNA hairpin structure in the capsid coding region (cHP) influences start codon selection and viral replication of the flavivirus dengue virus (DENV). Peptide-conjugated phosphorodiamidate morpholino oligomers (P-PMOs) were used to further dissect the role of conserved regions of the 5' and 3' UTRs; several P-PMOs were shown to specifically inhibit DENV translation and/or RNA synthesis and, hence, are potentially useful as antiviral agents. Regarding the mechanism of DENV translation, we have shown that DENV undergoes canonical cap-dependent translation initiation as well as a non-canonical mechanism when cap-dependent translation is suppressed. Although much remains to be elucidated about the molecular biology of flavivirus infection, progress is being made towards defining the cis and trans factors that regulate flavivirus translation and replication.", "Collaborators: Granger CB, Wallentin L, Alexander JH, Ansell J, Diaz R, Easton JD, Gersh BJ, Hanna M, Horowitz J, Hylek EM, McMurray JJ, Mohan P, Verheugt FW, Diaz R, Bahit MC, Aylward P, Amerena J, Huber K, Bartunek J, Avezum A, Ezekowitz JA, Dorian P, Lanas F, Lisheng L, Zhu J, Isaza D, Jansky P, Husted S, Harjola VP, Steg PG, Hohnloser SH, Keltai M, Pais P, Xavier D, Lewis BS, De Caterina R, Goto S, Hermosillo AG, Alings AM, Atar D, Segura L, Ruzyllo W, Vinereanu D, Varshavsky S, Golitsyn S, Oh BH, Commerford P, Lopez-Sendon JL, Rosenquist M, Erol C, McMurray JJ, Parkhomenko A, Flaker G, Garcia D, Pfeffer MA, Diener HC, Maggione A, Pocock S, Rouleau JL, Wyse G, Alexander JH, Al-Khatib S, Lopes RD, Held C, Hylek EM, Bushnell C, Terent A, Leonardi S, Subherwal S, Eapen Z, Vavalle J, Zomorodi A, Kolls B, Berger J, Vergara J, Parikh D, Zia S, Stashenko G, Lombardi C, Matthews R, Hagstrom E, Akerblom A, Varenhorst C, Berntsson SG, Stenborg A, Lundstrom E, Guimaraes H, Flato U, Nacif S, Barros P, Echenique L, Rodrigues P, Armaganijan L, Lopes AC, Albrecht A, Vico M, Mackinnon I, Vogel D, Vico M, Gabito A, Cassettari A, Zaidman C, Montaña O, Hrabar A, Jure H, Lastiri H, Poy C, Caccavo A, Cuneo C, Colombo H, Rolandi F, Hershson A, Garrido M, Sanchez A, Bruno ML, Piskorz D, Cuadrado J, Hasbani E, Serra J, Cartasegna L, Schygiel P, Muratore C, Marino J, Sosa Liprandi MI, Guerrero RA, Ramos H, Mercado D, Guzman L, Beneitez C, Estepo J, Torrijos R, Retyk E, Vita N, Luciardi H, Casey M, Orlando S, Labarta MB, Santos D, Amerena J, Purnell P, Horowitz J, Salem H, Liu A, Zimmet L, Roger S, de Looze F, de Looze F, Lehman R, de Looze F, Jackson B, Ashby D, Heddle W, Rogers J, Brieger D, Martin P, Cross D, Walters D, Waites J, Counsell J, Lowy A, de Looze F, Huber K, Stockenhuber F, Pieske B, Striekwold H, Wollaert B, Nachtergaele H, Vijgen J, El Allaf D, Mairesse G, Boxho G, De Deyn PP, Vanderheyden M, Semeraro O, Desfontaines P, Leroy J, Provenier F, Bruneel B, Vrolix M, Peeters A, Deceuninck O, Saraiva JF, Reis G, Rossi P, Zimmermann S, Jaber J, Botelho R, Manenti E, Jorge J, Maia L, Leães P, Villaça Guimaraes Filho F, Fichino M, De Paola A, Indio do Brasil CK, Albuquerque D, Bodanese L, Matsubara L, Mourilhe Rocha R, Genta P, Meneghelo Z, Oliveira L, Lorga Filho A, Garbelini B Jr, Oliveira G, Teixeira M, Precoma D, Pelloso E, Muniz A, Valéria Braile MC, Ueda R, Rabelo Alves A Jr, Pimentel Filho P, Zimerman L, Coutinho M, Silveira J, Reis H, Moreira D, Paiva M, Aziz JL, Gois J, Dutra O, Yao L, Syan G, Coutu B, Chehayeb R, Sabe-Affaki G, Fortin C, Borts D, Bhargava R, Fell D, Cha J, Pandey A, Boucher P, Sabbah E, Ma P, Talbot P, Spence D, Wade A, Green M, Berlingieri J, Vizel S, Chan YK, Blostein M, Talajic M, Sterns L, Grondin F, Hruczkowski T, Labonte R, O'Mahony M, Rupka D, Mangat I, Dowell A, Kelly A, St Maurice F, Henein S, Saunders K, Lasko B, Sami M, MacKinnon R, Rizvi Q, O'Keefe D, Ricci J, Gervais B, Hart R, Bose S, Nawaz S, Connors S, Winkler L, Boileau M, Healey J, Collette R, Rebane T, Ramjattan B, Senior R, Therrien R, Wells P, Raffo C, Cobos J, Potthoff S, Stockins B, Pincetti C, Corbalan R, Vejar M, Potthoff S, Li W, Zhao S, Chen X, Wu S, Tan H, Wu S, Qu P, Jiang X, Wei M, Yang X, Li J, Ma S, Gu S, Dai QY, Li L, Yu B, Yin Y, Wang N, Gao L, Zhou SX, Wang JA, Li ZQ, Bai F, Zhang F, Lu G, Chen Y, Zhang Y, Jiang D, Zonggui W, Li H, Cao K, Lu Q, Li L, Hu T, Li H, Wang X, Botero R, Reyes A, Jaramillo N, Urina M, Velez S, Gomez E, Pava L, Isaza D, Dunaj M, Hudcovic M, Jerabek O, Brat R, Spinar J, Dedek V, Zidkova E, Podpera I, Cech M, Gorican K, Micko M, Stribrna M, Frost L, Torp-Pedersen C, Toftager Larsen C, Tuxen C, May O, Pedersen KE, Jensen G, Nielsen T, Nyvad O, Husted S, Gilså Hansen M, Egstrup K, Lomholdt J, Skagen K, Joen Jakobsen T, Olsen M, Grande P, Melin J, Tynni M, Harjola VP, Strand J, Parikka H, Jääskeläinen T, Corbelli JL, Gosse P, Mirode A, Mansourati J, Lavabre G, Defaye P, Steg PG, Kahrmann G, Horacek T, Bauer A, Spitzer S, Schlegl M, Winkelmann B, Vöhringer HF, Stenzel G, Haverkamp W, Harenberg J, Schumacher M, Wunderlich J, Natour M, Rieker W, Gass S, Brachmann J, Jung J, Poppert H, Häge R, Lickfett L, Schoeller R, Goedel-Meinen L, Utech A, Buerke M, Maschke M, Haberl R, von Hodenberg E, Griewing B, Schlachetzki F, Hamer H, Hoch T, Zabel M, Jordan R, Stögbauer F, Hetzel A, Weimar C, Schauerte P, Fischer D, Mügge A, Bittersohl A, Mügge A, Lee K, Yu C, Lakatos F, Vértes A, Kovács A, Takács J, Pálinkás A, Bakai J, Papp A, Illés Á, Tomcsányi J, Szakál I, László Z, Katona A, Jobbágy L, Keltai K, Dézsi C, Lupkovics G, Cziraki A, Mohácsi A, Simon K, Gupta S, Agarwal D, Fulwani M, Naik A, Nambiar A, Chidambaram N, Srinivasasastry B, Joseph J, Padinhare M, Khanna P, Grant P, Arneja J, Gadkari M, Garg N, Pothineni RB, Sathe S, Ramesh S, Malipeddi B, Bharani A, Gowdappa HB, Prakash VS, Dharmadhikari A, Bhandari S, Desai N, Banerjee S, Ghaisas N, Ramagiri B, Sinha S, Gojanur G, Duggal J, Jain V, Dani S, Singh P, Srikanthan V, Puri VK, Gopal R, Viskin S, Shochat M, Hayek T, Reisin L, Rosenheck S, Lewis B, Zimlichman R, Weiss A, Marmor A, Turgeman Y, Klainman E, Francis A, Lahav M, Omary M, Morris M, Olivieri C, Santonastaso M, Fenici R, Mos L, Ghirarduzzi A, De Caterina R, Novo S, Richiardi E, Testa S, Pini M, D'Angelo A, Barsotti A, Donati M, Chiariello M, Galli M, Casolo G, Moretti L, Atsushi Y, Yamamoto K, Goto S, Kihara H, Akihiko T, Saito T, Yoshii H, Sasaki T, Suwa M, Adachi S, Usada K, Nakamura Y, Hayashida K, Yamada T, Iwasawa T, Kawase Y, Sugi K, Murakami T, Satake K, Iwao T, Maemura K, Koretsune Y, Tsubokou Y, Yamashita M, Sato Y, Kouichi F, Yura S, Matsushima A, Iwade K, Kamakura S, Tanaka S, Murata H, Yamamoto S, Kobayashi Y, Higashi Y, Shinozaki T, Ikeda H, Hisaoka T, Node K, Takagi H, Ong TK, Abidin IZ, Yusof Z, Yusoff K, Maskon O, De los Rios Ibarra M, Alcocer Gamba M, Lopez Rosas E, Calvo Vargas C, Fajardo Campos P, Cordero-Cabra JA, JerJes-Sanchez C, Hernandez Santamaria I, Molina L, Olvera Ruiz R, Arean Martinez C, Gonzalez Guerra J, Morales Gonzalez I, Cervantes-Escarcega J, Chuquiure-Valenzuela EJ, Riojas C, Gonzalez Hermosillo J, Galicia A, Nierop P, Verheugt F, Daniels M, Lok D, Alings A, Scholten M, Plomp J, Derksen R, Bredero A, Zwart P, Schaap A, Michels H, Van der Zwaan C, Hysing J, Elle S, Omland T, Rønnevik P, Øie B, Otterstad JE, Bogale N, Kjærnli T, Halvorsen S, Bryhni B, Vikenes K, Cabrera W, Rodriguez A, Chavez C, Gamboa R, Segura L, Araoz O, Azanero R, Toce L, Medina F, Bustamante G, Rios Vasquez C, Zubiate M, Collado F, Morales-Palomares E, Sy R, Morales D, Rogelio G, Abola MT, Ramos E, Yamamoto M, Collado F, De Leon F, Abelardo N, Kania G, Szpajer M, Rajzer M, Janion M, Bronisz M, Ruzyllo W, Piepiorka M, Wendland M, Czerski T, Korzeniak R, Budaj A, Wawrzynska L, Ogorek M, Miekus P, Tracz W, Ocicka-Kozakiewicz A, Stepinska J, Kiedrowicz Z, Pasierski T, Kasprzak J, Galewicz M, Podogrodzka B, Krauze-Wielicka M, Chmielinski A, Boruczkowska-Kaszkowiak A, Piotrowski W, Vinereanu D, Stamate S, Cinteza M, Tanaseanu CM, Dan GA, Benedek I, Ionescu RM, Lighezan D, Salajan A, Carasca E, Capalneanu R, Pop C, Fierbinteanu-Braticevici CG, Zdrenghea DT, Gaita D, Manitiu I, Nanea T, Arsenescu Georgescu C, Chizhov P, Kastanayan A, Oleynikov V, Treshkur T, Govorin A, Zhelninova T, Barbarash O, Novikova T, Reshetko O, Sivkova E, Obrezan A, Panchenko E, Popov S, Ivleva A, Zotov D, Gordienko A, Kamalov G, Chernichka I, Levin A, Zrazhevsky K, Golitsyn S, Shilkina N, Golovach A, Filonenko G, Bondarev S, Orlov V, Bragina A, Koziolova N, Svistov A, Shustov S, Libov I, Kisliak O, Privalova E, Aleksandrov O, Mazur E, Karpov Y, Belenky D, Kostenko V, Shubik Y, Ruda M, Arutyunov G, Eltishcheva V, Sidorenko B, Oseshnyuk R, Boyarkin M, Pozdnyakov Y, Staxhinskiy N, Sinopalnikov A, Yakushin S, Koniakhin A, Yarohno N, Sizova Z, Zadionchenko V, Klimov I, Duplyakov D, Kanorsky S, Mareev V, Terekhov V, Arkhipov V, Sotnikova T, Yakusevich V, Lesnov V, Gordeev I, Gratsiansky N, Shalaev S, Sulimov V, Talibov O, Zemtsovsky E, Azarin O, Tan RS, Thorne J, De Jong D, Basson M, van Zyl L, Commerford P, Weich H, van Nieuwenhuizen E, Roos J, Kelbe D, Viljoen J, Hong TJ, Oh BH, Park KS, Jeong MH, Rhim CY, Choi DJ, Sung JH, Kim YN, Bae JH, Tahk SJ, Ryu KH, Kwon SU, Rho TH, Cha TJ, Shin DG, Álvarez García P, Vida M, Galve E, Bruguera J, Roquer J, Olías de la Cruz F, Paz Bermejo MA, Segura T, Gómez Gómez JH, Ugarriza A, Plaza Pérez I, Villacastin J, Bertomeu V, Vargas R, Serena Leal J, Egido Herrero J, Bethencourt González A, Albert X, Gonzalez Juanatey C, Medrano V, Vivancos J, Andersson T, Lindholm CJ, Al-Khalili F, Höglund C, Rosenqvist M, Bergström O, Herlitz J, Rasmanis G, Johansson L, Christersson C, Fredholm O, Al-Khalili F, Callander M, Po H, Pan JP, Tseng CD, Shyu KG, Chu SH, Kultursay H, Gorenek B, Erol C, Lip G, Albazzaz M, Kadr H, Cohen A, Cooke J, Agarwal A, Brack M, Pye M, Anderson M, Dunn F, Wong YK, Glen S, Ford G, Alwail A, Yousef Z, Blagden M, Murdoch D, McInnes G, Camm J, Ridsdill Smith W, McMurray JJ, Senior R, Webster J, Dutka D, McClements B, Yousef Z, Levy T, Yogasundram S, Moriarty A, McCullagh M, Flather J, Gumbley M, Findlay I, Davies J, Cooke A, Ahsan A, Cannon J, Bakhai A, Jacob A, Trouton T, Ajala A, Bartkowiak A, Humiston D, Kufs W, Klancke K, Jetty P, Gupta D, Nadar V, Yousuf K, Sosa-Suarez G, Gill S, Wukelic M, Mayer N, Colan D, Haskel E, Grena P, Haught W, Walsh R, Carr K, Tahirkheli N, Jardula M, Cebe J, Bloom S, Bilazarian S, Gilmore R, Jaffrani N, Goldscher D, Lebowitz A, Friedlander I, Stein M, Promisloff S, Magnano A, Dean J, Gerber J, Perloff D, Cohen Y, Meholick A, Tobin T, Acheatel R, Levanovich P, Ip J, Porterfield J, Seshadri N, McKenzie M, Alfieri A, Gazmuri R, Beanblossom B, Van Hamersveld D, McCriskin J, Gelernt M, Bowden W, Sotolongo C, Lang J, Kaatz S, Agnone F, Hassman D, Flores E, Albrecht F, Hassel C, Quartner J, LaFata J, Bedwell N, Herzog W, Amin J, Usedom J, Brockmyre A, Abadier R, Corder C, Marple R, Lovell C, Henry W 3rd, Chhabra A, Baker S, Bedoya R, Sandoval R, Nathan M, Garcia D, Vora K, Sloan S, Kosinski E, Foster R, Salacata A, Weachter R, Bredlau C, Mehta P, Russo C, Swint R Sr, Rosenthal S, Bybee K, Peart B, Chaudhuri P, Iteld B, Staab M, Rhodes D, Kappler J, Mandviwala M, Niedermaier O, Sofley C, Heiman M, Gips S, Harris R, East C, Nguyen V, Huling R, Thadani U, Travis D, Maislos F, West M, Castello R, Cohen K, Karlsberg R, Schmedtje J Jr, Gottlieb D, MacKinnon A, Noble G, O'Neill P, Roth J, Kobayashi J, Honan M, Hanovich G, Ehrlich S, Wilson W, Warner A, Rubin A, Rivera E, Leu S, Smith L, Agaiby J, Jan M, Gould R, Weiner S, Fleming J, Hemphill J, Parr K, Stoddard M, Curran P, Kurrelmeyer K, Desai V, Kereiakes D, Schwarz E, Lillestol M, Vazquez-Tanus J, Vicari R, White J, Shroff R, Fierer R, Vijay N, Hamad A, Kozinn M, Young D, Fenton S, Ouyang P, Wellford A, Zwerner P, Meyer P, Foley J, Boyle A, Dotani M, Skolnick A, Rodriguez-Fierro C, Hattler B, Rubin M, Hartley P, Tami L, Ball E, McPherson C, Eisenberg S, Niazi I, Orlov M, Bachhuber B, Massey C, Phillips W, Mouhayar E, Griffin J, Blumberg E, Slabic S, Danisa K, Samal A, Rohrbeck S, McCullough P, Dohan D, Aycock G, Jones A, Anderson J, Silverman R, Smith W, Mishkel D, Patterson N, Moore H, Kabour A, Muttreja M, Jaffrani W, Vidic T, Kent S, Platt B, Goldberg R, Kulback S, Patel R, Bazzi A, Goldman S, Roman A, Levin C, Lachterman B, Chandrashekhar Y, Aisiku I, Powers C, Engeron E, Bernstein R, Shah S, Strobel J, Punatar H, Garcia R, Linden D, Al-Mudamgha A, Quick A, Kramer J, Feldman G, Stapleton D, Davis M, Graff J, Galizia J, Wassmer P, Chiu D, Ison R, Curry K, Finneran M, Solomon A, Schifferdecker B, Seger J, Alexander A, Yates S, Ashley R Jr, Cordero-Sepulveda J, Cowen P, Ayres T, Kowalski B, Anton S, Phillips J, Donovan D, Patel A, Smith R, Updegrove J, Buxton A, Clark D, Margolis J, Brooks G, Pernenkil R, Walters J, Richards M, Maccaro P, Pieniek M, Garcia Pulido J, Lee CW, Ilvento J, Riff D, Blue B, Welker J, Karunaratne H, Santucci P, Vatutin M, Kraiz I, Mostovoy Y, Karpenko O, Tseluyko V, Kononenko L, Volkov V, Parkhomenko A, Popik G, Chopey I, Burmak Y, Pavlyk S, Vizir V, Barna O, Sychov O, Vykhovanyuk I, Tashchuk V, Khomazjuk I, Andrievskaya S, Telyatnikova Z, Bondarchuk O, Netiazhenko V, Seredyuk N, Koval O, Kovalsky I, Bazylevych A, Lysenko G, Borschivsky M, Yagensky A, Dzyak G, Bereznyakov I, Rudenko L, Ignatenko G, Amosova K, Voloshyna O, Ivanova L, Tykhonova S, Suprun E.", "BACKGROUND: To examine the efficacy of valproic acid (VPA) given either with or without levetiracetam (LEV) on seizure control and on survival in patients with glioblastoma multiforme (GBM) treated with chemoradiation.METHODS: A retrospective analysis was performed on 291 patients with GBM. The efficacies of VPA and LEV alone and as polytherapy were analyzed in 181 (62%) patients with seizures with a minimum follow-up of 6 months. Cox-regression survival analysis was performed on 165 patients receiving chemoradiation with temozolomide of whom 108 receiving this in combination with VPA for at least 3 months.RESULTS: Monotherapy with either VPA or LEV was instituted in 137/143 (95.8%) and in 59/86 (68.6%) on VPA/LEV polytherapy as the next regimen. Initial freedom from seizure was achieved in 41/100 (41%) on VPA, in 16/37 (43.3%) on LEV, and in 89/116 (76.7%) on subsequent VPA/LEV polytherapy. At the end of follow-up, seizure freedom was achieved in 77.8% (28/36) on VPA alone, in 25/36 (69.5%) on LEV alone, and in 38/63 (60.3%) on VPA/LEV polytherapy with ongoing seizures on monotherapy. Patients using VPA in combination with temozolomide showed a longer median survival of 69 weeks (95% confidence interval [CI]: 61.7-67.3) compared with 61 weeks (95% CI: 52.5-69.5) in the group without VPA (hazard ratio, 0.63; 95% CI: 0.43-0.92; P = .016), adjusting for age, extent of resection, and O(6)-DNA methylguanine-methyltransferase promoter methylation status.CONCLUSIONS: Polytherapy with VPA and LEV more strongly contributes to seizure control than does either as monotherapy. Use of VPA together with chemoradiation with temozolomide results in a 2-months' longer survival of patients with GBM.", "Functional polyadenylation [poly(A)] sites consist of two sequence elements, the AAUAAA and G/U box signals, that closely flank the site of mRNA 3'-end formation. In agreement with previous results, random sequence insertions between the AAUAAA and G/U box signals were observed to inhibit poly(A) site function. However, sequence insertions of similar size that were predicted to form RNA stem-loop structures were found to have little effect on the efficiency of polyadenylation and instead induced a 3' shift in the site of polyadenylation that was equal to the length of the inserted stem-loop. The in vivo utilization of a poly(A) site bearing an internal RNA stem-loop structure was inhibited by mutations that destabilized the predicted stem but was restored by compensatory mutations. These results strongly support the hypothesis that the appropriate spacing of the AAUAAA and G/U box signals is critical for poly(A) site function. Sequence insertions that are able to form RNA secondary structures that maintain the correct spacing of these two RNA target sequences are well tolerated, whereas sequence insertions that disturb this spacing inhibit poly(A) site recognition. It is proposed that the effect of sequence insertions on poly(A) site function may be sufficiently predictable to allow the development of an assay for in vivo RNA secondary structure that uses poly(A) site selection as a readout.", "We have determined the nucleotide sequence of the murine immunoglobulin gamma 2a membrane 3' untranslated region (1413 nucleotides) and approximately 679 nucleotides of downstream sequence. Two AATAAA hexanucleotide sequences are present in the 2092 nucleotide interval. The first one functions as the major polyA signal, directing cleavage and polyadenylation at a site 20 nucleotides downstream. Within 41 nucleotides downstream of the major membrane polyA signal are two sequences with 75% homology to the consensus sequence, (C/T)GTGTT(C/T)(C/T), identified by McLauchlan et al. [Nucl. Acids Res. 13, 1347-1365 (1985)]. An 80% homology match to the Berget consensus sequence, CA(C/T)TG, begins five nucleotides 3' of the major polyA site (used 20 times more than the second, downstream polyA site) [Berget Nature 309, 179-182 (1984)]. The second AATAAA, located 73 nucleotides 3' of the first, directs cleavage and polyadenylation 18 nucleotides downstream at a minor polyA site. One match with 75% homology to the McLauchlan consensus sequence begins 17 nucleotides 3' of the second (weaker) polyA site. No matches to the Berget consensus sequence are located near this second, weaker polyA site.", "BACKGROUND: In the renal hypertrophy that occurs in diabetes mellitus, decreased proteolysis may lead to protein accumulation, but it is unclear which proteins are affected. Because the lysosomal proteolytic pathway of chaperone-mediated autophagy is suppressed by growth factors in cultured cells, we investigated whether the abundance of substrates of this pathway increase in diabetic hypertrophy.METHODS: Rats with streptozotocin (STZ)-induced diabetes were pair-fed with vehicle-injected control rats. Proteolysis was measured as lysine release in renal cortical suspensions and protein synthesis as phenylalanine incorporation. Target proteins of chaperone-mediated autophagy were measured in cortical lysates and nuclear extracts by immunoblot analysis. Proteins that regulate chaperone-mediated autophagy [the lysosomal-associated membrane protein 2a (LAMP2a) or the heat shock cognate protein of 73 kD (hsc-73)] were measured in lysosomes isolated by density gradient centrifugation.RESULTS: Proteolysis decreased by 41% in diabetic rats; protein synthesis increased at 3 days, but returned to baseline by 7 days. The abundance of proteins containing that chaperone-mediated autophagy KFERQ signal motif increased 38% and individual KFERQ containing proteins [e.g., M2 pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and pax2] were more abundant. LAMP2a and hsc73 decreased by 25% and 81%, respectively, in cortical lysosomes from diabetic vs. control rats.CONCLUSION: The decline in proteolysis in acute diabetes mellitus is associated with an increase in proteins degraded by chaperone-mediated autophagy and a decrease in proteins which regulate this pathway. This study provides the first evidence that reduced chaperone-mediated autophagy contributes to accumulation of specific proteins in diabetic-induced renal hypertrophy.", "Several cDNAs encoding H-protein, a constituent of the glycine cleavage system, were cloned from chicken liver cDNA libraries with an antibody raised against rat H-protein or with a nick-translated cDNA of an immunoreactive clone. The structure of the H-protein cDNA consisting of 910 base pairs was determined using clones with an apparent overlap in the nucleotide sequence. The cDNA encodes the precursor form of H-protein that is comprised of 39 amino acid residues for a mitochondrial presequence and 125 amino acid residues for the mature protein, following a 5' untranslated region of 13 base pairs. There are two genuine consensus sequences for the cleavage/polyadenylation of the precursor H-protein mRNA in the 3' untranslated region of the cDNA sequence. We showed by comparison with the delta-aminolevulinate synthase gene that only one copy of the H-protein cDNA occurs in the haploid genome of the chicken. Nevertheless, two types of H-protein mRNAs, which differ by the length of their 3' untranslated region, are produced in liver. The chicken H-protein gene extends over 8 kilobase pairs on the genome and includes 5 exons that encode the entire cDNA sequence. Two AATAAA motifs are coded in the last exon of this gene, suggesting that the differently size H-protein mRNAs are produced by the alternative use of these motifs.", "Tumor necrosis factor-alpha (TNF-α) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-α promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-α-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-α-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-α promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.", "A single U leads to G transversion in the 3' consensus sequence AAUAAA of the adenovirus early region 1A gene was constructed and the effect of this mutation on processing of the 3' end of the nuclear early region 1A RNAs was analysed. The results demonstrate that the intact AAUAAA is not required for RNA polyadenylation but is required for the cleavage step preceding polyadenylation to occur efficiently.", "OBJECTIVE: Abacavir, a human immunodeficiency virus-1 (HIV-1) nucleoside-analogue reverse transcriptase inhibitor, causes severe hypersensitivity in 4-8% of patients. HLA B*5701 is a known genetic risk factor for abacavir hypersensitivity in Caucasians. Our aim was to confirm the presence of this genetic factor in our patients, and to determine whether genotyping for HLA B*5701 would be a cost-effective use of healthcare resources.METHODS: Patients with and without abacavir hypersensitivity were identified from a UK HIV clinic. Patients were genotyped for HLA B*5701, and pooled data used for calculation of test characteristics. The cost-effectiveness analysis incorporated the cost of testing, cost of treating abacavir hypersensitivity, and the cost and selection of alternative antiretroviral regimens. A probabilistic decision analytic model (comparing testing versus no testing) was formulated and Monte Carlo simulations performed.RESULTS: Of the abacavir hypersensitive patients, six (46%) were HLA B*5701 positive, compared to five (10%) of the non-hypersensitive patients (odds ratio 7.9 [95% confidence intervals 1.5-41.4], P = 0.006). Pooling of our data on HLA B*5701 with published data resulted in a pooled odds ratio of 29 (95% CI 6.4-132.3; P < 0.0001). The cost-effectiveness model demonstrated that depending on the choice of comparator, routine testing for HLA B*5701 ranged from being a dominant strategy (less expensive and more beneficial than not testing) to an incremental cost-effectiveness ratio (versus no testing) of Euro 22,811 per hypersensitivity reaction avoided.CONCLUSIONS: Abacavir hypersensitivity is associated with HLA B*5701, and pre-prescription pharmacogenetic testing for this appears to be a cost-effective use of healthcare resources.", "CONTEXT: Six-transmembrane protein of prostate 2 (STAMP2) is a counter-regulator of inflammation and insulin resistance according to findings in mice. However, there have been contradictory reports in humans.OBJECTIVE: We aimed to explore STAMP2 in association with inflammatory and metabolic status of human obesity.DESIGN, PATIENTS, AND METHODS: STAMP2 gene expression was analyzed in adipose tissue samples (171 visceral and 67 sc depots) and during human preadipocyte differentiation. Human adipocytes were treated with macrophage-conditioned medium, TNF-α, and rosiglitazone.RESULTS: In visceral adipose tissue, STAMP2 gene expression was significantly decreased in obese subjects, mainly in obese subjects with type 2 diabetes. STAMP2 gene expression and protein were significantly and inversely associated with obesity phenotype measures (body mass index, waist, hip, and fat mass) and obesity-associated metabolic disturbances (systolic blood pressure and fasting glucose). In addition, STAMP2 gene expression was positively associated with lipogenic (FASN, ACC1, SREBP1, THRSP14, TRα, and TRα1), CAV1, IRS1, GLUT4, and CD206 gene expression. In sc adipose tissue, STAMP2 gene expression was not associated with metabolic parameters. In both fat depots, STAMP2 gene expression in stromovascular cells was significantly higher than in mature adipocytes. STAMP2 gene expression was significantly increased during the differentiation process in parallel to adipogenic genes, being increased in preadipocytes derived from lean subjects. Macrophage-conditioned medium (25%) and TNF-α (100 ng/ml) administration increased whereas rosiglitazone (2 μM) decreased significantly STAMP2 gene expression in human differentiated adipocytes.CONCLUSIONS: Decreased STAMP2 expression (mRNA and protein) might reflect visceral adipose dysfunction in subjects with obesity and type 2 diabetes.", "Thyroid hormone is a major determinant of energy expenditure and a key regulator of mitochondrial activity. We have previously identified a mitochondrial triiodothyronine receptor (p43) that acts as a mitochondrial transcription factor of the organelle genome, which leads, in vitro and in vivo, to a stimulation of mitochondrial biogenesis. Here we generated mice specifically lacking p43 to address its physiological influence. We found that p43 is required for normal glucose homeostasis. The p43(-/-) mice had a major defect in insulin secretion both in vivo and in isolated pancreatic islets and a loss of glucose-stimulated insulin secretion. Moreover, a high-fat/high-sucrose diet elicited more severe glucose intolerance than that recorded in normal animals. In addition, we observed in p43(-/-) mice both a decrease in pancreatic islet density and in the activity of complexes of the respiratory chain in isolated pancreatic islets. These dysfunctions were associated with a down-regulation of the expression of the glucose transporter Glut2 and of Kir6.2, a key component of the K(ATP) channel. Our findings establish that p43 is an important regulator of glucose homeostasis and pancreatic β-cell function and provide evidence for the first time of a physiological role for a mitochondrial endocrine receptor.", "Age-related changes in lymphocytes are most prominent in the T cell compartment. There have been substantial numbers of reports on T cell function in aged mice and humans, such as on the production of Th1 and Th2 cytokines, but the results show considerable variation and contradictions. In the present study, we used 8- to 12-mo-old aging mice and a well-established in vitro Th1/Th2 cell differentiation culture system to identify molecular defects in Th1/Th2 cell differentiation that can be detected in the relatively early stages of aging. The capability to differentiate into Th2 cells is reduced in aging mouse CD4(+) T cells. Decreased activation of the ERK MAPK cascade upon TCR stimulation, but normal intracellular-free calcium ion concentration mobilization and normal IL-4-induced STAT6 activation were observed in aging mouse CD4(+) T cells. In addition, reduced expression of GATA3 was detected in developing Th2 cells. Chromatin remodeling of the Th2 cytokine gene locus was found to be impaired. Th2-dependent allergic airway inflammation was milder in aging mice compared with in young adult mice. These results suggest that the levels of Th2 cell differentiation and resulting Th2-dependent immune responses, including allergic airway inflammation, decline during aging through defects in the activation of the ERK MAPK cascade, expression of GATA3 protein and GATA3-dependent chromatin remodeling of the Th2 cytokine gene locus. In the present study, we provide the first evidence indicating that a chromatin-remodeling event in T cells is impaired by aging.", "Recent evidence has demonstrated that 13-cis-retinoic acid (13-cis-RA, or isotretinoin) is responsible for various craniofacial malformations in the rodent and human embryo. Our studies have been directed toward understanding this effect using mouse whole embryo and primary cell cultures. In whole embryo culture, 13-cis-RA caused significant overall embryonic growth retardation, especially in the primary and secondary palatal processes. In embryos explanted on day 10 of gestation and exposed for 24 or 48 hr, the mesenchyme beneath the epithelium of the nasal and maxillary processes contained pyknotic nuclei as well as a dramatically reduced number of nuclei incorporating 3H-thymidine. The secondary palatal processes and the roof of the oral-nasal cavity had fewer mesenchymal cells than control embryos. The incorporation of 3H-thymidine into TCA-insoluble macromolecules was 30% less in the retinoid-treated heads. In primary cell cultures from day-12 mouse secondary palatal mesenchyme, subsequent cell growth was decreased at concentrations of 13-cis-RA greater than 1 X 10(-5) M. After a 40-hr treatment period, labeling indices in retinoid-treated cells were significantly lower than control values (25% compared with 40%). Retinoic acid also caused a significant, concentration-dependent decrease in 3H-thymidine incorporation. The inhibitory effect of 13-cis-RA on proliferation of oral-nasal mesenchymal cells appears to be related to the production of craniofacial malformations.", "The outcome of pregnancy in kidney donors has generally been viewed to be favorable. We determined fetal and maternal outcomes in a large cohort of kidney donors. A total of 2102 women have donated a kidney at our institution; 1589 donors responded to our pregnancy surveys; 1085 reported 3213 pregnancies and 504 reported none. Fetal and maternal outcomes in postdonation pregnancies were comparable to published rates in the general population. Postdonation (vs. predonation) pregnancies were associated with a lower likelihood of full-term deliveries (73.7% vs. 84.6%, p = 0.0004) and a higher likelihood of fetal loss (19.2% vs. 11.3%, p < 0.0001). Postdonation pregnancies were also associated with a higher risk of gestational diabetes (2.7% vs. 0.7%, p = 0.0001), gestational hypertension (5.7% vs. 0.6%, p < 0.0001), proteinuria (4.3% vs. 1.1%, p < 0.0001) and preeclampsia (5.5% vs. 0.8%, p < 0.0001). Women who had both pre- and post-donation pregnancies were also more likely to have these adverse maternal outcomes in their postdonation pregnancies. In this large survey of previous living donors in a single center, fetal and maternal outcomes and pregnancy outcomes after kidney donation were similar to those reported in the general population, but inferior to predonation pregnancy outcomes.", "From January 1981 through December 1989, 15 patients with small advanced lung cancer were treated surgically at the Tenri Hospital. In these cases, the diameter of peripheral lung cancer did not exceed 3.0 cm (T1) and mediastinal lymph nodes were proved to be N2 postoperatively by lymph node dissection or sampling. The histological types were as follows: 8 adenocarcinoma, 4 large cell carcinoma, 1 squamous cell carcinoma, 1 small cell carcinoma, and 1 adenosquamous carcinoma. All but one patient were received postoperative chemotherapy and/or radiotherapy. The survival rate was 44.5% at 3 years, and median survival time was 36 months. The mediastinal lymph node metastasis with small peripheral lung cancer (T1N2) was ominous, and it should be said that complete mediastinal lymph node dissection and adjuvant therapy were indispensable to small advanced adenocarcinoma of lung.", "The great majority of viral mRNAs in mouse C127 cells transformed by bovine papillomavirus type 1 (BPV) have a common 3' end at the early polyadenylation site which is 23 nucleotides (nt) downstream of a canonical poly(A) consensus signal. Twenty percent of BPV mRNA from productively infected cells bypasses the early polyadenylation site and uses the late polyadenylation site approximately 3,000 nt downstream. To inactivate the BPV early polyadenylation site, the early poly(A) consensus signal was mutated from AAUAAA to UGUAAA. Surprisingly, this mutation did not result in significant read-through expression of downstream RNA. Rather, RNA mapping and cDNA cloning experiments demonstrate that virtually all of the mutant RNA is cleaved and polyadenylated at heterogeneous sites approximately 100 nt upstream of the wild-type early polyadenylation site. In addition, cells transformed by wild-type BPV harbor a small population of mRNAs with 3' ends located in this upstream region. These experiments demonstrate that inactivation of the major poly(A) signal induces preferential use of otherwise very minor upstream poly(A) sites. Mutational analysis suggests that polyadenylation at the minor sites is controlled, at least in part, by UAUAUA, an unusual variant of the poly(A) consensus signal approximately 25 nt upstream of the minor polyadenylation sites. These experiments indicate that inactivation of the major early polyadenylation signal is not sufficient to induce expression of the BPV late genes in transformed mouse cells.", "Features of chromosomal aberrations, hypersensitivity to DNA crosslinking agents, and predisposition to malignancy have suggested a fundamental anomaly of DNA repair in Fanconi anemia. The function of the recently isolated FACC (Fanconi anemia group C complementing) gene for a subset of this disorder is not yet known. The notion that FACC plays a direct role in DNA repair would predict that the polypeptide should reside in the nucleus. In this study, a polyclonal antiserum raised against FACC was used to determine the subcellular location of the polypeptide. Immunofluorescence and subcellular fractionation studies of human cell lines as well as COS-7 cells transiently expressing human FACC showed that the protein was localized primarily to the cytoplasm under steady-state conditions, transit through the cell cycle, and exposure to crosslinking or cytotoxic agents. However, placement of a nuclear localization signal from the simian virus 40 large tumor antigen at the amino terminus of FACC directed the hybrid protein to the nuclei of transfected COS-7 cells. These observations suggest an indirect role for FACC in regulating DNA repair in this group of Fanconi anemia." ]
1,723
[ "The parent-of-origin-dependent expression of IGF2 and H19 is controlled by the imprinting center 1 (IC1) consisting of a methylation-sensitive chromatin insulator. IC1 is normally methylated on the paternal chromosome and nonmethylated on the maternal chromosome. We found that 22 cases in a large cohort of patients affected by Beckwith-Wiedemann syndrome (BWS) had IC1 methylated on both parental chromosomes, resulting in biallelic activation of IGF2 and biallelic silencing of H19. These individuals had marked macrosomia and high incidence of Wilms' tumor. A subset of these patients had 1.4- to 1.8-kb deletions with hypermethylation of the remaining IC1 region and fully penetrant BWS phenotype when transmitted maternally. Another subset of individuals with IC1 hypermethylation had a similar clinical phenotype but no mutation in the local vicinity. All these cases were sporadic and in at least two families affected and unaffected members shared the same maternal IC1 allele but not the abnormal maternal epigenotype. Similarly, no IC1 deletion was detected in 10 nonsyndromic Wilms' tumors with IC1 hypermethylation. In conclusion, methylation defects at the IGF2-H19 locus can result from inherited mutations of the imprinting center and have high recurrence risk or arise independently from the sequence context and not transmitted to the progeny.", "gamma-Secretase is critically involved in the Notch pathway and in Alzheimer's disease. The four subunits of gamma-secretase assemble in the endoplasmic reticulum (ER) and unassembled subunits are retained/retrieved to the ER by specific signals. We here describe a novel ER-retention/retrieval signal in the transmembrane domain (TMD) 4 of presenilin 1, a subunit of gamma-secretase. TMD4 also is essential for complex formation, conferring a dual role for this domain. Likewise, TMD1 of Pen2 is bifunctional as well. It carries an ER-retention/retrieval signal and is important for complex assembly by binding to TMD4. The two TMDs directly interact with each other and mask their respective ER-retention/retrieval signals, allowing surface transport of reporter proteins. Our data suggest a model how assembly of Pen2 into the nascent gamma-secretase complex could mask TMD-based ER-retention/retrieval signals to allow plasma membrane transport of fully assembled gamma-secretase.", "WHIM syndrome is a condition in which affected persons have chronic peripheral neutropenia, lymphopenia, abnormal susceptibility to human papilloma virus infection, and myelokathexis. Myelokathexis refers to the retention of mature neutrophils in the bone marrow (BM), which accounts for degenerative changes and hypersegmentation. Most patients present heterozygous autosomal dominant mutations of the gene encoding CXCR4. Consequently, aberrant CXCL12/CXCR4 signaling impairs the receptor downregulation causing hyperactivation (gain-of-function) that affects BM homing for myelopoiesis and lymphopoiesis and the release of neutrophils in the bloodstream. We report the case of a 26-year-old female with severe foot and hand cutaneous warts since childhood, recalcitrant genital condylomatas, bacterial infections, and intraepithelial cervical neoplasia. Laboratory tests revealed severe B lymphopenia and HPV high and low risk types. HIV testing was negative. Not only CXCR4 but also GATA2, NEMO, and CD40L gene mutations were excluded. BM smears revealed, in the presence of a normal cellularity, hyperplasia of myeloid cells (MPO positive) and karyorrhexis, especially in neutrophils and eosinophils. Of note, neutrophils with altered lobation of nuclei connected by long thin chromatin filaments were observed. Our patient presented a clinical and histological picture reminiscent of WHIM in the presence of normal peripheral neutrophil counts and wild-type CXCR4 gene. Although the BM did not reveal a classical pattern of myelokathexis, the observation of consistent signs of neutrophil dysplasia has fuelled the hypothesis of a novel WHIM variant or a novel immunodeficiency. We speculate that abnormalities that affect CXCR4/CXCL12 pair, including GRK levels or activity, might be responsible for this WHIM-like disorder.", "PURPOSE: To identify and validate serum biomarkers for the progression of Duchenne muscular dystrophy (DMD) using a MS-based bottom-up pipeline.EXPERIMENTAL DESIGN: We used a bottom-up proteomics approach, including a protein concentration equalization step, different proteolytic digestions, and MS detection schemes, to identify candidate biomarkers in serum samples from control subjects and DMD patients. Fibronectin was chosen for follow-up based on the differences in peptide spectral counts and sequence coverage observed between the DMD and control groups. Subsequently, fibronectin levels were determined with ELISA in 68 DMD patients, 38 milder Becker muscular dystrophy patients, 33 patients with other neuromuscular disorders, and 15 age-matched adult and child controls.RESULTS: There was a significant increase in fibronectin levels in DMD patients compared to age-matched controls. Fibronectin levels in patients with Becker muscular dystrophy, Bethlem myopathy, or myasthenia gravis were comparable to control levels. Progressive elevation in fibronectin levels was observed in longitudinal samples from 22 DMD patients followed up for a period of 6 months up to 4 years.CONCLUSION AND CLINICAL RELEVANCE: This study suggests that serum fibronectin levels may constitute a promising biomarker to monitor disease progression in DMD patients.", "Thyroid cancer is increasing all over the world. The exact cause of this increase is still debated and there are conflicting reports. Sophisticated molecular studies suggest that environmental chemicals may have effects of thyroid carcinogenesis. The development of powerful molecular biology techniques has enabled targeted next-generation sequencing for detection of mutations in thyroid cancer, and this technique can make a specific diagnosis of thyroid cancer in cytologically indeterminate cases. The initial treatment of well-differentiated thyroid cancer (DTC) is surgery followed by radioiodine remnant ablation. However, further studies are needed to determine the optimal dosage of radioactive iodine for DTC patients with lateral neck metastasis. DTC is an indolent tumor and may cause death even decades later. Thus, long-term follow-up is mandatory. Recently, dynamic risk stratification (DRS) has begun to use stimulated thyroglobulin level at 1 year after the initial treatment and restratified the risk in accordance with the response to the initial treatment. This DRS strategy accurately predicts disease free survival and can be widely used in daily clinical settings. For the iodine refractory metastatic disease, redifferentiation therapy and targeted therapy are two promising alternative treatments. Sorafenib is the first approved agent for the treatment of progressive iodine refractory advanced thyroid cancer in Korea and may be very helpful for radioactive-refractory locally advanced or metastatic DTC. Selumetinib may be an effective redifferentiating agent and could be used within several years.", "The Koebner phenomenon has been reported to develop in classic or acquired immune deficiency syndrome-related Kaposi's sarcoma (KS). A 12-year-old kidney transplant recipient who developed immunosuppression-related KS showed reoccurrence of lesions in some previously intact incision sites following removal of tumor, suggesting Koebner phenomenon. It is recommended that surgeons be careful when planning surgical interventions in patients with certain skin disorders in which Koebner phenomenon is known to develop.", "BACKGROUND: Data from human epidemiological studies, cultured mammalian cells, and animal models have supported a potentially beneficial role of selenium (Se) in prostate cancer prevention. In addition, Se-containing proteins including members of the glutathione peroxidase (GPx) family and Selenium-Binding Protein 1 (SBP1) have been linked to either cancer risk or development. For example, SBP1 levels are typically reduced in tumors compared to non-cancerous tissue, with the degree of reduction associated with increasingly poor clinical outcome.METHODS: In order to investigate inter-relationships between blood and tissue Se levels and GPx activity, tissue SBP1 levels, and disease aggressiveness using the Gleason score, we measured levels of selenium and selected selenoproteins in fasting serum and histologically normal prostate tissues obtained from 24 men undergoing radical prostatectomy for the treatment of localized prostate cancer.RESULTS: GPx enzyme activity was inversely correlated with SBP1 levels in prostate tissue as determined by densitometry of Western blots obtained using anti-SBP1 antibodies [partial Spearman's correlation coefficients and corresponding P-values overall and in African-Americans = -0.42 (0.08) and -0.53 (0.10), respectively], which is consistent with previous observations in cultured cells and mice. Of particular interest was the positive correlation between tissue GPx activity and Gleason score, with this relationship achieving statistical significance among African-Americans (r = 0.67, P = 0.02).CONCLUSION: These studies support the continued investigation of the role of Se and selenoproteins in prostate cancer prevention, development, and prognosis." ]
1,743
[ "The underlying primary damage to the seminiferous epithelium caused by chemotherapeutic regimens at childhood is largely unknown. The present investigation was designed to identify acute cytotoxic events in the testis caused by a single dose of doxorubicin. Male rats at 6, 16, and 24 days of age were injected with doxorubicin (3 mg/kg, i.p.) or vehicle (saline) alone and 24 and 48 hours later, the germ cell types and apoptotic cells in the seminiferous epithelium were examined. As indicated by microscopy and terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling staining, an 8-fold increase in the number of apoptotic germ cells in the testes of 6-day-old rats was observed 48 hours after doxorubicin treatment. Spermatogonia migrating to the basement membrane were the primary cell type undergoing this induced apoptosis. A single dose of amifostine (200 mg/kg) administered i.p. 15 minutes before injection of doxorubicin provided no protection against this enhanced apoptosis. Under the same conditions, testicular levels of p53 and activated caspase 8 were elevated, whereas the level of murine double minute-2 was lowered. In contrast, doxorubicin treatment did not result in any significant change in the physiologic, stage-specific germ cell apoptosis occurring in the testes of 16- and 24-day-old rats. These observations suggest that the initiation phase of spermatogenesis is highly sensitive to doxorubicin-induced apoptosis. Gonocytes and early spermatogonia are the cell types that are vulnerable to this p53-trigged apoptosis, which results in a decrease in the size of the pool of germ-line stem cells. Amifostine fails to protect the germ cells against this cytotoxic insult.", "MSL3 resides in the MSL (male-specific lethal) complex, which upregulates transcription by spreading the histone H4 Lys16 (H4K16) acetyl mark. We discovered a DNA-dependent interaction of MSL3 chromodomain with the H4K20 monomethyl mark. The structure of a ternary complex shows that the DNA minor groove accommodates the histone H4 tail, and monomethyllysine inserts in a four-residue aromatic cage in MSL3. H4K16 acetylation antagonizes MSL3 binding, suggesting that MSL function is regulated by a combination of post-translational modifications.", "The most common chromosomal abnormalities in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are -5/del(5q) and -7/del(7q). When -5/del(5q) and -7/del(7q) coexist in patients, a poor prognosis is typically associated. Given that -5/del(5q) and/or -7/del(7q) often are accompanied with additional recurrent chromosomal alterations, genetic change(s) on the accompanying chromosome(s) other than chromosomes 5 and 7 may be important factor(s) affecting leukemogenesis and disease prognosis. Using an integrated analysis of karyotype, FISH and array CGH results in this study, we evaluated the smallest region of overlap (SRO) of chromosomes 5 and 7 as well as copy number alterations (CNAs) on the other chromosomes. Moreover, the relationship between the CNAs and del(5q) and -7/del(7q) was investigated by categorizing the cases into three groups based on the abnormalities of chromosomes 5 and 7 [group I: cases only with del(5q), group II: cases only with -7/del(7q) and group III: concurrent del(5q) and del(7q) cases]. The overlapping SRO of chromosome 5 from groups I and III was 5q31.1-33.1 and of chromosome 7 from groups II and III was 7q31.31-q36.1. A total of 318 CNAs were observed; ~ 78.3% of them were identified on chromosomes other than chromosomes 5 and 7, which were defined as 'other CNAs'. Group III was a distinctive group carrying the most high number (HN) CNAs, cryptic CNAs and 'other CNAs'. The loss of TP53 was highly associated with del(5q). The loss of ETV6 was specifically associated with group III. These CNAs or genes may play a secondary role in disease progression and should be further evaluated for their clinical significance and influence on therapeutic approaches in patients with MDS/AML carrying del(5q) and/or -7/del(7q) in large-scale, patient population study.", "The genetic diversity within an 11 kb segment of the MTMR8 gene in a sample of 111 sub-Saharan and 49 non-African X chromosomes was investigated to assess the early evolutionary history of sub-Saharan Africans and the out-of-Africa expansion. The analyses revealed a complex genetic structure of the Africans that contributed to the emergence of modern humans. We observed partitioning of two thirds of old lineages among southern, west/central and east African populations indicating ancient population stratification predating the out of Africa migration. Age estimates of these lineages, older than coalescence times of uniparentally inherited markers, raise the question whether contemporary humans originated from a single population or as an amalgamation of different populations separated by years of independent evolution, thus suggesting a greater antiquity of our species than generally assumed. While the oldest sub-Saharan lineages, ~500 thousand years, are found among Khoe-San from southern-Africa, a distinct haplotype found among Biaka is likely due to admixture from an even older population. An East African population that gave rise to non-Africans underwent a selective sweep affecting the subcentromeric region where MTMR8 is located. This and similar sweeps in four other regions of the X chromosome, documented in the literature, effectively reduced genetic diversity of non-African chromosomes and therefore may have exacerbated the effect of the demographic bottleneck usually ascribed to the out of Africa migration. Our data is suggestive, however, that a bottleneck, occurred in Africa before range expansion.", "Conserved non-coding elements (CNEs) are defined using various degrees of sequence identity and thresholds of minimal length. Their conservation frequently exceeds the one observed for protein-coding sequences. We explored the chromosomal distribution of different classes of CNEs in the human genome. We employed two methodologies: the scaling of block entropy and box-counting, with the aim to assess fractal characteristics of different CNE datasets. Both approaches converged to the conclusion that well-developed fractality is characteristic of elements that are either extremely conserved between species or are of ancient origin, i.e. conserved between distant organisms across evolution. Given that CNEs are often clustered around genes, we verified by appropriate gene masking that fractal-like patterns emerge even when elements found in proximity or inside genes are excluded. An evolutionary scenario is proposed, involving genomic events that might account for fractal distribution of CNEs in the human genome as indicated through numerical simulations.", "Conserved, ultraconserved and other classes of constrained elements (collectively referred as CNEs here), identified by comparative genomics in a wide variety of genomes, are non-randomly distributed across chromosomes. These elements are defined using various degrees of conservation between organisms and several thresholds of minimal length. We here investigate the chromosomal distribution of CNEs by studying the statistical properties of distances between consecutive CNEs. We find widespread power-law-like distributions, i.e. linearity in double logarithmic scale, in the inter-CNE distances, a feature which is connected with fractality and self-similarity. Given that CNEs are often found to be spatially associated with genes, especially with those that regulate developmental processes, we verify by appropriate gene masking that a power-law-like pattern emerges irrespectively of whether elements found close or inside genes are excluded or not. An evolutionary model is put forward for the understanding of these findings that includes segmental or whole genome duplication events and eliminations (loss) of most of the duplicated CNEs. Simulations reproduce the main features of the observed size distributions. Power-law-like patterns in the genomic distributions of CNEs are in accordance with current knowledge about their evolutionary history in several genomes.", "Recent advances have shown impressive results by anti-interleukin 1 (IL-1) agents in refractory idiopathic recurrent pericarditis. PURPOSE OF REVIEW: We critically discuss the current state of the art of therapy of relapsing pericarditis, with a focus on new pharmacological approaches and on specific clinical settings such as pregnancy, pediatric patients, and secondary forms of relapsing pericarditis. RECENT FINDINGS: Antagonism of the IL-1 is highly effective in idiopathic recurrent pericarditis with autoinflammatory features. Currently, available anti-IL-1 agents are anakinra and canakinumab. Rilonacept is another IL-1 antagonist, currently studied in the phase-3 clinical trial RHAPSODY. Available data suggest similar efficacy and safety profiles of these three agents, although only anakinra has been tested in randomized clinical trials. These agents have slightly different pharmacological properties, being canakinumab a specific IL-1ß antagonist while anakinra and rilonacept are unselective IL-1α and IL-1ß blockers. To date, there is no evidence that specificity against IL-1ß affects safety and efficacy in patients with relapsing pericarditis, although it has been proposed that unspecific blockage might be useful in severe disease. Anakinra is the first anti-IL-1 agent with well-documented efficacy and safety in adult and pediatric patients with idiopathic relapsing pericarditis. Other anti-IL-1 agents are currently under study. Future research should clarify the optimal duration of therapy and tapering schedule of treatment with these agents. Moreover, biomarkers would be required to understand which patients will benefit from early administration of IL-1 blockers due to refractoriness to conventional therapy and which others will suffer from recurrences during the tapering of these agents. Lastly, future studies should focus on the subjects with the autoimmune or the pauci-inflammatory phenotype of idiopathic refractory pericarditis.", "The central nervous system lesions of multiple sclerosis (MS) can be detected by magnetic resonance imaging (MRI) and the initial perivascular inflammatory component is distinguished by the presence of gadolinium enhancement. To assess the effect of systemic lymphocyte depletion on disease activity, seven patients with MS received a 10-day intravenous course of the humanised monoclonal antibody CAMPATH-1H (anti-CDw52). With some variations in the protocol, enhanced cerebral MR images were obtained monthly for 3-4 months before and at least 6 months after treatment. 28 enhancing areas were detected on the first series of 7 scans; 51 additional active lesions were identified on 18 scans before treatment; 15 were detected on 20 scans done over the next 3 months, but only 2 active lesions were seen on 23 scans during follow-up beyond 3 months. The difference in lesion incidence rate before and after treatment varied and the rate ratio was significantly reduced in only three patients. Collectively, in a \"meta-analysis\", the rate ratios were 0.15 [corrected] (95% CI 0.09-0.24) for all seven patients and 0.24 (0.14-0.42; p < 0.001) with exclusion of the patient whose scanning schedule differed. The effect of CAMPATH-1H on disease activity provides direct, but preliminary, evidence that disease activity in MS depends on the availability of circulating lymphocytes and can be prevented by lymphocyte depletion. It is too early to say anything about the clinical results of treatment with this agent." ]
1,746
[ "BACKGROUND: Nucleotide-binding oligomerizing domain-1 (NOD1) is a cytoplasmic receptor involved in recognizing bacterial peptidoglycan fragments that localize to the cytosol. NOD1 activation triggers inflammation, antimicrobial mechanisms and autophagy in both epithelial cells and murine macrophages. NOD1 mediates intracellular pathogen clearance in the lungs of mice; however, little is known about NOD1's role in human alveolar macrophages (AMs) or its involvement in Mycobacterium tuberculosis (Mtb) infection.METHODS: AMs, monocytes (MNs), and monocyte-derived macrophages (MDMs) from healthy subjects were assayed for NOD1 expression. Cells were stimulated with the NOD1 ligand Tri-DAP and cytokine production and autophagy were assessed. Cells were infected with Mtb and treated with Tri-DAP post-infection. CFUs counting determined growth control, and autophagy protein recruitment to pathogen localization sites was analyzed by immunoelectron microscopy.RESULTS: NOD1 was expressed in AMs, MDMs and to a lesser extent MNs. Tri-DAP stimulation induced NOD1 up-regulation and a significant production of IL1β, IL6, IL8, and TNFα in AMs and MDMs; however, the level of NOD1-dependent response in MNs was limited. Autophagy activity determined by expression of proteins Atg9, LC3, IRGM and p62 degradation was induced in a NOD1-dependent manner in AMs and MDMs but not in MNs. Infected AMs could be activated by stimulation with Tri-DAP to control the intracellular growth of Mtb. In addition, recruitment of NOD1 and the autophagy proteins IRGM and LC3 to the Mtb localization site was observed in infected AMs after treatment with Tri-DAP.CONCLUSIONS: NOD1 is involved in AM and MDM innate responses, which include proinflammatory cytokines and autophagy, with potential implications in the killing of Mtb in humans.", "Recent clinical trials have demonstrated the potential of adeno-associated virus (AAV)-based vectors for treating rare diseases. However, significant barriers remain for the translation of these vectors into widely available therapies. In particular, exposure to the AAV capsid can generate an immune response of neutralizing antibodies. One approach to overcome this response is to map the AAV-specific neutralizing epitopes and rationally design an AAV capsid able to evade neutralization. To accomplish this, we isolated a monoclonal antibody against AAV9 following immunization of BALB/c mice and hybridoma screening. This antibody, PAV9.1, is specific for intact AAV9 capsids and has a high neutralizing titer of >1:160,000. We used cryo-electron microscopy to reconstruct PAV9.1 in complex with AAV9. We then mapped its epitope to the 3-fold axis of symmetry on the capsid, specifically to residues 496-NNN-498 and 588-QAQAQT-592. Capsid mutagenesis demonstrated that even a single amino acid substitution within this epitope markedly reduced binding and neutralization by PAV9.1. In addition, in vivo studies showed that mutations in the PAV9.1 epitope conferred a \"liver-detargeting\" phenotype to the mutant vectors, unlike AAV9, indicating that the residues involved in PAV9.1 interactions are also responsible for AAV9 tropism. However, we observed minimal changes in binding and neutralizing titer when we tested these mutant vectors for evasion of polyclonal sera from mice, macaques, or humans previously exposed to AAV. Taken together, these studies demonstrate the complexity of incorporating mapped neutralizing epitopes and previously identified functional motifs into the design of novel capsids able to evade immune response.IMPORTANCE Gene therapy utilizing viral vectors has experienced recent success, culminating in U.S. Food and Drug Administration approval of the first adeno-associated virus vector gene therapy product in the United States: Luxturna for inherited retinal dystrophy. However, application of this approach to other tissues faces significant barriers. One challenge is the immune response to viral infection or vector administration, precluding patients from receiving an initial or readministered dose of vector, respectively. Here, we mapped the epitope of a novel neutralizing antibody generated in response to this viral vector to design a next-generation capsid to evade immune responses. Epitope-based mutations in the capsid interfered with the binding and neutralizing ability of the antibody but not when tested against polyclonal samples from various sources. Our results suggest that targeted mutation of a greater breadth of neutralizing epitopes will be required to evade the repertoire of neutralizing antibodies responsible for blocking viral vector transduction.", "Ku70-binding protein 5 (Kub5)-Hera (K-H)/RPRD1B maintains genetic integrity by concomitantly minimizing persistent R-loops and promoting repair of DNA double strand breaks (DSBs). We used tandem affinity purification-mass spectrometry, co-immunoprecipitation and gel-filtration chromatography to define higher-order protein complexes containing K-H scaffolding protein to gain insight into its cellular functions. We confirmed known protein partners (Ku70, RNA Pol II, p15RS) and discovered several novel associated proteins that function in RNA metabolism (Topoisomerase 1 and RNA helicases), DNA repair/replication processes (PARP1, MSH2, Ku, DNA-PKcs, MCM proteins, PCNA and DNA Pol δ) and in protein metabolic processes, including translation. Notably, this approach directed us to investigate an unpredicted involvement of K-H in DNA mismatch repair (MMR) where K-H depletion led to concomitant MMR deficiency and compromised global microsatellite stability. Mechanistically, MMR deficiency in K-H-depleted cells was a consequence of reduced stability of the core MMR proteins (MLH1 and PMS2) caused by elevated basal caspase-dependent proteolysis. Pan-caspase inhibitor treatment restored MMR protein loss. These findings represent a novel mechanism to acquire MMR deficiency/microsatellite alterations. A significant proportion of colon, endometrial and ovarian cancers exhibit k-h expression/copy number loss and may have severe mutator phenotypes with enhanced malignancies that are currently overlooked based on sporadic MSI+ screening.", "Thyroid hormone resistance (THR) is a rare syndrome of reduced end organ sensitivity. Patients with THR have elevated serum free thyroxine (FT4), free triiodothyronine (FT3), but normal or slightly elevated serum thyrotropin values. The characteristic clinical feature is goitre without symptoms and metabolic consequences of thyroid hormone excess. THR can be classified on the basis of tissue resistance into pituitary, peripheral or generalised (both pituitary and peripheral) types. Mutations in the TRbeta gene, cell membrane transporter and genes controlling intracellular metabolism of thyroid hormone have been implicated. THR is differentiated from thyroid stimulating hormone (TSH) secreting pituitary adenoma by history of THR in the family. No specific treatment is often required for THR; patients with features of hypo- or hyperthyroidism are appropriately treated with levo-triiodothyronine (L-T3), levo-thyroxine (L-T4), dextro-thyroxine(D-T4) or 3,3,5 triiodo-thyroacetic acid (TRIAC). The diagnosis helps in appropriate genetic counselling of the family.", "Acquired resistance to anticancer treatments is a substantial barrier to reducing the morbidity and mortality that is attributable to malignant tumors. Components of tissue microenvironments are recognized to profoundly influence cellular phenotypes, including susceptibilities to toxic insults. Using a genome-wide analysis of transcriptional responses to genotoxic stress induced by cancer therapeutics, we identified a spectrum of secreted proteins derived from the tumor microenvironment that includes the Wnt family member wingless-type MMTV integration site family member 16B (WNT16B). We determined that WNT16B expression is regulated by nuclear factor of κ light polypeptide gene enhancer in B cells 1 (NF-κB) after DNA damage and subsequently signals in a paracrine manner to activate the canonical Wnt program in tumor cells. The expression of WNT16B in the prostate tumor microenvironment attenuated the effects of cytotoxic chemotherapy in vivo, promoting tumor cell survival and disease progression. These results delineate a mechanism by which genotoxic therapies given in a cyclical manner can enhance subsequent treatment resistance through cell nonautonomous effects that are contributed by the tumor microenvironment.", "OBJECTIVE: Anti-TNF therapies have been highly efficacious in the management of rheumatoid arthritis (RA), but 25-30% of patients do not show a significant clinical response. There is increasing evidence that genetic variation at the Fc receptor FCGR2A is associated with the response to anti-TNF therapy. We aimed to validate this genetic association in a patient cohort from the Spanish population, and also to identify new genes functionally related to FCGR2A that are also associated with anti-TNF response.METHODS: A total of 348 RA patients treated with an anti-TNF therapy were included and genotyped for FCGR2A polymorphism rs1081274. Response to therapy was determined at 12 weeks, and was tested for association globally and independently for each anti-TNF drug (infliximab, etanercept and adalimumab). Using gene expression profiles from macrophages obtained from synovial fluid of RA patients, we searched for genes highly correlated with FCGR2A expression. Tag SNPs were selected from each candidate gene and tested for association with the response to therapy.RESULTS: We found a significant association between FCGR2A and the response to adalimumab (P=0.022). Analyzing the subset of anti-CCP positive RA patients (78%), we also found a significant association between FCGR2A and the response to infliximab (P=0.035). DHX32 and RGS12 were the most consistently correlated genes with FCGR2A expression in RA synovial fluid macrophages (P<0.001). We found a significant association between the genetic variation at DHX32 (rs12356233, corrected P=0.019) and a nominally significant association between RGS12 and the response to adalimumab (rs4690093, uncorrected P=0.040). In the anti-CCP positive group of patients, we also found a nominally significant association between RGS12 and the response to infliximab (rs2857859, uncorrected P=0.042).CONCLUSIONS: In the present study we have validated the FCGR2A association in an independent population, and we have identified new genes associated with the response to anti-TNF therapy in RA.", "CONTEXT AND OBJECTIVE: The primary purpose of this study was to detect and quantify 3-iodothyronamine (T(1)AM), an endogenous biogenic amine related to thyroid hormone, in human blood.DESIGN: T(1)AM, total T(3), and total T(4) were assayed in serum by a novel HPLC tandem mass spectrometry assay, which has already been validated in animal investigations, and the results were related to standard clinical and laboratory variables.SETTING AND PATIENTS: The series included one healthy volunteer, 24 patients admitted to a cardiological ward, and 17 ambulatory patients suspected of thyroid disease, who underwent blood sampling at admission for routine diagnostic purposes. Seven patients were affected by type 2 diabetes, and six patients showed echocardiographic evidence of impaired left ventricular function.INTERVENTIONS: No intervention or any patient selection was performed.MAIN OUTCOME MEASURES: serum T(1)AM, total and free T(3) and T(4), routine chemistry, routine hematology, and echocardiographic parameters were measured.RESULTS: T(1)AM was detected in all samples, and its concentration averaged 0.219 ± 0.012 pmol/ml. The T(1)AM concentration was significantly correlated to total T(4) (r = 0.654, P < 0.001), total T(3) (r = 0.705, P < 0.001), glycated hemoglobin (r = 0.508, P = 0.013), brain natriuretic peptide (r = 0.543, P = 0.016), and γ-glutamyl transpeptidase (r = 0.675, P < 0.001). In diabetic vs. nondiabetic patients T(1)AM concentration was significantly increased (0.232 ± 0.014 vs. 0.203 ± 0.006 pmol/ml, P = 0.044), whereas no significant difference was observed in patients with cardiac dysfunction.CONCLUSIONS: T(1)AM is an endogenous messenger that can be assayed in human blood. Our results are consistent with the hypothesis that circulating T(1)AM is produced from thyroid hormones and encourage further investigations on the potential role of T(1)AM in insulin resistance and heart failure." ]
1,750
[ "Most men with recurrent prostate cancer (CaP) initially respond to androgen deprivation therapy but eventually develop metastatic castration-resistant prostate cancer (CRPC). Over the last decade, new therapeutic targets have been identified in CRPC and several new drugs have reached advanced stages of clinical development. In 2010, the Food and Drug Administration (FDA) approved sipuleucel-T and cabazitaxel, and in 2011, abiraterone for patients with metastatic CRPC based on phase 3 trials showing improved survival. Although not yet available for clinical use, a press release in June 2011 announced that radium 223 also demonstrated a survival advantage in men with metastatic CRPC. Emerging therapies in advanced stages of clinical development in CRPC include the hormonal therapies MDV3100 and TAK 700, and the immunotherapy ipilimumab. Results are also pending on phase 3 studies comparing docetaxel plus prednisone with docetaxel given with the novel agents aflibercept, dasatinib, lenalidomide, and custirsen. In addition to these new and emerging therapeutic agents, denosumab was approved for the prevention of skeletal complications in patients with bone metastases due to solid tumor malignancies, providing an alternative to zoledronic acid. While the addition of these new treatment options is a great advance for men with metastatic CRPC, there are many new questions arising regarding sequencing of these treatments with each other, with previously existing therapies, and with the emerging agents now in clinical trials. Furthermore, there are concerns that on-going phase 3 trials may be contaminated if patients go off study treatment to start 1 of the newly approved agents or take the agent subsequently. These realities make clinical trial design more challenging than ever.", "The immune system plays an active role in the pathogenesis of ovarian cancer (OC), as well as in the mechanisms of disease progression and overall survival (OS). Immunotherapy in gynecological cancers could help to revert immunosuppression and lymphocyte depletion due to prior treatments. Current immunotherapies for ovarian cancer, like all cancer immunotherapy, are based on either stimulating the immune system or reverting immune suppression. Several approaches have been used, including therapeutic vaccines, monoclonal antibodies; checkpoint inhibitors and adoptive T cell transfer. Most of these therapies are still in early-phase testing (phase I and II) for ovarian cancer, but the initial data in ovarian cancer and successful use in other types of cancers suggests some of these approaches may ultimately prove useful for ovarian cancer as well. Ovarian cancer vaccines have shown only a modest benefit in ovarian cancer when used as monotherapy, but these agents may be able to enhance antitumor activity when combined with chemotherapy, checkpoint inhibitors, or other immunotherapies. Monoclonal antibodies have been explored in ovarian cancer but despite encouraging phase II data, randomized studies failed to demonstrate significant clinical benefit. Check point inhibitors have promising activity in several solid tumors and have demonstrated a favorable toxicity profile. Data from early clinical trials utilizing PD1 and PD-L1 inhibitors showed encouraging results. Ongoing clinical trials are evaluating the role of check point inhibitors in combination with chemotherapy. Adoptive T cell transfer involves the infusion of ex vivo activated and expanded tumor specific T cells, using various sources and types of T cells. While this approach has been explored in several hematologic malignancies, it constitutes early research in ovarian cancer. Immunotherapy remains investigational in ovarian cancer and the benefit of this approach in improving progression-free survival (PFS) or OS is unknown. Previous clinical trials have not selected patients based on biomarkers and this may explain the negative results. We expect to discover that tumor response will relate to the patient's immune features and specific tumor characteristics. We are only beginning to realize the potential of immunotherapy for ovarian cancer patients, and one goal of future clinical trials will be to identify subsets of patient based on histologic, molecular, and immune characteristics.", "A simple genetic system has been developed to test the effect of over-expression of wild-type or mutated human MutL homologue 1 (hMLH1) proteins on methyl-directed mismatch repair (MMR) in Escherichia coli. The system relies on detection of Lac(+) revertants using MMR-proficient or MMR-deficient E. coli strains carrying a lac +1 frameshift mutation expressing hMLH1 proteins. We report that expression of wild-type hMLH1 protein causes an approx. 19-fold increase in mutation rates. The mutator phenotype was due to the ability of hMLH1 protein to interact with bacterial MutL and MutS proteins, thereby interfering with the formation of complexes between MMR proteins and mismatched DNA. Conversely, expression of proteins encoded by alleles deriving from hereditary-non-polyposis-colon-cancer (HNPCC) families decreases mutation rates, depending on the specific amino acid substitutions. These effects parallel the MutL-and MutS-binding and ATP-binding/hydrolysis activities of the mutated proteins.", "Obesity-related disorders are associated with the development of ischemic heart disease. Adiponectin is a circulating adipose-derived cytokine that is downregulated in obese individuals and after myocardial infarction. Here, we examine the role of adiponectin in myocardial remodeling in response to acute injury. Ischemia-reperfusion in adiponectin-deficient (APN-KO) mice resulted in increased myocardial infarct size, myocardial apoptosis and tumor necrosis factor (TNF)-alpha expression compared with wild-type mice. Administration of adiponectin diminished infarct size, apoptosis and TNF-alpha production in both APN-KO and wild-type mice. In cultured cardiac cells, adiponectin inhibited apoptosis and TNF-alpha production. Dominant negative AMP-activated protein kinase (AMPK) reversed the inhibitory effects of adiponectin on apoptosis but had no effect on the suppressive effect of adiponectin on TNF-alpha production. Adiponectin induced cyclooxygenase (COX)-2-dependent synthesis of prostaglandin E(2) in cardiac cells, and COX-2 inhibition reversed the inhibitory effects of adiponectin on TNF-alpha production and infarct size. These data suggest that adiponectin protects the heart from ischemia-reperfusion injury through both AMPK- and COX-2-dependent mechanisms.", "The chromosome-16 and the X-chromosome forms of alpha-thalassemia--ATR-16 and ATR-X--exemplify 2 important causes of syndromal mental retardation. ATR-16 is a contiguous gene syndrome which arises from loss of DNA from the tip of chromosome 16p13.3 by truncation, interstitial deletion, or unbalanced translocation. It provided the first example of a chromosome translocation that could be detected by molecular analysis but not conventional cytogenetics. It also provided the first example of a telomeric truncation giving rise to a complex genetic syndrome. In contrast ATR-X appears to be due to mutations in a trans-acting factor that regulates gene expression. Mutations in transcription factors have recently been identified in a number of genetic diseases (for example, Denys-Drash syndrome, WT1 [19]; pituitary dwarfism, PIT1 [16]; Rubinstein-Taybi syndrome, CBP [20]. Not only is this mechanism proving to be an important cause of complex syndromes but it is providing new perspectives on certain developmental pathways. XH2 may not be a classical transcription factor but it is certainly involved in the regulation of gene expression, exerting its effects on several different genes. It seems likely that other mutations in this class of regulatory proteins will be found in patients with complex disorders including mental retardation. In broader terms the 2 mechanisms described here may prove to be responsible for a significant proportion of mental retardation. However, without a feature such as alpha-thalassemia to pinpoint the area of genome or pathways involved it may prove difficult to identify other, similarly affected genes underlying other forms of mental retardation. As the human genome project and rapid genome analysis evolve this problem should become less of an obstacle. In the meantime, it is very worthwhile to continue looking for unusual clinical associations that may point to critical genes underlying human genetic disorders.", "West Nile virus (WNV), an arbovirus maintained in a bird-mosquito enzootic cycle, can infect other vertebrates including humans. WNV was first reported in the US in 1999 where, to date, three genotypes belonging to WNV lineage I have been described (NY99, WN02, SW/WN03). We report here the WNV sequences obtained from two birds, one mosquito, and 29 selected human samples acquired during the US epidemics from 2006-2011 and our examination of the evolutionary dynamics in the open-reading frame of WNV isolates reported from 1999-2011. Maximum-likelihood and Bayesian methods were used to perform the phylogenetic analyses and selection pressure analyses were conducted with the HyPhy package. Phylogenetic analysis identified human WNV isolates within the main WNV genotypes that have circulated in the US. Within genotype SW/WN03, we have identified a cluster with strains derived from blood donors and birds from Idaho and North Dakota collected during 2006-2007, termed here MW/WN06. Using different codon-based and branch-site selection models, we detected a number of codons subjected to positive pressure in WNV genes. The mean nucleotide substitution rate for WNV isolates obtained from humans was calculated to be 5.06×10(-4) substitutions/site/year (s/s/y). The Bayesian skyline plot shows that after a period of high genetic variability following the introduction of WNV into the US, the WNV population appears to have reached genetic stability. The establishment of WNV in the US represents a unique opportunity to understand how an arbovirus adapts and evolves in a naïve environment. We describe a novel, well-supported cluster of WNV formed by strains collected from humans and birds from Idaho and North Dakota. Adequate genetic surveillance is essential to public health since new mutants could potentially affect viral pathogenesis, decrease performance of diagnostic assays, and negatively impact the efficacy of vaccines and the development of specific therapies.", "Author information:(1)Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.(2)Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.(3)Center for Molecular Medicine & Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.(4)School of Biological Sciences, Monash University, Clayton, Victoria, Australia.(5)IBD Pharmacogenetics, College of Medicine and Health, University of Exeter, Exeter, UK.(6)Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.(7)William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK.(8)Nuffield Department of Population Health, University of Oxford, Oxford, UK.(9)23andMe, Inc., Sunnyvale, CA, USA.(10)Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.(11)Saint Edmund Hall, University of Oxford, Oxford, UK.(12)Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.(13)Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany.(14)Department of Dermatology, Quincke Research Center, University Hospital Schleswig-Holstein, Kiel, Germany.(15)Department of Biostatistics, University of Michigan, School of Public Health, Ann Arbor, MI, USA.(16)Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway.(17)Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway.(18)Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway.(19)Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.(20)Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.(21)Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands.(22)Clinical Enteric Neuroscience Translational and Epidemiological Research and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.(23)David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.(24)Neurogastroenterology Unit, Wythenshawe Hospital, Centre for Gastrointestinal Sciences, University of Manchester, Manchester, UK.(25)Nottingham Digestive Diseases Centre, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.(26)Center for Molecular Medicine & Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden. mdamato@cicbiogune.es.(27)School of Biological Sciences, Monash University, Clayton, Victoria, Australia. mdamato@cicbiogune.es.(28)Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany. mdamato@cicbiogune.es.(29)Biodonostia Health Research Institute, San Sebastian, Spain. mdamato@cicbiogune.es.(30)Gastrointestinal Genetics Lab, CIC bioGUNE - Basque Research and Technology Alliance, Derio, Spain. mdamato@cicbiogune.es.(31)IKERBASQUE, The Basque Science Foundation, Bilbao, Spain. mdamato@cicbiogune.es.(32)Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK. luke.jostins@kennedy.ox.ac.uk.(33)Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK. luke.jostins@kennedy.ox.ac.uk.(34)Christ Church, University of Oxford, Oxford, UK. luke.jostins@kennedy.ox.ac.uk.(35)Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, UK. miles.parkes@addenbrookes.nhs.uk.(36)Department of Gastroenterology, Cambridge University Hospital, Cambridge, UK. miles.parkes@addenbrookes.nhs.uk.(#)Contributed equally", "BACKGROUND AIMS: Exosomes, a key component of cell paracrine secretion, can exert protective effects in various disease models. However, application of exosomes in vascular repair and regeneration has rarely been reported. In this study, we tested whether endothelial progenitor cell (EPC)-derived exosomes possessed therapeutic effects in rat models of balloon-induced vascular injury by accelerating reendothelialization.METHODS: Exosomes were obtained from the conditioned media of EPCs isolated from human umbilical cord blood. Induction of the endothelial injury was performed in the rats' carotid artery, and the pro-re-endothelialization capacity of EPC-derived exosomes was measured. The in vitro effects of exosomes on the proliferation and migration of endothelial cells were investigated.RESULTS: We found that the EPC-derived exosomes accelerated the re-endothelialization in the early phase after endothelial damage in the rat carotid artery. We also demonstrated that these exosomes enhanced the proliferation and migration of endothelial cells in vitro. Moreover, endothelial cells stimulated with these exosomes showed increased expression of angiogenesis-related molecules.CONCLUSIONS: Taken together, our results indicate that exosomes are an active component of the paracrine secretion of human EPCs and can promote vascular repair in rat models of balloon injury by up-regulating endothelial cells function.", "Synapsin III (SynIII) is a phosphoprotein that is highly expressed at early stages of neuronal development. Whereas in vitro evidence suggests a role for SynIII in neuronal differentiation, in vivo evidence is lacking. Here, we demonstrate that in vivo downregulation of SynIII expression affects neuronal migration and orientation. By contrast, SynIII overexpression affects neuronal migration, but not orientation. We identify a cyclin-dependent kinase-5 (CDK5) phosphorylation site on SynIII and use phosphomutant rescue experiments to demonstrate its role in SynIII function. Finally, we show that SynIII phosphorylation at the CDK5 site is induced by activation of the semaphorin-3A (Sema3A) pathway, which is implicated in migration and orientation of cortical pyramidal neurons (PNs) and is known to activate CDK5. Thus, fine-tuning of SynIII expression and phosphorylation by CDK5 activation through Sema3A activity is essential for proper neuronal migration and orientation.", "Phycocyanin is a major protein produced by cyanobacteria, but very few phycocyanin-producing strains have been reported. In the present study, response surface methodology (RSM) involving a central composite design for four factors was successfully employed to optimize medium components for increased production of phycocyanin from Phormidium ceylanicum. The production of phycocyanin and interactions between sodium nitrate, calcium chloride, trace metal mix and citric acid stock were investigated and modeled. Under optimized condition P. ceylanicum was able to give 2.3-fold increase in phycocyanin production in comparison to commonly used BG 11 medium in 32 days. We have demonstrated the extraction, purification and characterization of C-phycocyanin using novel method based on filtration and single step chromatography. The protein was extracted by repeated freeze-thaw cycles and the crude extract was filtered and concentrated in stirred ultrafiltration cell (UFC). The UFC concentrate was then subjected to a single ion exchange chromatographic step. A purity ratio of 4.15 was achieved from a starting value of 1.05. The recovery efficiency of C-phycocyanin from crude extract was 63.50%. The purity was checked by electrophoresis and UV-Vis spectroscopy.", "The main neuropathological features of Parkinson's disease are dopaminergic nigrostriatal neuron degeneration, and intraneuronal and intraneuritic proteinaceous inclusions named Lewy bodies and Lewy neurites, respectively, which mainly contain α-synuclein (α-syn, also known as SNCA). The neuronal phosphoprotein synapsin III (also known as SYN3), is a pivotal regulator of dopamine neuron synaptic function. Here, we show that α-syn interacts with and modulates synapsin III. The absence of α-syn causes a selective increase and redistribution of synapsin III, and changes the organization of synaptic vesicle pools in dopamine neurons. In α-syn-null mice, the alterations of synapsin III induce an increased locomotor response to the stimulation of synapsin-dependent dopamine overflow, despite this, these mice show decreased basal and depolarization-dependent striatal dopamine release. Of note, synapsin III seems to be involved in α-syn aggregation, which also coaxes its increase and redistribution. Furthermore, synapsin III accumulates in the caudate and putamen of individuals with Parkinson's disease. These findings support a reciprocal modulatory interaction of α-syn and synapsin III in the regulation of dopamine neuron synaptic function.", "Contrave is an investigational fixed-dose combination drug of naltrexone and bupropion currently in Phase III clinical trials for the treatment of obesity. Orexigen Therapeutics, Inc. has demonstrated efficacy of their product and is currently addressing FDA safety concerns and deciding future actions.", "Imaging the cerebral serotonin 2A (5-HT2A ) receptors with positron emission tomography (PET) has been carried out in humans with [(11) C]MDL 100907 and [(18) F]altanserin. Recently, the MDL 100907 analogue [(18) F]MH.MZ was developed combining the selectivity profile of MDL 100907 and the favourable radiophysical properties of fluorine-18. Here, we present a direct comparison of [(18) F]altanserin and [(18) F]MH.MZ. 5-HT2A receptor binding in pig cortex and cerebellum was investigated by autoradiography with [(3) H]MDL 100907, [(18) F]MH.MZ, and [(18) F]altanserin. [(18) F]MH.MZ and [(18) F]altanserin were investigated in Danish Landrace pigs by brain PET scanning at baseline and after i.v. administration of blocking doses of ketanserin. Full arterial input function and high performance liquid chromatography (HPLC) analysis allowed for tissue-compartment kinetic modeling of PET data. In vitro autoradiography showed high binding in cortical regions with both [(18) F]MH.MZ and [(18) F]altanserin. Significant 5-HT2A receptor binding was also found in the pig cerebellum, thus making this region unsuitable as a reference region for in vivo data analysis in this species. The cortical binding of [(18) F]MH.MZ and [(18) F]altanserin was blocked by ketanserin supporting that both radioligands bind to 5-HT2A receptors in the pig brain. In the HPLC analysis of pig plasma, [(18) F]MH.MZ displayed a fast and reproducible metabolism resulting in hydrophilic radiometabolites only whereas the metabolic profile of [(18) F]altanserin as expected showed lipophilic radiometabolites. Due to the slow kinetics of [(18) F]MH.MZ in high-binding regions in vivo, we suggest that [(18) F]MH.MZ will be an appropriate tracer for low binding regions where kinetics will be faster, whereas [(18) F]altanserin is a suitable tracer for high-binding regions.", "Many endocytic proteins accumulate in the reserve pool of synaptic vesicles (SVs) in synapses and relocalize to the endocytic periactive zone during neurotransmitter release. Currently little is known about their functions outside the periactive zone. Here we show that in the Drosophila neuromuscular junction (NMJ), the endocytic scaffolding protein Dap160 colocalizes during the SV cycle and forms a functional complex with the SV-associated phosphoprotein synapsin, previously implicated in SV clustering. This direct interaction is strongly enhanced under phosphorylation-promoting conditions and is essential for proper localization of synapsin at NMJs. In a dap160 rescue mutant lacking the interaction between Dap160 and synapsin, perturbed reclustering of SVs during synaptic activity is observed. Our data indicate that in addition to the function in endocytosis, Dap160 is a component of a network of protein-protein interactions that serves for clustering of SVs in conjunction with synapsin. During the SV cycle, Dap160 interacts with synapsin dispersed from SVs and helps direct synapsin back to vesicles. The proteins function in synergy to achieve efficient clustering of SVs in the reserve pool.SIGNIFICANCE STATEMENT: We provide the first evidence for the function of the SH3 domain interaction in synaptic vesicle (SV) organization at the synaptic active zone. Using Drosophila neuromuscular junction as a model synapse, we describe the molecular mechanism that enables the protein implicated in SV clustering, synapsin, to return to the pool of vesicles during neurotransmitter release. We also identify the endocytic scaffolding complex that includes Dap160 as a regulator of the events linking exocytosis and endocytosis in synapses.", "Synapsin II is a member of the neuronal phosphoprotein family. These phosphoproteins are evolutionarily conserved across many organisms and are important in a variety of synaptic functions, including synaptogenesis and the regulation of neurotransmitter release. A number of genome-wide scans, meta-analyses, and genetic susceptibility studies have implicated the synapsin II gene (3p25) in the etiology of schizophrenia (SZ) and other psychiatric disorders. Further studies have found a reduction of synapsin II mRNA and protein in the prefrontal cortex in post-mortem samples from schizophrenic patients. Disruptions in the expression of this gene may cause synaptic dysfunction, which can result in neurotransmitter imbalances, likely contributing to the pathogenesis of SZ. SZ is a costly, debilitating psychiatric illness affecting approximately 1.1% of the world's population, amounting to 51 million people today. The disorder is characterized by positive (hallucinations, paranoia), negative (social withdrawal, lack of motivation), and cognitive (memory impairments, attention deficits) symptoms. This review provides a comprehensive summary of the structure, function, and involvement of the synapsin family, specifically synapsin II, in the pathophysiology of SZ and possible target for therapeutic intervention/implications.", "Surveys for conserved noncoding sequences (CNS) among genes from monocot cereal species were conducted to assess the general properties of CNS in grass genomes and their correlation with known promoter regulatory elements. Initial comparisons of 11 orthologous maize-rice gene pairs found that previously defined regulatory motifs could be identified within short CNS but could not be distinguished reliably from random sequence matches. Among the different phylogenetic footprinting algorithms tested, the VISTA tool yielded the most informative alignments of noncoding sequence. VISTA was used to survey for CNS among all publicly available genomic sequences from maize, rice, wheat, barley, and sorghum, representing >300 gene comparisons. Comparisons of orthologous maize-rice and maize-sorghum gene pairs identified 20 bp as a minimal length criterion for a significant CNS among grass genes, with few such CNS found to be conserved across rice, maize, sorghum, and barley. The frequency and length of cereal CNS as well as nucleotide substitution rates within CNS were consistent with the known phylogenetic distances among the species compared. The implications of these findings for the evolution of cereal gene promoter sequences and the utility of using the nearly completed rice genome sequence to predict candidate regulatory elements in other cereal genes by phylogenetic footprinting are discussed.", "The activity of TLC G-65 (a liposomal gentamicin preparation), alone and in combination with rifapentine, clarithromycin, clofazimine and ethambutol, was evaluated in the beige mouse (C57BL/6J--bgj/bgj) model of disseminated Mycobacterium avium infection. TLC G-65 was found to be more active than amikacin. The combination of rifapentine and TLC G-65 was more active than either agent alone. The activity of clarithromycin in combination with TLC G-65 was similar to that of either agent alone. Clofazimine improved the activity of TLC G-65 with respect to the spleen, while ethambutol improved the activity with respect to the liver. Clofazimine and ethambutol enhanced the activity of TLC G-65 against bacteria in the lungs. TLC G-65 in combination with rifapentine appears to be an attractive regimen for the treatment of infections caused by bacteria in the M. avium complex.", "BACKGROUND: Overweight and obesity are risk factors for cardiovascular disease. There is also an association between body mass index (BMI) and cognitive ability. Since low birth weight is associated with adult metabolic disease, particularly in obese subjects, the question emerges whether obesity has an additional negative effect on cognitive function in subjects with low birth weight.OBJECTIVES: The aim was to analyse whether overweight or obesity influence intellectual performance in young adults with particular focus on those with a low birth weight.METHODS: Data were collected from the Swedish Medical Birth Register on 620,834 males born between 1973 and 1988 and matched to results on intellectual performance and BMI at conscription.RESULTS: The risk for low intellectual performance was higher for those with high BMI compared to those with normal. The highest risk was found among subjects with low birth weight and overweight or obesity in young adulthood (odds ratios, 1.98 [1.73-2.22] and 2.59 [2.00-3.34], respectively). However, subjects with further high birth weight and a high BMI at conscription had no further increased risk.CONCLUSIONS: Overweight and obesity are associated with an increased risk of subnormal intellectual performance in young adult males. Subjects with low birth weight and adolescent overweight/obesity are at particular risk of subnormal performance. A high birth weight increases the risk for obesity, but a high adult BMI does not further increase the risk for subnormal performance.", "BACKGROUND: Evolocumab, a monoclonal antibody that inhibits proprotein convertase subtilisin/kexin type 9 (PCSK9), significantly reduced low-density lipoprotein (LDL) cholesterol levels in phase 2 studies. We conducted a phase 3 trial to evaluate the safety and efficacy of 52 weeks of treatment with evolocumab.METHODS: We stratified patients with hyperlipidemia according to the risk categories outlined by the Adult Treatment Panel III of the National Cholesterol Education Program. On the basis of this classification, patients were started on background lipid-lowering therapy with diet alone or diet plus atorvastatin at a dose of 10 mg daily, atorvastatin at a dose of 80 mg daily, or atorvastatin at a dose of 80 mg daily plus ezetimibe at a dose of 10 mg daily, for a run-in period of 4 to 12 weeks. Patients with an LDL cholesterol level of 75 mg per deciliter (1.9 mmol per liter) or higher were then randomly assigned in a 2:1 ratio to receive either evolocumab (420 mg) or placebo every 4 weeks. The primary end point was the percent change from baseline in LDL cholesterol, as measured by means of ultracentrifugation, at week 52.RESULTS: Among the 901 patients included in the primary analysis, the overall least-squares mean (±SE) reduction in LDL cholesterol from baseline in the evolocumab group, taking into account the change in the placebo group, was 57.0±2.1% (P<0.001). The mean reduction was 55.7±4.2% among patients who underwent background therapy with diet alone, 61.6±2.6% among those who received 10 mg of atorvastatin, 56.8±5.3% among those who received 80 mg of atorvastatin, and 48.5±5.2% among those who received a combination of 80 mg of atorvastatin and 10 mg of ezetimibe (P<0.001 for all comparisons). Evolocumab treatment also significantly reduced levels of apolipoprotein B, non-high-density lipoprotein cholesterol, lipoprotein(a), and triglycerides. The most common adverse events were nasopharyngitis, upper respiratory tract infection, influenza, and back pain.CONCLUSIONS: At 52 weeks, evolocumab added to diet alone, to low-dose atorvastatin, or to high-dose atorvastatin with or without ezetimibe significantly reduced LDL cholesterol levels in patients with a range of cardiovascular risks. (Funded by Amgen; DESCARTES ClinicalTrials.gov number, NCT01516879.).", "Chromatin remodelers are ATP-dependent machines responsible for directionally shifting nucleosomes along DNA. We are interested in defining which elements of the chromodomain helicase DNA-binding protein 1 (Chd1) remodeler are necessary and sufficient for sliding nucleosomes. This work focuses on the polypeptide segment that joins the ATPase motor to the C-terminal DNA-binding domain. We identify amino acid positions outside the ATPase motor that, when altered, dramatically reduce nucleosome sliding ability and yet have only ∼3-fold reduction in ATPase stimulation by nucleosomes. These residues therefore appear to play a role in functionally coupling ATP hydrolysis to nucleosome sliding, and suggest that the ATPase motor requires cooperation with external elements to slide DNA past the histone core.", "The immunohistological distribution of blood group (BG)-related antigens including A, B, H type 2, and sialylated Lex in lung adenocarcinomas was examined using monoclonal antibodies. BG-A, B, and H type 2 compatible with the ABO status in tumor cells were expressed in 60% of the cases. Accumulation of H type 2, associated with loss of BG-A and B, was observed in tumor cells of patients with BG status other than 0. Tumor-associated antigens, Lex and sialylated Lex were detected in 36.0% and 72.0%, respectively. Modification of carbohydrate antigens in cancer may be associated with incomplete synthesis; accumulation of precursor antigen; and activated sialylation.", "The purpose of this case series is to assess long-term sequelae of arsenic exposure in a cohort acutely exposed to arsenic in drinking water from a well dug into a landfill containing arsenical pesticides. Ten of the 13 individuals (or next of kin) in the initial study agreed to participate in the follow-up study. Next of kin provided questionnaire data and released medical information on the three individuals who had died. The remaining seven cohort members were assessed by an interview, questionnaire, detailed physical examination and sensory nerve testing. Available medical records were obtained and reviewed. Sensory testing was performed using an automated electrodiagnostic sensory Nerve Conduction Threshold (sNCT) evaluation. Sensory complaints and electrodiagnostic findings consistent with polyneuropathy were found in a minority (3/7) of subjects 28 years after an acute toxic arsenic exposure. Two of the seven patients examined (1 of 3 with neuropathic findings) also had hyperkeratotic lesions consistent with arsenic toxicity and one of the patients had hyperpigmentation on their lower extremities possibly consistent with arsenic toxicity.", "Although originally identified as mediators of inflammation, it is now apparent that chemokines play a fundamental role in tissue development. In this study, ELR(+)-CXC chemokine family members CXCL2 and CXCL7, along with their preferred receptor CXCR2, were expressed at the earliest stages of metanephric development in the rat, and signaling through this receptor was required for the survival and maintenance of the undifferentiated metanephric mesenchyme (MM). A specific antagonist of the CXCR2 receptor SB225002 induced apoptosis in this population but did not affect more mature structures or cells in the ureteric bud. CXCL7 treatment of isolated MM elicited an angiogenic response by upregulation of matrix metalloprotease 9 and endothelial and mesangial markers (platelet-endothelial cell adhesion molecule, Megsin, Thy-1, PDGF receptor alpha, and vascular alpha-actin) and induced SB225002-sensitive cell invasion through a matrix. Because Wilms' tumor cells may similarly depend on CXCR2 signaling for survival, primary tumor samples were analyzed, and 15 of 16 Wilms' tumors were found to be CXCR2 positive, whereas grossly normal kidney tissues from tumor patients or renal cell carcinomas were CXCR2 negative. Furthermore, cell lines derived from Wilms' tumors but not those from renal cell carcinomas were sensitive to SB225002-induced apoptosis. These data provide evidence for a prosurvival and proangiogenic role of ELR(+)-CXC chemokines and their receptor CXCR2 during metanephric development and suggest a novel mechanism for chemotherapeutic intervention in Wilms' tumor.", "Synapsins as a family of presynaptic terminal phosphoprotein participates in neuronal development, but their role in the synaptic plasticity of visual cortex is unclear. In this study, the impact of monocular deprivation (MD) on dynamic changes of isoform-specific protein expression and site 1 phosphorylation of synapsins in visual cortex of the postnatal mice were observed by using the technique of Western blot analysis. The results showed that the total (T-) protein levels of synapsins including the isoform of Ia/b, IIa/b and IIIa were about 21-26% of adult level in visual cortex of mice at postnatal 7 days (P7), and then the T-synapsin Ia/b and IIb could quickly reach adult level at P35. However, the T-synapsin IIa and IIIa increased more slowly (71-74% at P35), and then kept increasing in the visual cortex of mice at P60. Unlike to the changes of T-synapsins, the level of phosphorylated (P-) synapsin Ia/b (not IIa/b and IIIa) at site 1 increased with development to the highest level at P21, and then decreased rapidly to a low level in visual cortex of mice at P35-60. In addition, we found that the levels of P-synapsin Ia/b increased significantly in left visual cortex of P28 and P35 (not P21 and P42) mice with 1-week MD of right eye; and no significant changes of T-synapsins were observed in both left and right sides of visual cortex in P21-42 mice with MD treatment. These results suggested that the isoform-specific protein expression and site-1 phosphorylation of synapsins might play a different role in the synaptic plasticity of visual cortex, and MD delays the dynamic changes of phosphorylated synapsin Ia/b at site-1 in contralateral visual cortex of juvenile mice.", "Synapsin is an evolutionarily conserved presynaptic phosphoprotein. It is encoded by only one gene in the Drosophila genome and is expressed throughout the nervous system. It regulates the balance between reserve and releasable vesicles, is required to maintain transmission upon heavy demand, and is essential for proper memory function at the behavioral level. Task-relevant sensorimotor functions, however, remain intact in the absence of Synapsin. Using an odor-sugar reward associative learning paradigm in larval Drosophila, we show that memory scores in mutants lacking Synapsin (syn(97)) are lower than in wild-type animals only when more salient, higher concentrations of odor or of the sugar reward are used. Furthermore, we show that Synapsin is selectively required for larval short-term memory. Thus, without Synapsin Drosophila larvae can learn and remember, but Synapsin is required to form memories that match in strength to event salience-in particular to a high saliency of odors, of rewards, or the salient recency of an event. We further show that the residual memory scores upon a lack of Synapsin are not further decreased by an additional lack of the Sap47 protein. In combination with mass spectrometry data showing an up-regulated phosphorylation of Synapsin in the larval nervous system upon a lack of Sap47, this is suggestive of a functional interdependence of Synapsin and Sap47.", "Synapsin III (SynIII) is a neuron-specific phosphoprotein that plays a unique role in neuronal development. SynIII is phosphorylated by cAMP-dependent protein kinase (PKA) at a highly conserved phosphorylation site and by cyclin-dependent kinase-5 (Cdk5) at a newly described site. Although SynIII is known to be involved in axon elongation in vitro, the role of its phosphorylation by PKA and Cdk5 in the modulation of this process is unknown. We expressed either wild-type (WT) or phosphorylation-site mutants of SynIII in primary SynIII knock-out (KO) mouse neurons at early stages of in vitro development. Whereas the neurite elongation phenotype of SynIII KO neurons was fully rescued by the expression of WT SynIII, the expression of nonphosphorylatable and pseudo-phosphorylated PKA mutants was ineffective. Also, the nonphosphorylatable Cdk5 mutant was unable to rescue the neurite elongation phenotype of SynIII KO neurons. By contrast, the pseudo-phosphorylated mutant rescued the delay in neuronal maturation and axonal elongation, revealing a Cdk5-dependent regulation of SynIII function. Interestingly, SynIII KO neurons also exhibited decreased survival that was fully rescued by the expression of WT SynIII, but not by its phosphorylation mutants, and was associated with increased activated caspase3 and altered tropomyosin receptor kinase B isoform expression. These results indicate that PKA and Cdk5 phosphorylation is required for the physiological action of SynIII on axon specification and neurite outgrowth and that the expression of a functional SynIII is crucial for cell survival. Significance statement: Synapsin III is an atypical member of the synapsin family of synaptic vesicle-associated phosphoproteins that is precociously expressed in neurons and is downregulated afterward. Although experimental evidence suggests a specific role for Synapsin III in neuronal development, the molecular mechanisms are still largely unknown. We found that Synapsin III plays a central role in early stages of neuronal development involving neuronal survival, polarization, and neuritic growth and that these effects are dependent on phosphorylation by cAMP-dependent protein kinase and cyclin-dependent protein kinase-5. These results explain the recently described neurodevelopmental defects in the migration and orientation of Synapsin III-depleted cortical neurons and support the potential association of Synapsin III with neurodevelopmental disorders such as schizophrenia.", "BACKGROUND AND AIMS: Dietary habits have been associated with cardiovascular disease (CVD) risk factors. This study aimed at evaluating the association of non-predefined dietary patterns with CVD risk profile and C-reactive protein (CRP).METHODS AND RESULTS: We analyzed 7646 healthy subjects from the Moli-sani project, an on-going cross-sectional cohort study of men and women aged >or=35, randomly recruited from a general Italian population. The Italian EPIC food frequency questionnaire was used. Food patterns were generated using principal factor analysis (PFA) and reduced rank regression (RRR). Three dietary patterns were identified by PFA. The \"Olive Oil and Vegetables\" pattern, characterized by high intake of olive oil, vegetables, legumes, soups, fruits and fish, was associated with relatively lower values of glucose, lipids, CRP, blood pressure and individual global CVD risk score. The \"Pasta and Meat\" pattern, characterized by high intake of pasta, tomato sauce, red meat, animal fats and alcohol, was positively associated with glucose, lipids, CRP and CVD risk score. The \"Eggs and Sweets\" pattern, characterized by positive loadings of eggs, processed meat, margarines, butter, sugar and sweets, was associated with high values of CRP. The first RRR pattern was similar to the \"Pasta and Meat\" pattern both in composition and association with CVD risk profile.CONCLUSIONS: In a large healthy Italian population, non-predefined dietary patterns including foods considered to be rather unhealthy, were associated with higher levels of cardiovascular risk factors, CRP and individual global CVD risk, whereas a \"prudent-healthy\" pattern was associated with lower levels.", "INTRODUCTION: Interleukin (IL)-6-type cytokines exert their effects through activation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling cascade. The JAK/STAT pathways play an important role in rheumatoid arthritis, since JAK inhibitors have exhibited dramatic effects on rheumatoid arthritis (RA) in clinical trials. In this study, we investigated the molecular effects of a small molecule JAK inhibitor, CP690,550 on the JAK/STAT signaling pathways and examined the role of JAK kinases in rheumatoid synovitis.METHODS: Fibroblast-like synoviocytes (FLS) were isolated from RA patients and stimulated with recombinant oncostatin M (OSM). The cellular supernatants were analyzed using cytokine protein chips. IL-6 mRNA and protein expression were analyzed by real-time PCR method and ELISA, respectively. Protein phosphorylation of rheumatoid synoviocytes was assessed by Western blot using phospho-specific antibodies.RESULTS: OSM was found to be a potent inducer of IL-6 in FLS. OSM stimulation elicited rapid phosphorylation of STATs suggesting activation of the JAK/STAT pathway in FLS. CP690,550 pretreatment completely abrogated the OSM-induced production of IL-6, as well as OSM-induced JAK/STAT, and activation of mitogen-activated kinases (MAPKs) in FLS.CONCLUSIONS: These findings suggest that IL-6-type cytokines contribute to rheumatoid synovitis through activation of the JAK/STAT pathway in rheumatoid synoviocytes. Inhibition of these pro-inflammatory signaling pathways by CP690,550 could be important in the treatment of RA.", "Ibalizumab (formerly TNX-355) is a humanized monoclonal antibody that binds CD4, the primary receptor for human immunodeficiency virus type 1 (HIV-1), and inhibits the viral entry process. A phase lb multidose study of the safety, pharmacokinetics, and antiviral activity of ibalizumab was conducted with 22 HIV-1-infected patients. Nineteen patients were randomized to receive either 10 mg/kg of body weight weekly (arm A) or a 10-mg/kg loading dose followed by 6 mg/kg every 2 weeks (arm B) intravenously for 9 weeks. Three patients were assigned to receive 25 mg/kg every 2 weeks for five doses (arm C). During the study, the patients remained off other antiretrovirals or continued a stable failing regimen. Treatment with ibalizumab resulted in substantial reductions in HIV-1 RNA levels (0.5 to 1.7 log(10)) in 20 of 22 subjects. In most patients, HIV-1 RNA fell to nadir levels after 1 to 2 weeks of treatment and then returned to baseline despite continued treatment. Baseline viral isolates were susceptible to ibalizumab in vitro, regardless of coreceptor tropism. Emerging resistance to ibalizumab was manifested by reduced maximal percent inhibition in a single-cycle HIV infectivity assay. Resistant isolates remained CD4 dependent and were susceptible to enfuvirtide in vitro. Complete coating of CD4(+) T-cell receptors was correlated with serum ibalizumab concentrations. There was no evidence of CD4(+) T-cell depletion in ibalizumab-treated patients. Ibalizumab was not immunogenic, and no serious drug-related adverse effects occurred. In conclusion, ibalizumab administered either weekly or biweekly was safe and well tolerated and demonstrated antiviral activity. Further studies with ibalizumab in combination with standard antiretroviral treatments are warranted.", "BACKGROUND: The cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation identification is being used with increased frequency to aid in the diagnosis of cystic fibrosis (CF) in those suspected with CF. Aim of this study was to identify diagnostic outcomes when CFTR mutational analysis was used in CF diagnosis. CFTR mutational analysis results were also compared with sweat chloride results.METHODS: This study was done on all patients at our institution who had CFTR mutation analysis over a sevenyear period since August 2006.RESULTS: A total of 315 patients underwent CFTR mutational analysis. Fifty-one (16.2%) patients had two mutations identified. Among them 32 had positive sweat chloride levels (≥60 mmol/L), while seven had borderline sweat chloride levels (40-59 mmol/L). An additional 70 patients (22.3%) had only one mutation identified. Among them eight had positive sweat chloride levels, and 17 had borderline sweat chloride levels. Fifty-five patients (17.5%) without CFTR mutations had either borderline (n=45) or positive (n=10) sweat chloride results. Three patients with a CF phenotype had negative CFTR analysis but elevated sweat chloride levels. In eighty-three patients (26.4%) CFTR mutational analysis was done without corresponding sweat chloride testing.CONCLUSIONS: Although CFTR mutation analysis has improved the diagnostic capability for CF, its use either as the first step or the only test to diagnose CFTR dysfunction should be discouraged and CF diagnostic guidelines need to be followed.", "BACKGROUND: Interest in the antioxidant vitamin E as a possible protective nutrient against coronary disease has intensified with the recognition that oxidized low-density lipoprotein may be involved in atherogenesis.METHODS: In 1980, 87,245 female nurses 34 to 59 years of age who were free of diagnosed cardiovascular disease and cancer completed dietary questionnaires that assessed their consumption of a wide range of nutrients, including vitamin E. During follow-up of up to eight years (679,485 person-years) that was 97 percent complete, we documented 552 cases of major coronary disease (437 nonfatal myocardial infarctions and 115 deaths due to coronary disease).RESULTS: As compared with women in the lowest fifth of the cohort with respect to vitamin E intake, those in the top fifth had a relative risk of major coronary disease of 0.66 (95 percent confidence interval, 0.50 to 0.87) after adjustment for age and smoking. Further adjustment for a variety of other coronary risk factors and nutrients, including other antioxidants, had little effect on the results. Most of the variability in intake and reduction in risk was attributable to vitamin E consumed as supplements. Women who took vitamin E supplements for short periods had little apparent benefit, but those who took them for more than two years had a relative risk of major coronary disease of 0.59 (95 percent confidence interval, 0.38 to 0.91) after adjustment for age, smoking status, risk factors for coronary disease, and use of other antioxidant nutrients (including multi-vitamins).CONCLUSIONS: Although these prospective data do not prove a cause-and-effect relation, they suggest that among middle-aged women the use of vitamin E supplements is associated with a reduced risk of coronary heart disease. Randomized trials of vitamin E in the primary and secondary prevention of coronary disease are being conducted; public policy recommendations about the widespread use of vitamin E should await the results of these trials.", "Adverse life events can induce two kinds of memory with opposite valence, dependent on timing: \"negative\" memories for stimuli preceding them and \"positive\" memories for stimuli experienced at the moment of \"relief.\" Such punishment memory and relief memory are found in insects, rats, and man. For example, fruit flies (Drosophila melanogaster) avoid an odor after odor-shock training (\"forward conditioning\" of the odor), whereas after shock-odor training (\"backward conditioning\" of the odor) they approach it. Do these timing-dependent associative processes share molecular determinants? We focus on the role of Synapsin, a conserved presynaptic phosphoprotein regulating the balance between the reserve pool and the readily releasable pool of synaptic vesicles. We find that a lack of Synapsin leaves task-relevant sensory and motor faculties unaffected. In contrast, both punishment memory and relief memory scores are reduced. These defects reflect a true lessening of associative memory strength, as distortions in nonassociative processing (e.g., susceptibility to handling, adaptation, habituation, sensitization), discrimination ability, and changes in the time course of coincidence detection can be ruled out as alternative explanations. Reductions in punishment- and relief-memory strength are also observed upon an RNAi-mediated knock-down of Synapsin, and are rescued both by acutely restoring Synapsin and by locally restoring it in the mushroom bodies of mutant flies. Thus, both punishment memory and relief memory require the Synapsin protein and in this sense share genetic and molecular determinants. We note that corresponding molecular commonalities between punishment memory and relief memory in humans would constrain pharmacological attempts to selectively interfere with excessive associative punishment memories, e.g., after traumatic experiences." ]
1,753
[ "Purpose Data suggest that DNA damage by poly (ADP-ribose) polymerase inhibition and/or reduced vascular endothelial growth factor signaling by vascular endothelial growth factor receptor inhibition may complement antitumor activity of immune checkpoint blockade. We hypothesize the programmed death-ligand 1 (PD-L1) inhibitor, durvalumab, olaparib, or cediranib combinations are tolerable and active in recurrent women's cancers. Patients and Methods This phase I study tested durvalumab doublets in parallel 3 + 3 dose escalations. Durvalumab was administered at 10 mg/kg every 2 weeks or 1,500 mg every 4 weeks with either olaparib tablets twice daily or cediranib on two schedules. The primary end point was the recommended phase II dose (RP2D). Response rate and pharmacokinetic analysis were secondary end points. Results Between June 2015 and May 2016, 26 women were enrolled. The RP2D was durvalumab 1,500 mg every 4 weeks with olaparib 300 mg twice a day, or cediranib 20 mg, 5 days on/2 days off. No dose-limiting toxicity was recorded with durvalumab plus olaparib. The cediranib intermittent schedule (n = 6) was examined because of recurrent grade 2 and non-dose-limiting toxicity grade 3 and 4 adverse events (AEs) on the daily schedule (n = 8). Treatment-emergent AEs included hypertension (two of eight), diarrhea (two of eight), pulmonary embolism (two of eight), pulmonary hypertension (one of eight), and lymphopenia (one of eight). Durvalumab plus intermittent cediranib grade 3 and 4 AEs were hypertension (one of six) and fatigue (one of six). Exposure to durvalumab increased cediranib area under the curve and maximum plasma concentration on the daily, but not intermittent, schedules. Two partial responses (≥15 months and ≥ 11 months) and eight stable diseases ≥ 4 months (median, 8 months [4 to 14.5 months]) were seen in patients who received durvalumab plus olaparib, yielding an 83% disease control rate. Six partial responses (≥ 5 to ≥ 8 months) and three stable diseases ≥ 4 months (4 to ≥ 8 months) were seen in 12 evaluable patients who received durvalumab plus cediranib, for a 50% response rate and a 75% disease control rate. Response to therapy was independent of PD-L1 expression. Conclusion To our knowledge, this is the first reported anti-PD-L1 plus olaparib or cediranib combination therapy. The RP2Ds of durvalumab plus olaparib and durvalumab plus intermittent cediranib are tolerable and active. Phase II studies with biomarker evaluation are ongoing.", "Defensins are small, multifunctional cationic peptides. They typically contain six conserved cysteines whose three intramolecular disulfides stabilize a largely β-sheet structure. This review of human α-defensins begins by describing their evolution, including their likely relationship to the Big Defensins of invertebrates, and their kinship to the β-defensin peptides of many if not all vertebrates, and the θ-defensins found in certain non-human primates. We provide a short history of the search for leukocyte-derived microbicidal molecules, emphasizing the roles played by luck (good), preconceived notions (mostly bad), and proper timing (essential). The antimicrobial, antiviral, antitoxic, and binding properties of human α-defensins are summarized. The structural features of α-defensins are described extensively and their functional contributions are assessed. The properties of HD6, an enigmatic Paneth cell α-defensin, are contrasted with those of the four myeloid α-defensins (HNP1-4) and of HD5, the other α-defensin of human Paneth cells. The review ends with a decalogue that may assist researchers or students interested in α-defensins and related aspects of neutrophil function.", "The term 'quorum sensing' describes intercellular bacterial communication which regulates bacterial gene expression according to population cell density. Bacteria produce and secrete small molecules, named autoinducers, into the intercellular space. The concentration of these molecules increases as a function of population cell density. Once the concentration of the stimulatory threshold is reached, alteration in gene expression occurs. Gram-positive and Gram-negative bacteria possess different types of quorum sensing systems. Canonical LuxI/R-type/acyl homoserine lactone mediated quorum sensing system is the best studied quorum sensing circuit and is described in Gram-negative bacteria which employ it for inter-species communication mostly. Gram-positive bacteria possess a peptide-mediated quorum sensing system. Bacteria can communicate within their own species (intra-species) but also between species (inter-species), for which they employ an autoinducer-2 quorum sensing system which is called the universal language of the bacteria. Periodontal pathogenic bacteria possess AI-2 quorum sensing systems. It is known that they use it for regulation of biofilm formation, iron uptake, stress response and virulence factor expression. A better understanding of bacterial communication mechanisms will allow the targeting of quorum sensing with quorum sensing inhibitors to prevent and control disease.", "The sotagliflozin molecule exhibits two fundamentally different molecular conformations in form 1 {systematic name: (2S,3R,4R,5S,6R)-2-[4-chloro-3-(4-ethoxybenzyl)phenyl]-6-(methylsulfanyl)tetrahydro-2H-pyran-3,4,5-triol, C21H25ClO5S, (I)} and the monohydrate [C21H25ClO5S·H2O, (II)]. Both crystals display hydrogen-bonded layers formed by intermolecular interactions which involve the three -OH groups of the xyloside fragment of the molecule. The layer architectures of (I) and (II) contain a non-hydrogen-bonded molecule-molecule interaction along the short crystallographic axis (a axis) whose total PIXEL energy exceeds that of each hydrogen-bonded molecule-molecule pair. The hydrogen-bonded layer of (I) has the topology of the 4-connected sql net and that formed by the water and sotagliflozin molecules of (II) has the topology of a 3,7-connected net.", "Burosumab (Crysvita®), a fully human IgG1 monoclonal antibody directed at fibroblast growth factor 23 (FGF23), is indicated for the treatment of X-linked hypophosphatemia (XLH), a condition associated with excessive FGF23 production. It directly addresses the excessive FGF23 activity in patients with XLH by binding to FGF23, and inhibiting its signaling. This leads to increased gastrointestinal phosphate absorption and renal phosphate reabsorption, thereby improving serum phosphate levels, and, ultimately, bone mineralization and the risk of bone disease. In clinical trials, subcutaneous burosumab increased serum phosphorus levels in pediatric and adult patients with XLH, as well as significantly improving the severity of rickets in children, and improving pain, stiffness, physical functioning, and fracture/pseudofracture healing in adults. Burosumab is well tolerated by children and adults with XLH, with most treatment-emergent adverse events being of mild to moderate severity.", "BACKGROUND: Smallpox was declared eradicated in 1980, but variola virus (VARV), which causes smallpox, still exists. There is no known effective treatment for smallpox; therefore, tecovirimat is being developed as an oral smallpox therapy. Because clinical trials in a context of natural disease are not possible, an alternative developmental path to evaluate efficacy and safety was needed.METHODS: We investigated the efficacy of tecovirimat in nonhuman primate (monkeypox) and rabbit (rabbitpox) models in accordance with the Food and Drug Administration (FDA) Animal Efficacy Rule, which was interpreted for smallpox therapeutics by an expert advisory committee. We also conducted a placebo-controlled pharmacokinetic and safety trial involving 449 adult volunteers.RESULTS: The minimum dose of tecovirimat required in order to achieve more than 90% survival in the monkeypox model was 10 mg per kilogram of body weight for 14 days, and a dose of 40 mg per kilogram for 14 days was similarly efficacious in the rabbitpox model. Although the effective dose per kilogram was higher in rabbits, exposure was lower, with a mean steady-state maximum, minimum, and average (mean) concentration (Cmax, Cmin, and Cavg, respectively) of 374, 25, and 138 ng per milliliter, respectively, in rabbits and 1444, 169, and 598 ng per milliliter in nonhuman primates, as well as an area under the concentration-time curve over 24 hours (AUC0-24hr) of 3318 ng×hours per milliliter in rabbits and 14,352 ng×hours per milliliter in nonhuman primates. These findings suggested that the nonhuman primate was the more conservative model for the estimation of the required drug exposure in humans. A dose of 600 mg twice daily for 14 days was selected for testing in humans and provided exposures in excess of those in nonhuman primates (mean steady-state Cmax, Cmin, and Cavg of 2209, 690, and 1270 ng per milliliter and AUC0-24hr of 30,632 ng×hours per milliliter). No pattern of troubling adverse events was observed.CONCLUSIONS: On the basis of its efficacy in two animal models and pharmacokinetic and safety data in humans, tecovirimat is being advanced as a therapy for smallpox in accordance with the FDA Animal Rule. (Funded by the National Institutes of Health and the Biomedical Advanced Research and Development Authority; ClinicalTrials.gov number, NCT02474589 .).", "BACKGROUND: Reactive oxygen species, ionizing radiation, and other free radical generators initiate the conversion of guanine (G) residues in DNA to 8-oxoguanine (OG), which is highly mutagenic as it preferentially mispairs with adenine (A) during replication. Bacteria counter this threat with a multicomponent system that excises the lesion, corrects OG:A mispairs and cleanses the nucleotide precursor pool of dOGTP. Although biochemical evidence has suggested the existence of base-excision DNA repair proteins specific for OG in eukaryotes, little is known about these proteins.RESULTS: Using substrate-mimetic affinity chromatography followed by a mechanism-based covalent trapping procedure, we have isolated a base-excision DNA repair protein from Saccharomyces cerevisiae that processes OG opposite cytosine (OG:C) but acts only weakly on OG:A. A search of the yeast genome database using peptide sequences from the protein identified a gene, OGG1, encoding a predicted 43 kDa (376 amino acid) protein, identical to one identified independently by complementation cloning. Ogg1 has OG:C-specific base-excision DNA repair activity and also intrinsic beta-lyase activity, which proceeds through a Schiff base intermediate. Targeted disruption of the OGG1 gene in yeast revealed a second OG glycosylase/lyase protein, tentatively named Ogg2, which differs from Ogg1 in that it preferentially acts on OG:G.CONCLUSIONS: S. cerevisiae has two OG-specific glycosylase/lyases, which differ significantly in their preference for the base opposite the lesion. We suggest that one of these, Ogg1, is closely related in overall three-dimensional structure to Escherichia coli endonuclease III (endo III), a glycosylase/lyase that acts on fragmented and oxidatively damaged pyrimidines. We have recently shown that AlkA, a monofunctional DNA glycosylase that acts on alkylated bases, is structurally homologous to endo III. We have now identified a shared active site motif amongst these three proteins. Using this motif as a protein database searching tool, we find that it is present in a number of other base-excision DNA repair proteins that process diverse lesions. Thus, we propose the existence of a DNA glycosylase superfamily, members of which possess a common fold yet act upon remarkably diverse lesions, ranging from UV photoadducts to mismatches to alkylated or oxidized bases.", "Human alpha defensins are a class of antimicrobial peptides with additional antiviral activity. Such antimicrobial peptides constitute a major part of mammalian innate immunity. Alpha defensins contain six cysteines, which form three well defined disulfide bridges under oxidizing conditions. Residues C3-C31, C5-C20, and C10-C30 form disulfide pairs in the native structure of the peptide. The major tissue in which HD5 is expressed is the crypt of the small intestine, an anaerobic niche that should allow for substantial pools of both oxidized and (partly) reduced HD5. We used ion mobility coupled to mass spectrometry to track the structural changes in HD5 upon disulfide bond reduction. We found evidence of stepwise unfolding of HD5 with sequential reduction of the three disulfide bonds. Alkylation of free cysteines followed by tandem mass spectrometry of the corresponding partially reduced states revealed a dominant pathway of reductive unfolding. The majority of HD5 unfolds by initial reduction of C5-C20, followed by C10-C30 and C3-C31. We find additional evidence for a minor pathway that starts with reduction of C3-C31, followed by C5-C20 and C10-C30. Our results provide insight into the pathway and conformational landscape of disulfide bond reduction in HD5.", "Venous thromboembolism (VTE) is associated with significant morbidity and mortality. Factors such as the presence of transient risk factors for VTE, risk of bleeding, and location of deep vein thrombosis (DVT) determine the duration of anticoagulation. Extended anticoagulation is offered to patients with unprovoked pulmonary embolism (PE) or proximal DVT and a low risk of bleeding. Anticoagulation for 3 months is advised in patients with provoked DVT or PE, high risk of bleeding, and isolated distal or upper extremity DVT. In patients with unprovoked PE or proximal DVT and a low risk of bleeding, who want to stop anticoagulation after 3 months, further risk stratification is necessary. Clinical scoring system, and thrombophilia testing otherwise not routinely performed, may be considered to measure risk of annual recurrence in such cases. Short-term anticoagulation may be considered in subsegmental PE and superficial vein thrombosis, particularly if patients are at low risk of bleeding and have persistent risk factors for recurrent VTE. In cases of catheter-associated thrombosis, the catheter need not be removed routinely, and the patient may be anticoagulated for 3 months or longer if the catheter is maintained in patients with cancer. Extensive screening for occult cancer in cases of unprovoked VTE is not beneficial. New oral anticoagulants such as apixaban, rivaroxaban, or dabigatran may be preferred to vitamin K antagonists in patients without cancer or renal failure, more so after the development of reversal agents such as idarucizumab and andexanet alfa.", "Since ancient times, numerous health beneficial effects have been attributed to chocolate, closing up its consumption to a therapeutic use. The present study reviews some relevant studies about chocolate (and its bioactive compounds) on some cardiovascular risk factors and stresses the need of future studies. The consumption of cocoa/ chocolate (i) increases plasma antioxidant capacity, (ii) diminishes platelet function and inflammation, and (iii) decreases diastolic and systolic arterial pressures. Data currently available indicate that daily consumption of cocoa-rich chocolate (rich in polyphenols) may at least partially lower cardiovascular disease risk. Further studies are required in order to establish the bioavailability and mechanisms of action of bioactive compounds in chocolate. The study of the interaction of chocolate and its components with candidate genes will also supply necessary information regarding the individuals best suited to benefit from a potential cardiovascular disease treatment with chocolate.", "Tri-methylated H3 lysine 4 (H3K4me3) is associated with transcriptionally active genes, but its function in the transcription process is still unclear. Point mutations in the catalytic domain of ATX1 (ARABIDOPSIS TRITHORAX1), a H3K4 methyltransferase, and RNAi knockdowns of subunits of the AtCOMPASS-like (Arabidopsis Complex Proteins Associated with Set) were used to address this question. We demonstrate that both ATX1 and AtCOMPASS-like are required for high level accumulation of TBP (TATA-binding protein) and Pol II at promoters and that this requirement is independent of the catalytic histone modifying activity. However, the catalytic function is critically required for transcription as H3K4me3 levels determine the efficiency of transcription elongation. The roles of H3K4me3, ATX1, and AtCOMPASS-like may be of a general relevance for transcription of Trithorax-activated eukaryotic genes.", "BACKGROUND AND AIMS: Dietary habits have been associated with cardiovascular disease (CVD) risk factors. This study aimed at evaluating the association of non-predefined dietary patterns with CVD risk profile and C-reactive protein (CRP).METHODS AND RESULTS: We analyzed 7646 healthy subjects from the Moli-sani project, an on-going cross-sectional cohort study of men and women aged >or=35, randomly recruited from a general Italian population. The Italian EPIC food frequency questionnaire was used. Food patterns were generated using principal factor analysis (PFA) and reduced rank regression (RRR). Three dietary patterns were identified by PFA. The \"Olive Oil and Vegetables\" pattern, characterized by high intake of olive oil, vegetables, legumes, soups, fruits and fish, was associated with relatively lower values of glucose, lipids, CRP, blood pressure and individual global CVD risk score. The \"Pasta and Meat\" pattern, characterized by high intake of pasta, tomato sauce, red meat, animal fats and alcohol, was positively associated with glucose, lipids, CRP and CVD risk score. The \"Eggs and Sweets\" pattern, characterized by positive loadings of eggs, processed meat, margarines, butter, sugar and sweets, was associated with high values of CRP. The first RRR pattern was similar to the \"Pasta and Meat\" pattern both in composition and association with CVD risk profile.CONCLUSIONS: In a large healthy Italian population, non-predefined dietary patterns including foods considered to be rather unhealthy, were associated with higher levels of cardiovascular risk factors, CRP and individual global CVD risk, whereas a \"prudent-healthy\" pattern was associated with lower levels.", "Author information:(1)GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Microbiology Unit, Biosanitary Research Institute IBS.Granada, University Hospital Virgen de las Nieves, Granada 18014, Spain; Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, Granada 18016, Spain.(2)Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.(3)GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Centre for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, Almeria 04001, Spain.(4)GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Department of Physiology, University of Granada, Granada 18011, Spain.(5)GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Microbiology Unit, Biosanitary Research Institute IBS.Granada, University Hospital Virgen de las Nieves, Granada 18014, Spain.(6)Microbiology Unit, Biosanitary Research Institute IBS.Granada, University Hospital Virgen de las Nieves, Granada 18014, Spain; Department of Microbiology, University of Granada, Granada 18011, Spain.(7)GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, Granada 18016, Spain.(8)Instituto de Química Física \"Rocasolano\", CSIC, Madrid 28006, Spain.(9)GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Microbiology Unit, Biosanitary Research Institute IBS.Granada, University Hospital Virgen de las Nieves, Granada 18014, Spain. Electronic address: jags@genyo.es.", "Defensins are endogenous peptides with cysteine-rich antimicrobial ability that contribute to host defence against bacterial, fungal and viral infections. There are three subfamilies of defensins in primates: α, β and θ-defensins. α-defensins are most present in neutrophils and Paneth cells; β-defensins are involved in protecting the skin and the mucous membranes of the respiratory, genitourinary and gastrointestinal tracts; and θ-defensins are physically distinguished as the only known fully-cyclic peptides of animal origin, which are first isolated from rhesus macaques. All three kinds of defensins have six conserved cysteines, three intramolecular disulfide bonds, a net positive charge, and β-sheet regions. α and θ-defensins are closely related, comparative amino acid sequences showed that the difference between them is that θ-defensins have an additional stop codon limits the initial defensin domain peptides to 12 residues. Humans, chimpanzees and gorillas do not produce θ-defensin peptides due to a premature stop codon present in the signal sequence of all θ-defensin pseudogenes. By using comprehensive computational searches, here we report the discovery of complete repertoires of the α and θ-defensin gene family in ten primate species. Consistent with previous studies, our phylogenetic analyses showed all primate θ-defensins evident formed one distinct clusters evolved from α-defensins. β-defensins are ancestors of both α and θ-defensins. Human has two copies of DEFA1 and DEFT1P, and two extra DEFA3 and DEFA10P genes compared with gorilla. As different primates inhabit in quite different ecological niches, the production of species-specific α and θ-defensins and these highly evolved θ-defensins in old world monkeys would presumably allow them to better respond to the specific microbial challenges that they face.", "Antimicrobial peptides have been widely identified from amphibian skins except salamanders. A novel antimicrobial peptide (CFBD) was isolated and characterized from skin secretions of the salamander, Cynops fudingensis. The cDNA encoding CFBD precursor was cloned from the skin cDNA library of C. fudingensis. The precursor was composed of three domains: signal peptide of 17 residues, mature peptide of 41 residues and intervening propeptide of 3 residues. There are six cysteines in the sequence of mature CFBD peptide, which possibly form three disulfide-bridges. CFBD showed antimicrobial activities against Staphylococcus aureus, Bacillus subtilis, Candida albicans and Escherichia coli. This peptide could be classified into family of β-defensin based on its sequence similarity with β-defensins from other vertebrates. Evolution analysis indicated that CFBD was close to fish β-defensin. As far as we know, CFBD is the first β-defensin antimicrobial peptide from salamanders.", "TOPIC: The intent of this article is to explore the efficacy of both the literal and concrete externalization aspects within narrative therapy, and the implementation of interactive metaphors as a combined psychotherapeutic approach for decreasing anxiety with people who present with high-functioning autism.PURPOSE: The purpose of this exploratory article is to propose the use of externalizing metaphors as a treatment modality as a potentially useful way to engage clients. Specifically, a three-step process of change is described, which allows for concretizing affective states and experiences, and makes use of visual strengths of people presenting with an autism spectrum disorder.SOURCE: A selective review was conducted of significant works regarding the process of change in narrative therapy, with particular emphasis on metaphors. Works were selected based on their relevance to the current paper and included both published works (searched via Psyc-INFO) and materials from narrative training sessions.CONCLUSIONS: Further research is needed to address the testable hypotheses resulting from the current model. This line of research would not only establish best practices in a population for which there is no broadly accepted treatment paradigm, but would also contribute to the larger fields of abnormal psychology, emotion regulation, and cognitive psychology by further elucidating the complex ways these systems interact." ]
1,762
[ "Brain mitochondria are fundamental to maintaining healthy functional brains, and their dysfunction is involved in age-related neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we conducted a research on how both non-synaptic and synaptic mitochondrial functions are compromised at an early stage of AD-like pathologies and their correlation with putative changes on membranes lipid profile, using 3 month-old nontransgenic and 3xTg-AD mice, a murine model of experimental AD. Bioenergetic dysfunction in 3xTg-AD brains is evidenced by a decrease of brain ATP levels resulting, essentially, from synaptic mitochondria functionality disruption as indicated by declined respiratory control ratio associated with a 50% decreased complex I activity. Lipidomics studies revealed that synaptic bioenergetic deficit of 3xTg-AD brains is accompanied by alterations in the phospholipid composition of synaptic mitochondrial membranes, detected either in phospholipid class distribution or in the phospholipids molecular profile. Globally, diacyl- and lyso-phosphatidylcholine lipids increase while ethanolamine plasmalogens and cardiolipins content drops in relation to nontransgenic background. However, the main lipidomic mark of 3xTg-AD brains is that cardiolipin cluster-organized profile is lost in synaptic mitochondria due to a decline of the most representative molecular species. In contrast to synaptic mitochondria, results support the idea that non-synaptic mitochondria function is preserved at the age of 3 months. Although the genetically construed 3xTg-AD mouse model does not represent the most prevalent form of AD in humans, the present study provides insights into the earliest biochemical events in AD brain, connecting specific lipidomic changes with synaptic bioenergetic deficit that may contribute to the progressive synapses loss and the neurodegenerative process that characterizes AD.", "Senescent and damaged mitochondria undergo selective mitophagic elimination through mechanisms requiring two Parkinson's disease factors, the mitochondrial kinase PINK1 (PTEN-induced putative kinase protein 1; PTEN is phosphatase and tensin homolog) and the cytosolic ubiquitin ligase Parkin. The nature of the PINK-Parkin interaction and the identity of key factors directing Parkin to damaged mitochondria are unknown. We show that the mitochondrial outer membrane guanosine triphosphatase mitofusin (Mfn) 2 mediates Parkin recruitment to damaged mitochondria. Parkin bound to Mfn2 in a PINK1-dependent manner; PINK1 phosphorylated Mfn2 and promoted its Parkin-mediated ubiqitination. Ablation of Mfn2 in mouse cardiac myocytes prevented depolarization-induced translocation of Parkin to the mitochondria and suppressed mitophagy. Accumulation of morphologically and functionally abnormal mitochondria induced respiratory dysfunction in Mfn2-deficient mouse embryonic fibroblasts and cardiomyocytes and in Parkin-deficient Drosophila heart tubes, causing dilated cardiomyopathy. Thus, Mfn2 functions as a mitochondrial receptor for Parkin and is required for quality control of cardiac mitochondria.", "Necrobiosis lipoidica diabeticorum is a rare skin disorder, usually considered a marker for diabetes mellitus. More than half of the patients with necrobiosis lipoidica diabeticorum have diabetes mellitus, but less than one per cent of diabetes mellitus patients have necrobiosis lipoidica diabeticorum. In the diabetes and dermatology literature, we find the position that there is no effect of glucose control on either the appearance of necrobiosis lipoidica diabeticorum or the clinical course of the lesion. We base our challenge to this position on a critical review of the original data. And conclude on the contrary, that necrobiosis lipoidica diabeticorum is usually associated with poor glucose control and that tighter glucose control, as currently practised, might improve or prevent the disorder.", "MOTIVATION: Although peak finding in next-generation sequencing (NGS) datasets has been addressed extensively, there is no consensus on how to analyze and process biological replicates. Furthermore, most peak finders do not focus on accurate determination of enrichment site widths and are not widely applicable to different types of datasets.RESULTS: We developed JAMM (Joint Analysis of NGS replicates via Mixture Model clustering): a peak finder that can integrate information from biological replicates, determine enrichment site widths accurately and resolve neighboring narrow peaks. JAMM is a universal peak finder that is applicable to different types of datasets. We show that JAMM is among the best performing peak finders in terms of site detection accuracy and in terms of accurate determination of enrichment sites widths. In addition, JAMM's replicate integration improves peak spatial resolution, sorting and peak finding accuracy.AVAILABILITY AND IMPLEMENTATION: JAMM is available for free and can run on Linux machines through the command line: http://code.google.com/p/jamm-peak-finder.", "The cytokine storm is an aggressive immune response characterized by the recruitment of inflammatory leukocytes and exaggerated levels of cytokines and chemokines at the site of infection. Here we review evidence that cytokine storm directly contributes to the morbidity and mortality resulting from influenza virus infection and that sphingosine-1-phosphate (S1P) receptor agonists can abort cytokine storms providing significant protection against pathogenic human influenza viral infections. In experiments using murine models and the human pathogenic 2009 influenza viruses, S1P1 receptor agonist alone reduced deaths from influenza virus by over 80% as compared to lesser protection (50%) offered by the antiviral neuraminidase inhibitor oseltamivir. Optimal protection of 96% was achieved by combined therapy with the S1P1 receptor agonist and oseltamivir. The functional mechanism of S1P receptor agonist(s) action and the predominant role played by pulmonary endothelial cells as amplifiers of cytokine storm during influenza infection are described.", "MAPK activity is negatively regulated by members of the dual specificity phosphatase (Dusp) family, which differ in expression, substrate specificity, and subcellular localization. Here, we investigated the function of Dusp16/MKP-7 in the innate immune system. The Dusp16 isoforms A1 and B1 were inducibly expressed in macrophages and dendritic cells following Toll-like receptor stimulation. A gene trap approach was used to generate Dusp16-deficient mice. Homozygous Dusp16tp/tp mice developed without gross abnormalities but died perinatally. Fetal liver cells from Dusp16tp/tp embryos efficiently reconstituted the lymphoid and myeloid compartments with Dusp16-deficient hematopoietic cells. However, GM-CSF-induced proliferation of bone marrow progenitors in vitro was impaired in the absence of Dusp16. In vivo challenge with Escherichia coli LPS triggered higher production of IL-12p40 in mice with a Dusp16-deficient immune system. In vitro, Dusp16-deficient macrophages, but not dendritic cells, selectively overexpressed a subset of TLR-induced genes, including the cytokine IL-12. Dusp16-deficient fibroblasts showed enhanced activation of p38 and JNK MAPKs. In macrophages, pharmacological inhibition and siRNA knockdown of JNK1/2 normalized IL-12p40 secretion. Production of IL-10 and its inhibitory effect on IL-12 production were unaltered in Dusp16tp/tp macrophages. Altogether, the Dusp16 gene trap mouse model identifies an essential role in perinatal survival and reveals selective control of differentiation and cytokine production of myeloid cells by the MAPK phosphatase Dusp16.", "Cardiovascular disease (CVD) is the leading cause of death throughout the world. The increase in new patients every year leads to a demand for the identification of valid and novel prognostic and diagnostic biomarkers for the prevention and treatment of cardiovascular diseases. MicroRNAs (miRNAs) are critical endogenous small noncoding RNAs that negatively modulate gene expression by regulating its translation. miRNAs are implicated in most physiological processes of the heart and in the pathological progression of cardiovascular diseases. miR-214 is a deregulated miRNA in many pathological conditions, and it contributes to the pathogenesis of multiple human disorders, including cancer and cardiovascular diseases. miR-214 has dual functions in different cardiac pathological circumstances. However, it is considered as a promising marker in the prognosis, diagnosis and treatment of cardiovascular diseases. In this review, we discuss the role of miR-214 in various cardiac disease conditions, including ischaemic heart diseases, cardiac hypertrophy, pulmonary arterial hypertension (PAH), angiogenesis following vascular injury and heart failure." ]
1,763
[ "BACKGROUND: Pain is regarded as one of the most common nonmotor symptoms in Parkinson's disease (PD). In particular, musculoskeletal pain has been reported as the most common type of PD-associated pain. Crowned dens syndrome (CDS), related to microcrystalline deposition in the periodontoid process, is the main cause of acute or chronic cervical pain.CASE PRESENTATION: This report describes the case of an 87-year-old woman who had severe bradykinesia, muscle rigidity, gait disturbance and neck pain. Laboratory examination revealed marked elevations of white blood cells (10,100/µl) and C-reactive protein (CRP; 8.63 mg/dl). She was primarily diagnosed with severe and untreated PD, corresponding to Hoehn and Yahr scale score IV, with musculoskeletal pain and urinary tract infection. The patient was treated with antiparkinsonism drugs, antibiotic agents and nonsteroidal anti-inflammatory drugs, but they had only limited effects. Cervical plain computed tomography (CT) scanning detected remarkable crown-like calcification surrounding the odontoid process. Based on CT findings, the patient was diagnosed as having CDS with PD, and was immediately treated with corticosteroid. The severe neck rigidity with pain and the serum CRP level (0.83 mg/dl) of the patient were drastically improved within a week by the additional corticosteroid therapy.CONCLUSION: Severe neck rigidity and bradykinesia in this patient might have strengthened the chondrocalcinosis around the odontoid process. Cervical plain CT scan is necessary and useful for the definitive diagnosis of CDS. CDS should be considered as a differential diagnosis of a possible etiology for musculoskeletal pain related to rigidity and bradykinesia in PD.", "The mRNA for dopamine receptors of type D1, D3, D5, but not type D2, was detected in the thymus of rats starting from day 16 of embryonic development (E16). Dopamine at concentrations of 10-8-10‒6 M inhibited fetus thymocyte response to mitogen, confirming the functionality of the receptors and the possibility of a direct effect of dopamine on the developing thymus. Pharmacological inhibition of catecholamine synthesis in the crucial period of thymus development leads to long-term changes in the T-system immunity due to increased production of natural regulatory T-lymphocytes. The presence and functional activity of dopamine receptors in the fetal thymus indicates its ability to influence the development of the immune system of rats during ontogeny.", "ChromID extended-spectrum beta-lactamase (ESBL) culture medium is routinely used for screening ESBL producers. This medium was tested for detecting carbapenemase-producing Enterobacteriaceae isolates from a collection of reference strains and compared to the CHROMagar KPC culture medium previously evaluated for detecting KPC-producing isolates. Producers of IMP-, VIM-, and KPC-type carbapenemases with high levels of resistance to cephalosporins and to carbapenems were detected at 1x10(1) CFU/ml. The OXA-48 producers were not detected on ChromID ESBL medium unless coexpressing ESBLs, whereas carbapenemase-producing isolates with MICs of <4 microg/ml were not detected on CHROMagar KPC medium.", "Hypertrophic cardiomyopathy is a genetic disease that affects the cardiac sarcomere, resulting in myocardial hypertrophy and disarray. Affected patients have a predisposition for malignant ventricular tachyarrhythmias and, consequently, sudden cardiac death. With the availability of therapeutic measures that prevent sudden death, the identification of high-risk patients is now of greater importance. Clinical risk factors for sudden death (ie, age, syncope, family history of sudden cardiac death, cardiac arrest survivor, nonsustained ventricular tachycardia and abnormal blood pressure response to exercise) have been identified. The clinical electrophysiological study is of limited use for stratifying these patients. More recently, increased attention has been given to the degree of echocardiographically documented left ventricular hypertrophy and prognostically significant genetic mutations. Once a high-risk patient is identified, prophylactic treatment is warranted. For this purpose, amiodarone has been supplanted by the implantable cardioverter-defibrillator. Implantable cardioverter-defibrillator treatment appears to reduce the risk of sudden cardiac death in both primary and secondary prevention settings. Thus, tools are now available to identify and treat high-risk patients with hypertrophic cardiomyopathy.", "OBJECTIVE: To investigate the effects of quercetin on cell morphology and VEGF expression of acute myeloblastic leukemia cells NB4 in vitro.METHODS: The cytomorphology of NB4 cells was assessed by Wright-stain, apoptosis rate by apoptotic marker Annexin V, and VEGF secretion level by ELISA.RESULTS: Typical apoptosis was found in NB4 cells after treatment with quercetin. Apoptotic marker Annexin V analysis showed that the apoptotic rate of NB4 cells was increased after treatment with quercetin. The secretion of VEGF of NB4 cells was significantly decreased after treatment with quercetin.CONCLUSION: Quercetin can induce apoptosis and inhibit secretion of VEGF in NB4 leukemia cells.", "The authors examined the soluble proteins of the brain frontal lobes in the newborn with trisomias of the 13th, 18th, and 21st chromosomes (Down's, Patau's, and Edwards' syndromes). The examinations were carried out on autopsy material (the post-mortem period not exceeding 24 hours) by the method of disc electrophoresis in polyacrylamide gel. The brain tissue was taken from 17 newborn infants with Down's syndrome; 9 infants with Patau's syndrome; and 7 infants with Edwards' syndrome. For the control the brain of 21 newborn infants without defects of the CNS development (the death cause being analogous) was taken. In all the syndromes studied diversely directed but relatively specific shifts were revealed on the proteinograms. It was the albumin section which appeared to be the most sensitive to the chromosomal pathology: in cases of Down's and Patau's syndromes the protein content in it was reduced, whereas in cases of Edwards' syndrome it was increased. In the latter syndrome the relative amount of neuronines S-5 and S-6, and in Patau's syndrome the amount of neuronine S-6 were lowered, this lowering being statistically significantly. In all the trisomias a tendency to a diminution of the zone of the acidic neurospecific cerebral proteins was noted. This is, possibly, due to the lower level of the CNS functional activity in chromosomal pathologies.", "Large amounts of epigenomic data are generated under the umbrella of the International Human Epigenome Consortium, which aims to establish 1000 reference epigenomes within the next few years. These data have the potential to unravel the complexity of epigenomic regulation. However, their effective use is hindered by the lack of flexible and easy-to-use methods for data retrieval. Extracting region sets of interest is a cumbersome task that involves several manual steps: identifying the relevant experiments, downloading the corresponding data files and filtering the region sets of interest. Here we present the DeepBlue Epigenomic Data Server, which streamlines epigenomic data analysis as well as software development. DeepBlue provides a comprehensive programmatic interface for finding, selecting, filtering, summarizing and downloading region sets. It contains data from four major epigenome projects, namely ENCODE, ROADMAP, BLUEPRINT and DEEP. DeepBlue comes with a user manual, examples and a well-documented application programming interface (API). The latter is accessed via the XML-RPC protocol supported by many programming languages. To demonstrate usage of the API and to enable convenient data retrieval for non-programmers, we offer an optional web interface. DeepBlue can be openly accessed at http://deepblue.mpi-inf.mpg.de." ]
1,767
[ "BACKGROUND: Methylsulfonylmethane (MSM) is a commonly used diet supplement believed to decrease the inflammation in joints and fastens recovery in osteoarthritis, gastric mucosal injury, or obesity-related disorders. It was also suggested that MSM might play a beneficial role in cancer treatment.PURPOSE: So far, the MSM might have a potentially beneficial effect in endometrial cancer (EC) treatment.STUDY DESIGN: This study evaluated the effect and usefulness of MSM in combinatory therapy with known drug doxorubicin (DOX).METHODS: The effect of combinational treatment of MSM and DOX on the induction of apoptosis was evaluated in EC cell lines (ISHIKAWA, MFE-296, MFE-280).RESULTS: We observed that MSM itself induces apoptosis in EC cell lines, and pre-treatment with MSM for 24 h increases the sensitivity of EC cells to DOX-induced apoptosis and DNA damage and that effect might be regulated by p42/44 (Erk1/2) MAPK and Akt (protein kinase B).CONCLUSION: These results for the first time show that MSM might act as a sensitizer of EC cells to known drugs, for which EC cells quickly acquire resistance. Graphical abstract.", "Long noncoding RNAs (lncRNAs) are emerging as important regulators of developmental pathways. However, their roles in human cardiac precursor cell (CPC) remain unexplored. To characterize the long noncoding transcriptome during human CPC cardiac differentiation, we profiled the lncRNA transcriptome in CPCs isolated from the human fetal heart and identified 570 lncRNAs that were modulated during cardiac differentiation. Many of these were associated with active cardiac enhancer and super enhancers (SE) with their expression being correlated with proximal cardiac genes. One of the most upregulated lncRNAs was a SE-associated lncRNA that was named CARMEN, (CAR)diac (M)esoderm (E)nhancer-associated (N)oncoding RNA. CARMEN exhibits RNA-dependent enhancing activity and is upstream of the cardiac mesoderm-specifying gene regulatory network. Interestingly, CARMEN interacts with SUZ12 and EZH2, two components of the polycomb repressive complex 2 (PRC2). We demonstrate that CARMEN knockdown inhibits cardiac specification and differentiation in cardiac precursor cells independently of MIR-143 and -145 expression, two microRNAs located proximal to the enhancer sequences. Importantly, CARMEN expression was activated during pathological remodeling in the mouse and human hearts, and was necessary for maintaining cardiac identity in differentiated cardiomyocytes. This study demonstrates therefore that CARMEN is a crucial regulator of cardiac cell differentiation and homeostasis.", "SUMMARY: Protein secondary structure and solvent accessibility predictions are a fundamental intermediate step towards protein structure and function prediction. We present new systems for the ab initio prediction of protein secondary structure and solvent accessibility, Porter 4.0 and PaleAle 4.0. Porter 4.0 predicts secondary structure correctly for 82.2% of residues. PaleAle 4.0's accuracy is 80.0% for prediction in two classes with a 25% accessibility threshold. We show that the increasing training set sizes that come with the continuing growth of the Protein Data Bank keep yielding prediction quality improvements and examine the impact of protein resolution on prediction performances.AVAILABILITY: Porter 4.0 and PaleAle 4.0 are freely available for academic users at http://distillf.ucd.ie/porterpaleale/. Up to 64 kb of input in FASTA format can be processed in a single submission, with predictions now being returned to the user within a single web page and, optionally, a single email.", "In this paper, we report survival estimates for male and female Olympic medal winners and for male and female finalists at the British and U S national tennis championships. We find a consistent longevity advantage of Olympic medal-winning female athletes over Olympic medal-winning male athletes competing separately in the same events since 1900 and for female finalists over male finalists competing separately in the finals of the national tennis championships of Britain and of the United States since the 1880s. This is the case for sample mean comparisons, for Kaplan-Meier survival function estimates, including life expectancy, and for Cox proportional hazard estimates, which show statistically significant lower hazard rates for women with birth year and other variables constant. The female longevity advantage over males is similar in the early period samples (birth years before 1920) and in the full period samples, and is 5-7 years.", "We report the construction of a series of replicating shuttle vectors that consist of a low-copy-number cloning vector for Escherichia coli and functional components of the origin of replication (oriC) of the chromosome of the hyperthermophilic archaeon Pyrococcus furiosus. In the process of identifying the minimum replication origin sequence required for autonomous plasmid replication in P. furiosus, we discovered that several features of the origin predicted by bioinformatic analysis and in vitro binding studies were not essential for stable autonomous plasmid replication. A minimum region required to promote plasmid DNA replication was identified, and plasmids based on this sequence readily transformed P. furiosus. The plasmids replicated autonomously and existed in a single copy. In contrast to shuttle vectors based on a plasmid from the closely related hyperthermophile Pyrococcus abyssi for use in P. furiosus, plasmids based on the P. furiosus chromosomal origin were structurally unchanged after transformation and were stable without selection for more than 100 generations.", "MicroRNAs are important regulators of gene expression in normal development and disease. miR-9 is overexpressed in several cancer forms, including brain tumours, hepatocellular carcinomas, breast cancer and Hodgkin lymphoma (HL). Here we demonstrated a relevance for miR-9 in HL pathogenesis and identified two new targets Dicer1 and HuR. HL is characterized by a massive infiltration of immune cells and fibroblasts in the tumour, whereas malignant cells represent only 1% of the tumour mass. These infiltrates provide important survival and growth signals to the tumour cells, and several lines of evidence indicate that they are essential for the persistence of HL. We show that inhibition of miR-9 leads to derepression of DICER and HuR, which in turn results in a decrease in cytokine production by HL cells followed by an impaired ability to attract normal inflammatory cells. Finally, inhibition of miR-9 by a systemically delivered antimiR-9 in a xenograft model of HL increases the protein levels of HuR and DICER1 and results in decreased tumour outgrowth, confirming that miR-9 actively participates in HL pathogenesis and points to miR-9 as a potential therapeutic target.", "To facilitate studies of neural network architecture and formation, we generated three Drosophila melanogaster variants of the mouse Brainbow-2 system, called Flybow. Sequences encoding different membrane-tethered fluorescent proteins were arranged in pairs within cassettes flanked by recombination sites. Flybow combines the Gal4-upstream activating sequence binary system to regulate transgene expression and an inducible modified Flp-FRT system to drive inversions and excisions of cassettes. This provides spatial and temporal control over the stochastic expression of one of two or four reporters within one sample. Using the visual system, the embryonic nervous system and the wing imaginal disc, we show that Flybow in conjunction with specific Gal4 drivers can be used to visualize cell morphology with high resolution. Finally, we demonstrate that this labeling approach is compatible with available Flp-FRT-based techniques, such as mosaic analysis with a repressible cell marker; this could further support the genetic analysis of neural circuit assembly and function." ]
1,772
[ "Autosomal dominant osteogenesis imperfecta is caused by mutations in the COL1A2 and COL1A1 genes of type I collagen. In a family with OI type IV genetically linked to the COL1A2 gene, we attempted prenatal diagnosis in a pregnancy at risk by genotyping the DNA of the fetus for a COL1A2 gene associated RFLP. Our results showed that the fetus inherited the normal COL1A2 allele from her affected parent. Linkage analysis can thus be used in the prenatal diagnosis of dominantly inherited osteogenesis imperfecta.", "Expression of the RNA replicase domain of tobacco mosaic virus (TMV) and certain protein-coding regions in other plant viruses, is mediated by translational readthrough of a leaky UAG stop codon. It has been proposed that normal tobacco tyrosine tRNAs are able to read the UAG codon of TMV by non-conventional base-pairing but recent findings that stop codons can also be bypassed as a result of extended translocational shifts (tRNA hopping) have encouraged a re-examination. In light of the alternatives, we investigated the sequences flanking the leaky UAG codon using an in vivo assay in which bypass of the stop codon is coupled to the transient expression of beta-glucuronidase (GUS) reporter genes in tobacco protoplasts. Analysis of GUS constructions in which codons flanking the stop were altered allowed definition of the minimal sequence required for read through as UAG-CAA-UUA. The effects of all possible single-base mutations in the codons flanking the stop indicated that 3' contexts of the form CAR-YYA confer leakiness and that the 3' context permits read through of UAA and UGA stop codons as well as UAG. Our studies demonstrate a major role for the 3' context in the read through process and do not support a model in which teh UAG is bypassed exclusively as a result of anticodon-codon interactions. No evidence for tRNA hopping was obtained. The 3' context apparently represents a unique sequence element that affects translation termination.", "Traumatic brain injury (TBI) provokes secondary pathological mechanisms, including ischemic and inflammatory processes. The new research in sphingosine 1-phosphate (S1P) receptor modulators has opened the door for an effective mechanism of reducing central nervous system (CNS) inflammatory lesion activity. Thus, the aim of this study was to characterize the immunomodulatory effect of the functional S1PR1 antagonist, siponimod, in phase III clinical trials for autoimmune disorders and of the competitive sphingosine 1-phosphate receptor subtype 1 (S1PR1) antagonist, TASP0277308, in pre-clinical development in an in vivo model of TBI in mice. We used the well-characterized model of TBI caused by controlled cortical impact. Mice were injected intraperitoneally with siponimod or TASP0277308 (1 mg/kg) at 1 and 4 h post-trauma. Our results demonstrated that these agents exerted significant beneficial effects on TBI pre-clinical scores in term of anti-inflammatory and immunomodulatory effects, in particular, attenuation of astrocytes and microglia activation, cytokines release, and rescue of the reduction of adhesion molecules (i.e., occludin and zonula occludens-1). Moreover, these compounds were able to decrease T-cell activation visible by reduction of CD4+ and CD8+, reduce the lesioned area (measured by 2,3,5-triphenyltetrazolium chloride staining), and to preserve tissue architecture, microtubule stability, and neural plasticity. Moreover, our findings provide pre-clinical evidence for the use of low-dose oral S1PR1 antagonists as neuroprotective strategies for TBI and broaden our understanding of the underlying S1PR1-driven neuroinflammatory processes in the pathophysiology of TBI. Altogether, our results showed that blocking the S1PR1 axis is an effective therapeutic strategy to mitigate neuropathological effects engaged in the CNS by TBI.", "Collaborators: Worley KC, Warren WC, Rogers J, Locke D, Muzny DM, Mardis ER, Weinstock GM, Tardif SD, Aagaard KM, Archidiacono N, Rayan NA, Batzer MA, Beal K, Brejova B, Capozzi O, Capuano SB, Casola C, Chandrabose MM, Cree A, Dao MD, de Jong PJ, Del Rosario RC, Delehaunty KD, Dinh HH, Eichler EE, Fitzgerald S, Flicek P, Fontenot CC, Fowler RG, Fronick C, Fulton LA, Fulton RS, Gabisi RA, Gerlach D, Graves TA, Gunaratne PH, Hahn MW, Haig D, Han Y, Harris RA, Herrero J, Hillier LW, Hubley R, Hughes JF, Hume J, Jhangiani SN, Jorde LB, Joshi V, Karakor E, Konkel MK, Kosiol C, Kovar CL, Kriventseva EV, Lee SL, Lewis LR, Liu YS, Lopez J, Lopez-Otin C, Lorente-Galdos B, Mansfield KG, Marques-Bonet T, Minx P, Misceo D, Moncrieff JS, Morgan MB, Nazareth LV, Newsham I, Nguyen NB, Okwuonu GO, Prabhakar S, Perales L, Pu LL, Puente XS, Quesada V, Ranck MC, Raney BJ, Raveendran M, Deiros DR, Rocchi M, Rodriguez D, Ross C, Ruffier M, Ruiz SJ, Sajjadian S, Santibanez J, Schrider DR, Searle S, Skaletsky H, Soibam B, Smit AF, Tennakoon JB, Tomaska L, Ullmer B, Vejnar CE, Ventura M, Vilella AJ, Vinar T, Vogel JH, Walker JA, Wang Q, Warner CM, Wildman DE, Witherspoon DJ, Wright RA, Wu Y, Xiao W, Xing J, Zdobnov EM, Zhu B, Gibbs RA, Wilson RK.", "A novel amperometric magnetoimmunosensor using an indirect competitive format is developed for the sensitive detection of the amino-terminal pro-B-type natriuretic peptide (NT-proBNP). The immunosensor design involves the covalent immobilization of the antigen onto carboxylic-modified magnetic beads (HOOC-MBs) activated with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS), and further incubation in a mixture solution containing variable concentrations of the antigen and a fixed concentration of an HRP-labeled detection antibody. Accordingly, the target NT-proBNP in the sample and that immobilized on the MBs compete for binding to a fixed amount of the specific HRP-labeled secondary antibody. The immunoconjugate-bearing MBs are captured by a magnet placed under the surface of a disposable gold screen-printed electrode (Au/SPE). The amperometric responses measured at -0.10 V (vs. a Ag pseudo-reference electrode), upon addition of 3,3',5,5'-tetramethylbenzidine (TMB) as electron transfer mediator and H2O2 as the enzyme substrate, are used to monitor the affinity reaction. The developed magnetoimmunosensor provides attractive analytical characteristics in 10-times diluted human serum samples, exhibiting a linear range of clinical usefulness (0.12-42.9 ng mL(-1)) and a detection limit of 0.02 ng mL(-1), which can be used in clinical diagnosis of chronic heart failure in the elderly and for classifying patients at risk of death after heart transplantation. The magnetoimmunosensor was successfully applied to the analysis of spiked human serum samples.", "Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare arrhythmogenic disorder characterized by syncopal events and sudden cardiac death at a young age during physical stress or emotion, in the absence of structural heart disease. We report the first nonsense mutations in the cardiac calsequestrin gene, CASQ2, in three CPVT families. The three mutations, a nonsense R33X, a splicing 532+1 G>A, and a 1-bp deletion, 62delA, are thought to induce premature stop codons. Two patients who experienced syncopes before the age of 7 years were homozygous carriers, suggesting a complete absence of calsequestrin 2. One patient was heterozygous for the stop codon and experienced syncopes from the age of 11 years. Despite the different mutations, there is little phenotypic variation of CPVT for the CASQ2 mutations. Of the 16 heterozygous carriers of these various mutations, 14 were devoid of clinical symptoms or ECG anomalies, whereas 2 of them had ventricular arrhythmias at ECG on exercise tests. In line with this, the diagnosis of the probands was difficult because of the absence of a positive family history. In conclusion, these additional three CASQ2 CPVT families suggest that CASQ2 mutations are more common than previously thought and produce a severe form of CPVT. The full text of this article is available at http://www.circresaha.org.", "The human epidermal growth factor receptor (HER) family of receptor tyrosine kinase has been extensively studied in breast cancer; however, systematic studies of EGFR gene amplification and protein overexpression in breast carcinoma are lacking. We studied EGFR gene amplification by chromogenic in situ hybridization (CISH) and protein expression by immunohistochemistry in 175 breast carcinomas, using tissue microarrays. Tumors with >5 EGFR gene copies per nucleus were interpreted as positive for gene amplification. Protein overexpression was scored according to standardized criteria originally developed for HER-2. EGFR mRNA levels, as measured by Affymetrix U133 Gene Chip microarray hybridization, were available in 63 of these tumors. HER-2 gene amplification by fluorescence in situ hybridization (FISH) and protein overexpression by immunohistochemistry were also studied. EGFR gene amplification (copy number range: 7-18; median: 12) was detected in 11/175 (6%) tumors, and protein overexpression was found in 13/175 (7%) tumors. Of the 11 tumors, 10 (91%) with gene amplification also showed EGFR protein overexpression (2+ or 3+ by immunohistochemistry). The EGFR mRNA level, based on Affymetrix U133 chip hybridization data, was increased relative to other breast cancer samples in three of the five tumors showing gene amplification. Exons 19 and 21 of EGFR, the sites of hotspot mutations in lung adenocarcinomas, were screened in the 11 EGFR-amplified tumors but no mutations were found. Three of these 11 tumors also showed HER-2 overexpression and gene amplification. Approximately 6% of breast carcinomas show EGFR amplification with EGFR protein overexpression and may be candidates for trials of EGFR-targeted antibodies or small inhibitory molecules." ]
1,775
[ "The eukaryotic genome is replicated according to a specific spatio-temporal programme. However, little is known about both its molecular control and biological significance. Here, we identify mouse Rif1 as a key player in the regulation of DNA replication timing. We show that Rif1 deficiency in primary cells results in an unprecedented global alteration of the temporal order of replication. This effect takes place already in the first S-phase after Rif1 deletion and is neither accompanied by alterations in the transcriptional landscape nor by major changes in the biochemical identity of constitutive heterochromatin. In addition, Rif1 deficiency leads to both defective G1/S transition and chromatin re-organization after DNA replication. Together, these data offer a novel insight into the global regulation and biological significance of the replication-timing programme in mammalian cells.", "A current question in the high-order organization of chromatin is whether topologically associating domains (TADs) are distinct from other hierarchical chromatin domains. However, due to the unclear TAD definition in tradition, the structural and functional uniqueness of TAD is not well studied. In this work, we refined TAD definition by further constraining TADs to the optimal separation on global intra-chromosomal interactions. Inspired by this constraint, we developed a novel method, called HiTAD, to detect hierarchical TADs from Hi-C chromatin interactions. HiTAD performs well in domain sensitivity, replicate reproducibility and inter cell-type conservation. With a novel domain-based alignment proposed by us, we defined several types of hierarchical TAD changes which were not systematically studied previously, and subsequently used them to reveal that TADs and sub-TADs differed statistically in correlating chromosomal compartment, replication timing and gene transcription. Finally, our work also has the implication that the refinement of TAD definition could be achieved by only utilizing chromatin interactions, at least in part. HiTAD is freely available online.", "OBJECTIVE: This study aimed to assess the efficacy and safety of flibanserin, a serotonin receptor 1A agonist/serotonin receptor 2A antagonist, in postmenopausal women with hypoactive sexual desire disorder (HSDD).METHODS: Naturally postmenopausal women with HSDD received flibanserin 100 mg once daily at bedtime (n = 468) or placebo (n = 481) for 24 weeks. Co-primary endpoints were changes from baseline to week 24 in the number of satisfying sexual events (SSEs) across 28 days and in the Female Sexual Function Index (FSFI) desire domain score. Secondary endpoints included change from baseline in Female Sexual Distress Scale-Revised (FSDS-R) Item 13 score (which assesses distress due to low sexual desire), FSDS-R total score, and FSFI total score. The Patient Benefit Evaluation was asked on treatment discontinuation.RESULTS: There were significant improvements with flibanserin versus placebo in the mean (SE) changes in the number of SSEs (1.0 [0.1] vs 0.6 [0.1]), FSFI desire domain score (0.7 [0.1] vs 0.4 [0.1]), FSDS-R Item 13 score (-0.8 [0.1] vs -0.6 [0.1]), FSDS-R total score (-8.3 [0.6] vs -6.3 [0.6]), and FSFI total score (4.2 [0.4] vs 2.7 [0.4]; all P < 0.01). More women on flibanserin (37.6%) than women on placebo (28.0%) reported experiencing meaningful benefits from the study medication on treatment discontinuation. The most frequent adverse events associated with flibanserin were dizziness, somnolence, nausea, and headache.CONCLUSIONS: In naturally postmenopausal women with HSDD, flibanserin, compared with placebo, has been associated with improvement in sexual desire, improvement in the number of SSEs, and reduced distress associated with low sexual desire, and is well tolerated.", "MOTIVATION: Many important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion are mediated by membrane proteins. Unfortunately, as these proteins are not water soluble, it is extremely hard to experimentally determine their structure. Therefore, improved methods for predicting the structure of these proteins are vital in biological research. In order to improve transmembrane topology prediction, we evaluate the combined use of both integrated signal peptide prediction and evolutionary information in a single algorithm.RESULTS: A new method (MEMSAT3) for predicting transmembrane protein topology from sequence profiles is described and benchmarked with full cross-validation on a standard data set of 184 transmembrane proteins. The method is found to predict both the correct topology and the locations of transmembrane segments for 80% of the test set. This compares with accuracies of 62-72% for other popular methods on the same benchmark. By using a second neural network specifically to discriminate transmembrane from globular proteins, a very low overall false positive rate (0.5%) can also be achieved in detecting transmembrane proteins.AVAILABILITY: An implementation of the described method is available both as a web server (http://www.psipred.net) and as downloadable source code from http://bioinf.cs.ucl.ac.uk/memsat. Both the server and source code files are free to non-commercial users. Benchmark and training data are also available from http://bioinf.cs.ucl.ac.uk/memsat.", "OBJECTIVE: To evaluate the clinical effectiveness and safety of intubation-surfactant-extubation (INSURE) method in the treatment of neonatal respiratory distress syndrome (NRDS), and to investigate its possible mechanisms.METHODS: Sixty-four premature infants, who were admitted for NRDS and treated with pulmonary surfactant from March 2010 to March 2012, were enrolled in the study. They were randomly divided into INSURE (n=32) and conventional mechanical ventilation (CMV) groups (n=32). The two groups were compared in terms of respiratory function, ventilation time, duration of oxygen therapy, complications, and prognosis, as well as expression of interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α) and serum ferritin (SF).RESULTS: Oxygenation index in the INSURE group was significantly higher than in the CMV group at 48 hours after treatment (P<0.05). Compared with the CMV group, the INSURE group showed significantly lower incidence of ventilator-associated pneumonia (VAP) and significantly shorter duration of oxygen therapy (P<0.05 for all comparisons). There were no significant differences in ventilation time and the incidence of pneumothorax, intracranial hemorrhage, necrotizing enteroolitis, bronchopulmonary dysplasia, and pneumorrhagia between the two groups (P>0.05). The levels of TNF-α and SF were significantly lower in the INSURE group than in the CMV group at 6, 24, 48, and 72 hours after treatment (P<0.05), while the level of IL-10 was significantly higher in the INSURE group than in the CMV group (P<0.05).CONCLUSIONS: INSURE method can improve the oxygenation function of the lung, decrease the incidence of VAP and shorten the duration of oxygen therapy in neonates with NRDS, which is probably due to the fact that this method can reduce the production of TNF-α and SF and inhibit the decrease of IL-10.", "The stability of mRNAs is an important point in the regulation of gene expression in eukaryotes. The mRNA turnover pathways have been identified in yeast and mammals. However, mRNA turnover pathways in trypanosomes have not been widely studied. Deadenylation is the first step in the major mRNA turnover pathways of yeast and mammals. To better understand mRNA degradation processes in these organisms, we have developed an in vitro mRNA turnover system that is functional for deadenylation. In this system, addition of poly(A) homopolymer activates the deadenylation of poly(A) tails. The trypanosomal deadenylase activity is a 3'-->5' exonuclease specific for adenylate residues, generates 5'-AMP as a product, is magnesium dependent, and is inhibited by neomycin B sulfate. These characteristics suggest similarity with other eukaryotic deadenylases. Furthermore, this activity is cap independent, indicating a potential difference between the trypanosomal activity and PARN, but suggesting similarity to Ccr4p/Pop2p activities. Extracts immunodepleted of Pab1p required the addition of poly(A) competition to activate deadenylation. Trypanosomal Pab1p functions as an inhibitor of the activity under in vitro conditions. Pab1p appears to be one of several mRNA stability proteins in trypanosomal extracts.", "Circular RNAs are found in a wide range of organisms and it has been proposed that they perform disparate functions. However, how RNA circularization is connected to alternative splicing remains largely unexplored. Here, we stimulated primary human endothelial cells with tumor necrosis factor α or tumor growth factor β, purified RNA, generated >2.4 billion RNA-seq reads, and used a custom pipeline to characterize circular RNAs derived from coding exons. We find that circularization of exons is widespread and correlates with exon skipping, a feature that adds considerably to the regulatory complexity of the human transcriptome." ]
1,779
[ "BACKGROUND: Hepatitis C virus (HCV) NS5A replication complex inhibitors (RCIs) have been shown to exhibit picomolar antiviral activity against genotype 1 (GT1) in vitro. This has translated into rapid and robust declines in HCV RNA in GT1 patients. Less is known about the susceptibility of other genotypes such as GT3 to inhibition by NS5A RCIs.OBJECTIVES: To detect and phenotype naturally occurring HCVGT3 NS5A polymorphisms against two NS5A RCIs (daclatasvir [DCV] and GS-5885) currently in clinical development.STUDY DESIGN: The NS5A region from 96 HCV GT3 treatment-naive patients spanning North America, Europe and Australia was determined.RESULTS: Phylogenetic analysis revealed a broad distribution with no significant geographic clustering. GT1 DCV resistance-associated variants (RAVs) were observed in GT3 subjects; variants (and their frequencies) included 28M/V (1%), 30A/K/S/T/V (10%), 31L/M (1%), E92A (1%) and Y93H (8.3%). A consensus sequence was used to generate a JFH1/3a-NS5A hybrid replicon and employed to assess susceptibility to NS5A RCIs. Against JFH1/3a-NS5A, DCV was more potent (EC(50) = 0.52 nM) than GS-5885 (EC(50) = 141 nM). DCV sensitivity was increased against JFH1/3a-NS5A-M28V (EC50 = 0.006 nM), A30V (EC(50) = 0.012 nM), and E92A (EC(50) = 0.004 nM) while the NS5A-A30K and -Y93H variants exhibited reduced sensitivity to DCV (EC50 values of 23 nM and 1120 nM, respectively) and to GS-5885 (EC50 values of 1770 nM and 4300 nM, respectively).CONCLUSIONS: Substitutions conferring resistance to NS5A RCIs pre-existed in treatment-naive patients infected with HCV GT3. The effectiveness of these NS5A RCIs to exert efficacy in the clinic may depend on which inhibitor is used in combination with other antivirals.", "Deregulation of imprinted genes has been observed in a number of human diseases such as Beckwith-Wiedemann syndrome, Prader-Willi/Angelman syndromes and cancer. Imprinting diseases are characterised by complex patterns of mutations and associated phenotypes affecting pre- and postnatal growth and neurological functions. Regulation of imprinted gene expression is mediated by allele-specific epigenetic modifications of DNA and chromatin. These modifications preferentially affect central regulatory elements that control in cis over long distances allele-specific expression of several neighbouring genes. Investigations of imprinting diseases have a strong impact on biomedical research and provide interesting models for function and mechanisms of epigenetic gene control.", "Approximately 80% of breast cancers are estrogen receptor alpha (ER-α) positive, and although women typically initially respond well to antihormonal therapies such as tamoxifen and aromatase inhibitors, resistance often emerges. Although a variety of resistance mechanism may be at play in this state, there is evidence that in many cases the ER still plays a central role, including mutations in the ER leading to constitutively active receptor. Fulvestrant is a steroid-based, selective estrogen receptor degrader (SERD) that both antagonizes and degrades ER-α and is active in patients who have progressed on antihormonal agents. However, fulvestrant suffers from poor pharmaceutical properties and must be administered by intramuscular injections that limit the total amount of drug that can be administered and hence lead to the potential for incomplete receptor blockade. We describe the identification and characterization of a series of small-molecule, orally bioavailable SERDs which are potent antagonists and degraders of ER-α and in which the ER-α degrading properties were prospectively optimized. The lead compound 11l (GDC-0810 or ARN-810) demonstrates robust activity in models of tamoxifen-sensitive and tamoxifen-resistant breast cancer, and is currently in clinical trials in women with locally advanced or metastatic estrogen receptor-positive breast cancer.", "Agents that inhibit estrogen production, such as aromatase inhibitors or those that directly block estrogen receptor (ER) activity, such as selective estrogen receptor modulators and selective estrogen receptor degraders, are routinely used in the treatment of ER-positive breast cancers. However, although initial treatment with these agents is often successful, many women eventually relapse with drug-resistant breast cancers. To overcome some of the challenges associated with current endocrine therapies and to combat the development of resistance, there is a need for more durable and more effective ER-targeted therapies. Here we describe and characterize a novel, orally bioavailable small-molecule selective estrogen receptor degrader, RAD1901, and evaluate its therapeutic potential for the treatment of breast cancer. RAD1901 selectively binds to and degrades the ER and is a potent antagonist of ER-positive breast cancer cell proliferation. Importantly, RAD1901 produced a robust and profound inhibition of tumor growth in MCF-7 xenograft models. In an intracranial MCF-7 model, RAD1901-treated animals survived longer than those treated with either control or fulvestrant, suggesting the potential benefit of RAD1901 in the treatment of ER-positive breast cancer that has metastasized to the brain. Finally, RAD1901 preserved ovariectomy-induced bone loss and prevented the uterotropic effects of E2, suggesting that it may act selectively as an agonist in bone but as an antagonist in breast and uterine tissues. RAD1901 is currently under clinical study in postmenopausal women with ER-positive advanced breast cancer.", "PURPOSE: Estrogen receptor (ER) targeting is key in management of receptor-positive breast cancer. Currently, there are no methods to optimize anti-ER therapy dosing. This study assesses the use of 16α-(18)F-fluoroestradiol ((18)F-FES) PET for fulvestrant dose optimization in a preclinical ER(+) breast cancer model.EXPERIMENTAL DESIGN: In vitro, (18)F-FES retention was compared with ERα protein expression (ELISA) and ESR1 mRNA transcription (qPCR) in MCF7 cells (ER(+)) after treatment with different fulvestrant doses. MCF7 xenografts were grown in ovariectomized nude mice and assigned to vehicle, low- (0.05 mg), medium- (0.5 mg), or high-dose (5 mg) fulvestrant treatment groups (5-7 per group). Two and 3 days after fulvestrant treatment, PET/CT was performed using (18)F-FES and (18)F-FDG, respectively. ER expression was assessed by immunohistochemistry, ELISA, and qPCR on xenografts. Tumor proliferation was assessed using Ki67 immunohistochemistry.RESULTS: In vitro, we observed a parallel graded reduction in (18)F-FES uptake and ER expression with increased fulvestrant doses, despite enhancement of ER mRNA transcription. In xenografts, ER expression significantly decreased with increased fulvestrant dose, despite similar mRNA expression and Ki67 staining among the treatment groups. We observed a significant dose-dependent reduction of (18)F-FES PET mean standardized uptake value (SUV(mean)) with fulvestrant treatment but no significant difference among the treatment groups in (18)F-FDG PET SUV(mean).CONCLUSIONS: We demonstrated that (18)F-FES uptake mirrors the dose-dependent changes in functional ER expression with fulvestrant resulting in ER degradation and/or blockade; these precede changes in tumor metabolism and proliferation. Quantitative (18)F-FES PET may be useful for tracking early efficacy of ER blockade/degradation and guiding ER-targeted therapy dosing in patients with breast cancer.", "The family Flaviviridae contains three genera of positive-strand RNA viruses, namely, Flavivirus, Hepacivirus (e.g., hepatitis C virus [HCV]), and Pestivirus. Pestiviruses, like bovine viral diarrhea virus (BVDV), bear a striking degree of similarity to HCV concerning polyprotein organization, processing, and function. Along this line, in both systems, release of nonstructural protein 3 (NS3) is essential for viral RNA replication. However, both viruses differ significantly with respect to processing efficiency at the NS2/3 cleavage site and abundance as well as functional relevance of uncleaved NS2-3. In BVDV-infected cells, significant amounts of NS2-3 accumulate at late time points postinfection and play an essential but ill-defined role in the production of infectious virions. In contrast, complete cleavage of the HCV NS2-3 counterpart has been reported, and unprocessed NS2-3 is not required throughout the life cycle of HCV, at least in cell culture. Here we describe the selection and characterization of the first pestiviral genome with the capability to complete productive infection in the absence of uncleaved NS2-3. Despite the insertion of a ubiquitin gene or an internal ribosomal entry site between the NS2 and NS3 coding sequences, the selected chimeric BVDV-1 genomes gave rise to infectious virus progeny. In this context, a mutation in the N-terminal third of NS2 was identified as a critical determinant for efficient production of infectious virions in the absence of uncleaved NS2-3. These findings challenge a previously accepted dogma for pestivirus replication and provide new implications for virion morphogenesis of pestiviruses and HCV.", "Voltage-dependent anion-selective channel (VDAC) is a beta-barrel protein in the outer mitochondrial membrane that is necessary for metabolite exchange with the cytosol and is proposed to be involved in certain forms of apoptosis. We studied the biogenesis of VDAC in human mitochondria by depleting the components of the mitochondrial import machinery by using RNA interference. Here, we show the importance of the translocase of the outer mitochondrial membrane (TOM) complex in the import of the VDAC precursor. The deletion of Sam50, the central component of the sorting and assembly machinery (SAM), led to both a strong defect in the assembly of VDAC and a reduction in the steady-state level of VDAC. Metaxin 2-depleted mitochondria had reduced levels of metaxin 1 and were deficient in import and assembly of VDAC and Tom40, but not of three matrix-targeted precursors. We also observed a reduction in the levels of metaxin 1 and metaxin 2 in Sam50-depleted mitochondria, implying a connection between these three proteins, although Sam50 and metaxins seemed to be in different complexes. We conclude that the pathway of VDAC biogenesis in human mitochondria involves the TOM complex, Sam50 and metaxins, and that it is evolutionarily conserved.", "MicroRNAs (miRNAs) are small noncoding RNA molecules of 20-24 nucleotides that regulate gene expression. In animals, miRNAs form imperfect interactions with sequences in the 3' Untranslated region (3'UTR) of mRNAs, causing translational inhibition and mRNA decay. In contrast, plant miRNAs mostly associate with protein coding regions. Here we show that human miR-148 represses DNA methyltransferase 3b (Dnmt3b) gene expression through a region in its coding sequence. This region is evolutionary conserved and present in the Dnmt3b splice variants Dnmt3b1, Dnmt3b2, and Dnmt3b4, but not in the abundantly expressed Dnmt3b3. Whereas overexpression of miR-148 results in decreased DNMT3b1 expression, short-hairpin RNA-mediated miR-148 repression leads to an increase in DNMT3b1 expression. Interestingly, mutating the putative miR-148 target site in Dnmt3b1 abolishes regulation by miR-148. Moreover, endogenous Dnmt3b3 mRNA, which lacks the putative miR-148 target site, is resistant to miR-148-mediated regulation. Thus, our results demonstrate that the coding sequence of Dnmt3b mediates regulation by the miR-148 family. More generally, we provide evidence that coding regions of human genes can be targeted by miRNAs, and that such a mechanism might play a role in determining the relative abundance of different splice variants.", "Although clinical data suggest remarkable promise for targeting programmed cell death protein-1 (PD-1) and ligand (PD-L1) signaling in non-small-cell lung cancer (NSCLC), it is still largely undetermined which subtype of patients will be responsive to checkpoint blockade. In the present study, we explored whether PD-L1 was regulated by mutant Kirsten rat sarcoma viral oncogene homolog (KRAS), which is frequently mutated in NSCLC and results in poor prognosis and low survival rates. We verified that PD-L1 levels were dramatically increased in KRAS mutant cell lines, particularly in NCI-H441 cells with KRAS G12V mutation. Overexpression of KRAS G12V remarkably elevated PD-L1 messenger RNA and protein levels, while suppression of KRAS G12V led to decreased PD-L1 levels in NCI-H441 cells. Consistently, higher levels of PD-L1 were observed in KRAS-mutated tissues as well as tumor tissues-derived CD4+ and CD8+ T cells using a tumor xenograft in B-NDG mice. Mechanically, both in vitro and in vivo assays found that KRAS G12V upregulated PD-L1 via regulating the progression of epithelial-to-mesenchymal transition (EMT). Moreover, pembrolizumab activated the antitumor activity and decreased tumor growth with KRAS G12V mutated NSCLC. This study demonstrates that KRAS G12V mutation could induce PD-L1 expression and promote immune escape via transforming growth factor-β/EMT signaling pathway in KRAS-mutant NSCLC, providing a potential therapeutic approach for NSCLC harboring KRAS mutations.", "The G protein-coupled receptor kinases (GRKs) are best known for their role in phosphorylating and desensitising G protein-coupled receptors (GPCRs). The GRKs also regulate signalling downstream of other families of receptors and have a number of non-receptor substrates and binding partners. Here we identify RhoAGTP and Raf1 as novel binding partners of GRK2 and report a previously unsuspected function for this kinase. GRK2 is a RhoA effector that serves as a RhoA-activated scaffold protein for the ERK MAP kinase cascade. The ability of GRK2 to bind to Raf1, MEK1 and ERK2 is dependent on RhoAGTP binding to the catalytic domain of the kinase. Exogenous GRK2 has previously been shown to increase ERK activation downstream of the epidermal growth factor receptor (EGFR). Here we find that GRK2-mediated ERK activation downstream of the EGFR is Rho-dependent and that treatment with EGF promotes RhoAGTP binding and ERK scaffolding by GRK2. Depletion of GRK2 expression by RNAi reveals that GRK2 is required for EGF-induced, Rho- and ERK-dependent thymidine incorporation in vascular smooth muscle cells (VSMCs). We therefore hypothesise that Rho-dependent ERK MAPK scaffolding by GRK2 downstream of the EGFR may have an important role in the vasculature, where increased levels of both GRK2 and RhoA have been associated with hypertension.", "Macropinocytosis is an evolutionarily-conserved, large-scale, fluid-phase form of endocytosis that has been ascribed different functions including antigen presentation in macrophages and dendritic cells, regulation of receptor density in neurons, and regulation of tumor growth under nutrient-limiting conditions. However, whether macropinocytosis regulates the expansion of non-transformed mammalian cells is unknown. Here we show that primary mouse and human T cells engage in macropinocytosis that increases in magnitude upon T cell activation to support T cell growth even under amino acid (AA) replete conditions. Mechanistically, macropinocytosis in T cells provides access of extracellular AA to an endolysosomal compartment to sustain activation of the mechanistic target of rapamycin complex 1 (mTORC1) that promotes T cell growth. Our results thus implicate a function of macropinocytosis in mammalian cell growth beyond Ras-transformed tumor cells via sustained mTORC1 activation.", "Author information:(1)Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA; Department of Cancer Biology, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI 48201, USA. Electronic address: jirish9@gmail.com.(2)Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA. Electronic address: millsjn@musc.edu.(3)Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA. Electronic address: turnerbp@musc.edu.(4)Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA. Electronic address: wilsorc@musc.edu.(5)Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA. Electronic address: guests@musc.edu.(6)Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA. Electronic address: rutkovsk@musc.edu.(7)Department of Cancer Biology, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI 48201, USA. Electronic address: domski@wayne.edu.(8)Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA. Electronic address: kapplerc@musc.edu.(9)Department of Medicine and Public Health, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC 29425, USA. Electronic address: hardiman@musc.edu.(10)Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA. Electronic address: ethier@musc.edu.", "Prolymphocytic leukemia is a rare chronic lymphoproliferative disorder that includes two subtypes, B cell and T cell, each with its own distinct clinical, laboratory and pathological features. T-cell prolymphocytic leukemia has an aggressive course with short median survival and poor response to chemotherapy. With the use of the purine analogue pentostatin more than half of patients will have a major response and a minority will have a complete remission, usually lasting months. With the introduction of alemtuzumab, most patients who progressed despite treatment with pentostatin had a major response with a complete remission rate higher than that obtained with pentostatin when used as a first line. Unfortunately, progression still follows shortly. We recommend alemtuzumab as initial therapy and offer stem cell transplant (SCT) to selected young, healthy patients who respond. Although B-cell prolymphocytic leukemia is also a progressive disease, some patients can achieve a prolonged progression-free-survival with fludarabine. Patients presenting with massive splenomegaly may be effectively palliated with splenic irradiation or splenectomy. Rituximab is a promising agent and further investigations are warranted to better define its role in treatment of this disorder.", "AIMS: Risdiplam (RG7916, RO7034067) is an orally administered, centrally and peripherally distributed, survival of motor neuron 2 (SMN2) mRNA splicing modifier for the treatment of spinal muscular atrophy (SMA). The objectives of this entry-into-human study were to assess the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics of risdiplam, and the effect of the strong CYP3A inhibitor itraconazole on the PK of risdiplam in healthy male volunteers.METHODS: Part 1 had a randomized, double-blind, adaptive design with 25 subjects receiving single ascending oral doses of risdiplam (ranging from 0.6-18.0 mg, n = 18) or placebo (n = 7). A Bayesian framework was applied to estimate risdiplam's effect on SMN2 mRNA. The effect of multiple doses of itraconazole on the PK of risdiplam was also assessed using a two-period cross-over design (n = 8).RESULTS: Risdiplam in the fasted or fed state was well tolerated. Risdiplam exhibited linear PK over the dose range with a multi-phasic decline with a mean terminal half-life of 40-69 h. Food had no relevant effect, and itraconazole had only a minor effect on plasma PK indicating a low fraction of risdiplam metabolized by CYP3A. The highest tested dose of 18.0 mg risdiplam led to approximately 41% (95% confidence interval 27-55%) of the estimated maximum increase in SMN2 mRNA.CONCLUSIONS: Risdiplam was well tolerated and proof of mechanism was demonstrated by the intended shift in SMN2 splicing towards full-length SMN2 mRNA. Based on these data, Phase 2/3 studies of risdiplam in patients with SMA are now ongoing.", "Thyroid hormone (TH) is essential for vertebrate brain development. Most research on TH and neuronal development focuses on late development, mainly the perinatal period in mammals. However, in human infants neuromotor development correlates best with maternal TH levels in the first trimester of pregnancy, suggesting that TH signaling could affect early brain development. Studying TH signaling in early embryogenesis in mammals is experimentally challenging. In contrast, free-living embryos, such as Xenopus laevis, permit physiological experimentation independent of maternal factors. We detailed key elements of TH signaling: ligands, receptors (TR), and deiodinases during early X. laevis development, before embryonic thyroid gland formation. Dynamic profiles for all components were found. Between developmental stages 37 and 41 (~48 h after hatching, coincident with a phase of continuing neurogenesis) significant increases in T(3) levels as well as in mRNA encoding deiodinases and TR occurred. Exposure of embryos at this developmental stage for 24 h to either a TH antagonist, NH-3, or to tetrabromobisphenol A, a flame retardant and known TH disruptor, differentially modulated the expression of a number of TH target genes implicated in neural stem cell function or neural differentiation. Moreover, 24-h exposure to either NH-3 or tetrabromobisphenol A diminished cell proliferation in the brain. Thus, these data show first, that TH signaling exerts regulatory roles in early X. laevis neurogenesis and second, that this period represents a potential window for endocrine disruption.", "Mutations in the SLC40A1 gene result in a dominant genetic disorder [ferroportin disease; hereditary hemochromatosis type (HH) IV], characterized by iron overload with two different clinical manifestations, normal transferrin saturation with macrophage iron accumulation (the most prevalent type) or high transferrin saturation with hepatocyte iron accumulation (classical hemochromatosis phenotype). In previous studies, the mutational analysis of SLC40A1 gene has been performed at the genomic DNA level by PCR amplification and direct sequencing of all coding regions and flanking intron-exon boundaries (usually in 9 PCR reactions). In this study, we analyzed the SLC40A1 gene at the mRNA level, in two RT-PCR reactions, followed by direct sequencing and/or NIRCA (non-isotopic RNase cleavage assay). This protocol turned out to be rapid, sensitive and reliable, facilitating the detection of the SLC40A1 gene mutations in two patients with hyperferritinemia, normal transferrin saturation and iron accumulation predominantly in macrophages and Kupffer cells. The first one displayed the well-described alteration V162 Delta and the second a novel mutation (R178G) that was further detected in two relatives in a pedigree analysis. The proposed procedure would facilitate the wide-range molecular analysis of the SLC40A1 gene, contributing to better understanding the pathogenesis of the ferroportin disease.", "Tirzepatide is a dual gastric inhibitory peptide/glucagon-like peptide 1 (GIP/GLP-1) receptor agonist formulated as a synthetic linear peptide, based on the native GIP sequence. It has a prolonged half-life of 5 days, which enables once-weekly dosing. Studies have hitherto demonstrated its superiority in achieving optimal glycaemic control and body weight management, as compared with various agents used in the treatment of type 2 diabetes mellitus (T2DM), including GLP-1 receptor agonists. Thus, it is expected to enrich our therapeutic armamentarium in T2DM. However, further experience, notably longer follow-up data and information on cardiovascular effects, is still needed.", "For women with hormone receptor-positive advanced breast cancer, endocrine therapies, including the selective estrogen receptor modulator tamoxifen, the aromatase inhibitors anastrozole, letrozole, and exemestane, and the selective estrogen receptor degrader fulvestrant, are recommended in clinical guidelines. The addition of targeted agents such as everolimus or palbociclib to aromatase inhibitors are also recommended as treatment options. Chemotherapy remains an option, although clinical guidelines have recommended these agents be reserved for patients with immediately life-threatening disease or if resistance to endocrine therapy is known or suspected. The present review has consolidated the tolerability profiles of the agents approved for use in the treatment of hormone receptor-positive advanced or metastatic breast cancer based on phase III registration trial data. Endocrine therapies are generally well tolerated, although the addition of targeted therapies to aromatase inhibitors or fulvestrant appears to increase the proportion of patients experiencing adverse events, and palbociclib and chemotherapy appear to be more closely associated with serious adverse events, including neutropenia.", "It has been suggested that cyclosporin A might be of some benefit to patients with Crohn's disease. The clinical response and side-effects of cyclosporin A in Crohn's disease are described in a series of 13 adults. The majority of patients had ileal disease and all but one were started on an initial oral dose of 15 mg/kg per day. Duration of treatment ranged from 3 to 42 weeks. Of the 13 patients, 6 showed a response to therapy; the remainder showed no response or deteriorated. The commonest side-effect was hyperaesthesia, but one patient developed nephrotoxicity and one developed hepatotoxicity. Significant drug malabsorption occurred in one case. The side-effects were dose dependent and reversible. Cyclosporin A may have a part to play in the treatment of resistant Crohn's disease, and in our hands has been associated with a 46 per cent response rate; however, the precise role of cyclosporin A in the management of Crohn's disease awaits further study.", "Traditional menopausal hormone therapy containing estrogens/progestin has been associated with an increased risk of breast cancer, and estrogen exposure is known to promote growth and proliferation of a majority of breast cancers. Therefore, it is important for clinicians to consider the breast safety profile of any hormone-based therapy used in postmenopausal women. This review provides an overview of the breast safety and tolerability profiles of currently marketed selective estrogen receptor modulators, antiestrogens, and the first tissue selective estrogen complex combining conjugated estrogens with the selective estrogen receptor modulator bazedoxifene in postmenopausal women. Selective estrogen receptor modulators and antiestrogens act as estrogen receptor antagonists in the breast. Tamoxifen, toremifene, and the selective estrogen receptor degrader fulvestrant are used to treat breast cancer, and tamoxifen and raloxifene protect against breast cancer in high-risk women. Postmenopausal women using selective estrogen receptor modulators for prevention or treatment of osteoporosis (raloxifene, bazedoxifene) can be reassured that these hormonal treatments do not adversely affect their risk of breast cancer and may, in the case of raloxifene, even be protective. There are limited data on breast cancer in women who use ospemifene for dyspareunia. Conjugated estrogens/bazedoxifene use for up to two years did not increase mammographic breast density or breast pain/tenderness, and there was no evidence of an increased risk of breast cancer, suggesting that conjugated estrogens/bazedoxifene has an improved breast safety profile compared with traditional menopausal hormone therapies. Future research will continue to focus on development of selective estrogen receptor modulators and selective estrogen receptor modulator combinations capable of achieving the ideal balance of estrogen receptor agonist and antagonist effects.", "Although radiological findings of cerebral hemiatrophy (Dyke-Davidoff-Masson Syndrome) are well known, there is no systematic study about the gender and the affected side in this syndrome. Brain images in 26 patients (mean aged 11) with cerebral hemiatrophy were retrospectively reviewed. Nineteen patients (73.5%) were male and seven patients (26.5%) were female. Left hemisphere involvement was seen in 18 patients (69.2%) and right hemisphere involvement was seen in eight patients (30.8%). We conclude that male gender and left side involvement are frequent in cerebral hemiatrophy disease.", "The gut microbiome comprises the collective genome of the trillions of microorganisms residing in our gastrointestinal ecosystem. The interaction between the host and its gut microbiome is a complex relationship whose manipulation could prove critical to preventing or treating not only various gut disorders, like irritable bowel syndrome (IBS) and ulcerative colitis (UC), but also central nervous system (CNS) disorders, such as Alzheimer's and Parkinson's diseases. The purpose of this review is to summarize what is known about the gut microbiome, how it is connected to the development of disease and to identify the bacterial and biochemical targets that should be the focus of future research. Understanding the mechanisms behind the activity and proliferation of the gut microbiome will provide us new insights that may pave the way for novel therapeutic strategies.", "Endocrine therapy, using tamoxifen or an aromatase inhibitor, remains a first-line treatment for estrogen receptor 1 (ESR1) positive breast cancer. However, tumor resistance limits the duration of response. The clinical efficacy of fulvestrant, a selective ER degrader (SERD) that triggers receptor degradation, has confirmed that ESR1 often remains engaged in endocrine therapy resistant cancers. Recently developed, selective ER modulators (SERMs)/SERD hybrids (SSHs) that facilitate ESR1 degradation in breast cancer cells and reproductive tissues have been advanced as an alternative treatment for advanced breast cancer, particularly in the metastatic setting. RAD1901 is one SSH currently being evaluated clinically that is unique among ESR1 modulators in that it readily enters the brain, a common site of breast cancer metastasis. In this study, RAD1901 inhibited estrogen activation of ESR1 in vitro and in vivo, inhibited estrogen-dependent breast cancer cell proliferation and xenograft tumor growth, and mediated dose-dependent downregulation of ESR1 protein. However, doses of RAD1901 insufficient to induce ESR1 degradation were shown to result in the activation of ESR1 target genes and in the stimulation of xenograft tumor growth. RAD1901 is an SSH that exhibits complex pharmacology in breast cancer models, having dose-dependent agonist/antagonist activity displayed in a tissue-selective manner. It remains unclear how this unique pharmacology will impact the utility of RAD1901 for breast cancer treatment. However, being the only SERD currently known to access the brain, RAD1901 merits evaluation as a targeted therapy for the treatment of breast cancer brain metastases.", "The purpose of this study was to address the role of ESR1 hormone-binding mutations in breast cancer. Soft agar anchorage-independent growth assay, Western blot, ERE reporter transactivation assay, proximity ligation assay (PLA), coimmunoprecipitation assay, silencing assay, digital droplet PCR (ddPCR), Kaplan-Meier analysis, and statistical analysis. It is now generally accepted that estrogen receptor (ESR1) mutations occur frequently in metastatic breast cancers; however, we do not yet know how to best treat these patients. We have modeled the three most frequent hormone-binding ESR1 (HBD-ESR1) mutations (Y537N, Y537S, and D538G) using stable lentiviral transduction in human breast cancer cell lines. Effects on growth were examined in response to hormonal and targeted agents, and mutation-specific changes were studied using microarray and Western blot analysis. We determined that the HBD-ESR1 mutations alter anti-proliferative effects to tamoxifen (Tam), due to cell-intrinsic changes in activation of the insulin-like growth factor receptor (IGF1R) signaling pathway and levels of PIK3R1/PIK3R3. The selective estrogen receptor degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while combination treatments with the mTOR inhibitor everolimus, or an inhibitor blocking IGF1R, and the insulin receptor significantly enhanced anti-proliferative responses. Using digital drop (dd) PCR, we identified mutations at high frequencies ranging from 12 % for Y537N, 5 % for Y537S, and 2 % for D538G in archived primary breast tumors from women treated with adjuvant mono-tamoxifen therapy. The HBD-ESR1 mutations were not associated with recurrence-free or overall survival in response in this patient cohort and suggest that knowledge of other cell-intrinsic factors in combination with ESR1 mutation status will be needed determine anti-proliferative responses to Tam.", "It has become apparent of late that even in tamoxifen and/or aromatase resistant breast cancers, ERα remains a bona fide therapeutic target. Not surprisingly, therefore, there has been considerable interest in developing Selective ER Degraders (SERDs), compounds that target the receptor for degradation. Currently, ICI 182,780 (ICI, fulvestrant) is the only SERD approved for the treatment of breast cancer. However, the poor pharmaceutical properties of this injectable drug and its lack of superiority over second line aromatase inhibitors in late stage breast cancer have negatively impacted its clinical use. These findings have provided the impetus to develop second generation, orally bioavailable SERDs with which quantitative turnover of ERα in tumors can be achieved. Interestingly however, the contribution of SERD activity to fulvestrant efficacy is unclear, making it difficult to define the characteristics desired of the next generation of ER antagonists. It is of significance therefore, that we have determined that the antagonist activity of ICI and its ability to induce ERα degradation are not coupled processes. Specifically, our results indicate that it is the ability of ICI to interact with ERα and to (a) competitively displace estradiol and (b) induce a conformational change in ER incompatible with transcriptional activation that are likely to be the most important pharmacological characteristics of this drug. Collectively, these data argue for a renewed emphasis on the development of high affinity, orally bioavailable pure antagonists and suggest that SERD activity though proven effective may not be required for ERα antagonism in breast cancer.", "Author information:(1)From the Division of Rheumatology, Department of Medicine, Medical University of Vienna, Vienna, Austria; Division of Immunology and Rheumatology, Stanford University Medical Center, Palo Alto, California, USA; Division of Rheumatology, Department of Internal Medicine, Keio University, Tokyo, Japan; Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA; Lilly Research Laboratories, Eli Lilly and Co., Kobe, Japan; Oregon Health Sciences University, Portland, Oregon, USA. josef.smolen@meduniwien.ac.at.(2)J.S. Smolen, MD, Division of Rheumatology, Department of Medicine, Medical University of Vienna; M.C. Genovese, MD, Division of Immunology and Rheumatology, Stanford University Medical Center; T. Takeuchi, MD, PhD, Division of Rheumatology, Department of Internal Medicine, Keio University; D.L. Hyslop, MD, Lilly Research Laboratories, Eli Lilly and Co., USA; W. Macias, MD, PhD, Lilly Research Laboratories, Eli Lilly and Co., USA; T. Rooney, MD, Lilly Research Laboratories, Eli Lilly and Co., USA; L. Chen, MD, PhD, Lilly Research Laboratories, Eli Lilly and Co., USA; C.L. Dickson, BS Pharm, Lilly Research Laboratories, Eli Lilly and Co., USA; J. Riddle Camp, BA, Lilly Research Laboratories, Eli Lilly and Co., USA; T.E. Cardillo, MSN, Lilly Research Laboratories, Eli Lilly and Co., USA; T. Ishii, MD, PhD, Lilly Research Laboratories, Eli Lilly and Co., Japan; K.L. Winthrop, MD, MPH, Oregon Health Sciences University. josef.smolen@meduniwien.ac.at.(3)From the Division of Rheumatology, Department of Medicine, Medical University of Vienna, Vienna, Austria; Division of Immunology and Rheumatology, Stanford University Medical Center, Palo Alto, California, USA; Division of Rheumatology, Department of Internal Medicine, Keio University, Tokyo, Japan; Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA; Lilly Research Laboratories, Eli Lilly and Co., Kobe, Japan; Oregon Health Sciences University, Portland, Oregon, USA.(4)J.S. Smolen, MD, Division of Rheumatology, Department of Medicine, Medical University of Vienna; M.C. Genovese, MD, Division of Immunology and Rheumatology, Stanford University Medical Center; T. Takeuchi, MD, PhD, Division of Rheumatology, Department of Internal Medicine, Keio University; D.L. Hyslop, MD, Lilly Research Laboratories, Eli Lilly and Co., USA; W. Macias, MD, PhD, Lilly Research Laboratories, Eli Lilly and Co., USA; T. Rooney, MD, Lilly Research Laboratories, Eli Lilly and Co., USA; L. Chen, MD, PhD, Lilly Research Laboratories, Eli Lilly and Co., USA; C.L. Dickson, BS Pharm, Lilly Research Laboratories, Eli Lilly and Co., USA; J. Riddle Camp, BA, Lilly Research Laboratories, Eli Lilly and Co., USA; T.E. Cardillo, MSN, Lilly Research Laboratories, Eli Lilly and Co., USA; T. Ishii, MD, PhD, Lilly Research Laboratories, Eli Lilly and Co., Japan; K.L. Winthrop, MD, MPH, Oregon Health Sciences University.", "In a first, the FDA has approved an inhibitor of hypoxia-inducible factor-2α. The drug is also the first approved to treat von Hippel-Lindau disease-associated renal cell carcinoma, central nervous system hemangioblastomas, and pancreatic neuroendocrine tumors.", "OBJECTIVE: To investigate the expression and effect of the microRNA-34 (miR-34) family on apoptosis in rheumatoid arthritis synovial fibroblasts (RASFs).METHODS: Expression of the miR-34 family in synovial fibroblasts with or without stimulation with Toll-like receptor (TLR) ligands, tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), hypoxia, or 5-azacytidine was analyzed by real-time polymerase chain reaction (PCR). Promoter methylation was studied by combined bisulfite restriction analysis. The effects of overexpression and silencing of miR-34a and miR-34a* on apoptosis were analyzed by annexin V/propidium iodide staining. Production of X-linked inhibitor of apoptosis protein (XIAP) was assessed by real-time PCR and immunohistochemistry analysis. Reporter gene assay was used to study the signaling pathways of miR-34a*.RESULTS: Basal expression levels of miR-34a* were found to be reduced in synovial fibroblasts from RA patients compared to osteoarthritis patients, whereas levels of miR-34a, miR-34b/b*, and miR-34c/c* did not differ. Neither TNFα, IL-1β, TLR ligands, nor hypoxia altered miR-34a* expression. However, we demonstrated that the promoter of miR-34a/34a* was methylated and showed that transcription of the miR-34a duplex was induced upon treatment with demethylating agents. Enforced expression of miR-34a* led to an increased rate of FasL- and TRAIL-mediated apoptosis in RASFs. Moreover, levels of miR-34a* were highly correlated with expression of XIAP, which was found to be up-regulated in RA synovial cells. Finally, we identified XIAP as a direct target of miR-34a*.CONCLUSION: Our data provide evidence of a methylation-specific down-regulation of proapoptotic miR-34a* in RASFs. Decreased expression of miR- 34a* results in up-regulation of its direct target XIAP, thereby contributing to resistance of RASFs to apoptosis.", "A number of anticancer drugs, especially molecularly-targeted drugs, have been developed every year. Drug-induced interstitial lung disease(DILD)is a common adverse event associated with molecularly-targeted drugs, and it is therefore important to obtain information about the DILD risks of each drug. Recently, all-case surveillance of new drugs have been carried out frequently as post-marketing surveillance. This allows one to understand the accurate status of DILD, such as its incidence rate and prognosis. The diagnosis of DILD is often difficult because there is no specific diagnostic approach. It is necessary to distinguish DILD from various other diseases including infectious disease, cancer progression, congestive heart failure, etc. Among those, respiratory infection is an important disease in the differential diagnosis of DILD, because patients receiving anticancer drugs are likely to be susceptible to infection. As for the treatment of DILD, the general rule is the discontinuation of the offending drug, and if necessary, the administration of corticosteroid is indicated. However, an exceptional treatment is required for DILD caused by mTOR inhibitor, for which we must take account of the adequate management.", "Reprogramming of mouse fibroblasts toward a myocardial cell fate by forced expression of cardiac transcription factors or microRNAs has recently been demonstrated. The potential clinical applicability of these findings is based on the minimal regenerative potential of the adult human heart and the limited availability of human heart tissue. An initial but mandatory step toward clinical application of this approach is to establish conditions for conversion of adult human fibroblasts to a cardiac phenotype. Toward this goal, we sought to determine the optimal combination of factors necessary and sufficient for direct myocardial reprogramming of human fibroblasts. Here we show that four human cardiac transcription factors, including GATA binding protein 4, Hand2, T-box5, and myocardin, and two microRNAs, miR-1 and miR-133, activated cardiac marker expression in neonatal and adult human fibroblasts. After maintenance in culture for 4-11 wk, human fibroblasts reprogrammed with these proteins and microRNAs displayed sarcomere-like structures and calcium transients, and a small subset of such cells exhibited spontaneous contractility. These phenotypic changes were accompanied by expression of a broad range of cardiac genes and suppression of nonmyocyte genes. These findings indicate that human fibroblasts can be reprogrammed to cardiac-like myocytes by forced expression of cardiac transcription factors with muscle-specific microRNAs and represent a step toward possible therapeutic application of this reprogramming approach.", "Halophilic Archaea (Haloarchaea) thrive in salterns containing sodium chloride concentrations up to saturation. Many Haloarchaea possess genes encoding gas vesicles, but only a few species, such as Halobacterium salinarum and Haloferax mediterranei, produce these gas-filled, proteinaceous nanocompartments. Gas vesicles increase the buoyancy of cells and enable them to migrate vertically in the water body to regions with optimal conditions. Their synthesis depends on environmental factors, such as light, oxygen supply, temperature and salt concentration. Fourteen gas vesicle protein (gvp) genes are involved in their formation, and regulation of gvp gene expression occurs at the level of transcription, including the two regulatory proteins, GvpD and GvpE, but also at the level of translation. The gas vesicle wall is solely formed of proteins with the two major components, GvpA and GvpC, and seven additional accessory proteins are also involved. Except for GvpI and GvpH, all of these are required to form the gas permeable wall. The applications of gas vesicles include their use as an antigen presenter for viral or pathogen proteins, but also as a stable ultrasonic reporter for biomedical purposes.", "The mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and proliferation. Recent studies have suggested that constitutive activation of mTORC1 in normal cells could lead to malignant tumor development in several tissues. However, the mechanisms of mTORC1 hyperactivation to promote the growth and metastasis of breast or other cancers are still not well characterized. Here, using a new inducible deletion system, we show that deletion of Tsc1 in mouse primary mammary tumor cells, either before or after their transplantation, significantly increased their growth in vivo. The increase in tumor growth was completely rescued by rapamycin treatment, suggesting a major contribution from mTORC1 hyperactivation. Interestingly, glucose starvation-induced autophagy, but not amino acid starvation-induced autophagy, was increased significantly in Tsc1-null tumor cells. Further analysis of these cells also showed an increased Akt activation but no significant changes in Erk signaling. Together, these results provide insights into the mechanism by which hyperactivation of mTORC1 promotes breast cancer progression through increasing autophagy and Akt activation in vivo.", "OBJECTIVE: the aim of this study is to investigate the clinical evolution, the spontaneous remission of the symptomatology and the response to different treatments in a group of burning mouth syndrome patients.STUDY DESIGN: the sample was formed by a group of patients that were visited in the Unit of Oral Medicine of the Dentistry Clinic of the University of Barcelona, from the year 2000 to 2011. After revising the clinical records of all the patients that had been under control for a period of time of 18 months or longer, they were contacted by telephone. In the telephone interview, they were questioned about the symptomatology evolution and the response to the treatments received, noting down the data in a questionnaire previously performed.RESULTS: the average duration of the symptoms was 6.5 years (+/-2.5 years). The most frequent treatments were: chlorhexidine mouthrinses, oral benzodiazepines, topical clonazepam, antiinflamatory drugs, antidepressants, antifungicals, vitamins, psycotherapy, salivary substitutes and topical corticoids. The specialists that were consulted with a higher frequency were: dermatologists (30%), othorrynolaringologists (10%) and psychiatrists (3%). In 41 patients the oral symptoms did not improve, 35 reported partial improvements, 12 patients worsened, and only in 3 patients the symptoms remitted.CONCLUSIONS: In three of the 91 patients studied the symptoms remitted spontaneously within the five years of treatment. Only 42% of the study population had improved the symptomatology significantly, and this improvement would reach 60% if clonazepam were associated to psychotherapy.", "Acrokeratosis paraneoplastica is a rare paraneoplastic syndrome commonly affecting males over 40 years of age. There exists a strong association with squamous cell carcinoma (SCC) of the upper aerodigestive tract or cervical metastatic disease originating from an unknown primary. We report a case associated with SCC of the right tonsil with persistent paraneoplastic cutaneous lesions 2 years after successful treatment of the underlying neoplasm.", "Eosinophilic esophagitis (EoE) is a relatively new disease that is increasingly recognized as a chronic inflammatory condition with currently evolving diagnostic and therapeutic aspects. There is data to support the rising prevalence of EOE especially in western countries. EoE is an emerging cause of dysphagia and food bolus impaction in adults as well as abdominal pain, feeding disorders, and gastroesophageal reflux-like symptoms in younger patients. EoE is ever more recognized as a separate disease process that is more complicated than eosinophilic infiltration from gastroesophageal reflux disease. Food and environmental antigens both play significant roles in stimulating T-helper (Th-2) inflammatory response. Current therapeutic options include use of proton-pump inhibitors, immunosuppressive drugs, elimination diets, and esophageal dilatation. Simple elimination of food and environmental antigen exposure can be challenging in adults due to the difficulty in accurately identifying triggering antigens and adherence to restrictive diets from a wide range of putative food allergens. Novel therapeutic options are being presented as potential treatments that target chemokines and specific immunologic mechanisms for EoE. This review will aim to summarize the latest and evolving approaches to EoE diagnosis and management. In the future, biomarkers of inflammatory response may help diagnose, treat, and stratify individual patients for better treatment outcomes with this chronic disease.", "Cancer cells predominantly utilize glycolysis for ATP production even in the presence of abundant oxygen, an environment that would normally result in energy production through oxidative phosphorylation. Although the molecular mechanism for this metabolic switch to aerobic glycolysis has not been fully elucidated, it is likely that mitochondrial damage to the electron transport chain and the resulting increased production of reactive oxygen species are significant driving forces. In this study, we have investigated the role of the transcription factor Ets-1 in the regulation of mitochondrial function and metabolism. Ets-1 was over-expressed using a stably-incorporated tetracycline-inducible expression vector in the ovarian cancer cell line 2008, which does not express detectable basal levels of Ets-1 protein. Microarray analysis of the effects of Ets-1 over-expression in these ovarian cancer cells shows that Ets-1 up-regulates key enzymes involved in glycolysis and associated feeder pathways, fatty acid metabolism, and antioxidant defense. In contrast, Ets-1 down-regulates genes involved in the citric acid cycle, electron transport chain, and mitochondrial proteins. At the functional level, we have found that Ets-1 expression is directly correlated with cellular oxygen consumption whereby increased expression causes decreased oxygen consumption. Ets-1 over-expression also caused increased sensitivity to glycolytic inhibitors, as well as growth inhibition in a glucose-depleted culture environment. Collectively our findings demonstrate that Ets-1 is involved in the regulation of cellular metabolism and response to oxidative stress in ovarian cancer cells.", "Spinal muscular atrophies (SMA) are frequent autosomal recessive disorders characterized by degeneration of lower motor neurons. SMA are caused by mutations of the survival of motor neuron gene (SMN1) leading to a reduction of the SMN protein amount. The identification of SMN interacting proteins involved in the formation of the spliceosome and splicing changes in SMN-deficient tissues of mutant mice strongly support the view that SMN is involved in the splicing reaction. However, the molecular pathway linking SMN defect to the SMA phenotype remains unclear. From a better knowledge of the genetic basis of SMA and the defects resulting from the mutations of SMN1 in cellular or animal models, several therapeutics strategies have been selected aiming at targeting SMN2, a partially functional copy of SMN1 gene which remains present in patients, or to prevent neurons from death. Refined characterization of the degenerative process in SMA and the identification of the defective molecular pathway downstream from the SMN defect will provide further exciting insight into this disease in the near future. They should contribute to clarify the pathophysiology of SMA, the function of SMN and should help in designing potential targeted or non-targeted therapeutic molecules.", "BACKGROUND: Peginesatide is a peptide-based erythropoiesis-stimulating agent (ESA) that may have therapeutic potential for anemia in patients with advanced chronic kidney disease. We evaluated the safety and efficacy of peginesatide, as compared with another ESA, darbepoetin, in 983 such patients who were not undergoing dialysis.METHODS: In two randomized, controlled, open-label studies (PEARL 1 and 2), patients received peginesatide once a month, at a starting dose of 0.025 mg or 0.04 mg per kilogram of body weight, or darbepoetin once every 2 weeks, at a starting dose of 0.75 μg per kilogram. Doses of both drugs were adjusted to achieve and maintain hemoglobin levels between 11.0 and 12.0 g per deciliter for 52 weeks or more. The primary efficacy end point was the mean change from the baseline hemoglobin level to the mean level during the evaluation period; noninferiority was established if the lower limit of the two-sided 97.5% confidence interval was -1.0 g per deciliter or higher. Cardiovascular safety was evaluated on the basis of an adjudicated composite end point.RESULTS: In both studies and at both starting doses, peginesatide was noninferior to darbepoetin in increasing and maintaining hemoglobin levels. The mean differences in the hemoglobin level with peginesatide as compared with darbepoetin in PEARL 1 were 0.03 g per deciliter (97.5% confidence interval [CI], -0.19 to 0.26) for the lower starting dose of peginesatide and 0.26 g per deciliter (97.5% CI, 0.04 to 0.48) for the higher starting dose, and in PEARL 2 they were 0.14 g per deciliter (97.5% CI, -0.09 to 0.36) and 0.31 g per deciliter (97.5% CI, 0.08 to 0.54), respectively. The hazard ratio for the cardiovascular safety end point was 1.32 (95% CI, 0.97 to 1.81) for peginesatide relative to darbepoetin, with higher incidences of death, unstable angina, and arrhythmia with peginesatide.CONCLUSIONS: The efficacy of peginesatide (administered monthly) was similar to that of darbepoetin (administered every 2 weeks) in increasing and maintaining hemoglobin levels. However, cardiovascular events and mortality were increased with peginesatide in patients with chronic kidney disease who were not undergoing dialysis. (Funded by Affymax and Takeda Pharmaceutical; ClinicalTrials.gov numbers, NCT00598273 [PEARL 1], NCT00598442 [PEARL 2], NCT00597753 [EMERALD 1], and NCT00597584 [EMERALD 2].).", "Conjugated estrogen/bazedoxifene (CE/BZA) therapy represents a new, progestin-free treatment in the management of postmenopausal health. CE/BZA pairs CE with the selective estrogen receptor modulator, BZA. The rationale for the development of CE/BZA was that BZA, acting primarily as a selective estrogen receptor degrader in uterine and breast tissue, would sufficiently inhibit the proliferative effects of CE on the endometrium. The absence of a progestin would reduce the incidence of uterine bleeding, breast pain and increased breast density associated with progestin-containing hormone therapy. CE/BZA has been evaluated in five multicenter, randomized, double-blind, placebo-controlled, and active-controlled Phase III trials known as the SMART trials. CE/BZA has been shown to maintain the established benefits of estrogen therapy for treatment of vasomotor symptoms and prevention of a loss in bone mineral density (bone mass), while minimizing certain estrogenic effects, particularly in the uterine endometrium and breast.", "Basal bodies nucleate, anchor, and organize cilia. As the anchor for motile cilia, basal bodies must be resistant to the forces directed toward the cell as a consequence of ciliary beating. The molecules and generalized mechanisms that contribute to the maintenance of basal bodies remain to be discovered. Bld10/Cep135 is a basal body outer cartwheel domain protein that has established roles in the assembly of nascent basal bodies. We find that Bld10 protein first incorporates stably at basal bodies early during new assembly. Bld10 protein continues to accumulate at basal bodies after assembly, and we hypothesize that the full complement of Bld10 is required to stabilize basal bodies. We identify a novel mechanism for Bld10/Cep135 in basal body maintenance so that basal bodies can withstand the forces produced by motile cilia. Bld10 stabilizes basal bodies by promoting the stability of the A- and C-tubules of the basal body triplet microtubules and by properly positioning the triplet microtubule blades. The forces generated by ciliary beating promote basal body disassembly in bld10Δ cells. Thus Bld10/Cep135 acts to maintain the structural integrity of basal bodies against the forces of ciliary beating in addition to its separable role in basal body assembly." ]
1,785
[ "SUMMARY: The current methods available to detect chromosomal abnormalities from DNA microarray expression data are cumbersome and inflexible. CAFE has been developed to alleviate these issues. It is implemented as an R package that analyzes Affymetrix *.CEL files and comes with flexible plotting functions, easing visualization of chromosomal abnormalities.AVAILABILITY AND IMPLEMENTATION: CAFE is available from https://bitbucket.org/cob87icW6z/cafe/ as both source and compiled packages for Linux and Windows. It is released under the GPL version 3 license. CAFE will also be freely available from Bioconductor.CONTACT: sander.h.bollen@gmail.com or nancy.mah@mdc-berlin.deSUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.", "Cushing syndrome is the constellation of signs and symptoms caused by protracted exposure to glucocorticoids. The most common cause of Cushing syndrome in children and adolescents is exogenous administration of glucocorticoids. Presenting features commonly include weight gain, growth retardation, hirsutism, obesity, striae, acne and hypertension. Almost invariably, linear growth is severely diminished, a factor which may be useful in differentiating between childhood obesity and Cushing syndrome. Diagnostic approaches are based on distinguishing between adrenocorticotropic hormone (ACTH)-dependent and ACTH-independent etiologies, and consideration of the most likely diagnosis by age. Treatment modality is dependent upon etiology. After cure, important components of care include attention to linear growth, pubertal progression and body composition.", "OBJECTIVE: This study aimed to determine the principal factors contributing to the cost of avoiding a birth with Down syndrome by using cell-free DNA (cfDNA) to replace conventional screening.METHODS: A range of unit costs were assigned to each item in the screening process. Detection rates were estimated by meta-analysis and modeling. The marginal cost associated with the detection of additional cases using cfDNA was estimated from the difference in average costs divided by the difference in detection.RESULTS: The main factor was the unit cost of cfDNA testing. For example, replacing a combined test costing $150 with 3% false-positive rate and invasive testing at $1000, by cfDNA tests at $2000, $1500, $1000, and $500, the marginal cost is $8.0, $5.8, $3.6, and $1.4m, respectively. Costs were lower when replacing a quadruple test and higher for a 5% false-positive rate, but the relative importance of cfDNA unit cost was unchanged. A contingent policy whereby 10% to 20% women were selected for cfDNA testing by conventional screening was considerably more cost-efficient. Costs were sensitive to cfDNA uptake.CONCLUSION: Universal cfDNA screening for Down syndrome will only become affordable by public health purchasers if costs fall substantially. Until this happens, the contingent use of cfDNA is recommended.", "BACKGROUND: MRI and laboratory features have been incorporated into international diagnostic criteria for multiple sclerosis. We assessed the pattern of MRI lesions and contributions of cerebrospinal fluid (CSF) and serum antibody findings that best identifies children with multiple sclerosis, and the applicability of international diagnostic criteria in the paediatric context.METHODS: In this prospective cohort study, detailed clinical assessments, serum and CSF studies, and MRI scans were done in youth (aged 0·46-17·87 years) with incidental acquired demyelinating syndrome. Participants were examined prospectively to identify relapsing disease. All MRI scans were assessed using a validated scoring method. A random forest classifier identified imaging and laboratory features that best predicted a multiple sclerosis or monophasic outcome. Performance of the 2001, 2010, and 2017 international McDonald criteria for the diagnosis of multiple sclerosis, the 2016 MRI in multiple sclerosis (MAGNIMS) criteria, and our 2011 proposed (Verhey) criteria were determined; performance was adjudicated with generalised linear models.FINDINGS: Between Sept 1, 2004, and June 30, 2017, we included 324 participants with median follow-up of 72 months (range 6-150), 71 (22%) participants with multiple sclerosis, 237 (73%) with monophasic acquired demyelinating syndrome, 14 (4%) with relapsing non-multiple sclerosis, and two (1%) with alternative diagnoses. We scored 2391 brain, 444 spinal, and 67 dedicated orbital MRI scans. One or more T1 hypointense lesions plus one or more periventricular lesions (Verhey criteria) best predicted multiple sclerosis outcome. Performance of the 2017 McDonald criteria was comparable to the 2010 McDonald criteria and was easier to adjudicate. The ability of CSF oligoclonal bands to substitute for the requirement for both enhancing and non-enhancing lesions in the 2017 McDonald criteria improved its performance compared with the 2010 criteria. Myelin oligodendrocyte testing at baseline did not improve performance of the 2017 McDonald criteria.INTERPRETATION: The 2017 McDonald criteria for the diagnosis of multiple sclerosis, as applied at the time of incident attack, perform well in identifying children and youth with multiple sclerosis, indicating that the same diagnostic criteria for multiple sclerosis apply across the age span. The presence of so-called black holes on MRI and periventricular lesions at baseline (Verhey criteria) also effectively distinguish children with multiple sclerosis from children with monophasic demyelination. The presence of CSF oligoclonal bands improve diagnostic accuracy. Myelin oligodendrocyte glycoprotein antibodies identify children with acute disseminated encephalomyelitis, and those with relapsing non-multiple sclerosis, most of whom do not meet 2017 McDonald criteria at onset.FUNDING: The Multiple Sclerosis Scientific Research Foundation and The Children's Hospital of Philadelphia.", "Author information:(1)Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA. Electronic address: elodiey_hatchi@dfci.harvard.edu.(2)Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.(3)Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA.(4)Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT, Cambridge, MA 02139, USA.(5)Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.(6)Department of Genetics, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA. Electronic address: david_livingston@dfci.harvard.edu.", "PURPOSE: INTRODUCTION TO THE OPHTHALMIC LITERATURE OF AN UNUSUAL CAUSE OF PAPILLEDEMA AND SUBSEQUENT OPTIC ATROPHY: X-linked hypophosphatemic rickets (XLH).METHODS: Case report of a 3-year-old female presenting with papilledema resulting from craniosynostosis secondary to XLH.RESULTS: Early intervention with craniofacial surgery prevented the development of optic atrophy.CONCLUSION: Children with XLH should be screened for ophthalmic evidence of elevated intracranial pressure to aid early intervention and prevention of permanent loss of vision.", "Resistance training of healthy young men typically results in muscle hypertrophy and a shift in vastus lateralis composition away from type IIx fibers to an increase in IIa fiber content. Our previous studies of 8 wk of resistance training found that many metabolic syndrome men and women paradoxically increased IIx fibers with a decrease in IIa fibers. To confirm the hypothesis that obese subjects might have muscle remodeling after resistance training very different from healthy lean subjects, we subjected a group of nine obese male volunteers to progressive resistance training for a total of 16 wk. In these studies, weight loss was discouraged so that muscle changes would be attributed to the training alone. Detailed assessments included comparisons of histological examinations of needle biopsies of vastus lateralis muscle pretraining and at 8 and 16 wk. Prolonging the training from 8 to 16 wk resulted in increased strength, improved body composition, and more muscle fiber hypertrophy, but euglycemic clamp-quantified insulin responsiveness did not improve. Similar to prior studies, muscle fiber composition shifted toward more fast-twitch type IIx fibers (23 to 42%). Eight weeks of resistance training increased the muscle expression of phosphorylated Akt2 and mTOR. Muscle GLUT4 expression increased, although insulin receptor and IRS-1 expression did not change. We conclude that resistance training of prediabetic obese subjects is effective at changing muscle, resulting in fiber hypertrophy and increased type IIx fiber content, and these changes continue up to 16 wk of training.NEW & NOTEWORTHY Obese, insulin-resistant men responded to 16 wk of progressive resistance training with muscle hypertrophy and increased strength and a shift in muscle fiber composition toward fast-twitch, type IIx fibers. Activation of muscle mTOR was increased by 8 wk but did not increase further at 16 wk despite continued augmentation of peak power and rate of force generation." ]
1,793
[ "Amyloid-beta1-42 (Abeta1-42) is crucial to Alzheimer disease (AD) pathogenesis but the conformation of the toxic Abeta species remains uncertain. AD risk is increased by apolipoprotein E4 (apoE4) and decreased by apoE2 compared with the apoE3 isoform, but whether inheritance of apoE4 represents a gain of negative or a loss of protective function is also unresolved. Using hippocampal slices from apoE knockout (apoE-KO) and human apoE2, E3, and E4 targeted replacement (apoE-TR) mice, we found that oligomeric Abeta1-42 inhibited long-term potentiation (LTP) with a hierarchy of susceptibility mirroring clinical AD risk (apoE4-TR > apoE3-TR = apoE-KO > apoE2-TR), and that comparable doses of unaggregated Abeta1-42 did not affect LTP. These data provide a novel link among apoE isoform, Abeta1-42, and a functional cellular model of memory. In this model, apoE4 confers a gain of negative function synergistic with Abeta1-42, apoE2 is protective, and the apoE-Abeta interaction is specific to oligomeric Abeta1-42.", "The pericyte's role has been extensively studied in retinal tissues of diabetic retinopathy; however, little is known regarding its role in such tissues as the pancreas and skeletal muscle. This supportive microvascular mural cell, plays an important and novel role in cellular and extracellular matrix remodeling in the pancreas and skeletal muscle of young rodent models representing the metabolic syndrome and type 2 diabetes mellitus (T2DM). Transmission electron microscopy can be used to evaluate these tissues from young rodent models of insulin resistance and T2DM, including the transgenic Ren2 rat, db/db obese insulin resistant - T2DM mouse, and human islet amyloid polypeptide (HIP) rat model of T2DM. With this method, the earliest pancreatic remodeling change was widening of the islet exocrine interface and pericyte hypercellularity, followed by pericyte differentiation into islet and pancreatic stellate cells with early fibrosis involving the islet exocrine interface and interlobular interstitium. In skeletal muscle there was a unique endothelial capillary connectivity via elongated longitudinal pericyte processes in addition to pericyte to pericyte and pericyte to myocyte cell-cell connections allowing for paracrine communication. Initial pericyte activation due to moderate oxidative stress signaling may be followed by hyperplasia, migration, and differentiation into adult mesenchymal cells. Continued robust oxidative stress may induce pericyte apoptosis and impaired cellular longevity. Circulating antipericyte autoantibodies have recently been characterized, and may provide a screening method to detect those patients who are developing pericyte loss and are at greater risk for the development of complications of T2DM due to pericytopathy and rarefaction. Once detected, these patients may be offered more aggressive treatment strategies such as early pharmacotherapy in addition to life style changes targeted to maintaining pericyte integrity. In conclusion, we have provided a review of current knowledge regarding the pericyte and novel ultrastructural findings regarding its role in metabolic syndrome and T2DM.", "Deubiquitinating enzymes (DUBs) remove ubiquitin (Ub) from Ub-conjugated substrates to regulate the functional outcome of ubiquitylation. Here we report the discovery of a new family of DUBs, which we have named MINDY (motif interacting with Ub-containing novel DUB family). Found in all eukaryotes, MINDY-family DUBs are highly selective at cleaving K48-linked polyUb, a signal that targets proteins for degradation. We identify the catalytic activity to be encoded within a previously unannotated domain, the crystal structure of which reveals a distinct protein fold with no homology to any of the known DUBs. The crystal structure of MINDY-1 (also known as FAM63A) in complex with propargylated Ub reveals conformational changes that realign the active site for catalysis. MINDY-1 prefers cleaving long polyUb chains and works by trimming chains from the distal end. Collectively, our results reveal a new family of DUBs that may have specialized roles in regulating proteostasis.", "In our manuscript we describe the cutaneous manifestations of a rare condition termed Adenopathy and Extensive Skin Patch Overlying Plasmacytoma (AESOP) syndrome. We emphasize the importance of clinically following and subsequently removing the osteolytic tumor to make the diagnosis.", "Author information:(1)Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore.(2)Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore; School of Life Sciences, Xiamen University, Xiamen 361102, China.(3)Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore.(4)Division of iHOPE, Department of Pediatrics, Faculty of Medicine and Dentistry, Women and Children's Research Institute and Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2N8, Canada.(5)Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.(6)Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore; Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610, Singapore.(7)School of Life Sciences, Xiamen University, Xiamen 361102, China.(8)Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore. Electronic address: phayuv@nus.edu.sg.", "Oxygen based neurotransmitters in the synapses of the brain are proposed to play an important role in the generation of consciousness. They include the amino acids glutamate and GABA which use Krebs cycle precursors for their synthesis, and the monoamines dopamine, noradrenalin, adrenalin and serotonin, which are derived from tyrosine and tryptophan. During ischemia after an acute brain injury, a GABA surge often initiates brain suppression. It has been proposed that with chronic ischemia, a secondary, possibly epigenetic response occurs when neurotransmitters deplete, a glucose and oxygen saving mechanism termed neurodormancy that may invoke alternative long term low energy metabolic pathways in the brain, encountered in Disorders of Consciousness. Some medications can reverse Disorders of Consciousness in some patients. Virtually all of them act on neurotransmitter systems that use oxygen as a building block or as an energy source within the brain. Pharmaceuticals that act in the oxygen based amino acid systems of the brain include the GABAergic medications zolpidem and baclofen, while those that act in the monoamine axes include the dopaminergic medications L Dopa, amantadine, bromocriptine, apomorphine and methylphenidate, and the noradrenergic and serotonergic medications desipramine, amitriptyline, protriptyline and fluoxetine. Another group are the cholinesterase inhibitors, responsible for increasing acetylcholine, which is synthesized from the Krebs cycle initiator, acetyl CoA. It appears that pharmaceuticals that are active in the oxygen based neurotransmitter pathways of the brain are successful to arouse to consciousness patients that suffer from its disorders. Research needs to be supported as foundation to understand the biochemical mechanisms that are involved in consciousness disorders and to explore further the pharmacological treatment possibilities for these devastating neurological conditions.", "Deciding appropriate therapy for multiple myeloma (MM) is challenging because of the occurrence of multiple chromosomal changes and the fatal nature of the disease. In the current study, gamabufotalin (GBT) was isolated from toad venom, and its tumor-specific cytotoxicity was investigated in human MM cells. We found GBT inhibited cell growth and induced apoptosis with the IC50 values <50 nM. Mechanistic studies using functional approaches identified GBT as an inhibitor of c-Myc. Further analysis showed that GBT especially evoked the ubiquitination and degradation of c-Myc protein, thereby globally repressing the expression of c-Myc target genes. GBT treatment inhibited ERK and AKT signals, while stimulating the activation of JNK cascade. An E3 ubiquitin-protein ligase, WWP2, was upregulated following JNK activation and played an important role in c-Myc ubiquitination and degradation through direct protein-protein interaction. The antitumor effect of GBT was validated in a xenograft mouse model and the suppression of MM-induced osteolysis was verified in a SCID-hu model in vivo. Taken together, our study identified the potential of GBT as a promising therapeutic agent in the treatment of MM." ]
1,795
[ "OBJECTIVES: Plasminogen activator inhibitor-1 (PAI-1), a crucial regulator of fibrinolysis, is increased in sepsis, but its values in predicting disease severity or mortality outcomes have been controversial. Therefore, we conducted a systematic review and meta-analysis of its predictive values in sepsis.METHODS: PubMed and Embase were searched until August 18, 2017 for studies that evaluated the relationships between PAI-1 levels and disease severity or mortality in sepsis.RESULTS: A total of 112 and 251 entries were retrieved from the databases, of which 18 studies were included in the final meta-analysis. A total of 4,467 patients (36% male, mean age: 62 years, mean follow-up duration: 36 days) were analyzed. PAI-1 levels were significantly higher in non-survivors than survivors [odds ratios (OR): 3.93, 95% confidence interval (CI): 2.31-6.67, P < 0.0001] and in patients with severe sepsis than in those less severe sepsis (OR: 3.26, 95% CI: 1.37-7.75, P = 0.008).CONCLUSION: PAI-1 is a significant predictor of disease severity and all-cause mortality in sepsis. Although the predictive values of PAI-1 reached statistical significance, the clinical utility of PAI-1 in predicting outcomes will require carefully designed prospective trials.", "The γ subunit of the major histocompatibility complex (MHC) class II complex, CD74, is overexpressed in a significant proportion of metastatic breast tumors, but the mechanistic foundation and biologic significance of this phenomenon are not fully understood. Here, we show that when CD74 is overexpressed in human cancer and noncancerous epithelial cells, it interacts and interferes with the function of Scribble, a product of a well-known tumor suppressor gene. Furthermore, using epithelial cell lines expressing CD74 under the control of tetracycline-inducible promoter and quantitative high-resolution mass spectrometry, we demonstrate that, as a result of CD74 overexpression, the phosphorylation pattern of the C-terminal part of Scribble undergoes specific changes. This is accompanied with a translocation of the protein from the sites of cell-to-cell contacts at the plasma membrane to the cytoplasm, which is likely to effectively enhance the motility and invasiveness of the cancer cells.", "MOTIVATION: Statistically assessing the relation between a set of genomic regions and other genomic features is a common challenging task in genomic and epigenomic analyses. Randomization based approaches implicitly take into account the complexity of the genome without the need of assuming an underlying statistical model.SUMMARY: regioneR is an R package that implements a permutation test framework specifically designed to work with genomic regions. In addition to the predefined randomization and evaluation strategies, regioneR is fully customizable allowing the use of custom strategies to adapt it to specific questions. Finally, it also implements a novel function to evaluate the local specificity of the detected association.AVAILABILITY AND IMPLEMENTATION: regioneR is an R package released under Artistic-2.0 License. The source code and documents are freely available through Bioconductor (http://www.bioconductor.org/packages/regioneR).CONTACT: rmalinverni@carrerasresearch.org.", "Depending on symptom severity, psychopharmacological treatment can be a valuable option in the treatment of depressive disorders in childhood and adolescence. This review provides recommendations for clinical treatment, focusing on suicidality and treatment-resistant patients. The quality of studies regarding the psychopharmacological therapy of depressive disorders in childhood and adolescence has improved since the «black box» warning of the FDA concerning the occurrence of suicidality under treatment with selective serotonin reuptake inhibitors (SSRIs). In Germany, there is proof for a trend toward a more evidence-based psychopharmacological treatment approach within recent years.", "Anaplastic lymphoma kinase (ALK) and ROS1 rearrangements define important molecular subgroups of advanced non-small cell lung cancer (NSCLC). The identification of these genetic driver alterations created new potential for highly active therapeutic interventions. After discovery of ALK rearrangements in NSCLC, it was recognized that these confer sensitivity to ALK inhibition. Areas covered: Crizotinib, the first-in-class ALK/ROS1/MET inhibitor, was initially approved as second-line treatment of ALK-positive advanced NSCLC but after this, it was firmly established as the standard first-line therapy for advanced ALK-positive NSCLC. After initial response to crizotinib, tumors inevitably relapse. Next-generation ALK inhibitors, more potent and brain-penetrable than crizotinib, may be effective in re-inducing remissions when cancers are still addicted to ALK. Ceritinib and alectinib are approved for metastatic ALK positive NSCLC patients, while brigatinib received granted accelerated approval by the United States Food and Drug Administration. Regarding ROS1 rearrangement, to date crizotinib is the only ALK-tyrosine kinase inhibitor receiving indication as treatment of ROS1 positive advanced NSCLC. Expert commentary: Although novel ALK-inhibitors are under clinical investigation compared to crizotinib as front-line treatment for ALK-positive NSCLC, nowadays the current standard first-line therapy for these patients is crizotinib. Further research will clarify the best management of ALK-positive NSCLC, above all who progress on first-line crizotinib.", "Subdural empyema represents loculated infection between the outermost layer of the meninges, the dura, and the arachnoid. The empyema may develop intracranially or in the spinal canal. Intracranial subdural empyema is most frequently a complication of sinusitis or, less frequently, otitis or neurosurgical procedures. Spinal subdural empyema is rare and may result from hematogenous infection or spread of infection from osteomyelitis. The most common organisms in intracranial subdural empyema are anaerobic and microaerophilic streptococci, in particular those of the Streptococcus milleri group (S. milleri and Streptococcus anginosus). Staphylococcus aureus is present in a minority of cases, and multiple additional organisms, including Gram-negative organisms, such as Escherichia coli, and anaerobic organisms, such as Bacteroides, may be present. Pseudomonas aeruginosa or Staphylococcus epidermidis may be present in cases related to neurosurgical procedures, and Salmonella species have been detected in patients with advanced AIDS; multiple organisms may be present simultaneously. Spinal subdural empyemas are almost invariably caused by streptococci or by S. aureus. Subdural empyema--whether it occurs in the skull or the spinal canal--may cause rapid compression of the brain or spinal cord, and represents an extreme medical and neurosurgical emergency. The diagnostic procedure of choice for intracranial and spinal subdural empyema is MRI with gadolinium enhancement. Computed tomography scan may miss intracranial subdural empyemas detectable by MRI. Conversely, occasion spinal subdural empyemas may be detected by CT myelography where MRI is negative. Treatment in virtually all cases of intracranial or spinal subdural empyema requires prompt surgical drainage and antibiotic therapy. Pus from the empyema should always be sent for anaerobic, as well as aerobic, culture. Because intracranial subdural empyemas may contain multiple organisms, provisional antibiotic therapy of intracranial subdural empyema, where the organism is unknown, should be directed against S. aureus, microaerophilic and anaerobic streptococci, and Gram-negative organisms. Antibiotics should include 1) nafcillin, oxacillin, or vancomycin; plus 2) a third generation cephalosporin; plus 3) metronidazole. Provisional antibiotic therapy of spinal subdural empyemas should be directed against S. aureus and streptococci, and should include nafcillin, oxacillin, or vancomycin. Morbidity and mortality in intracranial and spinal subdural empyema relate directly to the delay in institution of therapy. Both conditions should, thus, be treated with great urgency.", "Large conductance, calcium-activated potassium (maxiK) channels are expressed in nerve, muscle, and other cell types and are important determinants of smooth muscle tone. To determine the mechanisms involved in the transcriptional regulation of maxiK channels, we characterized the promoter regions of the pore forming (alpha) and regulatory (beta) subunits of the human channel complex. Maximum promoter activity (up to 12.3-fold over control) occurred between nucleotides -567 and -220 for the alpha subunit (hSlo) gene. The minimal promoter is GC-rich with 5 Sp-1 binding sites and several TCC repeats. Other transcription factor-binding motifs, including c/EBP, NF-kB, PU.1, PEA-3, Myo-D, and E2A, were observed in the 5'-flanking sequence. Additionally, a CCTCCC sequence, which increases the transcriptional activity of the SM1/2 gene in smooth muscle, is located 27 bp upstream of the TATA-like sequence, a location identical to that found in the SM1/2 5'-flanking region. However, the promoter directed equivalent expression when transfected into smooth muscle and other cell types. Analysis of the hSlo beta subunit 5'-flanking region revealed a TATA box at position -77 and maximum promoter activity (up to 11.0-fold) in a 200 bp region upstream from the cap site. Binding sites for GATA-1, Myo-D, c-myb, Ets-1/Elk-1, Ap-1, and Ik-2 were identified within this sequence. Two CCTCCC elements are present in the hSlo beta subunit promoter, but tissue-specific transcriptional activity was not observed. The lack of tissue-specific promoter activity, particularly the finding of promoter activity in cells from tissues in which the maxiK gene is not expressed, suggests a complex channel regulatory mechanism for hSlo genes. Moreover, the lack of similarity of the promoters of the two genes suggests that regulation of coordinate expression of the subunits does not occur through equivalent cis-acting sequences." ]
1,799
[ "BACKGROUND: Everolimus, an orally administered rapamycin analogue, inhibits the mammalian target of rapamycin (mTOR), a highly conserved intracellular serine-threonine kinase that is a central node in a network of signaling pathways controlling cellular metabolism, growth, survival, proliferation, angiogenesis, and immune function. Everolimus has demonstrated substantial clinical benefit in randomized, controlled, phase III studies leading to approval for the treatment of advanced renal cell carcinoma, advanced neuroendocrine tumors of pancreatic origin, renal angiomyolipoma and subependymal giant-cell astrocytoma associated with tuberous sclerosis complex, as well as advanced hormone-receptor-positive (HR(+)) and human epidermal growth factor receptor-2-negative advanced breast cancer.MATERIALS AND METHODS: We discuss clinically relevant everolimus-related adverse events from the phase III studies, including stomatitis, noninfectious pneumonitis, rash, selected metabolic abnormalities, and infections, with focus on appropriate clinical management of these events and specific considerations in patients with breast cancer.RESULTS: The majority of adverse events experienced during everolimus therapy are of mild to moderate severity. The safety profile and protocols for toxicity management are well established. The class-effect adverse event profile observed with everolimus plus endocrine therapy in breast cancer is (as expected) distinct from that of endocrine therapy alone, but is similar to that observed with everolimus in other solid tumors. Information gained from the experience in other carcinomas on prompt diagnosis and treatments to optimize drug exposure, treatment outcomes, and patients' quality of life also applies to the patient population with advanced breast cancer.CONCLUSIONS: As with all orally administered agents, education of both physicians and patients in the management of adverse events for patients receiving everolimus is critical to achieving optimal exposure and clinical benefit. Active monitoring for early identification of everolimus-related adverse events combined with aggressive and appropriate intervention should lead to a reduction in the severity and duration of the event.", "Depressed patients suffer from cognitive dysfunction, including memory deficits. Acute serotonin (5-HT) depletion impairs memory and mood in vulnerable patients. The investigational multimodal acting antidepressant vortioxetine is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, 5-HT1B receptor partial agonist, 5-HT1A receptor agonist and 5-HT transporter (SERT) inhibitor that enhances memory in normal rats in novel object recognition (NOR) and conditioned fear (Mørk et al., 2013). We hypothesized that vortioxetine's 5-HT receptor mechanisms are involved in its memory effects, and therefore investigated these effects in 5-HT depleted rats. Four injections of the irreversible tryptophan hydroxylase inhibitor 4-chloro-dl-phenylalanine methyl ester hydrochloride (PCPA, 86mg/kg, s.c.) induced 5-HT depletion, as measured in hippocampal homogenate and microdialysate. The effects of acute challenge with vortioxetine or the 5-HT releaser fenfluramine on extracellular 5-HT were measured in PCPA-treated and control rats. PCPA's effects on NOR and spontaneous alternation (SA) performance were assessed along with the effects of acute treatment with 5-hydroxy-l-tryptophan (5-HTP), vortioxetine, the selective 5-HT reuptake inhibitor escitalopram, or the 5-HT norepinephrine reuptake inhibitor duloxetine. SERT occupancies were estimated by ex vivo autoradiography. PCPA depleted central 5-HT by >90% in tissue and microdialysate, and impaired NOR and SA performance. Restoring central 5-HT with 5-HTP reversed these deficits. At similar SERT occupancies (>90%) vortioxetine, but not escitalopram or duloxetine, restored memory performance. Acute fenfluramine significantly increased extracellular 5-HT in control and PCPA-treated rats, while vortioxetine did so only in control rats. Thus, vortioxetine restores 5-HT depletion impaired memory performance in rats through one or more of its receptor activities.", "We previously described a modification of the whole genome PCR method which allowed us to characterize several genes whose expression is regulated by thyroid hormone in the mouse liver. Following this procedure, we now report the identification of the mitochondrial NADH dehydrogenase subunit 3 (ND3) gene as target of thyroid hormone. ND3 gene expression is regulated by thyroid hormone in rat brain and heart. Sequencing and electrophoretic mobility shift assays confirmed the presence of a thyroid hormone receptor (TR)/c-erbA specific binding site in the mitochondrial ND3 gene. Hypothyroidism decreases ND3 mRNA levels in several brain areas such as cortex and hippocampus during the early postnatal development. In line with the recent findings showing the presence of TR/c-erbA alpha and beta proteins inside the mitochondria, our results suggest the possibility of direct transcriptional regulation of mitochondrial genes by thyroid hormone.", "BACKGROUND: There is a great deal of controversy surrounding the relationship between alcohol consumption and insulin resistance. This association may be further confounded by the presence of obesity. We aimed to clarify whether regular alcohol consumption improves insulin resistance in healthy Japanese men and whether obesity affects this relationship.METHODS: We examined 1029 men (ages 24 to 87 y) who had undergone medical checkups. They were divided into non-obese (body mass index (BMI) <25 kg/m(2)) or obese subjects (BMI > or =25 kg/m(2)) and further classified into non-regular drinkers (NRD), moderate drinkers (MD; 1-6 days/week), and daily drinkers (DD; 7 days/week). The homeostasis model assessment of insulin resistance (HOMA-IR) and other cardiac risk factors were compared between the groups.RESULTS: In both non-obese and obese men, alcohol consumption decreased HOMA-IR in a dose-dependent manner, although HOMA-IR was about 2 times greater in obese men compared to non-obese men in any category (p<0.001). Stepwise logistic regression analysis revealed that alcohol consumption was the independent negative risk factor for HOMA-IR [OR, 0.576 (95% C.I. 0.402-0.824), p=0.003] after adjusting for age, BMI, systolic blood pressure, smoking status, LDL-cholesterol, HDL-cholesterol, and liver dysfunction.CONCLUSIONS: Regular alcohol consumption improves insulin resistance in healthy Japanese men independent of obesity.", "The encapsulation of otherwise transcribable loci within transcriptionally inactive heterochromatin is rapidly gaining recognition as an important mechanism of epigenetic gene regulation. In the fission yeast Schizosaccharomyces pombe, heterochromatinization of the mat2/mat3 loci silences the mating-type information encoded within these loci. Here, we present the solution structure of the chromo domain from the cryptic loci regulator protein Clr4. Clr4 is known to regulate silencing and switching at the mating-type loci and to affect chromatin structure at centromeres. Clr4 and its human and Drosophila homologs have been identified as histone H3-specific methyltransferases, further implicating this family of proteins in chromatin remodeling. Our structure highlights a conserved surface that may be involved in chromo domain-ligand interactions. We have also analyzed two chromo domain mutants (W31G and W41G) that previously were shown to affect silencing and switching in full-length Clr4. Both mutants are significantly destabilized relative to wild-type.", "Initiation of X chromosome inactivation requires the presence, in cis, of the X inactivation center (XIC). The Xist gene, which lies within the XIC region in both human and mouse and has the unique property of being expressed only from the inactive X chromosome in female somatic cells, is known to be essential for X inactivation based on targeted deletions in the mouse. Although our understanding of the developmental regulation and function of the mouse Xist gene has progressed rapidly, less is known about its human homolog. To address this and to assess the cross-species conservation of X inactivation, a 480-kb yeast artificial chromosome containing the human XIST gene was introduced into mouse embryonic stem (ES) cells. The human XIST transcript was expressed and could coat the mouse autosome from which it was transcribed, indicating that the factors required for cis association are conserved in mouse ES cells. Cis inactivation as a result of human XIST expression was found in only a proportion of differentiated cells, suggesting that the events downstream of XIST RNA coating that culminate in stable inactivation may require species-specific factors. Human XIST RNA appears to coat mouse autosomes in ES cells before in vitro differentiation, in contrast to the behavior of the mouse Xist gene in undifferentiated ES cells, where an unstable transcript and no chromosome coating are found. This may not only reflect important species differences in Xist regulation but also provides evidence that factors implicated in Xist RNA chromosome coating may already be present in undifferentiated ES cells.", "Prions are units of propagation of an altered state of a protein or proteins; prions can propagate from organism to organism, through cooption of other protein copies. Prions contain no necessary nucleic acids, and are important both as both pathogenic agents, and as a potential force in epigenetic phenomena. The original prions were derived from a misfolded form of the mammalian Prion Protein PrP. Infection by these prions causes neurodegenerative diseases. Other prions cause non-Mendelian inheritance in budding yeast, and sometimes act as diseases of yeast. We report the bioinformatic construction of the PrionHome, a database of >2000 prion-related sequences. The data was collated from various public and private resources and filtered for redundancy. The data was then processed according to a transparent classification system of prionogenic sequences (i.e., sequences that can make prions), prionoids (i.e., proteins that propagate like prions between individual cells), and other prion-related phenomena. There are eight PrionHome classifications for sequences. The first four classifications are derived from experimental observations: prionogenic sequences, prionoids, other prion-related phenomena, and prion interactors. The second four classifications are derived from sequence analysis: orthologs, paralogs, pseudogenes, and candidate-prionogenic sequences. Database entries list: supporting information for PrionHome classifications, prion-determinant areas (where relevant), and disordered and compositionally-biased regions. Also included are literature references for the PrionHome classifications, transcripts and genomic coordinates, and structural data (including comparative models made for the PrionHome from manually curated alignments). We provide database usage examples for both vertebrate and fungal prion contexts. Using the database data, we have performed a detailed analysis of the compositional biases in known budding-yeast prionogenic sequences, showing that the only abundant bias pattern is for asparagine bias with subsidiary serine bias. We anticipate that this database will be a useful experimental aid and reference resource. It is freely available at: http://libaio.biol.mcgill.ca/prion.", "Patients with Duchenne muscular dystrophy (DMD) tend to bleed more during surgery than do patients with other conditions. A retrospective analysis of blood loss after spinal surgery for scoliosis was therefore undertaken in 102 patients undergoing surgery in the senior author's unit. These included 48 patients with DMD, 26 patients with spinal muscular atrophy, and a miscellaneous group of 28 other patients most of whom had idiopathic scoliosis. For each patient the age at surgery, estimated blood volume, duration of operation, Cobb angle, and number of vertebrae fused were recorded and compared. Expression of dystrophin in skeletal muscle and the underlying gene mutation were also determined. The estimated blood loss in patients with DMD was significantly higher than that in patients with spinal muscular atrophy undergoing the same or similar procedure (P < 0.005) and was also significantly greater than that of the third group, which consisted mostly of patients with idiopathic scoliosis (P < 0.0005). Blood loss in the patient group with DMD showed a significant relationship with duration of surgery (P < 0.05). As most patients expressed no dystrophin, this did not correlate with the estimated blood loss. There was also no correlation between the estimated blood loss and the type of gene mutation found causing DMD. The authors' previous observations confirm the increased blood loss in patients with DMD who undergo scoliosis surgery. Because children with DMD lack dystrophin in all muscle types, including smooth muscle, the excessive blood loss may be because of a poor vascular smooth muscle vaso-constrictive response due to a lack of dystrophin.", "Several neurodegenerative diseases such as transmissible spongiform encephalopathies, Alzheimer's and Parkinson's diseases are caused by the conversion of cellular proteins to a pathogenic conformer. Despite differences in the primary structure and subcellular localization of these proteins, which include the prion protein, α-synuclein and amyloid precursor protein (APP), striking similarity has been observed in their ability to seed and convert naïve protein molecules as well as transfer between cells. This review aims to cover what is known about the intracellular trafficking of these proteins as well as their degradation mechanisms and highlight similarities in their movement through the endocytic pathway that could contribute to the pathogenic conversion and seeding of these proteins which underlies the basis of these diseases.", "Prions are proteins most commonly associated with fatal neurodegenerative diseases in mammals but are also responsible for a number of harmless heritable phenotypes in yeast. These states arise when a misfolded form of a protein appears and, rather than be removed by cellular quality control mechanisms, persists. The misfolded prion protein forms aggregates and is capable of converting normally folded protein to the misfolded state through direct interaction between the two forms. The dominant mathematical model for prion aggregate dynamics has been the nucleated polymerization model (NPM) which considers the dynamics of only the normal protein and the aggregates. However, for yeast prions the molecular chaperone Hsp104 is essential for prion propagation. Further, although mammals do not express Hsp104, experimental assays have shown Hsp104 also interacts with mammalian prion aggregates. In this study, we generalize the NPM to account for molecular chaperones and develop what we call the enzyme-limited nucleated polymerization model (ELNPM). We discuss existence, uniqueness and stability of solutions to our model and demonstrate that the NPM represents a quasi-steady-state reduction of our model. We validate the ELNPM by demonstrating agreement with experimental results on the yeast prion PSI(+) that could not be supported by the NPM. Finally, we demonstrate that, in contrast to the NPM, the ELNPM permits the coexistence of multiple prion strains.", "Prions are self-propagating infectious protein isoforms. A growing number of prions have been identified in yeast, each resulting from the conversion of soluble proteins into an insoluble amyloid form. These yeast prions have served as a powerful model system for studying the causes and consequences of prion aggregation. Remarkably, a number of human proteins containing prion-like domains, defined as domains with compositional similarity to yeast prion domains, have recently been linked to various human degenerative diseases, including amyotrophic lateral sclerosis. This suggests that the lessons learned from yeast prions may help in understanding these human diseases. In this review, we examine what has been learned about the amino acid sequence basis for prion aggregation in yeast, and how this information has been used to develop methods to predict aggregation propensity. We then discuss how this information is being applied to understand human disease, and the challenges involved in applying yeast prediction methods to higher organisms.", "The combined use of electrospray ionization run in so-called \"native mode\" with top-down mass spectrometry (nTDMS) is enhancing both structural biology and discovery proteomics by providing three levels of information in a single experiment: the intact mass of a protein or complex, the masses of its subunits and non-covalent cofactors, and fragment ion masses from direct dissociation of subunits that capture the primary sequence and combinations of diverse post-translational modifications (PTMs). While intact mass data are readily deconvoluted using well-known software options, the analysis of fragmentation data that result from a tandem MS experiment - essential for proteoform characterization - is not yet standardized. In this tutorial, we offer a decision-tree for the analysis of nTDMS experiments on protein complexes and diverse bioassemblies. We include an overview of strategies to navigate this type of analysis, provide example data sets, and highlight software for the hypothesis-driven interrogation of fragment ions for localization of PTMs, metals, and cofactors on native proteoforms. Throughout we have emphasized the key features (deconvolution, search mode, validation, other) that the reader can consider when deciding upon their specific experimental and data processing design using both open-access and commercial software.", "Focusing on three Anglo-American outbreaks of industrial anthrax, this essay engages the question of how local circumstances influenced the transmission of scientific knowledge in the late nineteenth century. Walpole (Massachusetts), Glasgow, and Bradford (Yorkshire) served as important nodes of transnational investigation into anthrax. Knowledge about the morphology and behavior of Bacillus anthracis changed little while in transit between these nodes, even during complex debates about the nature of bacterial morphology, disease causation, and spontaneous generation. Working independently of their more famous counterparts (Robert Koch and Louis Pasteur), Anglo-American anthrax investigators used visual representations of anthrax bacilli to persuade their peers that a specific, identifiable cause produced all forms of anthrax-malignant pustule (cutaneous anthrax), intestinal anthrax, and woolsorter's disease (pneumonic anthrax). By the late 1870s, this point of view also supported what we would today call an ecological notion of the disease's origins in the interactions of people, animals, and microorganisms in the context of global commerce.", "MOTIVATION: In the evolution of species, a kind of special sequences, termed ultraconserved sequences (UCSs), have been inherited without any change, which strongly suggests those sequences should be crucial for the species to survive or adapt to the environment. However, the UCSs are still regarded as mysterious genetic sequences so far. Here, we present a systematic study of ultraconserved genomic regions in the budding yeast based on the publicly available genome sequences, in order to reveal their relationship with the adaptability or fitness advantages of the budding yeast.RESULTS: Our results indicate that, in addition to some fundamental biological functions, the UCSs play an important role in the adaptation of Saccharomyces cerevisiae to the acidic environment, which is backed up by the previous observation. Besides that, we also find the highly unchanged genes are enriched in some other pathways, such as the nutrient-sensitive signaling pathway. To facilitate the investigation of unique UCSs, the UCSC Genome Browser was utilized to visualize the chromosomal position and related annotations of UCSs in S.cerevisiae genome.AVAILABILITY AND IMPLEMENTATION: For more details on UCSs, please refer to the Supplementary information online, and the custom code is available on request.CONTACT: fgao@tju.edu.cn.SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.", "BACKGROUND: Aberrant overexpression of Bcl-2 protein has been detected in 80% of nasopharyngeal carcinoma (NPC), and Bcl-2 family proteins are implicated in both NPC oncogenesis and chemotherapy resistance. Previous studies have shown that while treatment of NPC cells with Bcl-2 family inhibitors alone is rarely effective, concomitant treatment with a cytotoxic reagent such as cisplatin can increase efficacy through a synergistic effect. The aim of the current work was to determine how we might increase the efficacy of Bcl-2 family inhibitors in the absence of cytotoxic reagents, which are associated with negative side effect profiles.METHODS: We assessed cell proliferation in Bcl-2 high-expressing NPC cells by CCK-8 assay after treatment with the Bcl-2 inhibitor ABT-199 and/or the Mcl-1 inhibitor S63845. Apoptotic induction by ABT-199 was evaluated by Annexin V-FITC and PI double staining. We also evaluated Bcl-2 family protein expression (Bim, Mcl-1, Bcl-xL, Noxa) after treatment with ABT-199 by western blotting. Finally, xenografted Balb/c nude mice were used to test ABT-199 efficacy in vivo, H&E and immunohistochemistry assay were used to analyze tumor samples.RESULTS: ABT-199 effectively induced NPC cell apoptosis in vitro and in the xenograft model. Following ABT-199 treatment in NPC cells, upregulation of Mcl-1 and Bcl-xL can lead to drug resistance, while concomitant Noxa overexpression partially neutralized the Mcl-1-caused resistance. Given that ABT-199 induces apoptosis in NPC cells through the Bcl-2/Noxa/Mcl-1 axis, treatment avenues further targeting this pathway should be promising. Indeed, the newly developed Mcl-1 inhibitor S63845 in combination with ABT-199 had a synergistic effect on NPC cell apoptosis.CONCLUSION: Bcl-2 inhibition in NPC cells with ABT-199 triggers apoptosis through the Bcl-2/Noxa/Mcl-1 axis, and dual inhibition of the anti-apoptotic Bcl-2 family proteins Bcl-2 and Mcl-1 provided a strong synergistic effect without the need for adjunctive cytotoxic agent treatment with cisplatin.", "Antiresorptive agents for treating postmenopausal osteoporosis include selective estrogen receptor modulator (SERM), bisphosphonates and denoumab. Teriparatide is the only Food and Drug Administration-approved anabolic agent. Synergistic effects of combining teriparatide with an antiresorptive agent have been proposed and studied. This article reviews the trial designs and the outcomes of combination therapies. Results of the combination therapy for teriparatide and bisphosphonates were mixed; while small increases of bone density were observed in the combination therapy of teriparatide and estrogen/SERM and that of teriparatide and denosumab. Those clinical studies were limited by small sample sizes and lack of fracture outcomes.", "The concept of immunotherapy of cancer is more than a century old, but only recently have molecularly defined therapeutic approaches been developed. In this review, we focus on the most promising approach, active therapeutic vaccination. The identification of tumour antigens can now be accelerated by methods allowing the amplification of gene products selectively or preferentially transcribed in the tumour. However, determining the potential immunogenicity of such gene products remains a demanding task, since major histocompatibility complex (MHC) restriction of T cells implies that for any newly defined antigen, immunogenicity will have to be defined for any individual MHC haplotype. Tumour-derived peptides eluted from MHC molecules of tumour tissue are also a promising source of antigen. Tumour antigens are mostly of weak immunogenicity, because the vast majority are tumour-associated differentiation antigens already 'seen' by the patient's immune system. Effective therapeutic vaccination will thus require adjuvant support, possibly by new approaches to immunomodulation such as bispecific antibodies or antibody-cytokine fusion proteins. Tumour-specific antigens, which could be a more potent target for immunotherapy, mostly arise by point mutations and have the disadvantage of being not only tumour-specific, but also individual-specific. Therapeutic vaccination will probably focus on defined antigens offered as protein, peptide or nucleic acid. Irrespective of the form in which the antigen is applied, emphasis will be given to the activation of dendritic cells as professional antigen presenters. Dendritic cells may be loaded in vitro with antigen, or, alternatively, initiation of an immune response may be approached in vivo by vaccination with RNA or DNA, given as such or packed into attenuated bacteria. The importance of activation of T helper cells has only recently been taken into account in cancer vaccination. Activation of cytotoxic T cells is facilitated by the provision of T helper cell-derived cytokines. T helper cell-dependent recruitment of elements of non-adaptive defence, such as leucocytes, natural killer cells and monocytes, is of particular importance when the tumour has lost MHC class I expression. Barriers to successful therapeutic vaccination include: (i) the escape mechanisms developed by tumour cells in response to immune attack; (ii) tolerance or anergy of the evoked immune response; (iii) the theoretical possibility of provoking an autoimmune reaction by vaccination against tumour-associated antigens; and (iv) the advanced age of many patients, implying reduced responsiveness of the senescent immune system.", "OBJECTIVE: To determine whether rheumatoid arthritis (RA) is associated with increased adverse obstetric or neonatal outcomes.STUDY DESIGN AND SETTING: Washington State birth records and hospital discharge data between 1987 and 2001 identified a cohort of women with rheumatoid arthritis and a comparison group of women without rheumatoid arthritis. Pregnancy and neonatal outcomes were compared using general linear models for common outcomes, calculating approximate relative risks and 95% confidence intervals.RESULTS: There were 243 women with rheumatoid arthritis and 2,559 controls. Infants of women with rheumatoid arthritis had increased risk of cesarean delivery (adjusted approximate relative risk, aRR=1.66, 95% CI (1.22, 2.26)), prematurity (aRR=1.78, 95% CI (1.21, 2.60)), and longer birth hospitalization (aRR=1.86, 95% CI (1.32, 2.60)) compared to those born to women without rheumatoid arthritis.CONCLUSIONS: We speculate that the increased risks for cesarean delivery, prematurity, and longer hospitalization at birth among infants born to women with rheumatoid arthritis may be due to the pathophysiologic changes associated with rheumatoid arthritis or medications used to treat the disease.", "Prion diseases or transmissible spongiform encephalopathies are fatal neurodegenerative diseases characterized by the aggregation and deposition of the misfolded prion protein in the brain. α-synuclein (α-syn)-associated multiple system atrophy has been recently shown to be caused by a bona fide α-syn prion strain. Several other misfolded native proteins such as β-amyloid, tau and TDP-43 share some aspects of prions although none of them is shown to be transmissible in nature or in experimental animals. However, these prion-like \"prionoids\" are causal to a variety of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The remarkable recent discovery of at least two new α-syn prion strains and their transmissibility in transgenic mice and in vitro cell models raises a distinct question as to whether some specific strain of other prionoids could have the capability of disease transmission in a manner similar to prions. In this overview, we briefly describe human and other mammalian prion diseases and comment on certain similarities between prion and prionoid and the possibility of prion-like transmissibility of some prionoid strains.", "INTRODUCTION: Prion diseases are protein conformation disorders and neither caused by viroid or virus but is a transmissible particle labeled a prion by Pruisner. Normal prion protein becomes infectious by a different folding, but the triggers are not known. Based on the characteristic brain pathology, they are grouped under spongiform encephalopathy affecting both man and animals. Estimated prevalence is one per million. Creutzfeldt-Jakob disease (CJD) registry from National Institute and Neurosciences (NIMHANS), Bengaluru, reported 69 cases in 30 years.PATIENT AND METHODS: Patients seen by our team from December 2011 to October 2015 who satisfied criteria for probable CJD were evaluated for clinical, electrophysiological, radiological, and demographic factors. None of them underwent histopathological examination of brain tissue or tonsils. Cerebrospinal fluid protein 14-3-3 was not done. All of them were followed up by telephonic inquiry for the course of the illness. All of them received symptomatic medications with anticonvulsants, flupirtine 200 mg orally daily, and other symptomatic medications.RESULTS: Sporadic CJD is the most common form seen in India and is probably under reported. males seem to be more affected, and the mean duration for the bed bound state is 12 months. Drugs were only effective for a very brief period in controlling myoclonus and behavior.DISCUSSION: Sporadic CJD is one of the most common and rapidly fatal forms of dementia in India. Cortical ribboning and periodic complexes are the most common laboratory findings. Familial CJD is a very rare occurrence and variant CJD is probably not prevalent.CONCLUSION: All patients with rapidly progressive dementia should be handled with biohazard precautions unless proved otherwise. Role of alcohol and smoking in the transformation of PrPc to PrPsc needs to be evaluated.", "Activation of mammalian target of rapamycin complex 1 (mTORC1) by amino acids is mediated in part by the Rag GTPases, which bind the raptor subunit of mTORC1 in an amino acid-stimulated manner and promote mTORC1 interaction with Rheb-GTP, the immediate activator. Here we examine whether the ability of amino acids to regulate mTORC1 binding to Rag and mTORC1 activation is due to the regulation of Rag guanyl nucleotide charging. Rag heterodimers in vitro exhibit a very rapid, spontaneous exchange of guanyl nucleotides and an inability to hydrolyze GTP. Mutation of the Rag P-loop corresponding to Ras(Ser-17) abolishes guanyl nucleotide binding. Such a mutation in RagA or RagB inhibits, whereas in RagC or RagD it enhances, Rag heterodimer binding to mTORC1. The binding of wild-type and mutant Rag heterodimers to mTORC1 in vitro parallels that seen with transient expression, but binding to mTORC1 in vitro is entirely independent of Rag guanyl nucleotide charging. HeLa cells stably overexpressing wild-type or P-loop mutant RagC exhibit unaltered amino acid regulation of mTORC1. Despite amino acid-independent raptor binding to Rag, mTORC1 is inhibited by amino acid withdrawal as in parental cells. Rag heterodimers extracted from (32)P-labeled whole cells, or just from the pool associated with the lysosomal membrane, exhibit constitutive [(32)P]GTP charging that is unaltered by amino acid withdrawal. Thus, amino acids promote mTORC1 activation without altering Rag GTP charging. Raptor binding to Rag, although necessary, is not sufficient for mTORC1 activation. Additional amino acid-dependent steps couple Rag-mTORC1 to Rheb-GTP.", "BACKGROUND: Chronic inflammation in periodontal disease has been suggested as a potential risk factor in Alzheimer's disease (AD). The purpose of this study was to examine serum antibody levels to bacteria of periodontal disease in participants who eventually converted to AD compared with the antibody levels in control subjects.METHODS: Serum samples from 158 participants in the Biologically Resilient Adults in Neurological Studies research program at the University of Kentucky were analyzed for immunoglobulin G antibody levels to seven oral bacteria associated with periodontitis, including Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Campylobacter rectus, Treponema denticola, Fusobacterium nucleatum, Tannerella forsythia, and Prevotella intermedia. All 158 participants were cognitively intact at baseline venous blood draw. In all, 81 of the participants developed either mild cognitive impairment (MCI) or AD or both, and 77 controls remained cognitively intact in the years of follow-up. Antibody levels were compared between controls and subjects with AD at baseline draw and after conversion and controls and subjects with MCI at baseline draw and after conversion using the Wilcoxon rank-sum test. AD and MCI participants were not directly compared. Linear regression models were used to adjust for potential confounding.RESULTS: Antibody levels to F nucleatum and P intermedia were significantly increased (α = 0.05) at baseline serum draw in the patients with AD compared with controls. These results remained significant when controlling for baseline age, Mini-Mental State Examination score, and apolipoprotein epsilon 4 status.CONCLUSIONS: This study provides initial data that demonstrate elevated antibodies to periodontal disease bacteria in subjects years before cognitive impairment and suggests that periodontal disease could potentially contribute to the risk of AD onset/progression. Additional cohort studies profiling oral clinical presentation with systemic response and AD and prospective studies to evaluate any cause-and-effect association are warranted.", "The neoplastic proliferation of single clones of plasma cells causes synthesis of very large amount of monoclonal immunoglobulins consisting of only one type of heavy either the gamma, alpha, mu, delta or epsilon chain or only kappa or lambda light chains. Each monoclonal immunolobulin differs idiotypically from each other. These monoclonal immunoglobulins are also called paraproteins and are frequently associated with a broad heterogeneous group of plasma cell dyscrasias. Occasionally their presence is observed in a few benign conditions and in old age. In the present review a detailed account of different types of monoclonal gammapathies are described.", "INTRODUCTION: Alemtuzumab is a humanized IgG1 kappa monoclonal antibody approved for treatment of B-cell chronic lymphocytic leukemia. This cytolytic antibody is directed against CD52 and depletes lymphocytes, with monocytes, macrophages, natural killer cells and a subpopulation of granulocytes being affected to a much lesser degree. Alemtuzumab is currently under review to treat relapsing multiple sclerosis (MS) in the United States, based on positive Phase II and Phase III trials in both treatment-naïve and treated relapsing MS patients. There was excellent efficacy in suppressing both clinical and neuroimaging disease activities. In these trials, the comparator arm was not placebo, but high dose frequently dosed subcutaneous interferon beta 1a. Alemtuzumab has recently been approved by the European authorities for active relapsing MS, in essence as a first-line agent. It produces long-standing effects, consistent with an induction agent. Efficacy will have to be weighed against risk of adverse effects, which include autoimmune disorders and infection. Alemtuzumab joins an increasingly crowded market, and will add to the complexity of treating MS.AREAS COVERED: This review will discuss alemtuzumab as a therapy for MS, reviewing PubMed for clinical trials, publications and presentations at international meetings. It will focus on a United States market perspective.EXPERT OPINION: Alemtuzumab offers induction strategy for very active relapsing MS patients who have failed conventional therapy, and possibly selected treatment-naive patients. Alemtuzumab use is likely to be restricted to specialized MS centers, with long-term monitoring to determine the true risk for adverse effects." ]
1,804
[ "Author information:(1)Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel.(2)Melanoma Institute Australia, Sydney, New South Wales, Australia.(3)Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.(4)National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA.(5)National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA.(6)Institute of Biochemistry, Food Science and Nutrition, Hebrew University, Rehovot, Israel.(7)Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel.(8)QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.(9)Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.(10)Centre for Cancer Research, Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia.(11)Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.", "Proper regulation of chondrocyte differentiation is necessary for the morphogenesis of skeletal elements, yet little is known about the molecular regulation of this process. A chicken homolog of Indian hedgehog (Ihh), a member of the conserved Hedgehog family of secreted proteins that is expressed during bone formation, has now been isolated. Ihh has biological properties similar to those of Sonic hedgehog (Shh), including the ability to regulate the conserved targets Patched (Ptc) and Gli. Ihh is expressed in the prehypertrophic chondrocytes of cartilage elements, where it regulates the rate of hypertrophic differentiation. Misexpression of Ihh prevents proliferating chondrocytes from initiating the hypertrophic differentiation process. The direct target of Ihh signaling is the perichondrium, where Gli and Ptc flank the expression domain of Ihh. Ihh induces the expression of a second signal, parathyroid hormone-related protein (PTHrP), in the periarticular perichondrium. Analysis of PTHrP (-/-) mutant mice indicated that the PTHrP protein signals to its receptor in the prehypertrophic chondrocytes, thereby blocking hypertrophic differentiation. In vitro application of Hedgehog or PTHrP protein to normal or PTHrP (-/-) limb explants demonstrated that PTHrP mediates the effects of Ihh through the formation of a negative feedback loop that modulates the rate of chondrocyte differentiation.", "Sex chromosome meiotic drive has been suggested as a cause of several evolutionary genetic phenomena, including genomic conflicts that give rise to reproductive isolation between new species. In this paper we present a population genetic analysis of X chromosome drive in the stalk-eyed fly, Teleopsis dalmanni, to determine how this natural polymorphism influences genetic diversity. We analyzed patterns of DNA sequence variation at two X-linked regions (comprising 1325 bp) approximately 50 cM apart and one autosomal region (comprising 921 bp) for 50 males, half of which were collected in the field from one of two allopatric locations and the other half were derived from lab-reared individuals with known brood sex ratios. These two populations are recently diverged but exhibit partial postzygotic reproductive isolation, i.e. crosses produce sterile hybrid males and fertile females. We find no nucleotide or microsatellite variation on the drive X chromosome, whereas the same individuals show levels of variation at autosomal regions that are similar to field-collected flies. Furthermore, one field-caught individual collected 10 years previously had a nearly identical X haplotype to the drive X, and is over 2% divergent from other haplotypes sampled from the field. These results are consistent with a selective sweep that has removed genetic variation from much of the drive X chromosome. We discuss how this finding may relate to the rapid evolution of postzygotic reproductive isolation that has been documented for these flies.", "BACKGROUND: Heart rate reduction (HRR) improves left ventricular (LV) filling, increases myocardial O2 supply, and reduces myocardial O2 consumption, which are all beneficial in congestive heart failure (CHF). However, the long-term effects of HRR on cardiac function and remodeling are unknown.METHODS AND RESULTS: We assessed, in rats with CHF, the effects of long-term HRR induced by the selective I(f) current inhibitor ivabradine (as food admix for 90 days starting 7 days after coronary artery ligation). To assess intrinsic modifications of LV tissue induced by long-term HRR, all parameters were reassessed 3 days after interruption of treatment. Ivabradine decreased heart rate over the 90-day treatment period (-18% versus untreated at 10 mg x kg(-1) x d(-1)), without modifying blood pressure, LV end-diastolic pressure, or dP/dt(max/min). Ivabradine significantly reduced LV end-systolic but not end-diastolic diameter, which resulted in preserved cardiac output due to increased stroke volume. In the Langendorff preparation, ivabradine shifted LV systolic but not end-diastolic pressure-volume relations to the left. Ivabradine decreased LV collagen density and increased LV capillary density without modifying LV weight. Three days after interruption of treatment, the effects of ivabradine on LV geometry, shortening, and stroke volume persisted despite normalization of heart rate.CONCLUSIONS: In rats with CHF, long-term HRR induced by the selective I(f) inhibitor ivabradine improves LV function and increases stroke volume, preserving cardiac output despite the HRR. The improvement of cardiac function is related not only to the HRR per se but also to modifications in the extracellular matrix and/or function of myocytes as a consequence of long-term HRR.", "Coronavirus disease 2019 (COVID-19) has spread in more than 100 countries and regions around the world, raising grave global concerns. COVID-19 has a similar pattern of infection, clinical symptoms, and chest imaging findings to influenza pneumonia. In this retrospective study, we analysed clinical and chest CT data of 24 patients with COVID-19 and 79 patients with influenza pneumonia. Univariate analysis demonstrated that the temperature, systolic pressure, cough and sputum production could distinguish COVID-19 from influenza pneumonia. The diagnostic sensitivity and specificity for the clinical features are 0.783 and 0.747, and the AUC value is 0.819. Univariate analysis demonstrates that nine CT features, central-peripheral distribution, superior-inferior distribution, anterior-posterior distribution, patches of GGO, GGO nodule, vascular enlargement in GGO, air bronchogram, bronchiectasis within focus, interlobular septal thickening, could distinguish COVID-19 from influenza pneumonia. The diagnostic sensitivity and specificity for the CT features are 0.750 and 0.962, and the AUC value is 0.927. Finally, a multivariate logistic regression model combined the variables from the clinical variables and CT features models was made. The combined model contained six features: systolic blood pressure, sputum production, vascular enlargement in the GGO, GGO nodule, central-peripheral distribution and bronchiectasis within focus. The diagnostic sensitivity and specificity for the combined features are 0.87 and 0.96, and the AUC value is 0.961. In conclusion, some CT features or clinical variables can differentiate COVID-19 from influenza pneumonia. Moreover, CT features combined with clinical variables had higher diagnostic performance.", "Nonconvulsive status epilepticus (NCSE) is common in patients with coma with a prevalence between 5% and 48%. Patients in deep coma may exhibit epileptiform EEG patterns, such as generalized periodic spikes, and there is an ongoing debate about the relationship of these patterns and NCSE. The purposes of this review are (i) to discuss the various EEG patterns found in coma, its fluctuations, and transitions and (ii) to propose modified criteria for NCSE in coma. Classical coma patterns such as diffuse polymorphic delta activity, spindle coma, alpha/theta coma, low output voltage, or burst suppression do not reflect NCSE. Any ictal patterns with a typical spatiotemporal evolution or epileptiform discharges faster than 2.5 Hz in a comatose patient reflect nonconvulsive seizures or NCSE and should be treated. Generalized periodic diacharges or lateralized periodic discharges (GPDs/LPDs) with a frequency of less than 2.5 Hz or rhythmic discharges (RDs) faster than 0.5 Hz are the borderland of NCSE in coma. In these cases, at least one of the additional criteria is needed to diagnose NCSE (a) subtle clinical ictal phenomena, (b) typical spatiotemporal evolution, or (c) response to antiepileptic drug treatment. There is currently no consensus about how long these patterns must be present to qualify for NCSE, and the distinction from nonconvulsive seizures in patients with critical illness or in comatose patients seems arbitrary. The Salzburg Consensus Criteria for NCSE [1] have been modified according to the Standardized Terminology of the American Clinical Neurophysiology Society [2] and validated in three different cohorts, with a sensitivity of 97.2%, a specificity of 95.9%, and a diagnostic accuracy of 96.3% in patients with clinical signs of NCSE. Their diagnostic utility in different cohorts with patients in deep coma has to be studied in the future. This article is part of a Special Issue entitled \"Status Epilepticus\".", "Strains of Porphyromonas gingivalis, a periodontopathic bacterium, are classified into six genotypic variants based on nucleotide sequence differences in the fimA gene encoding FimA. A PCR assay using primer sets specific for each genotype has demonstrated that the most predominant fimA genotype in periodontitis patients is type II, which is now commonly referred to as the periodontitis-associated fimA genotype of P. gingivalis. However, the potential for false type II fimA positives caused by cross-hybridization of type II fimA-specific primers with type Ib fimA has complicated the genotyping. A previous study developed new primers that specifically amplified only the DNA fragment of type II fimA. The aim of the present study was to assess the prevalence of P. gingivalis fimA genotypes in Korean adults and to reconfirm the relationship between type II fimA and periodontitis using the new primers. Among 412 Korean adults, P. gingivalis was detected in 97.5 % of patients and 57.8 % of healthy subjects. Type II fimA was the most widely distributed type among healthy and periodontitis subjects. Organisms with types II, Ib and IV fimA had a significant frequency of occurrence in periodontitis subjects. Statistical analysis, however, revealed that a more significant correlation was found between periodontitis and the occurrence of type Ib fimA." ]
1,810
[ "Targeted enrichment of conserved and ultraconserved genomic elements allows universal collection of phylogenomic data from hundreds of species at multiple time scales (<5 Ma to > 300 Ma). Prior to downstream inference, data from these types of targeted enrichment studies must undergo preprocessing to assemble contigs from sequence data; identify targeted, enriched loci from the off-target background data; align enriched contigs representing conserved loci to one another; and prepare and manipulate these alignments for subsequent phylogenomic inference. PHYLUCE is an efficient and easy-to-install software package that accomplishes these tasks across hundreds of taxa and thousands of enriched loci.AVAILABILITY AND IMPLEMENTATION: PHYLUCE is written for Python 2.7. PHYLUCE is supported on OSX and Linux (RedHat/CentOS) operating systems. PHYLUCE source code is distributed under a BSD-style license from https://www.github.com/faircloth-lab/phyluce/ PHYLUCE is also available as a package (https://binstar.org/faircloth-lab/phyluce) for the Anaconda Python distribution that installs all dependencies, and users can request a PHYLUCE instance on iPlant Atmosphere (tag: phyluce). The software manual and a tutorial are available from http://phyluce.readthedocs.org/en/latest/ and test data are available from doi: 10.6084/m9.figshare.1284521.CONTACT: brant@faircloth-lab.orgSUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.", "BACKGROUND AND STUDY AIMS: With the success of peroral endoscopic myotomy (POEM) in treatment of achalasia, its successful application to other spastic esophageal motility disorders such as Jackhammer esophagus has been noted. The question of whether the lower esophageal sphincter (LES) should be included in the myotomy for Jackhammer esophagus is a topic of current debate. Here, we report our experience and results with four patients with Jackhammer esophagus treated with POEM. The clinical and manometric results are presented and their potential implications are discussed.PATIENTS AND METHODS: Between January 2014 and July 2015, four patients underwent POEM for treatment of Jackhammer esophagus at our center. Manometry was performed prior to and after POEM. All patients met the Chicago classification criteria for Jackhammer esophagus and received a barium esophagram and endoscopic examination before having POEM.RESULTS: All patients had uneventful procedures without any intraoperative or post-procedure complications. Patients in which the LES was included during POEM had resolution or significant improvement in symptoms. One patient in whom the LES was preserved had resolution of chest pain but developed significant dysphagia and regurgitation. Subsequently this individual received a repeat POEM which included the LES, resulting in symptom resolution.CONCLUSIONS: POEM is a suitable treatment for patients with Jackhammer esophagus. Until there are larger-scale randomized studies, we speculate that based on our clinical experience and physiologic and manometric observations, obligatory inclusion of the LES is justified to reduce the risk of symptom development from iatrogenic ineffective esophageal motility or subsequent progression to achalasia.", "Acute intermittent porphyria (AIP), an inherited hepatic disorder, is due to a defect of hydroxymethylbilane synthase (HMBS), an enzyme involved in heme biosynthesis. AIP is characterized by recurrent, life-threatening attacks at least partly due to the increased hepatic production of 5-aminolaevulinic acid (ALA). Both the mitochondrial enzyme, ALA synthase (ALAS) 1, involved in the first step of heme biosynthesis, which is closely linked to mitochondrial bioenergetic pathways, and the promise of an ALAS1 siRNA hepatic therapy in humans, led us to investigate hepatic energetic metabolism in Hmbs KO mice treated with phenobarbital. The mitochondrial respiratory chain (RC) and the tricarboxylic acid (TCA) cycle were explored in the Hmbs(-/-) mouse model. RC and TCA cycle were significantly affected in comparison to controls in mice treated with phenobarbital with decreased activities of RC complexes I (-52%, (**)p<0.01), II (-50%, (**)p<0.01) and III (-55%, (*)p<0.05), and decreased activity of α-ketoglutarate dehydrogenase (-64%, (*)p<0.05), citrate synthase (-48%, (**)p<0.01) and succinate dehydrogenase (-53%, (*)p<0.05). Complex II-driven succinate respiration was also significantly affected. Most of these metabolic alterations were at least partially restored after the phenobarbital arrest and heme arginate administration. These results suggest a cataplerosis of the TCA cycle induced by phenobarbital, caused by the massive withdrawal of succinyl-CoA by ALAS induction, such that the TCA cycle is unable to supply the reduced cofactors to the RC. This profound and reversible impact of AIP on mitochondrial energetic metabolism offers new insights into the beneficial effect of heme, glucose and ALAS1 siRNA treatments by limiting the cataplerosis of TCA cycle.", "Excessive reverse-mode (RM) sodium/calcium exchanger 1.1 (NCX1.1) activity, resulting from intracellular sodium accumulation caused by reduced Na+/K+-ATPase activity, increased Na-H exchanger 1 activity. The induction of the voltage-gated sodium channel late current component (late INa), is a major pathway for intracellular calcium (Ca2+i) loading in cardiac ischemia-reperfusion (IR) injury and cardiac glycoside toxicity. Inhibition of late INa with the antianginal agent ranolazine is protective in models of IR injury and cardiac glycoside toxicity. However, whether inhibition of late INa alone is sufficient to provide maximal protection or additional inhibition of RM NCX1.1 provides further benefit remains to be determined conclusively. Therefore, the effects of ranolazine were compared with the INa inhibitor lidocaine in models of IR injury and ouabain toxicity, RM NCX1.1-mediated Ca2+ overload, and patch-clamp assays of RM NCX1.1 currents. Ranolazine and lidocaine (10 μM) similarly reduced Ca2+i overload and improved left ventricle work recovery in whole-heart models of IR injury or exposure to ouabain (80 μM). Ranolazine (10 μM), but not lidocaine (10 μM), reduced RM NCX1.1-mediated Ca2+i overload in ventricular myocytes. Furthermore, ranolazine inhibited RM NCX1.1 currents (IC50 1.7 μM), without affecting forward mode currents, revealing that ranolazine has novel RM NCX1.1 inhibitory actions. However, because lidocaine provides similar protection to ranolazine in whole-heart models but does not inhibit RM NCX1.1, we conclude that induction of late INa is upstream of RM NCX1.1 activity and selective inhibition of late INa alone is sufficient to reduce Ca2+i overload and contractile dysfunction in IR injury and cardiac glycoside toxicity.", "Scarlet fever is one of a variety of diseases caused by group A Streptococcus (GAS). During 2011, a scarlet fever epidemic characterized by peak monthly incidence rates 2.9-6.7 times higher than those in 2006-2010 occurred in Beijing, China. During the epidemic, hospital-based enhanced surveillance for scarlet fever and pharyngitis was conducted to determine characteristics of circulating GAS strains. The surveillance identified 3,359 clinical cases of scarlet fever or pharyngitis. GAS was isolated from 647 of the patients; 76.4% of the strains were type emm12, and 17.1% were emm1. Almost all isolates harbored superantigens speC and ssa. All isolates were susceptible to penicillin, and resistance rates were 96.1% to erythromycin, 93.7% to tetracycline, and 79.4% to clindamycin. Because emm12 type GAS is not the predominant type in other countries, wider surveillance for the possible spread of emm12 type GAS from China to other countries is warranted.", "PURPOSE: The high molecular weight melanoma-associated antigen (HMW-MAA) is an attractive target for immunotherapy of malignant melanoma. We have recently generated a vaccine based on the HMW-MAA mimotope 225D9.2+ that was able to induce anti-HMW-MAA antibodies with antitumor activity in vitro. Here, we investigated the antitumor activity of these antibodies in a human melanoma xenotransplant severe combined immunodeficient (SCID) mouse model.EXPERIMENTAL DESIGN: Tumors were established by injecting the human melanoma 518A2 cells into C.B.17 SCID/SCID mice. In tumor prevention experiments, 200 microg purified total IgG antibodies were injected intravenously the same day or on day 5 in therapeutic experiments. Antibody administration was repeated every fourth day and tumor volumes were measured. Antibody specificity and tumor infiltration by macrophages were investigated by immunohistochemistry.RESULTS: Within 35 days after cell inoculation, antibody treatment reduced tumor growth up to 40% in the therapeutic and up to 62% in the tumor prevention experiments compared with the control mice. In tumors of all groups, a similar distribution of the HMW-MAA and no differences in infiltration of macrophages were detected by immunohistochemistry.CONCLUSIONS: Here, we showed that antibodies induced by the 225D9.2+ mimotope effectively inhibited melanoma tumor growth. Additional mechanisms besides antibody-dependent cell cytotoxicity like disruption of interactions of melanoma cells mediated by extracellular matrix components seem to be involved in tumor growth inhibition. Based on our findings, we suggest that active immunization with this mimotope might be a promising strategy for treatment of melanoma.", "PURPOSE OF REVIEW: Stem cell therapy for treatment of cardiac disease has shown therapeutic potential.RECENT FINDINGS: A number of stem and progenitor populations have been identified for potential use in cardiac repair. Each possesses a unique potency that justifies consideration for use. Autologous, unfractionated bone marrow cells or skeletal myoblasts were used in early clinical trails to evaluate reparative effects on recent or record infarcts. In each case, evidence of limited improvement in cardiac function was obtained. Myoblast grafts were unexpectedly correlated with arrhythmias, thereby identifying a safety issue. The small number of patients and the lack of randomized control groups preclude conclusions regarding efficacy. Randomized controlled, intermediate-sized, double-blind clinical trials must be undertaken to this end.SUMMARY: Cellular therapy may be useful in the treatment of cardiac disease in adults. Appropriate adaptations to meet unique requirements for treatment of pediatric cardiovascular disease may be required. Bone marrow and skeletal myoblasts do not promote true tissue regeneration in spite of observed functional improvement. Trials using cells possessing true potential for (trans)differentiation may elucidate the potential and value of this therapy as a reparative modality. Development of optimal strategies for targeted delivery consistent with pathobiology is of exception clinical relevance." ]
1,812
[ "Long noncoding RNAs (lncRNAs) have gained widespread attention in recent years as a potentially new and crucial layer of biological regulation. lncRNAs of all kinds have been implicated in a range of developmental processes and diseases, but knowledge of the mechanisms by which they act is still surprisingly limited, and claims that almost the entirety of the mammalian genome is transcribed into functional noncoding transcripts remain controversial. At the same time, a small number of well-studied lncRNAs have given us important clues about the biology of these molecules, and a few key functional and mechanistic themes have begun to emerge, although the robustness of these models and classification schemes remains to be seen. Here, we review the current state of knowledge of the lncRNA field, discussing what is known about the genomic contexts, biological functions, and mechanisms of action of lncRNAs. We also reflect on how the recent interest in lncRNAs is deeply rooted in biology's longstanding concern with the evolution and function of genomes.", "OBJECTIVE: Listening to Mozart K.448 has been demonstrated to improve spatial task scores, leading to what is known as the Mozart effect. Our previous work revealed the positive effects of Mozart K.448 in reducing epileptiform discharges in children with epilepsy. However, the mechanism remains unclear. parasympathetic activation has been shown to help seizure control in many studies. In this study, we investigated the effect of Mozart music on epileptiform discharges and autonomic activity.METHODS: Sixty-four epileptic children with epileptiform discharges were included. They all received electroencephalogram and electrocardiogram examinations simultaneously before, during, and after listening to Mozart K.448 or K.545. The total number of epileptiform discharges during each session (before, during, and after music) were divided by the duration (in minutes) of the session and then compared. Heart rate variability including time and frequency domain analysis was used to represent the autonomic function.RESULTS: The results showed that epileptiform discharges were significantly reduced during and right after listening to Mozart music (33.3 ± 31.1% reduction, p<0.001, during Mozart K.448 and 38.6 ± 43.3% reduction, p<0.001, during Mozart K.545) (28.1 ± 43.2% reduction, p<0.001, after Mozart K.448 and 46.0 ± 40.5% reduction, p<0.001, after Mozart K.545). No significant difference was noticed between the two pieces of music. The reduction was greatest in patients with generalized seizures and discharges. Significant increases in high-frequency (HF), the square root of the mean squared differences of successive RR intervals (RMSSD), the standard deviation of differences between adjacent RR intervals (SDSD), and a decrease in mean beats per minute (bpm) were found during listening to Mozart music. Most of the patients with reduced epileptiform discharges also showed a decreased LF/HF ratio, low-frequency normalized units (LF nu), mean bpm, and an increased high-frequency normalized units (HF nu).CONCLUSIONS: Listening to Mozart music decreased epileptiform discharges in children with epilepsy. The majority of these patients showed an increase in parasympathetic tone during music exposure.SIGNIFICANCE: Our results suggested that Mozart music stimuli induced parasympathetic activation which may be involved in the effect of music in reducing epileptiform discharges and the recurrence rate of seizures.", "The mouse embryo is the canonical model for mammalian preimplantation development. Recent advances in single cell profiling allow detailed analysis of embryogenesis in other eutherian species, including human, to distinguish conserved from divergent regulatory programs and signalling pathways in the rodent paradigm. Here, we identify and compare transcriptional features of human, marmoset and mouse embryos by single cell RNA-seq. Zygotic genome activation correlates with the presence of polycomb repressive complexes in all three species, while ribosome biogenesis emerges as a predominant attribute in primate embryos, supporting prolonged translation of maternally deposited RNAs. We find that transposable element expression signatures are species, stage and lineage specific. The pluripotency network in the primate epiblast lacks certain regulators that are operative in mouse, but encompasses WNT components and genes associated with trophoblast specification. Sequential activation of GATA6, SOX17 and GATA4 markers of primitive endoderm identity is conserved in primates. Unexpectedly, OTX2 is also associated with primitive endoderm specification in human and non-human primate blastocysts. Our cross-species analysis demarcates both conserved and primate-specific features of preimplantation development, and underscores the molecular adaptability of early mammalian embryogenesis.", "Processing of NF-kappa B2 precursor protein p100 to generate p52 is tightly regulated. However, this proteolytic event could be actively induced by the NF-kappa B-inducing kinase and the human T-cell leukemia virus-encoded oncoprotein Tax or be constitutively turned on due to the loss of the C-terminal portion of p100. Whereas NF-kappa B-inducing kinase-mediated p100 processing requires beta-transducin repeat-containing protein, constitutive processing of p100 is independent of this protein. On the other hand, Tax-induced processing of p100 appears to be both beta-transducin repeat-containing protein-dependent and -independent. We show here that, besides the C-terminal sequences, multiple functional regions, including the two alpha-helices, dimerization domain, nuclear localization sequence, and glycine-rich region, located in the N terminus of p100, also play important roles in both constitutive and inducible processing, suggesting a common mechanism for p100 processing. We further demonstrate that with the help of the C-terminal death domain and I kappa B kinase alpha-targeting serines, the C-terminal ankyrin-repeat domain of p100 strongly interacts with its N-terminal dimerization domain and nuclear localization sequence, thereby bringing the C- and N-terminal sequences together to form a three-dimensional domain. This presumptive domain is not only responsible for suppression of constitutive processing but also required for inducible processing of p100. Taken together, these studies highlight the mechanism by which the different sequences within p100 work in concert to regulate its processing and shed light on the mechanisms of how p100 processing is tightly and delicately controlled.", "Aneurysmal subarachnoid hemorrhage (SAH) is a neurological emergency with high risk of neurological decline and death. Although the presentation of a thunderclap headache or the worst headache of a patient's life easily triggers the evaluation for SAH, subtle presentations are still missed. The gold standard for diagnostic evaluation of SAH remains noncontrast head computed tomography (CT) followed by lumbar puncture if the CT is negative for SAH. Management of patients with SAH follows standard resuscitation of critically ill patients with the emphasis on reducing risks of rebleeding and avoiding secondary brain injuries.", "Duchenne muscular dystrophy (DMD) is caused mostly by internal deletions in the gene for dystrophin, a protein essential for maintaining muscle cell membrane integrity. These deletions abrogate the reading frame and the lack of dystrophin results in progressive muscle deterioration. DMD patients experience progressive loss of ambulation, followed by a need for assisted ventilation, and eventual death in mid-twenties. By the method of exon skipping in dystrophin pre-mRNA the reading frame is restored and the internally deleted but functional dystrophin is produced. Two oligonucleotide drugs that induce desired exon skipping are currently in advanced clinical trials.", "Scaffolding proteins add a new layer of complexity to the dynamics of cell signaling. Above their basic function to bring several components of a signaling pathway together, recent experimental research has found that scaffolds influence signaling in a much more complex way: scaffolds can exert some catalytic function, influence signaling by allosteric mechanisms, are feedback-regulated, localize signaling activity to distinct regions of the cell or increase pathway fidelity. Here we review experimental and theoretical approaches that address the function of two MAPK scaffolds, Ste5, a scaffold of the yeast mating pathway and KSR1/2, a scaffold of the classical mammalian MAPK signaling pathway. For the yeast scaffold Ste5, detailed mechanistic models have been valuable for the understanding of its function. For scaffolds in mammalian signaling, however, models have been rather generic and sketchy. For example, these models predicted narrow optimal scaffold concentrations, but when revisiting these models by assuming typical concentrations, rather a range of scaffold levels optimally supports signaling. Thus, more realistic models are needed to understand the role of scaffolds in mammalian signal transduction, which opens a big opportunity for systems biology.", "Protein degradation is employed in both regulation and quality control. Regulated degradation of specific proteins is often mediated by discrete regions of primary sequence known as degrons, whereas protein quality control involves recognition of structural features common to damaged or misfolded proteins, rather than specific features of an individual protein. The yeast HMG-CoA reductase isozyme Hmg2p undergoes stringently regulated degradation by machinery that is also required for ER quality control. The 523 residue N-terminal transmembrane domain of Hmg2p is necessary and sufficient for regulated degradation. To understand how Hmg2p undergoes regulated degradation by the ER quality control pathway, we analyzed over 300 mutants of Hmg2p. Regulated degradation of Hmg2p requires information distributed over the entire transmembrane domain. Accordingly, we refer to this determinant as a 'distributed' degron, which has functional aspects consistent with both regulation and quality control. The Hmg2p degron functions in the specific, regulated degradation of Hmg2p and can impart regulated degradation to fusion proteins. However, its recognition is based on dispersed structural features rather than primary sequence motifs. This mode of targeting has important consequences both for the prediction of degradation substrates and as a potential therapeutic strategy for targeted protein degradation using endogenous degradation pathways.", "PDS5B is a sister chromatid cohesion protein that is crucial for faithful segregation of duplicated chromosomes in lower organisms. Mutations in cohesion proteins are associated with the developmental disorder Cornelia de Lange syndrome (CdLS) in humans. To delineate the physiological roles of PDS5B in mammals, we generated mice lacking PDS5B (APRIN). Pds5B-deficient mice died shortly after birth. They exhibited multiple congenital anomalies, including heart defects, cleft palate, fusion of the ribs, short limbs, distal colon aganglionosis, abnormal migration and axonal projections of sympathetic neurons, and germ cell depletion, many of which are similar to abnormalities found in humans with CdLS. Unexpectedly, we found no cohesion defects in Pds5B(-/-) cells and detected high PDS5B expression in post-mitotic neurons in the brain. These results, along with the developmental anomalies of Pds5B(-/-) mice, the presence of a DNA-binding domain in PDS5B in vertebrates and its nucleolar localization, suggest that PDS5B and the cohesin complex have important functions beyond their role in chromosomal dynamics.", "BACKGROUND: Visceral leishmaniasis (VL) is endemic in several areas in the Sudan. The disease is associated with depressed cellular immunity. Tinea versicolor is a normal commensal of the skin which can become pathogenic particularly in patients with depressed cell-mediated immunity. Patients with VL have a high prevalence of tinea versicolor.METHODS: One hundred and thirty patients with parasitologic confirmation of VL were screened for tinea versicolor infection. In the suspected cases the diagnosis was made by demonstrating the fungal hyphae and spores in skin scrapings. All patients were treated with sodium stibogluconate.RESULTS: Of the 130 patients with VL, 10.8% were found to have severe tinea versicolor. The fungal infection developed or became worse with the start of VL. After successful treatment of VL, the tinea lesions disappeared completely or decreased in severity.CONCLUSIONS: Depressed cell-mediated immunity that is a feature of VL is the probable underlying cause for fungal infection. Tinea infection during the course of VL is to be distinguished from lesions of post-kala-azar dermal leishmaniasis.", "Exon skipping is a therapeutic approach for Duchenne muscular dystrophy (DMD) that has been in development for close to two decades. This approach uses antisense oligonucleotides (AONs) to modulate pre-mRNA splicing of dystrophin transcripts to restore the disrupted DMD reading frame. The approach has moved from in vitro proof of concept studies to the clinical trial phase and marketing authorization applications with regulators. The first AON (eteplirsen) has recently received accelerated approval by the Food and Drug Administration in the US. Areas covered: In this review the authors explain the antisense-mediated exon skipping approach, outline how it needs be tailored for different DMD mutation types and describe the challenges and opportunities for each mutation type. The authors summarize the clinical development of antisense-mediated exon 51 skipping, and discuss methods to improve efficiency. Finally, the authors provide their opinion on current developments and identify topics for future prioritization. Expert opinion: Exon skipping development has been a learning experience for all those involved. Aside from an approved therapy, its development has yielded side benefits including the development of tools for clinical trials and has increased collaboration between academics, patients, industry and regulators.", "The HDM2-p53 loop is crucial for monitoring p53 level and human pathologies. Therefore, identification of novel molecules involved in this regulatory loop is necessary for understanding the dynamic regulation of p53 and treatment of human diseases. Here, we characterized that the ribosomal protein L6 binds to and suppresses the E3 ubiquitin ligase activity of HDM2, and subsequently attenuates HDM2-mediated p53 polyubiquitination and degradation. The enhanced p53 activity further slows down cell cycle progression and leads to cell growth inhibition. Conversely, the level of p53 is dramatically decreased upon the depletion of RPL6, indicating that RPL6 is essential for p53 stabilization. We also found that RPL6 translocalizes from the nucleolus to nucleoplasm under ribosomal stress, which facilitates its binding with HDM2. The interaction of RPL6 and HDM2 drives HDM2-mediated RPL6 polyubiquitination and proteasomal degradation. Longer treatment of actinomycin D increases RPL6 ubiquitination and destabilizes RPL6, and thereby putatively attenuates p53 response until the level of L6 subsides. Therefore, RPL6 and HDM2 form an autoregulatory feedback loop to monitor the level of p53 in response to ribosomal stress. Together, our study identifies the crucial function of RPL6 in regulating HDM2-p53 pathway, which highlights the importance of RPL6 in human genetic diseases and cancers.", "BACKGROUND: Ohtahara syndrome is a severe condition with early onset of recurrent unprovoked seizures associated with abnormal electroencephalography and global developmental delay. Folinic acid-responsive seizures are treatable causes of Ohtahara syndrome, which is thought to be due to recessive mutations in the ALDH7A1 gene, resulting in deficiency of antiquitin.METHOD: Here we report a girl with Ohtahara syndrome who exhibited transient folinic acid responsiveness but without evidence of antiquitin dysfunction.RESULTS: She was later found to have a known missense mutation (c.1439 C > T, p.P480 L) in exon 16 of the STXBP1 gene.CONCLUSION: For infants presenting with Ohtahara syndrome with responsiveness to folinic acid and negative antiquitin deficiency analyses, genetic testing for other possible causative genes such as STXBP1 mutation is recommended.", "OBJECTIVE: In prior open-label studies, eteplirsen, a phosphorodiamidate morpholino oligomer, enabled dystrophin production in Duchenne muscular dystrophy (DMD) with genetic mutations amenable to skipping exon 51. The present study used a double-blind placebo-controlled protocol to test eteplirsen's ability to induce dystrophin production and improve distance walked on the 6-minute walk test (6MWT).METHODS: DMD boys aged 7 to 13 years, with confirmed deletions correctable by skipping exon 51 and ability to walk 200 to 400 m on 6 MWT, were randomized to weekly intravenous infusions of 30 or 50 mg/kg/wk eteplirsen or placebo for 24 weeks (n = 4/group). Placebo patients switched to 30 or 50 mg/kg eteplirsen (n=2/group) at week 25; treatment was open label thereafter. All patients had muscle biopsies at baseline and week 48. Efficacy included dystrophin-positive fibers and distance walked on the 6MWT.RESULTS: At week 24, the 30 mg/kg eteplirsen patients were biopsied, and percentage of dystrophin-positive fibers was increased to 23% of normal; no increases were detected in placebo-treated patients (p≤0.002). Even greater increases occurred at week 48 (52% and 43% in the 30 and 50 mg/kg cohorts, respectively), suggesting that dystrophin increases with longer treatment. Restoration of functional dystrophin was confirmed by detection of sarcoglycans and neuronal nitric oxide synthase at the sarcolemma. Ambulation-evaluable eteplirsen-treated patients experienced a 67.3 m benefit compared to placebo/delayed patients (p≤0.001).INTERPRETATION: Eteplirsen restored dystrophin in the 30 and 50 mg/kg/wk cohorts, and in subsequently treated, placebo-controlled subjects. Duration, more than dose, accounted for dystrophin production, also resulting in ambulation stability. No severe adverse events were encountered.", "Ebola virus infection can cause severe hemorrhagic fever with a high mortality in humans. The outbreaks of Ebola viruses in 2014 represented the most serious Ebola epidemics in history and greatly threatened public health worldwide. The development of additional effective anti-Ebola therapeutic agents is therefore quite urgent. In this study, via high throughput screening of Food and Drug Administration-approved drugs, we identified that teicoplanin, a glycopeptide antibiotic, potently prevents the entry of Ebola envelope pseudotyped viruses into the cytoplasm. Furthermore, teicoplanin also has an inhibitory effect on transcription- and replication-competent virus-like particles, with an IC50 as low as 330 nm Comparative analysis further demonstrated that teicoplanin is able to block the entry of Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) envelope pseudotyped viruses as well. Teicoplanin derivatives such as dalbavancin, oritavancin, and telavancin can also inhibit the entry of Ebola, MERS, and SARS viruses. Mechanistic studies showed that teicoplanin blocks Ebola virus entry by specifically inhibiting the activity of cathepsin L, opening a novel avenue for the development of additional glycopeptides as potential inhibitors of cathepsin L-dependent viruses. Notably, given that teicoplanin has routinely been used in the clinic with low toxicity, our work provides a promising prospect for the prophylaxis and treatment of Ebola, MERS, and SARS virus infection.", "We previously conducted a proof of principle; dose escalation study in Duchenne muscular dystrophy (DMD) patients using the morpholino splice-switching oligonucleotide AVI-4658 (eteplirsen) that induces skipping of dystrophin exon 51 in patients with relevant deletions, restores the open reading frame and induces dystrophin protein expression after intramuscular (i.m.) injection. We now show that this dystrophin expression was accompanied by an elevated expression of α-sarcoglycan, β-dystroglycan (BDG) and--in relevant cases--neuronal nitric oxide synthase (nNOS) at the sarcolemma, each of which is a component of a different subcomplex of the dystrophin-associated glycoprotein complex (DAPC). As expected, nNOS expression was relocalized to the sarcolemma in Duchenne patients in whom the dystrophin deletion left the nNOS-binding domain (exons 42-45) intact, whereas this did not occur in patients with deletions that involved this domain. Our results indicate that the novel internally deleted and shorter dystrophin induced by skipping exon 51 in patients with amenable deletions, can also restore the dystrophin-associated complex, further suggesting preserved functionality of the newly translated dystrophin.", "The gray platelet syndrome is a hereditary, usually autosomal recessive bleeding disorder caused by a deficiency of alpha granules in platelets. We detected a nonsense mutation in the gene encoding the transcription factor GFI1B (growth factor independent 1B) that causes autosomal dominant gray platelet syndrome. Both gray platelets and megakaryocytes had abnormal marker expression. In addition, the megakaryocytes had dysplastic features, and they were abnormally distributed in the bone marrow. The GFI1B mutant protein inhibited nonmutant GFI1B transcriptional activity in a dominant-negative manner. Our studies show that GFI1B, in addition to being causally related to the gray platelet syndrome, is key to megakaryocyte and platelet development.", "AVI-4658 is a phosphorodiamidate morpholino oligomer (PMO) designed to induce skipping of dystrophin exon 51 and restore its expression in patients with Duchenne muscular dystrophy (DMD). Preclinically, restoration of dystrophin in the dystrophic mdx mouse model requires skipping of exon 23, achieved with the mouse-specific PMO, AVI-4225. Herein, we report the potential toxicological consequences of exon skipping and dystrophin restoration in mdx mice using AVI-4225. We also evaluated the toxicological effects of AVI-4658 in both mdx and wild-type mice. In both studies, animals were dosed once weekly for 12 weeks up to the maximum feasible dose of 960 mg/kg per injection. Both AVI-4658 and AVI-4225 were well-tolerated at all doses. Findings in AVI-4225-treated animals were generally limited to mild renal tubular basophilia/vacuolation, without any significant changes in renal function and with evidence of reversing. No toxicity associated with the mechanism of action of AVI-4225 in a dystrophic animal was observed.", "Integrin trafficking, including internalization, recycling, and lysosomal degradation, is crucial for the regulation of cellular functions. Exosomes, nano-sized extracellular vesicles, are believed to play important roles in intercellular communications. This study demonstrates that exosomes released from human macrophages negatively regulate endothelial cell migration through control of integrin trafficking. Macrophage-derived exosomes promote internalization of integrin β1 in primary HUVECs. The internalized integrin β1 persistently accumulates in the perinuclear region and is not recycled back to the plasma membrane. Experimental results indicate that macrophage-derived exosomes stimulate trafficking of internalized integrin β1 to lysosomal compartments with a corresponding decrease in the integrin destined for recycling endosomes, resulting in proteolytic degradation of the integrin. Moreover, ubiquitination of HUVEC integrin β1 is enhanced by the exosomes, and exosome-mediated integrin degradation is blocked by bafilomycin A, a lysosomal degradation inhibitor. Macrophage-derived exosomes were also shown to effectively suppress collagen-induced activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and HUVEC migration, which are both dependent on integrin β1. These observations provide new insight into the functional significance of exosomes in the regulation of integrin trafficking.", "The need for safe and effective vaccines to reduce morbidity and mortality caused by rotavirus gastroenteritis in children is well-known. A live attenuated monovalent rotavirus vaccine (Rotarix) containing human rotavirus strain RIX4414 of G1P1A P[8] specificity is being developed to meet the global need. An overview of RIX4414 trials in developed and developing settings is presented for 3 selected trials conducted in Finland (pilot study), Latin America (Brazil, Mexico and Venezuela) and Singapore involving 5024 infants. The vaccine was well-tolerated, with no increase in any solicited symptoms as compared with the placebo. After 2 doses, 61-91% of vaccinated infants developed rotavirus-specific IgA antibodies. There was no interference with immunogenicity of coadministered routine pediatric vaccines. Rotarix significantly reduced rotavirus gastroenteritis episodes and rotavirus-related hospitalizations in vaccinated infants compared with placebo recipients (P < 0.05). Vaccine efficacy was observed against severe rotavirus gastroenteritis caused by G1 and non-G1 types including the emerging G9 type (P < 0.05) in Latin America. These results show prospects for widespread use of Rotarix to reduce rotavirus disease burden and warrant continued worldwide evaluation.", "The expression of catecholamine-synthesizing enzymes in the adrenal medulla is upregulated in parallel by stress and pharmacological treatments. In this study we examined whether a neuropeptide and its processing enzyme are regulated in parallel with catecholamine enzyme genes after drug treatment. Because the main effect of stress on the adrenal medulla is via splanchnic nerve stimulation of nicotinic receptors, we used nicotine to stimulate the medulla and visualized expression of catecholamine enzyme genes, the medullary peptide neuropeptide Y (NPY), and the neuropeptide-processing enzyme peptidylglycine alpha-amidating monooxygenase (PAM) by in situ hybridization quantified by image analysis of autoradiographic images. Rats received a single injection of nicotine (0, 1, or 5 mg/kg sc). Six hours later, rats were transcardially perfused. Free-floating adrenal gland sections were hybridized with 35S-labeled cDNA probes for tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT), PAM, and NPY. Nicotine treatment upregulated the expression of TH, PNMT, and NPY genes in a dose-dependent fashion. Small but nonsignificant increases were observed in DBH and PAM mRNA levels. These results suggest that common transcriptional activation mechanisms may upregulate both catecholamine and neuropeptide synthesis in the adrenal medulla after nicotinic stimulation.", "PURPOSE OF REVIEW: The most encouraging recent advances regarding pharmacological agents for treating Duchenne muscular dystrophy (DMD) are summarized. Emphasis is given to compounds acting downstream of dystrophin, the protein lacking in DMD, on cellular pathways leading to pathological consequences. The author highlights the progress that may have the greatest potential for clinical use in DMD.RECENT FINDINGS: Modifying the transcripts of the mutated gene by exon skipping has led to expression of shortened dystrophins in DMD patients. Currently, the most promising potential drugs are the exon-skipping agents eteplirsen and drisapersen. Biglycan and SMTC1100 upregulate utrophin. The steroid receptor modulating compounds VBP15 and tamoxifen, and specific antioxidants appear promising agents for symptomatic therapy.SUMMARY: The past 18 months have seen a strong increase in the number of exciting reports on novel therapeutic agents for DMD. Exon-skipping agents have been fine-tuned to improve tissue delivery and stability. Impressive discoveries regarding pathogenic events in cellular signalling have revealed targets that were unknown in the context of DMD, thus enabling approaches that limit inflammation, fibrosis and necrosis. The targets are nuclear hormone receptors, NADPH-oxidases and Ca channels. Inhibition of NF-KB, transforming growth factor-alpha (TGF-α) and transforming growth factor-beta (TGF-β)/myostatin production or action are also promising routes in counteracting the complex pathogenesis of DMD.", "The motivation of this research is to establish a system of target genomic DNA capture and enrichment, which could be used in deep sequencing of target regions with next-generation sequencing. To design the 120 bp capture probes (baits) and prepare the SureSelect reagents, 2,414,977 bp human genomic sequence of 11,824 exons in 1250 genes were submitted to the Agilent eArray platform and manufactured by Agilent. Two human genomic DNA samples were used and conducted the successive experiments for sequencing library construction: shearing fragmentation by sonication, blunt-ending and phosphorylation, adaptor ligation, 150-200 bp fragments size selection, followed by hybridization with the baits, hybrid selection with magnetic beads, and PCR amplification. Prior to SOLiD sequencing reaction, the libraries were amplified with emulsion PCR and enriched with the P2 enrichment beads. The library samples were loaded to sequencing Chip for Work Flow Analysis (WFA) or sequencing running with default parameters. The results displayed that 46 509 baits were designed and synthesized for 11,147 gene regions, and SureSelect capture probe regent was prepared. Real-time PCR showed the target enrichment efficiency up to 2(9) times with the SureSelect system. WFA revealed that the libraries were suitable for SOLiD Sequencing. The sequencing data revealed that 70% of the unique mapped sequence tags matched the target regions, and the average coverage of the target regions were above 200-fold. All these demonstrated the feasibility of the established system of target genome sequence capture for next generation DNA sequencing.", "BACKGROUND: Drug patch tests (PTs) can reproduce delayed hypersensitivity to drugs and entail a moderate re-exposure of patients to offending drugs.OBJECTIVES: To determine the value of PTs for identifying the responsible drug in severe cutaneous adverse drug reactions (SCARs) such as acute generalized exanthematous pustulosis (AGEP), drug reaction with eosinophilia and systemic symptoms (DRESS) and Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN).METHODS: In a multicentre study, PTs were conducted on patients referred for DRESS, AGEP or SJS/TEN within 1 year of their SCAR. All drugs administered in the 2 months prior to and the week following the onset of the SCAR were tested.RESULTS: Among the 134 patients included (48 male, 86 female; mean age 51·7 years), positive drug PTs were obtained for 24 different drugs. These included positive tests for 64% (46/72) of patients with DRESS, 58% (26/45) of those with AGEP and 24% (4/17) of those with SJS/TEN, with only one relapse of AGEP. The value of PTs depended on the type of drug and the type of SCAR (e.g. carbamazepine was positive in 11/13 DRESS cases but none of the five SJS/TEN cases). PTs were frequently positive for beta lactams (22 cases), pristinamycin (11 cases) and in DRESS with pump proton inhibitors (five cases), but were usually negative for allopurinol and salazopyrin. Of 18 patients with DRESS, eight had virus reactivation and positive PTs. In DRESS, multiple drug reactivity was frequent (18% of cases), with patients remaining sensitized many years later.CONCLUSIONS: PTs are useful and safe for identifying agents inducing SCAR.", "Restoration of the open reading frame of the DMD gene and dystrophin protein production in Duchenne muscular dystrophy (DMD) can be achieved by exon skipping using antisense oligomers (AOs) targeted to splicing elements. Several such RNA-based gene therapy approaches are in clinical development in which all studies to date have assessed AO efficacy by semiquantitative nested reverse-transcription polymerase chain reaction (RT-PCR). Precise evaluation of dystrophin protein levels is complex and hindered by the large size and low abundance of dystrophin; thus an accurate and standardized measurement of DMD exon skipping at the RNA level remains important to assess and compare patient responses in DMD exon skipping clinical trials. Here we describe the development of a Taqman quantitative (q)RT-PCR assay to quantify exon skipping and highlight its use to determine the levels of exon skipping in DMD patients treated intramuscularly with a morpholino AO to skip exon 51, eteplirsen (AVI-4658). The muscle biopsies of these patients were previously thoroughly characterized, providing a valuable benchmark for the evaluation of novel methodology. We demonstrate that levels of dystrophin protein restoration, and thus patient response, correlate accurately with the RNA level. Furthermore, this sensitive assay detects revertant exon 51 skipped fibers in untreated biopsies, providing an important baseline to precisely quantify treatment success. This study represents the first quantitative assessment of exon skipping in a clinical trial setting. We present a standardized and reproducible method to assess patient response that will complement protein studies in future preclinical and clinical exon skipping-based gene therapy studies for DMD.", "A limited number of overexpressed transcription factors are associated with cancer progression in many types of cancer. BTB and CNC homology 1 (BACH1) is the first mammalian heme-binding transcription factor that belongs to the basic region leucine zipper (bZIP) family and a member of CNC (cap 'n' collar). It forms heterodimers with the small musculoaponeurotic fibrosarcoma (MAF) proteins and stimulates or suppresses the expression of target genes under a very low intracellular heme concentration. It possesses a significant regulatory role in heme homeostasis, oxidative stress, cell cycle, apoptosis, angiogenesis, and cancer metastasis progression. This review discusses the current knowledge about how BACH1 regulates cancer metastasis in various types of cancer and other carcinogenic associated factors such as oxidative stress, cell cycle regulation, apoptosis, and angiogenesis. Overall, from the reported studies and outcomes, it could be realized that BACH1 is a potential pharmacological target for discovering new therapeutic anticancer drugs.", "We report the first case of McLeod syndrome (MLS) in a 47-year-old Chinese man who presented with progressive limb weakness, chorea of feet, red blood cell acanthocytosis, absence of Kx red blood cell antigen and weak expression of Kell antigens. The diagnosis of MLS was confirmed by genetic testing showing a hemizygous mutation of XK gene. We review literature on neuroacanthocytosis in the Chinese population.", "BACKGROUND AND OBJECTIVE: A common adverse effect of niacin therapy is flushing, manifested by cutaneous warmth, redness, itching and/or tingling. The Flushing ASsessment Tool (FAST) was developed to assess flushing symptoms and their impact on patients receiving niacin therapy. This study evaluated the reliability, validity and responsiveness of the FAST. The minimal important difference (MID) of the FAST was also examined.METHODS: This was a prospective, randomized, double-blind, placebo-controlled, parallel-group 8-week study conducted to evaluate the psychometric characteristics of the FAST. The instrument is administered daily using an electronic patient diary. The study was conducted at 41 clinical sites in the US. 276 patients with dyslipidaemia were randomized to treatment and were at least 18 years of age, with fasting laboratory values of low-density lipoprotein cholesterol (LDL-C) <250 mg/dL and one of the following: high-density lipoprotein cholesterol (HDL-C) <40 mg/dL for males or <50 mg/dL for females; or triglycerides (TG) > or = 150 and < or = 400 mg/dL; or LDL-C > or = 70 mg/dL for patients with a history of coronary heart disease (CHD) or CHD risk equivalents, or > or = 100 mg/dL for subjects with two risk factors, or > or = 160 mg/dL for subjects with 0-1 risk factors. Patients were randomized (1 : 1 : 1) to receive niacin extended-release (NER) 500 mg/day in week 1, 1000 mg/day in week 2 and 2000 mg/day in weeks 3-6/aspirin (acetylsalicylic acid [ASA]), NER/ASA placebo, or NER placebo/ASA placebo.RESULTS: FAST test-retest reliability in stable patients during the first 2 weeks was demonstrated for overall flushing severity using patient and physician overall treatment effect (OTE) ratings (intraclass correlation coefficients of >0.7 for mean overall and individual flushing severity scores). Over the 6-week treatment period, FAST scores demonstrated significant correlations with individual symptoms, impact on daily activities and sleep, and dissatisfaction related to flushing (p < 0.01). Changes in FAST scores were associated with treatment satisfaction (p < 0.01) and patient- and physician-rated OTE (p < 0.01). Using patient-rated OTE, the mean maximum flushing severity scores improved 1.85 points in responders and only 0.18 points in non-responders (p < 0.001); responders were defined by improved patient- or physician-rated OTE. Among patients with flushing, mean maximum overall flushing scores differed between patients who subsequently discontinued due to flushing (7.9 points) and those who did not discontinue (4.7 points; p < 0.001). The probable range in this study for a detectable change in flushing symptoms (MID) was 0.29-0.38 points for mean flushing severity and 0.66-0.86 points for maximum flushing severity.CONCLUSION: The FAST exhibited test-retest reliability, good evidence of construct validity, and, overall, flushing severity was responsive to change over time. The FAST is a reliable and valid instrument for assessing the impact of niacin-induced flushing in patients with dyslipidaemia.", "Neural progenitors of the Drosophila larval brain, called neuroblasts, can be divided into distinct populations based on patterns of proliferation and differentiation. Type I neuroblasts produce ganglion mother cells (GMCs) that divide once to produce differentiated progeny, while type II neuroblasts produce self-renewing intermediate neural progenitors (INPs) and thus generate lineages containing many more progeny. We identified Taranis (Tara) as an important determinant of type I lineage-specific neural progenitor proliferation patterns. Tara is an ortholog of mammalian SERTAD proteins that are known to regulate cell cycle progression. Tara is differentially-expressed in neural progenitors, with high levels of expression in proliferating type I neuroblasts but no detectable expression in type II lineage INPs. Tara is necessary for cell cycle reactivation in quiescent neuroblasts and for cell cycle progression in type I lineages. Cell cycle defects in tara mutant neuroblasts are due to decreased activation of the E2F1/Dp transcription factor complex and delayed progression through S-phase. Mis-expression of tara in type II lineages delays INP cell cycle progression and induces premature differentiation of INPs into GMCs. Premature INP differentiation can also be induced by loss of E2F1/Dp function and elevated E2F1/Dp expression suppresses Tara-induced INP differentiation. Our results show that lineage-specific Tara expression is necessary for proper brain development and suggest that distinct cell cycle regulatory mechanisms exist in type I versus type II neural progenitors.", "Germline silencing of transposable elements is essential for the maintenance of genome integrity. Recent results indicate that this repression is largely achieved through a RNA silencing pathway that involves Piwi-interacting RNAs (piRNAs). However the repressive mechanisms are not well understood. To address this question, we used the possibility to disrupt the repression of the Drosophila I element retrotransposon by hybrid dysgenesis. We show here that the repression of the functional I elements that are located in euchromatin requires proteins of the piRNA pathway, and that the amount of ovarian I element piRNAs correlates with the strength of the repression in the female germline. Antisense RNAs, which are likely used to produce antisense piRNAs, are transcribed by heterochromatic defective I elements, but efficient production of these antisense small RNAs requires the presence in the genome of euchromatic functional I elements. Finally, we demonstrate that the piRNA-induced silencing of the functional I elements is at least partially posttranscriptional. In a repressive background, these elements are still transcribed, but some of their sense transcripts are kept in nurse cell nuclear foci together with those of the Doc retrotransposon. In the absence of I element piRNAs, either in dysgenic females or in mutants of the piRNA silencing pathway, sense I element transcripts are transported toward the oocyte where retrotransposition occurs. Our results indicate that piRNAs are involved in a posttranscriptional gene-silencing mechanism resulting in RNA nuclear accumulation.", "Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in the nuclear envelope (NE), through which exchange of molecules between the nucleus and cytosol occurs. Biogenesis of NPCs is complex and poorly understood. In particular, almost nothing is known about how NPCs are anchored in the NE. Here, we characterize vertebrate NDC1--a transmembrane nucleoporin conserved between yeast and metazoans. We show by RNA interference (RNAi) and biochemical depletion that NDC1 plays an important role in NPC and NE assembly in vivo and in vitro. RNAi experiments suggest a functional link between NDC1 and the soluble nucleoporins Nup93, Nup53, and Nup205. Importantly, NDC1 interacts with Nup53 in vitro. This suggests that NDC1 function involves forming a link between the NE membrane and soluble nucleoporins, thereby anchoring the NPC in the membrane.", "Eteplirsen (Exondys 51) is an antisense oligonucleotide designed to induce exon 51 skipping that is developed by Sarepta Therapeutics. Intravenous eteplirsen has received accelerated approval from the US FDA for the treatment of Duchenne muscular dystrophy (DMD) in patients with a confirmed mutation of the DMD gene amenable to exon 51 skipping. Eteplirsen has orphan drug designation in the USA and EU, and rare paediatric disease designation in the USA for use in DMD. In the phase III PROMOVI trial, eteplirsen significantly increased dystrophin levels from baseline in muscle tissues of 12 evaluable patients with DMD after 48 weeks of treatment. This finding is supported by data from phase II trials. Long-term treatment with eteplirsen was associated with a decrease in the rate of decline in ambulation and pulmonary function in an open-label extension of a phase II trial. Eteplirsen was generally well tolerated in clinical trials. This article summarizes the milestones in the development of eteplirsen leading to this first approval for DMD." ]
1,822
[ "Although carcinosarcoma occurs in various locations throughout the body, it rarely originates in the ovary. Chemotherapy has been minimally beneficial. This case describes a patient with carcinosarcoma of the ovary who responded minimally to chemotherapy used for epithelial carcinomas but had a complete response after receiving chemotherapy used for sarcomas. The patient relapsed within 1 year after receiving cisplatin therapy. She was treated with mesna, ifosfamide, Adriamycin, and dacarbazine (MAID) chemotherapy and after one cycle of chemotherapy she had no evidence of tumor. She has received six cycles of chemotherapy without evidence of progression 13+ months since beginning MAID therapy. MAID chemotherapy may be useful in the treatment of carcinosarcoma of the ovary.", "One of the central aims in Alzheimer's disease (AD) research is the identification of clinically relevant drug targets. A plethora of potential molecular targets work very well in preclinical model systems both in vitro and in vivo in AD mouse models. However, the lack of translation into clinical settings in the AD field is a challenging endeavor. Although it is long known that N-terminally truncated and pyroglutamate-modified Abeta (AβpE3) peptides are abundantly present in the brain of AD patients, form stable and soluble low-molecular weight oligomers, and induce neurodegeneration in AD mouse models, their potential as drug target has not been generally accepted in the past. This situation has dramatically changed with the report that passive immunization with donanemab, an AβpE3-specific antibody, cleared aymloid plaques and stabilized cognitive deficits in a group of patients with mild AD in a phase II trial. This review summarizes the current knowledge on the molecular mechanisms of generation of AβpE, its biochemical properties, and the intervention points as a drug target in AD.", "OBJECTIVES: to categorise online suppliers of Viagra based on their legal status, and to quantify the suppliers within each category.METHODS: Google was used to search for websites offering to sell or supply either proprietary Viagra tablets or generic versions containing sildenafil citrate. Relevant websites were classified as falling into one of three categories, which were further subclassified. Simple descriptive statistics were calculated.KEY FINDINGS:  the number of relevant sites found within the first 100 Google hits, following the removal of mirror and affiliate sites, was 44. Only 6.8% of sites identified were legitimate online pharmacies. Some 34.1% of sites offered to sell Viagra to patients in the UK without any form of medical consultation. Whether or not the online consultation offered by 59.1% of sites had to be completed in order to make a purchase could not be confirmed. The location of only three pharmacies could be ascertained; the remainder made various claims as to their location, which could not be verified.CONCLUSIONS: we have been unable to verify that the questionnaires used for online consultations are scrutinised by any healthcare practitioners to determine the appropriateness of the treatment sought. This represents a serious safety concern for UK residents who procure drugs for erectile dysfunction on the internet.", "Persistent pain represents a major health problem, and most current therapeutic approaches are associated with unwanted effects and unsatisfactory pain relief. Therefore, an urgent need exists to develop more effective drugs that are directed toward new molecular targets. Nerve growth factor (NGF) is involved in pain transduction mechanisms, playing a key role as a master switch in many chronic and inflammatory pain states; the NGF ligand and its receptor TrkA constitute well-validated targets for pain therapy. Tanezumab (RN-624), a first-in-class recombinant humanized mAb targeting NGF, is being developed by Pfizer Inc for the potential treatment of pain associated with several conditions. In preclinical studies, tanezumab, and its murine precursor muMab-911, effectively targeted the NGF pathway in various chronic and inflammatory pain models. Phase I and II clinical trials in osteoarthritic pain and chronic lower back pain demonstrated good efficacy for the compound, as well as a good safety and tolerability profile. Given that tanezumab is an antibody, the drug demonstrates the general advantages of this class of products (including good specificity and favorable pharmacokinetics), and also appears to be particularly well suited for targeting the chronic and inflammatory-mediating pain actions of NGF and its receptor system.", "Routine and mass administration of oral polio vaccine (OPV) since 1961 has prevented many millions of cases of paralytic poliomyelitis. The public health value of this inexpensive and easily administered product has been extraordinary. Progress of the Global Polio Eradication Initiative has further defined the value of OPV as well as its risk through vaccine-associated paralytic poliomyelitis (VAPP) and vaccine-derived polioviruses (VDPV). Although both are rare, once wild poliovirus transmission has been interrupted by OPV, the only poliomyelitis due to poliovirus will be caused by OPV. Poliovirus will be eradicated only when OPV use is discontinued. This paradox provides a major incentive for eventually stopping polio immunization or replacing OPV, but it also introduces complexity into the process of identifying safe and scientifically sound strategies for doing so. The core post eradication immunization issues include the risk/benefits of continued OPV use, the extent of OPV replacement with IPV, possible strategies for discontinuing OPV, and the potential for development and licensure of a safe and effective replacement for OPV. Formulation of an informed post eradication immunization policy requires careful evaluation of polio epidemiology, surveillance capability, vaccine availability, laboratory containment, and the risks posed by the very tool responsible for successful interruption of wild poliovirus transmission.", "Inactivated poliovirus vaccine (IPV), developed in the USA by Jonas Salk in the early 1950s, was field tested in 1954, and found to be safe and effective. The year 2004 marks the golden jubilee of this breakthrough. From 1955 IPV was used extensively in the US and polio incidence declined by more than 95 per cent. However, in 1962, when oral poliovirus vaccine (OPV) became available, the national policy was shifted to its exclusive use, for reasons other than science and economics. The World Health Organisation (WHO) also adopted the policy of the exclusive use of OPV in developing countries. Thus IPV fell into disrepute in much of the world, while Northern European countries continued to use it. New research led to improving its potency, reducing its manufacturing costs and combining it with the diphtheria-tetanus-pertussis (DTP) vaccine to simplify its administration and reduce programmatic costs. All countries that chose to persist with IPV eliminated poliovirus circulation without OPV-induced polio or the risk of live vaccine viruses reverting to wild-like nature. IPV is highly immunogenic, confers mucosal immunity and exerts herd protective effect, all qualities of a good vaccine. It can be used in harmony with the extendend programme on immunization (EPI) schedule of infant immunisation with DTP, thus reducing programmatic costs. During the last ten years IPV has once again regained its popularity and some 25 industrialised countries use it exclusively. The demand is increasing from other countries and the supply has not caught up, leaving market forces to dictate the sale price of IPV. Anticipating such a turn of events India had launched its own IPV manufacturing programme in 1987, but the project was closed in 1992. Today it is not clear if we can complete the job of global polio eradication without IPV, on account of the genetic instability of OPV and the consequent tendency of vaccine viruses to revert to wild-like properties. The option to use IPV is complicated since it is not yet licensed in India, we do not manufacture it and imported vaccine would be prohibitively costly. However, in this golden jubilee year we have much to celebrate as the global eradication of wild polioviruses is within sight. Had we strictly followed the principles of science and health economics, perhaps we could have achieved success earlier and cheaper, with the absence of vaccine-induced polio as the bonus.", "RATIONALE: The role of Parkin in hearts is unclear. Germ-line Parkin knockout mice have normal hearts, but Parkin is protective in cardiac ischemia. Parkin-mediated mitophagy is reportedly either irrelevant, or a major factor, in the lethal cardiomyopathy evoked by cardiac myocyte-specific interruption of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission.OBJECTIVE: To understand the role of Parkin-mediated mitophagy in normal and mitochondrial fission-defective adult mouse hearts.METHODS AND RESULTS: Parkin mRNA and protein were present at low levels in normal mouse hearts, but were upregulated after cardiac myocyte-directed Drp1 gene deletion in adult mice. Alone, forced cardiac myocyte Parkin overexpression activated mitophagy without adverse effects. Likewise, cardiac myocyte-specific Parkin deletion evoked no adult cardiac phenotype, revealing no essential function for, and tolerance of, Parkin-mediated mitophagy in normal hearts. Concomitant conditional Parkin deletion with Drp1 ablation in adult mouse hearts prevented Parkin upregulation in mitochondria of fission-defective hearts, also increasing 6-week survival, improving ventricular ejection performance, mitigating adverse cardiac remodeling, and decreasing cardiac myocyte necrosis and replacement fibrosis. Underlying the Parkin knockout rescue was suppression of Drp1-induced hyper-mitophagy, assessed as ubiquitination of mitochondrial proteins and mitochondrial association of autophagosomal p62/sequestosome 1 (SQSTM1) and processed microtubule-associated protein 1 light chain 3 (LC3-II). Consequently, mitochondrial content of Drp1-deficient hearts was preserved. Parkin deletion did not alter characteristic mitochondrial enlargement of Drp1-deficient cardiac myocytes.CONCLUSIONS: Parkin is rare in normal hearts and dispensable for constitutive mitophagic quality control. Ablating Drp1 in adult mouse cardiac myocytes not only interrupts mitochondrial fission, but also markedly upregulates Parkin, thus provoking mitophagic mitochondrial depletion that contributes to the lethal cardiomyopathy.", "Central retinal artery occlusion (CRAO) is considered to be an acute stroke of the eye that results in profound visual loss. Spontaneous recovery rates are poor. Most CRAOs are caused by thromboembolism in the central retinal artery. Current standard therapies for CRAO that aim to restore perfusion to the retina and optic nerve head have not been shown to alter the natural course of the disease. Thrombolytic therapy for acute management of CRAO has shown promise in nonrandomized studies with regard to improving visual outcomes. A randomized controlled trial will be required to confirm the efficacy of thrombolytic therapy before it can be recommended for use in CRAO in daily clinical practice.", "BACKGROUND: Many computational approaches have been developed to detect protein complexes from protein-protein interaction (PPI) networks. However, these PPI networks are always built from high-throughput experiments. The presence of unreliable interactions in PPI network makes this task very challenging.METHODS: In this study, we proposed a Genetic-Algorithm Fuzzy Naïve Bayes (GAFNB) filter to classify the protein complexes from candidate subgraphs. It takes unreliability into consideration and tackles the presence of unreliable interactions in protein complex. We first got candidate protein complexes through existed popular methods. Each candidate protein complex is represented by 29 graph features and 266 biological property based features. GAFNB model is then applied to classify the candidate complexes into positive or negative.RESULTS: Our evaluation indicates that the protein complex identification algorithms using the GAFNB model filtering outperform original ones. For evaluation of GAFNB model, we also compared the performance of GAFNB with Naïve Bayes (NB). Results show that GAFNB performed better than NB. It indicates that a fuzzy model is more suitable when unreliability is present.CONCLUSIONS: We conclude that filtering candidate protein complexes with GAFNB model can improve the effectiveness of protein complex identification. It is necessary to consider the unreliability in this task.", "We report the anaesthetic management of a 48-year-old male patient with Deafness, Onycho-Osteodystrophy and mental Retardation syndrome, epilepsy and cerebral palsy who had two dental procedures under anaesthetic care. For the first short examination sedoanalgesia was employed and the second, longer, procedure was performed under general anaesthesia. His airway management was moderately difficult and the postoperative period was complicated by partial seizures involving the upper extremity and a short period of decreased oxygen saturation. The potential anaesthetic implications of Deafness, Onycho-Osteodystrophy and mental Retardation syndrome are highlighted.", "It has been suggested that the human immunodeficiency virus (HIV), and thus the acquired immunodeficiency syndrome (AIDS) it causes, was inadvertently introduced to humans by the use of an oral polio vaccine (OPV) during a vaccination campaign launched by the Wistar Institute, Philadelphia, PA, USA, in the Belgian Congo in 1958 and 1959. The \"OPV/AIDS hypothesis\" suggests that the OPV used in this campaign was produced in chimpanzee kidney epithelial cell cultures rather than in monkey kidney cell cultures, as stated by H. Koprowski and co-workers, who produced the OPV. If chimpanzee cells were indeed used, this would lend support to the OPV/AIDS hypothesis, since chimpanzees harbor a simian immunodeficiency virus, widely accepted to be the origin of HIV-1. We analyzed several early OPV pools and found no evidence for the presence of chimpanzee DNA; by contrast, monkey DNA is present.", "Cancer stem cells (CSCs) are thought to be responsible for tumor invasion, metastasis, and recurrence. We previously showed that the pluripotency factor Nanog not only serves as a novel biomarker of CSCs but also potentially plays a crucial role in maintaining the self-renewal ability of liver CSCs. However, how CSCs maintain Nanog gene expression has not been elucidated. Here, we demonstrated that microRNA-449a (miR-449a) is overexpressed in poorly differentiated hepatocellular carcinoma tissues, drug-resistant liver cancer cells, cultured liver tumorspheres, and Nanog-positive liver cancer cells. The upregulation of miR-449a in non-CSCs increased stemness, whereas the downregulation of miR-449a in Nanog-positive CSCs reduced stemness. Furthermore, transcription factor 3 (TCF3), a target of miR-449a, could downregulate Nanog expression, and restoring TCF3 expression in miR-449a-expressing Nanog-negative cells abrogated cellular stemness. These data establish that the miR449a-TCF3-Nanog axis maintains stemness in liver CSCs." ]
1,832
[ "MOTIVATION: Transcription factor (TF) binding can be studied accurately in vivo with ChIP-exo and ChIP-Nexus experiments. Only fraction of TF binding mechanisms are yet fully understood and accurate knowledge of binding locations and patterns of TFs is key to understanding binding that is not explained by simple positional weight matrix models. ChIP-exo/Nexus experiments can also offer insight on the effect of single nucleotide polymorphism (SNP) at TF binding sites on expression of the target genes. This is an important mechanism of action for disease-causing SNPs at non-coding genomic regions.RESULTS: We describe a peak caller PeakXus that is specifically designed to leverage the increased resolution of ChIP-exo/Nexus and developed with the aim of making as few assumptions of the data as possible to allow discoveries of novel binding patterns. We apply PeakXus to ChIP-Nexus and ChIP-exo experiments performed both in Homo sapiens and in Drosophila melanogaster cell lines. We show that PeakXus consistently finds more peaks overlapping with a TF-specific recognition sequence than published methods. As an application example we demonstrate how PeakXus can be coupled with unique molecular identifiers (UMIs) to measure the effect of a SNP overlapping with a TF binding site on the in vivo binding of the TF.AVAILABILITY AND IMPLEMENTATION: Source code of PeakXus is available at https://github.com/hartonen/PeakXusCONTACT: tuomo.hartonen@helsinki.fi or jussi.taipale@ki.se.", "The present case study is on a 16-year-old woman who was suffering from nephrotic syndrome after recovery from complete type of hydatiform mole. She was admitted in hospital because of proteinurea and hematuria. Then she was showing a generalized edema compatible with neprhotic syndrome. In her past medical history she had a suction curettage for hydatiform mole. After she received 4 courses chemotherapy, she completely recovered and βhCG has fallen from 12127 IU/L to under 10 IU/mL. Then she showed generalized edema, proteinurea and hematuria compatible with nephritic syndrome. After six courses chemotherapy the symptoms of nephrotic syndrome and invasive mole diminished, she released from hospital and scheduled for follow-up.", "Premature skin aging, or photoaging, results largely from repeated exposure to ultraviolet (UV) radiation from the sun. Photoaging is characterized clinically by wrinkles, mottled pigmentation, rough skin, and loss of skin tone; the major histologic alterations lie in dermal connective tissue. In recent years, a great deal of research has been done to explain the mechanism by which UV induces dermal damage. This research has enabled the identification of rational targets for photoaging prevention strategies. Moreover, studies that have elucidated photoaging pathophysiology have produced significant evidence that topical tretinoin (all-trans retinoic acid), the only agent approved so far for the treatment of photoaging, also works to prevent it. This article summarizes evidence mainly from studies of human volunteers that provide the basis for the current model of photoaging and the effects of tretinoin.", "Spt4-Spt5, a general transcription elongation factor for RNA polymerase II, also has roles in chromatin regulation. However, the relationships between these functions are not clear. Previously, we isolated suppressors of a Saccharomyces cerevisiae spt5 mutation in genes encoding members of the Paf1 complex, which regulates several cotranscriptional histone modifications, and Chd1, a chromatin remodeling enzyme. Here, we show that this suppression of spt5 can result from loss of histone H3 lysines 4 or 36 methylation, or reduced recruitment of Chd1 or the Rpd3S complex. These spt5 suppressors also rescue the synthetic growth defects observed in spt5 mutants that also lack elongation factor TFIIS. Using a FLO8 reporter gene, we found that a chd1 mutation caused cryptic initiation of transcription. We further observed enhancement of cryptic initiation in chd1 isw1 mutants and increased histone acetylation in a chd1 mutant. We suggest that, as previously proposed for H3 lysine 36 methylation and the Rpd3S complex, H3 lysine 4 methylation and Chd1 function to maintain normal chromatin structures over transcribed genes, and that one function of Spt4-Spt5 is to help RNA polymerase II overcome the repressive effects of these histone modifications and chromatin regulators on transcription.", "OBJECTIVE: Symptoms of psychological distress, including anxiety and depressive symptoms, and illness perceptions are important in determining outcome in patients with rheumatic disease. We aimed to compare psychological distress in psoriatic arthritis (PsA) and rheumatoid arthritis (RA) and to test whether the association between psychological variables and health-related quality of life (HRQOL) was similar in the 2 forms of arthritis.METHODS: In 83 PsA patients and 199 RA patients, we used the Patient Health Questionnaire 9 (PHQ-9), the Symptom Checklist-90-Revised, and the Brief Illness Perception Questionnaire to assess psychological variables and the World Health Organization Quality of Life Instrument, Short Form to assess HRQOL. We used hierarchical regression analysis to determine the associations between psychological variables and HRQOL after adjusting for demographic variables and disease parameters.RESULTS: The prevalence of moderate to severe levels of depressive symptoms (PHQ-9 score ≥10) was 21.7% in PsA patients, 25.1% in RA patients, and 36.7% in those PsA patients with polyarthritis. After adjustment for severity of disease and pain, anxiety (β = -0.28) and concern about bodily symptoms attributed to the illness (β = -0.33) were independent correlates of physical HRQOL in PsA. In RA, depressive symptoms (β = -0.29) and concern about the consequences of the arthritis (β = -0.27) were independent correlates of physical HRQOL.CONCLUSION: These findings suggest strongly that psychological factors are important correlates of HRQOL in PsA as well as in RA. Attention to patients' anxiety and their concern about numerous bodily symptoms attributed to the illness may enable rheumatologists to identify and manage treatable aspects of HRQOL in PsA.", "PURPOSE: Doxorubicin is one of the most effective chemotherapeutic agents. However, up to 30% of the patients treated with doxorubicin suffer from congestive heart failure. The mechanism of doxorubicin cardiotoxicity is likely multifactorial and most importantly, the genetic factors predisposing to doxorubicin cardiotoxicity are unknown. On the basis of the fact that mtDNA lesions and mitochondrial dysfunctions have been found in human hearts exposed to doxorubicin and that mitochondrial topoisomerase 1 (Top1mt) specifically controls mtDNA homeostasis, we hypothesized that Top1mt knockout (KO) mice might exhibit hypersensitivity to doxorubicin.EXPERIMENTAL DESIGN: Wild-type (WT) and KO Top1mt mice were treated once a week with 4 mg/kg doxorubicin for 8 weeks. Heart tissues were analyzed one week after the last treatment.RESULTS: Genetic inactivation of Top1mt in mice accentuates mtDNA copy number loss and mtDNA damage in heart tissue following doxorubicin treatment. Top1mt KO mice also fail to maintain respiratory chain protein production and mitochondrial cristae ultrastructure organization. These mitochondrial defects result in decreased O2 consumption, increased reactive oxygen species production, and enhanced heart muscle damage in animals treated with doxorubicin. Accordingly, Top1mt KO mice die within 45 days after the last doxorubicin injection, whereas the WT mice survive.CONCLUSIONS: Our results provide evidence that Top1mt, which is conserved across vertebrates, is critical for cardiac tolerance to doxorubicin and adaptive response to doxorubicin cardiotoxicity. They also suggest the potential of Top1mt single-nucleotide polymorphisms testing to investigate patient susceptibility to doxorubicin-induced cardiotoxicity.", "Author information:(1)Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany.(2)Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany.(3)Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.(4)Universitat Pompeu Fabra (UPF), Barcelona, Spain.(5)Faculty of Biology, Johannes Gutenberg University Mainz, Ackermannweg 4, Mainz, 55128, Germany.(6)Institute of Molecular Biology, Ackermannweg 4, Mainz, 55128, Germany.(7)Institute for Bioinformatics, Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany.(8)Labor für Pädiatrische Molekularbiologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany.(9)Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany. peter.robinson@jax.org.(10)Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany. peter.robinson@jax.org.(11)Institute for Bioinformatics, Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany. peter.robinson@jax.org.(12)Max Planck Institute for Molecular Genetics, Inhestr. 63-73, Berlin, 14195, Germany. peter.robinson@jax.org.(13)Current address: The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, 06032, CT, USA. peter.robinson@jax.org.", "INTRODUCTION: Harlequin phenomenon is characterized by a strictly unilateral erythrosis of the face with flushing and hyperhydrosis, and controlaterally a pale anhydrotic aspect. This syndrome can occur alone or associated to other dysautonomic phenomena such as Horner syndrome, Adie syndrome or Ross syndrome.PATIENTS AND METHODS: We report three cases: two patients presented a Harlequin sign, associated with Horner syndrome for one and Ross syndrome for the second. The etiologic investigation was normal, allowing recognizing the idiopathic nature of the disorder. For the third patient, Harlequin syndrome was observed in a neoplastic context due to breast cancer, metastatic dissemination, and bone metastases involving the right side of the T2 body.DISCUSSION: We reviewed the literature: 108 cases have been described. This syndrome occurred alone in 48 patients and was associated with other dysautonomic syndromes such as Horner syndrome in 38 patients, Holmes Adie syndrome in six, and Ross syndrome in six; both Ross and Holmes Adie syndrome were associated five cases and associations were not reported in five patients. The pathophysiological mechanisms of this autonomic cranial neuropathy, the possible etiologies, and therapeutic management were discussed.CONCLUSION: Harlequin phenomenon with flushing and unilateral hyperhydrosis is rare, occurring alone or in combination with other autonomic syndromes of the face. Idiopathic in two-thirds of cases, Harlequin phenomenon does not require specific treatment; sympathectomy may be discussed in the severe cases with a significant social impact." ]
1,838
[ "Macrophages mediate crucial innate immune responses via caspase-1-dependent processing and secretion of interleukin 1β (IL-1β) and IL-18. Although infection with wild-type Salmonella typhimurium is lethal to mice, we show here that a strain that persistently expresses flagellin was cleared by the cytosolic flagellin-detection pathway through the activation of caspase-1 by the NLRC4 inflammasome; however, this clearance was independent of IL-1β and IL-18. Instead, caspase-1-induced pyroptotic cell death released bacteria from macrophages and exposed the bacteria to uptake and killing by reactive oxygen species in neutrophils. Similarly, activation of caspase-1 cleared unmanipulated Legionella pneumophila and Burkholderia thailandensis by cytokine-independent mechanisms. This demonstrates that activation of caspase-1 clears intracellular bacteria in vivo independently of IL-1β and IL-18 and establishes pyroptosis as an efficient mechanism of bacterial clearance by the innate immune system.", "Pustular psoriasis is an unusual form of psoriasis that frequently presents clinical challenges for dermatologists. The condition presents with pustules on an erythematous background and has two distinct subtypes: localized disease on the palms and soles, called palmoplantar pustulosis (PPP), and generalized pustular psoriasis (GPP). The involvement of the fingers, toes, and nails is defined as a separate localized variant, acrodermatitis continua of Hallopeau, and is now thought to be a subset of PPP. The rarity of pustular psoriasis frequently makes the correct diagnosis problematic. In addition, treatment is limited by a relative lack of evidence-based therapeutic options. Current management is often based on existing therapies for standard plaque psoriasis. However, there remains a need for treatments with high, sustained efficacy and a rapid onset of action in pustular psoriasis. Recent advances in understanding of the pathogenesis of pustular psoriasis have provided insights into potential therapies. Treatment of pustular psoriasis is generally determined by the extent and severity of disease, and recent years have seen an increasing use of newer agents, including biologic therapies. Current classes of biologic therapies with US Food and Drug Administration and European Medicines Agency approval for treatment of moderate-to-severe plaque psoriasis in the USA (and elsewhere) include tumor necrosis factor alpha inhibitors (adalimumab, certolizumab pegol, etanercept, infliximab), interleukin (IL)-17 inhibitors (brodalumab, ixekizumab, secukinumab), an IL-12/23 inhibitor (ustekinumab), and IL-23 inhibitors (guselkumab, risankizumab, tildrakizumab). Recently, specific inhibitors of the IL-36 pathway have been evaluated in GPP and PPP, including spesolimab, an IL-36 receptor inhibitor which has shown promising results in GPP. The emerging drugs for pustular psoriasis offer the possibility of rapid and effective treatment with lower toxicities than existing therapies. Further research into agents acting on the IL-36 pathway and other targeted therapies has the potential to transform the future treatment of patients with pustular psoriasis. This article reviews the clinical features of PPP and GPP, and current understanding of the genetics and immunopathology of these conditions; it also provides an update on emerging treatments.", "Autologous cardiac progenitor cells (CPCs) isolated as cardiospheres (CSps) represent a promising candidate for cardiac regenerative therapy. A better understanding of the origin and mechanisms underlying human CSps formation and maturation is undoubtedly required to enhance their cardiomyogenic potential. Epithelial-to-mesenchymal transition (EMT) is a key morphogenetic process that is implicated in the acquisition of stem cell-like properties in different adult tissues, and it is activated in the epicardium after ischemic injury to the heart. We investigated whether EMT is involved in the formation and differentiation of human CSps, revealing that an up-regulation of the expression of EMT-related genes accompanies CSps formation that is relative to primary explant-derived cells and CSp-derived cells grown in a monolayer. EMT and CSps formation is enhanced in the presence of transforming growth factor β1 (TGFβ1) and drastically blocked by the type I TGFβ-receptor inhibitor SB431452, indicating that TGFβ-dependent EMT is essential for the formation of these niche-like 3D-multicellular clusters. Since TGFβ is activated in the myocardium in response to injury, our data suggest that CSps formation mimics an adaptive mechanism that could potentially be enhanced to increase in vivo or ex vivo regenerative potential of adult CPCs.", "BACKGROUND: We conducted multiple microarray datasets analyses from clinical and xenograft tumor tissues to search for disease progression-driving oncogenes in prostate cancer (PCa). Sperm-associated antigen 5 (SPAG5) attracted our attention. SPAG5 was recently identified as an oncogene participating in lung cancer and cervical cancer progression. However, the roles of SPAG5 in PCa progression remain unknown.METHODS: SPAG5 expression level in clinical primary PCa, metastatic PCa, castration resistant PCa, neuroendocrine PCa, and normal prostate tissues was investigated. We established multiple in vivo xenografts models using patient-derived tissues and investigated SPAG5 expression trend in these models. We also investigated the functions of SPAG5 in vivo and in vitro studies. Luciferase reporter assays were performed to investigate potential miRNAs that can regulate SPAG5.RESULTS: We identified that SPAG5 expression was gradually increased in PCa progression and its level was significantly associated with lymph node metastasis, clinical stage, Gleason score, and biochemical recurrence. Our results indicated that SPAG5 knockdown can drastically inhibit PCa cell proliferation, migration, and invasion in vitro and supress tumor growth and metastasis in vivo. We identified that miR-539 can directly target SPAG5. Ectopic overexpression of miR-539 can drastically inhibit SPAG5 expression and the restoration of SPAG5 expression can reverse the inhibitory effects of miR-539 on PCa cell proliferation and metastasis.CONCLUSION: Our results collectively showed a progression-driving role of SPAG5 in PCa which can be regulated by miR-539, suggesting that miR-539/SPAG5 can serve as a potential therapeutic target for PCa.", "The rapidly growing collection of diverse genome-scale data from multiple tumor types sheds light on various aspects of the underlying tumor biology. With the objective to identify genes of importance for breast tumorigenesis in men and to enable comparisons with genes important for breast cancer development in women, we applied the computational framework COpy Number and EXpression In Cancer (CONEXIC) to detect candidate driver genes among all altered passenger genes. Unique to this approach is that each driver gene is associated with several gene modules that are believed to be altered by the driver. Thirty candidate drivers were found in the male breast cancers and 67 in the female breast cancers. We identified many known drivers of breast cancer and other types of cancer, in the female dataset (e.g. GATA3, CCNE1, GRB7, CDK4). In contrast, only three known cancer genes were found among male breast cancers; MAP2K4, LHP, and ZNF217. Many of the candidate drivers identified are known to be involved in processes associated with tumorigenesis, including proliferation, invasion and differentiation. One of the modules identified in male breast cancer was regulated by THY1, a gene involved in invasion and related to epithelial-mesenchymal transition. Furthermore, men with THY1 positive breast cancers had significantly inferior survival. THY1 may thus be a promising novel prognostic marker for male breast cancer. Another module identified among male breast cancers, regulated by SPAG5, was closely associated with proliferation. Our data indicate that male and female breast cancers display highly different landscapes of candidate driver genes, as only a few genes were found in common between the two. Consequently, the pathobiology of male breast cancer may differ from that of female breast cancer and can be associated with differences in prognosis; men diagnosed with breast cancer may consequently require different management and treatment strategies than women.", "The major protein constituent of Lewy bodies (LBs), the pathological hallmark of Parkinson disease and dementia with Lewy bodies, is considered to be alpha-synuclein, but other proteins, in particular the microtubule-associated protein tau, have been implicated in the pathogenesis of LBs. Tau is the major structural component of neurofibrillary tangles (NFTs). Both direct immunochemical studies of partially purified LBs and indirect immunohistochemical studies have suggested that LBs may contain tau, but most of these studies were based upon a single tau antibody, and immunologic cross-reactivity was not completely excluded. To gain insight into the relation between tau and alpha-synuclein in LBs, double immunostaining was performed in Lewy body cases with a rabbit polyclonal antibody to alpha-synuclein and a panel of monoclonal antibodies to phospho- and nonphospho-tau epitopes (Alz50, CP9, CP13, PG5, TG3, PHFI) that spanned the length of the tau molecule. Tau-immunoreactive LBs were present in the medulla in 80% of the cases, irrespective of Braak stage. All tau antibodies recognized at least some LBs, arguing against nonspecific antibody cross-reactivity. In most lesions the tau immunostaining was present at the periphery of the LB. The phospho-tau antibody, TG3, detected more LBs than any of the other tau antibodies. The proportion of LBs with tau immunoreactivity was greatest in neurons vulnerable to NETs, such as those in the locus ceruleus and basal nucleus of Meynert, and least in neurons resistant to NFTs, such as the dorsal motor nucleus of the vagus in the medulla. The present results suggest that tau may coaggregate with alpha-synuclein in LBs, especially in neuronal populations vulnerable to both NFTs and LBs.", "BACKGROUND: Proliferation markers and profiles have been recommended for guiding the choice of systemic treatments for breast cancer. However, the best molecular marker or test to use has not yet been identified. We did this study to identify factors that drive proliferation and its associated features in breast cancer and assess their association with clinical outcomes and response to chemotherapy.METHODS: We applied an artificial neural network-based integrative data mining approach to data from three cohorts of patients with breast cancer (the Nottingham discovery cohort (n=171), Uppsala cohort (n=249), and Molecular Taxonomy of Breast Cancer International Consortium [METABRIC] cohort; n=1980). We then identified the genes with the most effect on other genes in the resulting interactome map. Sperm-associated antigen 5 (SPAG5) featured prominently in our interactome map of proliferation and we chose to take it forward in our analysis on the basis of its fundamental role in the function and dynamic regulation of mitotic spindles, mitotic progression, and chromosome segregation fidelity. We investigated the clinicopathological relevance of SPAG5 gene copy number aberrations, mRNA transcript expression, and protein expression and analysed the associations of SPAG5 copy number aberrations, transcript expression, and protein expression with breast cancer-specific survival, disease-free survival, distant relapse-free survival, pathological complete response, and residual cancer burden in the Nottingham discovery cohort, Uppsala cohort, METABRIC cohort, a pooled untreated lymph node-negative cohort (n=684), a multicentre combined cohort (n=5439), the Nottingham historical early stage breast cancer cohort (Nottingham-HES; n=1650), Nottingham early stage oestrogen receptor-negative breast cancer adjuvant chemotherapy cohort (Nottingham-oestrogen receptor-negative-ACT; n=697), the Nottingham anthracycline neoadjuvant chemotherapy cohort (Nottingham-NeoACT; n=200), the MD Anderson taxane plus anthracycline-based neoadjuvant chemotherapy cohort (MD Anderson-NeoACT; n=508), and the multicentre phase 2 neoadjuvant clinical trial cohort (phase 2 NeoACT; NCT00455533; n=253).FINDINGS: In the METABRIC cohort, we detected SPAG5 gene gain or amplification at the Ch17q11.2 locus in 206 (10%) of 1980 patients overall, 46 (19%) of 237 patients with a PAM50-HER2 phenotype, and 87 (18%) of 488 patients with PAM50-LumB phenotype. Copy number aberration leading to SPAG5 gain or amplification and high SPAG5 transcript and SPAG5 protein concentrations were associated with shorter overall breast cancer-specific survival (METABRIC cohort [copy number aberration]: hazard ratio [HR] 1·50, 95% CI 1·18-1·92, p=0·00010; METABRIC cohort [transcript]: 1·68, 1·40-2·01, p<0·0001; and Nottingham-HES-breast cancer cohort [protein]: 1·68, 1·32-2·12, p<0·0001). In multivariable analysis, high SPAG5 transcript and SPAG5 protein expression were associated with reduced breast cancer-specific survival at 10 years compared with lower concentrations (Uppsala: HR 1·62, 95% CI 1·03-2·53, p=0·036; METABRIC: 1·27, 1·02-1·58, p=0·034; untreated lymph node-negative cohort: 2·34, 1·24-4·42, p=0·0090; and Nottingham-HES: 1·73, 1·23-2·46, p=0·0020). In patients with oestrogen receptor-negative breast cancer with high SPAG5 protein expression, anthracycline-based adjuvant chemotherapy increased breast cancer-specific survival overall compared with that for patients who did not receive chemotherapy (Nottingham-oestrogen receptor-negative-ACT cohort: HR 0·37, 95% CI 0·20-0·60, p=0·0010). Multivariable analysis showed high SPAG5 transcript concentrations to be independently associated with longer distant relapse-free survival after receiving taxane plus anthracycline neoadjuvant chemotherapy (MD Anderson-NeoACT: HR 0·68, 95% CI 0·48-0·97, p=0·031). In multivariable analysis, both high SPAG5 transcript and high SPAG5 protein concentrations were independent predictors for a higher proportion of patients achieving a pathological complete response after combination cytotoxic chemotherapy (MD Anderson-NeoACT: OR 1·71, 95% CI, 1·07-2·74, p=0·024; Nottingham-ACT: 8·75, 2·42-31·62, p=0·0010).INTERPRETATION: SPAG5 is a novel amplified gene on Ch17q11.2 in breast cancer. The transcript and protein products of SPAG5 are independent prognostic and predictive biomarkers that might have clinical utility as biomarkers for combination cytotoxic chemotherapy sensitivity, especially in oestrogen receptor-negative breast cancer.FUNDING: Nottingham Hospitals Charity and the John and Lucille van Geest Foundation.", "AAV9 vector provides efficient gene transfer in all segments of the renal nephron, with minimum expression in non-renal cells, when administered retrogradely via the ureter. It is important to restrict the transgene expression to the desired cell type within the kidney, so that the physiological endpoints represent the function of the transgene expressed in that specific cell type within kidney. We hypothesized that segment-specific gene expression within the kidney can be accomplished using the highly efficient AAV9 vectors carrying the promoters of genes that are expressed exclusively in the desired segment of the nephron in combination with administration by retrograde infusion into the kidney via the ureter. We constructed AAV vectors carrying eGFP under the control of: kidney-specific cadherin (KSPC) gene promoter for expression in the entire nephron; Na+/glucose co-transporter (SGLT2) gene promoter for expression in the S1 and S2 segments of the proximal tubule; sodium, potassium, 2 chloride co-transporter (NKCC2) gene promoter for expression in the thick ascending limb of Henle's loop (TALH); E-cadherin (ECAD) gene promoter for expression in the collecting duct (CD); and cytomegalovirus (CMV) early promoter that provides expression in most of the mammalian cells, as control. We tested the specificity of the promoter constructs in vitro for cell type-specific expression in mouse kidney cells in primary culture, followed by retrograde infusion of the AAV vectors via the ureter in the mouse. Our data show that AAV9 vector, in combination with the segment-specific promoters administered by retrograde infusion via the ureter, provides renal nephron segment-specific gene expression.", "Myotubularin-related proteins are a large subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in members of the myotubularin family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. The crystal structure of a representative member of this family, MTMR2, reveals a phosphatase domain that is structurally unique among PTPs. A series of mutants are described that exhibit altered enzymatic activity and provide insight into the specificity of myotubularin phosphatases toward phosphoinositide substrates. The structure also reveals that the GRAM domain, found in myotubularin family phosphatases and predicted to occur in approximately 180 proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. Finally, the MTMR2 structure will serve as a model for other members of the myotubularin family and provide a framework for understanding the mechanism whereby mutations in these proteins lead to disease.", "The present paper reviews classification and mode of action of agents that suppress extrasystoles and tachyarrhythmias. These are classified according to their electrophysiological effects observed in isolated cardiac tissues in vitro (Vaughan Williams, 1989). Fast sodium channel blockers (class I) which reduce the upstroke velocity of the action potential are usually subclassified into three groups, class I A-C, according to their effect on the action potential duration. Beta-adrenergic antagonists (class II) exert their effects by antagonizing the electrophysiological effects of beta-adrenergic catecholamines. Class III antiarrhythmic agents (eg amiodarone) prolong the action potential and slow calcium channel blockers (class IV) suppress the calcium inward current and calcium-dependent action potentials. The classification of antiarrhythmic drugs is still under debate. This particularly applies to agents of class I and III. The effect of class I agents is frequency-dependent because the binding affinity of these drugs to the sodium channel is modulated by the state of the channel (modulated receptor hypothesis). Class I agents bind to the channel in the activated and inactivated state and dissociate from the channel in the rested state. This occurs at a drug-specific rate so that class I agents can be subclassified into only two groups, namely in those of the slow- and fast-recovery type respectively (time constant of reactivation greater or smaller than 1 s). Slow-recovery class I agents affect regular action potentials at normal heart rates which can more easily lead to a lengthening of the QRS duration in the ECG, to conduction disturbances and hence to pro-arrhythmic effects.(ABSTRACT TRUNCATED AT 250 WORDS)", "The severity of coronavirus disease 2019 (COVID-19) ranges from mild to death, with high morbidity and mortality rates reported amongst a vulnerable subset of patients termed high risk. While vaccines remain the primary option for COVID-19 prevention, neutralizing monoclonal antibodies (mAbs), such as bamlanivimab and etesevimab, have been shown to benefit certain subpopulations after exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Unlike vaccine-derived immunity that develops over time, administration of neutralizing mAbs is an immediate and passive immunotherapy, with the potential to reduce disease progression, emergency room visits, hospitalizations, and death. Bamlanivimab alone and together with etesevimab hold emergency use authorizations in several countries globally, with countries increasingly transitioning to the use of bamlanivimab and etesevimab together and other authorized mAbs on the basis of their evolving variant landscape, regulatory authorizations, and access to drugs. The current guidelines for the administration of bamlanivimab alone or together with etesevimab are informed by an iterative process of testing and development. Herein the rationale for these guidelines is provided by sharing the learnings that have been gathered throughout the development process of these mAbs. In addition, this review addresses the most common clinical questions received from health care professionals (HCPs) and patients regarding indicated population, dose, use with other medications and vaccines, duration of protection, and variants in clinical practice. As prevalence of SARS-CoV-2 variants can differ by country and state, prescribing HCPs should consider the prevalence of bamlanivimab and etesevimab resistant variants in their area, where data are available, regarding potential efficacy impact when considering treatment options.Trial Registration: ClinicalTrials.gov identifier: NCT04427501; NCT04411628; NCT04497987; NCT04634409.", "Previously, we found that sperm-associated antigen 5 (SPAG5) was upregulated in pelvic lymph node metastasis-positive cervical cancer. The aim of this study is to examine the role of SPAG5 in the proliferation and tumorigenicity of cervical cancer and its clinical significance in tumor progression. In our study, SPAG5 expression in cervical cancer patients was detected using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry; cervical cancer cell function with downregulated SPAG5 in vitro was explored using tetrazolium assay, flow cytometry, and colony formation and Transwell assays. SPAG5 was upregulated in tumor tissue compared with paired adjacent noncancerous tissues; SPAG5 upregulation in tumor tissues indicated poor disease-free survival, which was also an independent prognostic indicator for cervical cancer patients. In vitro study demonstrated that SPAG5 downregulation inhibited cell proliferation and growth significantly by G2/M arrest and induction of apoptosis, and hindered cell migration and invasion. Under SPAG5 downregulation, the sensitivity of cervical cancer cells differed according to taxol dose, which correlated with mammalian target of rapamycin (mTOR) signaling pathway activity. In general, SPAG5 upregulation relates to poor prognosis in cervical cancer patients, and SPAG5 is a regulator of mTOR activity during taxol treatment in cervical cancer.", "As our medical armamentarium for IBD continues to expand, it is essential that clinicians understand both optimizing and sequencing of individual and combination therapeutic approaches with available medications. Areas covered: This review summarizes dosing strategies and therapeutic drug monitoring for pharmacologic optimization in IBD. Aminosalicylates remain first-line therapies for mild-to-moderate UC but have limited evidence of efficacy in CD. Budesonide provides an alternative to aminosalicylates when targeted to appropriate sites in the distal small bowel and colon, as do conventional corticosteroids when applied rectally. Systemic steroids are highly efficacious but burdened by toxicity. Thiopurines or methotrexate can be utilized as steroid-sparing agents. Biologic agents targeting TNF remain important for steroid-sparing therapy in moderate-to-severe UC and CD. Newer biologics targeting lymphocyte trafficking and lymphocyte activation are also efficacious for moderate-to-severe IBD. Near future conventional drug options include oral agents such as tofacitinib and mongersen. Expert commentary: Positioning therapies according to the location, phenotypes, and severity, as well as the use of therapeutic and clinical targets, will improve outcomes and minimize toxicities and therapeutic futilities. Future IBD treatment should focus on personalized therapy plans based on genetic determinants, targeted mechanisms of action, and pharmacologic optimization.", "OBJECTIVES: Despite the well-defined histological types of non-small cell lung cancer (NSCLC), a given stage is often associated with wide-ranging survival rates and treatment outcomes. This disparity has led to an increased demand for the discovery and identification of new informative biomarkers.METHODS: In the current study, we screened 81 NSCLC samples using Illumina whole-genome gene expression microarrays in an effort to identify differentially expressed genes and new NSCLC biomarkers.RESULTS: We identified novel genes whose expression was upregulated in NSCLC, including SPAG5, POLH, KIF23, and RAD54L, which are associated with mitotic spindle formation, DNA repair, chromosome segregation, and dsDNA break repair, respectively. We also identified several novel genes whose expression was downregulated in NSCLC, including SGCG, NLRC4, MMRN1, and SFTPD, which are involved in extracellular matrix formation, apoptosis, blood vessel leakage, and inflammation, respectively. We found a significant correlation between RNA degradation and survival in adenocarcinoma cases.CONCLUSIONS: Even though the follow-up time was too limited to draw final conclusions, we were able to show better prediction p values in a group selection based on molecular profiles compared to histology. The current study also uncovered new candidate biomarker genes that are likely to be involved in diverse processes associated with NSCLC development.", "Occupational allergies are among the most common recorded occupational diseases. The skin and the upper and lower respiratory tract are the classical manifestation organs. More than 400 occupational agents are currently documented as being potential \"respiratory sensitizers\" and new reported causative agents are reported each year. These agents may induce occupational rhinitis (OR) or occupational asthma (OA) and can be divided into high-molecular weight (HMW) and low-molecular weight (LMW) agents. The most common occupational HMW agents are (glycol)proteins found in flour and grains, enzymes, laboratory animals, fish and seafood, molds, and Hevea brasiliensis latex. Typical LMW substances are isocyanates, metals, quaternary ammonium persulfate, acid anhydrides, and cleaning products/disinfectants. Diagnosis of occupational respiratory allergy is made by a combination of medical history, physical examination, positive methacholine challenge result or bronchodilator responsiveness, determination of IgE-mediated sensitization, and specific inhalation challenge tests as the gold standard. Accurate diagnosis of asthma is the first step to managing OA as shown above. Removal from the causative agent is of central importance for the management of OA. The best strategy to avoid OA is primary prevention, ideally by avoiding the use of and exposure to the sensitizer or substituting safer substances for these agents.", "INTRODUCTION: To guide the use of modified vaccinia Ankara (MVA) vaccine in response to a release of smallpox virus, the immunogenicity and safety of shorter vaccination intervals, and administration by jet injector (JI), were compared to the standard schedule of administration on Days 1 and 29 by syringe and needle (S&N).METHODS: Healthy adults 18-40years of age were randomly assigned to receive MVA vaccine subcutaneously by S&N on Days 1 and 29 (standard), Days 1 and 15, or Days 1 and 22, or to receive the vaccine subcutaneously by JI on Days 1 and 29. Blood was collected at four time points after the second vaccination for plaque reduction neutralization test (PRNT) (primary endpoint) and ELISA (secondary endpoint) antibody assays. For each subject, the peak PRNT (or ELISA) titer was defined by the highest PRNT (or ELISA) titer among all available measurements post second vaccination. Non-inferiority of a non-standard arm compared to the standard arm was met if the upper limit of the 98.33% confidence interval of the difference in the mean log2 peak titers between the standard and non-standard arm was less than 1.RESULTS: Non-inferiority of the PRNT antibody response was not established for any of the three non-standard study arms. Non-inferiority of the ELISA antibody response was established for the Day 1 and 22 compressed schedule and for administration by JI. Solicited local reactions, such as redness and swelling, tended to be more commonly reported with JI administration. Four post-vaccination hypersensitivity reactions were observed.CONCLUSIONS: Evaluations of the primary endpoint of PRNT antibody responses do not support alternative strategies of administering MVA vaccine by S&N on compressed schedules or administration by JI on the standard schedule.TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01827371.", "Ferroptosis is an iron-dependent form of regulated nonapoptotic cell death, which contributes to damage in models of acute kidney injury (AKI). Heme oxygenase-1 (HO-1) is a cytoprotective enzyme induced in response to cellular stress, and is protective against AKI because of its antiapoptotic and anti-inflammatory properties. However, the role of HO-1 in regulating ferroptosis is unclear. The purpose of this study was to elucidate the role of HO-1 in regulating ferroptotic cell death in renal proximal tubule cells (PTCs). Immortalized PTCs obtained from HO-1+/+ and HO-1-/- mice were treated with erastin or RSL3, ferroptosis inducers, in the presence or absence of antioxidants, an iron source, or an iron chelator. Cells were assessed for changes in morphology and metabolic activity as an indicator of cell viability. Treatment of HO-1+/+ PTCs with erastin resulted in a time- and dose-dependent increase in HO-1 gene expression and protein levels compared with vehicle-treated controls. HO-1-/- cells showed increased dose-dependent erastin- or RSL3-induced cell death in comparison to HO-1+/+ PTCs. Iron supplementation with ferric ammonium citrate in erastin-treated cells decreased cell viability further in HO-1-/- PTCs compared with HO-1+/+ cells. Cotreatment with ferrostatin-1 (ferroptosis inhibitor), deferoxamine (iron chelator), or N-acetyl-l-cysteine (glutathione replenisher) significantly increased cell viability and attenuated erastin-induced ferroptosis in both HO-1+/+ and HO-1-/- PTCs. These results demonstrate an important antiferroptotic role of HO-1 in renal epithelial cells.", "The ROS1 tyrosine kinase inhibitor (TKI) crizotinib has shown dramatic effects in patients with non-small cell lung cancer (NSCLC) harboring ROS1 fusion genes. However, patients inevitably develop resistance to this agent. Therefore, a new treatment strategy is required for lung tumors with ROS1 fusion genes. In the present study, lung cancer cell lines, HCC78 harboring SLC34A2-ROS1 and ABC-20 harboring CD74-ROS1, were used as cell line-based resistance models. Crizotinib-resistant HCC78R cells were established from HCC78. We comprehensively screened the resistant cells using a phosphor-receptor tyrosine kinase array and RNA sequence analysis by next-generation sequencing. HCC78R cells showed upregulation of HB-EGF and activation of epidermal growth factor receptor (EGFR) phosphorylation and the EGFR signaling pathway. Recombinant HB-EGF or EGF rendered HCC78 cells or ABC-20 cells resistant to crizotinib. RNA sequence analysis by next-generation sequencing revealed the upregulation of AXL in HCC78R cells. HCC78R cells showed marked sensitivity to EGFR-TKI or anti-EGFR antibody treatment in vitro. Combinations of an AXL inhibitor, cabozantinib or gilteritinib, and an EGFR-TKI were more effective against HCC78R cells than monotherapy with an EGFR-TKI or AXL inhibitor. The combination of cabozantinib and gefitinib effectively inhibited the growth of HCC78R tumors in an in vivo xenograft model of NOG mice. The results of this study indicated that HB-EGF/EGFR and AXL play roles in crizotinib resistance in lung cancers harboring ROS1 fusions. The combination of cabozantinib and EGFR-TKI may represent a useful alternative treatment strategy for patients with advanced NSCLC harboring ROS1 fusion genes.", "PURPOSE: Human epidermal growth factor receptor 2 (HER2)/neu, topoisomerase II alpha (TOP2A), and polysomy 17 may predict tumor responsiveness to doxorubicin (DOX) therapy.METHODS: We identified neoadjuvant DOX/cyclophosphamide treated breast cancer patients in our registry from 1997 to 2008 with sufficient tissue for testing (n = 34). Fluorescence in situ hybridization (FISH) testing was done on deparaffinized tissue sections pretreated using vendor's standard protocol modification, and incubated with US Food and Drug Administration approved Abbott Diagnostics Vysis PathVysion™ probe set, including Spectrum-Green-conjugated probe to α-satellite DNA located at the centromere of chromosome 17 (17p11.1-q11.1) and a Spectrum-Orange-conjugated probe to the TOP2A gene. Morphometric analysis was performed using a MetaSystems image analysis system. Manual counting was performed on all samples in which autofluorescence and/or artifact prevented the counting of sufficient numbers of cells. A ratio >2.0 was considered positive for TOP2A amplification. Polysomy 17 (PS17) presence was defined as signals of ≥2.5. Outcomes were pathological complete response (pCR), partial response (PR), and nonresponse (NR).RESULTS: Of 34 patients tested, one was TOP2A amplified (hormone receptor negative/HER2 negative, partial responder). The subset of TOP2A nonamplified, HER2 negative, and PS17 absent (n = 23) patients had treatment response: pCR = 2 (9%), PR = 14 (61%), and NR = 7 (30%). Including the two PS17 present and HER2-positive patients (n = 33), 76% of TOP2A nonamplified patients had pCR or PR.CONCLUSIONS: We observed substantial treatment response in patients lacking three postulated predictors that would be difficult to attribute to cyclophosphamide alone. Patients who are HER2 negative and lack TOP2A amplification and PS17 should not be excluded from receiving DOX-containing regimens.", "In the developing central nervous system (CNS), Notch signaling preserves progenitor pools and inhibits neurogenesis and oligodendroglial differentiation. It has recently been postulated that Notch instructively drives astrocyte differentiation. Whether the role of Notch signaling in promoting astroglial differentiation is permissive or instructive has been debated. We report here that the astrogliogenic role of Notch is in part mediated by direct binding of the Notch intracellular domain to the CSL DNA binding protein, forming a transcriptional activation complex onto the astrocyte marker gene, glial fibrillary acidic protein (GFAP). In addition, we found that, in CSL-/- neural stem cell cultures, astrocyte differentiation was delayed but continued at a normal rate once initiated, suggesting that CSL is involved in regulating the onset of astrogliogenesis. Importantly, although the classical CSL-dependent Notch signaling pathway is intact and able to activate the Notch canonical target promoter during the neurogenic phase, it is unable to activate the GFAP promoter during neurogenesis. Therefore, the effect of Notch signaling on target genes is influenced by cellular context in regulation of neurogenesis and gliogenesis." ]
1,843
[ "Early biochemical experiments established that the set of dinucleotide odds ratios or 'general design' is a remarkably stable property of the DNA of an organism, which is essentially the same in protein-coding DNA, bulk genomic DNA, and in different renaturation rate and density gradient fractions of genomic DNA in many organisms. Analysis of currently available genomic sequence data has extended these earlier results, showing that the general designs of disjoint samples of a genome are substantially more similar to each other than to those of sequences from other organisms and that closely related organisms have similar general designs. From this perspective, the set of dinucleotide odds ratio (relative abundance) values constitute a signature of each DNA genome, which can discriminate between sequences from different organisms. Dinucleotide-odds ratio values appear to reflect not only the chemistry of dinucleotide stacking energies and base-step conformational preferences, but also the species-specific properties of DNA modification, replication and repair mechanisms.", "BACKGROUND: Recent data from genome-wide chromosome conformation capture analysis indicate that the human genome is divided into conserved megabase-sized self-interacting regions called topological domains. These topological domains form the regulatory backbone of the genome and are separated by regulatory boundary elements or barriers. Copy-number variations can potentially alter the topological domain architecture by deleting or duplicating the barriers and thereby allowing enhancers from neighboring domains to ectopically activate genes causing misexpression and disease, a mutational mechanism that has recently been termed enhancer adoption.RESULTS: We use the Human Phenotype Ontology database to relate the phenotypes of 922 deletion cases recorded in the DECIPHER database to monogenic diseases associated with genes in or adjacent to the deletions. We identify combinations of tissue-specific enhancers and genes adjacent to the deletion and associated with phenotypes in the corresponding tissue, whereby the phenotype matched that observed in the deletion. We compare this computationally with a gene-dosage pathomechanism that attempts to explain the deletion phenotype based on haploinsufficiency of genes located within the deletions. Up to 11.8% of the deletions could be best explained by enhancer adoption or a combination of enhancer adoption and gene-dosage effects.CONCLUSIONS: Our results suggest that enhancer adoption caused by deletions of regulatory boundaries may contribute to a substantial minority of copy-number variation phenotypes and should thus be taken into account in their medical interpretation.", "OBJECTIVE: To investigate the noninferiority of relugolix compared with leuprorelin acetate in reducing heavy menstrual bleeding associated with uterine leiomyomas.METHODS: In a double-blind, double-dummy trial, premenopausal women with uterine leiomyomas and heavy menstrual bleeding defined as a pictorial blood loss assessment chart score of at least 120 were randomized in a 1:1 ratio to relugolix (40 mg, oral, once daily) or leuprorelin acetate (1.88 mg or 3.75 mg, monthly injection) for 24 weeks. The primary endpoint was the proportion of patients with a total pictorial blood loss assessment chart score of less than 10 for weeks 6-12. Secondary endpoints included myoma and uterine volumes, and hemoglobin levels. A sample size of 144 patients per group (n=288) was estimated to provide at least 90% power to demonstrate noninferiority (prespecified noninferiority margin -15%; one-sided 0.025 level of significance).RESULTS: From March 2016 to September 2017, 281 patients were randomized (relugolix, n=139, leuprorelin n=142). Demographic and baseline characteristics were well balanced; mean pictorial blood loss assessment chart score was 254.3 in the relugolix group and 263.7 in the leuprorelin group. The proportion of patients with total pictorial blood loss assessment chart score of less than 10 for weeks 6-12 was 82.2% in the relugolix group and 83.1% in the leuprorelin group, demonstrating noninferiority of relugolix compared with leuprorelin (relugolix-leuprorelin difference -0.9%; 95% CI: -10.10 to 8.35; prespecified noninferiority margin -15%; P=.001). Reductions in myoma and uterine volumes and increases in hemoglobin levels were comparable in the two groups. Relugolix was associated with an earlier effect on menstrual bleeding than leuprorelin (pictorial blood loss assessment chart score of less than 10, 64.2% vs 31.7% [relugolix-leuprorelin difference 32.5%; 95% CI: 20.95-44.13%] for weeks 2-6 and pictorial blood loss assessment chart score of 0, 52.6% vs 21.8% [30.7%; 95% CI: 19.45-42.00%] for weeks 2-6) and faster recovery of menses after treatment discontinuation (relugolix median [Q1, Q3], 37 days [32.0, 46.0]; leuprorelin median, 65 days [54.0, 77.0]). Adverse events and bone mineral density loss were similar between relugolix and leuprorelin treatment groups.CONCLUSION: In women with uterine leiomyomas, once-daily treatment with relugolix, an oral gonadotropin-releasing hormone antagonist, demonstrated noninferiority to monthly leuprorelin for improvement of heavy menstrual bleeding at 6-12 weeks of treatment, had a more rapid effect on menstrual bleeding, and was generally well tolerated.CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, NCT02655237; JAPIC Clinical Trial Information, JapicCTI-163128.FUNDING SOURCE: Takeda Pharmaceutical Company Limited and an affiliate of NovaQuest Capital Management LLC.", "BACKGROUND: Serum N-terminal-pro brain natriuretic peptide (NT-proBNP) is regarded as a marker of vascular disease and has previously been shown to exhibit an increased frequency of pathological values in elderly patients with mental illness with vascular disease compared to patients without vascular disease. Vascular disease plays an important role in cognitive impairment in elderly patients with mental illness.METHOD: We have investigated the relation between NT-proBNP, vascular disease and cognition in consecutively enrolled elderly patients with mental illness.RESULTS: NT-proBNP level is increased in patients with vascular disease compared to patients without vascular disease, and a logistic regression analysis showed that NT-proBNP was a significant predictor of vascular disease. However, NT-proBNP level did not predict cognition as assessed by MMSE score. NT-proBNP level also showed a highly significant relation to mortality in all patients.CONCLUSION: Determinations of NT-proBNP could be used in elderly patients with mental illness to detect patients in need of control and treatment of vascular risk factors. The levels of NT-proBNP may also provide prognostic information.", "Increased oxidative stress has been linked to thyroid carcinogenesis. In this paper, we investigate whether oxidative DNA damage and DNA repair differ in follicular adenoma (FA) and follicular thyroid carcinoma (FTC). 7,8-Dihydro-8-oxoguanine (8-OxoG) formation was analysed by immunohistochemistry in 46 FAs, 52 FTCs and 18 normal thyroid tissues (NTs). mRNA expression of DNA repair genes OGG1, Mut Y homologue (MUTYH) and endonuclease III (NTHL1) was analysed by real-time PCR in 19 FAs, 25 FTCs and 19 NTs. Induction and repair of oxidative DNA damage were studied in rat FRTL-5 cells after u.v. irradiation. Moreover, activation of DNA damage checkpoints (ataxia telangiectasia mutated (ATM) and H2A histone family, member X (H2AFX (H2AFX))) and proliferation index (MIB-1) were quantified in 28 non-oxyphilic and 24 oxyphilic FTCs. Increased nuclear and cytosolic 8-OxoG formation was detected in FTC compared with follicular adenoma, whereby cytosolic 8-OxoG formation was found to reflect RNA oxidation. Significant downregulation of DNA repair enzymes was detected in FTC compared with FA. In vitro experiments mirrored the findings in FTC with oxidative stress-induced DNA checkpoint activation and downregulation of OGG1, MUTYH and NTHL1 in FRTL-5 cells, an effect that, however, was reversible after 24  h. Further analysis of FTC variants showed decreased oxidative DNA damage, sustained checkpoint activation and decreased proliferation in oxyphilic vs non-oxyphilic FTC. Our data suggest a pathophysiological scenario of accumulating unrepaired DNA/RNA damage in FTC vs counterbalanced DNA/RNA damage and repair in FA. Furthermore, this study provides the first evidence for differences in oxidative stress defence in FTC variants with possible implications for therapeutic response and prognostic outcome.", "Although it has been established that recurrent or prolonged clinical seizures during infancy may cause lifelong brain damage, the underlying molecular mechanism is still not well elucidated. The present study, to the best of our knowledge, is the first to investigate the expression of twenty zinc (Zn)/lipid metabolism‑associated genes in the hippocampus and cerebral cortex of rats following recurrent neonatal seizures. In the current study, 6‑day‑old Sprague‑Dawley rats were randomly divided into control (CONT) and recurrent neonatal seizure (RS) groups. On postnatal day 35 (P35), mossy fiber sprouting and gene expression were assessed by Timm staining and reverse transcription‑quantitative polymerase chain reaction, respectively. Of the twenty genes investigated, seven were significantly downregulated, while four were significantly upregulated in the RS group compared with CONT rats, which was observed in the hippocampus but not in the cerebral cortex. Meanwhile, aberrant mossy fiber sprouting was observed in the supragranular region of the dentate gyrus and Cornu Ammonis 3 subfield of the hippocampus in the RS group. In addition, linear correlation analysis identified significant associations between the expression of certain genes in the hippocampus, which accounted for 40% of the total fifty‑five gene pairs among the eleven regulated genes. However, only eight gene pairs in the cerebral cortex exhibited significant positive associations, which accounted for 14.5% of the total. The results of the present study indicated the importance of hippocampal Zn/lipid metabolism‑associated genes in recurrent neonatal seizure‑induced aberrant mossy fiber sprouting, which may aid the identification of novel potential targets during epileptogenesis.", "BACKGROUND: In this retrospective study, our objective was to review the epidemiology of viral meningitis and to compare clinical features associated with enterovirus, herpes simplex virus (HSV), and varicella zoster virus (VZV) infections in immunocompetent adults.METHODS: Data on cerebrospinal fluid (CSF) samples submitted to the Trust Virology Laboratory (Sheffield, UK) from April 2004 through April 2007 were reviewed. Notes on immunocompetent adults who were polymerase chain reaction (PCR) positive for enterovirus, HSV type 2, or VZV and who had presented to local clinical departments were scrutinized (4 patients were positive for HSV type 1 and did not meet the inclusion criteria).RESULTS: A total of 2045 samples were analyzed for viral pathogens during the 3-year period. Of the 109 PCR-positive samples, 38 (35%) were from immunocompetent adults, of whom 22 were infected with enterovirus, 8 were infected with HSV type 2, and 8 were infected with VZV. The median ages were 32 years (range, 16-39 years), 39 years (range, 22-53 years), and 47.5 years (range, 26-80 years), respectively. Rash occurred after the meningitis symptoms in 5 patients infected with VZV (median time from meningitis symptoms to rash, 6 days). Protein levels were significantly higher in CSF samples from patients infected with HSV type 2 (median, 1205 mg/L) and in samples from those infected with VZV (median, 974 mg/L) than in samples from those infected with enterovirus (median, 640 mg/L; P = .001 and P = .01, respectively). White blood cell counts were significantly higher in CSF samples from patients infected with HSV type 2 (median, 240 x 10(6) cells/L) than in samples from those infected with enterovirus (median, 51 x 10(6) cells/L; P = .01).CONCLUSIONS: Enterovirus infection was the most common cause of viral meningitis in immunocompetent adults in this study. White blood cell counts and protein levels were significantly higher in CSF samples from patients infected with HSV type 2 than in samples from patients with enterovirus infection. Zoster rash often occurs after meningitis. PCR testing provides a rapid and specific etiological diagnosis." ]
1,845
[ "Dendritic cells are critical initiators of immune responses. They not only activate pathogen-specific T and B lymphocytes, they also stimulate cells of the innate immune system. Furthermore, dentritic cells are involved in immunological tolerance induction through the elimination of autoreactive T lymphocytes. Over the last ten years, understanding of the development, biology and physiopathology of dentritic cells has progressed considerably which has lead to the use of dentritic cells in immunotherapy protocols to treat tumors, infections and auto-immune diseases.", "Artepillin C is the main compound present in propolis from Baccharis dracunculifolia, whose antitumor activity has been the focus of many studies. Herein, we shall investigate the Artepillin C mechanisms of action against cells derived from the oropharyngeal carcinoma (HEp-2). Cytotoxicity tests revealed that the concentrations of Artepillin C required to reduce cell viability by 50% (CC50) are dependent on the incubation time, decreasing from 40.7 × 10-5 mol/L to 15.7 × 10-5 mol/L and 9.05 × 10-5 mol/L considering 12, 24 and 48 h, respectively. Hydrophobic interactions on neutral species of Artepillin C induce aggregation over the HEp-2 plasma membrane, given the acid conditions of the cellular culture. Indeed, Langmuir monolayers mimicking cellular membranes of tumor cells revealed Artepillin C affinity to interact with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) containing 20 mol% of 1,2-dipalmitoyl-sn-glychero-3-phosphoserine (DPPS), leading aggregation on giant unilamellar vesicles (GUVs) at pH 3.2. Moreover, leakage experiments on GUVs have shown that the presence of DPPS enhances the efflux of the fluorescent probe signaling the membrane permeabilization, which is the origin of the necrotic pathway triggered in HEp-2 cells, as observed by flow cytometry assays.", "We present Micro-C XL, an improved method for analysis of chromosome folding at mononucleosome resolution. Using long crosslinkers and isolation of insoluble chromatin, Micro-C XL increases signal-to-noise ratio. Micro-C XL maps of budding and fission yeast genomes capture both short-range chromosome fiber features such as chromosomally interacting domains and higher order features such as centromere clustering. Micro-C XL provides a single assay to interrogate chromosome folding at length scales from the nucleosome to the full genome.", "BACKGROUND: The CYP2C19 G681A single polymorphism has been proven to affect clopidogrel responsiveness. However, the effect of coexisting polymorphisms of other genes has not yet been reported in the Chinese population. This study investigated the effect of coexisting polymorphisms of CYP2C19 and P2Y12 on clopidogrel responsiveness and adverse clinical events in Chinese patients.METHODS: In 577 Han Chinese patients undergoing stent placement because of acute coronary syndrome had platelet reactivity assessed by thromboelastography, and the CYP2C19 G681A and P2Y12 C34T polymorphisms were detected by the ligase detection reaction. Primary clinical endpoints included cardiovascular death, nonfatal myocardial infarction, target vessel revascularization, and stent thrombosis. The secondary clinical endpoints were thrombolysis in myocardial infarction bleeding. The follow-up period was 12 months.RESULTS: Genotyping revealed 194 carriers of the wild type GG genotype of CYP2C19 and the wild type CC genotype of P2Y12 (group 1), 102 carriers of the wild type GG genotype of CYP2C19 and the mutational T allele of P2Y12 (group 2), 163 carriers of the mutational A allele of CYP2C19 and the wild type CC genotype of P2Y12 (group 3), and 118 carriers of the mutational A allele of CYP2C19 and the mutational T allele of P2Y12 (group 4). Group 4 had the lowest ADP-inhibition (49.74 ± 32.61) and the highest prevalence of clopidogrel low response (29.7%) of the four groups. The rate of the composite of primary clinical endpoints increased more in group 4 (8.5%) than in the other three groups; the rate of composite primary endpoints in group 2 (2.9%) and group 3 (3.7%) were not significantly different than that of group 1 (1.5%).CONCLUSION: Coexisting polymorphisms of different genes affected clopidogrel responsiveness and clinical outcome more than single polymorphism in Chinese patients with acute coronary syndrome undergoing percutaneous coronary intervention.", "The study of homeotic-transformation mutants in model organisms such as Drosophila revolutionized the field of developmental biology, but how these mutants relate to human developmental defects remains to be elucidated. Here, we show that Liebenberg syndrome, an autosomal-dominant upper-limb malformation, shows features of a homeotic limb transformation in which the arms have acquired morphological characteristics of a leg. Using high-resolution array comparative genomic hybridization and paired-end whole-genome sequencing, we identified two deletions and a translocation 5' of PITX1. The structural changes are likely to remove active PITX1 forelimb suppressor and/or insulator elements and thereby move active enhancer elements in the vicinity of the PITX1 regulatory landscape. We generated transgenic mice in which PITX1 was misexpressed under the control of a nearby enhancer and were able to recapitulate the Liebenberg phenotype.", "PURPOSE: Hodgkin lymphoma (HL) survivors face an increased risk of treatment-related lung cancer. Screening with low-dose computed tomography (LDCT) may allow detection of early stage, resectable cancers. We developed a Markov decision-analytic and cost-effectiveness model to estimate the merits of annual LDCT screening among HL survivors.METHODS AND MATERIALS: Population databases and HL-specific literature informed key model parameters, including lung cancer rates and stage distribution, cause-specific survival estimates, and utilities. Relative risks accounted for radiation therapy (RT) technique, smoking status (>10 pack-years or current smokers vs not), age at HL diagnosis, time from HL treatment, and excess radiation from LDCTs. LDCT assumptions, including expected stage-shift, false-positive rates, and likely additional workup were derived from the National Lung Screening Trial and preliminary results from an internal phase 2 protocol that performed annual LDCTs in 53 HL survivors. We assumed a 3% discount rate and a willingness-to-pay (WTP) threshold of $50,000 per quality-adjusted life year (QALY).RESULTS: Annual LDCT screening was cost effective for all smokers. A male smoker treated with mantle RT at age 25 achieved maximum QALYs by initiating screening 12 years post-HL, with a life expectancy benefit of 2.1 months and an incremental cost of $34,841/QALY. Among nonsmokers, annual screening produced a QALY benefit in some cases, but the incremental cost was not below the WTP threshold for any patient subsets. As age at HL diagnosis increased, earlier initiation of screening improved outcomes. Sensitivity analyses revealed that the model was most sensitive to the lung cancer incidence and mortality rates and expected stage-shift from screening.CONCLUSIONS: HL survivors are an important high-risk population that may benefit from screening, especially those treated in the past with large radiation fields including mantle or involved-field RT. Screening may be cost effective for all smokers but possibly not for nonsmokers despite a small life expectancy benefit.", "Opioid receptors are currently classified as mu (mu: mOP), delta (delta: dOP), kappa (kappa: kOP) with a fourth related non-classical opioid receptor for nociceptin/orphainin FQ, NOP. Morphine is the current gold standard analgesic acting at MOP receptors but produces a range of variably troublesome side-effects, in particular tolerance. There is now good laboratory evidence to suggest that blocking DOP while activating MOP produces analgesia (or antinociception) without the development of tolerance. Simultaneous targeting of MOP and DOP can be accomplished by: (i) co-administering two selective drugs, (ii) administering one non-selective drug, or (iii) designing a single drug that specifically targets both receptors; a bivalent ligand. Bivalent ligands generally contain two active centres or pharmacophores that are variably separated by a chemical spacer and there are several interesting examples in the literature. For example linking the MOP agonist oxymorphone to the DOP antagonist naltrindole produces a MOP/DOP bivalent ligand that should produce analgesia with reduced tolerance. The type of response/selectivity produced depends on the pharmacophore combination (e.g. oxymorphone and naltrindole as above) and the space between them. Production and evaluation of bivalent ligands is an emerging field in drug design and for anaesthesia, analgesics that are designed not to be highly selective morphine-like (MOP) ligands represents a new avenue for the production of useful drugs for chronic (and in particular cancer) pain." ]
1,849
[ "Our genome contains tens of thousands of long noncoding RNAs (lncRNAs), many of which are likely to have genetic regulatory functions. It has been proposed that lncRNA are organized into combinations of discrete functional domains, but the nature of these and their identification remain elusive. One class of sequence elements that is enriched in lncRNA is represented by transposable elements (TEs), repetitive mobile genetic sequences that have contributed widely to genome evolution through a process termed exaptation. Here, we link these two concepts by proposing that exonic TEs act as RNA domains that are essential for lncRNA function. We term such elements Repeat Insertion Domains of LncRNAs (RIDLs). A growing number of RIDLs have been experimentally defined, where TE-derived fragments of lncRNA act as RNA-, DNA-, and protein-binding domains. We propose that these reflect a more general phenomenon of exaptation during lncRNA evolution, where inserted TE sequences are repurposed as recognition sites for both protein and nucleic acids. We discuss a series of genomic screens that may be used in the future to systematically discover RIDLs. The RIDL hypothesis has the potential to explain how functional evolution can keep pace with the rapid gene evolution observed in lncRNA. More practically, TE maps may in the future be used to predict lncRNA function.", "Duchenne muscular dystrophy (DMD) is a severe hereditary disease characterized by the absence of dystrophin on the sarcolemma of muscle fiber. This absence results in widespread muscle damage and satellite cell activation. After depletion of the satellite cell pool, skeletal muscle is then invariably replaced by connective tissue, leading to progressive muscle weakness. Herein, we isolated Flk-1(+) mesenchymal stem cells (MSCs) from adult adipose tissue and induced them to differentiate into skeletal muscle cells in culture. Within mdx mice, an animal model of DMD, adipose tissue-derived Flk-1(+) MSCs (AD-MSCs) homed to and differentiated into cells that repaired injured muscle tissue. This repair correlated with reconstitution of dystrophin expression on the damaged fibers. Flk-1(+) AD-MSCs also differentiated into muscle satellite cells. This differentiation may have accounted for long-term reconstitution. These cells also differentiated into endothelial cells, thereby possibly improving fiber regeneration as a result of the induced angiogenesis. Therefore, Flk-1(+) AD-MSC transplants may repair muscular dystrophy.", "A 12-year-old boy presented with poor vision and nystagmus. Fundus examination revealed bilateral optic nerve hypoplasia. An MRI of the brain demonstrated the absence of the septum pellucidum, which confirmed a diagnosis of septo-optic dysplasia or de Morsier syndrome.", "Cohesin-mediated sister chromatid cohesion is essential for chromosome segregation and post-replicative DNA repair. In addition, evidence from model organisms and from human genetics suggests that cohesin is involved in the control of gene expression. This non-canonical role has recently been rationalized by the findings that mammalian cohesin complexes are recruited to a subset of DNase I hypersensitive sites and to conserved noncoding sequences by the DNA-binding protein CTCF. CTCF functions at insulators (which control interactions between enhancers and promoters) and at boundary elements (which demarcate regions of distinct chromatin structure), and cohesin contributes to its enhancer-blocking activity. The underlying mechanisms remain unknown, and the full spectrum of cohesin functions remains to be determined. Here we show that cohesin forms the topological and mechanistic basis for cell-type-specific long-range chromosomal interactions in cis at the developmentally regulated cytokine locus IFNG. Hence, the ability of cohesin to constrain chromosome topology is used not only for the purpose of sister chromatid cohesion, but also to dynamically define the spatial conformation of specific loci. This new aspect of cohesin function is probably important for normal development and disease.", "Although modulation of the cellular tumor-suppressor p53 is considered to have the major role in E1A/E1B-55K-mediated tumorigenesis, other promyelocytic leukemia nuclear body (PML-NB)/PML oncogenic domain (POD)-associated factors including SUMO, Mre11, Daxx, as well as the integrity of these nuclear bodies contribute to the transformation process. However, the biochemical consequences and oncogenic alterations of PML-associated E1B-55K by SUMO-dependent PML-IV and PML-V interaction have so far remained elusive. We performed mutational analysis to define a PML interaction motif within the E1B-55K polypeptide. Our results showed that E1B-55K/PML binding is not required for p53, Mre11 and Daxx interaction. We also observed that E1B-55K lacking subnuclear PML localization because of either PML-IV or PML-V-binding deficiency was no longer capable of mediating E1B-55K-dependent SUMOylation of p53, inhibition of p53-mediated transactivation or efficiently transforming primary rodent cells. These results together with the observation that E1B-55K-dependent SUMOylation of p53 is required for efficient cell transformation, provides evidence for the idea that the SUMO ligase activity of the E1B-55K viral oncoprotein is intimately linked to its growth-promoting oncogenic activities.", "The nuclear lamina consists of a proteinaceous layer or meshwork situated subjacent to the inner nuclear membrane. It is a karyoskeletal structure formed by a polymer containing one to three major polypeptides collectively termed the lamins. In all cells examined of vertebrates and invertebrates, the lamins exhibit very similar Mr ranging from 60 000 to 80 000. In vertebrates, two groups of lamins can be distinguished by their isoelectric value, one being near-neutral and the other acidic (isoelectric pH values of 5.6 and lower). The lamins represent a family of polypeptides with regions highly conserved during evolution. In certain species, e.g., the amphibian, Xenopus laevis, they exhibit cell type-specific expression during embryonic development, terminal differentiation of certain somatic cells, and gametogenesis. The nuclear lamina of diverse cell types can be composed of one, two or three different lamin polypeptides, without obvious differences in its morphology.", "Intravesical immunotherapy, chemotherapy, and neoadjuvant systemic chemotherapy are among the most frequent therapeutic procedures to treat malignancies of the urinary bladder. These treatment modalities produce reactive morphologic changes in the urothelium that can mimic urothelial carcinoma in situ, urothelial dysplasia or true invasive urothelial neoplasia. Mitomycin C used after transurethral resection of bladder tumor to reduce recurrences, BCG intravesical immunotherapy to treat high risk non-muscle invasive bladder cancer and urothelial carcinoma in situ, and platinum-based systemic chemotherapy to improve post-cystectomy disease-specific survival some of the causes of therapy related atypia in urinary bladder. In addition, a number of systemic drugs in use to treat other systemic diseases, such as cyclophosphamide used to treat certain auto-immune disorders or hematologic malignancies, or the anesthetics ketamine increasingly used as illegal recreational drug, may produce similarly relevant atypical changes in the urothelium, and therefore, need to be differentiated from intraepithelial neoplasia. Immunohistochemical approach to reactive urothelium from CIS using CK20, p53, and CD44 may also be of utility in the pos-therapy scenario." ]
1,855
[ "Macromolecular interactions play a crucial role in biological systems. Simulation of diffusional association (SDA) is a software for carrying out Brownian dynamics simulations that can be used to study the interactions between two or more biological macromolecules. webSDA allows users to run Brownian dynamics simulations with SDA to study bimolecular association and encounter complex formation, to compute association rate constants, and to investigate macromolecular crowding using atomically detailed macromolecular structures. webSDA facilitates and automates the use of the SDA software, and offers user-friendly visualization of results. webSDA currently has three modules: 'SDA docking' to generate structures of the diffusional encounter complexes of two macromolecules, 'SDA association' to calculate bimolecular diffusional association rate constants, and 'SDA multiple molecules' to simulate the diffusive motion of hundreds of macromolecules. webSDA is freely available to all users and there is no login requirement. webSDA is available at http://mcm.h-its.org/webSDA/.", "Atrial arrhythmias resistant to medical therapy are still a common indication for ablation of the normal atrioventricular conduction pathway (Tawara node and His Bundle). However, the development of catheter techniques of intra-atrial ablation to destroy arrhythmogenic myocardial zones enables radical cure of the arrhythmias with the respect of the nodo-hisian pathway. With respect to common flutter, a number of series, including our own, show a 50 to 75% long-term success rate. We believe that a very high success rate in the ablation of flutter will probably be achieved in a reproducible manner but this will require a more accurate understanding of the tachycardia circuit and technological developments allowing controlled radio-frequency destruction of bigger atrial myocardial zone. Experience of radio-frequency ablation atrial of atrial extrasystoles is more limited than that of flutter and there are fewer published series. Globally, catheter ablation of atrial tachycardia remains a more difficult and a less well codified procedure than that of accessory pathways or of intra-nodal reentry. Radio-frequency ablation in this indication is not without danger in view of the thinness of the atrial wall. We believe that radio-frequency catheter ablation for atrial arrhythmias should, for the moment, be reserved for centres specialised in the techniques of electro-physiological investigation and ablation.", "OBJECTIVE: Chronically elevated free fatty acids contribute to insulin resistance and pancreatic β-cell failure. Among numerous potential factors, the involvement of endoplasmic reticulum (ER) stress has been postulated to play a mechanistic role. Here we examined the efficacy of the chemical chaperone, sodium phenylbutyrate (PBA), a drug with known capacity to reduce ER stress in animal models and in vitro, on lipid-induced insulin resistance and β-cell dysfunction in humans.RESEARCH DESIGN AND METHODS: Eight overweight or obese nondiabetic men underwent four studies each, in random order, 4 to 6 weeks apart. Two studies were preceded by 2 weeks of oral PBA (7.5 g/day), followed by a 48-h i.v. infusion of intralipid/heparin or saline, and two studies were preceded by placebo treatment, followed by similar infusions. Insulin secretion rates (ISRs) and sensitivity (S(I)) were assessed after the 48-h infusions by hyperglycemic and hyperinsulinemic-euglycemic clamps, respectively.RESULTS: Lipid infusion reduced S(I), which was significantly ameliorated by pretreatment with PBA. Absolute ISR was not affected by any treatment; however, PBA partially ameliorated the lipid-induced reduction in the disposition index (DI = ISR × S(I)), indicating that PBA prevented lipid-induced β-cell dysfunction.CONCLUSIONS: These results suggest that PBA may provide benefits in humans by ameliorating the insulin resistance and β-cell dysfunction induced by prolonged elevation of free fatty acids.", "This paper introduces a new approach for immobilizing a quaternary ammonium moiety on a keratinous substrate for enhanced medical applications. The method involves the generation of thiols by controlled reduction of cystine disulfide bonds in the keratin, followed by reaction with [2-(acryloyloxy)ethyl]trimethylammonium chloride through thiol-ene click chemistry. The modified substrate was characterized with Raman and infrared spectroscopy, and assessed for its antibacterial efficacy and other performance changes. The results have demonstrated that the quaternary ammonium moiety has been effectively attached onto the keratin structure, and the resultant keratin substrate exhibits a multifunctional effect including antibacterial and antistatic properties, improved liquid moisture management property, improved dyeability and a non-leaching characteristic of the treated substrate.", "Rett syndrome (RTT) is a neurodevelopmental disorder, which almost exclusively affects girls, who, after an initial period of apparently normal development, display gradual loss of speech and purposeful hand use, gait abnormalities and stereotypical hand movements. In the year 2000, mutations in the gene for the methyl CpG binding protein 2, MECP2, have been identified in 35-80% of the patients in three different studies. We have identified 15 different MECP2 mutations in 26 of 30 Danish RTT patients. The mutations included five novel mutations (one point mutation, three smaller deletions involving identical regions in the gene, and one duplication). In contrast to the point mutations and the duplication, which all affect the methyl binding domain or the transcriptional repressing domain, the three overlapping deletions are clustered in the 3' end of the gene. We found no consistent correlation between the type of mutation and the clinical presentation of the patient or the X-inactivation pattern in peripheral blood. Our high mutation detection rate, compared to two of the previous studies, underscores the importance of the inclusion criteria of the patients and supports that MECP2 is the most important, if not the only, gene responsible for RTT.", "Conflict among data sources can be frequent in evolutionary biology, especially in cases where one character set poses limitations to resolution. Earthworm taxonomy, for example, remains a challenge because of the limited number of morphological characters taxonomically valuable. An explanation to this may be morphological convergence due to adaptation to a homogeneous habitat, resulting in high degrees of homoplasy. This sometimes impedes clear morphological diagnosis of species. Combination of morphology with molecular techniques has recently aided taxonomy in many groups difficult to delimit morphologically. Here we apply an integrative approach by combining morphological and molecular data, including also some ecological features, to describe a new earthworm species in the family Hormogastridae, Hormogaster abbatissaesp. n., collected in Sant Joan de les Abadesses (Girona, Spain). Its anatomical and morphological characters are discussed in relation to the most similar Hormogastridae species, which are not the closest species in a phylogenetic analysis of molecular data. Species delimitation using the GMYC method and genetic divergences with the closest species are also considered. The information supplied by the morphological and molecular sources is contradictory, and thus we discuss issues with species delimitation in other similar situations. Decisions should be based on a profound knowledge of the morphology of the studied group but results from molecular analyses should also be considered.", "Ultraviolet radiation (UVR) exposure causes various injurious effects to human skin by generating reactive oxygen species (ROS). Excessive ROS production can lead to oxidative stress which may damage cellular components like lipids and proteins and causing photoaging. The use of natural photochemopreventive agents with antioxidant properties is an important alternative to improve the effectiveness of sunscreens and reduce skin photodamage. A crude extract (CE) from the leaves of Arrabidaea chica underwent partition by a liquid-liquid method. The hexane fraction (FH), chloroform fraction (FC), and ethyl acetate fraction (FEA) were obtained. The antioxidant capacity of the CE, FH, FC, and FEA was studied in a cell-free system using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and the xanthine/luminol/xanthine oxidase system. The FC had the best antioxidant activity. We also evaluated the photochemoprotective effect of A. chica in protecting L929 fibroblasts against UV-A- and UV-B-induced cell damage. A. chica inhibited the extended production of ROS up to 3h. Posttreatment with the CE and FC attenuated UV-induced cell damage through scavenging mechanisms, including the quenching of intracellular ROS and mitochondrial O2- and preventing lipid peroxidation. These results suggest that A. chica may be a promising non-sunscreen photoprotector that can improve the effectiveness of commercial sunscreens." ]
1,860
[ "Gordon syndrome or distal arthrogryposis type 3 is a rare autosomal dominant disorder characterized by contractures of upper and lower limbs. It is distinguishable from other forms of distal arthrogryposis by cleft palate and short stature. Recently, Gordon syndrome has been associated to heterozygous mutations in the piezo-type mechanosensitive ion channel component 2 gene (PIEZO2). Different mutations of this gene also cause distal arthrogryposis type 5 and Marden-Walker syndrome. Dysfunction of this ion channel provides pleiotropic effects on joints, ocular muscles, and bone development. Here, we present a family with three affected individuals exhibiting multiple contractures (metacarpo-phalangeal and interphalangeal joints as well as elbow, shoulder, knee, and ankle joints), clubfeet, short stature, bifid uvula/cleft palate, and a distinct facial phenotype including ptosis. In addition, mild intellectual disability and delay in psychomotor development are obvious. The multigenerational phenotypic spectrum of Gordon syndrome is present in the 37-year-old father, his 4-year-old son and a male neonate showing typical signs of arthrogryposis in the prenatal ultrasound examination already seen at 13 week of gestation. In all affected family members, we identified the PIEZO2 mutation c.8057G>A (p.Arg2686His) by Sanger sequencing. Our analysis indicated that mild delay in psychomotor development and intellectual disability could be part of the phenotypic spectrum of Gordon syndrome. © 2016 Wiley Periodicals, Inc.", "BACKGROUND: Mass spectrometry has become a powerful tool for the analysis of large numbers of proteins in complex samples, enabling much of proteomics. Due to various analytical challenges, so far no proteome has been sequenced completely. O'Shea, Weissman and co-workers have recently determined the copy number of yeast proteins, making this proteome an excellent model system to study factors affecting coverage.RESULTS: To probe the yeast proteome in depth and determine factors currently preventing complete analysis, we grew yeast cells, extracted proteins and separated them by one-dimensional gel electrophoresis. Peptides resulting from trypsin digestion were analyzed by liquid chromatography mass spectrometry on a linear ion trap-Fourier transform mass spectrometer with very high mass accuracy and sequencing speed. We achieved unambiguous identification of more than 2,000 proteins, including very low abundant ones. Effective dynamic range was limited to about 1,000 and effective sensitivity to about 500 femtomoles, far from the subfemtomole sensitivity possible with single proteins. We used SILAC (stable isotope labeling by amino acids in cell culture) to generate one-to-one pairs of true peptide signals and investigated if sensitivity, sequencing speed or dynamic range were limiting the analysis.CONCLUSION: Advanced mass spectrometry methods can unambiguously identify more than 2,000 proteins in a single proteome. Complex mixture analysis is not limited by sensitivity but by a combination of dynamic range (high abundance peptides preventing sequencing of low abundance ones) and by effective sequencing speed. Substantially increased coverage of the yeast proteome appears feasible with further development in software and instrumentation.", "Overexpression of microRNA-182 (miR-182) is found in multiple cancers, but the association of miR-182 expression with the sensitivity of triple-negative breast cancer (TNBC) cells to tumor necrosis factor-alpha (TNF-α) remains unknown. In this study, up-regulation of miR-182 was validated in TNBC patients and cell lines. Knockdown of miR-182 was observed to hinder the proliferation of BT-549 cells. More importantly, knockdown of miR-182 significantly promoted the apoptosis induced by TNF-α treatment in BT-549. JC-1 staining and western blot assays revealed that the K63-linked ubiquitin chains on receptor-interacting protein 1 (RIP1) were removed and the outer mitochondrial membrane potential (MMP) and permeability was altered upon combination of TNF-α with anti-miR-182. We then demonstrated that knockdown of miR-182 up-regulated the expression of cylindromatosis (CYLD) deubiquitinase, which promoted the formation of death-inducing signaling complex (DISC) and subsequent caspase-8 activation in TNF-α-treated BT-549 cells. Collectively, the results of the present study improve our understanding of the role of miR-182 in TNBC, knockdown of which facilitates the degradation of ubiquitin chains on RIP1, leading to the caspase-8 activation and apoptosis in TNF-α-treated TNBC cells. This may be valuable for the development of cancer therapy.", "Dominant mutations in PIEZO2, which codes for the principal mechanotransduction channel for proprioception and touch sensation, have been found to cause different forms of distal arthrogryposis. Some observations suggest that these dominant mutations induce a gain-of-function effect on the channel. Here, we report a consanguineous family with three siblings who showed short stature, scoliosis, gross motor impairment, and a progressive form of contractures involving the distal joints that is distinct from that found in patients with dominant mutations in PIEZO2. These siblings also displayed deficits in proprioception and touch sensation. Whole-exome sequencing performed in the three affected siblings revealed the presence of a rare homozygous variant (c.2708C>G; p.S903*) in PIEZO2. This variant is predicted to disrupt PIEZO2 function by abolishing the pore domain. Sanger sequencing confirmed that all three siblings are homozygous whereas their parents and an unaffected sibling are heterozygous for this variant. Recessive mutations in PIEZO2 thus appear to cause a progressive phenotype that overlaps with, while being mostly distinct from that associated with dominant mutations in the same gene.", "Mechanotransduction, the pathway by which mechanical forces are translated to biological signals, plays important but poorly characterized roles in physiology. PIEZOs are recently identified, widely expressed, mechanically activated ion channels that are hypothesized to play a role in mechanotransduction in mammals. Here, we describe two distinct PIEZO2 mutations in patients with a subtype of Distal Arthrogryposis Type 5 characterized by generalized autosomal dominant contractures with limited eye movements, restrictive lung disease, and variable absence of cruciate knee ligaments. Electrophysiological studies reveal that the two PIEZO2 mutations affect biophysical properties related to channel inactivation: both E2727del and I802F mutations cause the PIEZO2-dependent, mechanically activated currents to recover faster from inactivation, while E2727del also causes a slowing of inactivation. Both types of changes in kinetics result in increased channel activity in response to a given mechanical stimulus, suggesting that Distal Arthrogryposis Type 5 can be caused by gain-of-function mutations in PIEZO2. We further show that overexpression of mutated PIEZO2 cDNAs does not cause constitutive activity or toxicity to cells, indicating that the observed phenotype is likely due to a mechanotransduction defect. Our studies identify a type of channelopathy and link the dysfunction of mechanically activated ion channels to developmental malformations and joint contractures.", "The spinal muscular atrophies are a group of mostly inherited disorders selectively affecting the lower motor neuron. There is a wide degree of clinical and genetic heterogeneity that must be taken into account when giving prognostic information. Autosomal recessive childhood proximal SMA is the commonest form and is due to mutations in a gene encoding a novel protein, SMN, that appears to play a critical role in RNA metabolism but has also been shown to interact with actin-binding proteins and mediators of programmed cell death. The identification of the genetic basis of SMA has resulted in advances for prenatal diagnosis and in new insights into motor neuron biology. The chromosomal location of two of the rarer dominant forms of SMA has been found. Identification of the molecular pathophysiology of lower motor neuron syndromes can be expected to aid in the development of therapy for these disabling disorders.", "BACKGROUND/AIMS: Evaluation of Her2/neu expression in the peripheral blood mononuclear cell fraction of prostate cancer patients by RT-PCR may afford an opportunity for the detection of circulating tumor cells and thus serve as a marker of micrometastatic disease.METHODS: We studied Her2/neu expression by reverse transcriptase-polymerase chain reaction in peripheral blood mononuclear cell fraction samples of 21 controls and serially in 43 patients with prostate cancer.RESULTS: None of the 21 controls expressed Her2/neu whereas 23.25% (95% CI, 11.75-38.63) of the patients were positive at entry into the study, and 65.11% (95% CI, 49.07-78.99) of them had at least one positive result during the follow-up period. Her2/neu positivity at study entry did not correlate significantly with PSA level, Gleason score, clinical stage or time to PSA progression. When we analyzed only patients with advanced disease, we observed a trend towards a shorter time to PSA progression in patients with at least one positive Her2/neu result during the follow-up (log-rank test, P = 0.08).CONCLUSIONS: We conclude that Her2/neu expression in the peripheral blood mononuclear cell fraction of prostate cancer patients is frequent and therefore this assay may potentially be useful to detect the presence of micrometastatic disease in men with prostate cancer and for monitoring patients enrolled in trastuzumab-based therapeutic protocols.", "Herein, a combined molecular docking-based and pharmacophore-based target prediction strategy is presented, in which a probabilistic fusion method is suggested for target ranking. Establishment and validation of the combined strategy are described. A target database, termed TargetDB, was firstly constructed, which contains 1105 drug targets. Based on TargetDB, the molecular docking-based target prediction and pharmacophore-based target prediction protocols were established. A probabilistic fusion method was then developed by constructing probability assignment curves (PACs) against a set of selected targets. Finally the workflow for the combined molecular docking-based and pharmacophore-based target prediction strategy was established. Evaluations of the performance of the combined strategy were carried out against a set of structurally different single-target compounds and a well-known multi-target drug, 4H-tamoxifen, which results showed that the combined strategy consistently outperformed the sole use of docking-based and pharmacophore-based methods. Overall, this investigation provides a possible way for improving the accuracy of in silico target prediction and a method for target ranking.", "OBJECTIVES: Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS) is a newly defined disease in neuropsychiatry and occurs with an autoimmune mechanism after Group A Beta Hemolytic Streptococcus (GABHS) infection. Tumor necrosis factor (TNF), encoded by TNF-α gene has an important role in the apoptotic mechanisms of autoimmune diseases. Recently, TNF-α polymorphisms and autoimmune/psychiatric disorders have been reported to be related. In this regard, we focused on to investigate a possible relation between the TNF-α gene promoter region-308 G/A and - 850 C/T polymorphisms and PANDAS.MATERIALS AND METHODS: In this study, ages of PANDAS patient and control groups were ranging from 4 years to 12-year-old. Patient group includes childhood onset PANDAS patients (n = 42) and control group includes healthy children (n = 58). Diagnoses have been carried out according to Diagnostic and Statistical Manual of Mental Disorder (DSM-IV) criteria with Affective Disorders and Schizophrenia-Present and Lifetime (KSAD-S-PL) and Children Yale-Brown Obsessive Compulsive Scale Moreover, PANDAS criteria established by the American National Psychiatry Institute have been employed for diagnoses. For identifying polymorphisms; Polymerase Chain Reaction, Restriction Fragment Length Polymorphism and Polyacrylamid Gel Electrophoresis were used.RESULTS AND DISCUSSION: For -308 polymorphism, 37 of 42 PANDAS patients' results and for -850 C/T polymorphism, 38 of 42 PANDAS patients' results were obtained. According to our statistical analysis there is a positive relationship between PANDAS patients for -308 G/A polymorphism but not for -850 C/T polymorphism. There is no positive relationship between -308 G/A polymorphism and antistrep-tolysin O (ASO) titers and no relationship between -850 C/T polymorphism and ASO titers. We found, however, positive relationship between genders of patients (boys) and the disease. According to our results, we propose that the AA polymorphism of -308 G/A polymorphism can be used as a molecular indicator for PANDAS.", "The brown marmorated stink bug, Halyomorpha halys (Stål), is native to eastern Asia and is presently invading North America. Little is known about the exposure to and effects of winter temperatures in newly invaded regions on H. halys The overwintering habitats that this species utilizes vary greatly in their thermal buffering capacity. They naturally overwinter in aggregations beneath loose bark on trees and in cliff outcroppings, but will also commonly aggregate in buildings. Effects of cold temperatures such as mortality and freezing have yet to be quantified in the invading population. We report that H. halys is chill intolerant (i.e., dies before reaching its freezing point), and that the degree of cold tolerance of populations in North America differs by season, sex, and acclimation location. The mean winter supercooling point (± SEM) of individuals acclimated in Minnesota was -17.06 °C ± 0.13 and in Virginia was -13.90 °C ± 0.09. By using laboratory assays of lower lethal temperatures and ambient air temperature records, we accurately forecasted mortality for field experiments in Minnesota and Virginia. Temperature refugia provided by human-built structures are likely crucial for overwintering survival during atypically cold winters and possibly contribute to the northern geographic range expansion of this economically damaging insect in the temperate climates of North America.", "Author information:(1)Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.(2)Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA.(3)Genetic Unit, Hospital Dr. Luis Calvo Mackenna, Santiago 7500539, Chile; Division of Pediatrics, Pontificia Universidad Católica de Chile, Santiago 8330074, Chile.(4)Departments of Pediatrics and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.(5)Service de Pédiatrie, Hôpital Jean Verdier, Assistance Publique - Hôpitaux de Paris, Bondy 93143, France.(6)Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA.(7)Department of Pediatrics, University of New Mexico, Albuquerque, NM 87131, USA.(8)Manchester Academic Health Science Centre and University of Manchester, Manchester M13 9NT, UK.(9)Genetic Medicine Central California, University of California, San Francisco, Fresno, CA 93701, USA.(10)Centre for Human Genetics, University Hospitals KU Leuven, 3000 Leuven, Belgium.(11)Greenwood Genetic Center, Greenwood, SC 29646, USA.(12)Department of Clinical Genetics, Alder Hey Children's Hospital, Liverpool L12 2AP, UK.(13)Genetic Health Service New Zealand, Christchurch Hospital, Christchurch 8140, New Zealand.(14)Genetics and Molecular Medicine, Dipartimento di Scieze della Salute, University of Florence, Florence 50132, Italy.(15)Division of Clinical Genetics and Dysmorphology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.(16)Departments of Medical Genetics and Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC V6H 3N1, Canada.(17)Department of Pediatrics, University of Texas Medical School, Houston, TX 77030, USA.(18)North East Thames Regional Genetic Service, Great Ormond Street Hospital, London WC1N 3BH, UK.(19)Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.(20)Department of Clinical Genetics, School for Oncology and Developmental Biology, Maastricht UMC+, Maastricht 6229 GR, the Netherlands.(21)Princess Elisabeth Children's Hospital, Ghent University Hospital, 9000 Ghent, Belgium.(22)Department of Medical Genetics, Sydney Children's Hospital, Sydney, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, University of New South Wales, Sydney, NSW 2052, Australia.(23)National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK.(24)Department of Women's and Children's Health, University of Otago, Dunedin 9054, New Zealand.(25)Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.(26)Department of Pediatrics, University of Hawai'i John A. Burns School of Medicine, Honolulu, HI 96826, USA.(27)Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA.(28)Northern Genetics Service, Institute of Genetic Medicine, Newcastle upon Tyne NE1 3BZ, UK.(29)Department of Clinical Genetics, Churchill Hospital, Oxford University Hospitals NHS Trust, Oxford OX3 7LJ, UK.(30)Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa 16059, Turkey; Department of Histology & Embryology, Faculty of Medicine, Uludag University, Bursa 16059, Turkey; Department of Histology & Embryology, Faculty of Medicine, Near East University, TRNC Mersin 10, Turkey.(31)Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.(32)Department of Clinical Genetics, Southern General Hospital, Glasgow G51 4TF, UK.(33)Genomic Medicine Institute, Geisinger Health System, Danville, PA 17822, USA.(34)Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA; Treuman Katz Center for Pediatric Bioethics, Seattle Children's Research Institute, Seattle, WA 98101, USA.(35)Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.(36)Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Electronic address: mbamshad@uw.edu.", "Pluripotent stem cells have potential applications in regenerative medicine for diabetes. Differentiation of stem cells into insulin-producing cells has been achieved using various protocols. However, both the efficiency of the method and potency of differentiated cells are insufficient. Oxygen tension, the partial pressure of oxygen, has been shown to regulate the embryonic development of several organs, including pancreatic β-cells. In this study, we tried to establish an effective method for the differentiation of induced pluripotent stem cells (iPSCs) into insulin-producing cells by culturing under high oxygen (O2) conditions. Treatment with a high O2 condition in the early stage of differentiation increased insulin-positive cells at the terminus of differentiation. We found that a high O2 condition repressed Notch-dependent gene Hes1 expression and increased Ngn3 expression at the stage of pancreatic progenitors. This effect was caused by inhibition of hypoxia-inducible factor-1α protein level. Moreover, a high O2 condition activated Wnt signaling. Optimal stage-specific treatment with a high O2 condition resulted in a significant increase in insulin production in both mouse embryonic stem cells and human iPSCs and yielded populations containing up to 10% C-peptide-positive cells in human iPSCs. These results suggest that culturing in a high O2 condition at a specific stage is useful for the efficient generation of insulin-producing cells.", "Lactobacilli represent a wide range of bacterial species with several implications for the human host. They play a crucial role in maintaining the ecological equilibrium of different biological niches and are essential for fermented food production and probiotic formulation. Despite the consensus about the 'health-promoting' significance of Lactobacillus genus, its genotypic and phenotypic characterization still poses several difficulties. The aim of this study was to assess the integration of different approaches, genotypic (16S rRNA gene sequencing), proteomic (MALDI-TOF MS) and metabolomic (1H-NMR), for the taxonomic and metabolic characterization of Lactobacillus species. For this purpose we analyzed 40 strains of various origin (intestinal, vaginal, food, probiotics), belonging to different species. The high discriminatory power of MALDI-TOF for species identification was underlined by the excellent agreement with the genotypic analysis. Indeed, MALDI-TOF allowed to correctly identify 39 out of 40 Lactobacillus strains at the species level, with an overall concordance of 97.5%. In the perspective to simplify the MALDI TOF sample preparation, especially for routine practice, we demonstrated the perfect agreement of the colony-picking from agar plates with the protein extraction protocol. 1H-NMR analysis, applied to both culture supernatants and bacterial lysates, identified a panel of metabolites whose variations in concentration were associated with the taxonomy, but also revealed a high intra-species variability that did not allow a species-level identification. Therefore, despite not suitable for mere taxonomic purposes, metabolomics can be useful to correlate particular biological activities with taxonomy and to understand the mechanisms related to the antimicrobial effect shown by some Lactobacillus species.", "Growth factor signals are propagated from the cell surface to intracellular processes that control critical functions such as growth, differentiation, angiogenesis, and inhibition of apoptosis via sequential kinase signaling. These kinases are receptor kinases, which are transmembrane proteins such as epidermal growth factor receptor or cytoplasmic kinases such as Src kinase. In malignancies, these signaling pathways are often exploited to optimize tumor growth and metastasis. Thus, they represent attractive targets for cancer therapy. This review will summarize current knowledge of the small-molecule multiple-kinase inhibitors in lung cancer therapy. These inhibitors generally hinder the phosphorylation of several protein kinases of membrane receptors, such as vascular endothelial growth factor receptors, platelet-derived growth factor receptors, the human epidermal growth factor receptor family, and cytoplasmic receptors such as c-Kit, Raf kinase, and FLT3. These inhibitors include ZD6474, SU11248, AEE 788, sorafenib, vatalanib, and AG-013736.", "Involvement of the Na+/Ca2+ exchanger in ouabain-induced inotropy and arrhythmogenesis was examined with a specific inhibitor, SEA0400. In right ventricular papillary muscle isolated from guinea-pig ventricle, 1 microM SEA0400, which specifically inhibits the Na+/Ca2+ exchanger by 80%, reduced the ouabain (1 microM)-induced positive inotropy by 40%, but had no effect on the inotropy induced by 100 microM isobutyl methylxantine. SEA0400 significantly inhibited the contracture induced by low Na+ solution. In HEK293 cells expressing the Na+/Ca2+ exchanger, 1 microM ouabain induced an increase in intracellular Ca2+, which was inhibited by SEA0400. The arrhythmic contractions induced by 3 microM ouabain were significantly reduced by SEA0400. These results provide pharmacological evidence that the Na+/Ca2+ exchanger is involved in ouabain-induced inotropy and arrhythmogenesis.", "We report ten individuals of four independent consanguineous families from Turkey, India, Libya, and Pakistan with a variable clinical phenotype that comprises arthrogryposis, spontaneously resolving respiratory insufficiency at birth, muscular atrophy predominantly of the distal lower limbs, scoliosis, and mild distal sensory involvement. Using whole-exome sequencing, SNPchip-based linkage analysis, DNA microarray, and Sanger sequencing, we identified three independent homozygous frameshift mutations and a homozygous deletion of two exons in PIEZO2 that segregated in all affected individuals of the respective family. The mutations are localized in the N-terminal and central region of the gene, leading to nonsense-mediated transcript decay and consequently to lack of PIEZO2 protein. In contrast, heterozygous gain-of-function missense mutations, mainly localized at the C terminus, cause dominant distal arthrogryposis 3 (DA3), distal arthrogryposis 5 (DA5), or Marden-Walker syndrome (MWKS), which encompass contractures of hands and feet, scoliosis, ophthalmoplegia, and ptosis. PIEZO2 encodes a mechanosensitive ion channel that plays a major role in light-touch mechanosensation and has recently been identified as the principal mechanotransduction channel for proprioception. Mice ubiquitously depleted of PIEZO2 are postnatally lethal. However, individuals lacking PIEZO2 develop a not life-threatening, slowly progressive disorder, which is likely due to loss of PIEZO2 protein in afferent neurons leading to disturbed proprioception causing aberrant muscle development and function. Here we report a recessively inherited PIEZO2-related disease and demonstrate that depending on the type of mutation and the mode of inheritance, PIEZO2 causes clinically distinguishable phenotypes.", "Sudden cardiac death of a young athlete is the most tragic event in sports and devastates the family, the sports medicine team, and the local community. Such a fatality represents the first manifestation of cardiac disease in up to 80% of young athletes who remain asymptomatic before sudden cardiac arrest occurs; this explains the limited power of screening modalities based solely on history and physical examination. The long-running Italian experience showed that electrocardiogram (ECG) screening definitively improves the sensitivity of pre-participation evaluation for heart diseases and substantially reduces the risk of death in the athletic field (primary prevention). However, some cardiac conditions, such as coronary artery diseases, present no abnormalities on 12-lead ECG. Moreover, cardiac arrest due to non-penetrating chest injury (commotio cordis) cannot be prevented by screening. This justifies the efforts for implementing programmes of early external defibrillation of unpredictable arrhythmic cardiac arrest. This article reviews the epidemiology of sudden cardiac arrest in the athlete in terms of incidence, sport-related risk, underlying causes, and the currently available prevention programmes such as pre-participation screening and early external defibrillation by using automated external defibrillators. The best strategy is to combine synergistically primary prevention of sudden cardiac death by pre-participation identification of athletes affected by at-risk cardiomyopathies and secondary prevention with back-up defibrillation of unpredictable sudden cardiac arrest on the athletic field.", "Calsequestrin (CASQ) is the major component of the sarcoplasmic reticulum (SR) lumen in skeletal and cardiac muscles. This calcium-binding protein localizes to the junctional SR (jSR) cisternae, where it is responsible for the storage of large amounts of Ca(2+), whereas it is usually absent, at least in its polymerized form, in the free SR. The retention of CASQ inside the jSR is due partly to its association with other jSR proteins, such as junctin and triadin, and partly to its ability to polymerize, in a high Ca(2+) environment, into an intricate gel that holds the protein in place. In this work, we shed some light on the still poorly described in situ structure of polymerized CASQ using detailed EM images from thin sections, with and without tilting, and from deep-etched rotary-shadowed replicas. The latter directly illustrate the fundamental network nature of polymerized CASQ, revealing repeated nodal points connecting short segments of the linear polymer.", "Osteogenesis imperfecta (OI) is a genetic disorder characterised by low bone mineral density resulting in fractures. 85-90% of patients with OI carry a variant in the type 1 collagen genes, COL1A1 and COL1A2, which follows an autosomal dominant pattern of inheritance. However, within the last two decades, there have been growing number of variants identified in genes that follow an autosomal recessive pattern of inheritance. Our proband is a child born in Mexico with multiple fractures of ribs, minimal calvarial mineralisation, platyspondyly, marked compression and deformed long bones. He also presented with significant hydranencephaly, requiring ventilatory support from birth, and died at 8days of age. A homozygous c.338_357delins22 variant in exon 2 of SERPINH1 was identified. This gene encodes heat shock protein 47, a collagen-specific chaperone which binds to the procollagen triple helix and is responsible for collagen stabilisation in the endoplasmic reticulum. There is minimal literature on the mechanism of action for variants in SERPINH1 resulting in osteogenesis imperfecta. Here we discuss this rare, previously unreported variant, and expand on the phenotypic presentation of this novel variant resulting in a severe, lethal phenotype of OI in association with hydranencephaly.", "Sustained vascular smooth muscle hypercontractility promotes hypertension and cardiovascular disease. The etiology of hypercontractility is not completely understood. New therapeutic targets remain vitally important for drug discovery. Here we report that Pim kinases, in combination with DAPK3, regulate contractility and control hypertension. Using a co-crystal structure of lead molecule (HS38) in complex with DAPK3, a dual Pim/DAPK3 inhibitor (HS56) and selective DAPK3 inhibitors (HS94 and HS148) were developed to provide mechanistic insight into the polypharmacology of hypertension. In vitro and ex vivo studies indicated that Pim kinases directly phosphorylate smooth muscle targets and that Pim/DAPK3 inhibition, unlike selective DAPK3 inhibition, significantly reduces contractility. In vivo, HS56 decreased blood pressure in spontaneously hypertensive mice in a dose-dependent manner without affecting heart rate. These findings suggest including Pim kinase inhibition within a multi-target engagement strategy for hypertension management. HS56 represents a significant step in the development of molecularly targeted antihypertensive medications." ]
1,862
[ "Noncoding microRNAs act as posttranscriptional repressors of gene function and are often deregulated in cancers and other diseases. Here we review recent findings on microRNA roles in tumorigenesis and report a microRNA profiling screen in transforming growth factor-beta1 (TGF-beta)-induced epithelial-mesenchymal transition (EMT) in human keratinocytes, a model of epithelial cell plasticity underlying epidermal injury and skin carcinogenesis. We describe a novel EMT-specific microRNA signature that includes induction of miR-21, a candidate oncogenic microRNA associated with carcinogenesis. By integrating the microRNA screen results with target prediction algorithms and gene expression profiling data, we outline a framework for TGF-beta-directed microRNA:messenger RNA (mRNA) regulatory circuitry and discuss its biological relevance for tumor progression.", "Following the migration of the axonal growth cone to its target area, the initial axo-dendritic contact needs to be transformed into a functional synapse. This multi-step process relies on overlapping but distinct combinations of molecules that confer synaptic identity. Slitrk molecules are transmembrane proteins that are highly expressed in the central nervous system. We found that two members of the Slitrk family, Slitrk1 and Slitrk2, can regulate synapse formation between hippocampal neurons. Slitrk1 is enriched in postsynaptic fractions and is localized to excitatory synapses. Overexpression of Slitrk1 and Slitrk2 in hippocampal neurons increased the number of synaptic contacts on these neurons. Furthermore, decreased expression of Slitrk1 in hippocampal neurons led to a reduction in the number of excitatory, but not inhibitory, synapses formed in hippocampal neuron cultures. In addition, we demonstrate that different leucine rich repeat domains of the extracellular region of Slitrk1 are necessary to mediate interactions with Slitrk binding partners of the LAR receptor protein tyrosine phosphatase family, and to promote dimerization of Slitrk1. Altogether, our results demonstrate that Slitrk family proteins regulate synapse formation.", "BACKGROUND: Dynamic changes to the epigenome play a critical role in establishing and maintaining cellular phenotype during differentiation, but little is known about the normal methylomic differences that occur between functionally distinct areas of the brain. We characterized intra- and inter-individual methylomic variation across whole blood and multiple regions of the brain from multiple donors.RESULTS: Distinct tissue-specific patterns of DNA methylation were identified, with a highly significant over-representation of tissue-specific differentially methylated regions (TS-DMRs) observed at intragenic CpG islands and low CG density promoters. A large proportion of TS-DMRs were located near genes that are differentially expressed across brain regions. TS-DMRs were significantly enriched near genes involved in functional pathways related to neurodevelopment and neuronal differentiation, including BDNF, BMP4, CACNA1A, CACA1AF, EOMES, NGFR, NUMBL, PCDH9, SLIT1, SLITRK1 and SHANK3. Although between-tissue variation in DNA methylation was found to greatly exceed between-individual differences within any one tissue, we found that some inter-individual variation was reflected across brain and blood, indicating that peripheral tissues may have some utility in epidemiological studies of complex neurobiological phenotypes.CONCLUSIONS: This study reinforces the importance of DNA methylation in regulating cellular phenotype across tissues, and highlights genomic patterns of epigenetic variation across functionally distinct regions of the brain, providing a resource for the epigenetics and neuroscience research communities.", "Pre-mRNA editing involving the conversion of adenosine to inosine is mediated by adenosine deaminases that act on RNA (ADAR1 and ADAR2). ADARs contain multiple double-stranded RNA(dsRNA)-binding domains in addition to an adenosine deaminase domain. An adenosine deaminase acting on tRNAs, scTad1p (also known as scADAT1), cloned from Saccharomyces cerevisiae has a deaminase domain related to the ADARs but lacks dsRNA-binding domains. We have identified a gene homologous to scADAT1 in the region of Drosophila melanogaster Adh chromosome II. Recombinant Drosophila ADAT1 (dADAT1) has been expressed in the yeast Pichia pastoris and purified. The enzyme has no activity on dsRNA substrates but is a tRNA deaminase with specificity for adenosine 37 of insect alanine tRNA. dADAT1 shows greater similarity to vertebrate ADARs than to yeast Tad1p, supporting the hypothesis of a common evolutionary origin for ADARs and ADATs. dAdat1 transcripts are maternally supplied in the egg. Zygotic expression is widespread initially and later concentrates in the central nervous system.", "BACKGROUND: Idecabtagene vicleucel (ide-cel, also called bb2121), a B-cell maturation antigen-directed chimeric antigen receptor (CAR) T-cell therapy, has shown clinical activity with expected CAR T-cell toxic effects in patients with relapsed and refractory multiple myeloma.METHODS: In this phase 2 study, we sought to confirm the efficacy and safety of ide-cel in patients with relapsed and refractory myeloma. Patients with disease after at least three previous regimens including a proteasome inhibitor, an immunomodulatory agent, and an anti-CD38 antibody were enrolled. Patients received ide-cel target doses of 150 × 106 to 450 × 106 CAR-positive (CAR+) T cells. The primary end point was an overall response (partial response or better); a key secondary end point was a complete response or better (comprising complete and stringent complete responses).RESULTS: Of 140 patients enrolled, 128 received ide-cel. At a median follow-up of 13.3 months, 94 of 128 patients (73%) had a response, and 42 of 128 (33%) had a complete response or better. Minimal residual disease (MRD)-negative status (<10-5 nucleated cells) was confirmed in 33 patients, representing 26% of all 128 patients who were treated and 79% of the 42 patients who had a complete response or better. The median progression-free survival was 8.8 months (95% confidence interval, 5.6 to 11.6). Common toxic effects among the 128 treated patients included neutropenia in 117 patients (91%), anemia in 89 (70%), and thrombocytopenia in 81 (63%). Cytokine release syndrome was reported in 107 patients (84%), including 7 (5%) who had events of grade 3 or higher. Neurotoxic effects developed in 23 patients (18%) and were of grade 3 in 4 patients (3%); no neurotoxic effects higher than grade 3 occurred. Cellular kinetic analysis confirmed CAR+ T cells in 29 of 49 patients (59%) at 6 months and 4 of 11 patients (36%) at 12 months after infusion.CONCLUSIONS: Ide-cel induced responses in a majority of heavily pretreated patients with refractory and relapsed myeloma; MRD-negative status was achieved in 26% of treated patients. Almost all patients had grade 3 or 4 toxic effects, most commonly hematologic toxic effects and cytokine release syndrome. (Funded by bluebird bio and Celgene, a Bristol-Myers Squibb company; KarMMa ClinicalTrials.gov number, NCT03361748.).", "Birds, particularly passerines, can be parasitized by Ixodid ticks, which may be infected with tick-borne pathogens, like Borrelia spp., Babesia spp., Anaplasma, Rickettsia/Coxiella, and tick-borne encephalitis virus. The prevalence of ticks on birds varies over years, season, locality and different bird species. The prevalence of ticks on different species depends mainly on the degree of feeding on the ground. In Europe, the Turdus spp., especially the blackbird, Turdus merula, appears to be most important for harboring ticks. Birds can easily cross barriers, like fences, mountains, glaciers, desserts and oceans, which would stop mammals, and they can move much faster than the wingless hosts. Birds can potentially transport tick-borne pathogens by transporting infected ticks, by being infected with tick-borne pathogens and transmit the pathogens to the ticks, and possibly act as hosts for transfer of pathogens between ticks through co-feeding. Knowledge of the bird migration routes and of the spatial distribution of tick species and tick-borne pathogens is crucial for understanding the possible impact of birds as spreaders of ticks and tick-borne pathogens. Successful colonization of new tick species or introduction of new tick-borne pathogens will depend on suitable climate, vegetation and hosts. Although it has never been demonstrated that a new tick species, or a new tick pathogen, actually has been established in a new locality after being seeded there by birds, evidence strongly suggests that this could occur.", "Epithelial-to-mesenchymal transition (EMT) has emerged as a critical event in the pathogenesis of tubulointerstitial fibrosis. EMT is typically induced by transforming growth factor-beta1 (TGF-beta1) and inhibited by hepatocyte growth factor (HGF). The present study was undertaken to evaluate the potential role of cyclooxygenase (COX)-2-derived PGE2 in regulation of EMT in cultured Madin-Darby canine kidney (MDCK) cells, in the setting of HGF treatment. Exposure to 50 ng/ml HGF significantly induced COX-2 protein expression and PGE2 release, whereas other growth factors, including epidermal growth factor, the insulin-like growth factor I protein, platelet-derived growth factor-BB, and TGF-beta1, had no effects on COX-2 expression or PGE2 release. COX-2 induction by HGF was preceded by activation of ERK1/2, and an ERK1/2-specific inhibitor, U-0126 (10 microM), completely abolished HGF-induced COX-2 expression. Exposure of MDCK cells to 10 ng/ml TGF-beta1 for 72 h induced EMT as evidenced by conversion to the spindle-like morphology, loss of E-cadherin, and activation of alpha-smooth muscle actin. In contrast, treatment with 1 microM PGE2 completely blocked EMT, associated with a significant elevation of intracellular cAMP and complete blockade of TGF-beta1-induced oxidant production. cAMP-elevating agents, including 8-Br-cAMP, forskolin, and IBMX, inhibited EMT and associated oxidative stress induced by TGF-beta1, but inhibition of cAMP pathway with Rp-cAMP, the cAMP analog, and H89, the protein kinase A (PKA) inhibitor, did not block the effect of PGE2. The effect of HGF on EMT was inhibited by approximately 50% in the presence of a COX-2 inhibitor SC-58635 (10 microM). Therefore, our data suggest that PGE2 inhibits EMT via inhibition of oxidant production and COX-2-derived PGE2 partially accounts for the antifibrotic effect of HGF.", "The membrane protein SLITRK1 functions as a developmentally regulated stimulator of neurite outgrowth and variants in this gene have been implicated in Tourette syndrome. In the current study we have cloned and characterized the porcine SLITRK1 gene. The genomic organization of SLITRK1 lacks introns, as does its human and mouse counterparts. RT-PCR cloning revealed two SLITRK1 transcripts: a full-length mRNA and a transcript variant that results in a truncated protein. The encoded SLITRK1 protein, consisting of 695 amino acids, displays a very high homology to human SLITRK1 (99%). The porcine SLITRK1 gene is expressed exclusively in brain tissues.", "Slitrks are a family of structurally related transmembrane proteins belonging to the leucine-rich repeat (LRR) superfamily. Six family members exist (Slitrk1-6) and all are highly expressed in the central nervous system (CNS). Slitrks have been implicated in mediating basic neuronal processes, ranging from neurite outgrowth and dendritic elaboration to neuronal survival. Recent studies in humans and genetic mouse models have led to the identification of Slitrks as candidate genes that might be involved in the development of neuropsychiatric conditions, such as obsessive compulsive spectrum disorders and schizophrenia. Although these system-level approaches have suggested that Slitrks play prominent roles in CNS development, key questions remain regarding the molecular mechanisms through which they mediate neuronal signaling and connectivity.", "We conducted a multi-institutional study in Taiwan and a systematic review of the literature for reports of Guillain-​Barré syndrome after coronavirus disease vaccination. This condition, mostly the classic form and the acute inflammatory demyelinating polyneuropathy subtype, has been reported in 39 cases and has occurred within 2 weeks of vaccine administration.", "Stroke is the fourth leading cause of mortality in the United States, yet it is 80% preventable by addressing lifestyle factors including nutrition. Evaluating the impact of nutrition at the food group and dietary pattern level will provide greater insight into the role of nutrition in stroke. For this purpose, a review of the literature was conducted using the PubMed, Web of Science, and CINAHL Plus online databases. While fruits, vegetables, and soy demonstrated a protective effect, variable findings were observed for fish, animal products, and whole grains. Adherence to DASH, Mediterranean, and prudent dietary patterns reduced the risk of stroke, whereas the Western dietary pattern was associated with increased stroke risk. Low-fat diet was not found to have a protective effect. Additional epidemiological evidence is needed to elucidate the impact of specific dietary patterns and food groups on stroke. Future research should consider developing dietary recommendations for stroke prevention, which are based on clinical trials and have an emphasis on food groups and dietary patterns that are palatable to the general public.", "We describe a method to accurately quantify human tumor proteomes by combining a mixture of five stable-isotope labeling by amino acids in cell culture (SILAC)-labeled cell lines with human carcinoma tissue. This generated hundreds of thousands of isotopically labeled peptides in appropriate amounts to serve as internal standards for mass spectrometry-based analysis. By decoupling the labeling from the measurement, this super-SILAC method broadens the scope of SILAC-based proteomics.", "The detection of gene fusion events across genomes can be used for the prediction of functional associations of proteins, including physical interactions or complex formation. These predictions are obtained by the detection of similarity for pairs of 'component' proteins to 'composite' proteins. Since the amount of composite proteins is limited in nature, we augment this set by creating artificial fusion proteins from experimentally determined protein interacting pairs. The goal is to study the extent of protein interaction partners with increasing phylogenetic distance, using an automated method. We have thus detected component pairs within seven entire genome sequences of similar size, using artificially generated composite proteins that have been shown to interact experimentally. Our results indicate that protein interactions are not conserved over large phylogenetic distances. In addition, we provide a set of predictions for functionally associated proteins across seven species using experimental information and demonstrate the applicability of fusion analysis for the comparative genomics of protein interactions.", "1. (-)-Deprenyl has been shown to potentiate rat striatal neurone responses to dopamine agonists at doses not altering dopamine metabolism. Since there are a number of effects of (-)-deprenyl which could result in this phenomenon, we have investigated the effects of MDL 72,145 and Ro 19-6327, whose only common effect with (-)-deprenyl is an inhibition of monoamine oxidase-B (MAO-B), on rat striatal neurone responses to dopamine and on striatal dopamine metabolism. 2. Using in vivo electrophysiology, i.p. injection of either MDL 72,145 or Ro 19-6327 was found to produce a dose-dependent potentiation of striatal neurone responses to dopamine but not gamma-aminobutyric acid. 3. Neurochemical investigations revealed that this occurred at doses (0.25-1 mg kg-1) which, while not affecting levels of dopamine or its metabolites, 3,4-dihydroxyphenylacetic acid or homovanillic acid, did cause a significant, dose-dependent, elevation in striatal levels of the putative neuromodulator, 2-phenylethylamine (PE). 4. Inhibition of PE synthesis by i.p. injection of the aromatic L-amino acid decarboxylase inhibitor, NSD 1015, produced a reversal of the effects of MDL 72,145 and Ro 19-6327. 5. Neurochemical analysis revealed this to occur at a dose of NSD 1015 (10 mg kg-1) selective for reduction of elevated PE levels. 6. These results suggest that PE can act as a neuromodulator of dopaminergic responses and that MAO-B inhibitors may potentiate neuronal responses to dopamine via the indirect mechanism of elevation of PE following MAO-B inhibition.", "Various methods of diagnosing allergic factors in chronic rhinitis are discussed. Among the procedures which aim at detecting specific allergens, i.e. skin testing, RAST, and nasal provocation tests, the last mentioned, as they are performed directly on the shock organ, have so far been found to give the most accurate picture of clinically dominant allergens and of the intensity and character of the rhinitis. However, information obtained by analysing the correlations between different procedures is not unanimous. As long as test techniques and allergen extracts have not been standardized, one particular test cannot be recommended as the method of choice.", "The plasma membrane of mammalian cells can be transiently permeablized by optical means and exogenous materials or genes can be introduced into the cytoplasm of living cells. Until now, few mechanisms were exploited for the manipulation: laser is directly and tightly focused on the cells for optoinjection, laser-induced stress waves, photochemical internalization, and irradiation of selective cell targeting with light-absorbing particles. During the past few years, extensive progress and numerous breakthroughs have been made in this area of research. This review covers four different laser-assisted transfection techniques and their advantages and disadvantages. Universality towards various cell lines is possibly the main advantage of laser-assisted optoporation in comparison with presently existing methods of cell transfection." ]
1,867
[ "DNA methyltransferase inhibitors (DNMTIs), including decitabine (DAC) and azacitidine (AZA), have recently been highlighted for the treatment of high-risk myelodysplastic syndrome (MDS); however, their action mechanisms have not been clearly defined. Therefore, we investigated the effects of DNMTIs on MDS-derived cell lines in vitro. An MDS-derived cell line MDS92 and its blastic subline MDS-L and HL-60 were used. All three cell lines were sensitive to DNMTIs, but MDS-L was the most susceptible. DAC-induced cell death in MDS-L was preceded by DNA damage-induced G2 arrest via a p53-independent pathway. AZA did not influence the pattern of cell cycle, although it induced DNA damage response. The IC(50) of DAC or AZA on MDS-L cells was associated with the dose inducing the maximal hypomethylation in long interspersed nuclear elements-1 (LINE-1) methylation assay. AZA suppressed the level of methylation in a time-dependent manner (days 4, 7, and 10), whereas DAC maintained the level of methylation from day 4 to 11. The protein expression of DNMT1 and DNMT3a decreased with the suppression of growth and methylation. We conclude that this study provides in vitro models for understanding the effects of DNMTIs on cell growth and gene regulation, including differences in the possible action mechanism of DAC and AZA.", "The micronutrient selenium is found in proteins as selenocysteine (Sec), the 21st amino acid cotranslationally inserted in response to a UGA codon. In vitro studies in archaea and mouse showed that Sec-tRNA(Sec) formation is a 3-step process starting with serylation of tRNA(Sec) by seryl-tRNA synthetase (SerRS), phosphorylation of serine to form phosphoserine (Sep)-tRNA(Sec) by phosphoseryl-tRNA(Sec) kinase (PSTK), and conversion to Sec-tRNA(Sec) by Sep-tRNA:Sec-tRNA synthase (SepSecS). However, a complete study of eukaryotic selenoprotein synthesis has been lacking. Here, we present an analysis of Sec-tRNA(Sec) formation in the parasitic protozoon Trypanosoma brucei in vivo. Null mutants of either PSTK or SepSecS abolished selenoprotein synthesis, demonstrating the essentiality of both enzymes for Sec-tRNA(Sec) formation. Growth of the 2 knockout strains was not impaired; thus, unlike mammals, trypanosomes do not require selenoproteins for viability. Analysis of conditional RNAi strains showed that SerRS, selenophosphate synthase, and the Sec-specific elongation factor, EFSec, are also essential for selenoprotein synthesis. These results with T. brucei imply that eukaryotes have a single pathway of Sec-tRNA(Sec) synthesis that requires Sep-tRNA(Sec) as an intermediate.", "H5N1 is a subtype of the influenza A virus that can cause disease in humans and many other animal species. Oseltamivir (Tamiflu) is a potent and selective antiviral drug employed to fight the flu virus in infected individuals by inhibiting neuraminidase (NA), a flu protein responsible for the release and spread of the progeny virions. However, oseltamivir resistance has become a critical problem. In particular, influenza strains with a R292K NA mutation are highly resistant to the oseltamivir. Though the biological functions of the mutations have previously been characterized, the structural basis behind the reduced catalytic activity and reduced protein level is not clear. In this study, molecular docking and molecular dynamics (MD) approach were employed to investigate the structural and dynamical effects throughout the protein structure and specifically, at the drug-binding pocket. Furthermore, potential of mean force was analyzed using explicit solvent MD simulations with the umbrella sampling method to explore the free energy of binding. It is believed that this study provides valuable guidance for the resistance management of oseltamivir and designing of more potent antiviral inhibitor.", "Several key transcription factors and coregulators important to peripheral nerve myelination have been identified, but the contributions of specific chromatin remodeling complexes to peripheral nerve myelination have not been analyzed. Chromodomain helicase DNA-binding protein 4 (Chd4) is the core catalytic subunit of the nucleosome remodeling and deacetylase (NuRD) chromatin remodeling complex. Previous studies have shown Chd4 interacts with Nab (NGFI-A/Egr-binding) corepressors, which are required for early growth response 2 (Egr2/Krox20), to direct peripheral nerve myelination by Schwann cells. In this study, we examined the developmental importance of the NuRD complex in peripheral nerve myelination through the generation of conditional Chd4 knock-out mice in Schwann cells (Chd4(loxP/loxP); P0-cre). Chd4 conditional null mice were found to have delayed myelination, radial sorting defects, hypomyelination, and the persistence of promyelinating Schwann cells. Loss of Chd4 leads to elevated expression of immature Schwann cell genes (Id2, c-Jun, and p75), and sustained expression of the promyelinating Schwann cell gene, Oct6/Scip, without affecting the levels of Egr2/Krox20. Furthermore, Schwann cell proliferation is upregulated in Chd4-null sciatic nerve. In vivo chromatin immunoprecipitation studies reveal recruitment of Chd4 and another NuRD component, Mta2, to genes that are positively and negatively regulated by Egr2 during myelination. Together, these results underscore the necessity of Chd4 function to guide proper terminal differentiation of Schwann cells and implicate the NuRD chromatin remodeling complex as a requisite factor in timely and stable peripheral nerve myelination.", "The endoplasmic reticulum aminopeptidases (ERAP)1 and ERAP2 play a critical role in the production of final epitopes presented by MHC class I molecules. Formation of heterodimers by ERAP1 and ERAP2 has been proposed to facilitate trimming of epitope precursor peptides, but the effects of dimerization on ERAP function remain unknown. In this study, we produced stabilized ERAP1-ERAP2 heterodimers and found that they produced several mature epitopes more efficiently than a mix of the two enzymes unable to dimerize. Physical interaction with ERAP2 changes basic enzymatic parameters of ERAP1 and improves its substrate-binding affinity. Thus, by bringing the two enzymes in proximity and by producing allosteric effects on ERAP1, dimerization of ERAP1/2 creates complexes with superior peptide-trimming efficacy. Such complexes are likely to enhance Ag presentation by cells displaying coordinated expression of the two enzymes.", "Recent studies in patients with disorders of consciousness (DOC) tend to support the view that awareness is not related to activity in a single brain region but to thalamo-cortical connectivity in the frontoparietal network. Functional neuroimaging studies have shown preserved albeit disconnected low-level cortical activation in response to external stimulation in patients in a \"vegetative state\" or unresponsive wakefulness syndrome. While activation of these \"primary\" sensory cortices does not necessarily reflect conscious awareness, activation in higher-order associative cortices in minimally conscious state patients seems to herald some residual perceptual awareness. PET studies have identified a metabolic dysfunction in a widespread frontoparietal \"global neuronal workspace\" in DOC patients including the midline default mode network (\"intrinsic\" system) and the lateral frontoparietal cortices or \"extrinsic system.\" Recent studies have investigated the relation of awareness to the functional connectivity within intrinsic and extrinsic networks, and with the thalami in both pathological and pharmacological coma. In brain damaged patients, connectivity in all default network areas was found to be non-linearly correlated with the degree of clinical consciousness impairment, ranging from healthy controls and locked-in syndrome to minimally conscious, vegetative, coma, and brain dead patients. Anesthesia-induced loss of consciousness was also shown to correlate with a global decrease in cortico-cortical and thalamo-cortical connectivity in both intrinsic and extrinsic networks, but not in auditory, or visual networks. In anesthesia, unconsciousness was also associated with a loss of cross-modal interactions between networks. These results suggest that conscious awareness critically depends on the functional integrity of thalamo-cortical and cortico-cortical frontoparietal connectivity within and between \"intrinsic\" and \"extrinsic\" brain networks.", "Saethre-Chotzen syndrome is one of the most common autosomal dominant disorders of craniosynostosis in humans and is characterized by craniofacial and limb anomalies. The locus for Saethre-Chotzen syndrome maps to chromosome 7p21-p22. We have evaluated TWIST, a basic helix-loop-helix transcription factor, as a candidate gene for this condition because its expression pattern and mutant phenotypes in Drosophila and mouse are consistent with the Saethre-Chotzen phenotype. We mapped TWIST to human chromosome 7p21-p22 and mutational analysis reveals nonsense, missense, insertion and deletion mutations in patients. These mutations occur within the basic DNA binding, helix I and loop domains, or result in premature termination of the protein. Studies in Drosophila indicate that twist may affect the transcription of fibroblast growth factor receptors (FGFRs), another gene family implicated in human craniosynostosis. The emerging cascade of molecular components involved in craniofacial and limb development now includes TWIST, which may function as an upstream regulator of FGFRs." ]
1,869
[ "Somatostatin (SST) is a neuromodulator which is abundant throughout the central nervous system (CNS) and has a crucial role in neurodegenerative disorders. However, little is known about the effects and mechanisms of SST in dopaminergic (DA) neurons in the context of Parkinson's disease (PD). In the present study, a model of PD was generated by injecting lipopolysaccharide (LPS) into the substantia nigra (SN) of rats in order to investigate the effects of SST on LPS-induced degeneration of DA in vivo. Intramural injection of LPS resulted in a significant loss of DA neurons, while reduction of neuronal death by SST pretreatment was confirmed using immunohistochemical staining for tyrosine hydroxylase and Nissl. In parallel, immunohistochemical detection of OX-42 and hydroethidine staining were employed to determine the activation of microglia and production of reactive oxygen species (ROS), respectively. It was found that SST inhibited the LPS-induced microglial activity and ROS production. ELISA revealed a decreased production of pro-inflammatory mediators, including tumor necrosis factor-α, interleukin-1β and prostaglandin E2 when SST was administered prior to LPS treatment. Western blot analysis showed that LPS-induced expression of inducible nitric oxide synthase, cyclooxygenase-2 and nuclear factor κB (NF-κB) p-p65 was attenuated by administration of SST prior to LPS application. The results indicated that LPS-induced loss of nigral DA neurons was inhibited by SST and the observed effects of SST on neuroprotection were associated with suppression of microglial activation and the NF-κB pathway, ensuing decreases of neuroinflammation and oxidative stress. The present study therefore suggested that SST is beneficial for treating neurodegenerative diseases, such as PD, through inhibiting the activation of microglia.", "Protein ubiquitination, a major post-translational modification in eukaryotes, requires an adequate pool of free ubiquitin. Cells maintain this pool by two pathways, both involving deubiquitinases (DUBs): recycling of ubiquitin from ubiquitin conjugates and processing of ubiquitin precursors synthesized de novo. Although many advances have been made in recent years regarding ubiquitin recycling, our knowledge on ubiquitin precursor processing is still limited, and questions such as when are these precursors processed and which DUBs are involved remain largely unanswered. Here we provide data suggesting that two of the four mammalian ubiquitin precursors, UBA52 and UBA80, are processed mostly post-translationally whereas the other two, UBB and UBC, probably undergo a combination of co- and post-translational processing. Using an unbiased biochemical approach we found that UCHL3, USP9X, USP7, USP5 and Otulin/Gumby/FAM105b are by far the most active DUBs acting on these precursors. The identification of these DUBs together with their properties suggests that each ubiquitin precursor can be processed in at least two different manners, explaining the robustness of the ubiquitin de novo synthesis pathway.", "RNA-guided endonucleases (RGENs), derived from the prokaryotic adaptive immune system known as CRISPR/Cas, enable targeted genome engineering in cells and organisms. RGENs are ribonucleoproteins that consist of guide RNA and Cas9, a protein component originated from Streptococcus pyogenes. These enzymes cleave chromosomal DNA, whose sequence is complementary, to guide RNA in a targeted manner, producing site-specific DNA double-strand breaks (DSBs), the repair of which gives rise to targeted genome modifications. Despite broad interest in RGEN-mediated genome editing, these nucleases are limited by off-target mutations and unwanted chromosomal translocations associated with off-target DNA cleavages. Here, we show that off-target effects of RGENs can be reduced below the detection limits of deep sequencing by choosing unique target sequences in the genome and modifying both guide RNA and Cas9. We found that both the composition and structure of guide RNA can affect RGEN activities in cells to reduce off-target effects. RGENs efficiently discriminated on-target sites from off-target sites that differ by two bases. Furthermore, exome sequencing analysis showed that no off-target mutations were induced by two RGENs in four clonal populations of mutant cells. In addition, paired Cas9 nickases, composed of D10A Cas9 and guide RNA, which generate two single-strand breaks (SSBs) or nicks on different DNA strands, were highly specific in human cells, avoiding off-target mutations without sacrificing genome-editing efficiency. Interestingly, paired nickases induced chromosomal deletions in a targeted manner without causing unwanted translocations. Our results highlight the importance of choosing unique target sequences and optimizing guide RNA and Cas9 to avoid or reduce RGEN-induced off-target mutations.", "Scleroderma (progressive systemic sclerosis) is a systemic autoimmune disorder characterised by skin sclerosis, calcinosis and changes in microvasculature. The etiology of the disease is unknown but both genetic and environmental factors have been implicated. Telangiectasia (macroscopically visible dilated skin vessels) occurring primarily on the hands and face, are a prominent feature in scleroderma and are present in the majority of patients. Similarly, telangiectasia are found in patients with hereditary hemorrhagic telangiectasia (HHT), a mutational disorder of the germline genes endoglin and ALK-1, members of the TGFbeta receptor family, expressed on endothelial cells. Our study investigated the number, distribution and microscopic characteristics of telangiectasia in both limited (n = 29) and diffuse scleroderma (n = 9) and compared findings with 3 patients with HHT. In limited scleroderma, the mean number of telangiectasia (hand and face) was 36 (0-150) compared with 23 (0-135) in diffuse scieroderma. A significant correlation was observed between the number of telangiectasia on the face and on the hands (p = 0.014). The total number of telangiectasia correlated significantly with the disease duration (p = 0.009). The spatial distribution of the telangiectasia appeared to be random on both hands and foreface in contrast with the distribution of subcutaneous calcification of the hands which occurred predominantly on the distal and flexor surfaces of the first, second and fifth digits. Nailfold microscopic capillaroscopy was performed on 12 patients. No significant correlation was observed between capillary diameter or density and with total number of telangiectasia observed macroscopically. The distribution and microscopic appearance of telangiectasia in scleroderma appeared very similar to those observed in HHT. In view of these similarities we therefore conclude that telangiectactic development in scleroderma may be associated with disorders of the TGFb receptor family proteins found on the microvasculature.", "Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver. Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and activity. Moreover, overexpression of a constitutively active form of FXR induced ADH1A and ADH1B expression, whereas silencing of FXR abolished the effects of FXR agonists on ADH1 expression and activity. Transient transfection studies and electrophoretic mobility shift assays revealed functional FXR response elements in the ADH1A and ADH1B proximal promoters, thus indicating that both genes are direct targets of FXR. These findings provide the first evidence for direct connection of bile acid signaling and alcohol metabolism.", "In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html webcite.", "OBJECTIVE: To investigate the relationships between 2nd to 4th digit ratio (digit ratio) and prostate cancer detection rate and biopsy findings, including Gleason score.MATERIALS AND METHODS: In 770 consecutive men aged 40 years or older that presented with lower urinary tract symptoms (LUTS), right hand 2nd and 4th digit lengths were measured prior to PSA determinations, DRE and transrectal ultrasonography (TRUS). Among these, 166 men with a prostate specific antigen (PSA) level ≥ 3 ng/mL or abnormal digit rectal examination (DRE) prospectively underwent prostate biopsies. The relationship between digit ratio and prostate cancer detection rate and biopsy findings was investigated.RESULTS: The study subjects were allocated to two groups by digit ratio (group A: digit ratio < 0.95; n = 420; group B: digit ratio ≥ 0.95; n = 350). Despite similar biopsy rates (22.4% vs. 20.6%, p = 0.544), group A had higher cancer detection rate (46.8% (44/94) vs. 23.6% (17/72), p = 0.002; OR = 2.847, 95% CI = 1.445-5.610). When we analyzed 408 positive biopsy cores (group A: digit ratio < 0.95, n = 282; group B: digit ratio ≥ 0.95, n = 126), group A had higher percentage of core cancer volume (46.7% vs. 37.1%, p = 0.005) and more biopsy cores with high Gleason score (sum of Gleason score ≥ 9: 18/282 (6.4%) vs. 1/126 (0.8%), p = 0.010; primary Gleason score = 5: 12/282 (4.3%) vs. 0/126 (0.0%), p = 0.021).CONCLUSIONS: A lower digit ratio is related to an increased detection rate of prostate cancer, a high percentage of core cancer volume and a high Gleason score.", "BACKGROUND: Abnormally long and short QT intervals are recognized to be associated with an increased risk for life-threatening ventricular arrhythmias. It is therefore important to define the upper and lower border of the normal QT.OBJECTIVE: The aim of this study was to describe the normal distribution of the QT interval in a contemporary population of young conscripts and to define long and short limits of the QT interval.METHODS: In Switzerland, all young male citizens must undergo compulsory conscription for the Swiss Army at the age of 18 to 19 years. In every conscript, an electrocardiogram (ECG) is performed. Retrospectively, 41,767 consecutive ECGs of Swiss citizens who underwent conscription for the army between March 1, 2004, and July 31, 2006, were analyzed.RESULTS: The mean QTc Bazett interval was 394 +/- 22 ms. One percent of the conscripts had a Bazett QTc shorter than 347 ms, and one percent had a Bazett QTc longer than 445 ms, respectively. None of the subjects presented a QTc Bazett < 300 ms; the prevalence of a QTc Bazett < 320 ms was 0.02%.CONCLUSION: The present study shows the distribution of QT intervals in an unselected young population. Because none of the subjects presented a QTc < 300 ms, it may be concluded that the short QT syndrome is a very rare entity in the population of young male adults.", "Over the past 30 years, antiretroviral drug regimens for treating HIV infection have become more effective, safer, and more convenient. Despite 31 currently approved drugs, the pipeline of investigational HIV drugs remains full. Investigational antiretroviral drugs include the nucleoside analogue reverse transcriptase translocation inhibitor (NRTTI) MK-8591, a long-acting compound that could be dosed once weekly. Investigational nonnucleoside analogue reverse transcriptase inhibitors (NNRTIs) include doravirine, which is active in vitro against NNRTI-resistant HIV and was potent and well-tolerated when used in combination with a dual-nucleoside analogue RTI (nRTI) backbone in treatment-naive individuals.New integrase strand transfer inhibitors (InSTIs) include recently approved bictegravir, which is active against InSTI-resistant viral strains in vitro and was potent and well-tolerated in combination regimens in treatment-naive individuals, and investigational cabotegravir, which is being studied with monthly parenteral dosing for HIV maintenance treatment and with bimonthly dosing for HIV preexposure prophylaxis (PrEP). Investigational HIV entry inhibitors include the new CD4 attachment inhibitor fostemsavir, which targets HIV envelope glycoprotein 120, and recently approved ibalizumab, which binds the CD4 receptor. This article summarizes presentations by Roy M. Gulick, MD, MPH, at the IAS-USA continuing education program, Improving the Management of HIV Disease, held in Los Angeles, California, in April 2017, and at the 2017 Ryan White HIV/AIDS Program Clinical Conference, held in San Antonio, Texas, in August 2017.", "Linear ubiquitin chains generated by the linear ubiquitin chain assembly complex (LUBAC) play an important role in NF-κB activation. However, the regulation of linear ubiquitin chain generation by LUBAC is not well characterized. Here, we identified two deubiquitinating enzymes (DUBs), ovarian tumor DUB with linear linkage specificity (OTULIN/Gumby/FAM105B) and cylindromatosis (CYLD) that can cleave linear polyubiquitin chains and interact with LUBAC via the N-terminal PNGase/UBA or UBX (PUB) domain of HOIP, a catalytic subunit of LUBAC. HOIP interacts with both CYLD and OTULIN even in unstimulated cells. The interaction of CYLD and OTULIN with HOIP synergistically suppresses LUBAC-mediated linear polyubiquitination and NF-κB activation. Moreover, introduction of a HOIP mutant unable to bind either deubiquitinase into HOIP-null cells augments the activation of NF-κB by TNF-α stimulation. Thus, the interactions between these two deubiquitinases and the LUBAC ubiquitin ligase are involved in controlling the extent of TNF-α-induced NF-κB activation in cells by fine-tuning the generation of linear ubiquitin chains by LUBAC. The interaction of HOIP with OTULIN is also involved in OTULIN suppressing the canonical Wnt signaling pathway activation by LUBAC. Our observations provide molecular insights into the roles of ligase-deubiquitinase interactions in regulating molecular events resulting from linear ubiquitin conjugation.", "BACKGROUND: Corynebacterium spp. are diphtheroid bacteria responsible for pitted keratolysis, a common plantar infection confined to the thick stratum corneum.AIM: To study a series of demographic features of patients suffering from pitted keratolysis, and to present a review of the Corynebacterium-associated infections, including pitted keratolysis, erythrasma, and trichobacteriosis.MATERIALS AND METHODS: A 2-year, two-center, prospective survey assessed the demographics of pitted keratolysis, including age, gender, site of infection, symptoms, patients' complaints, the use of protective and/or occlusive shoes, seasonality of diagnosis, drug intake, associated skin signs (including dyshidrosis, erythrasma, and trichobacteriosis), recurrences, and previous diagnoses and treatments.RESULTS: The mean age of the 53 patients with pitted keratolysis was 24.9 years (range, 10-57 years). The male to female ratio was 7.8:1. The soles of both feet were commonly involved (92.4%). Pressure-bearing areas were the usual sites of infection, ranging from restricted involvement of the toes (12/53, 22.6%) to spreading to the entire plantar surface (15/53, 28.3%). A total of 36 (68%) of the 53 patients complained of hyperhidrosis. An unpleasant smell and pain were noted by 35 (66%) and 25 (47%) of the 53 patients, respectively. Occlusive and protective shoes were worn in 51 (96.2%) and 31 (58.4%) of the 53 cases, respectively.CONCLUSION: Pitted keratolysis commonly affects young male patients wearing protective shoes for professional reasons, inducing a moist and warm environment. Hyperhidrosis, an unpleasant smell, and pain are the main clinical complaints.", "Author information:(1)Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD 20892;(2)Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892;(3)Familial Mediterranean Fever Arthritis Vasculitis and Orphan Disease Research Center, Institute of Health Sciences, R&D Center, Gulhane Military Medical Academy, Ankara 06018, Turkey;(4)Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892;(5)Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892;(6)Laboratory of Cardiovascular Regenerative Medicine, National Heart, Lung, and Blood Institute, Bethesda, MD 20892;(7)National Institutes of Health Intramural Sequencing Center, National Human Genome Research Institute, Rockville, MD 20852;(8)Heart of England National Health Service Foundation Trust, Birmingham B9 5ST, United Kingdom;(9)Department of Pediatric Nephrology and Rheumatology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey;(10)Institute of Cellular Medicine, Newcastle University, Newcastle NE2 4HH, United Kingdom.(11)Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD 20892; kastnerd@mail.nih.gov aksentii@mail.nih.gov.", "Among eukaryotes, the four core histones show an extremely high conservation of their structure and form nucleosomes that compact, protect, and regulate access to genetic information. Nevertheless, in multicellular eukaryotes the two families, histone H2A and histone H3, have diversified significantly in key residues. We present a phylogenetic analysis across the green plant lineage that reveals an early diversification of the H2A family in unicellular green algae and remarkable expansions of H2A variants in flowering plants. We define motifs and domains that differentiate plant H2A proteins into distinct variant classes. In non-flowering land plants, we identify a new class of H2A variants and propose their possible role in the emergence of the H2A.W variant class in flowering plants.", "OBJECTIVES/HYPOTHESIS: A \"July effect\" of increased complications when new trainees begin residency has been reported widely by the media. We sought to determine the effect of admission month on in-hospital mortality, complications, length of hospitalization, and costs for patients undergoing head and neck cancer (HNCA) surgery.STUDY DESIGN: Retrospective cross-sectional study.METHODS: Discharge data from the Nationwide Inpatient Sample for 48,263 patients who underwent an ablative procedure for a malignant oral cavity, laryngeal, hypopharyngeal, or oropharyngeal neoplasm in 2005 to 2008 were analyzed using cross-tabulations and multivariate regression modeling.RESULTS: There were 3,812 cases admitted in July (8%). July admission was significantly associated with Medicaid (RRR 1.40, P = 0.011) or self-pay payor status (RRR 1.40, P = 0.022), medium hospital bed size (RRR 1.63, P = 0.033) and large hospital bed size (RRR 1.73, P = 0.013). There was no association between July admission and other patient or hospital demographic characteristics. Major procedures and comorbidity were significantly associated with in-hospital death, surgical and medical complications, length of hospitalization, and costs, but no association was found for July admission, July through September discharge, or teaching hospital status and short-term morbidity or mortality. Teaching hospitals and large hospital bed size were predictors of increased length of hospitalization and costs; and private, for profit hospitals were additionally associated with increased costs. No interaction between July admission and teaching hospitals was found for any of the outcome variables studied.CONCLUSIONS: These data do not support evidence of a \"July effect\" or an increase in morbidity or mortality at teaching hospitals providing HNCA surgical care.", "BACKGROUND AND OBJECTIVES: Infantile nephropathic cystinosis is a severe disease that occurs due to mutations in the cystinosis gene, and it is characterized by progressive dysfunction of multiple organs; >100 cystinosis gene mutations have been identified in multiple populations. Our study aimed to identify the clinical characteristics and spectrum of cystinosis gene mutations in Turkish pediatric patients with cystinosis.DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: We identified the clinical characteristics and spectrum of cystinosis gene mutations in Turkish patients with cystinosis in a multicenter registry that was established for data collection. The data were extracted from this registry and analyzed.RESULTS: In total, 136 patients (75 men and 61 women) were enrolled in the study. The most common clinical findings were growth retardation, polyuria, and loss of appetite. None of the patients had the 57-kb deletion, but seven novel mutations were identified. The most common mutations identified were c.681G>A (p.Glu227Glu; 31%), c.1015G>A (p.Gly339Arg; 22%), and c.18_21 del (p.Thr7Phefs*7; 14%). These mutations were associated with earlier age of disease onset than the other mutations. To understand the effects of these allelic variants on clinical progression, the mutations were categorized into two major groups (missense versus deletion/duplication/splice site). Although patients with missense mutations had a better eGFR at the last follow-up visit, the difference was not significant. Patients in whom treatment began at age <2 years old had later onset of ESRD (P=0.02). Time to ESRD did not differ between the patients with group 1 and group 2 mutations.CONCLUSIONS: The most common cystinosis gene mutations identified in Turkey were c.681G>A (p.Glu227Glu), c.1015G>A (p.Gly339Arg), and c.18_21 del (p.Thr7Phefs*7). Patients with less severe cystinosis gene mutations tend to have better kidney outcome.", "The role of base excision repair in the repair of alkylation damage produced by a series of sequence specific oligopyrrole-containing analogues of distamycin A that tether benzoic acid mustard (BAM) has been examined. Whereas BAM alkylates and cross-links in the major groove of DNA, attachment to pyrrole units produces monoalkylations in the minor groove of DNA at AT tracts. Both sequence specificity of alkylation and cytotoxicity increase from one to three attached pyrrole units (compounds 1-3), and with 3 alkylation is selective for purine-N3 in the sequence 5'-TTTTGPu (where Pu = guanine or adenine). In a model bacterial (Escherichia coli) system repair of the sequence specific minor groove alkylations produced by 2 and 3 does not appear to involve BER, since neither a formamidopyrimidine-DNA glycosylase repair deficient E. coli mutant (BH 20, fpg- mutant) nor a 3-methyladenine-DNA glycosylase repair deficient mutant (GC 4803, tag-alkA- mutant) showed increased cytotoxicity to 2 or 3 compared with the wild type, AB 1157. The monopyrrole compound 1 was, however, approximately 4-fold more cytotoxic to the GC 4803 mutant compared with wild type and BH 20, suggesting a role for the 3-methyladenine-DNA glycosylase in the recognition and excision of the adducts formed by 1. In contrast, increased sensitivity (> 10-fold) was observed for the conventional nitrogen mustard BAM in the BH 20 strain, suggesting a role for the formamidopyrimidine-DNA glycosylase in the repair of the lesions produced by the agent. In a cell-free system the E. coli 3-methyladenine-DNA glycosylase (AlkA) was shown to remove alkylations at 5'-TTTTGPu sequences. However, the efficiency in removing the adducts formed by the oligopyrrole compounds decreased dramatically from compound 1 to compound 3. Increasing the size of the DNA adduct formed in the minor groove therefore decreased the efficiency of recognition and removal of the adduct by the DNA glycosylase.", "INTRODUCTION: The Li-Fraumeni syndrome (LFS) is an autosomal dominant hereditary disorder associated with different tumor types in childhood and young adults. Approximately 70% of LFS cases contain germline mutations in the TP53 gene. We report a case of a family suspected of LFS.MATERIALS AND METHODS: The proband and four members of the family affected were diagnosed with cancer at an early age and they all died except the proband. Exons 5-9 from TP53 gene were analysed by direct amplification and sequencing in 7 family members.RESULTS: The analysis revealed a germline nonsense mutation in exon 8 at codon 306 of the codified region of the TP53 gene, causing a change of CGA to TGA (Arg→Stop) in the proband, her mother, her cousin and her maternal uncle. Proband's maternal grandmother and aunt do not have the mutation.CONCLUSIONS: The members of this family that were studied meet the criteria of classic LFS and the described mutation increases their susceptibility to develop cancer. The proband's maternal grandfather died of lung cancer in 1993, and we believe that he was the carrier of the mutation in this family.", "Metastasis-promoting Mts1(S100A4) protein belongs to the S100 family of Ca(2+)-binding proteins. A mouse strain with a germ-line inactivation of the S100A4 gene was generated. The mice were viable and did not display developmental abnormalities in the postnatal period. However, an abnormal sex ratio was observed in the litters with the S100A4-/- genotype, raising the possibility of a certain level of embryonic lethality in this strain. In all, 10% of 10-14-month-old S100A4-null animals developed tumors. This is a characteristic feature of mouse strains with inactivated tumor suppressor genes. Spontaneous tumors of S100A4-/- mice were p53 positive. Recently, we have shown that S100A4 interacts with p53 tumor suppressor protein and induces apoptosis. We proposed that impairment of this interaction could affect the apoptosis-promoting function of p53 that is involved in its tumor suppressor activity. The frequency of apoptosis in the spleen of S100A4-/- animals after whole-body gamma-irradiation was reduced compared to the wild-type animals. The same was true for the transcriptional activation of the p53 target genes - waf/p21/cip1 and bax. Taken together, these observations indicate that spontaneous tumors in S100A4-/- mice are a result of functional destabilization of p53 tumor suppressor gene.", "Linear ubiquitin chains are implicated in the regulation of the NF-κB pathway, immunity, and inflammation. They are synthesized by the LUBAC complex containing the catalytic subunit HOIL-1-interacting protein (HOIP) and are disassembled by the linear ubiquitin-specific deubiquitinase OTULIN. Little is known about the regulation of these opposing activities. Here we demonstrate that HOIP and OTULIN interact and act as a bimolecular editing pair for linear ubiquitin signals in vivo. The HOIP PUB domain binds to the PUB interacting motif (PIM) of OTULIN and the chaperone VCP/p97. Structural studies revealed the basis of high-affinity interaction with the OTULIN PIM. The conserved Tyr56 of OTULIN makes critical contacts with the HOIP PUB domain, and its phosphorylation negatively regulates this interaction. Functionally, HOIP binding to OTULIN is required for the recruitment of OTULIN to the TNF receptor complex and to counteract HOIP-dependent activation of the NF-κB pathway.", "Conjugation of Met1-linked polyubiquitin (Met1-Ub) by the linear ubiquitin chain assembly complex (LUBAC) is an important regulatory modification in innate immune signaling. So far, only few Met1-Ub substrates have been described, and the regulatory mechanisms have remained elusive. We recently identified that the ovarian tumor (OTU) family deubiquitinase OTULIN specifically disassembles Met1-Ub. Here, we report that OTULIN is critical for limiting Met1-Ub accumulation after nucleotide-oligomerization domain-containing protein 2 (NOD2) stimulation, and that OTULIN depletion augments signaling downstream of NOD2. Affinity purification of Met1-Ub followed by quantitative proteomics uncovered RIPK2 as the predominant NOD2-regulated substrate. Accordingly, Met1-Ub on RIPK2 was largely inhibited by overexpressing OTULIN and was increased by OTULIN depletion. Intriguingly, OTULIN-depleted cells spontaneously accumulated Met1-Ub on LUBAC components, and NOD2 or TNFR1 stimulation led to extensive Met1-Ub accumulation on receptor complex components. We propose that OTULIN restricts Met1-Ub formation after immune receptor stimulation to prevent unwarranted proinflammatory signaling.", "Modification of proteins with Met1-linked 'linear' ubiquitin chains has emerged as a key regulatory signal to control inflammatory signalling via the master regulator, the transcription factor nuclear factor κB (NF-κB). While the assembly machinery, the linear ubiquitin chain assembly complex (LUBAC), and receptors for this ubiquitin chain type have been known for years, it was less clear which deubiquitinating enzymes (DUBs) hydrolyse Met1 linkages specifically. In 2013, two labs reported the previously unannotated protein FAM105B/OTULIN to be this missing Met1 linkage-specific DUB. Structural studies have revealed how OTULIN achieves its remarkable specificity, employing a mechanism of ubiquitin-assisted catalysis in which a glutamate residue on the substrate complements the active site of the enzyme. The specificity of OTULIN enables it to regulate global levels of Met1-linked polyubiquitin in cells. This ability led to investigations of NF-κB activation from new angles, and also revealed involvement of Met1-polyubiquitin in Wnt signalling. Interestingly, OTULIN directly interacts with LUBAC, and this interaction is dynamic and can be regulated by OTULIN phosphorylation. This provides a new paradigm for how individual linkage types can be regulated by dedicated enzyme complexes mediating assembly and removal. Here we review what has been learned about OTULIN's mechanism, regulation and function, discuss the open questions in the field, and discuss how DUBs regulate the NF-κB response.", "Recent developments in top down mass spectrometry have enabled closely related histone variants and their modified forms to be identified and quantitated with unprecedented precision, facilitating efforts to better understand how histones contribute to the epigenetic regulation of gene transcription and other nuclear processes. It is therefore crucial that intact MS profiles accurately reflect the levels of variants and modified forms present in a given cell type or cell state for the full benefit of such efforts to be realized. Here we show that partial oxidation of Met and Cys residues in histone samples prepared by conventional methods, together with oxidation that can accrue during storage or during chip-based automated nanoflow electrospray ionization, confounds MS analysis by altering the intact MS profile as well as hindering posttranslational modification localization after MS/MS. We also describe an optimized performic acid oxidation procedure that circumvents these problems without catalyzing additional oxidations or altering the levels of posttranslational modifications common in histones. MS and MS/MS of HeLa cell core histones confirmed that Met and Cys were the only residues oxidized and that complete oxidation restored true intact abundance ratios and significantly enhanced MS/MS data quality. This allowed for the unequivocal detection, at the intact molecule level, of novel combinatorially modified forms of H4 that would have been missed otherwise. Oxidation also enhanced the separation of human core histones by reverse phase chromatography and decreased the levels of salt-adducted forms observed in ESI-FTMS. This method represents a simple and easily automated means for enhancing the accuracy and sensitivity of top down analyses of combinatorially modified forms of histones that may also be of benefit for top down or bottom up analyses of other proteins.", "Nucleotide transitions are frequently down-weighted relative to transversions in phylogenetic analysis. This is based on the assumption that transitions, by virtue of their greater evolutionary rate, exhibit relatively more homoplasy and are therefore less reliable phylogenetic characters. Relative amounts of homoplastic and consistent transition and transversion changes in mitochondrial protein coding genes were determined from character-state reconstructions on a highly corroborated phylogeny of mammals. We found that although homoplasy was related to evolutionary rates and was greater for transitions, the absolute number of consistent transitions greatly exceeded the number of consistent transversions. Consequently, transitions provided substantially more useful phylogenetic information than transversions. These results suggest that down-weighting transitions may be unwarranted in many cases. This conclusion was supported by the fact that a range of transition: transversion weighting schemes applied to various mitochondrial genes and genomic partitions rarely provided improvement in phylogenetic estimates relative to equal weighting, and in some cases weighting transitions more heavily than transversions was most effective.", "PURPOSE: Histone deacetylase (HDAC) inhibitors have shown promising clinical activity in the treatment of hematologic malignancies, but their activity in solid tumor indications has been limited. Most HDAC inhibitors in clinical development only transiently induce histone acetylation in tumor tissue. Here, we sought to identify a \"second-generation\" class I HDAC inhibitor with prolonged pharmacodynamic response in vivo, to assess whether this results in superior antitumoral efficacy.EXPERIMENTAL DESIGN: To identify novel HDAC inhibitors with superior pharmacodynamic properties, we developed a preclinical in vivo tumor model, in which tumor cells have been engineered to express fluorescent protein dependent on HDAC1 inhibition, thereby allowing noninvasive real-time evaluation of the tumor response to HDAC inhibitors.RESULTS: In vivo pharmacodynamic analysis of 140 potent pyrimidyl-hydroxamic acid analogues resulted in the identification of JNJ-26481585. Once daily oral administration of JNJ-26481585 induced continuous histone H3 acetylation. The prolonged pharmacodynamic response translated into complete tumor growth inhibition in Ras mutant HCT116 colon carcinoma xenografts, whereas 5-fluorouracil was less active. JNJ-26481585 also fully inhibited the growth of C170HM2 colorectal liver metastases, whereas again 5-fluorouracil/Leucovorin showed modest activity. Further characterization revealed that JNJ-26481585 is a pan-HDAC inhibitor with marked potency toward HDAC1 (IC(50), 0.16 nmol/L).CONCLUSIONS: The potent antitumor activity as a single agent in preclinical models combined with its favorable pharmacodynamic profile makes JNJ-26481585 a promising \"second-generation\" HDAC inhibitor. The compound is currently in clinical studies, to evaluate its potential applicability in a broad spectrum of both solid and hematologic malignancies.", "Prion protein (PrP) inhibits the activation of proapoptotic Bax in primary human neurons and MCF-7 cells. Because neuronal apoptosis occurs in human prion diseases, here we examine the anti-Bax function of familial PrP mutants. All Creutzfeldt-Jakob disease and fatal familial insomnia-associated prion protein mutations partially or completely lose the anti-Bax function in human neurons and, except for A117V and V203I, in MCF-7 cells. The ability of the mutants to protect against Bax-mediated cell death is divided into three groups: (1) group I, retention of anti-Bax function in both the Val129 and Met129 mutants; (2) group II, retention of anti-Bax function only in Val129 mutants; and (3) group III, reduction or no anti-Bax function in Val129 and Met129 mutants. The loss of anti-Bax function in these PrP mutants correlates completely with a significant decrease in the production of cytosolic PrP, a form of PrP shown previously to have anti-Bax function in human neurons. Cotransfection of the full-length PrP mutants with wild-type or mutant cytosolic PrP, but not with wild type full-length PrP, rescues the anti-Bax function of PrP. The results show that the failure of PrP mutants to produce cytosolic PrP is responsible for the loss of anti-Bax function and that the effect of the PrP mutants is dominant over wild-type PrP. Furthermore, these results imply that misfolded PrP that escapes retrotranslocation could accumulate at the cell surface and cause neuronal dysfunction.", "Metastatic tumor cells that actively migrate and invade surrounding tissues rely on invadopodia to degrade extracellular matrix (ECM) barriers. Invadopodia are membrane protrusions that localize enzymes required for ECM degradation. Little is known about the formation, function, and regulation of invadopodia. Here, we show that invadopodia have two distinct aspects: (a) structural for organizing the cellular actin cytoskeleton to form membrane protrusions and (b) functional for using proteolytic enzyme(s) for ECM degradation. Small interfering RNA (siRNA) inhibition established that organization of invadopodia structure requires cortactin, whereas protease inhibitor studies identified membrane type 1 matrix metalloproteinase (MT1-MMP) as the key invadopodial enzyme responsible for gelatin matrix degradation in the breast carcinoma cell line MDA-MB-231. The inhibition of invadopodial structure assembly by cortactin depletion resulted in a block of matrix degradation due to failure of invadopodia formation. Either protease inhibition or MT1-MMP siRNA depletion moderately decreased the formation of invadopodial structures that were identified as actin-cortactin accumulations at the ventral cell membrane adherent to matrix. The invadopodia that were able to form upon MT1-MMP inhibition or depletion retained actin-cortactin accumulations but were unable to degrade matrix. Examination of cells at different time points as well as live-cell imaging revealed four distinct invadopodial stages: membrane cortactin aggregation at membranes adherent to matrix, MT1-MMP accumulation at the region of cortactin accumulation, matrix degradation at the invadopodia region, and subsequent cortactin dissociation from the area of continued MT1-MMP accumulation associated with foci of degraded matrix. Based on these results, we propose a stepwise model of invadopodia formation and function.", "Author information:(1)From the Department of Orthopaedic Surgery at Memorial Hospital in York, Pennsylvania (Dr Thompson); the Rowan University School of Osteopathic Medicine (RowanSOM) in Stratford, New Jersey (Student Doctor Saini); the Department of Orthopedics at RowanSOM in Stratford, New Jersey (Dr Reb); and the Department of Surgery at Jefferson Medical College in Philadelphia, Pennsylvania (Dr Daniel). Dr Thompson is in his second year of residency training, and Dr Reb is in his fifth year of residency training.(2)From the Department of Orthopaedic Surgery at Memorial Hospital in York, Pennsylvania (Dr Thompson); the Rowan University School of Osteopathic Medicine (RowanSOM) in Stratford, New Jersey (Student Doctor Saini); the Department of Orthopedics at RowanSOM in Stratford, New Jersey (Dr Reb); and the Department of Surgery at Jefferson Medical College in Philadelphia, Pennsylvania (Dr Daniel). Dr Thompson is in his second year of residency training, and Dr Reb is in his fifth year of residency training joe.daniel@rothmaninstitute.com.", "BACKGROUND: Generation of novel spontaneous ER positive mammary tumor animal model from heterozygous NIH nude mice.METHODS: Using brother-sister mating with pedigree expansion system, we derived a colony of heterozygous breeding females showing ER-Positive tumors around the age of 6 months. Complete blood picture, differential leukocyte count, and serum levels of Estrogen, Alanine amino transferase (SGPT), Aspartate amino transferase (SGOT), total protein and albumin were estimated. Aspiration biopsies and microbiology were carried out. Gross pathology of the tumors and their metastatic potential were assessed. The tumors were excised and further characterized using histopathology, cytology, electron microscopy (EM), molecular markers and Mouse mammary Tumor Virus - Long Terminal Repeats (MMTV LTR) specific RT-PCR.RESULTS: The tumors originated from 2nd or 5th or both the mammary glands and were multi-nodulated with variable central necrosis accompanied with an accumulation of inflammatory exudate. Significant increases in estrogen, SGPT, SGOT and neutrophils levels were noticed. Histopathologically, invasive nodular masses of pleomorphic tubular neoplastic epithelial cells invaded fibro-vascular stroma, adjacent dermis and subcutaneous tissue. Metastatic spread through hematogenous and regional lymph nodes, into liver, lungs, spleen, heart and dermal lymphatics was observed. EM picture revealed no viral particles and MMTV-negativity was confirmed through MMTV LTR-specific RT-PCR. High expression of ER alpha, moderate to high expression of proliferating cell nuclear antigen (PCNA), moderate expression of vimentin and Cytokeratin 19 (K19) and low expression of p53 were observed in tumor sections, when compared with that of the normal mammary gland.CONCLUSION: Since 75% of human breast cancer were classified ER-positive and as our model mimics (in most of the characteristics, such as histopathology, metastasis, high estrogen levels) the ER-positive luminal epithelial-like human breast cancer, this model will be an attractive tool to understand the biology of estrogen-dependant breast cancer in women. To our knowledge, this is the first report of a spontaneous mammary model displaying regional lymph node involvement with both hematogenous and lymphatic spread to liver, lung, heart, spleen and lymph nodes.", "The linear ubiquitin (Ub) chain assembly complex (LUBAC) is an E3 ligase that specifically assembles Met1-linked (also known as linear) Ub chains that regulate nuclear factor κB (NF-κB) signaling. Deubiquitinases (DUBs) are key regulators of Ub signaling, but a dedicated DUB for Met1 linkages has not been identified. Here, we reveal a previously unannotated human DUB, OTULIN (also known as FAM105B), which is exquisitely specific for Met1 linkages. Crystal structures of the OTULIN catalytic domain in complex with diubiquitin reveal Met1-specific Ub-binding sites and a mechanism of substrate-assisted catalysis in which the proximal Ub activates the catalytic triad of the protease. Mutation of Ub Glu16 inhibits OTULIN activity by reducing kcat 240-fold. OTULIN overexpression or knockdown affects NF-κB responses to LUBAC, TNFα, and poly(I:C) and sensitizes cells to TNFα-induced cell death. We show that OTULIN binds LUBAC and that overexpression of OTULIN prevents TNFα-induced NEMO association with ubiquitinated RIPK1. Our data suggest that OTULIN regulates Met1-polyUb signaling.", "BACKGROUND: Tofacitinib is an oral Janus kinase inhibitor. Efficacy and safety of tofacitinib in patients with moderate-to-severe plaque psoriasis have been demonstrated.OBJECTIVE: We sought to assess the efficacy of tofacitinib for the treatment of nail psoriasis over a period of 52 weeks.METHODS: In 2 identical phase 3 studies (OPT Pivotal 1 and 2), patients were randomized 2:2:1 to receive tofacitinib 5 mg, tofacitinib 10 mg, or placebo, twice daily. At week 16, placebo-treated patients were re-randomized to tofacitinib. This post hoc analysis of patients with existing nail psoriasis assessed the Nail Psoriasis Severity Index (NAPSI) score and proportions of patients achieving ≥50% reduction in NAPSI from baseline (NAPSI50), NAPSI75, or NAPSI100.RESULTS: Baseline mean NAPSI scores for patients treated with tofacitinib 5 mg (N = 487), tofacitinib 10 mg (N = 476), and placebo (N = 233) twice daily were 27.0, 27.3, and 26.9, respectively. At week 16, significantly (all P < .05) more patients receiving tofacitinib 5 mg and tofacitinib 10 mg versus placebo twice daily achieved NAPSI50 (32.8%, 44.2% vs 12.0%), NAPSI75 (16.9%, 28.1% vs 6.8%), and NAPSI100 (10.3%, 18.2% vs 5.1%), respectively. Improvements were sustained to week 52.LIMITATIONS: Limitations include discontinuation of clinical nonresponders at week 28.CONCLUSIONS: Tofacitinib treatment resulted in improvements in nail psoriasis versus placebo at week 16; improvements were maintained over 52 weeks [NCT01276639; NCT01309737].", "BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is a newly identified viral zoonosis caused by a phlebovirus. Most reported SFTS cases are farmers living in rural areas. The seroprevalence of SFTS virus in farmers has not been investigated. The current knowledge of SFTS virus seroprevalence in animals, especially in wild animals, is still poor.OBJECTIVES: To investigate SFTS virus seroprevalence among farmers and a variety of animal species.STUDY DESIGN: SFTS virus antibodies in sera were determined using a double-antigen sandwich ELISA. Serum samples were collected from 2547 farmers and 2741 animals in 6 SFTS-endemic counties from March 2012 to February 2013 in Jiangsu province. The farmer participants aged from 15 to 90 years. All of them were interviewed using a structured questionnaire. The animals sampled included 6 domesticated animal species and 2 wild animal species.RESULTS: SFTSV antibodies were found in a total of 33 farmers (1.30%) and was more prevalent in males than in females (respectively 1.87% and 0.71%, P<0.01). The mean age of seropositive farmers was 56.5 years and seroprevalence increased gradually with age. Seroprevalence in animal species were: goats (66.8%), cattle (28.2%), dogs (7.4%), pigs (4.7%), chickens (1.2%), geese (1.7%), rodents (4.4%) and hedgehogs (2.7%). Multiple variable logistic regression analysis showed that grazing, grass mowing, raising cattle, age, farm work time and tick bites were risk factors for SFTS virus infection among farmers.CONCLUSIONS: SFTSV readily infects humans with farming-related exposures as well as numerous domestic and wild animals. Serological results further suggest that the virus circulates widely in Jiangsu province.", "Burning mouth syndrome (BMS) is an oral dysesthesia presenting as a burning sensation of the tongue and other oral and perioral mucosae. A painful symptomatology in different bodily regions (extraoral) may also be a common feature in patient with BMS. The management of BMS is challenging and there is no clear guideline for the management of idiopathic BMS. Herein, we describe a group of patients (5 patients) in whom symptoms of BMS responded to levodopa. In parallel, four patients fulfilled the criteria for restless legs syndrome (RLS). Family history of RLS was positive in two patients. We reviewed the literature and noted a marked overlap between BMS and RLS. Overlaps were noted in epidemiological profiles, pattern of clinical features and even in neurophysiological observations (alterations in the striatal dopaminergic system). We suggest that a subset of patients with BMS may be a phenotypic variant of RLS and a trial of dopaminergic drugs should be given in patients with BMS who has a history suggestive of RLS or in a patient who do not show a response to usual therapies for BMS.", "RhoB is a small GTP-binding protein that is involved in apoptotic signal transduction. We have cloned the mouse RhoB mRNA including a 1377 nucleotide 3'-untranslated region (UTR) that contains six AU-rich elements (AREs) as well as several uridine-rich stretches. There is 94% homology overall between the mouse and rat RhoB genes and 92% homology between the mouse and a putative human clone. Ultraviolet light (UVL) induces RhoB production through regulated changes in gene transcription and mRNA stabilization although the latter mechanism is unknown. We observed that UVL increased the half-life of RhoB mRNA from 63 min to 3.3 h in NIH/3T3 cells and from 87 min to 2.7 h in normal human keratinocyte cells. In vitro mobility shift assays demonstrated that HuR bound the 3'-UTR of RhoB at three distinct locations (nucleotides 1342-1696, 1765-1920 and 1897-1977) suggesting a regulatory role for this RNA-binding protein. HuR immunoprecipitations were positive for RhoB mRNA indicating an in vivo association, and Western blot analysis and immunofluorescence demonstrated that HuR rapidly partitions from the nucleus to the cytoplasm after UVL. Therefore, we propose a model in which UVL induces stress-activated signal transduction leading to nuclear/cytoplasmic shuttling of HuR and subsequent stabilization of RhoB mRNA.", "In Escherichia coli and related bacteria, the very-short-patch (VSP) repair pathway uses an endonuclease, Vsr, to correct T-G mismatches that result from the deamination of 5-methylcytosines in DNA to C-G. The products of mutS and mutL, which are required for adenine methylation-directed mismatch repair (MMR), enhance VSP repair. Multicopy plasmids carrying mutS alleles that are dominant negative for MMR were tested for their effects on VSP repair. Some mutS mutations (class I) did not lower VSP repair in a mutS(+) background, and most class I mutations increased VSP repair in mutS cells more than plasmids containing mutS(+). Other plasmid-borne mutS mutations (class II) and mutS(+) decreased VSP repair in the mutS(+) background. Thus, MutS protein lacking functions required for MMR can still participate in VSP repair, and our results are consistent with a model in which MutS binds transiently to the mispair and then translocates away from the mispair to create a specialized structure that enhances the binding of Vsr.", "Linear ubiquitination is a post-translational protein modification recently discovered to be crucial for innate and adaptive immune signaling. The function of linear ubiquitin chains is regulated at multiple levels: generation, recognition, and removal. These chains are generated by the linear ubiquitin chain assembly complex (LUBAC), the only known ubiquitin E3 capable of forming the linear ubiquitin linkage de novo. LUBAC is not only relevant for activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in various signaling pathways, but importantly, it also regulates cell death downstream of immune receptors capable of inducing this response. Recognition of the linear ubiquitin linkage is specifically mediated by certain ubiquitin receptors, which is crucial for translation into the intended signaling outputs. LUBAC deficiency results in attenuated gene activation and increased cell death, causing pathologic conditions in both, mice, and humans. Removal of ubiquitin chains is mediated by deubiquitinases (DUBs). Two of them, OTULIN and CYLD, are constitutively associated with LUBAC. Here, we review the current knowledge on linear ubiquitination in immune signaling pathways and the biochemical mechanisms as to how linear polyubiquitin exerts its functions distinctly from those of other ubiquitin linkage types.", "The linear ubiquitin (Ub) chain assembly complex (LUBAC) generates Met1-linked \"linear\" Ub chains that regulate the activation of the nuclear factor κB (NFκB) transcription factor and other processes. We recently discovered OTULIN as a deubiquitinase that specifically cleaves Met1-linked polyUb. Now, we show that OTULIN binds via a conserved PUB-interacting motif (PIM) to the PUB domain of the LUBAC component HOIP. Crystal structures and nuclear magnetic resonance experiments reveal the molecular basis for the high-affinity interaction and explain why OTULIN binds the HOIP PUB domain specifically. Analysis of LUBAC-induced NFκB signaling suggests that OTULIN needs to be present on LUBAC in order to restrict Met1-polyUb signaling. Moreover, LUBAC-OTULIN complex formation is regulated by OTULIN phosphorylation in the PIM. Phosphorylation of OTULIN prevents HOIP binding, whereas unphosphorylated OTULIN is part of the endogenous LUBAC complex. Our work exemplifies how coordination of ubiquitin assembly and disassembly activities in protein complexes regulates individual Ub linkage types." ]
1,873
[ "BACKGROUND: Dabigatran etexilate is a new oral anticoagulant for the therapy and prophylaxis of venous thromboembolism and stroke prevention in patients with atrial fibrillation. To investigate the extent of interactions of this new anticoagulant with frequently used coagulation assays, we completed a multicenter in vitro trial with Conformité Européenne(CE)-labeled dabigatran-spiked plasma samples.METHODS: Lyophilized plasma samples with dabigatran concentrations ranging from 0.00 to 0.48 μg/mL were sent to the coagulation laboratories of six major Austrian hospitals for evaluation. Coagulation assays were performed under routine conditions using standard reagents and analyzer.RESULTS: Dabigatran led to a dose-dependent prolongation of the clotting times in coagulometric tests and influenced the majority of the parameters measured. Statistically significant interference could be observed with the prothrombin time (PT), activated partial thromboplastin time (aPTT) and PT/aPTT-based assays (extrinsic/intrinsic factors, APC-resistance test) as well as lupus anticoagulant testing. Even non-clotting tests, such as the colorimetric factor XIII activity assay and to a minor extent the amidolytic antithrombin activity assay (via factor IIa) were affected.CONCLUSIONS: This multicenter trial confirms and also adds to existing data, demonstrating that laboratories should expect to observe strong interferences of coagulation tests with increasing concentrations of dabigatran. This finding might become particularly important in the elderly and in patients with renal impairment as well as patients whose blood is drawn at peak levels of dabigatran.", "Bartter syndrome is an inherited renal tubular disorder with hypokalemia, hypochloremic metabolic alkalosis, normal blood pressure with hyper-reninemia and increased urinary loss of sodium, potassium and chloride. We report an infant with neonatal Bartter syndrome, who improved with potassium supplements.", "SUMMARY: Copy number variation (CNV) is a major type of structural genomic variation that is increasingly studied across different species for association with diseases and production traits. Established protocols for experimental detection and computational inference of CNVs from SNP array and next-generation sequencing data are available. We present the CNVRanger R/Bioconductor package which implements a comprehensive toolbox for structured downstream analysis of CNVs. This includes functionality for summarizing individual CNV calls across a population, assessing overlap with functional genomic regions, and genome-wide association analysis with gene expression and quantitative phenotypes.AVAILABILITY AND IMPLEMENTATION: http://bioconductor.org/packages/CNVRanger.", "Author information:(1)Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies (CLST), Kanagawa 230-0045, Japan.(2)RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.(3)Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies (CLST), Kanagawa 230-0045, Japan RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.(4)RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama 351-0198, Japan.(5)Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies (CLST), Kanagawa 230-0045, Japan RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, the University of Western Australia, Nedlands, Western Australia, Australia.(6)Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies (CLST), Kanagawa 230-0045, Japan takeya.kasukawa@riken.jp.(7)Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies (CLST), Kanagawa 230-0045, Japan RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama 351-0198, Japan Preventive Medicine and Applied Genomics Unit, RIKEN Advanced Center for Computing and Communication, Kanagawa 230-0045, Japan kawaji@gsc.riken.jp.", "Mycobacterium tuberculosis, the causative agent of tuberculosis, is at increased risk of accumulating damaged guanine nucleotides such as 8-oxo-dGTP and 8-oxo-GTP because of its residency in the oxidative environment of the host macrophages. By hydrolyzing the oxidized guanine nucleotides before their incorporation into nucleic acids, MutT proteins play a critical role in allowing organisms to avoid their deleterious effects. Mycobacteria possess several MutT proteins. Here, we purified recombinant M. tuberculosis MutT2 (MtuMutT2) and M. smegmatis MutT2 (MsmMutT2) proteins from M. tuberculosis (a slow grower) and M. smegmatis (fast growing model mycobacteria), respectively, for their biochemical characterization. Distinct from the Escherichia coli MutT, which hydrolyzes 8-oxo-dGTP and 8-oxo-GTP, the mycobacterial proteins hydrolyze not only 8-oxo-dGTP and 8-oxo-GTP but also dCTP and 5-methyl-dCTP. Determination of kinetic parameters (Km and Vmax) revealed that while MtuMutT2 hydrolyzes dCTP nearly four times better than it does 8-oxo-dGTP, MsmMutT2 hydrolyzes them nearly equally. Also, MsmMutT2 is about 14 times more efficient than MtuMutT2 in its catalytic activity of hydrolyzing 8-oxo-dGTP. Consistent with these observations, MsmMutT2 but not MtuMutT2 rescues E. coli for MutT deficiency by decreasing both the mutation frequency and A-to-C mutations (a hallmark of MutT deficiency). We discuss these findings in the context of the physiological significance of MutT proteins.", "BACKGROUND: Oral iodized poppy seed oil is an appropriate measure for controlling iodine deficiency in areas where iodized salt is not yet available. However, a more effective and cheaper iodized oil preparation is needed.OBJECTIVE: The aim of this study was to compare the efficacy of iodized peanut oil with that of iodized poppy seed oil.DESIGN: Schoolchildren aged 8-10 y were supplemented with a single oral dose of iodized peanut oil (P200, P400, or P800 mg I), iodized poppy seed oil (PS400 mg I), or peanut oil (placebo). The concentration of urinary iodine (UI) was measured at 0, 4, 12, 25, and 50 wk, whereas thyroid volume and serum thyrotropin and free thyroxine concentrations were measured at 0, 25, and 50 wk.RESULTS: UI was higher in all treatment groups than in the placebo group, except at baseline. UI in the P200 group was not significantly different from that in the PS400 group at all times of measurement. In a comparison of preparations supplying 400 mg I conducted by using a mathematical model, iodine retention from the peanut oil preparation was 3 times that from the poppy seed oil, and the protection period for peanut oil was twice as long as that for the poppy seed oil (P < 0.001 for both). The reduction in thyroid volume was greater in the treatment groups than in the placebo group (P < 0.001). No significant differences in serum hormone concentrations were observed between groups before or after treatment.CONCLUSION: Iodized peanut oil is more efficacious in controlling iodine deficiency than is iodized poppy seed oil containing the same amount of iodine.", "PURPOSE: We aimed to determine the clinical role of the p53 family members p53 and p73 in the responsiveness to platinum-based chemotherapy and survival in ovarian cancer, considering their cross-talk and the p53 polymorphism at codon 72.EXPERIMENTAL DESIGN: A detailed analysis of p53 and p73 in a series of 122 ovarian cancers was done. We used a functional yeast-based assay to determine the p53 mutational status. Red yeast colonies, indicating mutant p53, were subsequently sequenced to determine the specific p53 alteration. p53 mutations were divided into two groups according to their previous characterization in the literature: those that efficiently inhibit transcriptionally active TAp73 function and those that do not. A p53 polymorphism at codon 72 was determined in corresponding normal tissue or blood of ovarian cancer patients. Isoform-specific p73 expression analysis using real-time reverse transcription-PCR has previously been done in the majority of ovarian cancers included in this study. In a retrospective chart review, responsiveness to chemotherapy was assessed, and survival data with long follow-up times were collected.RESULTS: Eighty of 122 (65.6%) of ovarian cancers harbored p53 mutations. p53 mutational status was an important determinant of responsiveness to platinum-based chemotherapy in all patients with a residual tumor of <2 cm in diameter after initial surgery (wild-type versus mutant, P = 0.029). In addition, p53 mutational status was a strong prognosticator for recurrence-free and overall survival (P < 0.0001 and P = 0.003, respectively) in univariate analyses. High expression levels of dominant-negative p73 isoforms (DeltaNp73 and DeltaN'p73) significantly correlated with chemotherapeutic failure (P = 0.048) and with worse recurrence-free and overall survival in patients with p53 mutant cancers (P = 0.048 and P = 0.005, respectively). Eight p53 mutations, present in 19 cases, were found that efficiently inhibit TAp73 (i.e., 175H, 220C, 245S, 245D, 248W, 248Q, 266E, and 273H). Patients with p53 mutations that efficiently inhibit TAp73 function had a significantly shorter overall survival than patients with p53 mutations of unknown effect on TAp73 (P = 0.044). The p53 polymorphism at codon 72 had no influence on responsiveness to chemotherapy or survival.CONCLUSION: We provide the first clinical evidence that dominant-negative p73 isoforms contribute to drug resistance in vivo, underscoring the importance of a p53-p73 cross-talk. NH2-terminally truncated p73 isoforms were of significant clinical effect by providing an additional unfavorable factor for response to platinum-based chemotherapy and survival in p53 mutant ovarian cancers." ]
1,875
[ "Nuclear pore complexes (NPCs) span the 2 membranes of the nuclear envelope (NE) and facilitate nucleocytoplasmic exchange of macromolecules. NPCs have a roughly tripartite structural organization with the so-called nuclear basket emanating from the NPC scaffold into the nucleoplasm. The nuclear basket is composed of the 3 nucleoporins Nup153, Nup50, and Tpr, but their specific role for the structural organization of this NPC substructure is, however, not well established. In this study, we have used thin-section transmission electron microscopy to determine the structural consequences of altering the expression of Nup153 in human cells. We show that the assembly and integrity of the nuclear basket is not affected by Nup153 depletion, whereas its integrity is perturbed in cells expressing high concentrations of the zinc-finger domain of Nup153. Moreover, even mild over-expression of Nup153 is coinciding with massive changes in nuclear organization and it is the excess of the zinc-finger domain of Nup153 that is sufficient to induce these rearrangements. Our data indicate a central function of Nup153 in the organization of the nucleus, not only at the periphery, but throughout the entire nuclear interior.", "The mammalian inactive X chromosome (Xi) condenses into a bipartite structure with two superdomains of frequent long-range contacts, separated by a hinge region. Using Hi-C in edited mouse cells with allelic deletions or inversions within the hinge, here we show that the conserved Dxz4 locus is necessary to maintain this bipartite structure. Dxz4 orientation controls the distribution of contacts on the Xi, as shown by a massive reversal in long-range contacts after Dxz4 inversion. Despite an increase in CTCF binding and chromatin accessibility on the Xi in Dxz4-edited cells, only minor changes in TAD structure and gene expression were detected, in accordance with multiple epigenetic mechanisms ensuring X silencing. We propose that Dxz4 represents a structural platform for frequent long-range contacts with multiple loci in a direction dictated by the orientation of its bank of CTCF motifs, which may work as a ratchet to form the distinctive bipartite structure of the condensed Xi.", "Ectopia lentis is a genetically heterogeneous condition that is characterized by the subluxation of the lens resulting from the disruption of the zonular fibers. Patients with ectopia lentis commonly present with a marked loss in visual acuity in addition to a number of possibly accompanying ocular complications including cataract, myopia, and retinal detachment. We here describe an isolated form of ectopia lentis in a large inbred family that shows autosomal-recessive inheritance. We map the ectopia lentis locus in this family to the pericentromeric region on chromosome 1 (1p13.2-q21.1). The linkage region contains well more than 60 genes. Mutation screening of four candidate genes revealed a homozygous nonsense mutation in exon 11 of ADAMTSL4 (p.Y595X; c.1785T-->G) in all affected individuals that is absent in 380 control chromosomes. The mutation would result in a truncated protein of half the original length, if the mRNA escapes nonsense-mediated decay. We conclude that mutations in ADAMTSL4 are responsible for autosomal-recessive simple ectopia lentis and that ADAMTS-like4 plays a role in the development and/or integrity of the zonular fibers.", "Ataxin-3 (AT3) is the protein that triggers the inherited neurodegenerative disorder spinocerebellar ataxia type 3 when its polyglutamine (polyQ) stretch close to the C-terminus exceeds a critical length. AT3 consists of the N-terminal globular Josephin domain (JD) and the C-terminal disordered one. It cleaves isopeptide bonds between ubiquitin monomers, an event involved in protein quality control mechanisms. AT3 has been implicated in the pathway that sorts aggregated protein to aggresomes via microtubules, in which dynein and histone deacetylase 6 (HDAC6) also seem to be involved. By taking advantage of small angle X-ray scattering (SAXS) and surface plasmon resonance (SPR), we have investigated the interaction of AT3 with tubulin and HDAC6. Based on SAXS results, the AT3 oligomer, consisting of 6-7 subunits, tightly binds to the tubulin hexameric oligomer in a \"parallel\" fashion. By SPR analysis we have demonstrated that AT3 binds to tubulin dimer with a 50nM affinity. Binding fits with a Langmuir 1:1 model and involves a single binding interface. Nevertheless, the interaction surface consists of three distinct, discontinuous tubulin-binding regions (TBR), one located in the JD, and the two others in the disordered domain, upstream and downstream of the polyQ stretch. In the absence of any of the three TBRs, the affinity is drastically reduced. By SPR we have also provided the first evidence of direct binding of AT3 to HDAC6, with affinity in the range 0.1-1μM. These results shed light on the interactions among the components of the transport machinery that sorts aggregate protein to the aggresome, and pave the way to in vivo studies aimed at further clarifying their roles.", "There is a growing interest in the effect of mobile phones in health care (mHealth) service delivery, but more research is needed to determine whether short message service (SMS)-based campaigns are appropriate for developing countries. This pilot study explored the efficacy of an mHealth campaign using SMS as a platform to disseminate and measure HIV/AIDS knowledge, and to promote HIV/AIDS testing at clinics in rural Uganda. Over a 1-month period, 13 HIV/AIDS quiz questions were sent to 10,000 mobile subscribers. Despite participation incentives, only one-fifth of the mobile subscribers responded to any of the questions. The campaign had proportionately limited success in increasing knowledge levels on a mass scale. Furthermore, the program design may be reinforcing entrenched knowledge gaps. The results suggest that it is important to be conservative when considering the potential overall effect of SMS-based programs. However, the authors recognize the potential of mHealth tools when extended to millions of mobile phone users as part of an integrated health campaign approach. The authors propose several steps to improve the program design to reach a larger portion of the intended audience and increase campaign effectiveness.", "Species-specific sets of chromosomes-karyotypes-are traditionally depicted as linear ideograms with individual chromosomes represented by vertical bars. However, linear visualization has its limitations when the shared collinearity and/or chromosomal rearrangements differentiating two or more karyotypes need to be demonstrated. In these instances, circular visualization might provide easier comprehension and interpretation of inter-species chromosomal collinearity. The chromDraw graphical tool was developed as a user-friendly graphical tool for visualizing both linear and circular karyotypes based on the same input data matrix. The output graphics, saved in two different formats (EPS and SVG), can be easily imported to and modified in presentation and image-editing computer programs. The tool is freely distributed under GNU General Public License (GPL) and can be installed from Bioconductor or from the chromDraw home page.", "Thrombotic microangiopathies are characterized by platelet activation, endothelial damage, hemolysis and microvascular occlusion. This group of diseases is primary represented by thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS). Patients present with microangiopathic hemolytic anemia and thrombocytopenia as well as occlusion-related organ ischemia to a variable degree. A deficiency of the metalloprotease ADAMTS-13 is a major risk for acute disease manifestation as this is a regulator of unusually large von Willebrand factor (vWF) multimers, which are extremely adhesive and secreted by endothelial cells. In classical TTP an ADAMTS-13 activity below 5% is specific, whereas in other forms of thrombotic microangiopathies activity of ADAMTS-13 ranges from very low to normal. Symptoms of different forms of thrombotic microangiopathy are frequently overlapping and a clear classification according to clinical criteria is often difficult. Due to a high mortality, particularly of TTP, immediate diagnosis and therapy are essential. In this article two cases of thombotic microangiopathy after cardiac surgery are reported. After exclusion of TTP and HUS as well as other etiologies of thrombotic microangiopathy a relationship between the use of extracorporeal circulation and the pathogenesis of thrombotic microangiopathy is assumed." ]
1,878
[ "Anergy is induced in T cells as a consequence of a partial or suboptimal stimulation. Anergic T cells become unresponsive and fail to proliferate and produce cytokines. We had previously shown that in anergic CD4(+) T cells, Ikaros participates in the transcriptional repression of the Il2 gene by recruiting histone deacetylases that cause core histone deacetylation at the Il2 promoter. Here we show that deacetylation at the Il2 promoter is the initial step in a process that leads to the stable silencing of the Il2 gene transcription in anergic T cells. We have found that anergy-induced deacetylation of the Il2 promoter permits binding of the histone methyl-transferase Suv39H1, which trimethylates lysine-9 of histone H3 (Me3H3-K9). Furthermore, the establishment of the Me3H3-K9 mark allows the recruitment of the heterochromatin protein HP1, allowing the silenced Il2 loci to reposition close to heterochromatin-rich regions. Our results indicate that silencing of Il2 transcription in anergic T cells is attained through a series of epigenetic changes that involve the establishment of repressive marks and the subsequent nuclear repositioning of the Il2 loci, which become juxtaposed to transcriptionally silent regions. This mechanism may account for the stable nature of the inhibition of IL-2 production in anergic cells.", "The post-transcriptional fate of messenger RNAs (mRNAs) is largely dictated by their 3' untranslated regions (3' UTRs), which are defined by cleavage and polyadenylation (CPA) of pre-mRNAs. We used poly(A)-position profiling by sequencing (3P-seq) to map poly(A) sites at eight developmental stages and tissues in the zebrafish. Analysis of over 60 million 3P-seq reads substantially increased and improved existing 3' UTR annotations, resulting in confidently identified 3' UTRs for >79% of the annotated protein-coding genes in zebrafish. mRNAs from most zebrafish genes undergo alternative CPA, with those from more than a thousand genes using different dominant 3' UTRs at different stages. These included one of the poly(A) polymerase genes, for which alternative CPA reinforces its repression in the ovary. 3' UTRs tend to be shortest in the ovaries and longest in the brain. Isoforms with some of the shortest 3' UTRs are highly expressed in the ovary, yet absent in the maternally contributed RNAs of the embryo, perhaps because their 3' UTRs are too short to accommodate a uridine-rich motif required for stability of the maternal mRNA. At 2 h post-fertilization, thousands of unique poly(A) sites appear at locations lacking a typical polyadenylation signal, which suggests a wave of widespread cytoplasmic polyadenylation of mRNA degradation intermediates. Our insights into the identities, formation, and evolution of zebrafish 3' UTRs provide a resource for studying gene regulation during vertebrate development.", "Magnetic resonance imaging (MRI) has recently been recognised as the most sensitive method with which to detect clinically silent lesions in patients affected by multiple sclerosis. Visually guided horizontal saccadic eye movements (SEM) were studied, together with MRI, in 57 multiple sclerosis patients. A very similar sensitivity was found for both MRI (78.2%) and SEM analysis (76.3%). Significant associations between peak saccadic velocity and brain stem signs and between saccadic latency and visual signs were observed.", "The Photo-Activatable Ribonucleoside-enhanced CrossLinking and ImmunoPrecipitation (PAR-CLIP) method was recently developed for global identification of RNAs interacting with proteins. The strength of this versatile method results from induction of specific T to C transitions at sites of interaction. However, current analytical tools do not distinguish between non-experimentally and experimentally induced transitions. Furthermore, geometric properties at potential binding sites are not taken into account. To surmount these shortcomings, we developed a two-step algorithm consisting of a non-parametric two-component mixture model and a wavelet-based peak calling procedure. Our algorithm can reduce the number of false positives up to 24% thereby identifying high confidence interaction sites. We successfully employed this approach in conjunction with a modified PAR-CLIP protocol to study the functional role of nuclear Moloney leukemia virus 10, a putative RNA helicase interacting with Argonaute2 and Polycomb. Our method, available as the R package wavClusteR, is generally applicable to any substitution-based inference problem in genomics.", "Globally, cutaneous cancers are among the most common form of cancer. Among Africans, there are significant differences in the types of skin cancer compared to those documented in patients from other countries. We evaluated all the patients with a histological diagnosis of skin cancer presenting to the University of Calabar Teaching Hospital from January 2005 through December 2006. Twenty-nine patients (18 males and 11 females) with skin cancer were identified and these accounted for 8.0 percent of total malignancies. Their ages ranged from 16 to 70 years (mean 43.5 years). Kaposi sarcoma (KS) was the most common skin cancer. Kaposi sarcoma associated with HIV represented 81.8 percent of KS cases found. Squamous cell carcinoma (SCC) ranked second and malignant melanoma third. Of the skin cancers in our series, the most common site was the lower limb (55.2%), followed by the head and neck (24%). The 4 albinos accounted for 13.8 percent of the skin cancers found. Immunosuppression (KS), chronic ulcer, inflammation, albinism, and solar radiation were identified risk factors. Public education strategies on prevention, with an emphasis on early identification and surgical treatment of skin cancers are urged. In addition, treatment of and close observation of chronic ulcers are recommended.", "Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by extracellular plaques containing amyloid β (Aβ)-protein and intracellular tangles containing hyperphosphorylated Tau protein. Here, we describe the generation of inducible pluripotent stem cell lines from patients harboring the London familial AD (fAD) amyloid precursor protein (APP) mutation (V717I). We examine AD-relevant phenotypes following directed differentiation to forebrain neuronal fates vulnerable in AD. We observe that over differentiation time to mature neuronal fates, APP expression and levels of Aβ increase dramatically. In both immature and mature neuronal fates, the APPV717I mutation affects both β- and γ-secretase cleavage of APP. Although the mutation lies near the γ-secretase cleavage site in the transmembrane domain of APP, we find that β-secretase cleavage of APP is elevated leading to generation of increased levels of both APPsβ and Aβ. Furthermore, we find that this mutation alters the initial cleavage site of γ-secretase, resulting in an increased generation of both Aβ42 and Aβ38. In addition to altered APP processing, an increase in levels of total and phosphorylated Tau is observed in neurons with the APPV717I mutation. We show that treatment with Aβ-specific antibodies early in culture reverses the phenotype of increased total Tau levels, implicating altered Aβ production in fAD neurons in this phenotype. These studies use human neurons to reveal previously unrecognized effects of the most common fAD APP mutation and provide a model system for testing therapeutic strategies in the cell types most relevant to disease processes.", "OBJECTIVES: This study examined the effect of acupuncture alone and in combination with education on smoking cessation and cigarette consumption.METHODS: We prospectively studied 141 adults in a quasi-factorial design using acupuncture, sham acupuncture, and education.RESULTS: All groups showed significant reductions in smoking and posttreatment cigarette consumption, with the combined acupuncture-education group showing the greatest effect from treatment. The trend continued in follow-up; however, significant differences were not maintained. Greater pack-year history (i.e. the number of years smoking multiplied by baseline number of cigarettes smoked per year, divided by 20 cigarettes per pack) negatively correlated with treatment effect. Trend analysis suggested 20 pack-years as the cutoff point for this correlation.CONCLUSIONS: Acupuncture and education, alone and in combination, significantly reduce smoking; however, combined they show a significantly greater effect, as seen in subjects with a greater pack-year history." ]
1,893
[ "The presentations at Digestive Disease Week 2013 emphasized treatment safety. Anti-tumor necrosis factor (TNF) agents and thiopurines are reasonably safe in breastfeeding and pregnancy. Several studies indicate that controlling the risk of tuberculosis when anti-TNF agents are planned presents several problems, both in the initial diagnosis of latent tuberculosis and in subsequent patient follow-up, given that cases of tuberculosis continue to occur, despite recommendations. Thiopurines increase the risk of lymphoma, but there is no residual risk when these drugs are withdrawn. Despite increasing knowledge of the risks and recommendations on how to avoid them, there remain considerable shortfalls in the application of preventive measures and, more specifically, in vaccinations. Infliximab and cyclosporin produce similar results when used to treat severe outbreaks of ulcerative colitis. Thromboembolism prevention continues to be deficient, and the barriers to effective prevention concern not only physicians but can also involve nursing staff, for example. There is still a wide margin for improvement in safety. New drugs under study (vedolizumab, golimumab) have not shown any hitherto unknown signs of significant toxicity.", "In 2004, the US Food and Drug Administration (FDA) controversially issued a black box warning that antidepressants were associated with an increased risk of suicidal thoughts and behaviours in people aged under 18 years. In 2007, the warning was expanded to include young adults aged under 25 years. In 2005, the Australian Therapeutic Goods Administration responded to the FDA warning by requiring Product and Consumer Information leaflets to be updated to reflect the risk. However, there was considerable debate, and at times emotive backlash, in academic journals and the international media. Prominent US and Australian mental health organisations and psychiatrists challenged the FDA warning. They argued that, on balance, antidepressant use was likely to reduce the risk of suicide. Several ecological studies were cited misleadingly as evidence that decreasing antidepressant use increases suicide risk. From 2008 to 2018, Australian per-capita child, adolescent and young adult antidepressant dispensing (0-27 years of age) and suicide (0-24 years) rates have increased approximately 66% and 49%, respectively. In addition, there was a 98% increase in intentional poisonings among 5 to 19 year-olds in New South Wales and Victoria between 2006 and 2016, with substantial overlap between the most commonly dispensed psychotropics and the drugs most commonly used in self-poisoning. These results do not support claims that increased antidepressant use reduces youth suicide risk. They are more consistent with the FDA warning and the hypothesis that antidepressant use increases the risk of suicide and self-harm by young people. Causal relationships cannot be established with certainty until there is a vast improvement in post-marketing surveillance. However, there is clear evidence that more young Australians are taking antidepressants, and more young Australians are killing themselves and self-harming, often by intentionally overdosing on the very substances that are supposed to help them.", "Genome-wide association studies have identified more than 70 common variants that are associated with breast cancer risk. Most of these variants map to non-protein-coding regions and several map to gene deserts, regions of several hundred kilobases lacking protein-coding genes. We hypothesized that gene deserts harbor long-range regulatory elements that can physically interact with target genes to influence their expression. To test this, we developed Capture Hi-C (CHi-C), which, by incorporating a sequence capture step into a Hi-C protocol, allows high-resolution analysis of targeted regions of the genome. We used CHi-C to investigate long-range interactions at three breast cancer gene deserts mapping to 2q35, 8q24.21, and 9q31.2. We identified interaction peaks between putative regulatory elements (\"bait fragments\") within the captured regions and \"targets\" that included both protein-coding genes and long noncoding (lnc) RNAs over distances of 6.6 kb to 2.6 Mb. Target protein-coding genes were IGFBP5, KLF4, NSMCE2, and MYC; and target lncRNAs included DIRC3, PVT1, and CCDC26. For one gene desert, we were able to define two SNPs (rs12613955 and rs4442975) that were highly correlated with the published risk variant and that mapped within the bait end of an interaction peak. In vivo ChIP-qPCR data show that one of these, rs4442975, affects the binding of FOXA1 and implicate this SNP as a putative functional variant.", "In bacterial cells, bidirectional replication of the circular chromosome is initiated from a single origin (oriC) and terminates in an antipodal terminus region such that movement of the pair of replication forks is largely codirectional with transcription. The terminus region is flanked by discrete Ter sequences that act as polar, or direction-dependent, arrest sites for fork progression. Alternative oriC-independent modes of replication initiation are possible, one of which is constitutive stable DNA replication (cSDR) from transcription-associated RNA-DNA hybrids or R-loops. Here, I discuss the distinctive attributes of fork progression and termination associated with different modes of bacterial replication initiation. Two hypothetical models are proposed: that head-on collisions between pairs of replication forks, which are a feature of replication termination in all kingdoms of life, provoke bilateral fork reversal reactions; and that cSDR is characterized by existence of distinct subpopulations in bacterial cultures and a widespread distribution of origins in the genome, each with a small firing potential. Since R-loops are known to exist in eukaryotic cells and to inflict genome damage in G1 phase, it is possible that cSDR-like events promote aberrant replication initiation even in eukaryotes.", "The G(1)/S transition is a critical control point for cell proliferation and involves essential transcription complexes termed SBF and MBF in Saccharomyces cerevisiae or MBF in Schizosaccharomyces pombe. In the fungal pathogen Candida albicans, G(1)/S regulation is not clear. To gain more insight into the G(1)/S circuitry, we characterized Swi6p, Swi4p and Mbp1p, the closest orthologues of SBF (Swi6p and Swi4p) and MBF (Swi6p and Mbp1p) components in S. cerevisiae. The mbp1Δ/Δ cells showed minor growth defects, whereas swi4Δ/Δ and swi6Δ/Δ yeast cells dramatically increased in size, suggesting a G(1) phase delay. Gene set enrichment analysis (GSEA) of transcription profiles revealed that genes associated with G(1)/S phase were significantly enriched in cells lacking Swi4p and Swi6p. These expression patterns suggested that Swi4p and Swi6p have repressing as well as activating activity. Intriguingly, swi4Δ/Δ swi6Δ/Δ and swi4Δ/Δ mbp1Δ/Δ strains were viable, in contrast to the situation in S. cerevisiae, and showed pleiotropic phenotypes that included multibudded yeast, pseudohyphae, and intriguingly, true hyphae. Consistently, GSEA identified strong enrichment of genes that are normally modulated during C. albicans-host cell interactions. Since Swi4p and Swi6p influence G(1) phase progression and SBF binding sites are lacking in the C. albicans genome, these factors may contribute to MBF activity. Overall, the data suggest that the putative G(1)/S regulatory machinery of C. albicans contains novel features and underscore the existence of a relationship between G(1) phase and morphogenetic switching, including hyphal development, in the pathogen.", "Although 5% of all cases of congenital deafness are caused by Pendred's syndrome, there are few reports in the literature. Seven patients with Pendred's syndrome in three families living in the same village were detected. For that reason, the syndrome is reviewed in light of the literature. The sex distribution of the patients with Pendred's syndrome and their families was recorded. We tested for thyroxine, triiodothyronine, thyroid-stimulating hormone, triiodothyronine resin uptake, and perchlorate, and performed caloric testing. In one patient, subtotal thyroidectomy was performed. In the histopathologic study, a thyroid nodule filled with colloid was found. Chromosome studies showed no anomalies in any patient. Five of the patients were deaf-mutes. We observed that the parents were cousins in all three families. These families also had healthy children, and the existence of the syndrome in both sexes points to an autosomal recessive trait.", "While components of the pathway that establishes left-right asymmetry have been identified in diverse animals, from vertebrates to flies, it is striking that the genes involved in the first symmetry-breaking step remain wholly unknown in the most obviously chiral animals, the gastropod snails. Previously, research on snails was used to show that left-right signaling of Nodal, downstream of symmetry breaking, may be an ancestral feature of the Bilateria [1 and 2]. Here, we report that a disabling mutation in one copy of a tandemly duplicated, diaphanous-related formin is perfectly associated with symmetry breaking in the pond snail. This is supported by the observation that an anti-formin drug treatment converts dextral snail embryos to a sinistral phenocopy, and in frogs, drug inhibition or overexpression by microinjection of formin has a chirality-randomizing effect in early (pre-cilia) embryos. Contrary to expectations based on existing models [3, 4 and 5], we discovered asymmetric gene expression in 2- and 4-cell snail embryos, preceding morphological asymmetry. As the formin-actin filament has been shown to be part of an asymmetry-breaking switch in vitro [6 and 7], together these results are consistent with the view that animals with diverse body plans may derive their asymmetries from the same intracellular chiral elements [8]." ]
1,895
[ "The National Institutes of Health Library of Integrated Network-based Cellular Signatures (LINCS) program is generating extensive multidimensional data sets, including biochemical, genome-wide transcriptional, and phenotypic cellular response signatures to a variety of small-molecule and genetic perturbations with the goal of creating a sustainable, widely applicable, and readily accessible systems biology knowledge resource. Integration and analysis of diverse LINCS data sets depend on the availability of sufficient metadata to describe the assays and screening results and on their syntactic, structural, and semantic consistency. Here we report metadata specifications for the most important molecular and cellular components and recommend them for adoption beyond the LINCS project. We focus on the minimum required information to model LINCS assays and results based on a number of use cases, and we recommend controlled terminologies and ontologies to annotate assays with syntactic consistency and semantic integrity. We also report specifications for a simple annotation format (SAF) to describe assays and screening results based on our metadata specifications with explicit controlled vocabularies. SAF specifically serves to programmatically access and exchange LINCS data as a prerequisite for a distributed information management infrastructure. We applied the metadata specifications to annotate large numbers of LINCS cell lines, proteins, and small molecules. The resources generated and presented here are freely available.", "Since the advent of FISH (fluorescence in situ hybridization), there have been major advances in our understanding of how the genome is organized in interphase nuclei. Indeed, this organization is found to be non-random and individual chromosomes occupy discrete regions known as territories. Determining the factors that drive the spatial positioning of these territories within nuclei has caused much debate; however, in proliferating cells, there is evidently a correlation between radial positioning and gene density. Indeed, gene-poor chromosomes tend to be located towards the nuclear edge, while those that are more gene-rich are positioned more internally. These observations pose a number of questions: first, what is the function of this global organization and, secondly, is it representative of that occurring at a more local scale? During the course of this review, these questions will be considered, in light of the current literature regarding the role of transcription factories and the nuclear matrix in interphase genome organization.", "Theoretical exploration of fundamental biological processes involving the forced unraveling of multimeric proteins, the sliding motion in protein fibers and the mechanical deformation of biomolecular assemblies under physiological force loads is challenging even for distributed computing systems. Using a C(α)-based coarse-grained self organized polymer (SOP) model, we implemented the Langevin simulations of proteins on graphics processing units (SOP-GPU program). We assessed the computational performance of an end-to-end application of the program, where all the steps of the algorithm are running on a GPU, by profiling the simulation time and memory usage for a number of test systems. The ∼90-fold computational speedup on a GPU, compared with an optimized central processing unit program, enabled us to follow the dynamics in the centisecond timescale, and to obtain the force-extension profiles using experimental pulling speeds (v(f) = 1-10 μm/s) employed in atomic force microscopy and in optical tweezers-based dynamic force spectroscopy. We found that the mechanical molecular response critically depends on the conditions of force application and that the kinetics and pathways for unfolding change drastically even upon a modest 10-fold increase in v(f). This implies that, to resolve accurately the free energy landscape and to relate the results of single-molecule experiments in vitro and in silico, molecular simulations should be carried out under the experimentally relevant force loads. This can be accomplished in reasonable wall-clock time for biomolecules of size as large as 10(5) residues using the SOP-GPU package.", "BACKGROUND: In dialysis patients, the prevalence of thyroid disorders and their impact on specific cardiovascular (CV) events and mortality are largely unknown. The aim of the present study was to analyze whether subclinical thyroid disorders were associated with CV events and mortality.STUDY DESIGN: Prospective multicenter cohort study.SETTING & PARTICIPANTS: Thyroid status and clinical outcomes were explored in 1,000 diabetic hemodialysis patients from 178 centers in Germany.PREDICTOR: Thyroid status, defined by the following cutoff values: euthyroidism (thyrotropin [TSH], 0.30-4.0 mIU/L; free triiodothyronine [T3], 2.7-7.6 pmol/L; and free thyroxine [T4], 11.0-24.0 pmol/L), subclinical hyperthyroidism (TSH<0.3 mIU/L and free T3/free T4 within reference ranges), subclinical hypothyroidism (TSH, 4.1-15.0 mIU/L and free T3/free T4 within reference ranges), euthyroid sick syndrome (free T3<2.7 pmol/L and TSH/free T4 low or within reference ranges).OUTCOMES: During 4 years' follow-up, prespecified adjudicated end points were determined: sudden cardiac death, myocardial infarction, stroke, combined CV events, and overall mortality. Short-term effects within the first 12 months were contrasted to long-term effects (years 2-4).MEASUREMENTS: TSH, free T3, and free T4 levels at baseline.RESULTS: Euthyroidism was present in 78.1% of patients; subclinical hyperthyroidism, in 13.7%; and subclinical hypothyroidism, in 1.6%. Euthyroid sick syndrome was exhibited by 5.4% of patients. The adjusted short-term risk of sudden cardiac death was more than doubled (HR, 2.03; 95% CI, 0.94-4.36) in patients with subclinical hyperthyroidism, and similarly for patients with euthyroid sick syndrome (HR, 2.74; 95% CI, 0.94-7.98) compared with patients with euthyroidism. Short-term mortality was increased almost 3-fold for patients with euthyroid sick syndrome (HR, 2.97; 95% CI, 1.66-5.29), but this effect was not seen in the long term. Subclinical hypothyroidism was not associated with CV events or all-cause mortality. Risks of stroke and myocardial infarction were not affected meaningfully by thyroid disorders.LIMITATIONS: Observational study design.CONCLUSIONS: Sudden cardiac death may be influenced by subclinical hyperthyroidism and euthyroid sick syndrome in the short term. Furthermore, euthyroid sick syndrome is associated strongly with mortality in hemodialysis patients. Regular assessment of thyroid status may help estimate the cardiac risk of dialysis patients.", "Author information:(1)Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Davidson Building, Henry Wellcome Lab of Cell Biology, University of Glasgow, G12 8QQ Glasgow, UK; The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland.(2)Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Davidson Building, Henry Wellcome Lab of Cell Biology, University of Glasgow, G12 8QQ Glasgow, UK; The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland. Electronic address: johnsbett@yahoo.co.uk.(3)The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland.(4)Newcastle University Protein and Proteome Analysis, Devonshire Building, Devonshire Terrace, Newcastle upon Tyne NE1 7RU, UK.(5)Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel.(6)Department of Medical and Molecular Genetics, King's College London, 8th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.(7)School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK.(8)Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Davidson Building, Henry Wellcome Lab of Cell Biology, University of Glasgow, G12 8QQ Glasgow, UK; The MRC Protein Phosphorylation and Ubiquitylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland. Electronic address: thimo.kurz@glasgow.ac.uk.", "Parathyroid hormone (PTH) suppresses Dickkopf 1 (Dkk1) expression in osteoblasts. To determine whether this suppression is essential for PTH-mediated Wnt signaling and bone formation, we examined mice that overexpress Dkk1 in osteoblasts (Dkk1 mice). Dkk1 mice were osteopenic due to abnormal osteoblast and osteoclast activity. When fed a low-calcium diet, and in two other models of hyperparathyroidism, these mice failed to develop the peritrabecular stromal cell response (\"osteitis fibrosis\") and new bone formation seen in wild-type mice. Despite these effects of Dkk1 overexpression, PTH still activated Wnt signaling in Dkk1 mice and in osteoblastic cells cultured from these mice. In cultured MC3T3E1 preosteoblastic cells, PTH dramatically suppressed Dkk1 expression, induced PKA-mediated phosphorylation of beta-catenin, and significantly enhanced Lef1 expression. Our findings indicate that the full actions of PTH require intact Wnt signaling but that PTH can activate the Wnt pathway despite overexpression of Dkk1.", "Heavy resistance training is associated with increased body weight, lean body mass, and muscle cross-sectional area. The increased muscle cross-sectional area is mainly brought about by hypertrophy of individual muscle fibers. There is a greater increase in the area of fast twitch fibers compared to slow twitch fibers. In addition, long-term heavy resistance training may produce fiber proliferation. Mitochondrial volume density decreases in proportion to muscle hypertrophy in response to training. Typically, no capillary neoformation occurs during strength training. Therefore, capillary density decreases consequent to heavy resistance training. It appears, though, that bodybuilders, relying on a high repetition training system, in contrast to Olympic weight- and power lifters, display a small increase in number of capillaries per fiber. Enzyme activities, reflecting oxidative potential; decrease during long-term heavy resistance training, resulting in muscle hypertrophy. Although glycogen storage capacity is enhanced in strength trained athletes, enzyme activities reflecting anaerobic metabolism do not increase in response to heavy resistance exercise." ]
1,896
[ "NF-κB transcription factors are pivotal players in controlling inflammatory and immune responses, as well as cell proliferation and apoptosis. Aberrant regulation of NF-κB and the signaling pathways that regulate its activity have been involved in various pathologies, particularly cancers, as well as inflammatory and autoimmune diseases. NF-κB activation is tightly regulated by the IκB kinase (IKK) complex, which is composed of two catalytic subunits IKKα and IKKβ, and a regulatory subunit IKKγ/NEMO. Although IKKα and IKKβ share structural similarities, IKKα has been shown to have distinct biological functions. However, the molecular mechanisms that modulate IKKα activity have not yet been fully elucidated. To understand better the regulation of IKKα activity, we purified IKKα-associated proteins and identified ABIN-2. Here, we demonstrate that IKKα and IKKβ both interact with ABIN-2 and impair its constitutive degradation by the proteasome. Nonetheless, ABIN-2 enhances IKKα- but not IKKβ-mediated NF-κB activation by specifically inducing IKKα autophosphorylation and kinase activity. Furthermore, we found that ABIN-2 serine 146 is critical for the ABIN-2-dependent IKKα transcriptional up-regulation of specific NF-κB target genes. These results imply that ABIN-2 acts as a positive regulator of NF-κB-dependent transcription by activating IKKα.", "Despite the considerable advances in the treatment of hypertension that have been made over the past few decades, adequate management and control of this condition remains poor, and efforts are ongoing to develop new strategies to improve related outcomes. Novel therapeutic approaches to the management of systemic hypertension fall into two major categories: (i) those that seek to improve blood pressure-lowering efficacy using new therapeutic strategies in addition to standard non-pharmacological and pharmacological approaches and (ii) novel ways to optimize and improve the efficacy and utility of existing therapies. Novel procedure- and device-based strategies to control hypertension include renal sympathetic denervation and baroreflex sensitization. These two techniques will be the focus of the present review.", "OBJECTIVE: To characterize the clinical and molecular effect of mutations in the sortilin-related receptor (SORL1) gene.METHODS: We performed whole-exome sequencing in early-onset Alzheimer disease (EOAD) and late-onset Alzheimer disease (LOAD) families followed by functional studies of select variants. The phenotypic consequences associated with SORL1 mutations were characterized based on clinical reviews of medical records. Functional studies were completed to evaluate β-amyloid (Aβ) production and amyloid precursor protein (APP) trafficking associated with SORL1 mutations.RESULTS: SORL1 alterations were present in 2 EOAD families. In one, a SORL1 T588I change was identified in 4 individuals with AD, 2 of whom had parkinsonian features. In the second, an SORL1 T2134 alteration was found in 3 of 4 AD cases, one of whom had postmortem Lewy bodies. Among LOAD cases, 4 individuals with either SORL1 A528T or T947M alterations had parkinsonian features. Functionally, the variants weaken the interaction of the SORL1 protein with full-length APP, altering levels of Aβ and interfering with APP trafficking.CONCLUSIONS: The findings from this study support an important role for SORL1 mutations in AD pathogenesis by way of altering Aβ levels and interfering with APP trafficking. In addition, the presence of parkinsonian features among select individuals with AD and SORL1 mutations merits further investigation.", "The Smith-Waterman algorithm for local sequence alignment is one of the most important techniques in computational molecular biology. This ingenious dynamic programming approach was designed to reveal the highly conserved fragments by discarding poorly conserved initial and terminal segments. However, the existing notion of local similarity has a serious flaw: it does not discard poorly conserved intermediate segments. The Smith-Waterman algorithm finds the local alignment with maximal score but it is unable to find local alignment with maximum degree of similarity (e.g. maximal percent of matches). Moreover, there is still no efficient algorithm that answers the following natural question: do two sequences share a (sufficiently long) fragment with more than 70% of similarity? As a result, the local alignment sometimes produces a mosaic of well-conserved fragments artificially connected by poorly-conserved or even unrelated fragments. This may lead to problems in comparison of long genomic sequences and comparative gene prediction as recently pointed out by Zhang et al. (Bioinformatics, 15, 1012-1019, 1999). In this paper we propose a new sequence comparison algorithm (normalized local alignment ) that reports the regions with maximum degree of similarity. The algorithm is based on fractional programming and its running time is O(n2log n). In practice, normalized local alignment is only 3-5 times slower than the standard Smith-Waterman algorithm.", "OBJECTIVE: To evaluate the feasibility of sonographically guided radio frequency thermal ablation as a minimally invasive method for treatment of unresectable recurrent or metastatic tumors in the retroperitoneum and the pelvis, which often pose difficult surgical problems.METHODS: Radio frequency thermal ablation was performed on 7 patients with unresectable recurrent retroperitoneal or pelvic tumors from colorectal (n = 4), renal (n = 2), and prostate (n = 1) cancers. Under sonographic guidance, a total of 11 radio frequency thermal ablation operations were performed by a percutaneous or transanal approach.RESULTS: Three patients were asymptomatic, whereas 4 patients were symptomatic. The sizes of the tumors ranged from 29 to 100 mm (mean, 50.5 mm). Radio frequency thermal ablation was technically completed in all operations without intraoperative complications. The ablation time ranged from 25 to 238 minutes depending on the tumor size. There was no mortality. There were postoperative complications in 3 operations (27.3%): an enterovesical fistula, a skin burn, and fecal incontinence. The hospital stay was generally 0 to 1 day. Tumor marker levels decreased after radio frequency thermal ablation in all operations. Symptoms of 4 patients were controlled by radio frequency thermal ablation. One patient with recurrent renal cancer and uncontrollable hypercalcemia became asymptomatic immediately after radio frequency thermal ablation. Local recurrence at the radio frequency thermal ablation site occurred in 2 patients (28.6%), but these local recurrent tumors were treated effectively by additional sonographically guided radio frequency thermal ablation.CONCLUSIONS: Minimally invasive sonographically guided radio frequency thermal ablation is technically feasible for local treatment of unresectable recurrent retroperitoneal and pelvic tumors from different origins. Care should be taken to avoid thermal injury to surrounding organs. Further study is needed to evaluate its safety and efficacy.", "Performing exome sequencing in 14 autosomal dominant early-onset Alzheimer disease (ADEOAD) index cases without mutation on known genes (amyloid precursor protein (APP), presenilin1 (PSEN1) and presenilin2 (PSEN2)), we found that in five patients, the SORL1 gene harbored unknown nonsense (n=1) or missense (n=4) mutations. These mutations were not retrieved in 1500 controls of same ethnic origin. In a replication sample, including 15 ADEOAD cases, 2 unknown non-synonymous mutations (1 missense, 1 nonsense) were retrieved, thus yielding to a total of 7/29 unknown mutations in the combined sample. Using in silico predictions, we conclude that these seven private mutations are likely to have a pathogenic effect. SORL1 encodes the Sortilin-related receptor LR11/SorLA, a protein involved in the control of amyloid beta peptide production. Our results suggest that besides the involvement of the APP and PSEN genes, further genetic heterogeneity, involving another gene of the same pathway is present in ADEOAD.", "Early-onset Alzheimer's disease (EOAD) accounts for 1%-2% of all Alzheimer's disease (AD) subjects, with large variation in the reported genetic contribution of known dementia genes. In this pilot study, we genetically characterized a German EOAD cohort (23 subjects) by whole-exome sequencing, capturing variants in all recognized AD and frontotemporal dementia genes. After variant filtering, we identified 7 events of altogether 6 different rare variants in 6 subjects, including 4 novel variants. Four of the 6 variants, observed in 5 different index subjects (5/23 = 22%), were considered to be possibly pathogenic. These included 2 presenilin 2 (PSEN2) variants (p.N141I-previously denoted as a Volga German variant, observed in 2 index subjects; and p.L238P), 1 amyloid precursor protein (p.I716M), and 1 presenilin 1 (ΔE9). Using a control exome data set of 96 ethnically matched neurodegenerative disease controls (Parkinson's disease), we identified only 1 variant (PSEN2 p.T18M) (1%), demonstrating a significantly higher mutational burden in the EOAD group (p > 0.0001). Our findings demonstrate a substantial frequency of variants in dementia genes in EOAD, including several seemingly \"sporadic\" subjects. This indicates that heritability in EOAD might be higher than assumed. The finding of 3 subjects carrying potential pathogenic PSEN2 variants suggests that, in specific populations PSEN2 variants might be as frequent as (or more frequent than) presenilin 1, for example, in German populations which are influenced by Volga German heritage. Variants in AD genes were also associated with rare phenotypes such as frontal AD or primary progressive aphasia, demonstrating the need to screen AD genes in frontotemporal dementia-like phenotypes.", "Thyroid hormone is essential for the proper development and function of the brain. The active form of thyroid hormone is T(3), which binds to nuclear receptors. Recently, a transporter specific for T(3), MCT8 (monocarboxylate transporter 8) was identified. MCT8 is highly expressed in liver and brain. The gene is located in Xq13 and mutations in MCT8 are responsible for an X-linked condition, Allan-Herndon-Dudley syndrome (AHDS). This syndrome is characterized by congenital hypotonia that progresses to spasticity with severe psychomotor delays. Affected males also present with muscle hypoplasia, generalized muscle weakness, and limited speech. Importantly, these patients have elevated serum levels of free T(3), low to below normal serum levels of free T(4), and levels of thyroid stimulating hormone that are within the normal range. This constellation of measurements of thyroid function enables quick screening for AHDS in males presenting with cognitive impairment, congenital hypotonia, and generalized muscle weakness.", "More than a decade has passed since the initial identification of ribosomal protein gene mutations in patients with Diamond-Blackfan anemia (DBA), a hematologic disorder that became the founding member of a class of diseases known as ribosomopathies. In these diseases, genetic abnormalities that result in defective ribosome biogenesis cause strikingly tissue-specific phenotypes in patients, specifically bone marrow failure, craniofacial abnormalities and skeletal defects. Several animal models and numerous in vitro studies have demonstrated that the p53 pathway is central to the ribosomopathy phenotype. Additionally, there is mounting evidence of a link between the dysregulation of components of the translational machinery and the pathology of various malignancies. The importance of the role of ribosomal dysfunction in the pathogenesis of hematologic disorders is becoming clearer, and elucidation of the underlying mechanisms could have broad implications for both basic cellular biology and clinical intervention strategies.", "Etizolam is a drug from the thienotriazoldiazepine class, widely prescribed as anxiolytic due to its apparently secure toxicological profile. Nevertheless, some recent cases of etizolam dependence, intoxications and fatalities associated to its abuse have been reported in the international literature. For this reason, the drug listed as new psychoactive substance (NPS) by the World Health Organization (WHO) since 2015. Euphoric effect at high dosage is the first cause of its recreational use that has determined a wider distribution in the illicit market. An experimental study was performed to obtain evidence that etizolam at low therapeutic dosages is a drug with negligible influence on the psychomotor performances involved in driving. The psychomotor performance was assessed by performing different tests, such as critical tracking task (CTT), critical flicker fusion (CFF), choice reaction time (CRT), visual vigilance task (VVT), response competition test (RCT) in a group of 16 healthy volunteers after a single administration of etizolam at two different dosages (0.25 mg or 1.00 mg) in comparison to placebo. The test results showed that etizolam at 0.25 mg and 1.00 mg had no significant effect on vigilance, short term memory, psychomotor coordination or speed in decision making. Differently, abuse of etizolam to obtain the euphoric effects at presumably high dosages or in combination with other psychoactive substances could be fatal. The negligible side effects on mental and behavioral function demonstrated by this study, could represent an incitement to abuse, which can be strongly discouraged with correct information on differences between its correct use and its misuse.", "Ozanimod (RPC1063) is an oral selective modulator of the sphingosine-1-phosphate 1 and 5 receptors under development for the treatment of relapsing multiple sclerosis and inflammatory bowel disease. The effects of high-fat and low-fat meals on the pharmacokinetics (PK) of a single oral dose of ozanimod were evaluated in 24 healthy volunteers in a randomized, open-label crossover trial. Each subject received a 1-mg dose of ozanimod hydrochloride under 3 meal conditions (fasted, high-fat, and low-fat), each separated by 7 days. Mean plasma concentration-time profiles for ozanimod and its active metabolites (RP101988 [major], RP101075 [minor]) were similar under all 3 conditions. Moreover, all PK parameters for ozanimod, RP101988, and RP101075 were similar under the 3 meal conditions. The 90% confidence intervals (CIs) for the ratios of geometric least-squares mean (fed/fasted) were within the equivalence limits of 0.80 to 1.25 for area under the concentration-time curve from time 0 to infinity (AUC0-∞ ) and maximum plasma concentration (Cmax ) for ozanimod, RP101988, and RP101075, except for the high-fat effect on RP101075 Cmax (90%CI, 0.76-0.88). Given this lack of a food effect on the exposure of ozanimod and its active metabolites, ozanimod can be taken without regard to meals.", "Although 5% of all cases of congenital deafness are caused by Pendred's syndrome, there are few reports in the literature. Seven patients with Pendred's syndrome in three families living in the same village were detected. For that reason, the syndrome is reviewed in light of the literature. The sex distribution of the patients with Pendred's syndrome and their families was recorded. We tested for thyroxine, triiodothyronine, thyroid-stimulating hormone, triiodothyronine resin uptake, and perchlorate, and performed caloric testing. In one patient, subtotal thyroidectomy was performed. In the histopathologic study, a thyroid nodule filled with colloid was found. Chromosome studies showed no anomalies in any patient. Five of the patients were deaf-mutes. We observed that the parents were cousins in all three families. These families also had healthy children, and the existence of the syndrome in both sexes points to an autosomal recessive trait.", "In this presentation, I present evidence indicating a direct action of thyroid hormone at the level of the plasma membrane. Characteristically, the plasma membrane-mediated effects of thyroid hormones are prompt in onset, independent of new protein synthesis, and are associated with changes in the transmembrane transport of ions and substrates. The presence of specific binding sites for thyroid hormone in plasma membrane of various tissues and species, although inconclusive in itself, provides additional support for the direct action of thyroid hormone on the plasma membrane. A model for the mechanism of action of thyroid hormone at the plasma membrane level to increase sugar uptake by rat thymocytes is delineated, and the physiological role of the plasma membrane-mediated action of thyroid hormone is discussed.", "Here, we describe a nonsense haplotype in PRNP associated with clinical Alzheimer's disease. The patient presented an early-onset of cognitive decline with memory loss as the primary cognitive problem. Whole-exome sequencing revealed a nonsense mutation in PRNP (NM_000311, c.C478T; p.Q160*; rs80356711) associated with homozygosity for the V allele at position 129 of the protein, further highlighting how very similar genotypes in PRNP result in strikingly different phenotypes.", "Brownell et al. (2010) elucidate the mechanism of action of MLN4924, a NEDD8-activating enzyme inhibitor. MLN4924 requires the activity of the enzyme to generate a NEDD8-adenylate analog that potently and selectively shuts down this posttranslational modification system.", "During adult homeostasis and regeneration, the freshwater planarian must accomplish a constant balance between cell proliferation and cell death, while also maintaining proper tissue and organ size and patterning. How these ordered processes are precisely modulated remains relatively unknown. Here we show that planarians use the downstream effector of the Hippo signaling cascade, yorkie (yki; YAP in vertebrates) to control a diverse set of pleiotropic processes in organ homeostasis, stem cell regulation, regeneration and axial patterning. We show that yki functions to maintain the homeostasis of the planarian excretory (protonephridial) system and to limit stem cell proliferation, but does not affect the differentiation process or cell death. Finally, we show that Yki acts synergistically with WNT/β-catenin signaling to repress head determination by limiting the expression domains of posterior WNT genes and that of the WNT-inhibitor notum. Together, our data show that yki is a key gene in planarians that integrates stem cell proliferation control, organ homeostasis, and the spatial patterning of tissues.", "Alzheimer's disease (AD) is a genetically complex disorder for which the definite diagnosis is only accomplished postmortem. Mutations in 3 genes (APP, PSEN1, and PSEN2) are known to cause AD, but a large number of familial cases do not harbor mutations in these genes and several unidentified genes that contain disease-causing mutations are thought to exist. We performed whole exome sequencing in a Turkish patient clinically diagnosed with Alzheimer's disease from a consanguineous family with a complex history of neurological and immunological disorders and identified a mutation in NOTCH3 (p.R1231C), previously described as causing cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Complete screening of NOTCH3 in a cohort of 95 early onset AD cases and 95 controls did not reveal any additional pathogenic mutations. Although the complex history of disease in this family precluded us to establish segregation of the mutation found with disease, our results show that exome sequencing is a rapid, cost-effective and comprehensive tool to detect genetic mutations, allowing for the identification of unexpected genetic causes of clinical phenotypes. As etiological based therapeutics become more common, this method will be key in diagnosing and treating disease.", "Collagen is the most abundant protein family in mammals. Commercial edible gelatins are often produced from bovine and porcine skin and bone and consist mainly of partially hydrolyzed collagen type 1. The gelatin industry would benefit from a sensitive and reliable species detection method to unambiguously demonstrate species authenticity of their products. PCR and ELISA could in principle be used for this purpose. However, for gelatin, problems associated with false-positive and false-negative results, inconsistencies and low reactivity of commercially available kits have been observed with regard to ELISA and PCR methods. Therefore we developed a selective bottom-up LC-MS methodology for quantitative gelatin species determination with a lower limit of quantification of 0.05%. The present article describes the validation of this method, which was performed according to Good Laboratory Practice, and the theoretical justification for bovine and porcine target selection. The validated method can be used to determine the purity of gelatin batches with regard to bovine and porcine constituents.", "Adolescent idiopathic scoliosis (AIS) is a condition characterized by a three-dimensional structural deformity of the spine. It is the most common type of spine deformity occurring in children aged 10 to maturity. Although the etiology of AIS still remains unknown, the role of genetic factors in the development of idiopathic scoliosis is widely accepted. However, to date no causative genes of AIS have been identified. Recently, the semicircular canals, which are part of the inner ear, were found to be morphologically abnormal in idiopathic scoliosis patients. Here we hypothesized that genetic predisposition to inner ear anomalies in AIS patients may be a strong factor in the generation of idiopathic scoliosis. The proposed idea is that gene defects could impair the development of the semicircular canals. A malformation of semicircular canals might affect the transmission of sensory signal about rotational movement of the body to the central nervous system; leading to an alteration in the neuronal circuit of balance. This will in turn affect body posture and results in the initiation of the curvature of the spine. This hypothesis may provide new insights in the understanding of the pathophysiologic mechanisms of idiopathic scoliosis. It can also offer hopes for potential early prediction of scoliosis.", "The role of cholesterol in Alzheimer's disease (AD) has been linked to the generation of toxic amyloid beta peptides (Abeta). Using genetic mouse models of cholesterol loading, we examined whether mitochondrial cholesterol regulates Abeta neurotoxicity and AD pathology. Isolated mitochondria from brain or cortical neurons of transgenic mice overexpressing SREBP-2 (sterol regulatory element binding protein 2) or NPC1 (Niemann-Pick type C1) knock-out mice exhibited mitochondrial cholesterol accumulation, mitochondrial glutathione (mGSH) depletion and increased susceptibility to Abeta1-42-induced oxidative stress and release of apoptogenic proteins. Similar findings were observed in pharmacologically GSH-restricted rat brain mitochondria, while selective mGSH depletion sensitized human neuronal and glial cell lines to Abeta1-42-mediated cell death. Intracerebroventricular human Abeta delivery colocalized with mitochondria resulting in oxidative stress, neuroinflammation and neuronal damage that were enhanced in Tg-SREBP-2 mice and prevented upon mGSH recovery by GSH ethyl ester coinfusion, with a similar protection observed by intraperitoneal administration of GSH ethyl ester. Finally, APP/PS1 (amyloid precursor protein/presenilin 1) mice, a transgenic AD mouse model, exhibited mitochondrial cholesterol loading and mGSH depletion. Thus, mitochondrial cholesterol accumulation emerges as a novel pathogenic factor in AD by modulating Abeta toxicity via mGSH regulation; strategies boosting the particular pool of mGSH may be of relevance to slow down disease progression.", "Towards the development of a systems biology-based risk assessment approach for environmental toxicants, including tobacco products in a systems toxicology setting such as the \"21st Century Toxicology\", we are building a series of computable biological network models specific to non-diseased pulmonary and cardiovascular cells/tissues which capture the molecular events that can be activated following exposure to environmental toxicants. Here we extend on previous work and report on the construction and evaluation of a mechanistic network model focused on DNA damage response and the four main cellular fates induced by stress: autophagy, apoptosis, necroptosis, and senescence. In total, the network consists of 34 sub-models containing 1052 unique nodes and 1538 unique edges which are supported by 1231 PubMed-referenced literature citations. Causal node-edge relationships are described using the Biological Expression Language (BEL), which allows for the semantic representation of life science relationships in a computable format. The Network is provided in .XGMML format and can be viewed using freely available network visualization software, such as Cytoscape.", "CCR4, an evolutionarily conserved member of the CCR4-NOT complex, is the main cytoplasmic deadenylase. It contains a C-terminal nuclease domain with homology to the endonuclease-exonuclease-phosphatase (EEP) family of enzymes. We have determined the high-resolution three-dimensional structure of the nuclease domain of CNOT6L, a human homologue of CCR4, by X-ray crystallography using the single-wavelength anomalous dispersion method. This first structure of a deadenylase belonging to the EEP family adopts a complete alpha/beta sandwich fold typical of hydrolases with highly conserved active site residues similar to APE1. The active site of CNOT6L should recognize the RNA substrate through its negatively charged surface. In vitro deadenylase assays confirm the critical active site residues and show that the nuclease domain of CNOT6L exhibits full Mg(2+)-dependent deadenylase activity with strict poly(A) RNA substrate specificity. To understand the structural basis for poly(A) RNA substrate binding, crystal structures of the CNOT6L nuclease domain have also been determined in complex with AMP and poly(A) DNA. The resulting structures suggest a molecular deadenylase mechanism involving a pentacovalent phosphate transition.", "PURPOSE: Obstructive sleep apnea (OSA) is a sleep-related breathing disorder that is underdiagnosed. OSA is usually diagnosed by polysomnography (PSG) and, if untreated, could lead to life-threatening complications. Many screening questionnaires have been developed to screen and identify patients at high risk for OSA. This study aimed to evaluate and validate the Arabic version of Stop-Bang questionnaire as a screening tool for patients with OSA symptoms referred to a sleep clinic.METHODS: All referred Arabic-speaking adult patients presenting to a Sleep Disorders Specialized Clinic in Al Ain for PSG were requested to complete an Arabic STOP-Bang questionnaire. A score of 3 or more out of a possible 8 was taken to indicate high risk for presence of OSA. These scores were then evaluated versus results from the overnight, monitored PSG. Apnea/hypopnea index (AHI) of ≥5/h was considered for diagnosis of OSA.RESULTS: One hundred ninety-three sleep clinic patients were enrolled in this study. PSG was positive (AHI ≥5) in 85 % of the studied population. STOP-Bang questionnaire was positive (≥3) in 87 % of the population. Reproducibility of STOP-Bang questionnaire was tested, and the intraclass correlation coefficient of the total score of STOP-Bang questionnaire was 0.931 (95 % CI 0.834-0.972). The sensitivities of the STOP-Bang screening tool for an AHI of ≥5, ≥15, and ≥30 were 90, 96.75, and 99.70 %, respectively, with negative predictive values (NPVs) of 36, 84, and 92 %, respectively. ROC curve was 0.77.CONCLUSION: The Arabic version of STOP-Bang questionnaire is an easy-to-use tool that can be implemented as a reliable, quick screening tool for OSA in patients referred to sleep clinic. It demonstrated high sensitivity and NPV especially for patients with moderate to severe OSA. We believe that this tool will help physicians to earlier identify cases at risk of OSA.", "In the search for new genes in Alzheimer's disease, classic linkage-based and candidate-gene-based association studies have been supplanted by exome sequencing, genome-wide sequencing (for mendelian forms of Alzheimer's disease), and genome-wide association studies (for non-mendelian forms). The identification of new susceptibility genes has opened new avenues for exploration of the underlying disease mechanisms. In addition to detecting novel risk factors in large samples, next-generation sequencing approaches can deliver novel insights with even small numbers of patients. The shift in focus towards translational studies and sequencing of individual patients places each patient's biomaterials as the central unit of genetic studies. The notional shift needed to make the patient central to genetic studies will necessitate strong collaboration and input from clinical neurologists." ]
1,897
[ "BACKGROUND: Both glucose-insulin-potassium (GIK) and tri-iodothyronine (T3) may improve cardiovascular performance after coronary artery surgery (CABG) but their effects have not been directly compared and the effects of combined treatment are unknown.METHODS AND RESULTS: In 2 consecutive randomized double-blind placebo-controlled trials, in patients undergoing first time isolated on-pump CABG between January 2000 and September 2004, 440 patients were recruited and randomized to either placebo (5% dextrose) (n=160), GIK (40% dextrose, K+ 100 mmol.L(-1), insulin 70 u.L(-1)) (0.75 mL.kg(-1) h(-1)) (n=157), T3 (0.8 microg.kg(-1) followed by 0.113 microg.kg(-1) h(-1)) (n=63) or GIK+T3 (n=60). GIK/placebo therapy was administered from start of operation until 6 hours after removal of aortic cross-clamp (AXC) and T3/placebo was administered for a 6-hour period from removal of AXC. Serial hemodynamic measurements were taken up to 12 hours after removal of AXC and troponin I (cTnI) levels were assayed to 72 hours. Cardiac index (CI) was significantly increased in both the GIK and GIK/T3 group in the first 6 hours compared with placebo (P<0.001 for both) and T3 therapy (P=0.009 and 0.029, respectively). T3 therapy increased CI versus placebo between 6 and 12 hours after AXC removal (P=0.01) but combination therapy did not. Release of cTnI was lower in all treatment groups at 6 and 12 hours after removal of AXC.CONCLUSIONS: Treatment with GIK, T3, and GIK/T3 improves hemodynamic performance and results in reduced cTnI release in patients undergoing on-pump CABG surgery. Combination therapy does not provide added hemodynamic effect.", "Exosomes are vesicles that are released from the kidney into urine. They contain protein and RNA from the glomerulus and all sections of the nephron and represent a reservoir for biomarker discovery. Current methods for the identification and quantification of urinary exosomes are time consuming and only semi-quantitative. Nanoparticle tracking analysis (NTA) counts and sizes particles by measuring their Brownian motion in solution. In this study, we applied NTA to human urine and identified particles with a range of sizes. Using antibodies against the exosomal proteins CD24 and aquaporin 2 (AQP2), conjugated to a fluorophore, we could identify a subpopulation of CD24- and AQP2-positive particles of characteristic exosomal size. Extensive pre-NTA processing of urine was not necessary. However, the intra-assay variability in the measurement of exosome concentration was significantly reduced when an ultracentrifugation step preceded NTA. Without any sample processing, NTA tracked exosomal AQP2 upregulation induced by desmopressin stimulation of kidney collecting duct cells. Nanoparticle tracking analysis was also able to track changes in exosomal AQP2 concentration that followed desmopressin treatment of mice and a patient with central diabetes insipidus. When urine was stored at room temperature, 4°C or frozen, nanoparticle concentration was reduced; freezing at -80°C with the addition of protease inhibitors produced the least reduction. In conclusion, with appropriate sample storage, NTA has potential as a tool for the characterization and quantification of extracellular vesicles in human urine.", "The heteromeric inwardly rectifying Kir4.1/Kir5.1 K(+) channel underlies the basolateral K(+) conductance in the distal nephron and is extremely sensitive to inhibition by intracellular pH. The functional importance of Kir4.1/Kir5.1 in renal ion transport has recently been highlighted by mutations in the human Kir4.1 gene (KCNJ10) that result in seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME)/epilepsy, ataxia, sensorineural deafness, and renal tubulopathy (EAST) syndrome, a complex disorder that includes salt wasting and hypokalemic alkalosis. Here, we investigated the role of the Kir5.1 subunit in mice with a targeted disruption of the Kir5.1 gene (Kcnj16). The Kir5.1(-/-) mice displayed hypokalemic, hyperchloremic metabolic acidosis with hypercalciuria. The short-term responses to hydrochlorothiazide, an inhibitor of ion transport in the distal convoluted tubule (DCT), were also exaggerated, indicating excessive renal Na(+) absorption in this segment. Furthermore, chronic treatment with hydrochlorothiazide normalized urinary excretion of Na(+) and Ca(2+), and abolished acidosis in Kir5.1(-/-) mice. Finally, in contrast to WT mice, electrophysiological recording of K(+) channels in the DCT basolateral membrane of Kir5.1(-/-) mice revealed that, even though Kir5.1 is absent, there is an increased K(+) conductance caused by the decreased pH sensitivity of the remaining homomeric Kir4.1 channels. In conclusion, disruption of Kcnj16 induces a severe renal phenotype that, apart from hypokalemia, is the opposite of the phenotype seen in SeSAME/EAST syndrome. These results highlight the important role that Kir5.1 plays as a pH-sensitive regulator of salt transport in the DCT, and the implication of these results for the correct genetic diagnosis of renal tubulopathies is discussed.", "PURPOSE: Salvage chemotherapy followed by high-dose therapy and autologous stem-cell transplantation (ASCT) is the standard treatment for relapsed diffuse large B-cell lymphoma (DLBCL). Salvage regimens have never been compared; their efficacy in the rituximab era is unknown.PATIENTS AND METHODS: Patients with CD20(+) DLBCL in first relapse or who were refractory after first-line therapy were randomly assigned to either rituximab, ifosfamide, etoposide, and carboplatin (R-ICE) or rituximab, dexamethasone, high-dose cytarabine, and cisplatin (R-DHAP). Responding patients received high-dose chemotherapy and ASCT.RESULTS: The median age of the 396 patients enrolled (R-ICE, n = 202; R-DHAP, n = 194) was 55 years. Similar response rates were observed after three cycles of R-ICE (63.5%; 95% CI, 56% to 70%) and R-DHAP (62.8%; 95 CI, 55% to 69%). Factors affecting response rates (P < .001) were refractory disease/relapse less than versus more than 12 months after diagnosis (46% v 88%, respectively), International Prognostic Index (IPI) of more than 1 versus 0 to 1 (52% v 71%, respectively), and prior rituximab treatment versus no prior rituximab (51% v 83%, respectively). There was no significant difference between R-ICE and R-DHAP for 3-year event-free survival (EFS) or overall survival. Three-year EFS was affected by prior rituximab treatment versus no rituximab (21% v 47%, respectively), relapse less than versus more than 12 months after diagnosis (20% v 45%, respectively), and IPI of 2 to 3 versus 0 to 1 (18% v 40%, respectively). In the Cox model, these parameters were significant (P < .001).CONCLUSION: In patients who experience relapse more than 12 months after diagnosis, prior rituximab treatment does not affect EFS. Patients with early relapses after rituximab-containing first-line therapy have a poor prognosis, with no difference between the effects of R-ICE and R-DHAP.", "Many regulatory mechanisms require a high degree of specificity in protein-DNA binding. Nucleotide sequence does not provide an answer to the question of why a protein binds only to a small subset of the many putative binding sites in the genome that share the same core motif. Whereas higher-order effects, such as chromatin accessibility, cooperativity and cofactors, have been described, DNA shape recently gained attention as another feature that fine-tunes the DNA binding specificities of some transcription factor families. Our Genome Browser for DNA shape annotations (GBshape; freely available at http://rohslab.cmb.usc.edu/GBshape/) provides minor groove width, propeller twist, roll, helix twist and hydroxyl radical cleavage predictions for the entire genomes of 94 organisms. Additional genomes can easily be added using the GBshape framework. GBshape can be used to visualize DNA shape annotations qualitatively in a genome browser track format, and to download quantitative values of DNA shape features as a function of genomic position at nucleotide resolution. As biological applications, we illustrate the periodicity of DNA shape features that are present in nucleosome-occupied sequences from human, fly and worm, and we demonstrate structural similarities between transcription start sites in the genomes of four Drosophila species.", "BACKGROUND: Vericiguat, a stimulator of soluble guanylate cyclase, has been developed as a first-in-class therapy for worsening chronic heart failure in adults with left ventricular ejection fraction < 45%.OBJECTIVE: The objective of this article was to characterize the pharmacokinetics and pharmacokinetic variability of vericiguat combined with guideline-directed medical therapy (standard of care), and identify exposure-response relationships for safety (hemodynamics) and pharmacodynamic markers of efficacy (N-terminal pro-B-type natriuretic peptide concentration [NT-proBNP]) in patients with heart failure and left ventricular ejection fraction < 45% in the SOCRATES-REDUCED study (NCT01951625).METHODS: Vericiguat and NT-proBNP plasma concentrations in 454 and 432 patients in SOCRATES-REDUCED, respectively, were analyzed using nonlinear mixed-effects modeling.RESULTS: Vericiguat pharmacokinetics were well described by a one-compartment model with apparent clearance, apparent volume of distribution, and absorption rate constant. Age, bodyweight, plasma bilirubin, and creatinine clearance were identified as significant covariates on apparent clearance; sex and bodyweight on apparent volume of distribution; and bodyweight and plasma albumin level on absorption rate constant. Pharmacokinetic/pharmacodynamic analysis showed initial minor and transient effects of vericiguat on blood pressure with low clinical impact. There were no changes in heart rate following initial or repeated vericiguat administration. An exposure-dependent and time-dependent turnover pharmacokinetic/pharmacodynamic model for NT-proBNP described production and elimination rates and an demonstrated exposure-dependent reduction in [NT-proBNP] by vericiguat plus standard of care compared with placebo plus standard of care. This effect was dependent on baseline [NT-proBNP].CONCLUSIONS: Vericiguat has predictable pharmacokinetics, with no long-term effects on blood pressure in patients with heart failure and left ventricular ejection fraction < 45%. A pharmacokinetic/pharmacodynamic model described a vericiguat exposure-dependent reduction of NT-proBNP.CLINICAL TRIAL IDENTIFIER: NCT01951625.", "Vitamin K2 is a critical nutrient required for blood coagulation. It also plays a key role in bone homeostasis and is a clinically effective therapeutic agent for osteoporosis. We previously demonstrated that vitamin K2 is a transcriptional regulator of bone marker genes in osteoblastic cells and that it may potentiate bone formation by activating the steroid and xenobiotic receptor, SXR. To explore the SXR-mediated vitamin K2 signaling network in bone homeostasis, we identified genes up-regulated by both vitamin K2 and the prototypical SXR ligand, rifampicin, in osteoblastic cells using oligonucleotide microarray analysis and quantitative reverse transcription-PCR. Fourteen genes were up-regulated by both ligands. Among these, tsukushi, matrilin-2, and CD14 antigen were shown to be primary SXR target genes. Moreover, collagen accumulation in osteoblastic MG63 cells was enhanced by vitamin K2 treatment. Gain- and loss-of-function analyses showed that the small leucine-rich proteoglycan, tsukushi, contributes to vitamin K2-mediated enhancement of collagen accumulation. Our results suggest a new function for vitamin K2 in bone formation as a transcriptional regulator of extracellular matrix-related genes, that are involved in the collagen assembly." ]
1,901
[ "SUMMARY: RNA-Seq data analysis results in lists of genes that may have a similar function, based on differential gene expression analysis or co-expression network analysis. While tools have been developed to identify biological processes that are enriched in the genes sets, there remains a need for tools that identify enrichment of tissue-specific genes. Therefore, we developed TissueEnrich, a tool that calculates tissue-specific gene enrichment in an input gene set. We demonstrated that TissueEnrich can assign tissue identities to single cell clusters and differentiated embryonic stem cells.AVAILABILITY AND IMPLEMENTATION: The TissueEnrich web application is freely available at http://tissueenrich.gdcb.iastate.edu/. The R package is available through Bioconductor at https://bioconductor.org/packages/TissueEnrich. Both the web application and R package are for non-profit academic use under the MIT license.SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.", "Myasthenia gravis is an autoimmune neuromuscular disorder. There are several treatment options, including symptomatic treatment (acetylcholinesterase inhibitors), short-term immunosuppression (corticosteroids), long-term immunosuppression (azathioprine, cyclosporine, cyclophosphamide, methotrexate, mycophenolate mofetil, rituximab, tacrolimus), rapid acting short-term immunomodulation (intravenous immunoglobulin, plasma exchange), and long-term immunomodulation (thymectomy). This review explores in detail these different treatment options. Potential future treatments are also discussed.", "Staphylococcus aureus skin infections represent a significant public health threat because of the emergence of antibiotic-resistant strains such as methicillin-resistant S. aureus (MRSA). As greater understanding of protective immune responses and more effective antimicrobial therapies are needed, a S. aureus skin wound infection model was developed in which full-thickness scalpel cuts on the backs of mice were infected with a bioluminescent S. aureus (methicillin sensitive) or USA300 community-acquired MRSA strain and in vivo imaging was used to noninvasively monitor the bacterial burden. In addition, the infection-induced inflammatory response was quantified using in vivo fluorescence imaging of LysEGFP mice. Using this model, we found that both IL-1α and IL-1β contributed to host defense during a wound infection, whereas IL-1β was more critical during an intradermal S. aureus infection. Furthermore, treatment of a USA300 MRSA skin infection with retapamulin ointment resulted in up to 85-fold reduction in bacterial burden and a 53% decrease in infection-induced inflammation. In contrast, mupirocin ointment had minimal clinical activity against this USA300 strain, resulting in only a 2-fold reduction in bacterial burden. Taken together, this S. aureus wound infection model provides a valuable preclinical screening method to investigate cutaneous immune responses and the efficacy of topical antimicrobial therapies.", "Author information:(1)Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China; Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Mayo Clinic Cancer Center, Rochester, MN, USA.(2)Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Mayo Clinic Cancer Center, Rochester, MN, USA; Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.(3)Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Mayo Clinic Cancer Center, Rochester, MN, USA; Department of Pathology, Qiqihar Medical University, Qiqihar, China.(4)Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Mayo Clinic Cancer Center, Rochester, MN, USA.(5)Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA.(6)Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA.(7)Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.(8)Division of Hematology and Medical Oncology, Mayo Clinic College of Medicine, Phoenix, AZ, USA.(9)Department of Medical Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA.(10)Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Mayo Clinic Cancer Center, Rochester, MN, USA. Electronic address: roberts.lewis@mayo.edu.", "Cohesin mediates sister chromatid cohesion and contributes to the organization of interphase chromatin through DNA looping. In vertebrate somatic cells, cohesin consists of Smc1, Smc3, Rad21, and either SA1 or SA2. Three additional factors Pds5, Wapl, and Sororin bind to cohesin and modulate its dynamic association with chromatin. There are two Pds5 proteins in vertebrates, Pds5A and Pds5B, but their functional specificity remains unclear. Here, we demonstrate that Pds5 proteins are essential for cohesion establishment by allowing Smc3 acetylation by the cohesin acetyl transferases (CoATs) Esco1/2 and binding of Sororin. While both proteins contribute to telomere and arm cohesion, Pds5B is specifically required for centromeric cohesion. Furthermore, reduced accumulation of Aurora B at the inner centromere region in cells lacking Pds5B impairs its error correction function, promoting chromosome mis-segregation and aneuploidy. Our work supports a model in which the composition and function of cohesin complexes differs between different chromosomal regions.", "Protein N-terminal acetylation is one of the most common modifications occurring co- and post-translationally on either eukaryote or prokaryote proteins. However, compared to other protein modifications, the physiological role of protein N-terminal acetylation is relatively unclear. To explore the biological functions of protein N-terminal acetylation, a robust and large-scale method for qualitative and quantitative analysis of this modification is required. Enrichment of N(α)-acetylated peptides or depletion of the free N-terminal and internal tryptic peptides prior to analysis by mass spectrometry are necessary based on current technologies. This study demonstrated a simple strong cation exchange (SCX) fractionation method to selectively enrich N(α)-acetylated tryptic peptides via dimethyl labeling without the need for tedious protective labeling and depleting procedures. This method was introduced for the comprehensive analysis of N-terminal acetylated proteins from HepG2 cells. Several hundred N-terminal acetylation sites were readily identified in a single SCX flow-through fraction. Moreover, the N(α)-acetylated peptides of some protein isoforms were simultaneously observed in the SCX flow-through fraction, which indicated that this approach can be utilized to discriminate protein isoforms with very similar full sequences but different N-terminal sequences, such as β-actin/γ-actin, ERK1/ERK2, α-centractin/β-centractin, and ADP/ATP translocase 2 and 3. Compared to other methods, this method is relatively simple and can be directly implemented in a two-dimensional separation (SCX-RP)-mass spectrometry scheme for quantitative N-terminal proteomics using stable-isotope dimethyl labeling.", "Extracorporeal membrane oxygenation (ECMO) is a method of life support to maintain cardiopulmonary function. Its use as a medical application has increased since its inception to treat multiple conditions including acute respiratory distress syndrome, myocardial ischemia, cardiomyopathy, and septic shock. While complications including neurological and renal injury occur in patients on ECMO, bleeding and coagulopathy are most common. ECMO is associated with an inflammatory response promoting a hypercoagulable state, requiring anticoagulation to avoid thromboembolism originating in the nonendothelial surfaced circuit. However, excessive anticoagulation may result in bleeding complications including intracerebral hemorrhage. Monitoring anticoagulation for ECMO has its origins in cardiopulmonary bypass for cardiac surgery; however, there is no ideal level of anticoagulation, no standardized method to monitor anticoagulation, nor are all centers standardized on what is used for anticoagulation. Multiple blood products are used in an effort to decrease bleeding in the setting of anticoagulation, often in the setting of recent surgery, and this leads to significant increases in cost for patients on ECMO and transfusion-related complications. In this review article, we discuss the evolution of the various modalities of ECMO, indications, contraindications, and complications. Furthermore, we review the different strategies for anticoagulation and treatment of coagulopathy while on ECMO. Finally, we discuss the cost of ECMO and associated blood product transfusion." ]
1,902
[ "BACKGROUND AND PURPOSE: Intracerebral hemorrhage (ICH) is the most fatal and disabling stroke subtype. Widely used tools for prediction of mortality are fundamentally limited in that they do not account for effects of withdrawal of care and are not designed to predict functional recovery. We developed an acute clinical score to predict likelihood of functional independence.METHODS: We prospectively characterized 629 consecutive patients with ICH at hospital presentation. Predictors of functional independence (Glasgow Outcome Score > or = 4) at 90 days were used to develop a logistic regression-based risk stratification scale in a random subset of two thirds and validated in the remaining one third of the cohort.RESULTS: At 90 days, 162 (26%) patients achieved independence. Age, Glasgow Coma Scale, ICH location, volume (all P<0.0001), and pre-ICH cognitive impairment (P=0.005) were independently associated with Glasgow Outcome Score > or = 4. The FUNC score was developed as a sum of individual points (0-11) based on strength of association with outcome. In both the development and validation cohorts, the proportion of patients who achieved Glasgow Outcome Score > or = 4 increased steadily with FUNC score. No patient assigned a FUNC score < or = 4 achieved functional independence, whereas > 80% with a score of 11 did. The predictive accuracy of the FUNC score remained unchanged when restricted to ICH survivors only, consistent with absence of confounding by early withdrawal of care.CONCLUSIONS: FUNC score is a valid clinical assessment tool that identifies patients with ICH who will attain functional independence and thus, can provide guidance in clinical decision-making and patient selection for clinical trials.", "The suppression of oncogenic levels of MYC is sufficient to induce sustained tumor regression associated with proliferative arrest, differentiation, cellular senescence, and/or apoptosis, a phenomenon known as oncogene addiction. However, after prolonged inactivation of MYC in a conditional transgenic mouse model of Eμ-tTA/tetO-MYC T-cell acute lymphoblastic leukemia, some of the tumors recur, recapitulating what is frequently observed in human tumors in response to targeted therapies. Here we report that these recurring lymphomas express either transgenic or endogenous Myc, albeit in many cases at levels below those in the original tumor, suggesting that tumors continue to be addicted to MYC. Many of the recurring lymphomas (76%) harbored mutations in the tetracycline transactivator, resulting in expression of the MYC transgene even in the presence of doxycycline. Some of the remaining recurring tumors expressed high levels of endogenous Myc, which was associated with a genomic rearrangement of the endogenous Myc locus or activation of Notch1. By gene expression profiling, we confirmed that the primary and recurring tumors have highly similar transcriptomes. Importantly, shRNA-mediated suppression of the high levels of MYC in recurring tumors elicited both suppression of proliferation and increased apoptosis, confirming that these tumors remain oncogene addicted. These results suggest that tumors induced by MYC remain addicted to overexpression of this oncogene.", "BACKGROUND: Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in infants, and a need exists for prevention of RSV in healthy infants. Nirsevimab is a monoclonal antibody with an extended half-life that is being developed to protect infants for an entire RSV season with a single intramuscular dose.METHODS: In this trial conducted in both northern and southern hemispheres, we evaluated nirsevimab for the prevention of RSV-associated lower respiratory tract infection in healthy infants who had been born preterm (29 weeks 0 days to 34 weeks 6 days of gestation). We randomly assigned the infants in a 2:1 ratio to receive nirsevimab, at a dose of 50 mg in a single intramuscular injection, or placebo at the start of an RSV season. The primary end point was medically attended RSV-associated lower respiratory tract infection through 150 days after administration of the dose. The secondary efficacy end point was hospitalization for RSV-associated lower respiratory tract infection through 150 days after administration of the dose.RESULTS: From November 2016 through November 2017, a total of 1453 infants were randomly assigned to receive nirsevimab (969 infants) or placebo (484 infants) at the start of the RSV season. The incidence of medically attended RSV-associated lower respiratory tract infection was 70.1% lower (95% confidence interval [CI], 52.3 to 81.2) with nirsevimab prophylaxis than with placebo (2.6% [25 infants] vs. 9.5% [46 infants]; P<0.001) and the incidence of hospitalization for RSV-associated lower respiratory tract infection was 78.4% lower (95% CI, 51.9 to 90.3) with nirsevimab than with placebo (0.8% [8 infants] vs. 4.1% [20 infants]; P<0.001). These differences were consistent throughout the 150-day period after the dose was administered and across geographic locations and RSV subtypes. Adverse events were similar in the two trial groups, with no notable hypersensitivity reactions.CONCLUSIONS: A single injection of nirsevimab resulted in fewer medically attended RSV-associated lower respiratory tract infections and hospitalizations than placebo throughout the RSV season in healthy preterm infants. (Funded by AstraZeneca and Sanofi Pasteur; ClinicalTrials.gov number, NCT02878330.).", "BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy. Although it was considered to be a poor prognostic disease, modern treatment protocols (aggressive chemotherapy and prophylactic cranial irradiation) have resulted in dramatically improved survival rates. In a group of low-risk ALL patients, the 5-year survival rate is estimated to be 85%. However, ALL patients who undergo this treatment are at risk of developing secondary neoplasms related to treatment, which has become an increasingly recognized problem.CASE DESCRIPTION: A 3-year-old boy with ALL was successfully treated with chemotherapy (vincristine, prednisolone, mercaptopurine and methotrexate) and prophylactic cranial irradiation (total 18 Gy). At the age of 23, he was admitted to our hospital for weakness in the right leg. Computed tomography and magnetic resonance imaging revealed a parasagittal tumor of the left frontoparietal lobe with perifocal edema. The tumor was completely removed surgically and pathohistologically diagnosed as atypical meningioma.CONCLUSION: Long-term survivors who received radiotherapy for ALL in childhood are at risk for late complications, including radiation-induced meningioma. Therefore, careful follow-up neurological examinations, for example magnetic resonance imaging, are indicated in these patients. In addition, late complications should be taken into account during the initial planning of prophylactic radiotheraphy dosage, which has implications for informed consent of the patient.", "Patients suffering from high-risk myelodysplastic syndrome (MDS) or acute myelogenous leukemia (AML) secondary to MDS (sAML) are characterized by poor response to conventional cytotoxic chemotherapy. The purpose of our prospective single-center study was to examine the safety and efficacy of an allogeneic hematopoietic stem cell transplantation (HSCT) following a sequential conditioning regimen as first-line therapy for previously untreated patients with high-risk MDS or sAML. Between November 2003 and June 2010, 30 patients (20 high-risk MDS, 10 sAML) received fludarabine (4 × 30 mg/m(2)), amsacrine (4 × 100 mg/m(2)), and Ara-C (4 × 2 g/m(2), FLAMSA). After 2 to 3 days of rest, patients received high-dose melphalan alone (200 mg/m(2) for patients with an age <50 years, 150 mg/m(2) for patients with an age between 50 and 60 years, and 100 mg/m(2) for patients with an age >60 years; n = 24) or melphalan and thiotepa (10 mg/kg, Mel/Thio, n = 6). Following these high-dose conditioning regimens, a median number of 7.7 × 10(6) CD34(+) cells/kg body weight (range: 2.9 × 10(6)-17.2 × 10(6)) were transplanted from 13 related or 17 unrelated donors. Antithymocyte globulin (Fresenius 30-60 mg/kg) as well as tacrolimus and mycophenolate mofetil were used for graft-versus-host disease (GVHD) prophylaxis. All patients except 1 with primary graft failure achieved complete remission after HSCT. After a median follow-up time of 28 months (range: 7-81), 21 patients (70%) were alive and free of disease. Overall, 4 patients relapsed. At 2 years, overall survival, event-free survival, and treatment-related mortality were 70%, 63%, and 30%, respectively. Because of undue toxicity, thiotepa is no longer part of the conditioning regimen. Our results add to the body of evidence that a FLAMSA-based sequential conditioning therapy is effective for previously untreated patients with high-risk MDS or sAML.", "In the first part of this study, the effect of four isocaloric mixed breakfast meals on the blood glucose and urinary glucose losses was tested in nine adult diabetics and in three healthy subjects, ages 60 to 75. Three of the test meals consisted of a base diet supplemented with applesauce sweetened with sucrose, fructose, or sorbitol. In the fourth test meal, the starch was increased together with saccharine. In the second part of the study, analyses for free glucose and sucrose in several timed food preparations, ordinary as well as food preparations specially designed for diabetics, were performed. The amount of sucrose equivalents (S(eg)) in one ordinary serving of the various products was estimated. No significant differences among sucrose, fructose, and sorbitol-containing meals with respect to the effect on the blood glucose level or on glucosuria were found. The saccharine-containing meal gave a significantly greater blood glucose increase at 60 min only. The amount of sucrose in ordinary marinated foods, such as herring, cucumber, and common beet was negligible. Water-packed fruits supplied one half of the amount of S(eq) or less, compared with fruits packed in sorbitol-sweetened syrup. The amount of S(eq) in the latter products as well as in fruits packed in unsweetened juice equalled that of the fleshy substance of ordinary sucrose-sweetened products. It was concluded that fructose or sorbitol has no advantages over sucrose, as regards the effect on blood glucose in well-regulated adult diabetics, and that it seems unnecessary to have specially sweetened foods designed for diabetics.", "Accurate gene expression requires the precise control of mRNA levels, which are determined by the relative rates of nuclear (pre-)mRNA synthesis and processing, and cytoplasmic mRNA turnover. A key step in mRNA degradation is the removal of the poly(A) tail, which involves several deadenylases including components of the Ccr4-Not complex. Here, we focused on the role of the human paralogues CNOT7 (hCaf1/Caf1a) and CNOT8 (hPop2/Caf1b/Calif), which possess deadenylase activity mediated by DEDD nuclease domains. We show that efficient proliferation requires both subunits, although combined knockdown of CNOT7 and CNOT8 further reduces cell proliferation indicating partial redundancy between these proteins. Interestingly, the function of CNOT7 in cell proliferation partly depends on its catalytic activity. On the other hand, the interaction between CNOT7 and BTG2, a member of the antiproliferative BTG/Tob family involved in transcription and mRNA decay appears less important for proliferation of MCF7 cells, suggesting that CNOT7 does not function solely in conjunction with BTG2. Further analysis of gene expression profiles of CNOT7 and/or CNOT8 knockdown cells underscores the partial redundancy between these subunits and suggests that regulation of several genes, including repression of the antiproliferative genes MSMB and PMP22, by the Ccr4-Not complex contributes to cell proliferation." ]
1,904
[ "AIMS: In diabetes mellitus, heart failure with preserved ejection fraction (HFPEF) is a significant comorbidity. No therapy is available that improves cardiovascular outcomes. The aim of this study was to characterize myocardial function and ventricular-arterial coupling in a mouse model of diabetes and to analyse the effect of selective heart rate (HR) reduction by If-inhibition in this HFPEF-model.METHODS AND RESULTS: Control mice, diabetic mice (db/db), and db/db mice treated for 4 weeks with the If-inhibitor ivabradine (db/db-Iva) were compared. Aortic distensibility was measured by magnetic resonance imaging. Left ventricular (LV) pressure-volume analysis was performed in isolated working hearts, with biochemical and histological characterization of the cardiac and aortic phenotype. In db/db aortic stiffness and fibrosis were significantly enhanced compared with controls and were prevented by HR reduction in db/db-Iva. Left ventricular end-systolic elastance (Ees) was increased in db/db compared with controls (6.0 ± 1.3 vs. 3.4 ± 1.2 mmHg/µL, P < 0.01), whereas other contractility markers were reduced. Heart rate reduction in db/db-Iva lowered Ees (4.0 ± 1.1 mmHg/µL, P < 0.01), and improved the other contractility parameters. In db/db active relaxation was prolonged and end-diastolic capacitance was lower compared with controls (28 ± 3 vs. 48 ± 8 μL, P < 0.01). These parameters were ameliorated by HR reduction. Neither myocardial fibrosis nor hypertrophy were detected in db/db, whereas titin N2B expression was increased and phosphorylation of phospholamban was reduced both being prevented by HR reduction in db/db-Iva.CONCLUSION: In db/db, a model of HFPEF, selective HR reduction by If-inhibition improved vascular stiffness, LV contractility, and diastolic function. Therefore, If-inhibition might be a therapeutic concept for HFPEF, if confirmed in humans.", "The migration of limb myogenic precursors from limb level somites to their ultimate site of differentiation in the limb is a paradigmatic example of a set of dynamic and orchestrated migratory cell behaviours. The homeobox containing transcription factor ladybird homeobox 1 (Lbx1) is a central regulator of limb myoblast migration, null mutations of Lbx1 result in severe disruptions to limb muscle formation, particularly in the distal region of the limb in mice (Gross et al., 2000). As such Lbx1 has been hypothesized to control lateral migration of myoblasts into the distal limb anlage. It acts as a core regulator of the limb myoblast migration machinery, controlled by Pax3. A secondary role for Lbx1 in the differentiation and commitment of limb musculature has also been proposed (Brohmann et al., 2000; Uchiyama et al., 2000). Here we show that lateral migration, but not differentiation or commitment of limb myoblasts, is controlled by the phosphorylation of three adjacent serine residues of LBX1. Electroporation of limb level somites in the chick embryo with a dephosphomimetic form of Lbx1 results in a specific defect in the lateral migration of limb myoblasts. Although the initial delamination and migration of myoblasts is unaffected, migration into the distal limb bud is severely disrupted. Interestingly, myoblasts undergo normal differentiation independent of their migratory status, suggesting that the differentiation potential of hypaxial muscle is not regulated by the phosphorylation state of LBX1. Furthermore, we show that FGF8 and ERK mediated signal transduction, both critical regulators of the developing limb bud, have the capacity to induce the phosphorylation of LBX1 at these residues. Overall, this suggests a mechanism whereby the phosphorylation of LBX1, potentially through FGF8 and ERK signalling, controls the lateral migration of myoblasts into the distal limb bud.", "BACKGROUND: Dynamic changes to the epigenome play a critical role in establishing and maintaining cellular phenotype during differentiation, but little is known about the normal methylomic differences that occur between functionally distinct areas of the brain. We characterized intra- and inter-individual methylomic variation across whole blood and multiple regions of the brain from multiple donors.RESULTS: Distinct tissue-specific patterns of DNA methylation were identified, with a highly significant over-representation of tissue-specific differentially methylated regions (TS-DMRs) observed at intragenic CpG islands and low CG density promoters. A large proportion of TS-DMRs were located near genes that are differentially expressed across brain regions. TS-DMRs were significantly enriched near genes involved in functional pathways related to neurodevelopment and neuronal differentiation, including BDNF, BMP4, CACNA1A, CACA1AF, EOMES, NGFR, NUMBL, PCDH9, SLIT1, SLITRK1 and SHANK3. Although between-tissue variation in DNA methylation was found to greatly exceed between-individual differences within any one tissue, we found that some inter-individual variation was reflected across brain and blood, indicating that peripheral tissues may have some utility in epidemiological studies of complex neurobiological phenotypes.CONCLUSIONS: This study reinforces the importance of DNA methylation in regulating cellular phenotype across tissues, and highlights genomic patterns of epigenetic variation across functionally distinct regions of the brain, providing a resource for the epigenetics and neuroscience research communities.", "Mast cells are involved in many disorders where the triggering mechanism that leads to degranulation and/or cytokine secretion has not been defined. Several chronic inflammatory diseases are associated with increased mast cell numbers and upregulation of the TNF receptor family member CD30, but the role of elevated CD30 expression is poorly understood. Here we report what we believe to be a novel way to activate mast cells with CD30 that leads to degranulation-independent secretion of chemokines. CD30 induced a de novo synthesis and secretion of the chemokines IL-8, macrophage inflammatory protein-1alpha (MIP-1alpha), and MIP-1beta, a process involving the MAPK/ERK pathway. Mast cells were found to be the predominant CD30 ligand-positive (CD30L-positive) cell in the chronic inflammatory skin diseases psoriasis and atopic dermatitis, and both CD30 and CD30L expression were upregulated in lesional skin in these conditions. Furthermore, the number of IL-8-positive mast cells was elevated both in psoriatic and atopic dermatitis lesional skin as well as in ex vivo CD30-treated healthy skin organ cultures. In summary, characterization of CD30 activation of mast cells has uncovered an IgE-independent pathway that is of importance in understanding the entirety of the role of mast cells in diseases associated with mast cells and CD30 expression. These diseases include Hodgkin lymphoma, atopic dermatitis, and psoriasis.", "Since 2010, mAbs has documented the biopharmaceutical industry's progress in transitioning antibody therapeutics to first Phase 3 clinical studies and regulatory review, and its success at gaining first marketing approvals for antibody-based products. This installment of the \"Antibodies to watch\" series outlines events anticipated to occur between December 2013 and the end of 2014, including first regulatory actions on marketing applications for vedolizumab, siltuximab, and ramucirumab, as well as the Fc fusion proteins Factor IX-Fc and Factor VIII-Fc; and the submission of first marketing applications for up to five therapeutics (secukinumab, ch14.18, onartuzumab, necitumumab, gevokizumab). Antibody therapeutics in Phase 3 studies are described, with an emphasis on those with study completion dates in 2014, including antibodies targeting interleukin-17a or the interleukin-17a receptor (secukinumab, ixekizumab, brodalumab), proprotein convertase subtilisin/kexin type 9 (alirocumab, evolocumab, bococizumab), and programmed death 1 receptor (lambrolizumab, nivolumab). Five antibodies with US Food and Drug Administration's Breakthrough Therapy designation (obinutuzumab, ofatumumab, lambrolizumab, bimagrumab, daratumumab) are also discussed.", "The DNA transposon piggyBac is widely used as a tool in mammalian experimental systems for transgenesis, mutagenesis, and genome engineering. We have characterized genome-wide insertion site preferences of piggyBac by sequencing a large set of integration sites arising from transposition from two separate genomic loci and a plasmid donor in mouse embryonic stem cells. We found that piggyBac preferentially integrates locally to the excision site when mobilized from a chromosomal location and identified other nonlocal regions of the genome with elevated insertion frequencies. piggyBac insertions were associated with expressed genes and markers of open chromatin structure and were excluded from heterochromatin. At the nucleotide level, piggyBac prefers to insert into TA-rich regions within a broader GC-rich context. We also found that piggyBac can insert into sites other than its known TTAA insertion site at a low frequency (2%). Such insertions introduce mismatches that are repaired with signatures of host cell repair pathways. Transposons could be mobilized from plasmids with the observed noncanonical flanking regions, indicating that piggyBac could generate point mutations in the genome.", "We address the problem of predicting the position of a miRNA duplex on a microRNA hairpin via the development and application of a novel SVM-based methodology. Our method combines a unique problem representation and an unbiased optimization protocol to learn from mirBase19.0 an accurate predictive model, termed MiRduplexSVM. This is the first model that provides precise information about all four ends of the miRNA duplex. We show that (a) our method outperforms four state-of-the-art tools, namely MaturePred, MiRPara, MatureBayes, MiRdup as well as a Simple Geometric Locator when applied on the same training datasets employed for each tool and evaluated on a common blind test set. (b) In all comparisons, MiRduplexSVM shows superior performance, achieving up to a 60% increase in prediction accuracy for mammalian hairpins and can generalize very well on plant hairpins, without any special optimization. (c) The tool has a number of important applications such as the ability to accurately predict the miRNA or the miRNA*, given the opposite strand of a duplex. Its performance on this task is superior to the 2nts overhang rule commonly used in computational studies and similar to that of a comparative genomic approach, without the need for prior knowledge or the complexity of performing multiple alignments. Finally, it is able to evaluate novel, potential miRNAs found either computationally or experimentally. In relation with recent confidence evaluation methods used in miRBase, MiRduplexSVM was successful in identifying high confidence potential miRNAs." ]
1,923
[ "Antisense long non-coding (aslnc)RNAs represent a substantial part of eukaryotic transcriptomes that are, in yeast, controlled by the Xrn1 exonuclease. Nonsense-Mediated Decay (NMD) destabilizes the Xrn1-sensitive aslncRNAs (XUT), but what determines their sensitivity remains unclear. We report that 3' single-stranded (3'-ss) extension mediates XUTs degradation by NMD, assisted by the Mtr4 and Dbp2 helicases. Single-gene investigation, genome-wide RNA analyses, and double-stranded (ds)RNA mapping revealed that 3'-ss extensions discriminate the NMD-targeted XUTs from stable lncRNAs. Ribosome profiling showed that XUT are translated, locking them for NMD activity. Interestingly, mutants of the Mtr4 and Dbp2 helicases accumulated XUTs, suggesting that dsRNA unwinding is a critical step for degradation. Indeed, expression of anticomplementary transcripts protects cryptic intergenic lncRNAs from NMD. Our results indicate that aslncRNAs form dsRNA that are only translated and targeted to NMD if dissociated by Mtr4 and Dbp2. We propose that NMD buffers genome expression by discarding pervasive regulatory transcripts.", "The proper expression and function of several unconventional myosins are necessary for inner-ear function. Mutations in MYO7A and MYO15 cause deafness in humans, and mice. Whereas mutations in Myo6 cause inner-ear abnormalities in mice, as yet no human deafness has been found to the result of mutations in MYO6. In the mammalian inner ear there are at least nine different unconventional myosin isozymes expressed. Myosin 1 beta, VI, VIIa and probably XV are all expressed within a single cell in the inner ear, the hair cell. The myosin isozymes expressed in the hair cell all have unique domains of expression and in some areas, such as the pericuticular necklace, several domains overlap. This suggests that these myosins all have unique functions and that all are individually targeted within the hair cell. The mouse is proving to be a useful model organism for studying both human deafness and elucidating the normal functions of unconventional myosins in vivo.", "RATIONALE: Both fusion and fission contribute to mitochondrial quality control. How unopposed fusion affects survival of cardiomyocytes and left ventricular function in the heart is poorly understood.OBJECTIVE: We investigated the role of dynamin-related protein 1 (Drp1), a GTPase that mediates mitochondrial fission, in mediating mitochondrial autophagy, ventricular function, and stress resistance in the heart.METHODS AND RESULTS: Drp1 downregulation induced mitochondrial elongation, accumulation of damaged mitochondria, and increased apoptosis in cardiomyocytes at baseline. Drp1 downregulation also suppressed autophagosome formation and autophagic flux at baseline and in response to glucose deprivation in cardiomyocytes. The lack of lysosomal translocation of mitochondrially targeted Keima indicates that Drp1 downregulation suppressed mitochondrial autophagy. Mitochondrial elongation and accumulation of damaged mitochondria were also observed in tamoxifen-inducible cardiac-specific Drp1 knockout mice. After Drp1 downregulation, cardiac-specific Drp1 knockout mice developed left ventricular dysfunction, preceded by mitochondrial dysfunction, and died within 13 weeks. Autophagic flux is significantly suppressed in cardiac-specific Drp1 knockout mice. Although left ventricular function in cardiac-specific Drp1 heterozygous knockout mice was normal at 12 weeks of age, left ventricular function decreased more severely after 48 hours of fasting, and the infarct size/area at risk after ischemia/reperfusion was significantly greater in cardiac-specific Drp1 heterozygous knockout than in control mice.CONCLUSIONS: Disruption of Drp1 induces mitochondrial elongation, inhibits mitochondrial autophagy, and causes mitochondrial dysfunction, thereby promoting cardiac dysfunction and increased susceptibility to ischemia/reperfusion.", "BACKGROUND: To determine whether sleep quality and fatigue associated with breast cancer adjuvant chemotherapy treatments can be improved with behavioral therapy (BT) [Individualized Sleep Promotion Plan (ISPP)] including modified stimulus control, modified sleep restriction, relaxation therapy, and sleep hygiene.METHODS: Randomized-controlled trial based on Piper Integrated Fatigue Model, 219 stages I-IIIA breast cancer patients. Prior to the initial chemotherapy treatment, BT participants developed an ISPP plan that was regularly reinforced and revised. Controls received healthy eating information and attention. Pittsburgh Sleep Quality Index (PSQI), daily diary, actigraph, and Piper Fatigue Scale (PFS) data were collected 2 days prior, during the 7 days after each treatment, and 30 days after the last treatment. Repeated measures analysis of variance was used.RESULTS: Prior to chemotherapy, participants reported mild fatigue and fairly poor sleep quality. All variables changed over time. A group by time interaction was found for sleep quality (PSQI) improving in the BT group. Diary revealed group differences on number of awakenings, minutes awake after sleep onset, and sleep efficiency. Fatigue (PFS) was similar between groups.CONCLUSIONS: The BT group showed improved sleep quality over time and better sleep (diary). Perceptions of improved sleep quality over time are not consistently associated with diary or actigraph, or result in lower fatigue.", "CircRNAs are novel members of the non-coding RNA family. For several decades circRNAs have been known to exist, however only recently the widespread abundance has become appreciated. Annotation of circRNAs depends on sequencing reads spanning the backsplice junction and therefore map as non-linear reads in the genome. Several pipelines have been developed to specifically identify these non-linear reads and consequently predict the landscape of circRNAs based on deep sequencing datasets. Here, we use common RNAseq datasets to scrutinize and compare the output from five different algorithms; circRNA_finder, find_circ, CIRCexplorer, CIRI, and MapSplice and evaluate the levels of bona fide and false positive circRNAs based on RNase R resistance. By this approach, we observe surprisingly dramatic differences between the algorithms specifically regarding the highly expressed circRNAs and the circRNAs derived from proximal splice sites. Collectively, this study emphasizes that circRNA annotation should be handled with care and that several algorithms should ideally be combined to achieve reliable predictions.", "Cell death-inducing DFFA-like effector c (CIDEC) protein, also known as fat specific protein 27 (Fsp27), is localized to lipid droplets. CIDEC protein is required for unilocular lipid droplet formation and optimal energy storage in addition to controlling lipid metabolism in adipocytes and hepatocytes. Research found that Ad-36 could induce lipid droplets in the cultured skeletal muscle cells and this process may be mediated by promoting CIDEC expression. The content of intermuscular fat is an important index for evaluation of beef quality, so the CIDEC gene appeared to be a candidate gene for regulation of intermuscular fat, however similar research for the bovine CIDEC gene is lacking. This paper examined the tissue expression profile of CIDEC gene in cattle using real-time RT-PCR to suggest that bovine CIDEC is highly expressed in adipose tissue. In addition, the Bovine CIDEC gene was cloned and inserted into the eukaryotic expression vector pET-28a(+), whereupon recombinant bovine CIDEC protein was induced and identified by Western-blot. A phylogenetic analysis showed that the animo acid sequence of bovine CIDEC was closer to mammalian CIDEC than rasorial CIDEC. We found ten single nucleotide polymorphisms sites (SNPs) in bovine CIDEC gene, of which SNP 2, 3, 4, 6 and 9, and SNP 8 and 10 were in complete linkage disequilibrium, respectively. SNP 1, 2 and 10 were used in further haplotype studies. Eight different haplotypes were identified in 973 cattle, of which haplotype 8 predominated with frequencies ranging from 42.90 to 54.30 %. This research provides a basis for future functional studies of CIDEC in cattle.", "Renin-angiotensin-aldosterone system (RAAS) inhibitors, including angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are one of the most prescribed antihypertensive medications. Previous studies showed RAAS inhibitors increase the expression of ACE2, a cellular receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which provokes a concern that the use of ACEI and ARB in hypertensive individuals might lead to increased mortality and severity of coronavirus disease 2019 (COVID-19). To further investigate the effects of ACEI/ARB on COVID-19 patients, we systematically reviewed relevant studies that met predetermined inclusion criteria in search of PubMed, Embase, Cochrane Library databases, medRxiv, and bioRxiv. The search strategy included clinical data published through October 12, 2020. Twenty-six studies involving 8104 hypertensive patients in ACEI/ARB-treated group and 8203 hypertensive patients in non-ACEI/ARB-treated group were analyzed. Random-effects meta-analysis showed ACEI/ARB treatment was significantly associated with a lower risk of mortality in hypertensive COVID-19 patients (odds ratio [OR] = 0.624, 95% confidence interval [CI] = 0.457-0.852, p = .003, I2  = 74.3%). Meta-regression analysis showed that age, gender, study site, Newcastle-Ottawa Scale scores, comorbidities of diabetes, coronary artery disease, chronic kidney disease, or cancer has no significant modulating effect of ACEI/ARB treatment on the mortality of hypertensive COVID-19 patients (all p > .1). In addition, the ACEI/ARB treatment was associated with a lower risk of ventilatory support (OR = 0.682, 95% CI = 0.475-1.978, p = .037, I2  = 0.0%). In conclusion, these results suggest that ACEI/ARB medications should not be discontinued for hypertensive patients in the context of COVID-19 pandemic." ]
1,927
[ "The persistence of fetal hemoglobin in many patients with deletion type beta thalassemias and the expression patterns of human globin genes in transgenic mice suggest that gamma- to beta-globin gene switching results primarily from competition of gamma- and beta-globin genes for interaction with the beta-globin locus control region (LCR). To define regulatory sequences that are essential for the competitive advantage of the gamma gene at early developmental stages, stable transgenic mouse lines were produced with LCR gamma-beta constructs containing deletions of gamma 5'-flanking DNA. All constructs contained the full 22 kb LCR, a 4.1 kb beta-globin gene and a gamma-globin gene with 1348, 383, 202, 130, 72 or 52 bp of 5'-flanking sequence. Primer extension analysis of yolk sac, fetal liver and blood RNA from these lines demonstrated that a region between -202 and -130 of the human gamma-globin gene promoter was required to suppress beta-globin gene expression at early developmental stages. Four transcription factor binding sites within this region [GATA(p), Oct1, GATA(d) and CACCC] were mutated independently in LCR gamma-beta constructs and transgenic mouse lines were produced. Only the gamma CACCC box mutation resulted in high levels of beta-globin gene expression in early embryos. These results demonstrate that the CACCC box of the human gamma-globin gene plays a critical role in human beta-globin gene developmental specificity. The data also suggest that gamma CACCC box binding factors mediate LCR-gamma interactions which normally enhance gamma-globin and suppress beta-globin gene expression in fetal erythroid cells.", "The microorganisms inhabiting the human gut are abundant (10(14) cells) and diverse (approximately 500 species per individual). It is now acknowledged that the microbiota has coevolved with its host to achieve a symbiotic relationship, leading to physiological homeostasis. The gut microbiota ensures vital functions, such as food digestibility, maturation of the host immune system, and protection against pathogens. Over the last few decades, the gut microbiota has also been associated with numerous diseases, such as inflammatory bowel disease, irritable bowel syndrome, obesity, and metabolic diseases. In most of these pathologies, a microbial dysbiosis has been found, indicating shifts in the taxonomic composition of the gut microbiota and changes in its functionality. Our understanding of the influence of the gut microbiota on human health is still growing. Working with microorganisms residing in the gut is challenging since most of them are anaerobic and a vast majority (approximately 75%) are uncultivable to date. Recently, a wide range of new approaches (meta-omics) has been developed to bypass the uncultivability and reveal the intricate mechanisms that sustain gut microbial homeostasis. After a brief description of these approaches (metagenomics, metatranscriptomics, metaproteomics, and metabolomics), this review will discuss the importance of considering the gut microbiome as a structured ecosystem and the use of meta-omics to decipher dysfunctions of the gut microbiome in diseases.", "PURPOSE: Symptomatic epilepsy is a common complication of glioblastoma and requires pharmacotherapy. Several uncontrolled retrospective case series and a post hoc analysis of the registration trial for temozolomide indicated an association between valproic acid (VPA) use and improved survival outcomes in patients with newly diagnosed glioblastoma.PATIENTS AND METHODS: To confirm the hypothesis suggested above, a combined analysis of survival association of antiepileptic drug use at the start of chemoradiotherapy with temozolomide was performed in the pooled patient cohort (n = 1,869) of four contemporary randomized clinical trials in newly diagnosed glioblastoma: AVAGlio (Avastin in Glioblastoma; NCT00943826), CENTRIC (Cilengitide, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Glioblastoma and Methylated Gene Promoter Status; NCT00689221), CORE (Cilengitide, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Glioblastoma and Unmethylated Gene Promoter Status; NCT00813943), and Radiation Therapy Oncology Group 0825 (NCT00884741). Progression-free survival (PFS) and overall survival (OS) were compared between: (1) any VPA use and no VPA use at baseline or (2) VPA use both at start of and still after chemoradiotherapy. Results of Cox regression models stratified by trial and adjusted for baseline prognostic factors were analyzed. The same analyses were performed with levetiracetam (LEV).RESULTS: VPA use at start of chemoradiotherapy was not associated with improved PFS or OS compared with all other patients pooled (PFS: hazard ratio [HR], 0.91; 95% CI, 0.77 to 1.07; P = .241; OS: HR, 0.96; 95% CI, 0.80 to 1.15; P = .633). Furthermore, PFS and OS of patients taking VPA both at start of and still after chemoradiotherapy were not different from those without antiepileptic drug use at both time points (PFS: HR, 0.92; 95% CI, 0.74 to 1.15; P = .467; OS: HR, 1.10; 95% CI, 0.86 to 1.40; P = .440). Similarly, no association with improved outcomes was observed for LEV use.CONCLUSION: The results of this analysis do not justify the use of VPA or LEV for reasons other than seizure control in patients with newly diagnosed glioblastoma outside clinical trials.", "RNA polymerase III (Pol III) transcribes small untranslated RNAs, such as tRNAs. To define the Pol III transcriptome in Saccharomyces cerevisiae, we performed genome-wide chromatin immunoprecipitation using subunits of Pol III, TFIIIB and TFIIIC. Virtually all of the predicted targets of Pol III, as well as several novel candidates, were occupied by Pol III machinery. Interestingly, TATA box-binding protein occupancy was greater at Pol III targets than virtually all Pol II targets, and the highly occupied Pol II targets are generally strongly transcribed. The temporal relationships between factor occupancy and gene activity were then investigated at selected targets. Nutrient deprivation rapidly reduced both Pol III transcription and Pol III occupancy of both a tRNA gene and RPR1. In contrast, TFIIIB remained bound, suggesting that TFIIIB release is not a critical aspect of the onset of repression. Remarkably, TFIIIC occupancy increased dramatically during repression. Nutrient addition generally reestablished transcription and initial occupancy levels. Our results are consistent with active Pol III displacing TFIIIC, and with inactivation/release of Pol III enabling TFIIIC to bind, marking targets for later activation. These studies reveal new aspects of the kinetics, dynamics, and targets of the Pol III system.", "BACKGROUND: Peritumoral normal tissue is inevitably also irradiated during radiotherapy, depending on the location and size of the target volume as well as the cumulative dose. Depending on the temporal course after irradiation acute, subacute, and chronic alterations are described in co-irradiated normal tissue that can be detected by imaging. Radiation damage can be transient or persistent.OBJECTIVE: This article gives an overview of the most important signs of radiation-induced radiogenic alterations to tissue in various organ systems.FINDINGS: Frequent radiation-induced tissue alterations found by imaging are pneumonitis, disturbance of the blood-brain barrier, radionecrosis of brain tissue, radiogenic liver damage, mucositis, colitis, osteitis, osteoradionecrosis and myositis. The combination with systemic chemotherapy or immunotherapy can increase the severity of radiogenic reactions of normal tissue.RECOMMENDATIONS FOR AFTERCARE: The most important differential diagnosis for radiogenic alterations to normal tissue is post-therapeutic tumor recurrence. Besides typical latency periods, location and matching with the radiation field are important differentiation criteria, depending on the tumor biology and the radiation technique. The follow-up schedule should follow the current guidelines and the clinical condition of the patient should be additionally considered. The radiologist needs to be familiar with the typical imaging morphology of radiogenic tissue changes to avoid false interpretation during follow-up investigations.", "Herpes simplex virus (HSV) is a rare, antecedent infectious agent in Guillain-Barré syndrome (GBS). We report a patient with overlapping GBS and Bickerstaff's brainstem encephalitis (BBE). The patient had a vesicular lesion on her nose. Antecedent HSV type 1 (HSV-1) infection was confirmed by isolation of the virus and detection of the presence of serum anti-HSV-1 IgM antibody during the acute phase. Her serum IgG had high anti-GQ1b antibody titer. External ophthalmoplegia has been noted in 2 of 4 reported cases of HSV-associated GBS. Herpetic brainstem encephalitis cases of poor prognosis are known, but only 2 cases of benign brainstem encephalitis secondary to HSV infection, in which there was acute ophthalmoplegia and clinical features consistent with those of BBE have been reported.", "The gut microbiome comprises the collective genome of the trillions of microorganisms residing in our gastrointestinal ecosystem. The interaction between the host and its gut microbiome is a complex relationship whose manipulation could prove critical to preventing or treating not only various gut disorders, like irritable bowel syndrome (IBS) and ulcerative colitis (UC), but also central nervous system (CNS) disorders, such as Alzheimer's and Parkinson's diseases. The purpose of this review is to summarize what is known about the gut microbiome, how it is connected to the development of disease and to identify the bacterial and biochemical targets that should be the focus of future research. Understanding the mechanisms behind the activity and proliferation of the gut microbiome will provide us new insights that may pave the way for novel therapeutic strategies.", "Stem cells offer the potential for regeneration of lost tissue in neurological disease, including multiple sclerosis (MS). Their development in vitro and their use in vivo in animal models of degenerative neurological disease and recent first efforts in human clinical trials were the topics of a recent international meeting sponsored by the Multiple Sclerosis International Federation and the National Multiple Sclerosis Society on \"Stem Cells & MS: Prospects and Strategies\" Participants reviewed the current state of knowledge about the potential use of stem and progenitor cells in MS and other degenerative neurological disorders and outlined a series of urgent fundamental and applied clinical research priorities that should allow the potential of regeneration of damaged tissue in MS to be assessed and pursued.", "This study aims to investigate the contribution of diagnostic exposures to the rising rates of brain tumours and other neoplasms which are observed in several industrial nations. Included are benign tumours in the head and neck region and cataracts which are neglected in usual risk estimates by international and national radiation protection committees. Dose-effect relationships for tumours of the brain, skin, thyroid and other sites of the head region, leukaemia and cataracts are taken from the literature. Risk estimates are derived for paediatric head computed tomographies (CTs) as well as for brain tumours in adults. On the basis of estimates for Germany about the number of head scans, the annual rate of radiation-induced diseases is calculated. About 1000 annual paediatric CT investigations of the skull will lead to about three excess neoplasms in the head region, i.e. the probability of an induced late effect must be suspected in the range of some thousands. Additionally, a relevant increase of cataracts must be considered. The radiation-induced occurrence of meningiomas and other brain tumours most probably contributes to the continuously increasing incidence of these diseases which is observed in several industrial nations, as well as the exposure of the bone marrow by CT to the increase of childhood leukaemia.", "BACKGROUND: Tafazzin (TAZ), a transmembrane protein contributes in mitochondrial structural and functional modifications through cardiolipin remodeling. TAZ mutations are associated with several diseases, but studies on the role of TAZ protein in carcinogenesis and radiotherapy (RT) response is lacking. Therefore we investigated the TAZ expression in rectal cancer, and its correlation with RT, clinicopathological and biological variables in the patients participating in a clinical trial of preoperative RT.METHODS: 140 rectal cancer patients were included in this study, of which 65 received RT before surgery and the rest underwent surgery alone. TAZ expression was determined by immunohistochemistry in primary cancer, distant, adjacent normal mucosa and lymph node metastasis. In-silico protein-protein interaction analysis was performed to study the predictive functional interaction of TAZ with other oncoproteins.RESULTS: TAZ showed stronger expression in primary cancer and lymph node metastasis compared to distant or adjacent normal mucosa in both non-RT and RT patients. Strong TAZ expression was significantly higher in stages I-III and non-mucinious cancer of non-RT patients. In RT patients, strong TAZ expression in biopsy was related to distant recurrence, independent of gender, age, stages and grade (p = 0.043, HR, 6.160, 95% CI, 1.063-35.704). In silico protein-protein interaction study demonstrated that TAZ was positively related to oncoproteins, Livin, MAC30 and FXYD-3.CONCLUSIONS: Strong expression of TAZ protein seems to be related to rectal cancer development and RT response, it can be a predictive biomarker of distant recurrence in patients with preoperative RT.", "The COP9 signalosome (CSN) is an evolutionarily conserved multiprotein complex that mediates the repression of photomorphogenesis in the dark in Arabidopsis through the degradation of transcription factors such as HY5 and HYH. CSN-mediated HY5 and HYH degradation also requires the activity of the putative E3 ubiquitin ligase (E3) component COP1 and the E2-conjugating enzyme variant COP10. Recently, it was shown that CSN also is required for auxin responses mediated by the SCF-type E3 SCF(TIR1). To determine whether Arabidopsis CSN is required for E3-mediated processes in a more general manner, we generated plants with reduced E3 function by suppressing AtRBX1, an essential core subunit of SCF-type E3s. We observed that AtRBX1 transgenic plants share multiple phenotypes with CSN reduced-function plants, such as morphological defects and reduced responses to auxin, jasmonic acid, and cold stress, suggesting that CSN is required for multiple AtRBX1-mediated processes. Furthermore, we observed that mutants with defects in AXR1, a protein that had been described only as a regulator of SCF(TIR1) function, also is required for other E3-mediated processes and for the COP1/COP10/CSN-mediated repression of photomorphogenesis in the dark. We conclude that CSN and AXR1 are of general importance for different pathways that are controlled by E3-mediated protein degradation.", "Type 1 diabetes (T1D) is an autoimmune disease resulting from T cell-mediated destruction of the insulin-secreting pancreatic beta cells. During the past 50 years T1D incidence has increased dramatically in many countries accompanied by an earlier age of onset especially in persons with lower genetic risk. These observations have prompted investigations of dynamic environmental factors that may contributor to risk for anti-pancreatic immunity. The gut and pancreas are anatomically and biochemically linked through the enteroinsular axis, a system in which gut-derived immune and metabolic signals have the potential to evoke effects in the pancreas. The gut microbiome (i.e. the 100 trillion symbiotic microorganisms which inhabit the mammalian gastrointestinal tract) influences numerous aspects of host metabolism, development and immunity. Here we examine recent evidence linking gut microbiome composition and function to pancreatic autoimmunity. Studies in children with genetic risk factors for T1D and analyses of the microbiome in rodent models have begun to associations between an altered microbiome composition potentially favoring a pro-inflammatory intestinal metabolic milieu and T1D. We discuss how environmental factors during critical developmental windows - gestation, birth, weaning and puberty may contribute to T1D risk. For example mode of delivery (vaginal or C-section) and exposure to antibiotics (pre- or post-natally) are two factors that modulate the maternal and/or offspring microbiome and can impact T1D development. Taken together, these emerging data underscore the requirement for longitudinal studies and mechanistic investigations in human subjects and rodent models to identify the basis for microbiome modulation of T1D and to identify biomarkers and therapeutics to improve the delayed onset and prevention of the disease.", "Pregnancy is an acquired state of hypercoagulation. An association has been found between various pregnancy complications and thrombophilia. Among those complications are: preeclampsia, intrauterine fetal death, intrauterine growth retardation and placentaL abruption. This article will present a novel scoring system estimating pregnancy complications in women with thrombophilia. The biological and epidemiological background of the association between pregnancy complications and thrombophilia will be discussed and the therapeutic options will be evaluated. Finally, for illustrative purposes, a patient presenting with combined thrombophilia--both genetic and acquired--will be discussed. This patient had suffered severe gestational complications that led to devastating obstetrical outcome.", "Rheumatoid arthritis (RA) is a polygenic autoimmune disease primarily affecting the synovial joints. Numerous animal models show similarities to RA in humans; some of them not only mimic the clinical phenotypes but also demonstrate the involvement of homologous genomic regions in RA. This paper compares corresponding non-MHC genomic regions identified in rodent and human genome-wide association studies (GWAS). To date, over 30 non-MHC RA-associated loci have been identified in humans, and over 100 arthritis-associated loci have been identified in rodent models of RA. The genomic regions associated with the disease are designated by the name(s) of the gene having the most frequent and consistent RA-associated SNPs or a function suggesting their involvement in inflammatory or autoimmune processes. Animal studies on rats and mice preferentially have used single sequence length polymorphism (SSLP) markers to identify disease-associated qualitative and quantitative trait loci (QTLs) in the genome of F2 hybrids of arthritis-susceptible and arthritis-resistant rodent strains. Mouse GWAS appear to be far ahead of rat studies, and significantly more mouse QTLs correspond to human RA risk alleles.", "Social behavior plays a pivotal role in the mental well-being of an individual. Continuous efforts in the past have led to advancements in the area of how the brain regulates emotion and cognition, while the understanding of human social behavior still remains eluded. A major breakthrough in understanding the etiology of neurological disorders is the recent insight on the role of the gut microbiota (GM). Human GM also referred to as the \"forgotten organ\" is home to 10(13-14) microorganisms, which is 10 times the number of cells present in the human body. In addition, the gut microbiome (total genome of GM) is 150 times greater as compared to the human genome. An emerging concept gaining worldwide focus and acceptance is that, this much big genome can potentially control human behavior and other biological functions. Herein we hypothesize on the basis of GM's ability to modify brain and behavior and that it can directly or indirectly control social behavior. This review focuses on the association of GM with various domains of social behavior like stress, cognition and anxiety.", "Among eukaryotes, the four core histones show an extremely high conservation of their structure and form nucleosomes that compact, protect, and regulate access to genetic information. Nevertheless, in multicellular eukaryotes the two families, histone H2A and histone H3, have diversified significantly in key residues. We present a phylogenetic analysis across the green plant lineage that reveals an early diversification of the H2A family in unicellular green algae and remarkable expansions of H2A variants in flowering plants. We define motifs and domains that differentiate plant H2A proteins into distinct variant classes. In non-flowering land plants, we identify a new class of H2A variants and propose their possible role in the emergence of the H2A.W variant class in flowering plants." ]
1,928
[ "Recurrent mutations affecting the histone H3.3 residues Lys27 or indirectly Lys36 are frequent drivers of pediatric high-grade gliomas (over 30% of HGGs). To identify additional driver mutations in HGGs, we investigated a cohort of 60 pediatric HGGs using whole-exome sequencing (WES) and compared them to 543 exomes from non-cancer control samples. We identified mutations in SETD2, a H3K36 trimethyltransferase, in 15% of pediatric HGGs, a result that was genome-wide significant (FDR = 0.029). Most SETD2 alterations were truncating mutations. Sequencing the gene in this cohort and another validation cohort (123 gliomas from all ages and grades) showed SETD2 mutations to be specific to high-grade tumors affecting 15% of pediatric HGGs (11/73) and 8% of adult HGGs (5/65) while no SETD2 mutations were identified in low-grade diffuse gliomas (0/45). Furthermore, SETD2 mutations were mutually exclusive with H3F3A mutations in HGGs (P = 0.0492) while they partly overlapped with IDH1 mutations (4/14), and SETD2-mutant tumors were found exclusively in the cerebral hemispheres (P = 0.0055). SETD2 is the only H3K36 trimethyltransferase in humans, and SETD2-mutant tumors showed a substantial decrease in H3K36me3 levels (P < 0.001), indicating that the mutations are loss-of-function. These data suggest that loss-of-function SETD2 mutations occur in older children and young adults and are specific to HGG of the cerebral cortex, similar to the H3.3 G34R/V and IDH mutations. Taken together, our results suggest that mutations disrupting the histone code at H3K36, including H3.3 G34R/V, IDH1 and/or SETD2 mutations, are central to the genesis of hemispheric HGGs in older children and young adults.", "Members of the oxytocinase subfamily of M1 aminopeptidases (ERAP1, ERAP2, and IRAP) play important roles in both the adaptive and innate human immune responses. Their enzymatic activity can contribute to the pathogenesis of several major human diseases ranging from viral and parasitic infections to autoimmunity and cancer. We have previously demonstrated that diaminobenzoic acid derivatives show promise as selective inhibitors for this group of aminopeptidases. In this study, we have thoroughly explored a series of 3,4-diaminobenzoic acid derivatives as inhibitors of this class of enzymes, achieving submicromolar inhibitors for ERAP2 (IC50 = 237 nM) and IRAP (IC50 = 105 nM). Cell-based analysis indicated that the lead compounds can be effective in downregulating macrophage activation induced by lipopolysaccharide and interferon-γ as well as cross-presentation by bone marrow-derived dendritic cells. Our results indicate that this class of inhibitors may be useful for the targeted downregulation of immune responses.", "BACKGROUND: Myelodysplastic syndromes are characterised by ineffective erythropoiesis. Luspatercept (ACE-536) is a novel fusion protein that blocks transforming growth factor beta (TGF β) superfamily inhibitors of erythropoiesis, giving rise to a promising new investigative therapy. We aimed to assess the safety and efficacy of luspatercept in patients with anaemia due to lower-risk myelodysplastic syndromes.METHODS: In this phase 2, multicentre, open-label, dose-finding study (PACE-MDS), with long-term extension, eligible patients were aged 18 years or older, had International Prognostic Scoring System-defined low or intermediate 1 risk myelodysplastic syndromes or non-proliferative chronic myelomonocytic leukaemia (white blood cell count <13 000/μL), and had anaemia with or without red blood cell transfusion support. Enrolled patients were classified as having low transfusion burden, defined as requiring less than 4 red blood cell units in the 8 weeks before treatment (and baseline haemoglobin <10 g/dL), or high transfusion burden, defined as requiring 4 or more red blood cell units in the 8 weeks before treatment. Patients received luspatercept subcutaneously once every 21 days at dose concentrations ranging from 0·125 mg/kg to 1·75 mg/kg bodyweight for five doses (over a maximum of 12 weeks). Patients in the expansion cohort were treated with 1·0 mg/kg luspatercept; dose titration up to 1·75 mg/kg was allowed, and patients could be treated with luspatercept for a maximum of 5 years. Patients in the base study were assessed for response and safety after 12 weeks in order to be considered for enrolment into the extension study. The primary endpoint was the proportion of patients achieving modified International Working Group-defined haematological improvement-erythroid (HI-E), defined as a haemoglobin concentration increase of 1·5 g/dL or higher from baseline for 14 days or longer in low transfusion burden patients, and a reduction in red blood cell transfusion of 4 or more red blood cell units or a 50% or higher reduction in red blood cell units over 8 weeks versus pre-treatment transfusion burden in high transfusion burden patients. Patient data were subcategorised by: luspatercept dose concentrations (0·125-0·5 mg/kg vs 0·75-1·75 mg/kg); pre-study transfusion burden (high transfusion burden vs low transfusion burden, defined as ≥4 vs <4 red blood cell units per 8 weeks); pre-study serum erythropoietin concentration (<200 IU/L, 200-500 IU/L, and >500 IU/L); presence of 15% or more ring sideroblasts; and presence of SF3B1 mutations. Efficacy analyses were carried out on the efficacy evaluable and intention-to-treat populations. This trial is currently ongoing. This study is registered with ClinicalTrials.gov, numbers NCT01749514 and NCT02268383.FINDINGS: Between Jan 21, 2013, and Feb 12, 2015, 58 patients with myelodysplastic syndromes were enrolled in the 12 week base study at nine treatment centres in Germany; 27 patients were enrolled in the dose-escalation cohorts (0·125-1·75 mg/kg) and 31 patients in the expansion cohort (1·0-1·75 mg/kg). 32 (63% [95% CI 48-76]) of 51 patients receiving higher dose luspatercept concentrations (0·75-1·75 mg/kg) achieved HI-E versus two (22% [95% CI 3-60]) of nine receiving lower dose concentrations (0·125-0·5 mg/kg). Three treatment-related grade 3 adverse events occurred in one patient each: myalgia (one [2%]), increased blast cell count (one [2%]), and general physical health deterioration (one [2%]). Two of these treatment-related grade 3 adverse events were reversible serious grade 3 adverse events: one patient (2%) had myalgia and one patient (2%) had general physical health deterioration.INTERPRETATION: Luspatercept was well tolerated and effective for the treatment of anaemia in lower-risk myelodysplastic syndromes and so could therefore provide a novel therapeutic approach for the treatment of anaemia associated with lower-risk myelodysplastic syndromes; further studies are ongoing.FUNDING: Acceleron Pharma.", "The RNA-binding protein, HuR, associates with the HuR mRNA, but the consequences of this interaction are unknown. Here, we use human diploid fibroblasts (HDFs) and cervical carcinoma cells to study this regulatory paradigm. Ectopic overexpression of HuR potently enhanced the translation and cytoplasmic levels of endogenous HuR, but did not affect HuR mRNA levels. Inhibition of CRM1 function by Lemptomycin B or by knockdown of CRM1 greatly diminished the cytoplasmic levels of endogenous HuR mRNA and hence blocked the induction of endogenous HuR by exogenous HuR. Further studies showed that HuR interacted with the 3'-untranslated region (UTR) of HuR and that overexpression of HuR increased the cytoplasmic levels of a chimeric luciferase-HuR 3'-UTR reporter transcript, as well as luciferase activity; conversely, HuR knockdown reduced both parameters. Moreover, the loss of HuR in senescent, late-passage HDFs was accompanied by a reduced cytoplasmic presence of endogenous HuR mRNA, ectopic Luc-HuR-3'UTR reporter transcript, and luciferase activity relative to what was observed in young, early-passage cells. Our results reveal a positive feedback mechanism for the regulation of HuR, which may play an important role in the regulation of HuR during replicative senescence.", "The ICChI is a 35-kDa, glycosylated protein isolated from the latex of the weed Ipomoea carnea. It displays chitinase and lysozyme activity, which could be important for the defense against pathogenic fungi, insects and bacteria. The ICChI enzyme was crystallized, and a diffraction data set was collected from a single crystal to 1.42 Å resolution. The crystals belong to the primitive tetragonal space group P43212, with unit-cell parameters a = b = 57.9, c = 172.0 Å, and α = β = γ = 90°. The structure was elucidated by molecular replacement method using a mixed model of three homologous structures from the N-terminal sequence of ICChI. The refined model consists of 272 amino acid residues and has a Rfactor of 18.93% and Rfree of 22.42%. The protein consists of a single globular domain with a (α/β)8 triosephosphate isomerase barrel fold. Three of the consensus sites for N-glycosylation viz., Asn45, Asn172, and Asn194 containing carbohydrate moieties N-Acetylglucosamine (NAG), mannose, fucose, and xylose. The putative catalytic residues are Asp125, Glu127, and Tyr184. The crystal structure may provide fundamental information of GH18 family chitinases.", "The recent discovery of reversible mRNA methylation has opened a new realm of post-transcriptional gene regulation in eukaryotes. The identification and functional characterization of proteins that specifically recognize RNA N6-methyladenosine (m6A) unveiled it as a modification that cells utilize to accelerate mRNA metabolism and translation. N6-adenosine methylation directs mRNAs to distinct fates by grouping them for differential processing, translation and decay in processes such as cell differentiation, embryonic development and stress responses. Other mRNA modifications, including N1-methyladenosine (m1A), 5-methylcytosine (m5C) and pseudouridine, together with m6A form the epitranscriptome and collectively code a new layer of information that controls protein synthesis.", "Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as a highly transmissible pathogenic human betacoronavirus. The viral spike glycoprotein (S) utilizes angiotensin-converting enzyme 2 (ACE2) as a host protein receptor and mediates fusion of the viral and host membranes, making S essential to viral entry into host cells and host species tropism. As SARS-CoV enters host cells, the viral S is believed to undergo a number of conformational transitions as it is cleaved by host proteases and binds to host receptors. We recently developed stabilizing mutations for coronavirus spikes that prevent the transition from the pre-fusion to post-fusion states. Here, we present cryo-EM analyses of a stabilized trimeric SARS-CoV S, as well as the trypsin-cleaved, stabilized S, and its interactions with ACE2. Neither binding to ACE2 nor cleavage by trypsin at the S1/S2 cleavage site impart large conformational changes within stabilized SARS-CoV S or expose the secondary cleavage site, S2'." ]
1,937
[ "Obesity is a global problem that is predominantly caused by the increasing adoption of a low-cost, Westernised diet that is rich in fat and sugar and a more sedentary lifestyle. The costs of this epidemic are substantial increases in Type 2 diabetes, cardiovascular disease and some types of cancer that are certain to place a huge burden on individuals, healthcare providers and society. In this review, we provide an overview of the chequered history of pharmacotherapy for the treatment of obesity and an analysis of the regulatory and commercial challenges for developing new centrally-acting drugs in this metabolic indication. The efficacy and safety of the drug candidates that are currently at the pre-registration phase, i.e., lorcaserin, Qnexa and Contrave, are critically assessed. The main focus, however, is to provide a comprehensive review of the wide range of novel CNS compounds that are in the discovery phase or early clinical development. The profiles of various clinical candidates in animal models of obesity predict that several new CNS approaches in the clinic have the potential to deliver greater weight-loss than existing agents. This article is part of a Special Issue entitled 'Central Control of Food Intake'.", "Nephropathic cystinosis is a rare, inherited metabolic disease caused by functional defects of cystinosin associated with mutations in the CTNS gene. The mechanisms underlying the phenotypic alterations associated with this disease are not well known. In this study, gene expression profiles in peripheral blood of nephropathic cystinosis patients (N = 7) were compared with controls (N = 7) using microarray technology. In unsupervised hierarchical clustering analysis, cystinosis samples co-clustered, and 1,604 genes were significantly differentially expressed between both groups. Gene ontology analysis revealed that differentially expressed genes in cystinosis were enriched in cell organelles such as mitochondria, lysosomes, and endoplasmic reticulum (p ≤ 0.030). The majority of the differentially regulated genes were involved in oxidative phosphorylation, apoptosis, mitochondrial dysfunction, endoplasmic reticulum stress, antigen processing and presentation, B-cell-receptor signaling, and oxidative stress (p ≤ 0.003). Validation of selected genes involved in apoptosis and oxidative phosphorylation was performed by quantitative real-time polymerase chain reaction (PCR). Electron microscopy and confocal imaging of cystinotic renal proximal tubular epithelial cells further confirmed anomalies in the cellular organelles and pathways identified by microarray analysis. Further analysis of these genes and pathways may offer critical insights into the clinical spectrum of cystinosis patients and ultimately lead to novel links for targeted therapy.", "We describe here the existence of a heregulin-HER3 autocrine loop, and the contribution of heregulin-dependent, HER2-mediated HER3 activation to gefitinib insensitivity in non-small cell lung cancer (NSCLC). ADAM17 protein, a major ErbB ligand sheddase, is upregulated in NSCLC and is required not only for heregulin-dependent HER3 signaling, but also for EGFR ligand-dependent signaling in NSCLC cell lines. A selective ADAM inhibitor, INCB3619, prevents the processing and activation of multiple ErbB ligands, including heregulin. In addition, INCB3619 inhibits gefitinib-resistant HER3 signaling and enhances gefitinib inhibition of EGFR signaling in NSCLC. These results show that ADAM inhibition affects multiple ErbB pathways in NSCLC and thus offers an excellent opportunity for pharmacological intervention, either alone or in combination with other drugs.", "INTRODUCTION: Selexipag is a first-in-class orally available selective non-prostanoid IP receptor agonist. This review was based on a PubMed search and focuses on the potential role of selexipag in the treatment of pulmonary arterial hypertension (PAH).AREAS COVERED: Selexipag is rapidly hydrolyzed to an active metabolite, ACT-333679. Both selexipag and its metabolite are highly selective for the IP receptor compared with other prostanoid receptors. This selectivity for the IP receptor offers the potential for improved tolerability with selexipag, as side effects (e.g., nausea and vomiting) that might result from activation of the other prostanoid receptors may be minimized. In addition, the selexipag metabolite has a half-life of 7.9 h, thus permitting oral dosing twice daily. Selexipag showed effects on pharmacodynamic end points obtained with right heart catheterization in a Phase II trial in patients with PAH, and is being evaluated in the ongoing Phase III trial (GRIPHON trial, Clinicaltrials.gov NCT01106014).EXPERT OPINION: The signal of a beneficial effect of selexipag on disease progression may become more robust for long term under prolonged exposure. Pending the GRIPHON trial results, selexipag could provide a convenient first-line prostacyclin treatment option for patients with PAH.", "Eukaryotic genomes are folded into loops and topologically associating domains, which contribute to chromatin structure, gene regulation, and gene recombination. These structures depend on cohesin, a ring-shaped DNA-entrapping adenosine triphosphatase (ATPase) complex that has been proposed to form loops by extrusion. Such an activity has been observed for condensin, which forms loops in mitosis, but not for cohesin. Using biochemical reconstitution, we found that single human cohesin complexes form DNA loops symmetrically at rates up to 2.1 kilo-base pairs per second. Loop formation and maintenance depend on cohesin's ATPase activity and on NIPBL-MAU2, but not on topological entrapment of DNA by cohesin. During loop formation, cohesin and NIPBL-MAU2 reside at the base of loops, which indicates that they generate loops by extrusion. Our results show that cohesin and NIPBL-MAU2 form an active holoenzyme that interacts with DNA either pseudo-topologically or non-topologically to extrude genomic interphase DNA into loops.", "The integral membrane protein p22phox is an indispensable component of the superoxide-generating phagocyte NADPH oxidase, whose catalytic core is the membrane-associated gp91phox (also known as Nox2). p22phox associates with gp91phox and, through its proline-rich C terminus, provides a binding site for the tandem Src homology 3 domains of the activating subunit p47phox. Whereas p22phox is expressed ubiquitously, its participation in regulating the activity of other Nox enzymes is less clear. This study investigates the requirement of p22phox for Nox enzyme activity and explores the role of its proline-rich region (PRR) for regulating activity. Coexpression of specific Nox catalytic subunits (Nox1, Nox2, Nox3, Nox4, or Nox5) along with their corresponding regulatory subunits (NOXO1/NOXA1 for Nox1; p47phox/p67phox/Rac for Nox2; NOXO1 for Nox3; no subunits for Nox4 or Nox5) resulted in marked production of reactive oxygen. Small interfering RNAs decreased endogenous p22phox expression and inhibited reactive oxygen generation from Nox1, Nox2, Nox3, and Nox4 but not Nox5. Truncated forms of p22phox that disrupted the PRR-inhibited reactive oxygen generation from Nox1, Nox2, and Nox3 but not from Nox4 and Nox5. Similarly, p22phox (P156Q), a mutation that disrupts Src homology 3 binding by the PRR, potently inhibited reactive oxygen production from Nox1 and Nox2 but not from Nox4 and Nox5. Expression of p22phox (P156Q) inhibited NOXO1-stimulated Nox3 activity, but co-expression of NOXA1 overcame the inhibitory effect. The P157Q and P160Q mutations of p22phox showed selective inhibition of Nox2/p47phox/p67phox, and selectivity was specific for the organizing subunit (p47phox or NOXO1) rather than the Nox catalytic subunit. These studies stress the importance of p22phox for the function of Nox1, Nox2, Nox3, and Nox4, and emphasize the key role of the PRR for regulating Nox proteins whose activity is dependent upon p47phox or NOXO1.", "INTRODUCTION: Various trauma scoring systems were developed in order to assess injury severity and aid in decision making regarding further therapy and probable outcome.ANATOMIC INJURY SEVERITY SCALES: AIS--Abbreviated Injury Scale is a summary of all the values (from 1-9) for each organ or body part that is injured. ISS--Injury Severity Scale scores three dominant injuries from AIS scale. The maximum score for ISS is 75. MISS--Modified Injury Severity Score is a square of the AIS value for the three body parts with most severe injuries.PHYSIOLOGIC INJURY SEVERITY SCALES: GCS--Glasgow Coma Score is a numerical scale that assesses the severity of CNS injuries, that is the most appropriate system for numerical assessment of consciousness disturbance. Trauma score is a sum of GCS decreased for 1/3, plus the assessment of cardiopulmonary function. COMBINED ANATOMIC-PHYSIOLOGIC SCORING SYSTEMS: TRISS score (TS-ISS--trauma and injury severity score) TRISS combines ISS, TS, age of the patient and mechanism of injury, in order to determine survival probability. PTS--Pediatric Trauma Score takes into consideration all of the peculiarities of pediatric patients in response to trauma. Score values are from -6 to +12. APACHE--Acute Physiology And Chronic Health Evaluation Although it is complicated for general use, it still represents the most commonly used scoring system in Intensive Care Units.NEW SCORING SYSTEMS: MPM--Mortality Probability Models. MODS--Multiple Organ Dysfunction Syndrome. LODS--Logistic Organ Dysfunction Syndrome. SAPS--Simplified Acute Physiologic Score.", "Nox5 belongs to the calcium-regulated subfamily of NADPH oxidases (Nox). Like other calcium-regulated Noxes, Nox5 has an EF-hand-containing calcium-binding domain at its N-terminus, a transmembrane heme-containing region, and a C-terminal dehydrogenase (DH) domain that binds FAD and NADPH. While Nox1-4 require regulatory subunits, including p22phox, Nox5 activity does not depend on any subunits. We found that inactive point mutants and truncated forms of Nox5 (including the naturally expressed splice form, Nox5S) inhibit full-length Nox5, consistent with formation of a dominant negative complex. Oligomerization of full-length Nox5 was demonstrated using co-immunoprecipitation of coexpressed, differentially tagged forms of Nox5 and occurred in a manner independent of calcium ion. Several approaches were used to show that the DH domain mediates oligomerization: Nox5 could be isolated as a multimer when the calcium-binding domain and/or the N-terminal polybasic region (PBR-N) was deleted, but deletion of the DH domain eliminated oligomerization. Further, a chimera containing the transmembrane domain of Ciona intestinalis voltage sensor-containing phosphatase (CiVSP) fused to the Nox5 DH domain formed a co-immunoprecipitating complex with, and functioned as a dominant inhibitor of, full-length Nox5. Radiation inactivation of Nox5 overexpressed in HEK293 cells and endogenously expressed in human aortic smooth muscle cells indicated molecular masses of ∼350 and ∼300 kDa, respectively, consistent with a tetramer being the functionally active unit. Thus, Nox5 forms a catalytically active oligomer in the membrane that is mediated by its dehydrogenase domain. As a result of oligomerization, the short, calcium-independent splice form, Nox5S, may function as an endogenous inhibitor of calcium-stimulated ROS generation by full-length Nox5." ]
1,942
[ "Selenium (Se) is an essential trace element for several organisms and is present in proteins as selenocysteine (Sec or U), an amino acid that is chemically distinct from serine and cysteine by a single atom (Se instead of O or S, respectively). Sec is incorporated into selenoproteins at an in-frame UGA codon specified by an mRNA stem-loop structure called the selenocysteine incorporating sequence (SECIS) presented in selenoprotein mRNA and specific selenocysteine synthesis and incorporation machinery. Selenoproteins are presented in all domains but are not found in all organisms. Although several functions have been attributed to this class, the majority of the proteins are involved in oxidative stress defense. Here, we discuss the kinetoplastid selenocysteine pathway and how selenium supplementation is able to alter the infection course of trypanosomatids in detail. These organisms possess the canonical elements required for selenoprotein production such as phosphoseryl tRNA kinase (PSTK), selenocysteine synthase (SepSecS), selenophosphase synthase (SelD or SPS), and elongation factor EFSec (SelB), whereas other important factors presented in mammal cells, such as SECIS binding protein 2 (SBP) and SecP 43, are absent. The selenoproteome of trypanosomatids is small, as is the selenoproteome of others parasites, which is in contrast to the large number of selenoproteins found in bacteria, aquatic organisms and higher eukaryotes. Trypanosoma and Leishmania are sensitive to auranofin, a potent selenoprotein inhibitor; however, the probable drug mechanism is not related to selenoproteins in kinetoplastids. Selenium supplementation decreases the parasitemia of various Trypanosome infections and reduces important parameters associated with diseases such as anemia and parasite-induced organ damage. New experiments are necessary to determine how selenium acts, but evidence suggests that immune response modulation and increased host defense against oxidative stress contribute to control of the parasite infection.", "Pseudouridine (Ψ) is the most abundant of >150 nucleoside modifications in RNA. Although Ψ was discovered as the first modified nucleoside more than half a century ago, neither the enzymatic mechanism of its formation, nor the function of this modification are fully elucidated. We present the consistent picture of Ψ synthases, their substrates and their substrate positions in model organisms of all domains of life as it has emerged to date and point out the challenges that remain concerning higher eukaryotes and the elucidation of the enzymatic mechanism.", "We studied the new catechol-O-methyltransferase inhibitor tolcapone, 100 and 200 mg, three times daily (tid) in a randomized, double-blind, parallel-group trial involving 202 parkinsonian patients who were experiencing the \"wearing-off\" phenomenon on levodopa therapy. After 3 months, patients receiving tolcapone had a significant decrease in mean daily levodopa dose requirement compared with placebo-treated patients (p < 0.01). In patients treated with tolcapone 200 mg tid, daily \"off\" time, measured using patient diaries, was reduced from baseline by 3.25 hours; this reduction was significantly different from that seen in the placebo group (p < 0.01). Moreover, the number of daily levodopa intakes was reduced significantly in each tolcapone group compared with placebo (p < 0.01). We found significant improvements in motor function and overall efficacy in the tolcapone groups (p < 0.01). The most frequent adverse events were associated with levodopa treatment. Dyskinesia developed or worsened in 18% of patients receiving placebo, in 51% receiving tolcapone 100 mg tid, and in 64% receiving 200 mg tid, with most cases occurring within the first 30 days of the study. Diarrhea was the most frequent nondopaminergic event, occurring in 14% on placebo, 13% on tolcapone 100 mg tid, and 19% on 200 mg tid. Overall 18% of patients withdrew because of adverse events: 15% on placebo, 17% on tolcapone 100 mg tid, and 22% on 200 mg tid. We conclude that tolcapone as an adjunct offers promise for the relief of the \"wearing-off\" phenomenon in levodopa-treated parkinsonian patients.", "Tumors of the central nervous system are the most frequent solid tumors in childhood. With 30-40% of this heterogenous group, low-grade astrocytomas represent the most common subtype. Neurofibromatosis type 1 (NF1) is strongly associated with the development of pilocytic astrocytoma (PA), frequently appearing as optic glioma. Neurofibromatosis 1 gene (NF1 ) fulfills the criteria of a tumor suppressor gene and is deleted or mutated heterozygously in patients with NF1. This suggests an involvement in the development of PA. To clarify whether silencing of NF1 by promoter methylation plays a role in PA and especially in optic glioma, the authors investigated the methylation status in 30 PA, 6 of which had optic glioma. However, no methylation was found at the NF1 promoter region in PA. To rule out that silencing of NF1 by promoter methylation is restricted to higher-grade astrocytomas, 15 pediatric WHO II degree and IV degree astrocytomas were analyzed: 12 astrocytomas II and 3 glioblastomas displayed no NF1 promoter methylation. The authors conclude that NF1 silencing by methylation plays no role in low-grade astrocytoma.", "Here, we describe the identification and synthesis of novel indole sulfonamide derivatives that activate the three peroxisome proliferator activated receptor (PPAR) isoforms. Starting with a PPARα activator, compound 4, identified during a high throughput screening (HTS) of our proprietary screening library, a systematic optimization led to the discovery of lanifibranor (IVA337) 5, a moderately potent and well balanced pan PPAR agonist with an excellent safety profile. In vitro and in vivo, compound 5 demonstrated strong activity in models that are relevant to nonalcoholic steatohepatitis (NASH) pathophysiology suggesting therapeutic potential for NASH patients.", "The number and position of the pseudouridines of Haloarcula marismortui and Deinococcus radiodurans large subunit RNA have been determined by a combination of total nucleoside analysis by HPLC-mass spectrometry and pseudouridine sequencing by the reverse transcriptase method and by LC/MS/MS. Three pseudouridines were found in H. marismortui, located at positions 1956, 1958, and 2621 corresponding to Escherichia coli positions 1915, 1917, and 2586, respectively. The three pseudouridines are all in locations found in other organisms. Previous reports of a larger number of pseudouridines in this organism were incorrect. Three pseudouridines and one 3-methyl pseudouridine (m3Psi) were found in D. radiodurans 23S RNA at positions 1894, 1898 (m3Psi), 1900, and 2584, the m3Psi site being determined by a novel application of mass spectrometry. These positions correspond to E. coli positions 1911, 1915, 1917, and 2605, which are also pseudouridines in E. coli (1915 is m3Psi). The pseudouridines in the helix 69 loop, residues 1911, 1915, and 1917, are in positions highly conserved among all phyla. Pseudouridine 2584 in D. radiodurans is conserved in eubacteria and a chloroplast but is not found in archaea or eukaryotes, whereas pseudouridine 2621 in H. marismortui is more conserved in eukaryotes and is not found in eubacteria. All the pseudoridines are near, but not exactly at, nucleotides directly involved in various aspects of ribosome function. In addition, two D. radiodurans Psi synthases responsible for the four Psi were identified.", "Pseudouridine is the most abundant of more than 100 chemically distinct natural ribonucleotide modifications. Its synthesis consists of an isomerization reaction of a uridine residue in the RNA chain and is catalyzed by pseudouridine synthases. The unusual reaction mechanism has become the object of renewed research effort, frequently involving replacement of the substrate uridines with 5-fluorouracil (f(5)U). f(5)U is known to be a potent inhibitor of pseudouridine synthase activity, but the effect varies among the target pseudouridine synthases. Derivatives of f(5)U have previously been detected, which are thought to be either hydrolysis products of covalent enzyme-RNA adducts, or isomerization intermediates. Here we describe the interaction of pseudouridine synthase 1 (Pus1p) with f(5)U-containing tRNA. The interaction described is specific to Pus1p and position 27 in the tRNA anticodon stem, but the enzyme neither forms a covalent adduct nor stalls at a previously identified reaction intermediate of f(5)U. The f(5)U27 residue, as analyzed by a DNAzyme-based assay using TLC and mass spectrometry, displayed physicochemical properties unaltered by the reversible interaction with Pus1p. Thus, Pus1p binds an f(5)U-containing substrate, but, in contrast to other pseudouridine synthases, leaves the chemical structure of f(5)U unchanged. The specific, but nonproductive, interaction demonstrated here thus constitutes an intermediate of Pus turnover, stalled by the presence of f(5)U in an early state of catalysis. Observation of the interaction of Pus1p with fluorescence-labeled tRNA by a real-time readout of fluorescence anisotropy and FRET revealed significant structural distortion of f(5)U-tRNA structure in the stalled intermediate state of pseudouridine catalysis.", "Only 37 cases of stroke during or soon after long-haul flights have been published to our knowledge. In this retrospective observational study, we searched the Royal Melbourne Hospital prospective stroke database and all discharge summaries from 1 September 2003 to 30 September 2014 for flight-related strokes, defined as patients presenting with stroke within 14days of air travel. We hypothesised that a patent foramen ovale (PFO) is an important, but not the only mechanism, of flight-related stroke. We describe the patient, stroke, and flight characteristics. Over the study period, 131 million passengers arrived at Melbourne airport. Our centre admitted 5727 stroke patients, of whom 42 (0.73%) had flight-related strokes. Flight-related stroke patients were younger (median age 65 versus 73, p<0.001), had similar stroke severity, and received intravenous thrombolysis more often than non-flight-related stroke patients. Seven patients had flight-related intracerebral haemorrhage. The aetiology of the ischaemic strokes was cardioembolic in 14/35 (40%), including seven patients with confirmed PFO, one with atrial septal defect, four with atrial fibrillation, one with endocarditis, and one with aortic arch atheroma. Paradoxical embolism was confirmed in six patients. Stroke related to air travel is a rare occurrence, less than one in a million. Although 20% of patients had a PFO, distribution of stroke aetiologies was diverse and was not limited to PFO and paradoxical embolism.", "Alzheimer's disease (AD) is a degenerative neurological disorder that is the most common cause of dementia and disability in older patients. Available treatments are symptomatic in nature and are only sufficient to improve the quality of life of AD patients temporarily. A potential strategy, currently under investigation, is to target cell-signaling pathways associated with neurodegeneration, in order to decrease neuroinflammation, excitotoxicity, and to improve cognitive functions. Current review centers on the role of neuroinflammation and the specific contribution of mast cells to AD pathophysiology. The authors look at masitinib therapy and the evidence presented through preclinical and clinical trials. Dual actions of masitinib as an inhibitor of mast cell-glia axis and a Fyn kinase blocker are discussed in the context of AD pathology. Masitinib is in Phase III clinical trials for the treatment of malignant melanoma, mastocytosis, multiple myeloma, gastrointestinal cancer and pancreatic cancer. It is also in Phase II/III clinical trials for the treatment of multiple sclerosis, rheumatoid arthritis and AD. Additional research is warranted to better investigate the potential effects of masitinib in combination with other drugs employed in AD treatment.", "It has been proposed that direct and indirect mechanisms contribute to the unresolved issue of CD4(+) T-cell depletion that results from HIV-1 infection. We recently reported that plasma levels of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) are elevated in HIV-1-infected patients and that they correlate with viral load. The present study investigates the expression of TRAIL death receptor 5 (DR5) in the peripheral-blood mononuclear cells (PBMCs) of HIV-1-infected patients and its role in CD4(+) T-cell death. DR5 expression was elevated and associated with the apoptotic marker annexin V. Apoptosis was reduced in CD4(+) T cells when cultured with anti-DR5 antibody. CD4(+), but not CD8(+), T cells from uninfected donors expressed TRAIL, DR5, and activated caspase-3 when cultured with infectious or noninfectious HIV-1, resulting in preferential apoptosis of CD4(+) T cells. TRAIL, caspase-3 expression, and apoptosis were type 1 interferon (IFN) dependent. Induction of apoptosis and DR5 expression required glycoprotein 120 (gp120)-CD4 interaction. Finally, we analyzed DR5 expression by CD4(+) T cells in highly active antiretroviral therapy (HAART)-treated patients. The decreased viral loads and increased CD4 counts of HAART-responsive patients were associated with a decrease in DR5 mRNA expression by CD4(+) T lymphocytes. We propose a novel model in which a type 1 IFN-regulated TRAIL /DR5 mechanism induces apoptosis of HIV-1-exposed CD4(+) T cells.", "BACKGROUND: Interleukin-1 has been implicated as a mediator of recurrent pericarditis. The efficacy and safety of rilonacept, an interleukin-1α and interleukin-1β cytokine trap, were studied previously in a phase 2 trial involving patients with recurrent pericarditis.METHODS: We conducted a phase 3 multicenter, double-blind, event-driven, randomized-withdrawal trial of rilonacept in patients with acute symptoms of recurrent pericarditis (as assessed on a patient-reported scale) and systemic inflammation (as shown by an elevated C-reactive protein [CRP] level). Patients presenting with pericarditis recurrence while receiving standard therapy were enrolled in a 12-week run-in period, during which rilonacept was initiated and background medications were discontinued. Patients who had a clinical response (i.e., met prespecified response criteria) were randomly assigned in a 1:1 ratio to receive continued rilonacept monotherapy or placebo, administered subcutaneously once weekly. The primary efficacy end point, assessed with a Cox proportional-hazards model, was the time to the first pericarditis recurrence. Safety was also assessed.RESULTS: A total of 86 patients with pericarditis pain and an elevated CRP level were enrolled in the run-in period. During the run-in period, the median time to resolution or near-resolution of pain was 5 days, and the median time to normalization of the CRP level was 7 days. A total of 61 patients underwent randomization. During the randomized-withdrawal period, there were too few recurrence events in the rilonacept group to allow for the median time to the first adjudicated recurrence to be calculated; the median time to the first adjudicated recurrence in the placebo group was 8.6 weeks (95% confidence interval [CI], 4.0 to 11.7; hazard ratio in a Cox proportional-hazards model, 0.04; 95% CI, 0.01 to 0.18; P<0.001 by the log-rank test). During this period, 2 of 30 patients (7%) in the rilonacept group had a pericarditis recurrence, as compared with 23 of 31 patients (74%) in the placebo group. In the run-in period, 4 patients had adverse events leading to the discontinuation of rilonacept therapy. The most common adverse events with rilonacept were injection-site reactions and upper respiratory tract infections.CONCLUSIONS: Among patients with recurrent pericarditis, rilonacept led to rapid resolution of recurrent pericarditis episodes and to a significantly lower risk of pericarditis recurrence than placebo. (Funded by Kiniksa Pharmaceuticals; RHAPSODY ClinicalTrials.gov number, NCT03737110.).", "Bartter syndrome is a group of inherited, salt-losing tubulopathies presenting as hypokalemic metabolic alkalosis with normotensive hyperreninemia and hyperaldosteronism. Around 150 cases have been reported in literature till now. Mutations leading to salt losing tubulopathies are not routinely tested in Indian population. The authors have done the genetic analysis for the first time in the Bartter syndrome on two cases from India. First case was antenatal Bartter syndrome presenting with massive polyuria and hyperkalemia. Mutational analysis revealed compound heterozygous mutations in KCNJ1(ROMK) gene [p(Leu220Phe), p(Thr191Pro)]. Second case had a phenotypic presentation of classical Bartter syndrome however, genetic analysis revealed only heterozygous novel mutation in SLC12A gene p(Ala232Thr). Bartter syndrome is a clinical diagnosis and genetic analysis is recommended for prognostication and genetic counseling." ]
1,944
[ "Maintenance of iron balance is essential for humans and requires the coordinate regulation of iron transport into plasma from dietary sources in the duodenum, from recycled senescent red cells in macrophages, and from storage in hepatocytes. Hepcidin, a recently identified antimicrobial peptide produced in the liver, has been shown to play a central role in the homeostatic regulation of iron absorption and distribution [1]. It is a negative regulator of iron absorption in the small intestine and of iron release from macrophages engaged in the recycling of iron senescent erythrocytes [2]. The human hepcidin gene contains three exons that encode a 72-aa precursor (pro-hepcidin) with a characteristic furin cleavage site immediately N-terminal to the 25-aa major hepcidin species found in plasma and urine [3]. Recently, hepcidin has been shown to regulate iron homeostasis by interaction with ferroportin, an iron cellular exporter highly expressed in absorptive enterocytes, macrophages, hepatocytes, and placental cells [4].", "The first seven members of the proprotein convertase (PC) family activate protein precursors by cleavage after basic residues. While PC7 has no known specific substrates, it shows redundancy with other PCs. A genome-wide association study suggested that circulating levels of shed human transferrin receptor 1 (hTfR1) are regulated by PC7. We thus examined whether hTfR1 constitutes a specific substrate for PC7. Coexpression of hTfR1 with PCs in several cell lines indicated that PC7 is the only convertase that sheds this receptor into the medium. Site-directed mutagenesis showed that cleavage occurs at the unusual site KTECER100 ↓LA, in which the P1 Arg100 and P6 Lys95 are critical. Pharmacological treatments revealed that shedding of hTfR1 by PC7 requires endocytosis into acidic clathrin-coated vesicles. A PC7 chimera, in which the transmembrane domain and the cytosolic tail of PC7 were replaced by that of the convertase furin, lost its ability to cleave the receptor, demonstrating the importance of these domains in the regulation of PC7 function. Analysis of primary hepatocytes from mice lacking furin, PC5, PACE4, or PC7 revealed that hepcidin, which limits iron availability in the circulation, is specifically generated by furin and not by PC7. Finally, depletion of iron in the medium of hepatoma cell lines incubated with the iron chelator desferrioxamine resulted in PC7 down-regulation.CONCLUSION: Among the PC family members, only furin activates hepcidin in hepatocytes, and uniquely the full-length membrane-bound PC7 can directly shed hTfR1 by cleavage at Arg100 ↓. Our results support the notion that, when iron is limiting, hTfR1 levels increase at least in part by way of the down-regulation of PC7 expression. (HEPATOLOGY 2013;).", "Defensins are small, multifunctional cationic peptides. They typically contain six conserved cysteines whose three intramolecular disulfides stabilize a largely β-sheet structure. This review of human α-defensins begins by describing their evolution, including their likely relationship to the Big Defensins of invertebrates, and their kinship to the β-defensin peptides of many if not all vertebrates, and the θ-defensins found in certain non-human primates. We provide a short history of the search for leukocyte-derived microbicidal molecules, emphasizing the roles played by luck (good), preconceived notions (mostly bad), and proper timing (essential). The antimicrobial, antiviral, antitoxic, and binding properties of human α-defensins are summarized. The structural features of α-defensins are described extensively and their functional contributions are assessed. The properties of HD6, an enigmatic Paneth cell α-defensin, are contrasted with those of the four myeloid α-defensins (HNP1-4) and of HD5, the other α-defensin of human Paneth cells. The review ends with a decalogue that may assist researchers or students interested in α-defensins and related aspects of neutrophil function.", "The ability to achieve site-specific manipulation of the mammalian genome has widespread implications for basic and applied research. Gene targeting is a process in which a DNA molecule introduced into a cell replaces the corresponding chromosomal segment by homologous recombination, and thus presents a precise way to manipulate the genome. In the past, the application of gene targeting to mammalian cells has been limited by its low efficiency. Zinc finger nucleases (ZFNs) show promise in improving the efficiency of gene targeting by introducing DNA double-strand breaks in target genes, which then stimulate the cell's endogenous homologous recombination machinery. Recent results have shown that ZFNs can be used to create targeting frequencies of up to 20% in a human disease-causing gene. Future work will be needed to translate these in vitro findings to in vivo applications and to determine whether zinc finger nucleases create undesired genomic instability.", "The epidermal growth factor receptor (EGFR) family members are potential targets for therapy using extra-cellular domain receptor binding agents, such as the antibodies trastuzumab and cetuximab, or antibodies labeled with therapeutically useful radionuclides or toxins. This is especially the case when the tumor cells are resistant to chemotherapy and tyrosine kinase inhibitors. Studies concerning the expression of these receptors in prostate cancer vary in the literature, possibly due to differences in patient inclusion, sample preparations and scoring criteria. In our study, EGFR, HER2 and HER3 expression was analyzed in prostate cancer samples from primary tumors and corresponding lymph node metastases from 12 patients. The expression of HER2 and EGFR was scored from immunohistochemical preparations and the HercepTest criteria (0, 1+, 2+ or 3+), while HER3 expression was scored as no, weak or strong staining. There were 5 EGFR-positive (2+ or 3+) primary tumors and 6 EGFR-positive lymph node metastases, and there was EGFR upregulation in one metastasis. Only 4 of the 12 patients had marked HER2 expression (2+ or 3+) in their primary tumors and there was one downregulation and 5 cases of upregulation in the metastases. Thus, a total of 8 out of 12 analyzed metastases were HER2-positive. Of the 12 primary tumors, 9 expressed HER3 while only 2 of the lymph node metastases expressed recognizable HER3 staining, so 7 metastases appeared to have downregulated HER3 expression. In one of the primary tumors there was positive co-expression of EGFR and HER2, while this co-expression was observed in 4 of the metastases. Thus, there were tendencies for upregulation of HER2, increased co-expression of EGFR and HER2 and downregulation of HER3 in the prostate cancer lymph node metastases in comparison to the primary tumors. The results are encouraging for studies involving more patients. Possible strategies for EGFR- and HER2-targeted therapy are briefly discussed in the present study, especially with regard to the expression and co-expression of EGFR and HER2 in metastases.", "Orteronel (TAK-700) is a novel and selective inhibitor of CYP17A1, which is expressed in testicular, adrenal and prostate tumor tissues. Orteronel is currently in Phase-III clinical development for metastatic castration-resistant prostate patients. The objective of the study is to assess the permeability, metabolic stability (in various preclinical and human liver microsomes), identify the major CYPs involved in the metabolism of Orteronel. We have also studied the pharmacokinetics and excretion of Orteronel in Sprague-Dawley rats. Orteronel was found to be stable in various liver microsomes tested. The half-life (t ½) of Orteronel with intravenous (i.v.) route was found to be 1.65 ± 0.22 h. The clearance and volume of distribution by i.v. route for Orteronel were found to be 27.5 ± 3.09 mL/min/kg and 3.94 ± 0.85 L/kg, respectively. The absorption of Orteronel was rapid, with maximum concentrations of drug in plasma of 614 ± 76.4, 1,764 ± 166, 4,652 ± 300 and 17,518 ± 3,178 ng/mL attained at 0.38, 0.75, 0.50 and 0.83 h, respectively, after oral administration of Orteronel at 5, 10, 30 and 100 mg/kg as a suspension. In the dose proportional oral pharmacokinetic study, the mean t ½ by oral route was found to be ~3.5 h and bioavailability ranged between 69 and 89 %. The primary route of elimination for Orteronel is urine.", "Among yeasts that underwent whole-genome duplication (WGD), Kluyveromyces polysporus represents the lineage most distant from Saccharomyces cerevisiae. By sequencing the K. polysporus genome and comparing it with the S. cerevisiae genome using a likelihood model of gene loss, we show that these species diverged very soon after the WGD, when their common ancestor contained >9,000 genes. The two genomes subsequently converged onto similar current sizes (5,600 protein-coding genes each) and independently retained sets of duplicated genes that are strikingly similar. Almost half of their surviving single-copy genes are not orthologs but paralogs formed by WGD, as would be expected if most gene pairs were resolved independently. In addition, by comparing the pattern of gene loss among K. polysporus, S. cerevisiae, and three other yeasts that diverged after the WGD, we show that the patterns of gene loss changed over time. Initially, both members of a duplicate pair were equally likely to be lost, but loss of the same gene copy in independent lineages was increasingly favored at later time points. This trend parallels an increasing restriction of reciprocal gene loss to more slowly evolving gene pairs over time and suggests that, as duplicate genes diverged, one gene copy became favored over the other. The apparent low initial sequence divergence of the gene pairs leads us to propose that the yeast WGD was probably an autopolyploidization.", "In amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration, TAR DNA binding protein 43 (TDP-43) accumulates in the cytoplasm of affected neurons and glia, where it associates with stress granules (SGs) and forms large inclusions. SGs form in response to cellular stress, including endoplasmic reticulum (ER) stress, which is induced in both familial and sporadic forms of ALS. Here we demonstrate that pharmacological induction of ER stress causes TDP-43 to accumulate in the cytoplasm, where TDP-43 also associates with SGs. Furthermore, treatment with salubrinal, an inhibitor of dephosphorylation of eukaryotic initiation factor 2-α, a key modulator of ER stress, potentiates ER stress-mediated SG formation. Inclusions of C-terminal fragment TDP-43, reminiscent of disease-pathology, form in close association with ER and Golgi compartments, further indicating the involvement of ER dysfunction in TDP-43-associated disease. Consistent with this notion, over-expression of ALS-linked mutant TDP-43, and to a lesser extent wildtype TDP-43, triggers several ER stress pathways in neuroblastoma cells. Similarly, we found an interaction between the ER chaperone protein disulphide isomerase and TDP-43 in transfected cell lysates and in the spinal cords of mutant A315T TDP-43 transgenic mice. This study provides evidence for ER stress as a pathogenic pathway in TDP-43-mediated disease.", "BACKGROUND: Impaired regulation of hepcidin in response to iron is the cause of genetic hemochromatosis associated with defects of HFE and transferrin receptor 2. However, the role of these proteins in the regulation of hepcidin expression is unclear.DESIGN AND METHODS: Hepcidin expression, SMAD and extracellular signal-regulated kinase (Erk) phosphorylation and furin expression were analyzed in hepatic HepG2 cells in which HFE and transferrin receptor 2 were down-regulated or expressed, or furin activity specifically inhibited. Furin expression was also analyzed in the liver of transferrin receptor 2 null mice.RESULTS: We showed that the silencing of HFE and transferrin receptor 2 reduced both Erk phosphorylation and furin expression, that the exogenous expression of the two enhanced the induction of phosphoErk1/2 and furin by holotransferrin, but that this did not occur when the pathogenic HFE mutant C282Y was expressed. Furin, phosphoErk1/2 and phosphoSMAD1/5/8 were down-regulated also in transferrin receptor 2-null mice. Treatment of HepG2 cells with an inhibitor of furin activity caused a strong suppression of hepcidin mRNA, probably due to the inhibition of bone morphogenic protein maturation.CONCLUSIONS: The data indicate that transferrin receptor 2 and HFE are involved in holotransferrin-dependent signaling for the regulation of furin which involved Erk phosphorylation. Furin in turn may control hepcidin expression.", "BACKGROUND: Cushing's syndrome due to an ACTH-secreting pituitary tumor is associated with serious morbidity and mortality. As there is no definitive medical treatment, surgical removal of the tumor via the transsphenoidal route remains the first choice. Postoperative hypocortisolemia is recognized as the best indicator of cure.OBJECTIVE: To report the postoperative outcome and long-term follow-up of patients with surgically treated Cushing disease at the Rabin Medical Center.METHODS: We reviewed the medical records of 27 patients with Cushing disease operated on between the period 1990 and 2003. The same experienced surgeon performed all surgeries.RESULTS: Cushing disease accounted for 15% of all pituitary surgeries in our center. The mean age was 46 years, and the female to male ratio was 25:2. Macroadenomas were found in 19% of cases, and a negative MRI in another 19%. The cure rate was 70% overall and 80% when only microadenomas were considered. There were no major perioperative complications. Four out of 8 surgical failures were re-operated, and three achieved cure. After a mean follow-up period of 5.9 years, there was only one recurrence.CONCLUSION: Our results are in accordance with those reported by others and confirm that in the hands of an experienced neurosurgeon, pituitary surgery constitutes an effective treatment for Cushing disease.", "Of the TRIM/RBCC family proteins taking part in a variety of cellular processes, TRIM50 is a stomach-specific member with no defined biological function. Our biochemical data demonstrated that TRIM50 is specifically expressed in gastric parietal cells and is predominantly localized in the tubulovesicular and canalicular membranes. In cultured cells ectopically expressing GFP-TRIM50, confocal microscopic imaging revealed dynamic movement of TRIM50-associated vesicles in a phosphoinositide 3-kinase-dependent manner. A protein overlay assay detected preferential binding of the PRY-SPRY domain from the TRIM50 C-terminal region to phosphatidylinositol species, suggesting that TRIM50 is involved in vesicular dynamics by sensing the phosphorylated state of phosphoinositol lipids. Trim50 knock-out mice retained normal histology in the gastric mucosa but exhibited impaired secretion of gastric acid. In response to histamine, Trim50 knock-out parietal cells generated deranged canaliculi, swollen microvilli lacking actin filaments, and excess multilamellar membrane complexes. Therefore, TRIM50 seems to play an essential role in tubulovesicular dynamics, promoting the formation of sophisticated canaliculi and microvilli during acid secretion in parietal cells.", "OBJECTIVES: This review focuses on the relationship between obesity and aging and how these interact to affect cognitive function. The topics covered are guided by the Scaffolding Theory of Aging and Cognition (STAC [Park and Reuter-Lorenz. Annu Rev Psychol 2009;60:173-96]-a conceptual model designed to relate brain structure and function to one's level of cognitive ability.METHODS: The initial literature search was focused on normal aging and was guided by the key words, \"aging, cognition, and obesity\" in PubMed. In a second search, we added key words related to neuropathology including words \"Alzheimer's disease,\" \"vascular dementia,\" and \"mild cognitive impairment.\"RESULTS: The data suggest that being overweight or obese in midlife may be more detrimental to subsequent age-related cognitive decline than being overweight or obese at later stages of the life span. These effects are likely mediated by the accelerated effects obesity has on the integrity of neural structures, including both gray and white matter. Further epidemiological studies have provided evidence that obesity in midlife is linked to an increased risk for Alzheimer's disease and vascular dementia, most likely via an increased accumulation of Alzheimer's disease pathology.CONCLUSIONS: Although it is clear that obesity negatively affects cognition, more work is needed to better understand how aging plays a role and how brain structure and brain function might mediate the relationship of obesity and age on cognition. Guided by the STAC and the STAC-R models, we provide a roadmap for future investigations of the role of obesity on cognition across the life span.", "Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is the best understood cause of dominantly inherited stroke and results from NOTCH3 mutations that lead to NOTCH3 protein accumulation and selective arterial smooth muscle degeneration. Previous studies show that NOTCH3 protein forms multimers. Here, we investigate protein interactions between NOTCH3 and other vascular Notch isoforms and characterize the effects of elevated NOTCH3 on smooth muscle gene regulation. We demonstrate that NOTCH3 forms heterodimers with NOTCH1, NOTCH3, and NOTCH4. R90C and C49Y mutant NOTCH3 form complexes which are more resistant to detergents than wild type NOTCH3 complexes. Using quantitative NOTCH3-luciferase clearance assays, we found significant inhibition of mutant NOTCH3 clearance. In coculture assays of NOTCH function, overexpressed wild type and mutant NOTCH3 significantly repressed NOTCH-regulated smooth muscle transcripts and potently impaired the activity of three independent smooth muscle promoters. Wildtype and R90C recombinant NOTCH3 proteins applied to cell cultures also blocked canonical Notch fuction. We conclude that CADASIL mutants of NOTCH3 complex with NOTCH1, 3, and 4, slow NOTCH3 clearance, and that overexpressed wild type and mutant NOTCH3 protein interfere with key NOTCH-mediated functions in smooth muscle cells.", "BACKGROUND/AIMS: The iron-regulatory peptide hepcidin is synthesized in the liver as an 84-aa pre-pro-hormone maturated by proteolysis through a consensus furin cleavage site to generate the bioactive 25-aa peptide secreted in the circulation. This peptide regulates iron export from enterocytes and macrophages by binding the membrane iron exporter, ferroportin, leading to its degradation. Whether pro-hepcidin could be secreted and reflect hepcidin levels remains an open question. However, the activity of the pro-peptide on ferroportin degradation has never been addressed.METHODS: To answer this question, we produced recombinant pro-hepcidin, both the wild-type form and a furin cleavage site mutant, and tested their activity on ferroportin levels in macrophagic J774 cells. Furin activity was also modulated using furin inhibitor or siRNA-mediated furin mRNA knockdown.RESULTS: We found that pro-hepcidin could fully induce ferroportin degradation, but only when processed by furin to generate the mature hepcidin-25 form. Pro-hepcidin activity was abolished in the presence of furin inhibitor and diminished after siRNA-mediated knockdown of furin mRNA. Furthermore, the mutated version of pro-hepcidin was completely inefficient at degrading ferroportin in macrophages.CONCLUSIONS: Our results demonstrate that pro-hepcidin lacks biological activity, unless fully maturated by a furin-dependent process to yield the bioactive 25-aa peptide.", "In eukaryotic cells, replicated DNA strands remain physically connected until their segregation to opposite poles of the cell during anaphase. This \"sister chromatid cohesion\" is essential for the alignment of chromosomes on the mitotic spindle during metaphase. Cohesion depends on the multisubunit cohesin complex, which possibly forms the physical bridges connecting sisters. Proteolytic cleavage of cohesin's Sccl subunit at the metaphase to anaphase transition is essential for sister chromatid separation and depends on a conserved protein called separin. We show here that separin is a cysteine protease related to caspases that alone can cleave Sccl in vitro. Cleavage of Sccl in metaphase arrested cells is sufficient to trigger the separation of sister chromatids and their segregation to opposite cell poles.", "In eukaryotic cells, degradation of most intracellular proteins is carried out by the ubiquitin-proteasome pathway. Recent investigations suggest that bone metabolism is also regulated by this pathway. The clinical efficacy of bortezomib, a 26S proteasome inhibitor used as an anticancer drug, has been linked to an increase in bone formation. In this study, we show that proteasome inhibitors induce expression of osteoblastic differentiation-related genes such as osteocalcin and alkaline phosphatase in C2C12 cells. In contrast, myogenic differentiation is inhibited. Among the proteasome inhibitors tested, bortezomib induced the greatest increase in osteocalcin expression. Although these effects were similar to that of bone morphogenetic protein (BMP) 2, proteasome inhibitors did not induce transcriptional activity of Smad1/4-dependent reporter or BMP2 signaling target gene expression. Transient transfection of osteocalcin promoter-luciferase constructs with bortezomib resulted in an increase in luciferase activity. Mutation of OSE2, but not OSE1, sites of the osteocalcin promoter diminished the bortezomib-induced activity. Also, Runx2 binding activity and protein levels were induced by bortezomib treatment. These results suggest that the bortezomib induces osteoblastic differentiation by modifying the activity of Runx2 and that the function of the proteasome in controlling degradation of differentiation-related transcription factors plays an important role in osteoblast differentiation.", "INTRODUCTION: LY450139 (semagacestat) inhibits gamma-secretase, a key enzyme for generation of amyloid beta (Abeta), the peptide deposited in plaques in Alzheimer disease (AD). Previous data have shown that LY450139 lowers plasma Abeta, but has no clear effect on Abeta1-40 or Abeta1-42 levels in cerebrospinal fluid (CSF). By using targeted proteomics techniques, we recently identified several shorter Abeta isoforms, such as Abeta1-16, that in experimental settings increase during gamma-secretase inhibitor treatment, and thus may serve as sensitive biochemical indices of the treatment effect. Here, we test the hypothesis that these shorter Abeta isoforms may be biomarkers of gamma-secretase inhibitor treatment in clinical trials.METHODS: In a phase II clinical trial, 35 individuals with mild to moderate AD were randomized to placebo (n = 10) or LY450139 (100 mg (n = 15) or 140 mg (n = 10)) and underwent lumbar puncture at baseline and after 14 weeks of treatment. The CSF Abeta isoform pattern was analyzed with immunoprecipitation combined with MALDI-TOF mass spectrometry.RESULTS: The CSF levels of Abeta1-14, Abeta1-15, and Abeta1-16 showed a dose-dependent increase by 57% and 74%, 21% and 35%, and 30% and 67%, respectively in the 100-mg and 140-mg treatment groups. Abeta1-40 and Abeta1-42 were unaffected by treatment.CONCLUSIONS: CSF Abeta1-14, Abeta1-15, and Abeta1-16 increase during gamma-secretase inhibitor treatment in AD, even at doses that do not affect Abeta1-42 or Abeta1-40, probably because of increased substrate availability of the C99 APP stub (APP beta-CTF) induced by gamma-secretase inhibition. These Abeta isoforms may be novel sensitive biomarkers to monitor the biochemical effect in clinical trials.TRIAL REGISTRATION: Clinical Trials.gov NCT00244322.", "Hepcidin is encoded as an 84 amino acid prepropeptide containing a typical N-terminal 24 amino acid endoplasmic reticulum targeting signal sequence, and a 35 amino acid proregion (pro) with a consensus furin cleavage site immediately followed by the C-terminal 25 amino acid bioactive iron-regulatory hormone (mature peptide). We performed pulse-chase studies of posttranslational processing of hepcidin in human hepatoma HepG2 cells and in primary human hepatocytes induced with bone morphogenic protein (BMP-9). In some experiments, the cells were treated with the furin protease inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethylketone (CMK) or furin siRNA. In the absence of furin inhibitor, hepcidin was found to be processed in less than 1 h and secreted as a 3 kDa form reactive with anti-mature but not anti-pro antibody. In the presence of furin inhibitors or furin siRNA, a 6 kDa form reactive with both anti-pro and anti-mature antibody was rapidly secreted into the medium. Processing was not affected by inhibitors of the hypoxia inducible factor (HIF) pathway, or by treatment with 30 microM holo- or apo-transferrin. In conclusion, the hepatic prohormone convertase furin mediates the posttranslational processing of hepcidin. The proteolytic cleavage of prohepcidin to hepcidin is not regulated by iron-transferrin or the HIF pathway.", "The unique anatomy and flexibility of the cervical spine predispose it to a risk of injury. Trauma to the cervical spine encompasses a wide range of injuries from minor muscular strains to life-threatening fracture-dislocations associated with spinal cord lesions. Initial assessment and management should follow the Advanced Trauma Life Support (ATLS) protocols with adequate protection of the cervical spine through triple immobilisation to prevent any unnecessary movement, which can make the patient susceptible to further neurological injuries. Although the presence of cervical spine injury is very often overt, reliance on clinical examination alone is sometimes not sufficient and potentially requires further imaging. Clinical decision rules such as the Canadian C-Spine Rule are frequently used to risk-stratify patients needing radiography. The level of cervical spine instability and knowledge of their unique classification systems is of paramount importance and assists in the decision-making process to guide definitive management. In this review, we also propose an algorithm to aid the initial management of a patient with suspected cervical spine injury in the emergency department.", "BACKGROUND AND OBJECTIVES: The cause of hyperbilirubinemia cannot be found in about 45% of cases of neonatal jaundice. Gilbert syndrome (GS) is the most common congenital disease associated with bilirubin metabolism in the liver. Since the screening value of genetic tests cannot be fully determined until accurate data on the prevalence and penetrance of the GS genotype are known, we sought to estimate whether the prevalence of GS is higher in the parents of neonates with severe unexplained indirect hyperbilirubinemia.DESIGN AND SETTING: Case-control study of parents of neonates with severe unexplained indirect hyperbilirubinemia admitted to a neonatal ward.METHODS: We used the rifampin test (checked bilirubin before and 4 hours after administration of 600 mg rifampin) for diagnosis of GS in parents of 115 neonates with severe unexplained indirect hyperbilirubinemia. We compared the prevalence of GS in these parents with that of a control group of 115 couples referred for premarital counseling.RESULTS: The 115 neonates were aged 5.2 (1.6) days (mean, standard deviation), all were breast-fed, and males constituted 56.5%. Mean total serum bilirubin (TSB) level was 20.96 (5.48) mg/dL. 14.8% were glucose 6 phosphate dehydrogenase (G6PD) deficiency was present in 14.8%, and 10.4% had A, B or O blood group (ABO) incompatibilities with their mothers. There was no difference in the prevalence of GS between parents of the group with hyperbilirubinemia (22.2%) and the control group (19.13%) (P=.42). Mean TSB in neonates with parents who had GS was more (about 3 mg/dL) than in neonates with normal parents (P=.004). Fathers had GS twice as often as the mothers among the parents of neonates with hyperbilirubinemia (P=.003), among the control group (P=.009) and among neonates (P=.014).CONCLUSION: This study showed that GS cannot cause severe indirect hyperbilirubinemia by itself, but it may have a summative effect on rising bilirubin when combined with other factors, for example, G6PD. Our results showed that in GS, males are affected about twice as much as the females.", "How molecular biology can improve clinical management: the MammaPrint experience.", "Mouse coding region determinant-binding (mCRD-BP) and human IGF-II mRNA-binding 1 (hIMP-1) proteins are orthologous mRNA-binding proteins that recognize c-myc and IGF-II mRNA, respectively, and regulate their expression posttranscriptionally. Here, we confirm that human CRD-BP/IMP-1 binds to c-myc mRNA and that it is predominantly expressed in fetal tissues. Moreover, hCRD-BP/IMP-1 expression was detected in cell lines of neoplastic origin and in selected primary tumors. In a series of 33 malignant and 10 benign mesenchymal tumors, 73% and 40%, respectively, were found to express hCRD-BP/IMP-1. In particular, expression was significant in 14 Ewing's sarcomas, all of which were positive. The data suggest that hCRD-BP/IMP-1 plays a role in abnormal cell proliferation in mesenchymal tumors.", "BACKGROUND AND AIMS: Hepcidin is an iron homoeostasis regulator peptide. Loss-of-function mutations cause juvenile haemochromatosis while its over-expression results in anaemia. However, the mechanism and function of preprohepcidin conversion to mature hepcidins (25, 22 and 20 amino acid C-terminal peptides) are not well known. After removal of the signal peptide, the first proteolytic cleavage occurs within the basic motif RRRRR(59)DT, suggesting the involvement of proprotein convertase (PC) family members in this process.METHODS AND RESULTS: Using cell transfection experiments, the processing of preprohepcidin in the human hepatocyte line Huh-7 was found to be inhibited by the Furin inhibitors serpin alpha1-antitrypsin (alpha1-PDX) and prosegment preproFurin (ppFurin). Site-directed mutagenesis analysis confirmed the RRRRR(59)DT preprohepcidin cleavage site. In parallel, the lack of preprohepcidin processing found in the PC activity-deficient cell line LoVo was restored by the expression of Furin, paired basic amino acid cleaving enzyme 4 (PACE4), PC5 or PC7. This finding is consistent with the in vitro digestions of a synthetic peptide mimicking the cleavage site of preprohepcidin. In addition, during mouse embryonic development the major expression of hepcidin found in the liver coincided with that of Furin. While hepcidin induces the degradation of the iron transporter ferroportin, its RRRRR(59) to SSSSS(59) mutant is not active.CONCLUSIONS: These results demonstrate the key role of the convertases Furin, PACE4, PC5 and/or PC7 in the generation and secretion of active hepcidin and suggest that the control of hepcidin processing as a potential therapeutic/diagnostic strategy in hepcidin-related disorders such as haemochromatosis, inflammatory diseases, anaemia and cancer.", "Giant axonal neuropathy (GAN, MIM: 256850) is a devastating autosomal recessive disorder characterized by an early onset severe peripheral neuropathy, varying central nervous system involvement and strikingly frizzly hair. Giant axonal neuropathy is usually caused by mutations in the gigaxonin gene (GAN) but genetic heterogeneity has been demonstrated for a milder variant of this disease. Here, we report ten patients referred to us for molecular genetic diagnosis. All patients had typical clinical signs suggestive of giant axonal neuropathy. In seven affected individuals, we found disease causing mutations in the gigaxonin gene affecting both alleles: two splice-site and four missense mutations, not reported previously. Gigaxonin binds N-terminally to ubiquitin activating enzyme E1 and C-terminally to various microtubule associated proteins causing their ubiquitin mediated degradation. It was shown for a number of gigaxonin mutations that they impede this process leading to accumulation of microtubule associated proteins and there by impairing cellular functions.", "Base-excision of a self-complementary oligonucleotide with central G:T mismatches by the G:T/U-specific mismatch DNA glycosylase (MUG), generates an unusual DNA structure which is remarkably similar in conformation to an interstrand DNA adduct of the anti-tumor drug cis-diamminedichloroplatinum. The abasic sugars generated by excision of the mismatched thymines are extruded from the double-helix, and the 'widowed' deoxyguanosines rotate so that their N7 and O6 groups protrude into the minor groove of the duplex and restack in an interleaved intercalative geometry, generating a kink in the helix axis.", "MALDI imaging mass spectrometry is a powerful tool for morphology-based proteomic tissue analysis. However, peptide identification is still a major challenge due to low S/N ratios, low mass accuracy and difficulties in correlating observed m/z species with peptide identities. To address this, we have analyzed tryptic digests of formalin-fixed paraffin-embedded tissue microarray cores, from 31 ovarian cancer patients, by LC-MS/MS. The sample preparation closely resembled the MALDI imaging workflow in order to create representative reference data sets containing peptides also observable in MALDI imaging experiments. This resulted in 3844 distinct peptide sequences, at a false discovery rate of 1%, for the entire cohort and an average of 982 distinct peptide sequences per sample. From this, a total of 840 proteins and, on average, 297 proteins per sample could be inferred. To support the efforts of the Chromosome-centric Human Proteome Project Consortium, we have annotated these proteins with their respective chromosome location. In the presented work, the benefit of using a large cohort of data sets was exemplified by correct identification of several m/z species observed in a MALDI imaging experiment. The tryptic peptide data sets generated will facilitate peptide identification in future MALDI imaging studies on ovarian cancer.", "Diamond Blackfan Anemia (DBA) is a rare hypoplastic anemia that presents in infancy with macrocytic anemia and reticulocytopenia. It is a ribosomopathy with autosomal dominant inheritance. In our series of 10 patients with DBA, congenital malformations were observed in 50% of the cases. Age at symptom onset ranged from 0-12 months. Age at diagnosis ranged from 4 months to 96 months. Male: female ratio was 9:1. Response to prednisolone was observed in 4 out of the 10 patients (either during initial treatment or during re-challenge). Response to cyclosporine was found to be poor. Bone marrow transplantation was successful in attaining remission in one patient. Malignancies were not reported in any patient possibly due to a short follow up period.", "The discovery of hepcidin clarified the basic mechanism of the control of systemic iron homeostasis. Hepcidin is mainly produced by the liver as a propeptide and processed by furin into the mature active peptide. Hepcidin binds ferroportin, the only cellular iron exporter, causing the internalization and degradation of both. Thus hepcidin blocks iron export from the key cells for dietary iron absorption (enterocytes), recycling of hemoglobin iron (the macrophages) and the release of storage iron from hepatocytes, resulting in the reduction of systemic iron availability. The BMP/HJV/SMAD pathway is the major regulator of hepcidin expression that responds to iron status. Also inflammation stimulates hepcidin via the IL6/STAT3 pathway with a support of an active BMP/HJV/SMAD pathway. In some pathological conditions hepcidin level is inadequately elevated and reduces iron availability in the body, resulting in anemia. These conditions occur in the genetic iron refractory iron deficiency anemia and the common anemia of chronic disease (ACD) or anemia of inflammation. Currently, there is no definite treatment for ACD. Erythropoiesis-stimulating agents and intravenous iron have been proposed in some cases but they are scarcely effective and may have adverse effects. Alternative approaches aimed to a pharmacological control of hepcidin expression have been attempted, targeting different regulatory steps. They include hepcidin sequestering agents (antibodies, anticalins, and aptamers), inhibitors of BMP/SMAD or of IL6/STAT3 pathway or of hepcidin transduction (siRNA/shRNA) or ferroportin stabilizers. In this review we summarized the biochemical interactions of the proteins involved in the BMP/HJV/SMAD pathway and its natural inhibitors, the murine and rat models with high hepcidin levels currently available and finally the progresses in the development of hepcidin antagonists, with particular attention to the role of heparins and heparin sulfate proteoglycans in hepcidin expression and modulation of the BMP6/SMAD pathway.", "BACKGROUND: Restless legs syndrome (RLS) is a common sensory-motor disorder characterized by paresthesias and an intense urge to move the legs with a considerable familial aggregation. To date, no gene mutation has been found, but five gene loci have been mapped in primary RLS to chromosomes 12q, 14q, 9p, 2q, and 20p (RLS1 through 5).PATIENTS/METHODS: We identified a four-generational German RLS family with 37 family members including 15 affected cases. We performed linkage analysis using microsatellite markers at the five known loci. Prompted by the identification of a potentially shared haplotype near the RLS3 locus, we expanded the investigated linkage region on chromosome 9p using additional DNA markers.RESULTS: Mode of inheritance in our RLS family was compatible with an autosomal dominant pattern, and disease onset was mainly in childhood or adolescence. We excluded linkage to the RLS1, RLS2, RLS4, and RLS5 loci. However, we identified a likely new RLS gene locus (RLS3*) on chromosome 9p with a maximum lod score of 3.60 generated by model-based multipoint linkage analysis. A haplotype flanked by D9S974 and D9S1118 in a 9.9-Mb region, centromeric to RLS3, was shared by all 12 investigated patients. In addition, 11 of them carried a common haplotype extending telomeric to D9S2189 that is located within RLS3.CONCLUSIONS: We demonstrate linkage to a locus on chromosome 9p that is probably distinct from RLS3. Our family with a rather homogeneous phenotype and very early disease onset represents a unique opportunity to further elucidate the genetic causes of the frequent restless leg syndrome.", "Hepcidin is a small liver-derived peptide central in the regulation of systemic iron homeostasis. Although the gene regulation has been extensively studied at transcriptional level, the corresponding effects on the production of bioactive peptide are largely unknown. We therefore applied a proteomics-based approach by combining immunocapture with time-of-flight mass spectrometry to characterize hepcidin-25 produced by hepatocyte-derived cell lines. Similar to its transcriptional regulation, mature hepcidin-25 was strongly secreted upon stimulation with BMPs and IL-6. The immunocaptured peptide down-modulated iron-exporter ferroportin on the monocyte/macrophage surface. Further mass spectrometry-based analyses indicated that hepcidin-25 in its bioactive conformation was very stable in serum and urine and not converted into its smaller isoforms. Hepcidin-25 was processed in the Golgi apparatus from its precursor, while the unprocessed prohepcidin was secreted only when furin-like protease activity was intracellularly inhibited. Furthermore, the amounts of hepatocytic secretion of hepcidin-25 are highly correlated with the gene transcript levels. An unexpected observation was the synergistic effect of BMPs and IL-6 on hepcidin-25 secretion, which points towards cross-talk between iron and inflammatory stimuli. The study underscores hepcidin-25 quantification as a valuable tool to unravel regulatory pathways in iron metabolism.", "Forty bitches in anoestrus for more than six months from the last heat, with a serum progesterone level less than 1 ng/ml were subjected to oestrus induction trials using anti-prolactin drugs and levothyroxine, once daily orally for 20 consecutive days. The mean serum progesterone level among them was found to be 0.57 +/- 0.03 ng/ml. Out of 10 animals treated in each group, five (50%) in Group I (bromocriptine @ 50 microg/kg body weight), nine (90%) in Group II (cabergoline @ 5 microg/kg body weight), eight (80%) in Group III (thyroxine @10 microg/kg body weight) and seven (70%) in Group IV (thyroxine @ 5 microg/kg body weight) responded by evincing proestrual bleeding. The mean (+/-SEM) time taken from initiation of treatment to onset of proestrual bleeding in Groups I, II, III and IV was 28 +/- 3.39, 13.44 +/- 3.12 (P < 0.05), 24.50 +/- 3.18 and 33 +/- 2.21 days respectively. The mean (+/-SEM) duration of proestrus and oestrus in the treatment groups was 9.80 +/- 0.86, 10.11 +/- 0.68, 11.25 +/- 0.88 and 10.71 +/- 0.68 days and 7.60 +/- 0.24, 8 +/- 0.29, 8.5 +/- 0.63 and 7.85 +/- 0.46 days respectively. The conception rate in relation to the number of animals responding to oestrus induction in the treatment groups was 80%, 78%, 63% and 57%, respectively. The mean (+/-SEM) gestation length calculated from the last breeding date and litter size in the treatment groups varied from 60.50 +/- 1.55 to 64.00 +/- 0.82 days and 5.14 +/- 0.34 to 6.40 +/- 0.40 respectively.", "Mutations in MBTPS2 have been reported to cause a broad phenotypic spectrum of X-linked genodermatoses, including IFAP (ichthyosis follicularis; atrichia and photophobia) syndrome (OMIM 308205) with or without BRESHECK (brain anomalies, retardation of mentality and growth, ectodermal dysplasia, skeletal malformations, Hirschsprung disease, ear deformity and deafness, eye hypoplasia, cleft palate, cryptorchidism, and kidney dysplasia/hypoplasia) syndrome, keratosis follicularis spinulosa decalvans (KFSD; OMIM 308800) and an X-linked form of Olmsted syndrome. We report a recurrent intronic mutation in MBTPS2 (c.671-9T>G) in a Chinese patient with the typical triad of IFAP syndrome (i.e. ichthyosis, atrichia and photophobia), along with pachyonychia, palmoplantar and periorificial keratoderma, which were reminiscent of Olmsted syndrome. Interestingly, this mutation was previously reported in two cases of IFAP without keratoderma, which suggests clinical heterogeneicity of the same mutation in MBTPS2. The concomitance of Olmsted syndrome-like features in this patient with IFAP may challenge the existence of the X-linked form of Olmsted syndrome as an independent condition." ]
1,946
[ "Creatine kinase has been utilized as a diagnostic marker for Duchenne muscular dystrophy (DMD), but it correlates less well with the DMD pathological progression. In this study, we hypothesized that muscle-specific microRNAs (miR-1, -133, and -206) in serum may be useful for monitoring the DMD pathological progression, and explored the possibility of these miRNAs as potential non-invasive biomarkers for the disease. By using real-time quantitative reverse transcription-polymerase chain reaction in a randomized and controlled trial, we detected that miR-1, -133, and -206 were significantly over-expressed in the serum of 39 children with DMD (up to 3.20 ± 1.20, 2(-ΔΔCt) ): almost 2- to 4-fold enriched in comparison to samples from the healthy controls (less than 1.15 ± 0.34, 2(-ΔΔCt) ). To determine whether these miRNAs were related to the clinical features of children with DMD, we analyzed the associations compared to creatine kinase. There were very good inverse correlations between the levels of these miRNAs, especially miR-206, and functional performances: high levels corresponded to low muscle strength, muscle function, and quality of life. Moreover, by receiver operating characteristic curves analyses, we revealed that these miRNAs, especially miR-206, were able to discriminate DMD from controls. Thus, miR-206 and other muscle-specific miRNAs in serum are useful for monitoring the DMD pathological progression, and hence as potential non-invasive biomarkers for the disease. There has been a long-standing need for reliable, non-invasive biomarkers for Duchenne muscular dystrophy (DMD). We found that the levels of muscle-specific microRNAs, especially miR-206, in the serum of DMD were 2- to 4-fold higher than in the controls. High levels corresponded to low muscle strength, muscle function, and quality of life (QoL). These miRNAs were able to discriminate DMD from controls by receiver operating characteristic (ROC) curves analyses. Thus, miR-206 and other muscle-specific miRNAs are useful as non-invasive biomarkers for DMD.", "Prostate cancer screening of asymptomatic men is not recommended by the National Screening Council at present and is not encouraged in the NHS. A number of randomised controlled trials are under way to establish the place of routine screening of asymptomatic men. We report the possible practice of prostate cancer screening with reference to the appropriate age range for screening, how to screen for prostate cancer and how often, and what constitutes an abnormal result that would merit referral to a urologist for a prostate biopsy.", "The metabolic syndrome is a constellation of risk factors including glucose dysregulation, central obesity, dyslipidemia, and hypertension. There are multiple definitions that have been described by various health organizations. However, we do know that insulin resistance plays a major role as the underlying cause for the development and potentiation of the metabolic syndrome. At present, it is unclear if the diagnosis of metabolic syndrome is greater than the sum of its parts. However, the presence of more than one of the associated risk factors should indicate that a patient is at increased risk for developing diabetes, cardiovascular disease and death. Thus, the primary care physician should aggressively treat the metabolic risk factors in their patients to prevent the onset and progression to more severe disease.", "Although typhoid fever has been intensively studied, chronic typhoid carriage still represents a problem for the transmission and persistence of the disease in areas of endemicity. This chronic state is highly associated with the presence of gallstones in the gallbladder of infected carriers upon which Salmonella can form robust biofilms. However, we hypothesize that in addition to gallstones, the gallbladder epithelium aids in the establishment/maintenance of chronic carriage. In this work, we present evidence of the role of the gallbladder epithelium in chronic carriage by a mechanism involving invasion, intracellular persistence, and biofilm formation. Salmonella was able to adhere to and invade polarized gallbladder epithelial cells apically in the absence and presence of bile in a Salmonella pathogenicity island 1 (SPI-1)-dependent manner. Intracellular replication of Salmonella was also evident at 12 and 24 h postinvasion. A flowthrough system revealed that Salmonella is able to adhere to and form extensive bacterial foci on gallbladder epithelial cells as early as 12 h postinoculation. In vivo experiments using a chronic mouse model of typhoid carriage showed invasion and damage of the gallbladder epithelium and lamina propria up to 2 months after Salmonella infection, with an abundant presence of macrophages, a relative absence of neutrophils, and extrusion of infected epithelial cells. Additionally, microcolonies of Salmonella cells were evident on the surface of the mouse gallbladder epithelia up to 21 days postinfection. These data reveal a second potential mechanism, intracellular persistence and/or bacterial aggregation in/on the gallbladder epithelium with luminal cell extrusion, for Salmonella maintenance in the gallbladder.", "Current evidence from experimental studies in animals and humans along with findings from prospective studies indicates beneficial effects of green and black tea as well as chocolate on cardiovascular health, and that tea and chocolate consumption may reduce the risk of stroke. The strongest evidence exists for beneficial effects of tea and cocoa on endothelial function, total and LDL cholesterol (tea only), and insulin sensitivity (cocoa only). The majority of prospective studies have reported a weak inverse association between moderate consumption of coffee and risk of stroke. However, there are yet no clear biological mechanisms whereby coffee might provide cardiovascular health benefits. Awaiting the results from further long-term RCTs and prospective studies, moderate consumption of filtered coffee, tea, and dark chocolate seems prudent.", "Triple A syndrome (alacrima, achalasia, adrenal failure, progressive neurodegenerative disease) is caused by mutations in the AAAS gene which encodes the protein alacrima achalasia adrenal insufficiency neurologic disorder (ALADIN). Our investigation suggests that low bone mineral density (BMD) for age/osteoporosis could be a common but overlooked symptom of unexplained etiology in this rare multisystemic disease.INTRODUCTION: The purpose of this study is to evaluate incidence and etiology of BMD for age/osteoporosis, a possibly overlooked symptom in triple A syndrome.METHODS: Dual-energy X-ray absorptiometry (DXA) of the femoral neck, total hip, lumbar spine, and radius, bone turnover markers, minerals, total alkaline phosphatase (ALP), 25-hydroxy vitamin D (25-OHD), 1,25-dihydroxy vitamin D (1,25-OH2D), intact parathyroid hormone (PTH), and adrenal androgens (dehydroepiandrosterone sulfate (DHEAS) and androstenedione) were measured in five male and four female patients.RESULTS: At time of diagnosis, low BMD for age was suspected on X-ray in seven of nine patients aged 2-11 years (not performed in two patients); normal levels of minerals and ALP were found in nine patients and low levels of adrenal androgens in eight patients (not measured in one patient). Reevaluation 5-35 years after introduction of 12 mg/m(2)/day hydrocortisone showed low BMD for age in two children, osteopenia in one, and osteoporosis in six adults. Normal levels of minerals, ALP, PTH, 1,25-OH2D, procollagen type 1, crosslaps, and osteocalcin were found in all patients. Low levels of adrenal androgens were found in all and 25OHD deficiency in six patients. Body mass index was <25 % for age and sex in eight of nine patients.CONCLUSION: Low BMD for age/osteoporosis in our patients probably is not a result of glucocorticoid therapy but could be the consequence of low level of adrenal androgens, neurological impairment causing physical inactivity, inadequate sun exposure, and protein malnutrition secondary to achalasia. Considering ubiquitous ALADIN expression, low BMD/osteoporosis may be a primary phenotypic feature of the disease. Besides optimizing glucocorticoid dose, physical activity, adequate sun exposure, appropriate nutrition, and vitamin D supplementation, therapy with DHEA should be considered.", "Saethre-Chotzen syndrome (SCS), associated with TWIST-1 mutations, is characterized by premature fusion of cranial sutures. TWIST-1 haploinsufficiency, leads to alterations in suture mesenchyme cellular gene expression patterns, resulting in aberrant osteogenesis and craniosynostosis. We analyzed the expression of the TWIST-1 target, Tyrosine kinase receptor c-ros-oncogene 1 (C-ROS-1) in TWIST-1 haploinsufficient calvarial cells derived from SCS patients and calvaria of Twist-1del/+ mutant mice and found it to be highly expressed when compared to TWIST-1 wild-type controls. Knock-down of C-ROS-1 expression in TWIST-1 haploinsufficient calvarial cells derived from SCS patients was associated with decreased capacity for osteogenic differentiation in vitro. Furthermore, treatment of human SCS calvarial cells with the tyrosine kinase chemical inhibitor, Crizotinib, resulted in reduced C-ROS-1 activity and the osteogenic potential of human SCS calvarial cells with minor effects on cell viability or proliferation. Cultured human SCS calvarial cells treated with Crizotinib exhibited a dose-dependent decrease in alkaline phosphatase activity and mineral deposition, with an associated decrease in expression levels of Runt-related transcription factor 2 and OSTEOPONTIN, with reduced PI3K/Akt signalling in vitro. Furthermore, Crizotinib treatment resulted in reduced BMP-2 mediated bone formation potential of whole Twist-1del/+ mutant mouse calvaria organotypic cultures. Collectively, these results suggest that C-ROS-1 promotes osteogenic differentiation of TWIST-1 haploinsufficient calvarial osteogenic progenitor cells. Furthermore, the aberrant osteogenic potential of these cells is inhibited by the reduction of C-ROS-1. Therefore, targeting C-ROS-1 with a pharmacological agent, such as Crizotinib, may serve as a novel therapeutic strategy to alleviate craniosynostosis associated with aberrant TWIST-1 function." ]
1,948
[ "Thrombotic thrombocytopenic purpura (TTP) is a rare microangiopathic disorder with high morbidity and significant mortality. The primary form of TTP is caused by severe deficiency, acquired or hereditary, of the von Willebrand factor cleaving protease (VWF-CP), ADAMTS-13. Because TTP occurs less frequently in children, general pediatricians are not well informed about the spectrum of clinical symptoms and altered laboratory values, increasing the risk of nondiagnosis and possible fatal outcome. If renal involvement is present, the condition can easily be misdiagnosed as hemolytic-uremic syndrome (HUS). We present a case series of children with severe VWF-CP deficiency with emphasis on the clinical heterogeneity responsible for misdiagnosis and inappropriate treatment. The inherited form may involve onset of symptoms ranging from isolated thrombocytopenia to the full clinical picture characteristic of classical TTP. The most common assumed diagnoses of oligosymptomatic forms are immune thrombocytopenia (ITP) and Evans syndrome, respectively. Accordingly, this article is directed towards pediatricians on neonatal and intensive care units, as well as their colleagues specializing in nephrology, hematology, and neurology.", "Transcriptional initiation of each gene is assumed to be independently controlled in mammals. On the other hand, recent large-scale transcriptome analyses have shown that the genome is pervasively transcribed, such that the most of its DNA gives rise to RNAs. This raises the question of whether it is possible to pinpoint and activate a particular locus without perturbing numerous neighbouring transcripts. Here we show that intensive transcription at one locus frequently spills over into its physical neighbouring loci. Rapid induction of immediate-early genes (IEGs) in response to growth factor stimulations is accompanied by co-upregulation of their neighbouring genes. Profiling the primary transcripts in the nucleus with whole-genome tiling arrays delineated simultaneous activation of transcription centred on IEGs. Even in surrounding intergenic regions, transcriptional activation took place at the same time. Acetylation levels of histone H3 and H4 are elevated along with the IEG induction and neighbouring co-upregulation. Inhibition of the mitogen-activated protein kinase (MAPK) pathway or the transcription factor SRF suppresses all transcriptional upregulation. These results suggest that transcriptional activation has a ripple effect, which may be advantageous for coordinated expression.", "OBJECTIVE: To evaluate the psychosocial impact of participation in a population-based prostate-specific antigen (PSA) testing programme, akin to screening, and to explore the relationship between urinary symptoms reported before PSA testing and the response to the subsequent PSA result.PATIENTS AND METHODS: This prospective questionnaire study was nested within the case-finding component of the ProtecT (prostate testing for cancer and treatment) feasibility study (ISRCTN20141297). Men aged 50-69 years from 18 general practices in three cities in the UK completed the Hospital Anxiety and Depression Scale (HADS), the Short Form-12 (SF-12) Health Survey, and the International Continence Society 'male' (ICSmale) questionnaires before giving consent for a PSA test in a community clinic (baseline). Men with an 'abnormal' PSA result returned for further investigation (including biopsy) and repeated these questionnaires before biopsy.RESULTS: At baseline, study participants had similar levels of anxiety and depression to the general male population. There was no increase in the HADS scores, or reduction in the SF-12 mental health component summary score, on attendance at the biopsy clinic after receiving an 'abnormal' PSA result. Urinary symptoms were associated with levels of anxiety and depression before receiving a PSA result (baseline), but were not associated with anxiety and depression at biopsy independently of baseline scores. Therefore changes in anxiety or depression at biopsy did not appear to differ between those with and without urinary symptoms.CONCLUSIONS: This study confirms the findings of other studies that the deleterious effects of receiving an abnormal PSA result during population screening are not identified by generic health-status questionnaires. Comparisons with outcomes of studies measuring cancer-specific distress and using qualitative research methods raise the question of whether a prostate cancer screening-specific instrument is required. However, a standardized measure of anxiety identified differences at baseline between those who did and did not report urinary symptoms. These findings suggest that it might be advisable to better inform men undergoing PSA testing about the uncertain relationship between urinary symptoms and prostate cancer, to minimize baseline levels of psychological distress.", "Nephrotic syndrome represents a constellation of symptoms including hyperalbuminuria, hypoalbuminemia, edema formation, hypercholesterolemia, hypertension, hypercoagulopathy, and increased infection risk. The hallmark of this syndrome is proteinuria greater than 3.5 grams per 24 hours, and the clinical features are secondary manifestations of an underlying primary glomerular or systemic disease. The objectives of treatment are threefold: correcting the primary disease, decreasing the symptoms and secondary effects associated with this syndrome, and preventing complications. This article presents a case report of a man diagnosed with nephrotic syndrome secondary to amyloidosis. The clinical aspects of the disease processes, the diagnostic evaluation, the treatment course, and disease management are discussed.", "The concept of immunotherapy of cancer is more than a century old, but only recently have molecularly defined therapeutic approaches been developed. In this review, we focus on the most promising approach, active therapeutic vaccination. The identification of tumour antigens can now be accelerated by methods allowing the amplification of gene products selectively or preferentially transcribed in the tumour. However, determining the potential immunogenicity of such gene products remains a demanding task, since major histocompatibility complex (MHC) restriction of T cells implies that for any newly defined antigen, immunogenicity will have to be defined for any individual MHC haplotype. Tumour-derived peptides eluted from MHC molecules of tumour tissue are also a promising source of antigen. Tumour antigens are mostly of weak immunogenicity, because the vast majority are tumour-associated differentiation antigens already 'seen' by the patient's immune system. Effective therapeutic vaccination will thus require adjuvant support, possibly by new approaches to immunomodulation such as bispecific antibodies or antibody-cytokine fusion proteins. Tumour-specific antigens, which could be a more potent target for immunotherapy, mostly arise by point mutations and have the disadvantage of being not only tumour-specific, but also individual-specific. Therapeutic vaccination will probably focus on defined antigens offered as protein, peptide or nucleic acid. Irrespective of the form in which the antigen is applied, emphasis will be given to the activation of dendritic cells as professional antigen presenters. Dendritic cells may be loaded in vitro with antigen, or, alternatively, initiation of an immune response may be approached in vivo by vaccination with RNA or DNA, given as such or packed into attenuated bacteria. The importance of activation of T helper cells has only recently been taken into account in cancer vaccination. Activation of cytotoxic T cells is facilitated by the provision of T helper cell-derived cytokines. T helper cell-dependent recruitment of elements of non-adaptive defence, such as leucocytes, natural killer cells and monocytes, is of particular importance when the tumour has lost MHC class I expression. Barriers to successful therapeutic vaccination include: (i) the escape mechanisms developed by tumour cells in response to immune attack; (ii) tolerance or anergy of the evoked immune response; (iii) the theoretical possibility of provoking an autoimmune reaction by vaccination against tumour-associated antigens; and (iv) the advanced age of many patients, implying reduced responsiveness of the senescent immune system.", "Molecular tools that can provide an estimate of the in situ growth rate of Geobacter species could improve understanding of dissimilatory metal reduction in a diversity of environments. Whole-genome microarray analyses of a subsurface isolate of Geobacter uraniireducens, grown under a variety of conditions, identified a number of genes that are differentially expressed at different specific growth rates. Expression of two genes encoding ribosomal proteins, rpsC and rplL, was further evaluated with quantitative reverse transcription-PCR (qRT-PCR) in cells with doubling times ranging from 6.56 h to 89.28 h. Transcript abundance of rpsC correlated best (r(2) = 0.90) with specific growth rates. Therefore, expression patterns of rpsC were used to estimate specific growth rates of Geobacter species during an in situ uranium bioremediation field experiment in which acetate was added to the groundwater to promote dissimilatory metal reduction. Initially, increased availability of acetate in the groundwater resulted in higher expression of Geobacter rpsC, and the increase in the number of Geobacter cells estimated with fluorescent in situ hybridization compared well with specific growth rates estimated from levels of in situ rpsC expression. However, in later phases, cell number increases were substantially lower than predicted from rpsC transcript abundance. This change coincided with a bloom of protozoa and increased attachment of Geobacter species to solid phases. These results suggest that monitoring rpsC expression may better reflect the actual rate that Geobacter species are metabolizing and growing during in situ uranium bioremediation than changes in cell abundance.", "The general transcription factor TFIIB plays a central role in preinitiation complex (PIC) assembly and the recruitment of RNA polymerase II (RNA pol II) to the promoter. Recent studies have revealed that TFIIB engages in contact with the transcription termination region and also with complexes that are involved in 3' end processing and/or termination. Here we report that TFIIB can be phosphorylated within the N terminus at serine 65 in vivo and that the phosphorylated form of TFIIB is present within (PICs). Surprisingly, TFIIB serine 65 phosphorylation is required after the phosphorylation of serine 5 of RNA pol II C-terminal domain (CTD) has occurred, but before productive transcription initiation begins. We show that phosphorylation of TFIIB at serine 65 regulates the interaction between TFIIB and the CstF-64 component of the CstF 3' cleavage and polyadenylation complex. This directs the recruitment of CstF (cleavage stimulatory factor) to the terminator and also the recruitment of the CstF and CPSF (cleavage and polyadenylation specific factor) complexes to the promoter. Our results reveal that phosphorylation of TFIIB is a critical event in transcription that links the gene promoter and terminator and triggers initiation by RNA pol II." ]
1,952
[ "Telomere length is regulated around an equilibrium set point. Telomeres shorten during replication and are lengthened by telomerase. Disruption of the length equilibrium leads to disease; thus, it is important to understand the mechanisms that regulate length at the molecular level. The prevailing protein-counting model for regulating telomerase access to elongate the telomere does not explain accumulating evidence of a role of DNA replication in telomere length regulation. Here I present an alternative model: the replication fork model that can explain how passage of a replication fork and regulation of origin firing affect telomere length.", "It has been recently shown that DNA methyl transferase overexpression is correlated with unfavourable prognosis in human malignancies while methylation deregulation remains a hallmark that defines acute myeloid leukemia (AML). The oncogenic transcription factor EVI1 is involved in methylation deregulation and its overexpression plays a major role for predicting an adverse outcome. Moreover, the identification of DNMT3A mutations in AML patients has recently been described as a poor prognostic indicator. In order to clarify relationship between these key actors in methylation mechanisms and their potential impact on patient outcomes, we analysed 195 de novo AML patients for the expression of DNMT3A, 3B (and its non-catalytic variant 3B(NC)) and their correlations with the outcome and the expression of other common prognostic genetic biomarkers (EVI1, NPM1, FLT3ITD/TKD and MLL) in adult AML. The overexpression of DNMT3B/3B(NC) is (i) significantly correlated with a shorter overall survival, and (ii) inversely significantly correlated with event-free survival and DNMT3A expression level. Moreover, multivariate analysis showed that a high expression level of DNMT3B/3B(NC) is statistically a significant independent poor prognostic indicator. This study represents the first report showing that the overexpression of DNMT3B/3B(NC) is an independent predictor of poor survival in AML. Its quantification should be implemented to the genetic profile used to stratify patients for therapeutical strategies and should be useful to identify patients who may benefit from therapy based on demethylating agents.", "Severe malaria caused by Plasmodium falciparum poses a major global health problem with high morbidity and mortality. P. falciparum harbors a family of pore-forming proteins (PFPs), known as perforin like proteins (PLPs), which are structurally equivalent to prokaryotic PFPs. These PLPs are secreted from the parasites and, they contribute to disease pathogenesis by interacting with host cells. The severe malaria pathogenesis is associated with the dysfunction of various barrier cells, including endothelial cells (EC). Several factors, including PLPs secreted by parasites, contribute to the host cell dysfunction. Herein, we have tested the hypothesis that PLPs mediate dysfunction of barrier cells and might have a role in disease pathogenesis. We analyzed various dysfunctions in barrier cells following rPLP2 exposure and demonstrate that it causes an increase in intracellular Ca2+ levels. Additionally, rPLP2 exposed barrier cells displayed features of cell death, including Annexin/PI positivity, depolarized the mitochondrial membrane potential, and ROS generation. We have further performed the time-lapse video microscopy of barrier cells and found that the treatment of rPLP2 triggers their membrane blebbing. The cytoplasmic localization of HMGB1, a marker of necrosis, further confirmed the necrotic type of cell death. This study highlights the role of parasite factor PLP in endothelial dysfunction and provides a rationale for the design of adjunct therapies against severe malaria.", "Multicentric Castleman's disease is a polyclonal lymphoproliferative disorder. Recently, a new variant of the disease was reported and named TAFRO syndrome, an acronym for thrombocytopenia, ascites, myelofibrosis, renal dysfunction, and organomegaly. A 55-year-old woman presented to our hospital with dyspnea on exertion and high fever. Laboratory tests revealed anemia, thrombocytopenia, and proteinuria. Computed tomography (CT) revealed a large anterior mediastinal mass, mild splenomegaly, bilateral pleural effusion, pericardial effusion, and mild systemic lymphadenopathy. A CT-guided biopsy was unable to establish a definitive diagnosis, so we resected the mediastinal mass for diagnostic and therapeutic purposes. Pathological findings were consistent with the hyaline vascular type of Castleman's disease (CD), and she was diagnosed with TAFRO syndrome. There has been no description of a patient with TAFRO syndrome with a large mass, and this is the first case of TAFRO syndrome treated with debulking surgery.", "BACKGROUND: Maternal serum triple marker screening (alpha-fetoprotein, human chorionic gonadotropin, and unconjugated estriol) can detect 60-70% of Down syndrome and 60% of Edwards syndrome. Previous studies have reported that positive serum screening is related to other fetal chromosomal abnormalities, pregnancy complications, and adverse outcomes. We determined the incidence and karyotype of chromosomal abnormalities in screen positive women and evaluated a relationship between chromosomal and ultrasonographic abnormalities.METHODS: Of the 49,806 pregnant women between 15 and 23 weeks' gestational age who received prenatal serum screening with a cut-off value (a risk of 1:270 for Down and 1:100 for Edwards syndrome), 2,116 (4.2%) and 196 (0.4%) were screen positive for Down syndrome and for Edwards syndrome, respectively. Chromosomal analysis in amniotic fluid was performed for 1,893 (89.5%) of the Down positive and 140 (71.4%) of the Edwards positive pregnant women. Ultrasonographic examination was performed to detect fetal abnormalities.RESULTS: Eighty-three cases of chromosomal abnormalities including 40 trisomy 21 (2.1%) and 43 other chromosomal abnormalities (2.3%) were identified in the Down screen positive. Other chromosomal abnormalities included 9 numerical and 34 structural abnormalities. Ten cases of chromosomal abnormalities (9 trisomy 18 and 1 trisomy 9) were detected in the Edwards screen positive. Ultrasonographic abnormalities were found more frequently in the women who had chromosomal aberrations.CONCLUSIONS: These data suggest that 4.4% of the Down screen and 7.1% of the Edwards screen positive pregnancy have fetal chromosomal abnormalities. Positive Down screening results reflect a relatively high probability of other abnormalities except trisomy 21. Edwards screen positive group show a low frequency of other chromosomal abnormalities except trisomy 18. A simultaneous use of maternal serum screening and ultrasonograms could be useful for the diagnosis of fetal abnormalities.", "Certain autoimmune and chronic inflammatory conditions, such as Sjögren's syndrome and rheumatoid arthritis (RA), have consistently been associated with an increased risk of malignant lymphomas, but it is unclear whether elevated lymphoma risk is a phenomenon that accompanies inflammatory conditions in general. Likewise, it is debated whether the increased risk identified in association with some disorders pertains equally to all individuals or whether it varies among groups of patients with different phenotypic or treatment-related characteristics. It is similarly unclear to what extent the increased lymphoma occurrence is mediated through specific lymphoma subtypes. This update reviews the many findings on risks, risk levels, and lymphoma characteristics that have been presented recently in relation to a broad range of chronic inflammatory, including autoimmune, conditions. Recent results clearly indicate an association between severity of chronic inflammation and lymphoma risk in RA and Sjögren's syndrome. Thus, the average risk of lymphoma in RA may be composed of a markedly increased risk in those with most severe disease and little or no increase in those with mild or moderate disease. The roles of immunosuppressive therapy and EBV infection seem to be limited. Furthermore, RA, Sjögren's syndrome, systemic lupus erythematosus, and possibly celiac disease may share an association with risk of diffuse large B-cell lymphoma, in addition to well-established links of Sjögren's syndrome with risk of mucosa-associated lymphoid tissue lymphoma and of celiac disease with risk of small intestinal lymphoma. However, there is also obvious heterogeneity in risk and risk mediators among different inflammatory diseases.", "SUMMARY: Transcription factors regulate gene expression by binding to specific short DNA sequences of 5-20 bp to regulate the rate of transcription of genetic information from DNA to messenger RNA. We present PWMScan, a fast web-based tool to scan server-resident genomes for matches to a user-supplied PWM or transcription factor binding site model from a public database.AVAILABILITY AND IMPLEMENTATION: The web server and source code are available at http://ccg.vital-it.ch/pwmscan and https://sourceforge.net/projects/pwmscan, respectively.SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.", "Pathological conditions, including ischemia and heart failure, are associated with altered sodium channel function and increased late sodium current (I(Na,L)), leading to prolonged action potential duration, increased intracellular sodium and calcium concentrations, and arrhythmias. We used anemone toxin (ATX)-II to study the effects of increasing I(Na,L) on intracellular calcium cycling in rat isolated hearts. Cardiac contraction was abolished using paralytic agents. Ranolazine (RAN) was used to inhibit late I(Na). Hearts were loaded with fluo-4-acetoxymethyl ester, and myocyte intracellular calcium transients (CaTs) were measured using laser scanning confocal microscopy. ATX (1 nM) prolonged CaT duration at 50% recovery in hearts paced at a basal rate of 2 Hz and increased the sensitivity of the heart to the development of calcium alternans caused by fast pacing. ATX increased the time required for recovery of CaT amplitude following a previous beat, and ATX induced spontaneous calcium release waves during rapid pacing of the heart. ATX prolonged the duration of repolarization from the initiation of the activation to terminal repolarization in the pseudo-electrocardiogram. All actions of ATX were both reversed and prevented by subsequent or prior exposure, respectively, of hearts to RAN (10 microM). Most importantly, the increased vulnerability of the heart to the development of calcium alternans during rapid pacing was reversed or prevented by 10 microM RAN. These results suggest that enhancement of I(Na,L) alters calcium cycling. Reduction by RAN of I(Na,L)-induced dysregulation of calcium cycling could contribute to the antiarrhythmic actions of this agent in both reentrant and triggered arrhythmias.", "Plain Language Summary: Insulin is a hormone critical for maintaining healthy blood sugar levels in humans. When the insulin system becomes faulty, blood sugar levels become too high, which can lead to diabetes. At the moment, the only effective treatment for one of the major types of diabetes are daily insulin injections. However, designing fast-acting insulin drugs has remained a challenge. Insulin molecules form clusters (so-called hexamers) that first have to dissolve in the body to activate the insulin receptor, which plays a key role in regulating the blood sugar levels throughout the body. This can take time and can therefore delay the blood-sugar control. In 2015, researchers discovered that the fish-hunting cone snail Conus geographus uses a specific type of insulin to capture its prey – fish. The cone snail releases insulin into the surrounding water and then engulfs its victim with its mouth. This induces dangerously low blood sugar levels in the fish and so makes them an easy target. Unlike the human version, the snail insulin does not cluster, and despite structural differences, can bind to the human insulin receptor. Now, Ahorukomeye, Disotuar et al. – including some of the authors involved in the previous study – wanted to find out whether other fish-hunting cone snails also make insulins and if they differed from the one previously discovered in C. geographus. The insulin molecules were extracted and analyzed, and the results showed that the three cone snail species had different versions of insulin – but none of them formed clusters. Ahorukomeye, Disotuar et al. further revealed that the snail insulins could bind to the human insulin receptors and could also reverse high blood sugar levels in fish and mouse models of the disease. This research may help guide future studies looking into developing fast-acting insulin drugs for diabetic patients. A next step will be to fully understand how snail insulins can be active at the human receptor without forming clusters. Cone snails solved this problem millions of years ago and by understanding how they have done this, researchers are hoping to redesign current diabetic therapeutics. Since the snail insulins do not form clusters and should act faster than currently available insulin drugs, they may lead to better or new diabetes treatments.", "Recently introduced into the market, belimumab (Benlysta) is a monoclonal antibody that has potential clinically efficacious applications for the treatment of lupus nephritis. Lupus nephritis is a major complication of systemic lupus erythematosus (SLE) that can lead to significant illness or even death without proper intervention and treatment. With vast implications through a novel mechanism, belimumab offers a new standard of treatment for physicians in the complications associated with SLE, specifically lupus nephritis. By targeting B cell signaling and maturation, belimumab is able to mitigate the underlying pathological complications surrounding SLE. Phase 3 clinical trials with belimumab have depicted clinically efficacious applications, suggesting belimumab as a revolutionary breakthrough in the treatment armamentarium for practicing clinicians. This article explains the precise mechanism of action of belimumab on the soluble protein BlyS that plays a major role in the pathogenesis of lupus nephritis. In addition, the extensive pharmacokinetics and clinical implications are exemplified in this review with belimumab's comparison with standard therapeutic guidelines for the treatment of lupus nephritis.", "One of the central systems responsible for bacterial motility is the flagellum. The bacterial flagellum is a macromolecular protein complex that is more than five times the cell length. Flagella-driven motility is coordinated via a chemosensory signal transduction pathway, and so bacterial cells sense changes in the environment and migrate towards more desirable locations. The flagellum of Salmonella enterica serovar Typhimurium is composed of a bi-directional rotary motor, a universal joint and a helical propeller. The flagellar motor, which structurally resembles an artificial motor, is embedded within the cell envelop and spins at several hundred revolutions per second. In contrast to an artificial motor, the energy utilized for high-speed flagellar motor rotation is the inward-directed proton flow through a transmembrane proton channel of the stator unit of the flagellar motor. The flagellar motor realizes efficient chemotaxis while performing high-speed movement by an ingenious directional switching mechanism of the motor rotation. To build the universal joint and helical propeller structures outside the cell body, the flagellar motor contains its own protein transporter called a type III protein export apparatus. In this chapter we summarize the structure and assembly of the Salmonella flagellar motor complex.", "A 60-year-old man diagnosed clinically with Becker's muscular dystrophy 20 years ago by another physician presented with gradually progressive proximal muscle weakness since teenage years. Family history revealed a strong paternal familial inheritance pattern of similar distribution of weakness-face, forearm flexion, knee extension and foot dorsiflexion. Work-ups revealed B12 deficiency and allele 1 deletion in fascioscapulohumeral muscular dystrophy (FSHD) DNA testing. FSHD is the third most common muscular dystrophy. Clinical diagnosis is made from the distinctive pattern of weakness, autosomal-dominant inheritance, and confirmed by genetic testing. This case strongly demonstrates the importance of a thorough and careful clinical evaluation even in a case with a long standing diagnosis.", "Telomerase-mediated telomere elongation provides cell populations with the ability to proliferate indefinitely. Telomerase is capable of recognizing and extending the shortest telomeres in cells; nevertheless, how this mechanism is executed remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, shortened telomeres are highly transcribed into the evolutionarily conserved long noncoding RNA TERRA A fraction of TERRA produced upon telomere shortening is polyadenylated and largely devoid of telomeric repeats, and furthermore, telomerase physically interacts with this polyadenylated TERRA in vivo We also show that experimentally enhanced transcription of a manipulated telomere promotes its association with telomerase and concomitant elongation. Our data represent the first direct evidence that TERRA stimulates telomerase recruitment and activity at chromosome ends in an organism with human-like telomeres.", "Telomeres progressively shorten throughout life. A hallmark of advanced malignancies is the ability for continuous cell divisions that almost universally correlates with the stabilization of telomere length by the reactivation of telomerase. The repression of telomerase and shorter telomeres in humans may have evolved, in part, as an anticancer protection mechanism. Although there is still much we do not understand about the regulation of telomerase, it remains a very attractive and novel target for cancer therapeutics. This review focuses on the current state of advances in the telomerase area, identifies outstanding questions, and addresses areas and methods that need refinement.SIGNIFICANCE: Despite many recent advances, telomerase remains a challenging target for cancer therapy. There are few telomerase-directed therapies, and many of the assays used to measure telomeres and telomerase have serious limitations. This review provides an overview of the current state of the field and how recent advances could affect future research and treatment approaches. Cancer Discov; 6(6); 584-93. ©2016 AACR.", "A current question in the high-order organization of chromatin is whether topologically associating domains (TADs) are distinct from other hierarchical chromatin domains. However, due to the unclear TAD definition in tradition, the structural and functional uniqueness of TAD is not well studied. In this work, we refined TAD definition by further constraining TADs to the optimal separation on global intra-chromosomal interactions. Inspired by this constraint, we developed a novel method, called HiTAD, to detect hierarchical TADs from Hi-C chromatin interactions. HiTAD performs well in domain sensitivity, replicate reproducibility and inter cell-type conservation. With a novel domain-based alignment proposed by us, we defined several types of hierarchical TAD changes which were not systematically studied previously, and subsequently used them to reveal that TADs and sub-TADs differed statistically in correlating chromosomal compartment, replication timing and gene transcription. Finally, our work also has the implication that the refinement of TAD definition could be achieved by only utilizing chromatin interactions, at least in part. HiTAD is freely available online.", "Ultraconserved elements (UCEs) are segments of >200 bp length showing absolute sequence identity between orthologous regions of human, rat and mouse genomes. The selection factors acting on these UCEs are still unknown. Recent studies have shown that UCEs function as long-range enhancers of flanking genes or are involved in splicing when overlapping with exons. The depletion of UCEs among copy number variation as well as the significant under-representation of single-nucleotide polymorphisms (SNPs) within UCEs have also revealed their evolutional and functional importance indicating their potential impact on disease, such as cancer. In the present study, we investigated the influence of six SNPs within UCEs on familial breast cancer risk. Two out of six SNPs showed an association with familial breast cancer risk. Whereas rs9572903 showed only a borderline significant association, the frequency of the rare [G] allele of rs2056116 was higher in cases than in controls indicating an increased familial breast cancer risk ([G] versus [A]: odds ratio (OR) = 1.18, 95% confidence interval (CI) 1.06-1.30, P = 0.0020; [GG] versus [AA]: OR = 1.41, 95% CI 1.15-1.74, P = 0.0011). Interestingly, comparing with the older age group, the ORs were increased in woman younger than 50 years of age ([G] versus [A]: OR = 1.27, 95% CI 1.11-1.45, P = 0.0005; [GG] versus [AA]: OR = 1.60, 95% CI 1.22-2.10, P = 0.0007) pointing to an age- or hormone-related effect. This is the first study indicating that SNPs in UCEs might be associated with cancer risk.", "High telomerase activity is detected in nearly all human cancers but most human cells are devoid of telomerase activity. There is well-documented evidence that reactivation of telomerase occurs during cellular transformation. In humans, tumors can rely in reactivation of telomerase or originate in a telomerase positive stem/progenitor cell, or rely in alternative lengthening of telomeres, a telomerase-independent telomere-length maintenance mechanism. In this review, we will focus on the telomerase positive tumors. In this context, the recent findings that telomerase reverse transcriptase (TERT) promoter mutations represent the most common non-coding mutations in human cancer have flared up the long-standing discussion whether cancer originates from telomerase positive stem cells or telomerase reactivation is a final step in cellular transformation. Here, we will discuss the pros and cons of both concepts in the context of telomere length-dependent and telomere length-independent functions of telomerase. Together, these observations may provoke a re-evaluation of telomere and telomerase based therapies, both in telomerase inhibition for cancer therapy and telomerase activation for tissue regeneration and anti-ageing strategies.", "The proteins belonging to the nuclear factor of activated T cells (NFAT) family of transcription factors are expressed in several cell types and regulate genes involved in differentiation, cell cycle and apoptosis. NFAT proteins share two conserved domains, the NFAT-homology region (NHR) and a DNA-binding domain (DBD). The N- and C-termini display two transactivation domains (TAD-N and TAD-C) that have low sequence similarity. Due to the high sequence conservation in the NHR and DBD, NFAT members have some overlapping roles in gene regulation. However, several studies have shown distinct roles for NFAT proteins in the regulation of cell death. The TAD-C shows low sequence similarity among NFAT family members, but its contribution to specific NFAT1-induced phenotypes is poorly understood. Here, we described at least two regions of NFAT1 TAD-C that confer pro-apoptotic activity to NFAT1. These regions extend from amino acids 699 to 734 and 819 to 850 of NFAT1. We also showed that the NFAT1 TAD-C is unable to induce apoptosis by itself and requires a functional DBD. Furthermore, we showed that when fused to NFAT1 TAD-C, NFAT2, which is associated with cell transformation, induces apoptosis in fibroblasts. Together, these results suggest that the NFAT1 TAD-C includes NFAT death domains that confer to different NFAT members the ability to induce apoptosis.", "Pathway analyses are key methods to analyze 'omics experiments. Nevertheless, integrating data from different 'omics technologies and different species still requires considerable bioinformatics knowledge.Here we present the novel ReactomeGSA resource for comparative pathway analyses of multi-omics datasets. ReactomeGSA can be used through Reactome's existing web interface and the novel ReactomeGSA R Bioconductor package with explicit support for scRNA-seq data. Data from different species is automatically mapped to a common pathway space. Public data from ExpressionAtlas and Single Cell ExpressionAtlas can be directly integrated in the analysis. ReactomeGSA greatly reduces the technical barrier for multi-omics, cross-species, comparative pathway analyses.We used ReactomeGSA to characterize the role of B cells in anti-tumor immunity. We compared B cell rich and poor human cancer samples from five of the Cancer Genome Atlas (TCGA) transcriptomics and two of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteomics studies. B cell-rich lung adenocarcinoma samples lacked the otherwise present activation through NFkappaB. This may be linked to the presence of a specific subset of tumor associated IgG+ plasma cells that lack NFkappaB activation in scRNA-seq data from human melanoma. This showcases how ReactomeGSA can derive novel biomedical insights by integrating large multi-omics datasets.", "Aplastic anemia is a fatal bone marrow disorder characterized by peripheral pancytopenia and marrow hypoplasia. The disease can be hereditary or acquired and develops at any stage of life. A subgroup of the inherited form is caused by replicative impairment of hematopoietic stem and progenitor cells due to very short telomeres as a result of mutations in telomerase and other telomere components. Abnormal telomere shortening is also described in cases of acquired aplastic anemia, most likely secondary to increased turnover of bone marrow stem and progenitor cells. Here, we test the therapeutic efficacy of telomerase activation by using adeno-associated virus (AAV)9 gene therapy vectors carrying the telomerase Tert gene in 2 independent mouse models of aplastic anemia due to short telomeres (Trf1- and Tert-deficient mice). We find that a high dose of AAV9-Tert targets the bone marrow compartment, including hematopoietic stem cells. AAV9-Tert treatment after telomere attrition in bone marrow cells rescues aplastic anemia and mouse survival compared with mice treated with the empty vector. Improved survival is associated with a significant increase in telomere length in peripheral blood and bone marrow cells, as well as improved blood counts. These findings indicate that telomerase gene therapy represents a novel therapeutic strategy to treat aplastic anemia provoked or associated with short telomeres." ]
1,960
[ "The nematode worm Caenorhabditis elegans and its relatives are unique among animals in having operons. Operons are regulated multigene transcription units, in which polycistronic pre-messenger RNA (pre-mRNA coding for multiple peptides) is processed to monocistronic mRNAs. This occurs by 3' end formation and trans-splicing using the specialized SL2 small nuclear ribonucleoprotein particle for downstream mRNAs. Previously, the correlation between downstream location in an operon and SL2 trans-splicing has been strong, but anecdotal. Although only 28 operons have been reported, the complete sequence of the C. elegans genome reveals numerous gene clusters. To determine how many of these clusters represent operons, we probed full-genome microarrays for SL2-containing mRNAs. We found significant enrichment for about 1,200 genes, including most of a group of several hundred genes represented by complementary DNAs that contain SL2 sequence. Analysis of their genomic arrangements indicates that >90% are downstream genes, falling in 790 distinct operons. Our evidence indicates that the genome contains at least 1,000 operons, 2 8 genes long, that contain about 15% of all C. elegans genes. Numerous examples of co-transcription of genes encoding functionally related proteins are evident. Inspection of the operon list should reveal previously unknown functional relationships.", "Francisella tularensis causes disease (tularemia) in a large number of mammals, including man. We previously demonstrated enhanced efficacy of conventional antibiotic therapy for tularemia by postexposure passive transfer of immune sera developed against a F. tularensis LVS membrane protein fraction (MPF). However, the protein composition of this immunogenic fraction was not defined. Proteomic approaches were applied to define the protein composition and identify the immunogens of MPF. MPF consisted of at least 299 proteins and 2-D Western blot analyses using sera from MPF-immunized and F. tularensis LVS-vaccinated mice coupled to liquid chromatography-tandem mass spectrometry identified 24 immunoreactive protein spots containing 45 proteins. A reverse vaccinology approach that applied labeling of F. tularensis LVS surface proteins and bioinformatics was used to reduce the complexity of potential target immunogens. Bioinformatics analyses of the immunoreactive proteins reduced the number of immunogen targets to 32. Direct surface labeling of F. tularensis LVS resulted in the identification of 31 surface proteins. However, only 13 of these were reactive with MPF and/or F. tularensis LVS immune sera. Collectively, this use of orthogonal proteomic approaches reduced the complexity of potential immunogens in MPF by 96% and allowed for prioritization of target immunogens for antibody-based immunotherapies against tularemia.", "PURPOSE: Blood culture contamination is still a frequently observed event and may lead to unnecessary antibiotic prescriptions and additional hazards and costs. However, in patients hospitalized in tertiary care, true bacteremias for pathogens that are classically considered as contaminants can be observed. We assessed the diagnostic accuracy of procalcitonin for differentiating blood culture contamination from bacteremia in patients with positive blood cultures for potential contaminants.METHODS: We carried out a retrospective, cross-sectional, observational study on consecutive patients hospitalized between January 2016 and May 2019 at the University Hospital of Nancy and who had a positive peripheral blood culture for a pathogen classically considered as a potential contaminant.RESULTS: During the study period, 156 patients were screened, and 154 were retained in the analysis. Among the variables that were significantly associated with a diagnosis of blood culture contamination in univariate analyses, four were maintained in multivariate logistic regression analysis: a number of positive blood culture bottles ≤ 2 (OR 23.76; 95% CI 1.94-291.12; P = 0.01), procalcitonin < 0.1 ng/mL (OR 14.88; 95% CI 1.62-136.47; P = 0.02), non-infection-related admission (OR 13.00; 95% CI 2.17-77.73; P = 0.005), and a percentage of positive blood culture bottles ≤ 25% (OR 12.15; 95% CI 2.02-73.15; P = 0.006).CONCLUSIONS: These data provide new evidence on the usefulness of plasma procalcitonin as a reliable diagnostic biomarker in the diagnostic algorithm of peripheral blood culture contamination among patients hospitalized in tertiary care.CLINICAL TRIAL: ClinicalTrials.gov #NCT04573894.", "Woolsorters' disease was a feared industrial disease associated primarily with Yorkshire's textile industry of the nineteenth and early twentieth centuries. Early occupational health methods were attempted locally before concerted national efforts produced legislative measures. When its link with anthrax was established, attention in prevention focused upon chemical disinfection methods. Together, these factors were instrumental in decreasing the incidence of woolsorters' disease. However, by the beginning of the Second World War, the lack of treatment options for anthrax meant that the bacterium was experimented upon as a potential war-winning weapon. Today, woolsorters' disease and other industrial manifestations of anthrax are extremely rare, but the increasing threat of bioterrorism means that the international dread and historical lessons of this significant condition should never be forgotten. Consequently, this paper reveals the history of woolsorters' disease in order to remind those involved in occupational medicine today of the dread it caused both physicians and workers in previous generations.", "Focusing on three Anglo-American outbreaks of industrial anthrax, this essay engages the question of how local circumstances influenced the transmission of scientific knowledge in the late nineteenth century. Walpole (Massachusetts), Glasgow, and Bradford (Yorkshire) served as important nodes of transnational investigation into anthrax. Knowledge about the morphology and behavior of Bacillus anthracis changed little while in transit between these nodes, even during complex debates about the nature of bacterial morphology, disease causation, and spontaneous generation. Working independently of their more famous counterparts (Robert Koch and Louis Pasteur), Anglo-American anthrax investigators used visual representations of anthrax bacilli to persuade their peers that a specific, identifiable cause produced all forms of anthrax-malignant pustule (cutaneous anthrax), intestinal anthrax, and woolsorter's disease (pneumonic anthrax). By the late 1870s, this point of view also supported what we would today call an ecological notion of the disease's origins in the interactions of people, animals, and microorganisms in the context of global commerce.", "INTRODUCTION: Ustekinumab is a human monoclonal antibody directed against the shared p40 subunit of interleukins 12 and 23. Ustekinumab is currently approved for the treatment of psoriatic arthritis (PsA) and moderate to severe plaque psoriasis, and is being evaluated in Crohn's disease (CD).AREAS COVERED: The first evidence supporting the efficacy of ustekinumab in the treatment of moderate to severe CD was published in 2008. Results from subsequent phase II and phase III randomized controlled trials (RCTs) have shown promising data on the clinical efficacy of induction and remission of moderate to severe CD. These data and the safety profile of ustekinumab will be reviewed. Expert commentary: As a significant proportion of individuals with CD have ongoing symptoms and inflammation despite existing therapies, there is a clinical need for new agents like ustekinumab directed at different targets on the inflammatory pathway. Looking forward, more studies are needed to evaluate dosing escalation or de-escalation in addition to timing of therapy switches. In addition, further data is required to gauge the comparative effectiveness of ustekinumab to the biologic agents that are currently used in the treatment of CD.", "Ziconotide is a novel peptide that blocks the entry of calcium into neuronal N-type voltage-sensitive calcium channels, preventing the conduction of nerve signals. N-type calcium channels are present in the superficial laminae of the dorsal horn of the spinal cord. In various animal models of pain, intrathecal administration of ziconotide blocked nerve transmission and nociception. The United States Food and Drug Administration recently approved ziconotide intrathecal infusion for the management of severe chronic pain in patients who require intrathecal therapy and who are intolerant of or refractory to other treatment, such as systemic analgesics, adjunctive therapies, or intrathecal morphine. The drug has a narrow therapeutic window and a lag time for the onset and offset of analgesia and adverse events. In early clinical trials, frequent and severe psychiatric and central nervous system adverse effects were associated with rapid intrathecal infusion (0.4 microg/hr) and frequent up-titration (every 12 hrs). Therefore, patients with psychiatric symptoms are not candidates for this drug. Drug trials of external intrathecal catheters and microinfusion devices demonstrated a 3% risk of meningitis. A low initial infusion rate of 0.1 microg/hour and limiting infusion rate increases to 2-3 times/week are now recommended. Patients responsive to intrathecal ziconotide require an implanted infusion system to receive long-term therapy.", "Vaccinia virus, the prototypic member of the orthopoxvirus genus, encodes the mitochondrial-localized protein F1L that functions to protect cells from apoptotic death and inhibits cytochrome c release. We previously showed that F1L interacts with the pro-apoptotic Bcl-2 family member Bak and inhibits activation of Bak following an apoptotic stimulus (Wasilenko, S. T., Banadyga, L., Bond, D., and Barry, M. (2005) J. Virol. 79, 14031-14043). In addition to Bak, the pro-apoptotic protein Bax is also capable of initiating cytochrome c release suggesting that vaccinia virus infection could also inhibit Bax activity. Here we show that F1L inhibits the activity of the pro-apoptotic protein Bax by inhibiting oligomerization and N-terminal activation of Bax. F1L expression also inhibited the subcellular redistribution of Bax to the mitochondria and the insertion of Bax into the outer mitochondrial membrane. The ability of F1L to inhibit Bax activation does not require Bak, because F1L expression inhibited cytochrome c release and Bax activation in Bak-deficient cells. No interaction between Bax and F1L was detected during infection, suggesting that F1L functions upstream of Bax activation. Notably, F1L was capable of interacting with the BH3-only protein BimL as shown by co-immunoprecipitation, and F1L expression inhibited apoptosis induced by BimL. These studies suggest that, in addition to interacting with the pro-apoptotic protein Bak, F1L also functions to indirectly inhibit the activation of Bax, likely by interfering with the pro-apoptotic activity of BH3-only proteins such as BimL." ]
1,961
[ "Among the many immunological events associated with successful intravesical bacillus Calmette Guerin (BCG) immunotherapy of bladder cancer is the induction of a wide range of cytokines including the T helper 2 (T(H)2) designated cytokines Interleukin-6 (IL-6) and IL-10, but not IL-4, in the urine of the patients. The aim of this work was to determine if this treatment resulted in the production of IL-5, a classical T(H)2 cytokine. Following treatment using ELISA this cytokine was detected in the urine of all patients examined confirming that intravesical BCG therapy does not induce in bladder cancer patients solely a T(H)1 response but rather T(H)1/2 or T(H)0 like response.", "We present RADAR--a rigorously annotated database of A-to-I RNA editing (available at http://RNAedit.com). The identification of A-to-I RNA editing sites has been dramatically accelerated in the past few years by high-throughput RNA sequencing studies. RADAR includes a comprehensive collection of A-to-I RNA editing sites identified in humans (Homo sapiens), mice (Mus musculus) and flies (Drosophila melanogaster), together with extensive manually curated annotations for each editing site. RADAR also includes an expandable listing of tissue-specific editing levels for each editing site, which will facilitate the assignment of biological functions to specific editing sites.", "OBJECTIVE: The prophylactic use of nimodipine in patients with aneurysmal subarachnoid hemorrhage reduces the risk of ischemic brain damage. However, its efficacy seems to be rather moderate. The question arises whether other types of calcium antagonists offer better protection. Magnesium, nature's physiological calcium antagonist, is neuroprotective in animal models, promotes dilatation of cerebral arteries, and has an established safety profile. The aim of the current pilot study is to evaluate the efficacy of magnesium versus nimodipine to prevent delayed ischemic deficits after aneurysmal subarachnoid hemorrhage.METHODS: One hundred and thirteen patients with aneurysmal subarachnoid hemorrhage were enrolled in the study and were randomized to receive either magnesium sulfate (loading 10 mg/kg followed by 30 mg/kg daily) or nimodipine (48 mg/d) intravenously until at least postoperative Day 7. Primary outcome parameters were incidence of clinical vasospasm and infarction. Secondary outcome measures were the incidence of transcranial Doppler/angiographic vasospasm, the neuronal markers (neuron-specific enolase, S-100), and the patients' Glasgow Outcome Scale scores at discharge and after 1 year.RESULTS: One hundred and four patients met the study requirements. In the magnesium group (n = 53), eight patients (15%) experienced clinical vasospasm and 20 (38%) experienced transcranial Doppler/angiographic vasospasm compared with 14 (27%) and 17 (33%) patients in the nimodipine group (n = 51). If clinical vasospasm occurred, 75% of the magnesium-treated versus 50% of the nimodipine-treated patients experienced cerebral infarction resulting in fatal outcome in 37 and 14%, respectively. Overall, the rate of infarction attributable to vasospasm was virtually the same (19 versus 22%). There was no difference in outcome between groups.CONCLUSION: The efficacy of magnesium in preventing delayed ischemic neurological deficits in patients with aneurysmal subarachnoid hemorrhage seems to be comparable with that of nimodipine. The difference in their pharmacological properties makes studies on the combined administration of magnesium and nimodipine seem promising.", "Selenoproteins contain the essential trace element selenium whose deficiency leads to major disorders including cancer, male reproductive system failure, or autoimmune thyroid disease. Up to now, 25 selenoprotein-encoding genes were identified in mammals, but the spatiotemporal distribution, regulation, and function of some of these selenium-containing proteins remain poorly documented. Here, we found that selenoprotein T (SelT), a new thioredoxin-like protein, is regulated by the trophic neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) in differentiating but not mature adrenomedullary cells. In fact, our analysis revealed that, in rat, SelT is highly expressed in most embryonic structures, and then its levels decreased progressively as these organs develop, to vanish in most adult tissues. In the brain, SelT was abundantly expressed in neural progenitors in various regions such as the cortex and cerebellum but was undetectable in adult nervous cells except rostral migratory-stream astrocytes and Bergmann cells. In contrast, SelT expression was maintained in several adult endocrine tissues such as pituitary, thyroid, or testis. In the pituitary gland, SelT was found in secretory cells of the anterior lobe, whereas in the testis, the selenoprotein was present only in spermatogenic and Leydig cells. Finally, we found that SelT expression is strongly stimulated in liver cells during the regenerative process that occurs after partial hepatectomy. Taken together, these data show that SelT induction is associated with ontogenesis, tissue maturation, and regenerative mechanisms, indicating that this PACAP-regulated selenoprotein may play a crucial role in cell growth and activity in nervous, endocrine, and metabolic tissues.", "In order to explore the diagnosis and therapy of Diamond Blackfan anemia (DBA), the clinical data of 45 cases of DBA admitted in our hospital from February 1994 to July 2011 were analyzed retrospectively. The clinical characteristics, results of laboratory examination, treatment reaction and outcome of disease were investigated. The results indicated that out of 45 children diagnosed as DBA, 14 cases (31.1%) had short stature and physical malformation. All patients had anemia with reticulocytopenia. Thirty-four patients (75.6%) had mean corpuscular volume. Eleven patients (24.4%) had macrocytic anemia. Bone marrow examination showed a marked erythroid hypoplasia in all patients. Out of 29 cases tested for fetal hemoglobin (HbF), 13 cases (44.8%) had high level of HbF. Erythroid colony-forming unit of bone marrow was tested in 25 patients, among them 12 patients (48%) showed normal plasia, 13 (52%) showed hypoplasia. The erythropoietin (EPO) levels of 17 patients were elevated. Karyotypes were examined in 28 patients, and showed all normal. The treatment was based on corticosteroids and Cyclosporine A. Thirty patients had good response to corticosteroid therapy, and 10 of them obtained a sustained corticosteroid-induced remission. Twenty cases discontinued corticosteroid therapy after remission, as a result, 15 cases (75%) relapsed, moreover all the relapsed cases still had good response to corticosteroid. Two relapsed patients suffered from aplastic anemia, one of them died of therapy failure. Six patients were unresponsive to corticosteroid, 1 of which achieved remission with cyclosporine A and the others continued to receive regular transfusions. 3 patients received iron chelation therapy. It is concluded that the clinical characteristics, complete blood count, bone marrow smear, HbF level and EPO level are useful to make a diagnosis of DBA. Most patients have a good response to corticosteroid therapy, but relapse rate is high when drug was discontinued. Patients unresponsive to corticosteroid should receive regular transfusions and chelation therapy.", "Ventricular tachycardia and fibrillation (VT/VF) complicating Brugada syndrome, a genetic disorder linked to SCN5A mutations, and VF complicating acute myocardial infarction (AMI) have both been linked to phase 2 reentry. Because of these mechanistic similarities in arrhythmogenesis, we examined the contribution of SCN5A mutations to VT/VF complicating AMI. Nineteen consecutive patients developing VF during AMI were enrolled. Wild-type (WT) and mutant SCN5A genes were co-expressed with SCN1B in TSA201 cells and studied using whole-cell patch-clamp techniques. One missense mutation (G400A) in SCN5A was detected in a conserved region among the cohort of 19 patients. A H558R polymorphism was detected on the same allele. Unlike the other 18 patients who each developed 1-2 VF episodes during acute MI, the mutation carrier developed six episodes of VT/VF within the first 12 hours. All VT/VF episodes were associated with ST segment changes and were initiated by short-coupled extrasystoles. We describe the first sodium channel mutation to be associated with the development of an arrhythmic storm during acute ischemia. These findings suggest that a loss of function in SCN5A may predispose to ischemia induced arrhythmic storm. These results could be very useful for forensic implications regarding genetic screening in relatives.", "BACKGROUND: Infection with Epstein-Barr virus (EBV) is almost ubiquitous in humans and generally occurs at two ages: infantile, which is usually asymptomatic and associated with poorer socioeconomic conditions, and adolescent, which causes infectious mononucleosis (IM) in ~25% cases. The determinants of whether the infection causes IM remain uncertain. We aimed to evaluate seasonality and temporal trends in IM.METHODS: Data from all Monospot tests, used as a marker for IM, were collected from the Grampian population over 16 years.RESULTS: Positive Monospot test results peaked at 17 years in females and 19 in males. Females had 16% more diagnoses, although 55% more tests. IM was ~38% more common in winter than summer. The annual rate of positive tests decreased progressively over the study period, from 174/100 000 (95% CI 171-178) in 1997 to 67/100 000 (95% CI 65-69) in 2012.CONCLUSIONS: IM appears to be decreasing in incidence, which may be caused by changing environmental influences on immune systems. One such factor may be exposure to sunlight.Words 168.FUNDING: The Medical Research Council and NHS Grampian-MS endowments." ]
1,963
[ "G-Quadruplex, a unique secondary structure in nucleic acids found throughout human genome, elicited widespread interest in the field of therapeutic research. Being present in key regulatory regions of oncogenes, RNAs and telomere, G-Quadruplex structure regulates transcription, translation, splicing, etc. Changes in its structure and stability leads to differential expression of oncogenes causing cancer. Thus, targeting G-Quadruplex structures with small molecules/other biologics has shown elevated research interest. Covering previous reports, in this review, we try to enlighten the facts on the structural diversity in G-Quadruplex ligands aiming to provide newer insights to design first-in-class drugs for the next-generation cancer treatment.", "OBJECTIVE: To see whether combined treatment with oral tacrine (tetrahydroaminoacridine; THA) and lecithin improves the symptoms of patients with Alzheimer's disease.DESIGN: Multicentre double blind, placebo controlled, random order crossover trial with individual determination of maximum tolerated dosage and four month follow up.SETTING: Outpatient departments at six university neurological centres.PATIENTS: 67 Outpatients (24 men, 43 women) aged 53-81 (mean 66 (SD 7.3)) selected according to the following criteria: probable Alzheimer's disease as defined by the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association; absence of mood disorder; mini mental state score lower than 26; availability of a close relative able to complete questionnaires; and informed consent of the patient or his or her closest relative, or both.INTERVENTIONS: Mean of 114 mg tacrine or placebo daily plus 1200 mg lecithin daily given in three divided doses for one four week active treatment period and one four week control period without washout at crossover.MAIN OUTCOME MEASURES: Cognitive state as assessed by Folstein's mini mental state rating scale, behavioural state as assessed by the Stockton geriatric rating scale, and overall state as assessed with a visual analogue scale rated by both the relative and the physician.RESULTS: Compared with placebo tacrine did not improve either the mini mental state score (mean 14.9 (SD 7.3) v 14.8 (7.3)) or the Stockton geriatric score (28.2 (15.7) v 28.7 (17.8)), but a slight and statistically significant improvement occurred in the physician's score on the visual analogue scale (6.3 (10.2) v 11.6 (17.9)). Seven patients dropped out. Six patients were excluded because of acute hepatitis and one withdrew for personal reasons not related to treatment. Two other patients developed acute hepatitis at the end of the eight week crossover trial and another during the follow up study. Twenty patients complained of gastrointestinal side effects.CONCLUSIONS: Neither short term nor long term treatment with oral tacrine at dosages lower than 125 mg/day improves the symptoms of Alzheimer's disease. Moreover, these dosages may induce hepatitis (nine of 67 patients in this series).", "The emergence of Zika virus in the Americas has followed a pattern that is familiar from earlier epidemics of other viruses, where a new disease is introduced into a human population and then spreads rapidly with important public health consequences. In the case of Zika virus, an accumulating body of recent evidence implicates the virus in the etiology of serious pathologies of the human nervous system, that is, the occurrence of microcephaly in neonates and Guillain-Barré syndrome in adults. Zika virus is an arbovirus (arthropod-borne virus) and a member of the family Flaviviridae, genus Flavivirus. Zika virions are enveloped and icosahedral, and contain a nonsegmented, single-stranded, positive-sense RNA genome, which encodes 3 structural and 7 nonstructural proteins that are expressed as a single polyprotein that undergoes cleavage. Zika genomic RNA replicates in the cytoplasm of infected host cells. Zika virus was first detected in 1947 in the blood of a febrile monkey in Uganda's Zika Forest and in crushed suspensions of the Aedes mosquito, which is one of the vectors for Zika virus. The virus remained obscure, with a few human cases confined to Africa and Asia. There are two lineages of the Zika virus, African and Asian, with the Asian strain causing outbreaks in Micronesia in 2007 and French Polynesia in 2013-2014. From here, the virus spread to Brazil with the first report of autochthonous Zika transmission in the Americas in March 2015. The rapid advance of the virus in the Americas and its likely association with microcephaly and Guillain-Barré syndrome make Zika an urgent public health concern. Ann Neurol 2016;80:479-489.", "ABT-751 is an orally bioavailable sulfonamide with antimitotic properties. A nonrandomized phase 1 dose-escalation study of ABT-751 in combination with CAPIRI (capecitabine and irinotecan) and bevacizumab was conducted to define the maximum tolerated dose, dose-limiting toxicity (DLT), and pharmacokinetics in patients with advanced colorectal cancer. Patients were treated with ABT-751 daily for 7 days (alone) and then began 21-day cycles of treatment with ABT-751 daily and capecitabine twice daily for 14 days plus irinotecan on day 1 intravenously. Bevacizumab was added as standard of care at 7.5 mg/kg on day 1 after the first 2 dose levels. Because of intolerance to the regimen, a reduced dose of ABT-751 was also explored with reduced-dose and full-dose CAPIRI with bevacizumab. ABT-751 and irinotecan pharmacokinetics, ABT-751 glucuronidation, and protein binding were explored. Twenty-four patients were treated over 5 dose levels. The maximum tolerated dose was ABT-751 125 mg combined with full-dose CAPIRI and bevacizumab 7.5 mg/kg on day 1. DLTs were hypokalemia, elevated liver tests, and febrile neutropenia. ABT-751 is metabolized by UGT1A8 and to a lesser extent UGT1A4 and UGT1A1. Irinotecan and APC exposure were increased, SN-38 exposure was similar, and SN-38 glucuronide exposure was decreased. Clinically relevant alterations in ABT-751 and irinotecan pharmacokinetics were not observed. Despite modest efficacy, the combination of ABT-751, CAPIRI, and bevacizumab will not be studied further in colorectal cancer.", "RNA sequencing (RNA-Seq) is a powerful tool for transcriptome profiling, but is hampered by sequence-dependent bias and inaccuracy at low copy numbers intrinsic to exponential PCR amplification. We developed a simple strategy for mitigating these complications, allowing truly digital RNA-Seq. Following reverse transcription, a large set of barcode sequences is added in excess, and nearly every cDNA molecule is uniquely labeled by random attachment of barcode sequences to both ends. After PCR, we applied paired-end deep sequencing to read the two barcodes and cDNA sequences. Rather than counting the number of reads, RNA abundance is measured based on the number of unique barcode sequences observed for a given cDNA sequence. We optimized the barcodes to be unambiguously identifiable, even in the presence of multiple sequencing errors. This method allows counting with single-copy resolution despite sequence-dependent bias and PCR-amplification noise, and is analogous to digital PCR but amendable to quantifying a whole transcriptome. We demonstrated transcriptome profiling of Escherichia coli with more accurate and reproducible quantification than conventional RNA-Seq.", "The tumor suppressor breast cancer susceptibility protein 1 (BRCA1) protects our cells from genomic instability in part by facilitating the efficient repair of DNA double-strand breaks (DSBs). BRCA1 promotes the error-free repair of DSBs through homologous recombination and is also implicated in the regulation of nonhomologous end joining (NHEJ) repair fidelity. Here, we investigate the role of BRCA1 in NHEJ repair mutagenesis following a DSB. We examined the frequency of microhomology-mediated end joining (MMEJ) and the fidelity of DSB repair relative to BRCA1 protein levels in both control and tumorigenic breast epithelial cells. In addition to altered BRCA1 protein levels, we tested the effects of cellular exposure to mirin, an inhibitor of meiotic recombination enzyme 11 (Mre11) 3'-5'-exonuclease activity. Knockdown or loss of BRCA1 protein resulted in an increased frequency of overall plasmid DNA mutagenesis and MMEJ following a DSB. Inhibition of Mre11-exonuclease activity with mirin significantly decreased the occurrence of MMEJ, but did not considerably affect the overall mutagenic frequency of plasmid DSB repair. The results suggest that BRCA1 protects DNA from mutagenesis during nonhomologous DSB repair in plasmid-based assays. The increased frequency of DSB mutagenesis and MMEJ repair in the absence of BRCA1 suggests a potential mechanism for carcinogenesis.", "AIMS: To evaluate the association of acute organophosphate (OP) poisoning with chronic sensory and motor neurological impairment.METHODS: This study concerns the third of a series of three examinations of hand strength and vibration thresholds in a two year period after acute OP poisoning among 48 Nicaraguan men. The first two examinations were performed at hospital discharge and seven weeks after poisoning, and the present examination two years later. Twenty eight cattle ranchers and fishermen who had never experienced pesticide poisoning were examined as controls, also three times over the two year period. The poisonings were categorised as caused by \"non-neuropathic\" OPs and \"neuropathic\" OPs, each subdivided in moderate and severe poisonings.RESULTS: Men poisoned with OP insecticides had persistent reduced hand strength. We previously reported weakness at hospital discharge for OP poisoned in all categories that worsened seven weeks later for those severely poisoned with neuropathic OPs. Strength improved over time, but the poisoned were still weaker than controls two years after the poisoning, most noticeably among the subjects most severely poisoned with neuropathic OPs. Also, index finger and toe vibration thresholds were slightly increased at the end of the two year period, among men with OP poisonings in all categories, but patterns of onset and evolvement of impairment of vibration sensitivity were less clear than with grip and pinch strength.CONCLUSIONS: Persistent, mainly motor, impairment of the peripheral nervous system was found in men two years after OP poisoning, in particular in severe occupational and intentional poisonings with neuropathic OPs. This finding is possibly due to remaining organophosphate induced delayed polyneuropathy.", "The canonical action of the p85α regulatory subunit of phosphatidylinositol 3-kinase (PI3K) is to associate with the p110α catalytic subunit to allow stimuli-dependent activation of the PI3K pathway. We elucidate a p110α-independent role of homodimerized p85α in the positive regulation of PTEN stability and activity. p110α-free p85α homodimerizes via two intermolecular interactions (SH3:proline-rich region and BH:BH) to selectively bind unphosphorylated activated PTEN. As a consequence, homodimeric but not monomeric p85α suppresses the PI3K pathway by protecting PTEN from E3 ligase WWP2-mediated proteasomal degradation. Further, the p85α homodimer enhances the lipid phosphatase activity and membrane association of PTEN. Strikingly, we identified cancer patient-derived oncogenic p85α mutations that target the homodimerization or PTEN interaction surface. Collectively, our data suggest the equilibrium of p85α monomer-dimers regulates the PI3K pathway and disrupting this equilibrium could lead to disease development.", "The Schizosaccharomyces pombe centromere-linked genes, LYS1 and CYH1 on chromosome I and TPS13 and RAN1 on chromosome II, have been isolated. The genetic order of these markers with respect to their centromeres was determined to establish relative directionality on the genetic and physical maps. Chromosome walking toward the centromeres reveals a group of repetitive sequences that occur only in the centromere regions of chromosomes I and II and at one other specific location in the S. pombe genome, presumably the centromere of chromosome III. The major class of large repeated sequence elements is 6.4 kilobases (kb) long (repeat K), portions of which occur at least twice on chromosome II and in several tandemly arranged intact copies at another centromeric location. Repeat K in turn contains groups of smaller repeats. Genetic recombination is strongly suppressed in the centromere II region, which contains at least 30 kb of repeated sequences. Centromeric DNA organization is much more complex in fission yeast than has been described in budding yeast (Saccharomyces cerevisiae), possibly because of the larger more condensed nature of the S. pombe chromosomes.", "BACKGROUND: Hyperhomocysteinemia and methylenetetrahydrofolate reductase (MTHFR) gene mutation have been postulated as a possible cause of recurrent miscarriage (RM). There is a wide variation in the prevalence of MTHFR polymorphisms and homocysteine (Hcy) plasma levels among populations around the world. The present study was undertaken to investigate the possible association between hyperhomocysteinemia and its causative genetic or acquired factors and RM in Catalonia, a Mediterranean region in Spain.METHODS: Sixty consecutive patients with ≥ 3 unexplained RM and 30 healthy control women having at least one child but no previous miscarriage were included. Plasma Hcy levels, MTHFR gene mutation, red blood cell (RBC) folate and vitamin B12 serum levels were measured in all subjects.RESULTS: No significant differences were observed neither in plasma Hcy levels, RBC folate and vitamin B12 serum levels nor in the prevalence of homozygous and heterozygous MTHFR gene mutation between the two groups studied.CONCLUSIONS: In the present study RM is not associated with hyperhomocysteinemia, and/or the MTHFR gene mutation.", "The structure of nucleosomes that contain the cenH3 histone variant has been controversial. In budding yeast, a single right-handed cenH3/H4/H2A/H2B tetramer wraps the ∼80-bp Centromere DNA Element II (CDE II) sequence of each centromere into a 'hemisome'. However, attempts to reconstitute cenH3 particles in vitro have yielded exclusively 'octasomes', which are observed in vivo on chromosome arms only when Cse4 (yeast cenH3) is overproduced. Here, we show that Cse4 octamers remain intact under conditions of low salt and urea that dissociate H3 octamers. However, particles consisting of two DNA duplexes wrapped around a Cse4 octamer and separated by a gap efficiently split into hemisomes. Hemisome dimensions were confirmed using a calibrated gel-shift assay and atomic force microscopy, and their identity as tightly wrapped particles was demonstrated by gelFRET. Surprisingly, Cse4 hemisomes were stable in 4 M urea. Stable Cse4 hemisomes could be reconstituted using either full-length or tailless histones and with a 78-bp CDEII segment, which is predicted to be exceptionally stiff. We propose that CDEII DNA stiffness evolved to favor Cse4 hemisome over octasome formation. The precise correspondence between Cse4 hemisomes resident on CDEII in vivo and reconstituted on CDEII in vitro without any other factors implies that CDEII is sufficient for hemisome assembly.", "During cell division, segregation of sister chromatids to daughter cells is achieved by the poleward pulling force of microtubules, which attach to the chromatids by means of a multiprotein complex, the kinetochore. Kinetochores assemble at the centromeric DNA organized by specialized centromeric nucleosomes. In contrast to other eukaryotes, which typically have large repetitive centromeric regions, budding yeast CEN DNA is defined by a 125 bp sequence and assembles a single centromeric nucleosome. In budding yeast, as well as in other eukaryotes, the Cse4 histone variant (known in vertebrates as CENP-A) is believed to substitute for histone H3 at the centromeric nucleosome. However, the exact composition of the CEN nucleosome remains a subject of debate. We report the use of a novel ChIP approach to reveal the composition of the centromeric nucleosome and its localization on CEN DNA in budding yeast. Surprisingly, we observed a strong interaction of H3, as well as Cse4, H4, H2A, and H2B, but not histone chaperone Scm3 (HJURP in human) with the centromeric DNA. H3 localizes to centromeric DNA at all stages of the cell cycle. Using a sequential ChIP approach, we could demonstrate the co-occupancy of H3 and Cse4 at the CEN DNA. Our results favor a H3-Cse4 heterotypic octamer at the budding yeast centromere. Whether or not our model is correct, any future model will have to account for the stable association of histone H3 with the centromeric DNA." ]
1,974
[ "Autoantibodies have been associated with human pathologies for a long time, particularly with autoimmune diseases (AIDs). Rheumatoid factor (RF) is known since the late 1930s to be associated with rheumatoid arthritis (RA). The discovery of anticitrullinated protein antibodies in the last century has changed this and other posttranslational modifications (PTM) relevant to RA have since been described. Such PTM introduce neoepitopes in proteins that can generate novel autoantibody specificities. The recent recognition of these novel specificities in RA provides a unique opportunity to understand human B-cell development in vivo. In this paper, we will review the three of the main classes of PTMs already associated with RA: citrullination, carbamylation, and oxidation. With the advancement of research methodologies it should be expected that other autoantibodies against PTM proteins could be discovered in patients with autoimmune diseases. Many of such autoantibodies may provide significant biomarker potential.", "BACKGROUND: Biotin-labeled trastuzumab (BiotHER) can be used to test for HER2 by immunohistochemistry. We previously showed that BiotHER immunoreactivity is highly correlated with HER2 amplification and indicated that it could be associated with better clinical outcome in advanced breast cancer patients receiving trastuzumab.PATIENTS AND METHODS: Tumor specimens and clinical information from 234 patients who received trastuzumab-based treatments were collected from 10 institutions. HER2 amplification and BiotHER immunoreactivity were assessed centrally. The effect of BiotHER positivity on response rate (RR), time to progression and survival were studied by univariate and multivariate analysis in patients presenting HER2-amplified breast cancer. The pathologic reviews of the assays were blinded to patient outcomes.RESULTS: BiotHER was positive in 109/194 (56%) HER2-amplified breast cancers and in one not amplified tumor. RRs were 74% [95% (confidence interval) CI 64%-81%] and 47% (95% CI 36%-58%) in BiotHER-positive and -negative tumors, respectively (P < 0.001). BiotHER immunoreactivity was independently associated with increased probability of tumor response (odds ratio 3.848; 95% CI 1.952-7.582), with reduced risk of disease progression [hazard ratio (HR) 0.438; 95% CI 0.303-0.633] and with reduced risk of death (HR 0.566; 95% CI 0.368-0.870) by multivariate analysis.CONCLUSION: The results support a role for BiotHER testing in better tailoring trastuzumab-based treatments in patients with advanced HER2-amplified breast cancers.", "mDia proteins are mammalian homologues of Drosophila diaphanous and belong to the formin family proteins that catalyze actin nucleation and polymerization. Although formin family proteins of nonmammalian species such as Drosophila diaphanous are essential in cytokinesis, whether and how mDia proteins function in cytokinesis remain unknown. Here we depleted each of the three mDia isoforms in NIH 3T3 cells by RNA interference and examined this issue. Depletion of mDia2 selectively increased the number of binucleate cells, which was corrected by coexpression of RNAi-resistant full-length mDia2. mDia2 accumulates in the cleavage furrow during anaphase to telophase, and concentrates in the midbody at the end of cytokinesis. Depletion of mDia2 induced contraction at aberrant sites of dividing cells, where contractile ring components such as RhoA, myosin, anillin, and phosphorylated ERM accumulated. Treatment with blebbistatin suppressed abnormal contraction, corrected localization of the above components, and revealed that the amount of F-actin at the equatorial region during anaphase/telophase was significantly decreased with mDia2 RNAi. These results demonstrate that mDia2 is essential in mammalian cell cytokinesis and that mDia2-induced F-actin forms a scaffold for the contractile ring and maintains its position in the middle of a dividing cell.", "Author information:(1)Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK.(2)Epigenetics Section, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK.(3)Metabolic Signalling Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK.(4)Cancer Sciences Unit, Cancer Research UK Centre, Somers Building, University of Southampton, Southampton SO16 6YD, UK.(5)Division of Molecular Oncology of Solid Tumors, Department of Internal Medicine I, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.(6)Proteomics Facility, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK.(7)Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London WC1N 1EH, UK.(8)Institute for Virology, Technische Universität München/Helmholtz Zentrum München, 81675 Munich, Germany.(9)Division of Chronic Inflammation and Cancer, German Cancer Research (DKFZ), 69121 Heidelberg, Germany.(10)Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109-2200, USA.", "Germline mutations of the breast cancer 1 (BRCA1) gene are a major cause of familial breast and ovarian cancer. The BRCA1 protein displays E3 ubiquitin ligase activity, and this enzymatic function is thought to be required for tumor suppression. To test this hypothesis, we generated mice that express an enzymatically defective Brca1. We found that this mutant Brca1 prevents tumor formation to the same degree as does wild-type Brca1 in three different genetically engineered mouse (GEM) models of cancer. In contrast, a mutation that ablates phosphoprotein recognition by the BRCA C terminus (BRCT) domains of BRCA1 elicits tumors in each of the three GEM models. Thus, BRCT phosphoprotein recognition, but not the E3 ligase activity, is required for BRCA1 tumor suppression.", "Gray platelet syndrome (GPS) is an autosomal recessive bleeding disorder that is characterized by large platelets that lack α-granules. Here we show that mutations in NBEAL2 (neurobeachin-like 2), which encodes a BEACH/ARM/WD40 domain protein, cause GPS and that megakaryocytes and platelets from individuals with GPS express a unique combination of NBEAL2 transcripts. Proteomic analysis of sucrose-gradient subcellular fractions of platelets indicated that NBEAL2 localizes to the dense tubular system (endoplasmic reticulum) in platelets.", "OBJECTIVES: The role of Ataxia-telangiectasia mutated (ATM) in response to DNA damage has previously been studied, but its underlying mechanisms specific to ionizing radiation (IR) have remained to be elucidated. In this study, function of ATM on radiation-induced cell death in lung cancer H1299 cells was analysed.MATERIALS AND METHODS: Human lung cancer cells, H1299, were used, and cell models with ATM(-/-) and MAPK14(-/-) were established by genetic engineering. Radiosensitivity was analysed using colony formation assays. Western blotting and co-immunoprecipitation were implemented to detect protein expression and interaction. MDC staining and GFP-LC3 relocalization were used to detect autophagy.RESULTS: Autophagy as well as phosphorylation of ATM was activated by ionizing radiation. Both the inhibitor of ATM, KU55933 and ATM silencing reduced phosphorylation of ATM and MAPKAPK2 expression. Both ATM(-/-) and MAPK14(-/-) cells displayed hypersensitivity. IR increased autophagy level by more than 129% in DMSO-treated cells, while only by 47% and 27% in KU55933-treated and ATM(-/-) cells respectively. MAPK14 knock-down alone gave rise to the basal autophagy level, but decreased notably after IR. KU55933 and ATM knock-down inhibited IR-induced autophagy by activating mTOR pathways. Both Beclin1-PI3KIII and Beclin1-MAPKAPK2 interactions as were remarkably affected by silencing either ATM or MAPK14.CONCLUSIONS: ATM promoted IR-induced autophagy via the MAPK14 pathway, mTOR pathway and Beclin1/PI3KIII complexes. MAPK14 contributed to radiosensitization of H1299 cells.", "Basal cell carcinoma (BCC) is the most common nonmelanoma skin cancer. If left untreated, BCCs can become locally aggressive or even metastasize. Currently available treatments include local destruction, surgery, and radiation. Systemic options for advanced disease are limited. The Hedgehog (Hh) pathway is aberrantly activated in a majority of BCCs and in other cancers. Hh pathway inhibitors are targeted agents that inhibit the aberrant activation of the Hh pathway, with smoothened being a targeted component. Sonidegib is a novel smoothened inhibitor that was recently approved by the US Food and Drug Administration. This review focuses on BCC pathogenesis and the clinical efficacy of sonidegib for the treatment of advanced BCC." ]
1,984
[ "The transcription factor grainyhead-like 2 (GRHL2) plays a crucial role in various developmental processes. Although GRHL2 recently has attracted considerable interest in that it could be identified as a novel suppressor of the epithelial-to-mesenchymal transition, evidence is emerging that GRHL2 also exhibits tumour-promoting activities. Aim of the present study therefore was to help defining the relevance of GRHL2 for human cancers by performing a comprehensive immunohistochemical analysis of GRHL2 expression in normal (n = 608) and (n = 3,143) tumour tissues using tissue microarrays. Consistent with its accepted role in epithelial morphogenesis, GRHL2 expression preferentially but not exclusively was observed in epithelial cells. Regenerative and proliferating epithelial cells with stem cell features showed a strong GRHL2 expression. Highly complex GRHL2 expression patterns indicative of both reduced and elevated GRHL2 expression in tumours, possibly reflecting potential tumour-suppressing as well as oncogenic functions of GRHL2 in distinct human tumours, were observed. A dysregulation of GRHL2 expression for the first time was found in tumours of non-epithelial origin (e.g., astrocytomas, melanomas). We also report GRHL2 copy number gains which, however, did not necessarily translate into increased GRHL2 expression levels in cancer cells. Results obtained by meta-analysis of gene expression microarray data in conjunction with functional assays demonstrating a direct regulation of HER3 expression further point to a potential therapeutic relevance of GRHL2 in ovarian cancer. Hopefully, the results presented in this study may pave the way for a better understanding of the yet largely unknown function of GRHL2 in the initiation, progression and also therapy of cancers.", "Congenital disorders of glycosylation (CDG) are a growing group of inherited metabolic disorders where enzymatic defects in the formation or processing of glycolipids and/or glycoproteins lead to variety of different diseases. The deficiency of GDP-Man:GlcNAc2-PP-dolichol mannosyltransferase, encoded by the human ortholog of ALG1 from yeast, is known as ALG1-CDG (CDG-Ik). The phenotypical, molecular and biochemical analysis of a severely affected ALG1-CDG patient is the focus of this paper. The patient's main symptoms were feeding problems and diarrhea, profound hypoproteinemia with massive ascites, muscular hypertonia, seizures refractory to treatment, recurrent episodes of apnoea, cardiac and hepatic involvement and coagulation anomalies. Compound heterozygosity for the mutations c.1145T>C (M382T) and c.1312C>T (R438W) was detected in the patient's ALG1-coding sequence. In contrast to a previously reported speculation on R438W we confirmed both mutations as disease-causing in ALG1-CDG.", "Genome-wide association studies (GWASs) have successfully identified many sequence variants that are significantly associated with common diseases and traits. Tens of thousands of such trait-associated SNPs have already been cataloged, which we believe form a great resource for genomic research. Recent studies have demonstrated that the collection of trait-associated SNPs can be exploited to indicate whether a given genomic interval or intervals are likely to be functionally connected with certain phenotypes or diseases. Despite this importance, currently, there is no ready-to-use computational tool able to connect genomic intervals to phenotypes. Here, we present traseR, an easy-to-use R Bioconductor package that performs enrichment analyses of trait-associated SNPs in arbitrary genomic intervals with flexible options, including testing method, type of background and inclusion of SNPs in LD.AVAILABILITY AND IMPLEMENTATION: The traseR R package preloaded with up-to-date collection of trait-associated SNPs are freely available in BioconductorCONTACT: zhaohui.qin@emory.eduSUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.", "We sought to identify fibroblast growth factor receptor 2 (FGFR2) kinase domain mutations that confer resistance to the pan-FGFR inhibitor, dovitinib, and explore the mechanism of action of the drug-resistant mutations. We cultured BaF3 cells overexpressing FGFR2 in high concentrations of dovitinib and identified 14 dovitinib-resistant mutations, including the N550K mutation observed in 25% of FGFR2(mutant) endometrial cancers (ECs). Structural and biochemical in vitro kinase analyses, together with BaF3 proliferation assays, showed that the resistance mutations elevate the intrinsic kinase activity of FGFR2. BaF3 lines were used to assess the ability of each mutation to confer cross-resistance to PD173074 and ponatinib. Unlike PD173074, ponatinib effectively inhibited all the dovitinib-resistant FGFR2 mutants except the V565I gatekeeper mutation, suggesting ponatinib but not dovitinib targets the active conformation of FGFR2 kinase. EC cell lines expressing wild-type FGFR2 were relatively resistant to all inhibitors, whereas EC cell lines expressing mutated FGFR2 showed differential sensitivity. Within the FGFR2(mutant) cell lines, three of seven showed marked resistance to PD173074 and relative resistance to dovitinib and ponatinib. This suggests that alternative mechanisms distinct from kinase domain mutations are responsible for intrinsic resistance in these three EC lines. Finally, overexpression of FGFR2(N550K) in JHUEM-2 cells (FGFR2(C383R)) conferred resistance (about five-fold) to PD173074, providing independent data that FGFR2(N550K) can be associated with drug resistance. Biochemical in vitro kinase analyses also show that ponatinib is more effective than dovitinib at inhibiting FGFR2(N550K). We propose that tumors harboring mutationally activated FGFRs should be treated with FGFR inhibitors that specifically bind the active kinase.", "Patients undergoing long-term hemodialysis (HD) are known to have abnormal blood concentrations of antioxidant minerals; concurrent oxidative stress can contribute to increased vascular calcification. This study aims to evaluate the associations between circulating antioxidant minerals and clinical biomarkers of vascular calcification in HD patients. Blood biochemical parameters, antioxidant minerals (selenium (Se), zinc (Zn), copper (Cu), and magnesium (Mg)), and several promoters and inhibitors of calcification (matrix Gla protein (MGP), fibroblast growth factor-23 (FGF-23), matrix metalloproteinases (MMP-2 and -9), and tissue inhibitors of metalloproteinase (TIMP-1 and -2)) were determined in HD patients (n = 62) and age- and sex-matched healthy individuals (n = 30). Compared with healthy subjects, HD patients had significantly lower plasma concentrations of Se and Zn, increased Cu and Mg, and higher levels of oxidative stress and inflammatory markers (Cu/Zn ratios, malondialdehyde (MDA), advanced glycation end products (AGEs), and C-reactive protein (CRP)). We observed that HD patients had significantly lower concentrations of MGP and higher levels of FGF-23, MMP-2 and -9, TIMP-1 and -2, and MMP-2/TIMP-2 and MMP-9/TIMP-1 ratios. We also observed significant relationships between the concentrations of these minerals and calcification biomarkers in HD patients. These results suggest that changes in the homeostasis of antioxidant minerals (Se, Zn, Cu, and Mg) may contribute to the effects of oxidative stress and inflammatory status, thereby participating in the mechanism for accelerated vascular calcification in patients undergoing long-term HD.", "This study examines the potential impact of family conflict and cohesion, and peer support/bullying on children with autism spectrum disorder (ASD). While such impacts have been established for a range of non-ASD childhood disorders, these findings may not generalize to children with ASD because of unique problems in perspective-taking, understanding others' emotion, cognitive rigidity, and social reasoning. A structural model-building approach was used to test the extent to which family and peer variables directly or indirectly affected ASD via child anxiety/depression. The sample (N = 322) consisted of parents of children with ASD referred to two specialist clinics. The sample contained parents of children with Autistic Disorder (n = 76), Asperger Disorder (n = 188), Pervasive Disorder Not Otherwise Specified (n = 21), and children with a non-ASD or no diagnosis (n = 37). Parents completed questionnaires on-line via a secure website. The key findings were that anxiety/depression and ASD symptomatology were significantly related, and family conflict was more predictive of ASD symptomatology than positive family/peer influences. The results point to the utility of expanding interventions to include conflict management for couples, even when conflict and family distress is low. Further research is needed on the potentially different meanings of family cohesion and conflict for children with ASD relative to children without ASD.", "With the idea that platinum compounds that bind with DNA differently than cisplatin may be better-able to overcome platinum resistance in ovarian tumor, the monofunctional platinum complex tris(imidazo(1,2-α)pyridine) chloroplatinum(II) chloride (coded as LH6) has been synthesized and investigated for its activity, alone and in combination with the phytochemicals curcumin and quercetin, against human ovarian A2780, A2780(cisR) and A2780(ZD0473R) cancer cell lines. LH6 is found to be more active than cisplatin against the resistant cell lines and its bolus combinations with curcumin and quercetin are found to produce more pronounced cell kill. Whereas platinum accumulation from cisplatin is found to increase almost linearly with time, that from LH6 reaches a maximum at 4 h and is somewhat lowered at 24 h. It is possible that the presence of bulky hydrophobic imidazo (1,2-α-pyridine) ligand in LH6 facilitates its rapid uptake through the cytoplasmic membrane. Lower platinum accumulation at 24 h than at 4 h for LH6 can be seen to imply that efflux processes may be more dominant as the period of incubation is increased. When platinum-DNA binding levels at 24 h are compared, cisplatin is found to be associated with the higher level in the parent A2780 cell line and LH6 in the resistant A2780(cisR) cell line, in line with greater activity of cisplatin in the parent cell line and that of LH6 in the resistant cell line. If the observed in vitro activity of LH6 is confirmed in vivo, it can be seen to have the potential for development as novel platinum based anticancer drug." ]
1,986
[ "Exploding head syndrome is characterized by the perception of abrupt, loud noises when going to sleep or waking up. They are usually painless, but associated with fear and distress. In spite of the fact that its characteristic symptomatology was first described approximately 150 y ago, exploding head syndrome has received relatively little empirical and clinical attention. Therefore, a comprehensive review of the scientific literature using Medline, PsycINFO, Google Scholar, and PubMed was undertaken. After first discussing the history, prevalence, and associated features, the available polysomnography data and five main etiological theories for exploding head syndrome are summarized. None of these theories has yet reached dominance in the field. Next, the various methods used to assess and treat exploding head syndrome are discussed, as well as the limited outcome data. Finally, recommendations for future measure construction, treatment options, and differential diagnosis are provided.", "Aberrant c-Met activity has been implicated in the development of hepatocellular carcinoma (HCC), suggesting that c-Met inhibition may have therapeutic potential. However, clinical trials of nonselective kinase inhibitors with c-Met activity (tivantinib, cabozantinib, foretinib, and golvatinib) in patients with HCC have failed so far to demonstrate significant efficacy. This lack of observed efficacy is likely due to several factors, including trial design, lack of patient selection according to tumor c-Met status, and the prevalent off-target activity of these agents, which may indicate that c-Met inhibition is incomplete. In contrast, selective c-Met inhibitors (tepotinib, capmatinib) can be dosed at a level predicted to achieve complete inhibition of tumor c-Met activity. Moreover, results from early trials can be used to optimize the design of clinical trials of these agents. Preliminary results suggest that selective c-Met inhibitors have antitumor activity in HCC, with acceptable safety and tolerability in patients with Child-Pugh A liver function. Ongoing trials have been designed to assess the efficacy and safety of selective c-Met inhibition compared with standard therapy in patients with HCC that were selected based on tumor c-Met status. Thus, c-Met inhibition continues to be an active area of research in HCC, with well-designed trials in progress to investigate the benefit of selective c-Met inhibitors. (Hepatology 2018;67:1132-1149).", "Exploding head syndrome is characterized by the perception of loud noises during sleep-wake or wake-sleep transitions. Although episodes by themselves are relatively harmless, it is a frightening phenomenon that may result in clinical consequences. At present there are little systematic data on exploding head syndrome, and prevalence rates are unknown. It has been hypothesized to be rare and to occur primarily in older (i.e. 50+ years) individuals, females, and those suffering from isolated sleep paralysis. In order to test these hypotheses, 211 undergraduate students were assessed for both exploding head syndrome and isolated sleep paralysis using semi-structured diagnostic interviews: 18.00% of the sample experienced lifetime exploding head syndrome, this reduced to 16.60% for recurrent cases. Though not more common in females, it was found in 36.89% of those diagnosed with isolated sleep paralysis. Exploding head syndrome episodes were accompanied by clinically significant levels of fear, and a minority (2.80%) experienced it to such a degree that it was associated with clinically significant distress and/or impairment. Contrary to some earlier theorizing, exploding head syndrome was found to be a relatively common experience in younger individuals. Given the potential clinical impacts, it is recommended that it be assessed more regularly in research and clinical settings.", "AIM: To study the impact of a polymorphic variant of the matrix metalloproteinase-3 (MMP-3) gene on the development and course of chronic heart failure (CHF) in patients with coronary heart disease.SUBJECTS AND METHODS: A total of 277 patients with New York Heart Association (NYHA) Functional Class (FC) II-IV CHF were examined. MMP-3 -1171 5A/6A genetic polymorphism was studied by polymerase chain reaction. A control group included 136 patients (mean age 53.6 ± 4.8 years) with no signs of cardiovascular diseases, as evidenced by the examination.RESULTS: The frequency of the 5A allele and the 5A/5A genotype of the 1171 5A/6A polymorphic locus in the MMP-3 gene proved to be higher in the patients with CHF than that in the control group. Thus, the variability of the 5A allele (odds ratio (OR), 1.39; 95% confidence interval (CI): 1.033 to 1.869; p = 0.03) and the 5A/5A genotype (OR, 2.15; 95% CI: 1.131 to 4.070; p = 0.02) was associated with increased risk for CHF. There were significant differences in the frequency of MMP-3 alleles and genotypes in relation to FC of CHF. The frequency of the 5A/5A genotype was substantially higher in the patients with NYHA FC IV CHF than that in those with NYHA FC II CHF (32.8% versus 15.2%; p = 0.039). The frequency of the 5A allele was significantly higher in the patients with NYHA FC IV CHF than that in those with NYHA FC II CHF (55.5% and 39.3%; respectively; p = 0.019). Thus, the carriage of the 5A allele and the 5A/5A genotype of the 1171 5A/6A polymorphic locus in the MMP-3 gene is a risk factor of severe CHF.CONCLUSION: The determination of MMP-3 -1171 5A/6A polymorphism may be recommended for the early prediction of a risk for the development and severe course of CHF.", "G-quadruplexes are noncanonical structures formed by G-rich DNA and RNA sequences that fold into a four-stranded conformation. Experimental studies and computational predictions show that RNA G-quadruplexes are present in transcripts associated with telomeres, in noncoding sequences of primary transcripts and within mature transcripts. RNA G-quadruplexes at these specific locations play important roles in key cellular functions, including telomere homeostasis and gene expression. Indeed, RNA G-quadruplexes appear as important regulators of pre-mRNA processing (splicing and polyadenylation), RNA turnover, mRNA targeting and translation. The regulatory mechanisms controlled by RNA G-quadruplexes involve the binding of protein factors that modulate G-quadruplex conformation and/or serve as a bridge to recruit additional protein regulators. In this review, we summarize the current knowledge on the role of G-quadruplexes in RNA biology with particular emphasis on the molecular mechanisms underlying their specific function in RNA metabolism occurring in physiological or pathological conditions.", "Fifty patients suffering from the \"exploding head syndrome\" are described. This hitherto unreported syndrome is characterised by a sense of an explosive noise in the head usually in the twilight stage of sleep. The associated symptoms are varied, but the benign nature of the condition is emphasised and neither extensive investigation nor treatment are indicated.", "Epigenetic modifications on the DNA sequence (DNA methylation) or on chromatin-associated proteins (i.e., histones) comprise the \"cellular epigenome\"; together these modifications play an important role in the regulation of gene expression. Unlike the genome, the epigenome is highly variable between cells and is dynamic and plastic in response to cellular stress and environmental cues. The role of the epigenome, specifically, the methylome has been increasingly highlighted and has been implicated in many cellular and developmental processes such as embryonic reprogramming, cellular differentiation, imprinting, X chromosome inactivation, genomic stability, and complex diseases such as cancer. Over the past decade several methods have been developed and applied to characterize DNA methylation at gene-specific loci (using either traditional bisulfite sequencing or pyrosequencing) or its genome-wide distribution (microarray analysis following methylated DNA immunoprecipitation (MeDIP-chip), analysis by sequencing (MeDIP-seq), reduced representation bisulfite sequencing (RRBS), or shotgun bisulfite sequencing). This chapter reviews traditional bisulfite sequencing and shotgun bisulfite sequencing approaches, with a greater emphasis on shotgun bisulfite sequencing methods and data analysis.", "Idiopathic toe walking is a relatively common developmental condition often leading to secondary problems such as pain and muscle contractures in the lower extremities. The cause of idiopathic toe walking is unknown, which hinders the development of treatment strategies. To test whether children with idiopathic toe walking have functional alterations in their spinal motor circuits, we studied the properties of the soleus H-reflex and its modulation with vibration in 26 idiopathic toe walkers and 16 typically developing children. At the group level, the H-reflex properties did not differ, but at the individual level, in 7 of 25 idiopathic toe walkers, some of the H-reflex parameters fell out of normal limits of typically developing children. However, the H-reflex was suppressed by vibration to the Achilles tendon similarly in both the idiopathic toe walkers and typically developing children. In conclusion, idiopathic toe walking in some children can be associated with functional alterations in their spinal motor circuits.", "OBJECTIVES: This study assessed the effect of pharmacogenetics on the antiplatelet effect of clopidogrel.BACKGROUND: Variability in clopidogrel response might be influenced by polymorphisms in genes coding for drug metabolism enzymes (cytochrome P450 [CYP] family), transport proteins (P-glycoprotein) and/or target proteins for the drug (adenosine diphosphate-receptor P2Y12).METHODS: Sixty patients undergoing elective percutaneous coronary intervention in the randomized PRINC (Plavix Response in Coronary Intervention) trial had platelet function measured using the VerifyNow P2Y12 analyzer after a 600-mg or split 1,200-mg loading dose and after a 75- or 150-mg daily maintenance dosage. Polymerase chain reaction-based genotyping evaluated polymorphisms in the CYP2C19, CYP2C9, CYP3A4, CYP3A5, ABCB1, P2Y12, and CES genes.RESULTS: CYP2C19*1*1 carriers had greater platelet inhibition 2 h after a 600-mg dose (median: 23%, range: 0% to 66%), compared with platelet inhibition in CYP2C19*2 or *4 carriers (10%, 0% to 56%, p = 0.029) and CYP2C19*17 carriers (9%, 0% to 98%, p = 0.026). CYP2C19*2 or *4 carriers had greater platelet inhibition with the higher loading dose than with the lower dose at 4 h (37%, 8% to 87% vs. 14%, 0% to 22%, p = 0.002) and responded better with the higher maintenance dose regimen (51%, 15% to 86% vs. 14%, 0% to 67%, p = 0.042).CONCLUSIONS: Carriers of the CYP2C19*2 and *4 alleles showed reduced platelet inhibition after a clopidogrel 600-mg loading dose but responded to higher loading and maintenance dose regimens. Genotyping for the relevant gene polymorphisms may help to individualize and optimize clopidogrel treatment. (Australia New Zealand Clinical Trials Registry; ACTRN12606000129583).", "STUDY OBJECTIVES: Suvorexant, an orexin receptor antagonist, improves sleep in healthy subjects (HS) and patients with insomnia. We compared the electroencephalographic (EEG) power spectral density (PSD) profile of suvorexant with placebo using data from a phase 2 trial in patients with insomnia. We also compared suvorexant's PSD profile with the profiles of other insomnia treatments using data from 3 HS studies.DESIGN: Phase 2 trial--randomized, double-blind, two-period (4 w per period) crossover. HS studies--randomized, double-blind, crossover.SETTING: Sleep laboratories.PARTICIPANTS: Insomnia patients (n = 229) or HS (n = 124).INTERVENTIONS: Phase 2 trial--suvorexant 10 mg, 20 mg, 40 mg, 80 mg, placebo; HS study 1--suvorexant 10 mg, 50 mg, placebo; HS study 2--gaboxadol 15 mg, zolpidem 10 mg, placebo; HS study 3--trazodone 150 mg, placebo.MEASUREMENTS AND RESULTS: The PSD of the EEG signal at 1-32 Hz of each PSG recording during nonrapid eye movement (NREM) and rapid eye movement (REM) sleep were calculated. The day 1 and day 28 PSD profiles of suvorexant at all four doses during NREM and REM sleep in patients with insomnia were generally flat and close to 1.0 (placebo) at all frequencies. The day 1 PSD profile of suvorexant in HS was similar to that in insomnia patients. In contrast, the other three drugs had distinct PSD profiles in HS that differed from each other.CONCLUSIONS: Suvorexant at clinically effective doses had limited effects on power spectral density compared with placebo in healthy subjects and in patients with insomnia, in contrast to the three comparison insomnia treatments. These findings suggest the possibility that antagonism of the orexin pathway might lead to improvements in sleep without major changes in the patient's neurophysiology as assessed by electroencephalographic.", "RNA sequencing is a recent technology which has seen an explosion of methods addressing all levels of analysis, from read mapping to transcript assembly to differential expression modeling. In particular the discovery of isoforms at the transcript assembly stage is a complex problem and current approaches suffer from various limitations. For instance, many approaches use graphs to construct a minimal set of isoforms which covers the observed reads, then perform a separate algorithm to quantify the isoforms, which can result in a loss of power. Current methods also use ad-hoc solutions to deal with the vast number of possible isoforms which can be constructed from a given set of reads. Finally, while the need of taking into account features such as read pairing and sampling rate of reads has been acknowledged, most existing methods do not seamlessly integrate these features as part of the model. We present Montebello, an integrated statistical approach which performs simultaneous isoform discovery and quantification by using a Monte Carlo simulation to find the most likely isoform composition leading to a set of observed reads. We compare Montebello to Cufflinks, a popular isoform discovery approach, on a simulated data set and on 46.3 million brain reads from an Illumina tissue panel. On this data set Montebello appears to offer a modest improvement over Cufflinks when considering discovery and parsimony metrics. In addition Montebello mitigates specific difficulties inherent in the Cufflinks approach. Finally, Montebello can be fine-tuned depending on the type of solution desired.", "The amyloid hypothesis has long been the central dogma in drug discovery for Alzheimer's disease (AD), leading to many small-molecule and biological drug candidates. One major target has been the β-site amyloid-precursor-protein-cleaving enzyme 1 (BACE-1), with many big pharma companies expending great resources in the search for BACE-1 inhibitors. The lack of efficacy of verubecestat in mild-to-moderate AD raises important questions about the timing of intervention with BACE-1 inhibitors, and anti-amyloid therapies in general, in AD treatment. It also suggests new possibilities for discovering BACE-1-targeted compounds with more complex mechanisms of actions and improved efficacy. Herein, we review the major advances in BACE-1 drug discovery, from single-target small molecule inhibitors to multitarget compounds. We discuss these compounds as innovative tools for better understanding the complexity of AD and for identifying efficacious drug candidates to treat this devastating disease.", "Insulin resistance is a major endocrinopathy underlying the development of hyperglycaemia and cardiovascular disease in type 2 diabetes. Metformin (a biguanide) and rosiglitazone (a thiazolidinedione) counter insulin resistance, acting by different cellular mechanisms. The two agents can be used in combination to achieve additive glucose-lowering efficacy in the treatment of type 2 diabetes, without stimulating insulin secretion and without causing hypoglycaemia. Both agents also reduce a range of atherothrombotic factors and markers, indicating a lower cardiovascular risk. Early intervention with metformin is already known to reduce myocardial infarction and increase survival in overweight type 2 patients. Recently, a single-tablet combination of metformin and rosiglitazone, Avandamet, has become available. Avandamet is suitable for type 2 diabetic patients who are inadequately controlled by monotherapy with metformin or rosiglitazone. Patients already receiving separate tablets of metformin and rosiglitazone may switch to the single-tablet combination for convenience. Also, early introduction of the combination before maximal titration of one agent can reduce side effects. Use of Avandamet requires attention to the precautions for both metformin and rosiglitazone, especially renal, cardiac and hepatic competence. In summary, Avandamet is a single-tablet metformin-rosiglitazone combination that doubly targets insulin resistance as therapy for hyperglycaemia and vascular risk in type 2 diabetes.", "Exploding head syndrome (EHS) attacks are characterized by the sensation of sudden loud banging noises, and are occasionally accompanied by the sensation of a flash light. Although these attacks in themselves are usually not painful, it is reported that EHS attacks may precede migraines and may be perceived as auras. A 53-year-old woman, with a 40-year history of fulgurating migraines, experienced 2 different types of EHS attacks. During most of the attacks, which were not painful, she heard sounds like someone yelling or cars passing by. Only 1 episode was accompanied with the sensation of a flash light and of sounds similar to those of an electrical short circuit. On the video-polysomnography, video-polysomnography showed 11 EHS attacks occurred during stage N1 and stage N2; these attacks were preceded by soft snoring. She also had moderate obstructive sleep apnea syndrome (Apnea Hypopnea Index: 16.7) for which an oral appliance was prescribed; the EHS attacks did not recur after this treatment. The pathophysiology of EHS is still unclear. A detailed analysis of PSG data may help in understanding the pathophysiology of this syndrome and also in the selection of therapeutic strategies.", "In females, estrogens play a key role in reproduction and have beneficial effects on the skeletal, cardiovascular, and central nervous systems. Most estrogenic responses are mediated by estrogen receptors (ERs), either ER alpha or ER beta, which are members of the nuclear receptor superfamily of ligand-dependent transcription factors. Selective estrogen receptor modulators (SERMs) are ER ligands that in some tissues act like estrogens, but block estrogen action in others. Thus, SERMs may exhibit an agonistic or antagonistic biocharacter depending on the context in which their activity is examined. For example, the SERMs tamoxifen and raloxifene both exhibit ER antagonist activity in breast and agonist activity in bone, but only tamoxifen manifests agonist activity in the uterus. Numerous studies have examined the molecular basis for SERM selectivity. Collectively they indicate that different ER ligands induce distinct structural changes in the receptor that influence its ability to interact with other proteins (e.g., coactivators or corepressors) critical for the regulation of target gene transcription. The relative expression of coactivators and corepressors, and the nature of the ER and of its target gene promoter affect SERM biocharacter. Taken together, SERM selectivity reflects the diversity of ER forms and coregulators, cell type differences in their expression, and the diversity of ER target genes. This model provides a basis for understanding the molecular mechanisms of SERM action, and should help identify new SERMs with enhanced tissue or target gene selectivity.", "Nephropatic cystinosis (NC) is a rare disease associated with pathogenic variants in the CTNS gene, with a common variant that consists of a 57kb-deletion involving CTNS. Patients with NC that are treated with cysteamine improve their life quality and expectancy. We report a 12-month-old girl with a poor growth rate since the 4th month of life. She was admitted to the Hospital with acute kidney injury, severe dehydration and metabolic acidosis. She was treated with volume restorative and bicarbonate. Proximal tubulopathy and Fanconi's syndrome was diagnosed. Medical treatment improved renal function that was stabilized in stage 4 chronic kidney disease (CKD). Since infantile NC was suspected, CTNS genetic analysis was considered. Genomic DNA was isolated from peripheral blood to perform PCR for exons 3-12 in CTNS gene and for the specific 57kb-deletion PCR. Afterwards, variant segregation analysis was performed in the familiar trio. The genetic analysis showed that the patient was homozygous for the common 57kb-deletion encompassing CTNS that had been inherited from her asymptomatic heterozygous parents. The molecular confirmation allowed genetic counselling for parents and facilitated the access to cysteamine. Oral treatment with cysteamine resulted in improvement of renal function to CKD stage 3. After 16 months of treatment the patient shows metabolic stability and mild recovery of height. Ophthalmologic follow-up detected ocular cystine crystals 12 months after diagnosis, starting cysteamine drops.", "INTRODUCTION: Exploding head syndrome (EHS) is a rare parasomnia in which affected individuals awaken from sleep with the sensation of a loud bang. The etiology is unknown, but other conditions including primary and secondary headache disorders and nocturnal seizures need to be excluded.CASE PRESENTATION: A 57-year-old Indian male presented with four separate episodes of awakening from sleep at night after hearing a flashing sound on the right side of his head over the last 2 years. These events were described 'as if there are explosions in my head'. A neurologic examination, imaging studies, and a polysomnogram ensued, and the results led to the diagnosis of EHS.CONCLUSION: EHS is a benign, uncommon, predominately nocturnal disorder that is self-limited. No treatment is generally required. Reassurance to the patient is often all that is needed.", "The European Medicines Agency (EMA) in London is responsible for the Regulatory review of new medicinal products for Marketing Authorisation, through which pharmaceutical companies may obtain first Marketing Authorisation and subsequent Variations valid throughout the EU and EFTA. The qualification opinion of novel methodologies is a new procedure where applicants can obtain scientific advice on new methodologies for regulatory clinical trials of efficacy of new compounds. It will help benefit/risk assessment of the CHMP. The definition of prodromal AD is acceptable. The \"Dubois Criteria\" as criteria to define the population must be validated in full at the time of the submission of the dossiers. Including a positive CSF biomarker profile is considered predictive for the evaluation of the AD-dementia type. However, although high CSF tau and low CSF Aβ42 are predictive of Alzheimer's disease, the criterion \"positive CSF tau/Aβ42 ratio\" is not well defined. The qualification of biomarkers in the pre-dementia stage of Alzheimer's disease will allow better inclusion criteria of patients in pre-dementia trials in which the benefit/risk is higher for treatment with these novel compounds.", "The transcriptional coactivator the peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) has been identified as an important mediator of mitochondrial biogenesis based on its ability to interact with transcription factors that activate nuclear genes encoding mitochondrial proteins. The induction of PGC-1alpha protein expression under conditions that provoke mitochondrial biogenesis, such as contractile activity or thyroid hormone (T(3)) treatment, is not fully characterized. Thus we related PGC-1alpha protein expression to cytochrome c oxidase (COX) activity in 1) tissues of varying oxidative capacities, 2) tissues from animals treated with T(3), and 3) skeletal muscle subject to contractile activity both in cell culture and in vivo. Our results demonstrate a strong positive correlation (r = 0.74; P < 0.05) between changes in PGC-1alpha and COX activity, used as an index of mitochondrial adaptations. The highest constitutive levels of PGC-1alpha were found in the heart, whereas the lowest were measured in fast-twitch white muscle and liver. T(3) increased PGC-1alpha content similarly in both fast- and slow-twitch muscle, as well as in the liver, but not in heart. T(3) also induced early (6 h) increases in AMP-activated protein kinase (AMPKalpha) activity, as well as later (5 day) increases in p38 MAP kinase activity in slow-twitch, but not in fast-twitch, muscle. Contractile activity provoked early increases in PGC-1alpha, coincident with increases in mitochondrial transcription factor A (Tfam), and nuclear respiratory factor-1 (NRF-1) protein expression, suggesting that PGC-1alpha is physiologically important in coordinating the expression of the nuclear and mitochondrial genomes. Ca(2+) ionophore treatment of muscle cells led to an approximately threefold increase in PGC-1alpha protein, and contractile activity induced rapid and marked increases in both p38 MAP kinase and AMPKalpha activities. 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) treatment of muscle cells also led to parallel increases in AMPKalpha activity and PGC-1alpha protein levels. These data are consistent with observations that indicate that increases in PGC-1alpha protein are affected by Ca(2+) signaling mechanisms, AMPKalpha activity, as well as posttranslational phosphorylation events that increase PGC-1alpha protein stability. Our data support a role for PGC-1alpha in the physiological regulation of mitochondrial content in a variety of tissues and suggest that increases in PGC-1alpha expression form part of a unifying pathway that promotes both T(3)- and contractile activity-induced mitochondrial adaptations.", "BACKGROUND: Exploding head syndrome (EHS) is characterized by attacks of a sudden noise or explosive feeling experienced in the head occurring during the transition from wake to sleep or from sleep to wake.METHODS: We present six new cases extending the clinical experience with the syndrome. We also reviewed all available cases from the scientific literature and evaluated the typical features of EHS.RESULTS: The female to male ratio is 1.5 to 1. The median age at onset is 54. In average, one attack per day to one attack per week occurs. Some patients suffer from several attacks per night. In about half of all patients, a chronic time course can be observed but episodic or sporadic occurrence is also common. The most frequent accompanying symptoms beside the noise are fear and flashes of light. Polysomnographic studies do not reveal any specific sleep pattern associated with EHS. Tricyclic antidepressants are helpful in some patients. However, most patients do not need treatment because of the benign nature of the syndrome.CONCLUSION: EHS is a well-defined disease entity with a benign nature.", "Loss of Pax 6 function leads to an eyeless phenotype in both mammals and insects, and ectopic expression of both the Drosophila and the mouse gene leads to the induction of ectopic eyes in Drosophila, which suggested to us that Pax 6 might be a universal master control gene for eye morphogenesis. Here, we report the reciprocal experiment in which the RNAs of the Drosophila Pax 6 homologs, eyeless and twin of eyeless, are transferred into a vertebrate embryo; i.e., early Xenopus embryos at the 2- and 16-cell stages. In both cases, ectopic eye structures are formed. To understand the genetic program specifying eye morphogenesis, we have analyzed the regulatory mechanisms of Pax 6 expression that initiates eye development. Previously, we have demonstrated that Notch signaling regulates the expression of eyeless and twin of eyeless in Drosophila. Here, we show that in Xenopus, activation of Notch signaling also induces eye-related gene expression, including Pax 6, in isolated animal caps. In Xenopus embryos, the activation of Notch signaling causes eye duplications and proximal eye defects, which are also induced by overexpression of eyeless and twin of eyeless. These findings indicate that the gene regulatory cascade is similar in vertebrates and invertebrates.", "Septins are highly conserved and essential eukaryotic cytoskeletal proteins that interact with the inner plasma membrane. They are involved in essential functions requiring cell membrane remodeling and compartmentalization, such as cell division and dendrite morphogenesis, and have been implicated in numerous diseases. Depending on the organisms and on the type of tissue, a specific set of septins genes are expressed, ranging from 2 to 13. Septins self-assemble into linear, symmetric rods that can further organize into linear filaments several microns in length. Only a subset of human septins has been described at high resolution by X-ray crystallography (Sirajuddin et al., 2007). Electron microscopy (EM) has proven to be a method of choice for analyzing the molecular organization of septins. It is possible to localize each septin subunit within the rod complex using genetic tags, such as maltose-binding protein or green fluorescent protein, to generate a visible label of a specific septin subunit in EM images that are processed using single-particle EM methodology. In this chapter we present, in detail, the methods that we have used to analyze the molecular organization of budding yeast septins (Bertin et al., 2008). These methods include purification of septin complexes, sample preparation for EM, and image processing procedures. Such methods can be generalized to analyze the organization of septins from any organism.", "The solution structure of the isolated antibody heavy chain variable domain (VH)-P8 was determined by NMR spectroscopy. The VH had previously been modified (camelised) at three positions in its former antibody light chain variable domain (VL) interface to reduce hydrophobicity by mimicking camelid heavy chains naturally devoid of light chains. The architecture of two pleated beta-sheets and the conformation of the H1 and H2 loops in VH-P8 are very similar to those in non-camelised, VL-associated VH domains. Major differences concern the H3 loop, which no longer points towards the now absent VL, and three residues in the former VL interface. The side-chains of Val37 and Trp103 are buried and the Arg38 side-chain exposed in VH-P8. In non-camelised, VL-associated VH domains the side-chains of Val37 and Trp103 are in contact with the VL while the Arg38 side-chain is buried within the VH. Reorientation of Trp103 is due to the local structure in the beta-bulge of strand G. Reorientation of Val37 and Arg38 is caused by a disruption of regular beta-structure in strand C opposite the beta-bulge in strand C'. These changes, combined with the more hydrophilic side-chains of the camelised residues, reduce hydrophobicity and prevent non-specific binding of camelised VH domains, which proved critical for their use as small recognition units. The VH-P8 structure also indicates structural reasons for two other mutations specific for light-chain-lacking camel immunoglobins. Absence of the VH-typical Arg94/Asp101 salt bridge at the base of the H3 loop in VH-P8 may explain why a positively charged residue at position 94 is not conserved in camels. Reorientation of Val37 suggests a function of the camel-specific phenylalanine residue at this position in the hydrophobic core of light-chain-lacking camel heavy chains.", "A significant portion of the mammalian genome encodes numerous transcripts that are not translated into proteins, termed long non-coding RNAs. Initial studies identifying long non-coding RNAs inferred these RNA sequences were a consequence of transcriptional noise or promiscuous RNA polymerase II activity. However, the last decade has seen a revolution in the understanding of regulation and function of long non-coding RNAs. Now it has become apparent that long non-coding RNAs play critical roles in a wide variety of biological processes. In this review, we describe the current understanding of long non-coding RNA-mediated regulation of cellular processes: differentiation, development, and disease.", "The case is reported of a 47-year old female suffering from the exploding head syndrome. This syndrome consists of a sudden awakening due to a loud noise shortly after falling asleep, sometimes accompanied by a flash of light. The patient is anxious and experiences palpitations and excessive sweating. Most patients are more than fifty years of age. Further investigations do not reveal any abnormality. The pathogenesis is unknown, and no therapy other than reassurance is necessary.", "Attention has recently been drawn to a condition termed the exploding head syndrome, which is characterized by unpleasant, even terrifying sensations of flashing lights and/or sounds during reported sleep. Nine patients complaining of sensations of explosions in the head during sleep or drowsiness were investigated with polysomnographic recordings. None of them had any neurological disorder. Five patients reported explosions during the recording sessions. According to the recordings, the attacks always took place when the patients were awake and relaxed. In two cases abrupt electroencephalographic (EEG) and electromyographic changes indicating increasing alertness were recorded at the time of the reported attacks. In the remaining three cases no EEG changes were seen. Thus, there were no indications of an epileptic etiology to the condition. In all patients the symptoms ameliorated spontaneously with time. The severity of the symptoms was reduced by reassurance of the harmlessness of the condition. Clomipramine was prescribed to three patients who all reported immediate relief of symptoms. It is concluded that symptoms of this type are probably not true hypnagogic phenomena but may be an expression of emotional stress in the awake state.", "Cadherin-mediated interactions are integral to synapse formation and potentiation. Here we show that N-cadherin is required for memory formation and regulation of a subset of underlying biochemical processes. N-cadherin antagonistic peptide containing the His-Ala-Val motif (HAV-N) transiently disrupted hippocampal N-cadherin dimerization and impaired the formation of long-term contextual fear memory while sparing short-term memory, retrieval, and extinction. HAV-N impaired the learning-induced phosphorylation of a distinctive, cytoskeletally associated fraction of hippocampal Erk-1/2 and altered the distribution of IQGAP1, a scaffold protein linking cadherin-mediated cell adhesion to the cytoskeleton. This effect was accompanied by reduction of N-cadherin/IQGAP1/Erk-2 interactions. Similarly, in primary neuronal cultures, HAV-N prevented NMDA-induced dendritic Erk-1/2 phosphorylation and caused relocation of IQGAP1 from dendritic spines into the shafts. The data suggest that the newly identified role of hippocampal N-cadherin in memory consolidation may be mediated, at least in part, by cytoskeletal IQGAP1/Erk signaling.", "This article reviews the features of an uncommon malady termed \"the exploding head syndrome.\" Sufferers describe terrorizing attacks of a painless explosion within their head. Attacks tend to occur at the onset of sleep. The etiology of attacks is unknown, although they are considered to be benign. Treatment with clomipramine has been suggested, although most sufferers require only reassurance that the spells are benign in nature.", "AIMS: To investigate whether phospholamban gene (PLN) mutations underlie patients diagnosed with either arrhythmogenic right ventricular cardiomyopathy (ARVC) or idiopathic dilated cardiomyopathy (DCM).METHODS AND RESULTS: We screened a cohort of 97 ARVC and 257 DCM unrelated index patients for PLN mutations and evaluated their clinical characteristics. PLN mutation R14del was identified in 12 (12 %) ARVC patients and in 39 (15 %) DCM patients. Haplotype analysis revealed a common founder, estimated to be between 575 and 825 years old. A low voltage electrocardiogram was present in 46 % of R14del carriers. Compared with R14del- DCM patients, R14del+ DCM patients more often demonstrated appropriate implantable cardioverter defibrillator discharge (47 % vs. 10 % , P < 0.001), cardiac transplantation (18 % vs. 2 % , P < 0.001), and a family history for sudden cardiac death (SCD) at < 50 years (36 % vs. 16 % , P = 0.007). We observed a similar pattern in the ARVC patients although this was not statistically significant. The average age of 26 family members who died of SCD was 37.7 years. Immunohistochemistry in available myocardial samples revealed absent/depressed plakoglobin levels at intercalated disks in five of seven (71 %) R14del+ ARVC samples, but in only one of nine (11 %) R14del+ DCM samples (P = 0.03).CONCLUSIONS: The PLN R14del founder mutation is present in a substantial number of patients clinically diagnosed with DCM or ARVC. R14del+ patients diagnosed with DCM showed an arrhythmogenic phenotype, and SCD at young age can be the presenting symptom. These findings support the concept of 'arrhythmogenic cardiomyopathy'.", "Protein carbamylation is a post-translational modification that can occur in the presence of urea. In solution, urea is in equilibrium with ammonium cyanate, and carbamylation occurs when cyanate ions react with the amino groups of lysines, arginines, protein N-termini, as well as sulfhydryl groups of cysteines. The concentration of urea is elevated in the renal inner medulla compared with other tissues. Due to the high urea concentration, we hypothesized that carbamylation can occur endogenously within the rat inner medulla. Using immunoblotting of rat kidney cortical and medullary homogenates with a carbamyl-lysine specific antibody, we showed that carbamylation is present in a large number of inner medullary proteins. Using protein mass spectrometry (LC-MS/MS) of rat renal inner medulla, we identified 456 unique carbamylated sites in 403 proteins, including many that play important physiological roles in the renal medulla [Data can be accessed at https://helixweb.nih.gov/ESBL/Database/Carbamylation/Carbamylation_peptide_sorted.html]. We conclude that protein carbamylation occurs endogenously in the kidney, modifying many physiologically important proteins.", "1. The adenosine triphosphate (ATP) binding cassette (ABC) transporters form one of the largest protein families encoded in the human genome, and more than 48 genes encoding human ABC transporters have been identified and sequenced. It has been reported that mutations of ABC protein genes are causative in several genetic disorders in humans. 2. Many human ABC transporters are involved in membrane transport of drugs, xenobiotics, endogenous substances or ions, thereby exhibiting a wide spectrum of biological functions. According to the new nomenclature of human ABC transporter genes, the 'ABCC' gene sub-family comprises three classes involving multidrug resistance-associated proteins (MRPs), sulfonylurea receptors (SURs), and a cystic fibrosis transmembrane conductance regulator (CFTR). 3. Molecular cloning studies have identified a total of ten members of the human MRP class including ABCC11, ABCC12, and ABCC13 (pseudo-gene) that have recently been characterized. 4. This review addresses the historical background and discovery of the ATP-driven xenobiotic export pumps (GS-X pumps) encoded by MRP genes, biological functions of ABC transporters belonging to the MRP class, and regulation of gene expression of MRPs by oxidative stress.", "Current evidence from experimental studies in animals and humans along with findings from prospective studies indicates beneficial effects of green and black tea as well as chocolate on cardiovascular health, and that tea and chocolate consumption may reduce the risk of stroke. The strongest evidence exists for beneficial effects of tea and cocoa on endothelial function, total and LDL cholesterol (tea only), and insulin sensitivity (cocoa only). The majority of prospective studies have reported a weak inverse association between moderate consumption of coffee and risk of stroke. However, there are yet no clear biological mechanisms whereby coffee might provide cardiovascular health benefits. Awaiting the results from further long-term RCTs and prospective studies, moderate consumption of filtered coffee, tea, and dark chocolate seems prudent.", "Exploding head syndrome is a rare phenomenon but can be a significant disruption to quality of life. We describe a 39-year-old female with symptoms of a loud bang and buzz at sleep onset for 3 years. EEG monitoring confirmed these events occurred in transition from stage 1 sleep. This patient reported improvement in intensity of events with topiramate medication. Based on these results, topiramate may be an alternative method to reduce the intensity of events in exploding head syndrome.", "The type 2 lysine methyltransferases KMT2C and KMT2D are large, enzymatically active scaffold proteins that form the core of nuclear regulatory structures known as KMT2C/D COMPASS complexes (complex of proteins associating with Set1). These evolutionarily conserved proteins regulate DNA promoter and enhancer elements, modulating the activity of diverse cell types critical for embryonic morphogenesis, central nervous system development, and post-natal survival. KMT2C/D COMPASS complexes and their binding partners enhance active gene expression of specific loci via the targeted modification of histone-3 tail residues, in general promoting active euchromatic conformations. Over the last 20 years, mutations in five key COMPASS complex genes have been linked to three human congenital syndromes: Kabuki syndrome (type 1 [KMT2D] and 2 [KDM6A]), Rubinstein-Taybi syndrome (type 1 [CBP] and 2 [EP300]), and Kleefstra syndrome type 2 (KMT2C). Here, we review the composition and biochemical function of the KMT2 complexes. The specific cellular and embryonic roles of the KMT2C/D COMPASS complex are highlight with a focus on clinically relevant mechanisms sensitive to haploinsufficiency. The phenotypic similarities and differences between the members of this new family of disorders are outlined and emerging therapeutic strategies are detailed.", "Hirschsprung's disease (HSCR, aganglionic megacolon) is a frequent congenital malformation regarded as a multigenic neurocristopathy. Three susceptibility genes have been recently identified in HSCR, namely the RET proto-oncogene, the endothelin B receptor (EDNRB) gene, and the endothelin 3 (EDN3) gene. RET gene mutations were found in significant proportions of familial (50%) and sporadic (15-20%) HSCR, while homozygosity for EDNRB or EDN3 mutations accounted for the rare HSCR-Waardenburg syndrome (WS) association. More recently, heterozygous EDNRB and EDN3 missense mutations have been reported in isolated HSCR patients. Some of these results were obtained after the identification of mouse genes whose natural or site-directed mutations resulted in megacolon and coat color spotting. There is also conclusive evidence for the involvement of other independent loci in HSCR. In particular, the recent identification of neurotrophic factors acting as RET ligands (GDNF and Neurturin) provide additional candidate genes for HSCR. The dissection of the genetic etiology of HSCR disease may then provide a unique opportunity to distinguish between a polygenic and a genetically heterogeneous disease, thereby helping to understand other complex disorders and congenital malformations hitherto considered as multifactorial in origin. Finally, the study of the molecular bases of HSCR is also a step towards the understanding of developmental genetics of the enteric nervous system giving support to the role of the tyrosine kinase and endothelin-signaling pathways in the development of neural crest-derived enteric neurons in human.", "Recently, the sex determining region Y ( Sry) and the cerebellar degeneration-related protein 1 ( CDR1as) RNA transcripts have been described to function as a new class of post-transcriptional regulatory RNAs that behave as circular endogenous RNA sponges for the micro RNAs (miRNAs) miR-138 and miR-7, respectively. A special feature of the Sry gene is its ability to generate linear and circular transcripts, both transcribed in the sense orientation. Here we remark that both sense (e.g. Sry RNA) and antisense (e.g. CDR1as) transcripts could circularize and behave as miRNAs sponges, and importantly, that also protein-coding segments of mRNAs could also assume this role. Thus, it is reasonable to think that the linear Sry sense transcript could additionally act as a miRNA sponge, or as an endogenous competing RNA for miR-138.", "SMARCAL1 (SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A-Like 1), also known as HARP, is an ATP-dependent annealing helicase that stabilizes replication forks during DNA damage. Mutations in this gene are the cause of Schimke immune-osseous dysplasia (SIOD), an autosomal recessive disorder characterized by T-cell immunodeficiency and growth dysfunctions. In this review, we summarize the main roles of SMARCAL1 in DNA repair, telomere maintenance and replication fork stability in response to DNA replication stress.", "OBJECTIVE: To examine the incidence of preterm premature rupture of membranes (PPROM) in pregnancies affected by twin-twin transfusion syndrome (TTTS) treated with laser photocoagulation where an absorbable gelatin sponge was used as a chorioamnion sealant of the fetoscopic access port.METHOD: A retrospective review was undertaken of consecutive cases undergoing fetoscopic directed laser surgery for TTTS between October 2006 and November 2008 at Texas Children's Fetal Center, in which an absorbable gelatin sponge, used as a chorioamnion 'plug', was placed at the conclusion of the intervention as a possible prophylactic measure to prevent PPROM. We excluded cases that had a failure of plug placement and those in which it was not attempted. PPROM was defined as rupture of membranes before 34 weeks' gestation. A comparison was performed between the PPROM group and a no-PPROM group to determine risk factors and outcomes.RESULTS: Successful plug placement occurred in 79 of 84 cases (94%) in which it was attempted after laser surgery, with a rate of PPROM of 34% in these patients. PPROM occurred at an average gestational age of 26.5 +/- 3.6 weeks, with an average procedure-to-PPROM interval of 5.2 +/- 3.5 weeks. There were no statistically significant differences between the PPROM group and the no-PPROM group in maternal demographics or preoperative parameters including: amniotic fluid volumes in the recipient twin's gestational sac, volume of amnioreduction, and location of the placenta. The procedure-to-delivery interval for the total cohort (n = 79) was 9.2 +/- 4.7 weeks, without a significant difference between the two groups (P = 0.08). However, after exclusion of one PPROM outlier, the PPROM group had an average procedure-to-delivery time 2 weeks shorter than the group with no PPROM (P = 0.03). The live birth rates were similar in the PPROM and no-PPROM groups, at 77 and 73%, respectively. However, the average recipient's weight in the PPROM group was significantly lower than in the no-PPROM group (1321 +/- 493 vs. 1705 +/- 576 g; P = 0.02).CONCLUSION: The rate of PPROM and the mean gestational age at delivery in pregnancies in which an absorbable gelatin sponge was used as a sealant of the fetoscopic port following laser photocoagulation for TTTS were comparable to those that have been reported by other laser centers where membrane sealants were not used. A randomized controlled trial should be considered to evaluate the effect of chorioamnion plugging.", "The xanthone derivate 5',6'-dimethylxanthenone-4-acetic acid (DMXAA, also known as ASA404 or vadimezan) is a potent agonist of murine STING (stimulator of interferon genes), but cannot activate human STING. Herein we report that α-mangostin, which bears the xanthone skeleton, is an agonist of human STING, but activates murine STING to a lesser extent. Biochemical and cell-based assays indicate that α-mangostin binds to and activates human STING, leading to activation of the downstream interferon regulatory factor (IRF) pathway and production of type I interferons. Furthermore, our studies show that α-mangostin has the potential to repolarize human monocyte-derived M2 macrophages to the M1 phenotype. The agonist effect of α-mangostin in the STING pathway might account for its antitumor and antiviral activities.", "OBJECTIVE: Class IIa histone deacetylases (HDACs) belong to a large family of enzymes involved in protein deacetylation and play a role in regulating gene expression and cell differentiation. Previously, we showed that HDAC inhibitors modify the timing and determination of pancreatic cell fate. The aim of this study was to determine the role of class IIa HDACs in pancreas development.RESEARCH DESIGN AND METHODS: We took a genetic approach and analyzed the pancreatic phenotype of mice lacking HDAC4, -5, and -9. We also developed a novel method of lentiviral infection of pancreatic explants and performed gain-of-function experiments.RESULTS: We show that class IIa HDAC4, -5, and -9 have an unexpected restricted expression in the endocrine β- and δ-cells of the pancreas. Analyses of the pancreas of class IIa HDAC mutant mice revealed an increased pool of insulin-producing β-cells in Hdac5(-/-) and Hdac9(-/-) mice and an increased pool of somatostatin-producing δ-cells in Hdac4(-/-) and Hdac5(-/-) mice. Conversely, HDAC4 and HDAC5 overexpression showed a decreased pool of insulin-producing β-cells and somatostatin-producing δ-cells. Finally, treatment of pancreatic explants with the selective class IIa HDAC inhibitor MC1568 enhances expression of Pax4, a key factor required for proper β-and δ-cell differentiation and amplifies endocrine β- and δ-cells.CONCLUSIONS: We conclude that HDAC4, -5, and -9 are key regulators to control the pancreatic β/δ-cell lineage. These results highlight the epigenetic mechanisms underlying the regulation of endocrine cell development and suggest new strategies for β-cell differentiation-based therapies." ]
1,989
[ "BACKGROUND: Phase 1 and 2 clinical trials of the BRAF kinase inhibitor vemurafenib (PLX4032) have shown response rates of more than 50% in patients with metastatic melanoma with the BRAF V600E mutation.METHODS: We conducted a phase 3 randomized clinical trial comparing vemurafenib with dacarbazine in 675 patients with previously untreated, metastatic melanoma with the BRAF V600E mutation. Patients were randomly assigned to receive either vemurafenib (960 mg orally twice daily) or dacarbazine (1000 mg per square meter of body-surface area intravenously every 3 weeks). Coprimary end points were rates of overall and progression-free survival. Secondary end points included the response rate, response duration, and safety. A final analysis was planned after 196 deaths and an interim analysis after 98 deaths.RESULTS: At 6 months, overall survival was 84% (95% confidence interval [CI], 78 to 89) in the vemurafenib group and 64% (95% CI, 56 to 73) in the dacarbazine group. In the interim analysis for overall survival and final analysis for progression-free survival, vemurafenib was associated with a relative reduction of 63% in the risk of death and of 74% in the risk of either death or disease progression, as compared with dacarbazine (P<0.001 for both comparisons). After review of the interim analysis by an independent data and safety monitoring board, crossover from dacarbazine to vemurafenib was recommended. Response rates were 48% for vemurafenib and 5% for dacarbazine. Common adverse events associated with vemurafenib were arthralgia, rash, fatigue, alopecia, keratoacanthoma or squamous-cell carcinoma, photosensitivity, nausea, and diarrhea; 38% of patients required dose modification because of toxic effects.CONCLUSIONS: Vemurafenib produced improved rates of overall and progression-free survival in patients with previously untreated melanoma with the BRAF V600E mutation. (Funded by Hoffmann-La Roche; BRIM-3 ClinicalTrials.gov number, NCT01006980.).", "17β-estradiol (E2 or estrogen) is an endogenous steroid hormone that is well known to exert neuroprotection. Along these lines, one mechanism through which E2 protects the hippocampus from cerebral ischemia is by preventing the post-ischemic elevation of Dkk1, a neurodegenerative factor that serves as an antagonist of the canonical Wnt signaling pathway, and simultaneously inducing pro-survival Wnt/β-Catenin signaling in hippocampal neurons. Intriguingly, while expression of Dkk1 is required for proper neural development, overexpression of Dkk1 is characteristic of many neurodegenerative diseases, such as stroke, Alzheimer's disease, Parkinson's disease, and temporal lobe epilepsy. In this review, we will briefly summarize the canonical Wnt signaling pathway, highlight the current literature linking alterations of Dkk1 and Wnt/β-Catenin signaling with neurological disease, and discuss E2's role in maintaining the delicate balance of Dkk1 and Wnt/β-Catenin signaling in the adult brain. Finally, we will consider the implications of long-term E2 deprivation and hormone therapy on this crucial neural pathway. This article is part of a Special Issue entitled Hormone Therapy.", "Author information:(1)Center for Comparative Biomedicine, MOE Key Laboratory of Systems Biomedicine, Institute of Systems Biomedicine, Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, SJTU, Shanghai 200240, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (MOE), Bio-X Center, School of Life Sciences and Biotechnology, SJTU, Shanghai 200240, China.(2)Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 West 168(th) Street, New York, NY 10032, USA.(3)Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.(4)Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA; MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China.(5)Cold Spring Harbor Laboratory, 1 Bungtown Rd, NY 11724, USA.(6)Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 West 168(th) Street, New York, NY 10032, USA. Electronic address: tm2472@cumc.columbia.edu.(7)Center for Comparative Biomedicine, MOE Key Laboratory of Systems Biomedicine, Institute of Systems Biomedicine, Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, SJTU, Shanghai 200240, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (MOE), Bio-X Center, School of Life Sciences and Biotechnology, SJTU, Shanghai 200240, China. Electronic address: qwu123@gmail.com.", "We tested the use of a deep learning algorithm to classify the clinical images of 12 skin diseases-basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, actinic keratosis, seborrheic keratosis, malignant melanoma, melanocytic nevus, lentigo, pyogenic granuloma, hemangioma, dermatofibroma, and wart. The convolutional neural network (Microsoft ResNet-152 model; Microsoft Research Asia, Beijing, China) was fine-tuned with images from the training portion of the Asan dataset, MED-NODE dataset, and atlas site images (19,398 images in total). The trained model was validated with the testing portion of the Asan, Hallym and Edinburgh datasets. With the Asan dataset, the area under the curve for the diagnosis of basal cell carcinoma, squamous cell carcinoma, intraepithelial carcinoma, and melanoma was 0.96 ± 0.01, 0.83 ± 0.01, 0.82 ± 0.02, and 0.96 ± 0.00, respectively. With the Edinburgh dataset, the area under the curve for the corresponding diseases was 0.90 ± 0.01, 0.91 ± 0.01, 0.83 ± 0.01, and 0.88 ± 0.01, respectively. With the Hallym dataset, the sensitivity for basal cell carcinoma diagnosis was 87.1% ± 6.0%. The tested algorithm performance with 480 Asan and Edinburgh images was comparable to that of 16 dermatologists. To improve the performance of convolutional neural network, additional images with a broader range of ages and ethnicities should be collected.", "We hypothesized that mesenchymal stem cells (MSCs) overexpressing insulin-like growth factor (IGF)-1 showed improved survival and engraftment in the infarcted heart and promoted stem cell recruitment through paracrine release of stromal cell-derived factor (SDF)-1alpha. Rat bone marrow-derived MSCs were used as nontransduced ((Norm)MSCs) or transduced with adenoviral-null vector ((Null)MSCs) or vector encoding for IGF-1 ((IGF-1)MSCs). (IGF-1)MSCs secreted higher IGF-1 until 12 days of observation (P<0.001 versus (Null)MSCs). Molecular studies revealed activation of phosphoinositide 3-kinase, Akt, and Bcl.xL and inhibition of glycogen synthase kinase 3beta besides release of SDF-1alpha in parallel with IGF-1 expression in (IGF-1)MSCs. For in vivo studies, 70 muL of DMEM without cells (group 1) or containing 1.5x10(6) (Null)MSCs (group 2) or (IGF-1)MSCs (group 3) were implanted intramyocardially in a female rat model of permanent coronary artery occlusion. One week later, immunoblot on rat heart tissue (n=4 per group) showed elevated myocardial IGF-1 and phospho-Akt in group 3 and higher survival of (IGF-1)MSCs (P<0.06 versus (Null)MSCs) (n=6 per group). SDF-1alpha was increased in group 3 animal hearts (20-fold versus group 2), with massive mobilization and homing of ckit(+), MDR1(+), CD31(+), and CD34(+) cells into the infarcted heart. Infarction size was significantly reduced in cell transplanted groups compared with the control. Confocal imaging after immunostaining for myosin heavy chain, actinin, connexin-43, and von Willebrand factor VIII showed extensive angiomyogenesis in the infarcted heart. Indices of left ventricular function, including ejection fraction and fractional shortening, were improved in group 3 as compared with group 1 (P<0.05). In conclusion, the strategy of IGF-1 transgene expression induced massive stem cell mobilization via SDF-1alpha signaling and culminated in extensive angiomyogenesis in the infarcted heart.", "Adolescent idiopathic scoliosis (AIS) is a common disorder with strong evidence for genetic predisposition. Quantitative trait loci (QTLs) for AIS susceptibility have been identified on chromosomes. We performed a genome-wide genetic linkage scan in seven multiplex families using 400 marker loci with a mean spacing of 8.6 cM. We used Genehunter Plus to generate linkage statistics, expressed as homogeneity (HLOD) scores, under dominant and recessive genetic models. We found a significant linkage signal on chromosome 12p, whose support interval extends from near 12 pter, spanning approximately 10 million bases or 31 cM. Fine mapping within the region using 20 additional markers reveals maximum HLOD = 3.7 at 5 cM under a dominant inheritance model, and a split peak maximum HLOD = 3.2 at 8 and 18 cM under a recessive inheritance model. The linkage support interval contains 95 known genes. We found evidence suggestive of linkage on chromosomes 1, 6, 7, 8, and 14. This study is the first to find evidence of an AIS susceptibility locus on chromosome 12. Detection of AIS susceptibility QTLs on multiple chromosomes in this and other studies demonstrate that the condition is genetically heterogeneous.", "The term cardiorenal syndrome (CRS) refers to multiple possible clinicopathological correlations between heart and kidney failure. The most recent classification recognizes five types of CRS: types I and II originate from heart failure (acute and chronic, respectively), type III and IV from kidney failure (again acute and chronic), while type V originates from a range of systemic diseases. Echocardiography and renal ultrasound are important means to arrive at a correct diagnosis. Basic echocardiography (defined by some as \"echocardioscopy\") allows the assessment of the left and right ventricles (diastolic and systolic function), atrial size, pulmonary circulation markers such as systolic pulmonary arterial pressure (PAPs) and tricuspid annular plane excursion (TAPSE), pericardial effusions, valve dysfunctions, and volume repletion. Renal ultrasound is of help in distinguishing between chronic and acute renal failure (kidney volume, parenchymal thickness, echogenicity) and excluding obstructive kidney disease." ]
1,990
[ "Exosomes are small extracellular vesicles (EVs) secreted by many cell types in both normal and pathogenic circumstances. Because EVs, particularly exosomes, are known to transfer biologically active proteins, RNAs and lipids between cells, they have recently become the focus of intense interest as potential mediators of cell-cell communication, particularly in long-range and juxtacrine signaling events associated with adaptive immune function and progression of cancer. Among the EVs, exosomes appear particularly adapted for long-range delivery of cargoes between cells. Because of their association with disease states, the exciting potential for exosomes to serve as diagnostic biomarkers and as target-specific biomolecule delivery vehicles has stimulated a broad range of biomedical investigations to learn how exosomes are generated, what their cargoes are, and how they might be tailored for uptake by remote targets. Addressing these questions requires experimental models in which biochemically useful amounts of material can be harvested, gene expression easily manipulated, and interpretable biological assays developed. The early Xenopus embryo fulfills these model-system ideals in an in vivo context: during morphogenesis the embryo develops several large, fluid-filled extracellular compartments across which numerous tissue-specifying signals must cross, and which are abundantly endowed with exosomes and other EVs. Importantly, certain surface-facing tissues avidly ingest EVs during gastrulation. Recent work has demonstrated that EVs can be isolated from these interstitial spaces in amounts suitable for proteomic and transcriptomic analysis. With its large numbers, great cell size, well-understood fate map, and tolerance of a variety of experimental approaches, the Xenopus embryo provides a unique opportunity to both understand and manipulate the basic cell biology of exosomal trafficking in the context of an intact organism.", "Radiation necrosis (RN) is a serious complication that can occur in up to 10% of brain radiotherapy cases, with the incidence dependent on both dose and brain location. Available medical treatment for RN includes steroids, vitamin E, pentoxifylline, and hyperbaric oxygen. In a significant number of patients, however, RN is medically refractory and the patients experience progressive neurological decline, disabling headaches, and decreased quality of life. Vascular endothelial growth factor (VEGF) is a known mediator of cerebral edema in RN. Recent reports have shown successful treatment of RN with intravenous bevacizumab, a monoclonal antibody for VEGF. Bevacizumab, however, is associated with significant systemic complications including sinus thrombosis, pulmonary embolus, gastrointestinal tract perforation, wound dehiscence, and severe hypertension. Using lower drug doses may decrease systemic exposure and reduce complication rates. By using an intraarterial route for drug administration following blood-brain barrier disruption (BBBD), the authors aim to lower the bevacizumab dose while increasing target delivery. In the present report, the authors present the cases of 2 pediatric patients with cerebral arteriovenous malformations, who presented with medically intractable RN following stereotactic radiosurgery. They received a single intraarterial infusion of 2.5 mg/kg bevacizumab after hyperosmotic BBBD. At mean follow-up duration of 8.5 months, the patients had significant and durable clinical and radiographic response. Both patients experienced resolution of their previously intractable headaches and reversal of cushingoid features as they were successfully weaned off steroids. One of the patients regained significant motor strength. There was an associated greater than 70% reduction in cerebral edema. Intraarterial administration of a single low dose of bevacizumab after BBBD was safe and resulted in durable clinical and radiographic improvements at concentrations well below those required for the typical systemic intravenous route. Advantages over the intravenous route may include higher concentration of drug delivery to the affected brain, decreased systemic toxicity, and a significantly lower cost.", "Gene looping juxtaposes the promoter and terminator regions of RNA polymerase II-transcribed genes in yeast and mammalian cells. Here we report an activator-dependent interaction of transcription initiation and termination factors during gene looping in budding yeast. Chromatin analysis revealed that MET16, INO1, and GAL1p-BUD3 are in a stable looped configuration during activated transcription. Looping was nearly abolished in the absence of transcription activators Met28, Ino2, and Gal4 of MET16, INO1, and GAL1p-BUD3 genes, respectively. The activator-independent increase in transcription was not accompanied by loop formation, thereby suggesting an essential role for activators in gene looping. The activators did not facilitate loop formation directly because they did not exhibit an interaction with the 3' end of the genes. Instead, activators physically interacted with the general transcription factor TFIIB when the genes were activated and in a looped configuration. TFIIB cross-linked to both the promoter and the terminator regions during the transcriptionally activated state of a gene. The presence of TFIIB on the terminator was dependent on the Rna15 component of CF1 3' end processing complex. Coimmunoprecipitation revealed a physical interaction of Rna15 with TFIIB. We propose that the activators facilitate gene looping through their interaction with TFIIB during transcriptional activation of genes.", "Non-small-cell lung cancer (NSCLC) is a highly prevalent and aggressive disease. In the metastatic setting, major advances include the incorporation of immunotherapy and targeted therapies into the clinician's therapeutic armamentarium. Standard chemotherapeutic regimens have long been reported to interfere with the immune response to the tumor; conversely, antitumor immunity may add to the effects of those therapies. The aim of immunotherapy is to specifically enhance the immune response directed to the tumor. Recently, many trials addressed the role of such therapies for metastatic NSCLC treatment: ipilimumab, tremelimumab, nivolumab and lambrolizumab are immunotherapeutic agents of main interest in this field. In addition, anti-tumor vaccines, such as MAGE-A3, Tecetomide, TG4010, CIMAvax, ganglioside vaccines, tumor cell vaccines and dendritic cell vaccines, emerged as potent inducers of immune response against the tumor. The current work aims to address the most recent developments regarding these innovative immunotherapies and their implementation in the treatment of metastatic NSCLC.", "We report a Japanese infant with Horner syndrome whose clinical examination and testing suggested the location of the causative lesion. A 4-year-old Japanese girl had an acquired right ocular ptosis and unequal pupils presenting shortly after birth. She also exhibited left hemifacial flushing and loss of sweating on the contralateral side (harlequin sign). Physical examination demonstrated 2.0 mm of ptosis of the right upper lid with normal elevator function. The diameters of the pupils were 4 mm on the left and 2.5 mm on the right. No sweating was induced in the right frontal region at 40 degrees C for 15 minutes of sweat challenge test. Otherwise, no abnormalities were found by the neurophysiologic examinations or magnetic resonance imaging of the brain. Based on the clinical examination, we speculated that the responsible lesion might be in the preganglionic areas. Harlequin sign was informative for making the diagnosis of Horner syndrome.", "Pulmonary arterial hypertension (PAH) is a progressive disease characterised by remodelling of small pulmonary arteries leading to an increased pulmonary vascular resistance, right ventricular failure and death. Available treatments try to re-establish the equilibrium on three signalling pathways: the prostacyclin, the endothelin (ET)-1 and the nitric oxide. Prostanoids, such as epoprostenol or treprostinil have a vasodilator, antiproliferative and immunomodulatory effect and, despite the administration inconveniences, represent established therapies for severe cases of PAH. Recently oral prostacyclin receptor agonists have shown encouraging results. Many clinical studies targeting the vasoconstrictor ET-1 pathway with receptor antagonists like bosentan and ambrisentan have shown strong results, even more optimism coming from macitentan, the newest drug. Sildenafil and tadalafil, two phosphodiesterase type-5 inhibitors, have shown improved exercise capacity by increasing the nitric oxide level. Riociguat, acting on the same nitric oxide pathway, as a guanylatecyclase activator, has shown promising results in clinical trials and will be available soon. Long-awaited results for tyrosin-kinase inhibitor, imatinib, as an antiproliferative therapy in PAH have been disappointing, due to severe adverse events. In conclusion, although it remains a disease with severe prognosis, the past 20 years have represented a huge progress in terms of treatments for PAH with interesting opportunities for the future.", "CADASIL is a cerebrovascular disease caused by mutations in the NOTCH3 gene. Most mutations result in a gain or loss of cysteine residue in one of the 34 epidermal growth factor-like repeats in the extracellular domain of the Notch3 protein, thus sparing the number of cysteine residues. To date, more than 130 different mutations in the NOTCH3 gene have been reported in CADASIL patients, of which 95% are missense point mutations. Many polymorphisms have also been identified in the NOTCH3 coding sequence, some of them leading to amino acid substitutions. The aim of the present study was to analyze the NOTCH3 gene in a large group of patients affected by leukoencephalopathy and to investigate the presence of genetic variants. The molecular analysis revealed several nucleotide alterations. In particular, we identified 20 different mutations, 22 polymorphisms, and 8 genetic variants of unknown pathological significance never reported previously. We hope that this NOTCH3 gene mutational analysis, performed in such a significant number of unrelated and related patients affected by leukoencephalopathy, will help in molecular screening for the NOTCH3 gene, thus contributing to enlargement of the NOTCH3 gene variation database.", "Gene looping, defined as the physical interaction between the promoter and terminator regions of a RNA polymerase II-transcribed gene, is widespread in yeast and mammalian cells. Gene looping has been shown to play important roles in transcription. Gene-loop formation is dependent on regulatory proteins localized at the 5' and 3' ends of genes, such as TFIIB. However, whether other factors contribute to gene looping remains to be elucidated. Here, we investigated the contribution of intrinsic DNA and chromatin structures to gene looping. We found that Saccharomyces cerevisiae looped genes show high DNA bendability around middle and 3/4 regions in open reading frames (ORFs). This bendability pattern is conserved between yeast species, whereas the position of bendability peak varies substantially among species. Looped genes in human cells also show high DNA bendability. Nucleosome positioning around looped ORF middle regions is unstable. We also present evidence indicating that this unstable nucleosome positioning is involved in gene looping. These results suggest a mechanism by which DNA bendability and unstable nucleosome positioning could assist in the formation of gene loops." ]
1,995
[ "BACKGROUND: Chronic traumatic encephalopathy (CTE) is the term coined for the neurodegenerative disease often suspected in athletes with histories of repeated concussion and progressive dementia. Histologically, CTE is defined as a tauopathy with a distribution of tau-positive neurofibrillary tangles (NFTs) that is distinct from other tauopathies, and usually shows an absence of beta-amyloid deposits, in contrast to Alzheimer's disease (AD). Although the connection between repeated concussions and CTE-type neurodegeneration has been recently proposed, this causal relationship has not yet been firmly established. Also, the prevalence of CTE among athletes with multiple concussions is unknown.METHODS: We performed a consecutive case series brain autopsy study on six retired professional football players from the Canadian Football League (CFL) with histories of multiple concussions and significant neurological decline.RESULTS: All participants had progressive neurocognitive decline prior to death; however, only 3 cases had post-mortem neuropathological findings consistent with CTE. The other 3 participants had pathological diagnoses of AD, amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Moreover, the CTE cases showed co-morbid pathology of cancer, vascular disease, and AD.DISCUSSION: Our case studies highlight that not all athletes with history of repeated concussions and neurological symptomology present neuropathological changes of CTE. These preliminary findings support the need for further research into the link between concussion and CTE as well as the need to expand the research to other possible causes of taupathy in athletes. They point to a critical need for prospective studies with good sampling methods to allow us to understand the relationship between multiple concussions and the development of CTE.", "Pax6 transcription factors are essential upstream regulators in the developing anterior brain and peripheral visual system of most bilaterian animals. While a single homolog is in charge of these functions in vertebrates, two Pax6 genes are in Drosophila: eyeless (ey) and twin of eyeless (toy). At first glance, their co-existence seems sufficiently explained by their differential involvement in the specification of two types of insect visual organs: the lateral compound eyes (ey) and the dorsal ocelli (toy). Less straightforward to understand, however, is their genetic redundancy in promoting defined early and late growth phases of the precursor tissue to these organs: the eye-antennal imaginal disc. Drawing on comparative sequence, expression, and gene function evidence, I here conclude that this gene regulatory network module dates back to the dawn of arthropod evolution, securing the embryonic development of the ocular head segment. Thus, ey and toy constitute a paradigm to explore the organization and functional significance of longterm conserved genetic redundancy of duplicated genes. Indeed, as first steps in this direction, recent studies uncovered the shared use of binding sites in shared enhancers of target genes that are under redundant (string) and, strikingly, even subfunctionalized control by ey and toy (atonal). Equally significant, the evolutionarily recent and paralog-specific function of ey to repress the transcription of the antenna fate regulator Distal-less offers a functionally and phylogenetically well-defined opportunity to study the reconciliation of shared, partitioned, and newly acquired functions in a duplicated developmental gene pair.", "Recently, regenerative medicine using the transplantation of embryonic stem cells and bone marrow stem cells has been a great success but still has many unconfirmed problems including its clinical evaluation. The aim of this article is to review current literature and some patents regarding molecular therapeutic agents including using MAP kinase TNNI3K for the treatment and diagnosis of acute myocardial ischemia or infarction. TNNI3K is a novel cardiac troponin I-interacting kinase gene and its overexpression may promote cardiac myogenesis, improve cardiac performance, and attenuate ischemia-induced ventricular remodeling. The modulation of embryonal stem cells with high TNNI3K activity using a TNNI3K active peptide could be a useful therapeutic approach for ischemic cardiac diseases. For overexpressing TNNI3K or enhancing TNNI3K activity in cardiac precursor cells, the engraftment of bone marrow cells or embryonic stem cells can effectively promote cardiac myogenesis, beating frequency, and contractile functions, and decrease \"silent\" (no contraction) cardiac cells after cell transplantion, indicating that the overexpression of TNNI3K can increase the success rate of transplanting embryonic stem cells or bone marrow cells into ischemic hearts for the treatment of ischemic cardiac diseases. Although previous investigations showing that TNNI3K may be involved in the development of cardiac hypertrophy, it is still unclear whether TNNI3K has a role in cardiac hypertrophy or what mechanism is involved in the effects of TNNI3K. To confirm this, further investigations need to be undertaken.", "Bow hunter's syndrome (BHS) is most commonly caused by compression of the vertebral artery (VA). It has not been known to occur due to an extracranially originated posterior inferior cerebellar artery (PICA), the first case of which we present herein. A 71-year-old man presented with reproducible dizziness on leftward head rotation, indicative of BHS. On radiographic examination, the bilateral VAs merged into the basilar artery, and the left VA was predominant. The right PICA originated extracranially from the right VA at the atlas-axis level and ran vertically into the spinal canal. During the head rotation that induced dizziness, the right PICA was occluded, and a VA stenosis was revealed. Occlusion of the PICA was considered to be the primary cause of the dizziness. The patient underwent surgery to decompress the right PICA and VA via a posterior cervical approach. Following surgery, the patient's dizziness disappeared, and the stenotic change at the right VA and PICA improved. The PICA could be a causative artery for BHS when it originates extracranially at the atlas-axis level, and posterior decompression is an effective way to treat it.", "Malignant melanoma (MM) remains a pediatric rarity world-wide, but perhaps more so in black Africans. To the best of our knowledge, the current report of MM in a two-and-a-half-year-old Nigerian who had a pre-existing congenital giant hairy nevus is probably the first (in an accessible literature) in a black African child. Primary neoplastic transformation and metastatic spread were suggested by the appearance of multiple swellings over the \"garment\" precursor nevus at the posterior trunk, multiple ipsilateral axillary nodal enlargement, and fresh occipital swellings postadmission. Smaller-sized hyperpigmented lesions with irregular, nonlobulated, and frequently hairy surfaces were also discernible over the upper and lower extremities, but the face, anterior trunk, and mucosal surfaces were relatively spared. A diagnosis of MM was confirmed by the subsequent histopathologic findings from the fine-needle aspirate and biopsy specimens. Chemotherapy was initiated but was truncated shortly after by parent-pressured discharge. Despite the rarity of MM in a tropical African setting where management options are few, the current case underscores the need for a high clinical index of diagnostic suspicion, an early pursuit of investigative confirmation, and prophylactic excision in children with the predisposing skin lesions, like congenital giant hairy nevus. An expounded discourse of the possible precursors and management options of MM is provided. We emphasize the need for institutional cost subsidy for anticancer care in tropical children.", "The interplay of active and repressive histone modifications is assumed to have a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that the transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated with the stable production of RNA, whereas unmarked chromatin would permit rapid gene activation and deactivation during development. In the latter case, regulation by transcription factors would have a comparatively more important regulatory role than chromatin marks.", "MicroRNAs are important regulators of gene expression in normal development and disease. miR-9 is overexpressed in several cancer forms, including brain tumours, hepatocellular carcinomas, breast cancer and Hodgkin lymphoma (HL). Here we demonstrated a relevance for miR-9 in HL pathogenesis and identified two new targets Dicer1 and HuR. HL is characterized by a massive infiltration of immune cells and fibroblasts in the tumour, whereas malignant cells represent only 1% of the tumour mass. These infiltrates provide important survival and growth signals to the tumour cells, and several lines of evidence indicate that they are essential for the persistence of HL. We show that inhibition of miR-9 leads to derepression of DICER and HuR, which in turn results in a decrease in cytokine production by HL cells followed by an impaired ability to attract normal inflammatory cells. Finally, inhibition of miR-9 by a systemically delivered antimiR-9 in a xenograft model of HL increases the protein levels of HuR and DICER1 and results in decreased tumour outgrowth, confirming that miR-9 actively participates in HL pathogenesis and points to miR-9 as a potential therapeutic target." ]
1,996
[ "In mammalian cells, proteins involved in mRNA silencing and degradation localize to discrete cytoplasmic foci called processing or P-bodies. Here we show that microscopically visible P-bodies are greatly diminished following West Nile viral infection, but the component proteins are not depleted. On the other hand, many P-body components including LSM1, GW182, DDX3, DDX6 and XRN1, but not others like DCP1a and EDC4 are recruited to the viral replication sites, as evidenced by their colocalization at perinuclear region with viral NS3. Kinetic studies suggest that the component proteins are first released from P-bodies in response to WNV infection within 12 h post-infection, followed by recruitment to the viral replication sites by 24-36 h post-infection. Silencing of the recruited proteins individually with siRNA interfered with viral replication to varying extents suggesting that the recruited proteins are required for efficient viral replication. Thus, the P-body proteins might provide novel drug targets for inhibiting viral infection.", "OBJECTIVE: To explore the association between DNA damage-related genetic variants and lung cancer susceptibility in a Han Chinese population.METHODS: This case-control study enrolled patients from the Cancer Hospital of Jiangsu Province and Jiangsu Province Hospital from 2003 to 2009. Controls were randomly selected from individuals who visited the same hospital or a community-based health examination program during the same time period. A 5 ml venous blood sample was obtained from each participant and epidemiological information was collected on a standard questionnaire. Illumina Infinium(®) BeadChip was used for genotyping of 35 DNA damage-related single nucleotide variations (SNVs), which were identified in our previous study. Multivariate and binary logistic regressions were used to calculate the OR and 95%CI for lung cancer risk. HaploReg V4.1 and Regulome DB were used to understand functional annotation on important SNV.RESULTS: The distributions of age (61.06±10.15) vs. (61.32±11.07) years; t=-0.72, P=0.473) and sex (χ(2)=1.81, P=0.179) were similar between cases and controls. However, the case group had a higher frequency of smokers (61.08% vs. 48.54%; χ(2)=50.04, P<0.001) and heavy smokers (42.28% vs. 24.07%; χ(2)=122.32, P<0.001). Among the 34 SNVs that passed quality control, two SNVs were significantly associated with lung cancer risk after adjustments for age, sex and cumulative smoking dose: rs9267576 C>A (CA genotype/CC genotype, OR=1.56, 95% CI: 1.01-2.40) and rs3130683 A>G (AG genotype/AA genotype, OR=1.87, 95%CI: 1.13-3.09). After step-wise logistic regression analysis, only the rs3130683 SNV was retained in the model, indicating that the association between rs9267576 and lung cancer may be due to the effect of rs3130683. Functional annotation indicated that rs3130683 was located in the promoter and enhancer regions, and was an expression quantitative trait loci of HLA. The Cancer Genome Atlas indicated that expression of HLA-C, DQB1, DRB1 and DRB5 in lung cancer tissue was significantly lower than in paired normal tumor-adjacent tissue, with down-regulation of the four respective genes in 81.3%, 88.8%, 90.7% and 90.7% of lung cancer tissues (P-values were 6.68×10(-15), 2.21×10(-13), 2.20×10(-16), 2.58×10(-13), respectively).CONCLUSIONS: The SNV rs3130683 (A>G) was associated with the risk of lung cancer in a Han Chinese population. This SNV may affect the risk of lung cancer by regulating HLA expression.", "More than 90% of common variants associated with complex traits do not affect proteins directly, but instead the circuits that control gene expression. This has increased the urgency of understanding the regulatory genome as a key component for translating genetic results into mechanistic insights and ultimately therapeutics. To address this challenge, we developed HaploReg (http://compbio.mit.edu/HaploReg) to aid the functional dissection of genome-wide association study (GWAS) results, the prediction of putative causal variants in haplotype blocks, the prediction of likely cell types of action, and the prediction of candidate target genes by systematic mining of comparative, epigenomic and regulatory annotations. Since first launching the website in 2011, we have greatly expanded HaploReg, increasing the number of chromatin state maps to 127 reference epigenomes from ENCODE 2012 and Roadmap Epigenomics, incorporating regulator binding data, expanding regulatory motif disruption annotations, and integrating expression quantitative trait locus (eQTL) variants and their tissue-specific target genes from GTEx, Geuvadis, and other recent studies. We present these updates as HaploReg v4, and illustrate a use case of HaploReg for attention deficit hyperactivity disorder (ADHD)-associated SNPs with putative brain regulatory mechanisms.", "Examination of cerebrospinal fluid remains a mainstay of the diagnosis of many acute central nervous system illnesses, including meningitis, encephalitis, and polyneuropathies such as Guillain-Barré syndrome. Although generally considered innocuous, there may be considerable danger when lumbar puncture is performed in the presence of increased intracranial pressure, especially when a mass lesion is present. We review the literature surrounding the danger of lumbar puncture when intracranial pressure is increased and discuss our approach to the problem in lieu of the advent of computerized tomographic scanning.", "BACKGROUND: Facial nerve preservation surgery for large vestibular schwannomas is a novel strategy for maintaining normal nerve function by allowing residual tumor adherent to this nerve or root-entry zone.OBJECTIVE: To report, in a retrospective study, outcomes for large Koos grade 3 and 4 vestibular schwannomas.METHODS: After surgical treatment for vestibular schwannomas in 52 patients (2004-2013), outcomes included extent of resection, postoperative hearing, and facial nerve function. Extent of resection defined as gross total, near total, or subtotal were 7 (39%), 3 (17%), and 8 (44%) in 18 patients after retrosigmoid approaches, respectively, and 10 (29.5%), 9 (26.5%), and 15 (44%) for 34 patients after translabyrinthine approaches, respectively.RESULTS: Hearing was preserved in 1 (20%) of 5 gross total, 0 of 2 near-total, and 1 (33%) of 3 subtotal resections. Good long-term facial nerve function (House-Brackmann grades of I and II) was achieved in 16 of 17 gross total (94%), 11 of 12 near-total (92%), and 21 of 23 subtotal (91%) resections. Long-term tumor control was 100% for gross total, 92% for near-total, and 83% for subtotal resections. Postoperative radiation therapy was delivered to 9 subtotal resection patients and 1 near-total resection patient. Follow-up averaged 33 months.CONCLUSION: Our findings support facial nerve preservation surgery in becoming the new standard for acoustic neuroma treatment. Maximizing resection and close postoperative radiographic follow-up enable early identification of tumors that will progress to radiosurgical treatment. This sequential approach can lead to combined optimal facial nerve function and effective tumor control rates.", "The F-box protein Fbw7 (also known as Fbxw7, hCdc4 and Sel-10) functions as a substrate recognition component of a SCF-type E3 ubiquitin ligase. SCF(Fbw7) facilitates polyubiquitination and subsequent degradation of various proteins such as Notch, cyclin E, c-Myc and c-Jun. Fbw7 is highly expressed in the nervous system and controls neural stem cell differentiation and apoptosis via Notch and c-Jun during embryonic development (Hoeck et al., 2010). Fbw7 deletion in the neural lineage is perinatal lethal and thus prohibits studying the role of Fbw7 in the adult nervous system. fbw7 mRNA is highly expressed in the postnatal brain and to gain insights into the function of Fbw7 in postnatal neurogenesis we analysed Fbw7 function in the cerebellum. We generated conditional Fbw7-knockout mice (fbw7(∆Cb)) by inactivating Fbw7 specifically in the cerebellar anlage. This resulted in decreased cerebellar size, reduced Purkinje cell number and defects in axonal arborisation. Moreover, Fbw7-deficient cerebella showed supranumeral fissures and aberrant progenitor cell migration. Protein levels of the Fbw7 substrates Notch1 and N-terminally phosphorylated c-Jun were upregulated in fbw7(∆Cb) mice. Concomitant deletion of c-Jun, and also the junAA knock-in mutation which specifically abrogates c-Jun N-terminal phosphorylation, rescued Purkinje cell numbers and arborisation in the fbw7(∆Cb) background. Taken together these data demonstrate that Fbw7 is essential during cerebellar development, and identify N-terminally phosphorylated c-Jun as an important substrate of SCF(Fbw7) during neurogenesis.", "BACKGROUND: Subacute sclerosing panencephalitis (SSPE) is a chronic central nervous (CNS) system infection caused by measles virus. Because changing immunization practices affect the epidemiology of measles and consequently SSPE, we examined the epidemiological data of our SSPE registry.MATERIALS AND METHODS: Age of onset, age at onset of measles, duration of Latent period and immunization status were examined in cases recorded at the SSPE Registry Center in Turkey between 1975 and 1999.RESULTS: Age of onset diminished from 13 years before 1994 to 7.6 years after 1995; age at onset of measles declined from 29 months to 20 months and the Latent interval from 9.9 years to 5.9 years. Age at onset of measles and immunization status did not directly affect the duration of the Latent period.CONCLUSION: Although its incidence has decreased in Turkey, SSPE has been seen at younger ages in recent years. This change cannot be attributed solely to younger age at onset of measles. Factors affecting the duration of the Latent period should be investigated further.", "BACKGROUND: The National Cholesterol Education Program (NCEP) recommends a low-saturated-fat, low-cholesterol diet, with weight loss if indicated, to correct elevated plasma cholesterol levels. Weight loss accomplished by simple caloric restriction or increased exercise typically increases the level of high-density lipoprotein (HDL) cholesterol. Little is known about the effects on plasma lipoproteins of a hypocaloric NCEP diet with or without exercise in overweight people.METHODS: We tested the hypothesis that exercise (walking or jogging) will increase HDL cholesterol levels in moderately overweight, sedentary people who adopt a hypocaloric NCEP diet. We randomly assigned 132 men and 132 women 25 to 49 years old to one of three groups: control, hypocaloric NCEP diet, or hypocaloric NCEP diet with exercise. One hundred nineteen of the men and 112 of the women returned for testing after one year.RESULTS: After one year, the subjects in both intervention groups had reached or closely approached NCEP Step 1 dietary goals and reduced their mean body fat significantly (range of reduction in mean fat weight, 4.0 to 7.8 kg). Weight loss on the NCEP diet alone did not significantly change HDL cholesterol levels in either the men or the women as compared with the subjects in the control group. Plasma levels of HDL cholesterol increased significantly more in the men who exercised and dieted (mean [+/- SE] change, +13 +/- 3 percent) than in the men who only dieted (+2 +/- 3 percent, P less than 0.01) or the men who acted as controls (-4 +/- 2 percent, P less than 0.001). HDL cholesterol levels remained about the same in the women who exercised and dieted (+1 +/- 2 percent); they were higher than in the women who only dieted (-10 +/- 3 percent, P less than 0.01), but not higher than in the controls (-3 +/- 3 percent).CONCLUSIONS: Regular exercise in overweight men and women enhances the improvement in plasma lipoprotein levels that results from the adoption of a low-saturated-fat, low-cholesterol diet." ]
2,000
[ "Bax is a pro-apoptotic member of the Bcl-2 family proteins involved in the release of apoptogenic factors from mitochondria to the cytosol. Recently, it has been shown both in mammals and yeast that Bax insertion in the mitochondrial outer membrane involves at least two distinct mechanisms, one of which uses the TOM complex. Here, we show that in Drosophila, heterozygous loss of function mutations of Tom22 or Tom70, two receptors of the TOM complex, attenuates bax-induced phenotypes in vivo. These results argue that the TOM complex may be used as a mitochondrial Bax receptor in Drosophila.", "BACKGROUND: The Sunnybrook Facial Grading System is considered one of the best scales available to grade facial motility and postparetic synkinesis. To measure facial landmarks and movement excursion, a new software, the Facial Assessment by Computer Evaluation, has been proposed. The aim of this study was to quantify eye synkinesis improvement after botulinum toxin type A injections using the new software and to compare this method with the Sunnybrook grading system.METHODS: The study included 40 injection sessions on 29 Caucasian outpatients with facial synkinesis. Before and 2 weeks after the injection, patients were evaluated using the Italian version of the Sunnybrook system. Eyelid fissure size at rest, during lip puckering, and while smiling was measured with the new software.RESULTS: After botulinum infiltration, the Sunnybrook grading system showed a global facial improvement with reduction of synkinesis and increase of static and dynamic symmetry. The Facial Assessment software detected an increase of ocular fissure measure at rest, during lip puckering, and especially during smiling, and the improvement was positively correlated with initial asymmetry. A single point of the Sunnybrook system synkinesis score corresponded to a mean difference of 0.77 mm during smiling and 1.0 mm during lip puckering.CONCLUSIONS: The Facial Assessment by Computer Evaluation measure allowed the authors to quantify the improvement of eye synkinesis after botulinum toxin type A injection. The Sunnybrook Facial Grading System provided an immediate instrument with which to monitor treatment in routine clinical practice, whereas the Facial Assessment system gave a more accurate quantitative assessment.CLINICAL QUESTION/LEVEL OF EVIDENCE: Diagnostic, II.", "The majority of eukaryotic pre-mRNAs are processed by 3'-end cleavage and polyadenylation, although in metazoa the replication-dependent histone mRNAs are processed by 3'-end cleavage but not polyadenylation. The macromolecular complex responsible for processing both canonical and histone pre-mRNAs contains the approximately 1160-residue protein Symplekin. Secondary-structural prediction algorithms identified putative HEAT domains in the 300 N-terminal residues of all Symplekins of known sequence. The structure and dynamics of this domain were investigated to begin elucidating the role Symplekin plays in mRNA maturation. The crystal structure of the Drosophila melanogaster Symplekin HEAT domain was determined to 2.4 A resolution with single-wavelength anomalous dispersion phasing methods. The structure exhibits five canonical HEAT repeats along with an extended 31-amino-acid loop (loop 8) between the fourth and fifth repeat that is conserved within closely related Symplekin sequences. Molecular dynamics simulations of this domain show that the presence of loop 8 dampens correlated and anticorrelated motion in the HEAT domain, therefore providing a neutral surface for potential protein-protein interactions. HEAT domains are often employed for such macromolecular contacts. The Symplekin HEAT region not only structurally aligns with several established scaffolding proteins, but also has been reported to contact proteins essential for regulating 3'-end processing. Together, these data support the conclusion that the Symplekin HEAT domain serves as a scaffold for protein-protein interactions essential to the mRNA maturation process.", "A series of HIV integrase (HIV-1 IN) inhibitors were synthesized to evaluate the role of the metal-binding group (MBG) in this class of metalloenzyme inhibitors. A total of 21 different raltegravir-chelator derivative (RCD) compounds were prepared that differed only in the nature of the MBG. These IN strand-transfer inhibitors (INSTIs) were evaluated in vitro in cell-free enzyme activity assays, and the in vitro results were further validated in cell culture experiments. All of the active compounds showed selective inhibition of the strand-transfer reaction over 3'-processing, suggesting a common mode of action with raltegravir. The results of the in vitro activity suggest that the nature of the MBG donor atoms, the overall MBG structure, and the specific arrangement of the MBG donor atom triad are essential for obtaining maximal HIV-1 IN inhibition. At least two compounds (RCD-4, RCD-5) containing a hydroxypyrone MBG were found to display superior strand-transfer inhibition when compared to an abbreviated analogue of raltegravir (RCD-1). By isolating and examining the role of the MBG in a series of INSTIs, we have identified a scaffold (hydroxypyrones) that may provide access to a unique class of HIV-1 IN inhibitors, and may help overcome rising raltegravir resistance.", "BACKGROUND: Fanconi anemia (FA) is a rare autosomal recessive genetic disorder characterized by bone marrow failure and increased risk of cancers including acute myelogenous leukemia and various solid tumors, especially head and neck cancer. Management of head and neck cancer in the setting of FA is complicated by pancytopenia, poor tolerance of chemotherapy, and potentially increased radiosensitivity. There are limited reports on tolerance of radiotherapy (RT) in patients with FA.METHODS: We report a case of a patient with FA who presented with a small oral tongue cancer that was excised. He rapidly developed extensive locoregional recurrence and underwent surgical resection followed by postoperative RT with concurrent cetuximab.RESULTS: Both RT and cetuximab were well tolerated with manageable toxicities. Unfortunately, the patient died of early locoregional disease progression.CONCLUSIONS: RT with concurrent cetuximab was well tolerated and may be an appropriate option in patients with FA. However, many patients have a poor prognosis due to aggressive disease.", "PROBLEM: Several studies indicate that RANTES (regulated on activation, normal T cell expressed and secreted) is able to downregulate T-cell responses which suggest it might be relevant for fetal tolerance induction. However, the role of RANTES in pregnancy had not been established. Here we investigate RANTES regulation during early pregnancy and potential failures leading to losses of pregnancies.METHOD OF STUDY: RANTES and progesterone levels were determined in sera and feto-placental units from high resorption rate CBA/JxDBA/2 pregnant females and compared with CBA/JxBALB/c normal pregnant mice. RANTES in vitro modulation was also studied in nulliparous, primiparous and multiparous CBA/J and BALB/c cells in response to paternal alloantigen and progesterone stimulation.RESULTS: Nulliparous CBA/J females were quantitatively deficient in RANTES sera levels, whereas pregnancies with male BALB/c or DBA/2 increased its production. However, feto-placental units from CBA/J females are high producers of progesterone and RANTES.CONCLUSION: These data suggest that the beneficial effect of RANTES on feto-maternal interface requires an optimal concentration range and might be modulated by progesterone, hence exacerbated placental expression could be associated with high resorption rate.", "The 50th annual Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), held in Boston, included topics covering new therapeutic developments in the field of infectious disease. This conference report highlights selected presentations on research with novel antimicrobial agents. Investigational drugs discussed include the chitin synthase inhibitor nikkomycin Z (Valley Fever Solutions/University of Arizona), the glycosylphosphatidylinositol biosynthesis inhibitor E-1210 (Eisai), the β-1,3-d-glucan synthesis inhibitor MK-3118 (Merck & Co/SCYNEXIS), the metalloenzyme inhibitors VT-1129 and VT-1161 (both Viamet Pharmaceuticals), and the anti-inflammatory nanoemulsion NB-003 (NanoBio).", "Dried blood spots offer many advantages as a sample format including ease and safety of transport and handling. To date, the majority of mass spectrometry analyses of dried blood spots have focused on small molecules or hemoglobin. However, dried blood spots are a potentially rich source of protein biomarkers, an area that has been overlooked. To address this issue, we have applied an untargeted bottom-up proteomics approach to the analysis of dried blood spots. We present an automated and integrated method for extraction of endogenous proteins from the surface of dried blood spots and sample preparation via trypsin digestion by use of the Advion Biosciences Triversa Nanomate robotic platform. Liquid chromatography tandem mass spectrometry of the resulting digests enabled identification of 120 proteins from a single dried blood spot. The proteins identified cross a concentration range of four orders of magnitude. The method is evaluated and the results discussed in terms of the proteins identified and their potential use as biomarkers in screening programs.", "Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) by an unknown pathogenesis. MR venography and postmortem studies have demonstrated a topographic correspondence between multiple sclerosis (MS) plaques and the cerebral venous system pathology. In recent observational studies performed on patients from distinctive gene pools, the prevalence of chronic cerebrospinal venous insufficiency (CCSVI) in MS ranged from 56% to 100%. Endovascular treatment (percutaneous transluminal angioplasty (PTA) with or without stenting) of CCSVI was reported to be feasible with a minor complication rate. In 4 patients with different forms of multiple sclerosis venography was performed that revealed stenosis of the proximal region of the jugular vein (right or left). Percutaneous transluminal balloon angioplasty (PTA) was performed in all patients. There were no complications and mean stenosis was reduced after PTA from 59.75% to 36.75%. Follow-up included clinical observations and magnetic resonance imaging (MRI). In all the cases we observed positive remission of the disease, the first ever documented case of MRI index improvement. PTA seems to be an effective treatment for patients with CCVI and multiple sclerosis, However, randomized studies are warranted to establish the efficacy of this new treatment for MS.", "By screening a library of metalloenzyme inhibitors, the N-formyl-hydroxylamine derivative BB-3497 was identified as a potent inhibitor of Escherichia coli peptide deformylase with antibacterial activity both in vitro and in vivo. The homochiral synthesis of BB-3497, involving a novel asymmetric Michael addition reaction is described.", "The major defining pathological hallmarks of Alzheimer's disease (AD) are the accumulations of Aβ in senile plaques and hyperphosphorylated tau in neurofibrillary tangles and neuropil threads. Recent studies indicate that rather than these insoluble lesions, the soluble Aβ oligomers and hyperphosphorylated tau are the toxic agents of AD pathology. Such pathological protein species are accompanied by cytoskeletal changes, mitochondrial dysfunction, Ca(2+) dysregulation, and oxidative stress. In this review, we discuss how the binding of Aβ to various integrins, defects in downstream focal adhesion signaling, and activation of cofilin can impact mitochondrial dysfunction, cytoskeletal changes, and tau pathology induced by Aβ oligomers. Such pathological consequences can also feedback to further activate cofilin to promote cofilin pathology. We also suggest that the mechanism of Aβ generation by the endocytosis of APP is mechanistically linked with perturbations in integrin-based focal adhesion signaling, as APP, LRP, and β-integrins are physically associated with each other.", "Neutrophil extracellular traps (NETs) have been implicated in the pathogenesis of systemic Lupus erythematosus (SLE), since netting neutrophils release potentially immunogenic autoantigens including histones, LL37, human neutrophil peptide (HNP), and self-DNA. In turn, these NETs activate plasmacytoid dendritic cells resulting in aggravation of inflammation and disease. How suppression of NET formation can be targeted for treatment has not been reported yet. Signal Inhibitory Receptor on Leukocytes-1 (SIRL-1) is a surface molecule exclusively expressed on phagocytes. We recently identified SIRL-1 as a negative regulator of human neutrophil function. Here, we determine whether ligation of SIRL-1 prevents the pathogenic release of NETs in SLE. Peripheral blood neutrophils from SLE patients with mild to moderate disease activity and healthy donors were freshly isolated. NET release was assessed spontaneously or after exposure to anti-neutrophil antibodies or plasma obtained from SLE patients. The formation of NETs was determined by microscopic evaluation using DNA dyes and immunostaining of NET components, as well as by live cell imaging. We show that SLE neutrophils spontaneously release NETs. NET formation is enhanced by stimulation with antibodies against LL37. Inhibition of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and MEK-ERK signaling prevents NET release in response to these antibodies. Signaling via the inhibitory receptor SIRL-1 was induced by ligation with anti-SIRL-1 specific antibodies. Both spontaneous and anti-neutrophil antibody-induced NET formation is suppressed by engagement of SIRL-1. Furthermore, NET release by healthy neutrophils exposed to SLE plasma is inhibited by SIRL-1 ligation. Thus, SIRL-1 engagement can dampen spontaneous and anti-neutrophil antibody-induced NET formation in SLE, likely by suppressing NAPDH oxidase and MEK-ERK activity. Together, these findings reveal a regulatory role for SIRL-1 in NET formation, potentially providing a novel therapeutic target to break the pathogenic loop in SLE.", "Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired, life-threatening hematologic disease characterized by chronic complement-mediated hemolysis and thrombosis. Despite treatment with eculizumab, a C5 inhibitor, 72% of individuals remain anemic. Pegcetacoplan (APL-2), a PEGylated C3 inhibitor, has the potential to provide more complete hemolysis control in patients with PNH. This open-label, phase Ib study was designed to assess the safety, tolerability, and pharmacokinetics of pegcetacoplan in subjects with PNH who remained anemic during treatment with eculizumab. Pharmacodynamic endpoints were also assessed as an exploratory objective of this study. Data are presented for six subjects in cohort 4 who received treatment for up to 2 years. In total, 427 treatment-emergent adverse events (TEAEs) were reported, 68 of which were possibly related to the study drug. Eight serious TEAEs occurred in two subjects; three of these events were considered possibly related to the study drug. Pegcetacoplan pharmacokinetic concentrations accumulated with repeated dosing, and steady state was reached at approximately 6-8 weeks. Lactate dehydrogenase levels were well controlled by eculizumab at baseline. Pegcetacoplan increased hemoglobin levels and decreased both reticulocyte count and total bilirubin in all six subjects. Improvements were observed in Functional Assessment of Chronic Illness Therapy Fatigue scores. Two subjects discontinued for reasons unrelated to pegcetacoplan. All four subjects who completed the study transitioned to pegcetacoplan monotherapy following eculizumab discontinuation and avoided transfusions. In this small study, pegcetacoplan therapy was generally well-tolerated, and resulted in an improved hematological response by achieving broad hemolysis control, enabling eculizumab discontinuation.", "The universality of secure base construct, which suggests that one's use of an attachment figure as a secure base from which to explore the environment is an evolutionary outcome, is one of the core ideas of attachment theory. However, this universality idea has been critiqued because exploration is not as valued in Japanese culture as it is in Western cultures. Waters and Waters (2006) hypothesized that one's experiences of secure base behaviors are stored as a script in memory, and developed a narrative assessment called the Attachment Script Assessment (ASA) to evaluate one's secure base script. This study examined the validity of the ASA and the utility of secure base concept in Japanese culture. A sample of Japanese young adults (N = 89; M = 23.46; SD = 3.20; 57% = females) completed both the ASA and self-report questionnaires. The results revealed that the ASA score was associated with two dimensions of self-report questionnaires assessing parent-youth attachment relationships (trust and communication). The ASA score was not related to Japanese cultural values (amae acceptance, interdependent self-construal, and low independent self-construal). However, a low ASA score was related to a psychological dysfunction in the Japanese cultural context; hikikomori symptoms, which are defined as a desire to remain in his or her own room and his or her understanding of this behavior in other people. We concluded that since hikikomori can be interpreted as an extreme inhibition of exploration, the association between low secure base script and hikikomori symptoms suggests the utility of secure base construct in Japan. (PsycINFO Database Record", "BACKGROUND AND PURPOSE: Based on their ability to chelate metals, hydroxamate molecules and siderophores have been successfully used as metalloenzyme inhibitors. As the anthrax toxin lethal factor (LF) is a zinc (Zn)-metallopeptidase, an investigation of the ability of some small non-siderophore hydroxamate compounds, 5 hydroxamate-containing siderophores, and 1 catecholate siderophore was undertaken to determine whether these compounds would inhibit LF. In addition, salmon sperm protamine and ethylenediaminetetraacetic acid were investigated.METHODS: A spectrophotometric assay of LF activity, based on its reaction with the substrate (Ac-gly-tyr-betaala-arg-arg-arg-arg-arg-arg-arg-arg-val-leu-arg-p-nitroanilide), was used to assess the degree of inhibition of LF by the putative inhibitors. Procedures were implemented to avoid iron contamination of the test solutions and non-ferrated siderophores and hydroxamates were used as potential inhibitors.RESULTS: The hydroxamate-containing siderophores displayed limited capacities to inhibit LF, as did the low molecular weight hydroxamate compounds. In contrast, the catecholate siderophore enterobactin and the cationic polyamine salmon sperm protamine demonstrated notable inhibition of LF at concentrations ranging from approximately 10 to 200 microM.CONCLUSIONS: The polyamine salmon sperm protamine which mimics the target site of proteins cleaved by LF, was the most effective inhibitor of the molecules examined, while the small molecule hydroxamates and the hydroxamate siderophores were among the poorest. If chelation of the Zn of LF results in LF inhibition by the molecules examined, it is most likely secondary to binding of the putative inhibitors to the active site of LF.", "The physiological changes of adolescence may promote risk-taking behaviors, including binge drinking. Approximately 40% of alcoholics were already drinking heavily in late adolescence. Most cases of alcoholism are established by the age of 30 years with the peak prevalence at 18-23 years of age. Therefore the key time frame for the development, and prevention, of alcoholism lies in adolescence and young adulthood. Severe childhood stressors have been associated with increased vulnerability to addiction, however, not all stress-exposed children go on to develop alcoholism. Origins of resilience can be both genetic (variation in alcohol-metabolizing genes, increased susceptibility to alcohol's sedative effects) and environmental (lack of alcohol availability, positive peer and parental support). Genetic vulnerability is likely to be conferred by multiple genes of small to modest effects, possibly only apparent in gene-environment interactions. For example, it has been shown that childhood maltreatment interacts with a monoamine oxidase A (MAOA) gene variant to predict antisocial behavior that is often associated with alcoholism, and an interaction between early life stress and a serotonin transporter promoter variant predicts alcohol abuse in nonhuman primates and depression in humans. In addition, a common Met158 variant in the catechol-O-methyltransferase (COMT) gene can confer both risk and resilience to alcoholism in different drinking environments. It is likely that a complex mix of gene(s)-environment(s) interactions underlie addiction vulnerability and development. Risk-resilience factors can best be determined in longitudinal studies, preferably starting during pregnancy. This kind of research is important for planning future measures to prevent harmful drinking in adolescence.", "The Ehlers-Danlos syndrome is characterized by abnormal connective tissue but bone involvement is debated. We found a reduced BMD and bone quality and increased prevalence of asymptomatic vertebral fractures in eugonadal patients with Ehlers-Danlos syndrome. These findings suggest the need of a bone health evaluation in these patients.INTRODUCTION: The Ehlers-Danlos (EDS) syndrome is characterized by abnormalities of the connective tissue leading to ligamentous laxity and skin and tissue fragility. We evaluated the bone metabolism, bone mineral density (BMD) and bone quality (measured by trabecular bone score, TBS), and the prevalence of vertebral fractures (VFx) in a group of eugonadal adult EDS patients.METHODS: Fifty consecutive Caucasian patients, aged 30-50 years (36 females, 14 males) with classical or hypermobility EDS and 50 age-, gender-, and body mass index (BMI)-matched control subjects were enrolled. In all subjects' calcium-phosphorous metabolism, bone turnover, BMD at the lumbar spine (LS) and femur (femoral neck, FN and total femur, FT) and TBS by dual-energy X-ray absorptiometry, and the VFx presence by spine radiograph were assessed.RESULTS: Patients showed reduced BMD (Z-scores LS -0.45 ± 1.00, FN -0.56 ± 1.01, FT -0.58 ± 0.92) and TBS (1.299 ± 0.111) and increased prevalence of morphometric VFx (32 %) than controls (Z-scores LS 0.09 ± 1.22, FN 0.01 ± 0.97, FT 0.08 ± 0.89; TBS 1.382 ± 0.176; VFx 8 %, p <0.05 for all comparisons), while vitamin D levels, calcium-phosphorous metabolism, and bone turnover were comparable. Fractured EDS patients showed lower TBS values than non-fractured ones (1.245 ± 0.138 vs 1.325 ± 0.086, p < 0.05), despite comparable BMD. In EDS patients, the VFx presence was significantly associated with TBS even after adjusting for sex, age, BMD, EDS type, and falls frequency.CONCLUSIONS: EDS patients have reduced BMD and bone quality (as measured by TBS) and increased prevalence of VFx.", "The desire to inhibit zinc-dependent matrix metalloproteinases (MMPs) has, over the course of the last 30 years, led to the development of a plethora of MMP inhibitors that bind directly to the active-site metal. With one exception, all of these drugs have failed in clinical trials, due to many factors, including an apparent lack of specificity for MMPs. To address the question of whether these inhibitors are selective for MMPs in a biological setting, a cell-based screening method is presented to compare the relative activities of zinc, heme iron, and non-heme iron enzymes in the presence of these compounds using the RAW264.7 macrophage cell line. We screened nine different zinc-binding groups (ZBGs), four established MMP inhibitors (MMPis), and two novel MMP inhibitors developed in our laboratory to determine their selectivities against five different metalloenzymes. Using this model, we identified two nitrogen donor compounds--2,2'-dipyridylamine (DPA) and triazacyclononane (TACN)--as the most selective ZBGs for zinc metalloenzyme inhibitor development. We also demonstrated that the model could predict known nonspecific interactions of some of the most commonly used MMPis, and could also give cross-reactivity information for newly developed MMPis. This work demonstrates the utility of cell-based assays in both the design and the screening of novel metalloenzyme inhibitors.", "Selenoproteins contain the amino acid selenocysteine which is encoded by a UGA Sec codon. Recoding UGA Sec requires a complex mechanism, comprising the cis-acting SECIS RNA hairpin in the 3'UTR of selenoprotein mRNAs, and trans-acting factors. Among these, the SECIS Binding Protein 2 (SBP2) is central to the mechanism. SBP2 has been so far functionally characterized only in rats and humans. In this work, we report the characterization of the Drosophila melanogaster SBP2 (dSBP2). Despite its shorter length, it retained the same selenoprotein synthesis-promoting capabilities as the mammalian counterpart. However, a major difference resides in the SECIS recognition pattern: while human SBP2 (hSBP2) binds the distinct form 1 and 2 SECIS RNAs with similar affinities, dSBP2 exhibits high affinity toward form 2 only. In addition, we report the identification of a K (lysine)-rich domain in all SBP2s, essential for SECIS and 60S ribosomal subunit binding, differing from the well-characterized L7Ae RNA-binding domain. Swapping only five amino acids between dSBP2 and hSBP2 in the K-rich domain conferred reversed SECIS-binding properties to the proteins, thus unveiling an important sequence for form 1 binding.", "BTB and CNC homology 1 (Bach1) is a transcriptional repressor of antioxidative enzymes, such as heme oxygenase-1 (HO-1). Oxidative stress is reportedly involved in insulin secretion impairment and obesity-associated insulin resistance. However, the role of Bach1 in the development of diabetes is unclear. HO-1 expression in the liver, white adipose tissue, and pancreatic islets was markedly upregulated in Bach1-deficient mice. Unexpectedly, glucose and insulin tolerance tests showed no differences in obese wild-type (WT) and obese Bach1-deficient mice after high-fat diet loading for 6 wk, suggesting minimal roles of Bach1 in the development of insulin resistance. In contrast, Bach1 deficiency significantly suppressed alloxan-induced pancreatic insulin content reduction and the resultant glucose elevation. Furthermore, TUNEL-positive cells in pancreatic islets of Bach1-deficient mice were markedly decreased, by 60%, compared with those in WT mice. HO-1 expression in islets was significantly upregulated in alloxan-injected Bach1-deficient mice, whereas expression of other antioxidative enzymes, e.g., catalase, superoxide dismutase, and glutathione peroxidase, was not changed by either alloxan administration or Bach1 deficiency. Our results suggest that Bach1 deficiency protects pancreatic β-cells from oxidative stress-induced apoptosis and that the enhancement of HO-1 expression plays an important role in this protection.", "The inhibitory activity of a broad group of known metalloenzyme inhibitors against a panel of metalloenzymes was evaluated. Clinically approved inhibitors were selected as well as several other reported metalloprotein inhibitors in order to represent a broad range of metal binding groups (MBGs), including hydroxamic acid, carboxylate, hydroxypyridinonate, thiol, and N-hydroxyurea functional groups. A panel of metalloenzymes, including carbonic anhydrase (hCAII), several matrix metalloproteinases (MMPs), angiotensin converting enzyme (ACE), histone deacetylase (HDAC-2), and tyrosinase (TY), was selected based on their clinical importance for a range of pathologies. In addition, each inhibitor was evaluated for its ability to remove Fe(3+) from holo-transferrin to gauge the ability of the inhibitors to access Fe(3+) from a primary transport protein. The results show that the metalloenzyme inhibitors are quite selective for their intended targets, suggesting that despite their ability to bind metal ions, metalloprotein inhibitors are not prone to widespread off-target enzyme inhibition activity.", "Foscarnet (phosphonoformate trisodium salt), an antiviral used for the treatment of HIV and herpes virus infections, also acts as an activator or inhibitor of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Interaction of the drug with 11 CA isozymes has been investigated kinetically, and the X-ray structure of its adduct with isoform I (hCA I-foscarnet complex) has been resolved. The first CA inhibitor possessing a phosphonate zinc-binding group is thus evidenced, together with the factors governing recognition of such small molecules by a metalloenzyme active site. Foscarnet is also a clear-cut example of modulator of an enzyme activity which can act either as an activator or inhibitor of a CA isozyme.", "The recently established reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by Takahashi and Yamanaka represents a valuable tool for future therapeutic applications. To date, the mechanisms underlying this process are still largely unknown. In particular, the mechanisms how the Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc) directly drive reprogramming and which additional components are involved are still not yet understood. In this study, we aimed at analyzing the role of ADP-ribosyltransferase diphtheria toxin-like one (Artd1; formerly called poly(ADP-ribose) polymerase 1 [Parp1]) during reprogramming. We found that poly(ADP-ribosylation) (PARylation) of the reprogramming factor Sox2 by Artd1 plays an important role during the first days upon transduction with the reprogramming factors. A process that happens before Artd1 in conjunction with 10-11 translocation-2 (Tet2) mediates the histone modifications necessary for the establishment of an activated chromatin state at pluripotency loci (e.g., Nanog and Essrb) [Nature 2012;488:652-655]. Wild-type (WT) fibroblasts treated with an Artd1 inhibitor as well as fibroblasts deficient for Artd1 (Artd1-/-) show strongly decreased reprogramming capacity. Our data indicate that Artd1-mediated PARylation of Sox2 favors its binding to the fibroblast growth factor 4 (Fgf4) enhancer, thereby activating Fgf4 expression. The importance of Fgf4 during the first 4 days upon initiation of reprogramming was also highlighted by the observation that exogenous addition of Fgf4 was sufficient to restore the reprogramming capacity of Artd1-/- fibroblast to WT levels. In conclusion, our data clearly show that the interaction between Artd1 and Sox2 is crucial for the first steps of the reprogramming process and that early expression of Fgf4 (day 2 to day 4) is an essential component for the successful generation of iPSCs.", "The dimer formed by the ATF-2 and c-Jun transcription factors is one of the main components of the human interferon-beta enhanceosome. Although these two transcription factors are able to form two homodimers and one heterodimer, it is mainly the heterodimer that participates in the formation of this enhanceosome, binding specifically to the positive regulatory domain IV (PRDIV) site of the enhancer DNA. To understand this surprising advantage of the heterodimer, we investigated the association of these transcription factors using fragments containing the basic DNA-recognition segment and the basic leucine zipper domain (bZIP). It was found that the probability of forming the hetero-bZIP significantly exceeds the probability of forming homo-bZIPs, and that the hetero-bZIP interacts more strongly with the PRDIV site of the interferon-beta enhancer, especially in the orientation that places the folded ATF-2 basic segment in the upstream half of this asymmetric site. The effect of salt on the formation of the ATF-2/c-Jun dimer and on its ability to bind the target PRDIV site showed that electrostatic interactions between the charged groups of these proteins and with DNA play an essential role in the formation of the asymmetric ATF-2/c-Jun/PRDIV complex.", "Fragment-based lead design (FBLD) has been used to identify new metal-binding groups for metalloenzyme inhibitors. When screened at 1 mM, a chelator fragment library (CFL-1.1) of 96 compounds produced hit rates ranging from 29% to 43% for five matrix metalloproteases (MMPs), 24% for anthrax lethal factor (LF), 49% for 5-lipoxygenase (5-LO), and 60% for tyrosinase (TY). The ligand efficiencies (LE) of the fragment hits are excellent, in the range of 0.4-0.8 kcal/mol. The MMP enzymes all generally elicit the same chelators as hits from CFL-1.1; however, the chelator fragments that inhibit structurally unrelated metalloenzymes (LF, 5-LO, TY) vary considerably. To develop more advanced hits, one hit from CFL-1.1, 8-hydroxyquinoline, was elaborated at four different positions around the ring system to generate new fragments. 8-Hydroxyquinoline fragments substituted at either the 5- or 7-positions gave potent hits against MMP-2, with IC(50) values in the low micromolar range. The 8-hydroxyquinoline represents a promising new chelator scaffold for the development of MMP inhibitors that was discovered by use of a metalloprotein-focused chelator fragment library.", "At 17(+4) week, non-invasive prenatal testing (NIPT) results of a 24-years-old mother showed high risk of monosomy X (45, X). Abnormally shaped head and cardiac defects were observed in prenatal ultrasound scan at 19(+3) week. Amniocentesis conducted at 19(+3) week identified karyotype 47, XX, +18, which suggested that the NIPT failed to detect trisomy 18 (T18) in this case. With a further massively parallel sequencing (MPS) of maternal blood, fetal and placental tissues, we found a confined placental mosaicism (CPM) with non-mosaic T18 fetus and multiclonal placenta with high prevalence of 45, X and low level of T18 cells. FISH and SNP-array evidence from the placental tissue confirmed genetic discrepancy between the fetus and placenta. Because the primary source of the fetal cell-free DNA that NIPT assesses is mostly originated from trophoblast cells, the level of T18 placental mosaicism may cause false negative NIPT result in this rare case of double aneuploidy.", "Migraine is a common, often disabling, neurovascular disease that has been shown to be associated with abnormal serotonergic activity. Drugs that modulate serotonin receptors are commonly used in the acute treatment of a migraine attack. Zolmitriptan, a 5-hydroxytryptophan(1B/1D) receptor agonist, is once such drug that is used in acute migraine therapy. Zolmitriptan is FDA approved for the treatment of acute migraine attacks and there is recent literature demonstrating its efficacy in the acute treatment of cluster attacks. It is rapidly absorbed and is detectable in the plasma within 2 - 5 min for the nasal spray formulation and within 15 min for the oral formulations. Zolmitriptan reaches peak plasma levels in 2 - 4 h and significant plasma levels are maintained for up to 6 h and lower levels for over 15 h. As zolmitriptan's metabolism is predominantly hepatic, patients with severe hepatic impairment should not receive zolmitriptan. However, only 25% of zolmitriptan is bound to plasma proteins and thus it is unlikely for drug interactions involving the displacement of highly protein-bound drugs. Zolmitriptan is generally very well tolerated and less than half of patients in clinical trials have reported adverse events, most of which are mild and transient, although rare serious cardiovascular events have been reported with all triptans. When patients are appropriately selected, zolmitriptan is both a safe and effective acute care migraine treatment. In this review the biological role of serotonin and its receptors is covered, followed by an in-depth review of the pharmacodynamics, pharmacokinetics and efficacy of zolmitriptan. Finally, the clinical application of zolmitriptan's use in patients is dicussed.", "The clinical association between multiple endocrine neoplasia type 2 (MEN2) and Hirschsprung disease (HSCR) is infrequent. Germline mutations of the ret protooncogene are the underlying cause of the MEN2 syndromes and a proportion of cases of HSCR. In this report, we describe a new kindred in which the MEN2 and HSCR phenotypes are associated with a single C620S point mutation at one of the cysteine codons of the extracellular domain of the ret protooncogene. We also speculate about the role of a silent mutation in exon 2 of this same gene (A45A), present in a homozygous state in the patient with both MEN2A and HSCR. To investigate the contribution of GDNF to the phenotype observed in this kindred, we scanned the coding region of GDNF in the patient with MEN2/HSCR, but no mutation was found.", "The concept of molecular tumor targeting might provide new hope in the treatment of advanced prostate cancer. We evaluated metastasis blocking properties of the histone deacetylase (HDAC) inhibitor valproic acid (VPA) and the mammalian target of rapamycin (mTOR) inhibitor RAD001 on prostate cancer cell lines. RAD001 or VPA were applied to PC-3 or LNCaP cells, either separately or in combination. Adhesion to vascular endothelium or to immobilized collagen, fibronectin or laminin was quantified. Migration and invasion were explored by a modified Boyden chamber assay. Integrin α and β subtypes were analyzed by flow cytometry, western blotting and RT-PCR. Effects of drug treatment on integrin related signaling, Akt and p70S6kinase activation, histone H3 and H4 acetylation were also determined. Separate application of RAD001 or VPA distinctly reduced tumor cell adhesion, migration and invasion, accompanied by elevated Akt activation and p70S6kinase de-activation. Integrin subtype expression was altered significantly by both compounds (VPA > RAD001). When both drugs were used in concert additive effects were observed on the migratory and invasive behavior but not on tumor-endothelium and tumor-matrix interaction. Separate mTOR or HDAC inhibition slows processes related to tumor metastasis. The RAD001-VPA combination showed advantage over VPA monotreatment with particular respect to migration and invasion. Ongoing studies are required to assess the relevance of VPA monotherapy versus VPA-RAD001 combination on tumor cell motility.", "OBJECTIVE: The purpose of this study was to investigate the effects of coenzyme Q10 supplementation on inflammatory markers (high-sensitivity C-reactive protein [hs-CRP], interleukin-6 [IL-6], and homocysteine) in patients with coronary artery disease (CAD).METHODS: Patients with CAD (n = 51) were randomly assigned to a placebo group (n = 14) or one of two coenzyme Q10-supplemented groups (60 mg/d, Q10-60 group, n = 19; 150 mg/d, Q10-150 group, n = 18). The intervention was administered for 12 wk. Plasma coenzyme Q10 concentration, inflammatory markers (hs-CRP, IL-6, and homocysteine), malondialdehyde, and superoxide dismutase activities were measured.RESULTS: Forty subjects with CAD completed the intervention study. The plasma coenzyme Q10 concentration increased significantly in the Q10-60 and Q10-150 groups (P < 0.01). After 12 wk of intervention, the inflammatory marker IL-6 (P = 0.03) was decreased significantly in the Q10-150 group. Subjects in the Q10-150 group had significantly lower malondialdehyde levels and those in the Q10-60 (P = 0.05) and Q10-150 (P = 0.06) groups had greater superoxide dismutase activities. Plasma coenzyme Q10 was inversely correlated with hs-CRP (r = -0.20, P = 0.07) and IL-6 (r = -0.25, P = 0.03) at baseline. After supplementation, plasma coenzyme Q10 was significantly correlated with malondialdehyde (r = -0.35, P < 0.01) and superoxide dismutase activities (r = 0.52, P < 0.01). However, there was no correlation between coenzyme Q10 and homocysteine.CONCLUSION: Coenzyme Q10 supplementation at a dosage of 150 mg appears to decrease the inflammatory marker IL-6 in patients with CAD.", "Although pharmacologic therapies have provided gains in reducing the mortality of heart failure, the rising incidence of the disease requires new approaches to combat its health burden. Twenty-five years ago, abnormal calcium cycling was identified as a characteristic of failing human myocardium. Sarcoplasmic reticulum calcium ATPase (SERCA2a), the sarcoplasmic reticulum calcium pump, was found to be a key factor in the alteration of calcium cycling. With the advancement of gene vectors, SERCA2a emerged as an attractive clinical target for gene delivery purposes. Using adeno-associated virus constructs, SERCA2a upregulation has been found to improve myocardial function in animal models. The clinical benefits of overexpressing SERCA2a have been demonstrated in the phase I study Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID). This study has demonstrated that a persistent expression of the transgene SERCA2a is associated with a significant improvement in associated biochemical alterations and clinical symptoms of heart failure. In the coming years, additional targets will likely emerge that are amenable to genetic manipulations along with the development of more advanced vector systems with safer delivery approaches.", "PURPOSE: L612, a human IgM monoclonal antibody produced by an EBV-transformed human B-cell line, binds to ganglioside GM3 and kills GM3-positive human melanoma cells in the presence of complement. It has been shown to be effective in some patients with late-stage melanoma. L612 consists of hexameric IgM (about 20%), pentameric IgM (about 74%), and other minor IgM molecules. Because hexameric IgM activates complement more effectively than pentameric IgM, we developed and evaluated a hexamer-dominant recombinant IgM for clinical applications.EXPERIMENTAL DESIGN: Chinese hamster ovary (CHO) cells were transfected with heavy- and light-chain genes of L612, with or without the joining-chain gene. Antitumor effects of the recombinant IgM secreted from CHO cells were evaluated in vitro and in vivo.RESULTS: Recombinant IgM secreted from CHO cells without the joining chain (designated CA19) was approximately 80% hexameric, whereas recombinant IgM from CHO cells transfected with heavy-, light-, and joining-chain genes (designated CJ45) was about 90% pentameric. Both CA19 and CJ45 recombinant IgMs caused complement-dependent cytotoxicity against human and mouse melanoma cell lines, but the amount of CA19 required for 50% specific cytotoxicity was 5 to 10 times smaller. I.v. injection of CA19 compared with CJ45 or native L612 elicited more profound antitumor activity in nude rats bearing a GM3-positive mouse melanoma xenograft.CONCLUSIONS: A hexamer-dominant human IgM against GM3 may provide a more potent treatment option for patients with GM3-positive melanoma." ]
2,001
[ "In situ hybridization was used to measure the expression of members of the Fos/Jun family of immediate-early genes in hypothalamic neurons in vivo following defined stimuli that utilize different afferent pathways. Only c-jun messenger RNA was expressed in the hypothalamic supraoptic and paraventricular nuclei of control animals. Intravenous infusions of sodium chloride solutions of different tonicity produced a range of plasma osmolalities within physiological limits. While the induction of c-fos and jun B messenger RNAs followed the stimulus intensity, the expression of c-jun was repressed at low levels of stimulation. A higher level of osmotic stimulation was able to co-induce c-jun with the c-fos, jun B and fos B genes, suggesting that other signalling pathways may then be activated. Parturition or systemic administration of cholecystokinin, that activate supraoptic and paraventricular neurons via ascending afferent pathways from the brainstem, both induced c-fos, but not the other genes, in the magnocellular nuclei. Use of double in situ hybridization confirmed that, unlike with osmotic stimulation, induction of c-fos only occurred in oxytocin neurons. These two stimuli did not cause a concomitant repression of c-jun messenger RNA expression in magnocellular oxytocin neurons. These patterns of induction provide evidence for the differential regulation of members of this family of genes in a physiological context.", "Molecular studies of cylindromas, which arise from the eccrine or apocrine cells of the skin, have demonstrated frequent alterations at chromosome 16q12-13, recently found to house the cylindromatosis (CYLD) gene. CYLD, a tumor suppressor gene, has deubiquitinating enzyme activity and inhibits the activation of transcription factor NF-kappaB. Loss of the deubiquitinating activity of CYLD is correlated with tumorigenesis. It has been reported that the expression of CYLD is observed in various organs. We demonstrated previously that human salivary gland tumor (SGT) cell line, HSG spontaneously expresses CYLD and also found that adenoid cystic carcinoma (ACC) arising from the hard palate was distinctly positive for CYLD, immunohistochemically. However, it is unclear whether loss of CYLD is associated with development of SGTs. This study examined CYLD function in SGT cells and attempted to clarify whether CYLD is associated with development of SGTs. The expression of CYLD and NF-kappaB mRNAs in HSG cells was increased by TNF-alpha. Translocation of NF-kappaB protein from the cytoplasm to the nucleus in HSG cells peaked at 30 min after TNF-alpha stimulation, then decreased at 60 min, whereas that of CYLD protein increased gradually in a time-dependent manner. Luciferase reporter assay indicated that TNF-alpha induced a 5-fold increase of NF-kappaB-dependent transcription at 4 h, which was further enhanced by knockdown of CYLD using RNA interference. Taken together, these data demonstrated that the levels of both CYLD and NF-kappaB mRNAs accumulated in HSG cells during 24 h after TNF-alpha stimulation, although the NF-kappaB activity in the cells was at least negatively regulated by CYLD. Immunohistochemical examinations revealed that there are several correlations between the expression of CYLD and NF-kappaB-related factors in 17 cases of ACC tissues. These findings suggest that loss of CYLD is associated with development of SGTs.", "Precise regulation of kinetochore-microtubule attachments is essential for successful chromosome segregation. Central to this regulation is Aurora B kinase, which phosphorylates kinetochore substrates to promote microtubule turnover. A critical target of Aurora B is the N-terminal \"tail\" domain of Hec1, which is a component of the NDC80 complex, a force-transducing link between kinetochores and microtubules. Although Aurora B is regarded as the \"master regulator\" of kinetochore-microtubule attachment, other mitotic kinases likely contribute to Hec1 phosphorylation. In this study, we demonstrate that Aurora A kinase regulates kinetochore-microtubule dynamics of metaphase chromosomes, and we identify Hec1 S69, a previously uncharacterized phosphorylation target site in the Hec1 tail, as a critical Aurora A substrate for this regulation. Additionally, we demonstrate that Aurora A kinase associates with inner centromere protein (INCENP) during mitosis and that INCENP is competent to drive accumulation of the kinase to the centromere region of mitotic chromosomes. These findings reveal that both Aurora A and B contribute to kinetochore-microtubule attachment dynamics, and they uncover an unexpected role for Aurora A in late mitosis.", "BACKGROUND: Older age is associated with worse outcome after out-of-hospital cardiac arrest (OHCA). Therefore, we tested the performance of CAHP score, to predict neurological outcome in elderly OHCA patients and to select patients most likely to benefit from coronary angiogram (CAG).MATERIALS AND METHODS: The present study was a retrospective multicentre observational study at 3 non-university hospitals and 1 university hospital. CAHP score was calculated, and its performance to predict outcomes was evaluated. Factors associated with the use of CAG were analysed and the rate of CAG across each CAHP score risk group reported.RESULTS: One hundred seventy-six patients fulfilled inclusion criteria (median age of 81, [79-84]), among which a cardiac cause was presumed for 99 patients. The hospital unfavourable outcome was 91%. The ROC-AUC values for hospital neurological outcome prediction of CAHP score was 0.81 [0.68-0.94], showing good discrimination performance. ST-segment elevation in ECG and initial shockable rhythm were independent factors for performing early CAG, whereas age and distance from the percutaneous coronary intervention centre were independently associated with the absence of early CAG. The percentages of patients receiving early CAG in the low, medium and high CAHP score risk groups were 64%, 33% and 34%, respectively, and differed significantly between low CAHP score risk group and other groups (p = 0.02).CONCLUSIONS: The CAHP score exhibited a good discrimination performance to predict neurological outcome in elderly OHCA patients. This score could represent a helpful tool for treatment allocation. A simple prognostication score could permit avoiding unnecessary procedures in patients with minimal chances of survival.", "T cell proliferation is critical for immune responses; however, the molecular mechanisms that mediate the proliferative response are poorly understood. MicroRNAs (miRs) regulate various molecular processes, including development and function of the immune system. Here, utilizing multiple complementary genetic and molecular approaches, we investigated the contribution of a hematopoietic-specific miR, miR-142, in regulating T cell responses. T cell development was not affected in animals with a targeted deletion of Mir142; however, T cell proliferation was markedly reduced following stimulation both in vitro and in multiple murine models of graft-versus-host disease (GVHD). miR-142-deficient T cells demonstrated substantial cell-cycling defects, and microarray and bioinformatics analyses revealed upregulation of genes involved in cell cycling. Moreover, 2 predicted miR-142 target genes, the atypical E2F transcription factors E2f7 and E2f8, were most highly upregulated in miR-142-deficient cells. Clustered regularly interspaced short palindromic repeat interference-mediated (CRISPRi-mediated) silencing of E2F7 and E2F8 in miR-142-deficient T cells ameliorated cell-cycling defects and reduced GVHD, and overexpression of these factors in WT T cells inhibited the proliferative response. Together, these results identify a link between hematopoietic-specific miR-142 and atypical E2F transcription factors in the regulation of mature T cell cycling and suggest that targeting this interaction may be relevant for mitigating GVHD.", "The chromones are a class of chemical compounds characterised by the presence of the structure 5:6 benz-1:4-pyrone in their chemical make-up. The first chromone in clinical use, khellin, was extracted from the seeds of the plant Ammi visnaga, and had been used for centuries as a diuretic and as a smooth muscle relaxant. Its use in bronchial asthma was reported in 1947. In the 1950s, Benger's Laboratories embarked on a research programme to synthesise and develop modifications of khellin for the treatment of asthma. New compounds were screened using animal models to test the ability of the compound to prevent the anaphylactic release of histamine and SRS-A (leukotrienes) from sensitised guinea pig lung, and a human model to check the ability to reduce the bronchoconstriction induced by inhaled antigen bronchial challenge. For initial screening the human work was undertaken by Dr. R.E.C. Altounyan, who suffered from allergic bronchial asthma and was employed by Benger's Laboratories. After 8 years and more than 600 challenges using over 200 compounds, in 1965 Altounyan arrived at disodium cromoglycate (DSCG), the chromone that met the criteria of providing more than 6 h of protection. DSCG is still used today as a mast cell stabiliser.", "BACKGROUND: Growth arrest-specific 6 (Gas6) is a vitamin K-dependent protein secreted by immune cells, endothelial cells, vascular smooth muscle cells, and adipocytes. Recent studies indicate that Gas6 and receptors of the TAM (Tyro3, Axl, and Mer) family may be involved in the pathogenesis of obesity, systemic inflammation, and insulin resistance. The aim of this study was to investigate the association between plasma Gas6 protein and the c.843 + 7G>A Gas6 polymorphism in metabolic syndrome (MetS).METHODS: Two hundred five adults (88 men and 117 women) were recruited in this study. Plasma Gas6 concentration, general, and biochemical data were measured. All subjects were genotyped for the c.843 + 7G>A Gas6 polymorphism.RESULTS: Plasma Gas6 concentrations decreased in parallel with various MetS components in all groups (P = 0.017 for trend). Patients in the second and third tertiles of Gas6 level had higher high-density lipoprotein cholesterol (HDL-C) levels than those in the first tertile overall and in the female group. Plasma Gas6 levels were significantly positively correlated with HDL-C level and negatively with fasting glucose level in the female patients. The A allele and genotype AA in single nucleotide polymorphism c.843 + 7G>A were less frequent in the subjects with MetS compared to those without MetS.CONCLUSIONS: Our results demonstrated a positive correlation between Gas6 protein values and HDL-C and reinforce the association with fasting glucose. In addition, the presence of c.843 + 7G>A Gas6 polymorphisms, especially the AA genotype, had an association with MetS. The potential role of the Gas6/TAM system in MetS deserves further investigation.", "Visual inputs from the 2 eyes in most primates activate alternating bands of cortex in layer 4C of primary visual cortex, thereby forming the well-studied ocular dominance columns (ODCs). In addition, the enzymatic reactivity of cytochrome oxidase (CO) reveals \"blob\" structures within the supragranular layers of ODCs. Here, we present evidence for compartments within ODCs that have not been clearly defined previously. These compartments are revealed by the activity-dependent mRNA expression of immediate-early genes (IEGs), zif268 and c-fos, after brief periods of monocular inactivation (MI). After a 1-3-h period of MI produced by an injection of tetrodotoxin, IEGs were expressed in a patchy pattern that included infragranular layers, as well as supragranular layers, where they corresponded to the CO blobs. In addition, the expressions of IEGs in layer 4C were especially high in narrow zones along boundaries of ODCs, referred to here as the \"border strips\" of the ODCs. After longer periods of MI (>5 h), the border strips were no longer apparent. When either eyelid was sutured, changes in IEG expression were not evident in layer 4C; however, the patchy pattern of the expression in the infragranular and supragranular layers remained. These changes of IEG expression after MI indicate that cortical circuits involving the CO blobs of the supragranular layers include aligned groups of neurons in the infragranular layers and that the border strip neurons of layer 4C are highly active for a 3-h period after MI.", "Mass spectrometry based metabolomics represents a new area for bioinformatics technology development. While the computational tools currently available such as XCMS statistically assess and rank LC-MS features, they do not provide information about their structural identity. XCMS(2) is an open source software package which has been developed to automatically search tandem mass spectrometry (MS/MS) data against high quality experimental MS/MS data from known metabolites contained in a reference library (METLIN). Scoring of hits is based on a \"shared peak count\" method that identifies masses of fragment ions shared between the analytical and reference MS/MS spectra. Another functional component of XCMS(2) is the capability of providing structural information for unknown metabolites, which are not in the METLIN database. This \"similarity search\" algorithm has been developed to detect possible structural motifs in the unknown metabolite which may produce characteristic fragment ions and neutral losses to related reference compounds contained in METLIN, even if the precursor masses are not the same.", "Proper morphogenesis of inner ear semicircular canals requires precise regulation of cellular proliferation, epithelial-to-mesenchymal transition, and fusion of epithelial plates. Epigenetic regulation of these processes is not well understood, but is likely to involve chromatin remodeling enzymes. CHD7 is a chromodomain-containing, ATP dependent helicase protein that is highly expressed in the developing ear and is required for semicircular canal development in both humans and mice. Here we report that mice with heterozygous loss of Chd7 function exhibit delayed semicircular canal genesis, delayed Netrin1 expression and disrupted expression of genes that are critical for semicircular canal formation (Bmp2, Bmp4, Msx1 and Fgf10). Complete loss of Chd7 results in aplasia of the semicircular canals and sensory vestibular organs, with reduced or absent expression of Otx1, Hmx3, Jagged1, Lmo4, Msx1 and Sox2. Our results suggest that Chd7 may have critical selector gene functions during inner ear morphogenesis. Detailed analysis of the epigenetic modifications underlying these gene expression changes should provide insights into semicircular canal development and help in the design of therapies for individuals with inner ear malformations.", "OBJECTIVE: To assess the pharmacokinetic equivalence of a new soft capsule formulation of levothyroxine versus a marketed reference product and to assess the soft capsule formulated with stricter potency guidelines versus the capsule before the implementation of the new potency rule.METHOD: Two single-dose randomized two-way crossover pharmacokinetic equivalence studies and one dosage form proportionality single-dose study comparing low, medium, and high strengths of the new formulation. All three studies were performed in a clinical setting. Participants were healthy male and female adult subjects with normal levothyroxine levels. A total of 90 subjects participated in the three studies.RESULTS: Pharmacokinetic parameters were calculated on baseline- adjusted concentrations. The first pharmacokinetic equivalence study compared the levothyroxine sodium soft capsule formulation (Tirosint) with the reference Synthroid tablets and the two products were considered bioequivalent. The dosage form proportionality study compared the 50-, 100-, and 150-μg test capsules strengths dosed at the same level (600 μg) and all three strengths were considered equivalent when given at the same dosage. The last study compared the test capsule used in the first two studies with a new capsule formulation following the new potency guideline (±5%) set forward by the Food and Drug Administration and the two capsules were considered bioequivalent. Doses were well tolerated by subjects in all three studies with no serious adverse events reported.CONCLUSIONS: The levothyroxine soft capsule formulated with the stricter new potency guideline set forward by the Food and Drug Administration met equivalence criteria in terms of rate and extent of exposure under fasting conditions to the reference tablet formulation. Clinical doses of the capsule formulation can be given using any combination of the commercialized strengths.", "The lungs are a major organ site of cytomegalovirus (CMV) pathogenesis, latency, and recurrence. Previous work on murine CMV latency has documented a high load and an even distribution of viral genomes in the lungs after the resolution of productive infection. Initiation of the productive cycle requires expression of the ie1/3 transcription unit, which is driven by the immediate-early (IE) promoter P(1/3) and generates IE1 and IE3 transcripts by differential splicing. Latency is molecularly defined by the absence of IE3 transcripts specifying the essential transactivator protein IE3. In contrast, IE1 transcripts were found to be generated focally and randomly, reflecting sporadic P(1/3) activity. Selective generation of IE1 transcripts implies molecular control of latency operating after ie1/3 transcription initiation. P(1/3) is regulated by an upstream enhancer. It is widely assumed that the viral transcriptional program is started by activation of the enhancer through the binding of transcription factors. Accordingly, stochastic transcription during latency might reflect episodes of enhancer activation by the \"noise\" activity of intrinsic transcription factors. In addition to ie1/3, the enhancer controls gene ie2, which has its own promoter, P(2), and is transcribed in opposite direction. We show here that ie2 is also randomly transcribed during latency. Notably, however, ie1 and ie2 were found to be expressed independently. We infer from this finding that expression of the major IE genes is regulated asymmetrically and asynchronously via the combined control unit P(1/3) -E-P(2). Our data are consistent with a stochastic nature of enhancer action as it is proposed by the \"binary\" or probability model.", "Botulinum neurotoxins (BoNTs) are proteases that cleave specific cellular proteins essential for neurotransmitter release. Seven BoNT serotypes (A-G) exist; 4 usually cause human botulism (A, B, E, and F). We developed a rapid, mass spectrometry-based method (Endopep-MS) to detect and differentiate active BoNTs A, B, E, and F. This method uses the highly specific protease activity of the toxins with target peptides specific for each toxin serotype. The product peptides derived from the endopeptidase activities of BoNTs are detected by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry. In buffer, this method can detect toxin equivalents of as little as 0.01 mouse lethal dose (MLD)50 and concentrations as low as 0.62 MLD50/mL. A high-performance liquid chromatography-tandem mass spectrometry method for quantifying active toxin, where the amount of toxin can be correlated to the amount of product peptides, is also described.", "Ladybird homeobox (Lbx) transcription factors have crucial functions in muscle and nervous system development in many animals. Amniotes have two Lbx genes, but only Lbx1 is expressed in spinal cord. In contrast, teleosts have three lbx genes and we show here that zebrafish lbx1a, lbx1b, and lbx2 are expressed by distinct spinal cell types, and that lbx1a is expressed in dI4, dI5, and dI6 interneurons, as in amniotes. Our data examining lbx expression in Scyliorhinus canicula and Xenopus tropicalis suggest that the spinal interneuron expression of zebrafish lbx1a is ancestral, whereas lbx1b has acquired a new expression pattern in spinal cord progenitor cells. lbx2 spinal expression was probably acquired in the ray-finned lineage, as this gene is not expressed in the spinal cords of either amniotes or S. canicula. We also show that the spinal function of zebrafish lbx1a is conserved with mouse Lbx1. In zebrafish lbx1a mutants, there is a reduction in the number of inhibitory spinal interneurons and an increase in the number of excitatory spinal interneurons, similar to mouse Lbx1 mutants. Interestingly, the number of inhibitory spinal interneurons is also reduced in lbx1b mutants, although in this case the number of excitatory interneurons is not increased. lbx1a;lbx1b double mutants have a similar spinal interneuron phenotype to lbx1a single mutants. Taken together these data suggest that lbx1b and lbx1a may be required in succession for correct specification of dI4 and dI6 spinal interneurons, although only lbx1a is required for suppression of excitatory fates in these cells.", "Loss-of-function mutations in GRN cause frontotemporal dementia (FTD) with transactive response DNA-binding protein of 43 kD (TDP-43)-positive inclusions and neuronal ceroid lipofuscinosis (NCL). There are no disease-modifying therapies for either FTD or NCL, in part because of a poor understanding of how mutations in genes such as GRN contribute to disease pathogenesis and neurodegeneration. By studying mice lacking progranulin (PGRN), the protein encoded by GRN, we discovered multiple lines of evidence that PGRN deficiency results in impairment of autophagy, a key cellular degradation pathway. PGRN-deficient mice are sensitive to Listeria monocytogenes because of deficits in xenophagy, a specialized form of autophagy that mediates clearance of intracellular pathogens. Cells lacking PGRN display reduced autophagic flux, and pathological forms of TDP-43 typically cleared by autophagy accumulate more rapidly in PGRN-deficient neurons. Our findings implicate autophagy as a novel therapeutic target for GRN-associated NCL and FTD and highlight the emerging theme of defective autophagy in the broader FTD/amyotrophic lateral sclerosis spectrum of neurodegenerative disease.", "Immediate-early (IE) genes are the first class of viral genes expressed after primary infection or reactivation. As transcription of IE genes does not require prior viral protein synthesis, this class of genes is experimentally defined by their transcription following primary infection or reactivation in the presence of inhibitors of protein synthesis. This chapter describes an approach to identify IE genes in a novel herpesvirus genome. Transcription of IE genes is selectively induced with sodium butyrate in the presence of the protein synthesis inhibitor cycloheximide. The transcripts of the induced genes are identified by using a cDNA subtraction-based method of gene expression screening." ]
2,003
[ "Most of the genetic events implicated in the pathogenesis of thyroid cancer (TC) involve genes with kinase activity. Thus, kinase inhibitors (KIs) are very relevant in this field. KIs are considered the most suitable treatment for patients with iodine-refractory differentiated TC; these patients comprise the subgroup with the poorer prognosis. To date, only sorafenib has been approved for this indication, but promising results have been reported with several other KIs. In particular, lenvatinib has demonstrated excellent efficacy, with both progression-free survival and objective tumour response being better than with sorafenib. Despite being considered to be well tolerated, both sorafenib and lenvatinib have shown a remarkable toxicity, which has led to dose reductions in the majority of patients and to treatment discontinuation in a significant proportion of cases. The role of KIs in differentiated TC may be revolutionised by the finding that selumetinib may restore a clinical response to radioactive iodine (RAI). Vandetanib and cabozantinib have been approved for the treatment of advanced, progressive medullary TC (MTC). Nevertheless, the toxicity of both compounds suggests their selective use in those patients with strong disease progression. Treatment with the mTOR-inhibitor everolimus, alone or in combination with somatostatin analogues, should be studied in metastatic MTC patients with slow progression of disease, these representing the vast majority of patients. KIs did not significantly impact on the clinical features of anaplastic TC (ATC).", "BACKGROUND: the pathophysiology of delayed neurological deficits (DNDs) following aneurysmal subarachnoid hemorrhage (SAH) is complex, and is not limited to arterial narrowing (vasospasm) and classical ischemia. Thus, combined drug approaches, or therapies with multiple effects, may have the greatest potential for benefit. Statins are known to have pleiotropic vascular effects, some of which may interrupt the pathogenesis of DNDs. Based on promising preliminary reports, many clinicians routinely administer statins to prevent DNDs.METHODS: a systematic review was performed to identify and summarize all animal research, observational studies, randomized controlled trials (RCTs) and meta-analyses which have evaluated the use of statins in the management of SAH.RESULTS: nine animal studies, nine observational (cohort and case-control) studies, six RCTs and three meta-analyses were identified. Animal studies have generally administered statin doses that, when adjusted for body weight, are 10-80 times larger than what is used in humans. Nevertheless, these models have consistently reported statins to reduce vasospasm and to demonstrate additional neuroprotective effects. However, observational studies have not revealed an association between statin-use and reduced DNDs or improved neurological outcomes. Results of RCTs have been inconsistent and limited by small sample size, but together suggest that statins may reduce DNDs, with no clear impact on mortality or neurological recovery. Optimal drug administration strategies (timing of initiation, most effective dose and duration) have not been clarified.CONCLUSIONS: the role of statins in the management of patients with SAH remains unclear. Although promising, statins should not, at this time, be considered standard care.", "Alzheimer's disease and Lewy body diseases are the most common causes of neurodegeneration and dementia. Amyloid-beta (Aβ) and alpha-synuclein (αSyn) are two key proteins involved in the pathogenesis of these neurodegenerative diseases. Immunotherapy aims to reduce the harmful effects of protein accumulation by neutralising toxic species and facilitating their removal. The results of the first immunisation trial against Aβ led to a small percentage of meningoencephalitis cases which revolutionised vaccine design, causing a shift in the field of immunotherapy from active to passive immunisation. While the vast majority of immunotherapies have been developed for Aβ and tested in Alzheimer's disease, the field has progressed to targeting other proteins including αSyn. Despite showing some remarkable results in animal models, immunotherapies have largely failed final stages of clinical trials to date, with the exception of Aducanumab recently licenced in the US by the FDA. Neuropathological findings translate quite effectively from animal models to human trials, however, cognitive and functional outcome measures do not. The apparent lack of translation of experimental studies to clinical trials suggests that we are not obtaining a full representation of the effects of immunotherapies from animal studies. Here we provide a background understanding to the key concepts and challenges involved in therapeutic design. This review further provides a comprehensive comparison between experimental and clinical studies in Aβ and αSyn immunotherapy and aims to determine the possible reasons for the disconnection in their outcomes.", "BACKGROUND: Approximate string matching is the problem of finding all factors of a given text that are at a distance at most k from a given pattern. Fixed-length approximate string matching is the problem of finding all factors of a text of length n that are at a distance at most k from any factor of length ℓ of a pattern of length m. There exist bit-vector techniques to solve the fixed-length approximate string matching problem in time [Formula: see text] and space [Formula: see text] under the edit and Hamming distance models, where w is the size of the computer word; as such these techniques are independent of the distance threshold k or the alphabet size. Fixed-length approximate string matching is a generalisation of approximate string matching and, hence, has numerous direct applications in computational molecular biology and elsewhere.RESULTS: We present and make available libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching under both the edit and the Hamming distance models. Moreover we describe how fixed-length approximate string matching is applied to solve real problems by incorporating libFLASM into established applications for multiple circular sequence alignment as well as single and structured motif extraction. Specifically, we describe how it can be used to improve the accuracy of multiple circular sequence alignment in terms of the inferred likelihood-based phylogenies; and we also describe how it is used to efficiently find motifs in molecular sequences representing regulatory or functional regions. The comparison of the performance of the library to other algorithms show how it is competitive, especially with increasing distance thresholds.CONCLUSIONS: Fixed-length approximate string matching is a generalisation of the classic approximate string matching problem. We present libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching. The extensive experimental results presented here suggest that other applications could benefit from using libFLASM, and thus further maintenance and development of libFLASM is desirable.", "In most cases facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of the D4Z4 repeat in the 4q subtelomere. This contraction is associated with local chromatin decondensation and derepression of the DUX4 retrogene. Its complex genetic and epigenetic cause and high clinical variability in disease severity complicate investigations on the pathogenic mechanism underlying FSHD. A validated cellular model bypassing the considerable heterogeneity would facilitate mechanistic and therapeutic studies of FSHD. Taking advantage of the high incidence of somatic mosaicism for D4Z4 repeat contraction in de novo FSHD, we have established a clonal myogenic cell model from a mosaic patient. Individual clones are genetically identical except for the size of the D4Z4 repeat array, being either normal or FSHD sized. These clones retain their myogenic characteristics, and D4Z4 contracted clones differ from the noncontracted clones by the bursts of expression of DUX4 in sporadic nuclei, showing that this burst-like phenomenon is a locus-intrinsic feature. Consequently, downstream effects of DUX4 expression can be observed in D4Z4 contracted clones, like differential expression of DUX4 target genes. We also show their participation to in vivo regeneration with immunodeficient mice, further expanding the potential of these clones for mechanistic and therapeutic studies. These cell lines will facilitate pairwise comparisons to identify FSHD-specific differences and are expected to create new opportunities for high-throughput drug screens.", "Bisphenol A (BPA) is an endocrine-disruptor compound that exhibits estrogenic activity. BPA is used in the production of materials such as polycarbonate plastics, epoxy resins and dental sealants. Whereas, the endocrine modulating activity of BPA and its effects on reproductive health have been widely studied, its effects on the function of the immune system are poorly characterized. This might be attributable to the different BPA doses used in a diversity of animal models. Moreover, most studies of the effect of BPA on the immune response are limited to in vitro and in vivo studies that have focused primarily on the impact of BPA on the number and proportion of immune cell populations, without evaluating its effects on immune function in response to an antigenic challenge or infectious pathogens. In this review, we discuss the current literature on the effects of BPA on the function of immune system that potentially increases the susceptibility to infections by the virtue of acting as a pro-inflammatory molecule. Thus, it appears that BPA, while by such an impact might be useful in the control of certain disease states that are helped by an inflmmatory response, it can worsen the prognosis of diseases that are adversely affected by inflammation.", "Zebrafish have emerged as a powerful model organism to study embryo morphogenesis. Due to their optical clarity, they are uniquely suited for time-lapse imaging studies, providing insights into the dynamic processes underlying tissue formation and cell migration. These studies have been tremendously facilitated by the availability of transgenic zebrafish lines, labelling distinct embryonic structures, individual cells, or even subcellular structures, such as the nucleus. Zebrafish studies have revealed that the migration of several different cell types in the embryo is controlled by chemokines, small vertebrate-specific proteins. Here, we report methods to analyze the expression pattern of a given chemokine and its receptor in transgenic zebrafish using fluorescent in situ hybridization in combination with an anti-green fluorescent protein (GFP) antibody staining. We furthermore illustrate how to image migrating cell populations using time-lapse microscopy in double-transgenic embryos. We show how to investigate cell number and direction of migration by using a nuclear-localized GFP. The combination of this transgene with a membrane-targeted red fluorescent protein allows for the simultaneous determination of changes in cell shape, such as the formation of filopodial extensions. We exemplify this by describing how a mutation in the chemokine receptor cxcr4a affects endothelial cell migration and blood vessel formation. Finally, we provide a method to perform fluorescent angiography to monitor blood vessel perfusion in chemokine receptor mutants." ]
2,008
[ "Thromboaspiration was performed in a young adult in a coma because of acute basilar artery occlusion associated with cocaine and ecstasy abuse 30 hours after symptom onset. There was complete recanalization of the basilar artery and favorable recovery. Because cocaine and ecstasy abuse has been reported to be a risk factor for ischemic stroke and fatal brain hemorrhage, thromboaspiration may be an alternative therapy to thrombolysis.", "Early clinical trials of therapies to treat Duchenne muscular dystrophy (DMD), a fatal genetic X-linked pediatric disease, have been designed based on the limited understanding of natural disease progression and variability in clinical measures over different stages of the continuum of the disease. The objective was to inform the design of DMD clinical trials by developing a disease progression model-based clinical trial simulation (CTS) platform based on measures commonly used in DMD trials. Data were integrated from past studies through the Duchenne Regulatory Science Consortium founded by the Critical Path Institute (15 clinical trials and studies, 1505 subjects, 27,252 observations). Using a nonlinear mixed-effects modeling approach, longitudinal dynamics of five measures were modeled (NorthStar Ambulatory Assessment, forced vital capacity, and the velocities of the following three timed functional tests: time to stand from supine, time to climb 4 stairs, and 10 meter walk-run time). The models were validated on external data sets and captured longitudinal changes in the five measures well, including both early disease when function improves as a result of growth and development and the decline in function in later stages. The models can be used in the CTS platform to perform trial simulations to optimize the selection of inclusion/exclusion criteria, selection of measures, and other trial parameters. The data sets and models have been reviewed by the US Food and Drug Administration and the European Medicines Agency; have been accepted into the Fit-for-Purpose and Qualification for Novel Methodologies pathways, respectively; and will be submitted for potential endorsement by both agencies.", "Heerfordt's syndrome (HS) consists in its complete form of uveitis, parotid or salivary gland enlargement and cranial nerve palsy. The objective of the present study was to analyse if there are also links between HLA-DRB1* alleles and HS, as it is a specific phenotype of sarcoidosis. 1,000 patients with sarcoidosis, out of whom 83 had symptoms associated with HS, were included in the study together with a group of 2,000 healthy individuals from the same population, matched for sex and age. HLA-DRB1* allelic groups were determined for all individuals, and comparisons were made between different disease subgroups and between patients and healthy controls. We found that the HLA-DRB1*04 allele was overrepresented in patients with symptoms associated with HS. 83 (8.3%) of all patients had one or more of the symptoms and 46 (55%) of them were HLA-DRB1*04 positive. 44 (55%) of the patients with ocular sarcoidosis, i.e. the most common symptom associated with HS, were HLA-DRB1*04 positive, compared with 35.9% of healthy controls (p=0.0008), and only 26.6% of the whole group of sarcoidosis patients (p<0.0001). HLA-DRB1*04 seems to protect against overall sarcoidosis but appears to be a significant risk factor for ocular sarcoidosis as well as for other manifestations associated with HS.", "Immune check-point inhibitors are now employed as single-agents in current practice for the treatment of advanced non-small cell lung cancer (NSCLC), while combinations of different inhibitors are being evaluated in clinical trials. Although the safety profile of these compounds, with particular reference to drugs targeting programmed death protein 1 (PD-1) and its ligand (PD-L1), is generally considered manageable, peculiar, immune-related toxicities may onset. Areas covered: This review focuses on the immune-related adverse events (irAEs) observed during immune check-point blockade in NSCLC and their management. The authors report the incidence of irAEs based on the currently available data involving NSCLC and provide recommendations on the general approach to irAEs, as well as indications for the most relevant site-specific events. Expert opinion: Since irAEs may involve a wide range of organs and systems and are potentially reversible if promptly treated, early diagnosis should always be achieved; this might be particularly challenging when other potential causes of toxicity are suspected, such as infections or concurrent treatments. Finally, drugs active on the PD-1/PD-L1 axis appear to be generally manageable even when they are administered to patients with relevant comorbidities, provided that adequate clinical monitoring is performed.", "Ataxia telangiectasia mutated (ATM)- and Rad3-related protein (ATR) is a phosphatidylinositol-kinase (PIK)-related kinase that has been implicated in the response of human cells to multiple forms of DNA damage and may play a role in the DNA replication checkpoint. The purification of an ATR complex allowed identification of chromodomain-helicase-DNA-binding protein 4 (CHD4) as an ATR-associated protein by tandem mass spectrometric sequencing. CHD4 (also called Mi-2beta) is a component of a histone-deacetylase-2 (HDAC2)-containing complex, the nucleosome remodeling and deacetylating (NRD) complex. Endogenous ATR, CHD4, and HDAC2 are shown to coimmunoprecipitate, and ATR and HDAC2 coelute through two biochemical purification steps. Other members of the NRD complex, HDAC1, MTA1, and MTA2, are also detectable in ATR immunoprecipitates. ATR's association with CHD4 and HDAC2 suggests that there may be a linkage between ATR's role in mediating checkpoints induced by DNA damage and chromatin modulation via remodeling and deacetylation.", "We report a case of Listeria rhombencephalitis in a previously healthy 60-year-old man. Listeria rhombencephalitis is a rare but well-defined clinical syndrome of lower brain-stem involvement caused by Listeria monocytogenes. Contrary to other listerioses, rhombencephalitis has been mainly observed in patients without predisposing conditions. In our case, however, findings of a detailed immunologic study, performed three months and one year, respectively, after clinical onset of Listeria rhombencephalitis manifestations, showed a transient cellular immunity defect, not associated with any other apparent disease.", "Microphthalmos is a rare congenital anomaly characterized by reduced eye size and visual deficits of variable degree. Sporadic and hereditary microphthalmos have been associated with heterozygous mutations in genes fundamental for eye development. Yet, many cases are idiopathic or await the identification of molecular causes. Here we show that haploinsufficiency of Meis1, which encodes a transcription factor with evolutionarily conserved expression in the embryonic trunk, brain and sensory organs, including the eye, causes microphthalmic traits and visual impairment in adult mice. By combining analysis of Meis1 loss-of-function and conditional Meis1 functional rescue with ChIP-seq and RNA-seq approaches we show that, in contrast to its preferential association with Hox-Pbx BSs in the trunk, Meis1 binds to Hox/Pbx-independent sites during optic cup development. In the eye primordium, Meis1 coordinates, in a dose-dependent manner, retinal proliferation and differentiation by regulating genes responsible for human microphthalmia and components of the Notch signaling pathway. In addition, Meis1 is required for eye patterning by controlling a set of eye territory-specific transcription factors, so that in Meis1(-/-) embryos boundaries among the different eye territories are shifted or blurred. We propose that Meis1 is at the core of a genetic network implicated in eye patterning/microphthalmia, and represents an additional candidate for syndromic cases of these ocular malformations." ]
2,015
[ "Tularemia, caused by the bacterium Francisella tularensis, where F. tularensis subspecies holarctica has long been the cause of endemic disease in parts of northern Sweden. Despite this, our understanding of the natural life-cycle of the organism is still limited. During three years, we collected surface water samples (n = 341) and sediment samples (n = 245) in two areas in Sweden with endemic tularemia. Real-time PCR screening demonstrated the presence of F. tularenis lpnA sequences in 108 (32%) and 48 (20%) of the samples, respectively. The 16S rRNA sequences from those samples all grouped to the species F. tularensis. Analysis of the FtM19InDel region of lpnA-positive samples from selected sampling points confirmed the presence of F. tularensis subspecies holarctica-specific sequences. These sequences were detected in water sampled during both outbreak and nonoutbreak years. Our results indicate that diverse F. tularensis-like organisms, including F. tularensis subsp. holarctica, persist in natural waters and sediments in the investigated areas with endemic tularemia.", "Alagille syndrome (AGS) is a dominantly inherited disorder characterized by liver disease in combination with heart, skeletal, ocular, facial, renal, and pancreatic abnormalities. We have recently demonstrated that Jagged1 (JAG1) is the AGS gene. JAG1 encodes a ligand in the Notch intercellular signaling pathway. AGS is the first developmental disorder to be associated with this pathway and the first human disorder caused by a Notch ligand. We have screened 54 AGS probands and family members to determine the frequency of mutations in JAG1. Three patients (6%) had deletions of the entire gene. Of the remaining 51 patients, 35 (69%) had mutations within JAG1, identified by SSCP analysis. Of the 35 identified intragenic mutations, all were unique, with the exceptions of a 5-bp deletion in exon 16, seen in two unrelated patients, and a C insertion at base 1618 in exon 9, also seen in two unrelated patients. The 35 intragenic mutations included 9 nonsense mutations (26%); 2 missense mutations (6%); 11 small deletions (31%), 8 small insertions (23%), and 1 complex rearrangement (3%), all leading to frameshifts; and 4 splice-site mutations (11%). The mutations are spread across the coding sequence of the gene within the evolutionarily conserved motifs of the JAG1 protein. There is no phenotypic difference between patients with deletions of the entire JAG1 gene and those with intragenic mutations, which suggests that one mechanism involved in AGS is haploinsufficiency. The two missense mutations occur at the same amino acid residue. The mechanism by which these missense mutations lead to the disease is not yet understood; however, they suggest that mechanisms other than haploinsufficiency may result in the AGS phenotype.", "Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) is a novel minimally invasive modality that uses heat from laser probes to destroy tissue. Advances in probe design, cooling mechanisms, and real-time MR thermography have increased laser utilization in neurosurgery. The authors perform a systematic analysis of two commercially available MRgLITT systems used in neurosurgery: the Visualase® thermal therapy and NeuroBlate® Systems. Data extraction was performed in a blinded fashion. Twenty-two articles were included in the quantitative synthesis. A total of 223 patients were identified with the majority having undergone treatment with Visualase (n=154, 69%). Epilepsy was the most common indication for Visualase therapy (n=8 studies, 47%). Brain mass was the most common indication for NeuroBlate therapy (n=3 studies, 60%). There were no significant differences, except in age, wherein the NeuroBlate group was nearly twice as old as the Visualase group (p<0.001). Frame, total complications, and length-of-stay (LOS) were non-significant when adjusted for age and number of patients. Laser neurosurgery has evolved over recent decades. Clinical indications are currently being defined and will continue to emerge as laser technologies become more sophisticated. Head-to-head comparison of these systems was difficult given the variance in indications (and therefore patient population) and disparate literature.", "Objective. This study evaluates changes in use of antidepressants in children and adolescents after the US Food and Drug Administration black box warning for increased risk of suicide.Method. A retrospective chart review was completed for children and adolescents (ages 4-17) who were diagnosed with depressive or anxiety disorders in an outpatient clinic and offered a trial of antidepressants between September 2003 and February 2004 (before the black box warning) and between January 2005 and June 2005 (after the black box warning). Statistical analyses were performed with the SPSS version 17 and R package version 2.9.1. Univariate analysis was conducted using the Fisher's Exact test.Results. The odds ratio calculated for the different groups suggests that in all the groups, the proportion of acceptance of antidepressant use was greater before the black box warning as compared to after the black box warning (odds ratio>1). It was also found that upon combining the age groups after the warning and comparing them, based on the diagnoses, there was a greater degree of refusal of antidepressant therapy when a diagnosis of anxiety disorder was made as compared to a diagnosis of depressive disorder (p=0.017).Conclusion. There has been a decrease in the use of antidepressant therapy in children and adolescents following the US Food and Drug Administration black box warning for risk of suicide. A limitation of this study is that reasons for refusal of antidepressent therapy by parents or guardians of children and adolescents were not collected; therefore, there is no certainty that the black box warning was the primary reason for refusal.", "Vertigo is the most important symptom of Ménière's disease both from the standpoint of follow-up and indication for surgery. But although vertigo is an alerting symptom for both the patient and the physician, we believe that the hearing level is the most reliable and even the single sign in determining the recent status of the disease. Between 1983-1989, 42 patients with various types of Ménière's disease (MD) (34 typical MD, 3 cochlear MD and 3 vestibular MD) underwent endolymphatic sac surgery at ENT department of Gazi University School of Medicine. In the typical MD group, patients with a duration of symptoms of less than one year prior to surgery revealed better postoperative results; 91% fell into class A and B, whereas this rate was found to be lower (40%) in patients with symptomatology lasting for more than one year. In conclusion, especially in bilateral cases, given the importance of the hearing, early sac surgery is thoroughly recommended for the conservation of hearing.", "Multiciliated cells are abundant in the epithelial surface of different tissues, including cells lining the walls of the lateral ventricles in the brain and the airway epithelium. Their main role is to control fluid flow and defects in their differentiation are implicated in many human disorders, such as hydrocephalus, accompanied by defects in adult neurogenesis and mucociliary disorder in the airway system. Here we show that Mcidas, which is mutated in human mucociliary clearance disorder, and GemC1 (Gmnc or Lynkeas), previously implicated in cell cycle progression, are key regulators of multiciliated ependymal cell generation in the mouse brain. Overexpression and knockdown experiments show that Mcidas and GemC1 are sufficient and necessary for cell fate commitment and differentiation of radial glial cells to multiciliated ependymal cells. Furthermore, we show that GemC1 and Mcidas operate in hierarchical order, upstream of Foxj1 and c-Myb transcription factors, which are known regulators of ependymal cell generation, and that Notch signaling inhibits GemC1 and Mcidas function. Our results suggest that Mcidas and GemC1 are key players in the generation of multiciliated ependymal cells of the adult neurogenic niche.", "BACKGROUND: Symptoms and survival of patients with carcinoid syndrome have improved, but development of carcinoid heart disease (CaHD) continues to decrease survival.OBJECTIVES: This study aimed to analyze patient outcomes after valve surgery for CaHD during a 27-year period at 1 institution to determine early and late outcomes and opportunities for improved patient care.METHODS: We retrospectively studied the short-term and long-term outcomes of all consecutive patients with CaHD who underwent valve replacement at our institution between 1985 and 2012.RESULTS: The records of 195 patients with CaHD were analyzed. Pre-operative New York Heart Association class was III or IV in 125 of 178 patients (70%). All had tricuspid valve replacement (159 bioprostheses, 36 mechanical), and 157 underwent a pulmonary valve operation. Other concomitant operations included mitral valve procedure (11%), aortic valve procedure (9%), patent foramen ovale or atrial septal defect closure (23%), cardiac metastasectomies or biopsy (4%), and simultaneous coronary artery bypass (11%). There were 20 perioperative deaths (10%); after 2000, perioperative mortality was 6%. Survival rates (95% confidence intervals) at 1, 5, and 10 years were 69% (63% to 76%), 35% (28% to 43%), and 24% (18% to 32%), respectively. Overall mortality was associated with older age, cytotoxic chemotherapy, and tobacco use; 75% of survivors had symptomatic improvement at follow-up. Presymptomatic valve operation was not associated with late survival benefit.CONCLUSIONS: Operative mortality associated with valve replacement surgery for CaHD has decreased. Symptomatic and survival benefit is noted in most patients when CaHD is managed by an experienced multidisciplinary team.", "Ependymal cells are multiciliated cells located in the wall of the lateral ventricles of the adult mammalian brain and are key components of the subependymal zone niche, where adult neural stem cells reside. Through the movement of their motile cilia, ependymal cells control the cerebrospinal fluid flow within the ventricular system from which they receive secreted molecules and morphogens controlling self-renewal and differentiation decisions of adult neural stem cells. Multiciliated ependymal cells become fully differentiated at postnatal stages however they are specified during mid to late embryogenesis from a population of radial glial cells. Here we discuss recent findings suggesting that 2 novel molecules, Mcidas and GemC1/Lynkeas are key players on radial glial specification to ependymal cells. Both proteins were initially described as cell cycle regulators revealing sequence similarity to Geminin. They are expressed in radial glial cells committed to the ependymal cell lineage during embryogenesis, while overexpression and knock down experiments showed that are sufficient and necessary for ependymal cell generation. We propose that Mcidas and GemC1/Lynkeas are key components of the molecular cascade that promotes radial glial cells fate commitment toward multiciliated ependymal cell lineage operating upstream of c-Myb and FoxJ1." ]
2,020
[ "The South American human immunodeficiency virus type 1 (HIV-1) epidemic is driven by several subtypes (B, C, and F1) and circulating and unique recombinant forms derived from those subtypes. Those variants are heterogeneously distributed around the continent in a country-specific manner. Despite some inconsistencies mainly derived from sampling biases and analytical constrains, most of studies carried out in the area agreed in pointing out specificities in the evolutionary dynamics of the circulating HIV-1 lineages. In this paper, we covered the theoretical basis, and the application of bioinformatics methods to reconstruct the HIV spatial-temporal dynamics, unveiling relevant information to understand the origin, geographical dissemination and the current molecular scenario of the HIV epidemic in the continent, particularly in the countries of Southern Cone.", "Two patients with amiodarone-induced thyrotoxicosis were treated successfully with potassium perchlorate and carbimazole while treatment with amiodarone was continued. These antithyroid drugs were stopped after the patients had became clinically and biochemically euthyroid. During follow up, when treatment with amiodarone continued, thyrotoxicosis did not recur. Amiodarone-induced thyrotoxicosis seems to be a transient condition that can be treated successfully with a short course of antithyroid drugs without stopping amiodarone treatment.", "The mammalian circadian oscillator is composed of interacting positive and negative transcription events. The clock proteins PER1 and PER2 play essential roles in a negative limb of the feedback loop that generates the circadian rhythm in mammals. In addition, the proteins CLOCK and BMAL1 (also known as ARNTL) form a heterodimer that drives the Per genes via the E-box consensus sequences within their promoter regions. In the present study, we demonstrate that Id2 is involved in stabilization of the amplitudes of the circadian oscillations by suppressing transcriptional activation of clock genes Clock and Bmal1. Id2 shows dynamic oscillation in the SCN, with a peak in the late subjective night. Under constant dark conditions (DD), Id2(-/-) mice showed no apparent difference in locomotor activity, however, under constant light conditions (LL), Id2(-/-) mice exhibit aberrant locomotor activity, with lower circadian oscillation amplitudes, although the free running periods in Id2(-/-) mice show no differences from those in either wild type or heterozygous mice. Id2(-/-) animals also exhibit upregulation of Per1 in constant light, during both the subjective night and day. In wild type mice, Id2 is upregulated by constant light exposure during the subjective night. We propose that Id2 expression in the SCN contributes to maintenance of dynamic circadian oscillations.", "The limited number of progenitor stem cells in umbilical cord blood (UCB) enforces the optimization and strict control of all the procedures involved in its therapeutic use--ie, collection, processing, cryopreservation, thawing, and transportation--to ensure graft potency at transplantation. For this reason, international UCB standards recommend storage of a cell sample attached to the UCB unit as a quantitative and functional control of the unit selected for transplantation. To validate the use of the sample attached to the UCB unit as a quality-control tool for the final product, UCB units (n = 20) stored in liquid nitrogen with the Bioarchive system were analyzed. The UCB units and their attached segments were thawed, and the number and viability of total nucleated cells, mononucleated cells, CD45 + cells, and CD34+ cells were determined, as were colony-forming cell counts. There was no significant difference between UCB units and segments for any of the parameters assessed. Additionally, the linear correlation coefficient (R2) in these paired samples was 0.85 and 0.78 for CD34+ cells and colony-forming cells, respectively. In conclusion, the cell sample in the tube segment physically linked to the transplant UCB bag predicts the total cell content and functionality of the unit and may serve as a source for final quality control of the UCB unit before transplantation.", "Supervised classification based on support vector machines (SVMs) has successfully been used for the prediction of cis-regulatory modules (CRMs). However, no integrated tool using such heterogeneous data as position-specific scoring matrices, ChIP-seq data or conservation scores is currently available. Here, we present LedPred, a flexible SVM workflow that predicts new regulatory sequences based on the annotation of known CRMs, which are associated to a large variety of feature types. LedPred is provided as an R/Bioconductor package connected to an online server to avoid installation of non-R software. Due to the heterogeneous CRM feature integration, LedPred excels at the prediction of regulatory sequences in Drosophila and mouse datasets compared with similar SVM-based software.AVAILABILITY AND IMPLEMENTATION: LedPred is available on GitHub: https://github.com/aitgon/LedPred and Bioconductor: http://bioconductor.org/packages/release/bioc/html/LedPred.html under the MIT license.CONTACT: aitor.gonzalez@univ-amu.frSUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.", "INTRODUCTION AND OBJECTIVE: Bacillus anthracis is one of biological agents which may be used in bioterrorism attacks. The aim of this study a review of the new treatment possibilities of anthrax, with particular emphasis on the treatment of pulmonary anthrax. Abbreviated description of the state of knowledge. Pulmonary anthrax, as the most dangerous clinical form of the disease, is also extremely difficult to treat. Recently, considerable progress in finding new drugs and suitable therapy for anthrax has been achieved, for example, new antibiotics worth to mentioning, levofloxacin, daptomycin, gatifloxacin and dalbavancin. However, alternative therapeutic options should also be considered, among them the antimicrobial peptides, characterized by lack of inducible mechanisms of pathogen resistance. Very promising research considers bacteriophages lytic enzymes against selected bacteria species, including antibiotic-resistant strains.RESULTS: Interesting results were obtained using monoclonal antibodies: raxibacumab, cAb29 or cocktails of antibodies. The application of CpG oligodeoxynucleotides to boost the immune response elicited by Anthrax Vaccine Adsorbed and CMG2 protein complexes, also produced satisfying therapy results. Furthermore, the IFN-α and IFN-β, PA-dominant negative mutant, human inter-alpha inhibitor proteins and LF inhibitors in combination with ciprofloxacin, also showed very promising results.CONCLUSIONS: Recently, progress has been achieved in inhalation anthrax treatment. The most promising new possibilities include: new antibiotics, peptides and bacteriophages enzymes, monoclonal antibodies, antigen PA mutants, and inter alpha inhibitors applications. In the case of the possibility of bioterrorist attacks, the examination of inhalation anthrax treatment should be intensively continued.", "BACKGROUND: To determine the prevalence of urinary incontinence in female long-distance runners and to compare it with the presence or not of eating disorders. Methods - A total of 37 women have completed the International Consultation on Incontinence Questionnaire-Short Form (ICIQ-SF) and the short version of the Eating Attitudes Test (EAT-26). A one-hour pad test was performed to determine urine loss. Mean values of continuous variables were compared using an independent sample t-test or the Mann-Whitney U test.RESULTS: 23 athletes (62.2%) reported urine loss. The mean of the ICIQ-SF was 4.03 +/- 5.06. There was a significant relation between the 1-hour pad test (p=0.02) and eating disorders (p=0.03).CONCLUSIONS: There was urinary incontinence in female long-distance runners and a correlation with eating disorders. Coaches should improve their knowledge about this problem and establish cooperation with a multidisciplinary team." ]
2,026
[ "To understand the molecular mechanisms that underlie global transcriptional regulation, it is essential to first identify all the transcriptional regulatory elements in the human genome. The advent of next-generation sequencing has provided a powerful platform for genome-wide analysis of different species and specific cell types; when combined with traditional techniques to identify regions of open chromatin [DNaseI hypersensitivity (DHS)] or specific binding locations of transcription factors [chromatin immunoprecipitation (ChIP)], and expression data from microarrays, we become uniquely poised to uncover the mysteries of the genome and its regulation. To this end, we have performed global meta-analysis of the relationship among data from DNaseI-seq, ChIP-seq and expression arrays, and found that specific correlations exist among regulatory elements and gene expression across different cell types. These correlations revealed four distinct modes of chromatin domain structure reflecting different functions: repressive, active, primed and bivalent. Furthermore, CCCTC-binding factor (CTCF) binding sites were identified based on these integrative data. Our findings uncovered a complex regulatory process involving by DNaseI HS sites and histone modifications, and suggest that these dynamic elements may be responsible for maintaining chromatin structure and integrity of the human genome. Our integrative approach provides an example by which data from diverse technology platforms may be integrated to provide more meaningful insights into global transcriptional regulation.", "We report the identification of a new type of histone mark, lysine 2-hydroxyisobutyrylation (Khib), and identify the mark at 63 human and mouse histone Khib sites, including 27 unique lysine sites that are not known to be modified by lysine acetylation (Kac) and lysine crotonylation (Kcr). This histone mark was initially identified by MS and then validated by chemical and biochemical methods. Histone Khib shows distinct genomic distributions from histone Kac or histone Kcr during male germ cell differentiation. Using chromatin immunoprecipitation sequencing, gene expression analysis and immunodetection, we show that in male germ cells, H4K8hib is associated with active gene transcription in meiotic and post-meiotic cells. In addition, H4K8ac-associated genes are included in and constitute only a subfraction of H4K8hib-labeled genes. The histone Khib mark is conserved and widely distributed, has high stoichiometry and induces a large structural change. These findings suggest its critical role on the regulation of chromatin functions.", "Eukaryotic DNA replication is highly stratified, with different genomic regions shown to replicate at characteristic times during S phase. Here we observe that mutation rate, as reflected in recent evolutionary divergence and human nucleotide diversity, is markedly increased in later-replicating regions of the human genome. All classes of substitutions are affected, suggesting a generalized mechanism involving replication time-dependent DNA damage. This correlation between mutation rate and regionally stratified replication timing may have substantial evolutionary implications.", "BACKGROUND: Only a small portion of human long non-coding RNAs (lncRNAs) appear to be conserved outside of mammals, but the events underlying the birth of new lncRNAs in mammals remain largely unknown. One potential source is remnants of protein-coding genes that transitioned into lncRNAs.RESULTS: We systematically compare lncRNA and protein-coding loci across vertebrates, and estimate that up to 5% of conserved mammalian lncRNAs are derived from lost protein-coding genes. These lncRNAs have specific characteristics, such as broader expression domains, that set them apart from other lncRNAs. Fourteen lncRNAs have sequence similarity with the loci of the contemporary homologs of the lost protein-coding genes. We propose that selection acting on enhancer sequences is mostly responsible for retention of these regions. As an example of an RNA element from a protein-coding ancestor that was retained in the lncRNA, we describe in detail a short translated ORF in the JPX lncRNA that was derived from an upstream ORF in a protein-coding gene and retains some of its functionality.CONCLUSIONS: We estimate that ~ 55 annotated conserved human lncRNAs are derived from parts of ancestral protein-coding genes, and loss of coding potential is thus a non-negligible source of new lncRNAs. Some lncRNAs inherited regulatory elements influencing transcription and translation from their protein-coding ancestors and those elements can influence the expression breadth and functionality of these lncRNAs.", "BACKGROUND: Dopaminergic medications relieve symptoms of the restless legs syndrome (RLS) but have the potential to cause iatrogenic worsening (augmentation) of RLS with long-term treatment. Pregabalin may be an effective alternative.METHODS: In this 52-week, randomized, double-blind trial, we assessed efficacy and augmentation in patients with RLS who were treated with pregabalin as compared with placebo and pramipexole. Patients were randomly assigned to receive 52 weeks of treatment with pregabalin at a dose of 300 mg per day or pramipexole at a dose of 0.25 mg or 0.5 mg per day or 12 weeks of placebo followed by 40 weeks of randomly assigned active treatment. The primary analyses involved a comparison of pregabalin and placebo over a period of 12 weeks with use of the International RLS (IRLS) Study Group Rating Scale (on which the score ranges from 0 to 40, with a higher score indicating more severe symptoms), the Clinical Global Impression of Improvement scale (which was used to assess the proportion of patients with symptoms that were \"very much improved\" or \"much improved\"), and a comparison of rates of augmentation with pregabalin and pramipexole over a period of 40 or 52 weeks of treatment.RESULTS: A total of 719 participants received daily treatment, 182 with 300 mg of pregabalin, 178 with 0.25 mg of pramipexole, 180 with 0.5 mg of pramipexole, and 179 with placebo. Over a period of 12 weeks, the improvement (reduction) in mean scores on the IRLS scale was greater, by 4.5 points, among participants receiving pregabalin than among those receiving placebo (P<0.001), and the proportion of patients with symptoms that were very much improved or much improved was also greater with pregabalin than with placebo (71.4% vs. 46.8%, P<0.001). The rate of augmentation over a period of 40 or 52 weeks was significantly lower with pregabalin than with pramipexole at a dose of 0.5 mg (2.1% vs. 7.7%, P=0.001) but not at a dose of 0.25 mg (2.1% vs. 5.3%, P=0.08). There were six cases of suicidal ideation in the group receiving pregabalin, three in the group receiving 0.25 mg of pramipexole, and two in the group receiving 0.5 mg of pramipexole.CONCLUSIONS: Pregabalin provided significantly improved treatment outcomes as compared with placebo, and augmentation rates were significantly lower with pregabalin than with 0.5 mg of pramipexole. (Funded by Pfizer; ClinicalTrials.gov number, NCT00806026.).", "Orthostatic intolerance (OI) or postural tachycardia syndrome (POTS) is a syndrome primarily affecting young females, and is characterized by lightheadedness, palpitations, fatigue, altered mentation, and syncope primarily occurring with upright posture and being relieved by lying down. There is typically tachycardia and raised plasma norepinephrine levels on upright posture, but little or no orthostatic hypotension. The pathophysiology of OI is believed to be very heterogeneous. Most studies of the syndrome have focused on abnormalities in norepinephrine release. Here the hypothesis that abnormal norepinephrine transporter (NET) function might contribute to the pathophysiology in some patients with OI was tested. In a proband with significant orthostatic symptoms and tachycardia, disproportionately elevated plasma norepinephrine with standing, impaired systemic, and local clearance of infused tritiated norepinephrine, impaired tyramine responsiveness, and a dissociation between stimulated plasma norepinephrine and DHPG elevation were found. Studies of NET gene structure in the proband revealed a coding mutation that converts a highly conserved transmembrane domain Ala residue to Pro. Analysis of the protein produced by the mutant cDNA in transfected cells demonstrated greater than 98% reduction in activity relative to normal. NE, DHPG/NE, and heart rate correlated with the mutant allele in this family.CONCLUSION: These results represent the first identification of a specific genetic defect in OI and the first disease linked to a coding alteration in a Na+/Cl(-)-dependent neurotransmitter transporter. Identification of this mechanism may facilitate our understanding of genetic causes of OI and lead to the development of more effective therapeutic modalities.", "Set2-mediated H3 Lys(36) methylation is a histone modification that has been demonstrated to function in transcriptional elongation by recruiting the Rpd3S histone deacetylase complex to repress intragenic cryptic transcription. Recently, we identified a trans-histone pathway in which the interaction between the N terminus of Set2 and histone H4 Lys(44) is needed to mediate trans-histone H3 Lys(36) di- and trimethylation. In the current study, we demonstrate that mutation of the lysine 44 residue in histone H4 or the Set2 mutant lacking the histone H4 interaction motif leads to intragenic cryptic transcripts, indicating that the Set2 and histone H4 interaction is important to repress intragenic cryptic transcription. We also determine that histone H2A residues (Leu(116) and Leu(117)), which are in close proximity to histone H4 Lys(44), are needed for proper trans-histone H3 Lys(36) methylation. Similar to H4 Lys(44) mutants, histone H2A Leu(116) and Leu(117) mutations exhibited decreased H3 Lys(36) di- and trimethylation, increased histone H4 acetylation, increased resistance to 6-azauracil, and cryptic transcription. Interestingly, the combined histone H4 Lys(44) and H2A mutations have more severe methylation defects and increased H4 acetylation levels. Furthermore, we identify that additional histone H2A and H3 core residues are also needed for H3 Lys(36) di- and trimethylation. Overall, our results show and suggest that multiple H4, H2A, and H3 residues contribute to and form a Set2 docking/recognition site on the nucleosomal surface so that proper Set2-mediated H3 Lys(36) di- and trimethylation, histone acetylation, and transcriptional elongation can occur." ]
2,029
[ "The health benefits of leisure-time physical activity are well known, however the effects of engaging in competitive sports on health are uncertain. This literature review examines mortality and longevity of elite athletes and attempts to understand the association between long-term vigorous exercise training and survival rates. Fourteen articles of epidemiological studies were identified and classified by type of sport. Life expectancy, standardised mortality ratio, standardised proportionate mortality ratio, mortality rate, and mortality odds ratio for all causes of death were used to analyse mortality and longevity of elite athletes. It appears that elite endurance (aerobic) athletes and mixed-sports (aerobic and anaerobic) athletes survive longer than the general population, as indicated by lower mortality and higher longevity. Lower cardiovascular disease mortality is likely the primary reason for their better survival rates. On the other hand, there are inconsistent results among studies of power (anaerobic) athletes. When elite athletes engaging in various sports are analysed together, their mortality is lower than that of the general population. In conclusion, long-term vigorous exercise training is associated with increased survival rates of specific groups of athletes.", "Expression and function of the CaSR have been shown in some mammalian taste buds and basal cells of the esophagus. Signaling cascades responsible for CaSR-mediated stimulation of H(+)-K(+)-ATPase on human parietal cells have been defined. Transgenic mice and reductionistic cell culture models have shown that the CaSR promotes gastrin secretion from G cells, cholecystokinin (CCK) secretion from duodenal I cells and BMP-2 secretion from sub-epithelial myofibroblasts. In addition, the CaSR mediates a novel paracrine relationship between myofibroblasts and overlying epithelial cells in the colon. Thus, CaSR activators stimulate secretion of Wnt5a from myofibroblasts and expression of the Wnt5a receptor Ror2 in epithelial cells. CaSR-mediated Wnt5a/Ror2 engagement stimulates epithelial differentiation and reduces expression of the receptor for tumor necrosis factor (TNFR1). CaSR activators also modulate intestinal motility, inhibit Cl(-) secretion and stimulate Na(+) absorption in both the small intestine and colon. Colonic epithelia from conditional and global CaSR knockout mice exhibit increased proliferation with increased Wnt/β-catenin signaling, demonstrating that the CaSR negatively modulates colonic epithelial growth.", "G protein-coupled receptors (GPCRs) are cell surface receptors that detect a wide range of extracellular messengers and convey this information to the inside of cells. Extracellular calcium-sensing receptor (CaSR) and ovarian cancer gene receptor 1 (OGR1) are two GPCRs that sense extracellular Ca(2+) and H(+), respectively. These two ions are key components of the interstitial fluid, and their concentrations change in an activity-dependent manner. Importantly, the interstitial fluid forms part of the microenvironment that influences cell function in health and disease; however, the exact mechanisms through which changes in the microenvironment influence cell function remain largely unknown. We show that CaSR and OGR1 reciprocally inhibit signaling through each other in central neurons, and that this is lost in their transformed counterparts. Furthermore, strong intracellular acidification impairs CaSR function, but potentiates OGR1 function. Thus, CaSR and OGR1 activities can be regulated in a seesaw manner, whereby conditions promoting signaling through one receptor simultaneously inhibit signaling through the other receptor, potentiating the difference in their relative signaling activity. Our results provide insight into how small but consistent changes in the ionic microenvironment of cells can significantly alter the balance between two signaling pathways, which may contribute to disease progression.", "Since the discovery of tumor-associated antigens (TAAs), researchers have tried to develop immune-based anti-cancer therapies. Thanks to their specificity, monoclonal antibodies (mAbs) offer the major advantage to induce fewer side effects than those caused by non-specific conventional treatments (e.g., chemotherapy, radiotherapy). Passive immunotherapy by means of mAbs or cytokines has proved efficacy in oncology and validated the use of immune-based agents as part of anti-cancer treatment options. The next step was to try to induce an active immune protection aiming to boost own's host immune defense against TAAs. Cancer vaccines are thus developed to specifically induce active immune protection targeting only tumor cells while preserving normal tissues from a non-specific toxicity. But, as most of TAAs are self antigens, an immune tolerance against them exists representing a barrier to effective vaccination against these oncoproteins. One promising approach to break this immune tolerance consists in the use of anti-idiotypic (anti-Id) mAbs, so called Ab2, as antigen surrogates. This vaccination strategy allows also immunization against non-proteic antigens (such as carbohydrates). In some clinical studies, anti-Id cancer vaccines indeed induced efficient humoral and/or cellular immune responses associated with clinical benefit. This review article will focus on recent achievements of anti-Id mAbs use as cancer vaccines in solid tumors.", "The NLRP3 inflammasome functions as a crucial component of the innate immune system in recognizing viral infection, but the mechanism by which viruses activate this inflammasome remains unclear. Here we found that inhibition of the serine-threonine kinases RIP1 (RIPK1) or RIP3 (RIPK3) suppressed RNA virus-induced activation of the NLRP3 inflammasome. Infection with an RNA virus initiated assembly of the RIP1-RIP3 complex, which promoted activation of the GTPase DRP1 and its translocation to mitochondria to drive mitochondrial damage and activation of the NLRP3 inflammasome. Notably, the RIP1-RIP3 complex drove the NLRP3 inflammasome independently of MLKL, an essential downstream effector of RIP1-RIP3-dependent necrosis. Together our results reveal a specific role for the RIP1-RIP3-DRP1 pathway in RNA virus-induced activation of the NLRP3 inflammasome and establish a direct link between inflammation and cell-death signaling pathways.", "To clarify the role of Ret signaling components in enteric nervous system (ENS) development, we evaluated ENS anatomy and intestinal contractility in mice heterozygous for Ret, GFRalpha1 and Ret ligands. These analyses demonstrate that glial cell line-derived neurotrophic factor (GDNF) and neurturin are important for different aspects of ENS development. Neurturin is essential for maintaining the size of mature enteric neurons and the extent of neuronal projections, but does not influence enteric neuron number. GDNF availability determines enteric neuron number by controlling ENS precursor proliferation. However, we were unable to find evidence of programmed cell death in the wild type ENS by immunohistochemistry for activated caspase 3. In addition, enteric neuron number is normal in Bax(-/-) and Bid(-/-) mice, suggesting that, in contrast to most of the rest of the nervous system, programmed cell death is not important for determining enteric neuron numbers. Only mild reductions in neuron size and neuronal fiber counts occur in Ret(+/-) and Gfra1(+/-) mice. All of these heterozygous mice, however, have striking problems with intestinal contractility and neurotransmitter release, demonstrating that Ret signaling is critical for both ENS structure and function.", "The Drosophila gene eyeless (ey) encodes a transcription factor with both a paired domain and a homeodomain. It is homologous to the mouse Small eye (Pax-6) gene and to the Aniridia gene in humans. These genes share extensive sequence identity, the position of three intron splice sites is conserved, and these genes are expressed similarly in the developing nervous system and in the eye during morphogenesis. Loss-of-function mutations in both the insect and in the mammalian genes have been shown to lead to a reduction or absence of eye structures, which suggests that ey functions in eye morphogenesis. By targeted expression of the ey complementary DNA in various imaginal disc primordia of Drosophila, ectopic eye structures were induced on the wings, the legs, and on the antennae. The ectopic eyes appeared morphologically normal and consisted of groups of fully differentiated ommatidia with a complete set of photoreceptor cells. These results support the proposition that ey is the master control gene for eye morphogenesis. Because homologous genes are present in vertebrates, ascidians, insects, cephalopods, and nemerteans, ey may function as a master control gene throughout the metazoa.", "First described in 1983, Barth syndrome (BTHS) is widely regarded as a rare X-linked genetic disease characterised by cardiomyopathy (CM), skeletal myopathy, growth delay, neutropenia and increased urinary excretion of 3-methylglutaconic acid (3-MGCA). Fewer than 200 living males are known worldwide, but evidence is accumulating that the disorder is substantially under-diagnosed. Clinical features include variable combinations of the following wide spectrum: dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), endocardial fibroelastosis (EFE), left ventricular non-compaction (LVNC), ventricular arrhythmia, sudden cardiac death, prolonged QTc interval, delayed motor milestones, proximal myopathy, lethargy and fatigue, neutropenia (absent to severe; persistent, intermittent or perfectly cyclical), compensatory monocytosis, recurrent bacterial infection, hypoglycaemia, lactic acidosis, growth and pubertal delay, feeding problems, failure to thrive, episodic diarrhoea, characteristic facies, and X-linked family history. Historically regarded as a cardiac disease, BTHS is now considered a multi-system disorder which may be first seen by many different specialists or generalists. Phenotypic breadth and variability present a major challenge to the diagnostician: some children with BTHS have never been neutropenic, whereas others lack increased 3-MGCA and a minority has occult or absent CM. Furthermore, BTHS was first described in 2010 as an unrecognised cause of fetal death. Disabling mutations or deletions of the tafazzin (TAZ) gene, located at Xq28, cause the disorder by reducing remodeling of cardiolipin, a principal phospholipid of the inner mitochondrial membrane. A definitive biochemical test, based on detecting abnormal ratios of different cardiolipin species, was first described in 2008. Key areas of differential diagnosis include metabolic and viral cardiomyopathies, mitochondrial diseases, and many causes of neutropenia and recurrent male miscarriage and stillbirth. Cardiolipin testing and TAZ sequencing now provide relatively rapid diagnostic testing, both prospectively and retrospectively, from a range of fresh or stored tissues, blood or neonatal bloodspots. TAZ sequencing also allows female carrier detection and antenatal screening. Management of BTHS includes medical therapy of CM, cardiac transplantation (in 14% of patients), antibiotic prophylaxis and granulocyte colony-stimulating factor (G-CSF) therapy. Multidisciplinary teams/clinics are essential for minimising hospital attendances and allowing many more individuals with BTHS to live into adulthood.", "The calcium-sensing receptor (CaSR) is a G-protein-coupled receptor that plays an essential role in maintaining calcium homeostasis. In the present study, we analyzed the CaSR gene in a Korean family with familial hypocalciuric hypercalcemia (FHH). Genetic studies were performed by direct sequence analysis of the CaSR gene in genomic DNA obtained from peripheral leukocytes. A novel heterozygous G to T substitution at nucleotide position 1711 in exon 6, resulting in the G571W mutation, was identified in the CaSR gene in a 26-year-old female with asymptomatic hypercalcemia, a low calcium/creatinine clearance ratio, and normal intact parathyroid hormone. To study CaSR expression, the mutation was introduced by site-directed mutagenesis into a wild-type (WT) CaSR-expressing pCR3.1 vector, and COS-7 cells were transfected with either the WT or mutant CaSR-containing vector. Transfected cells loaded with Fura-2/AM, a fluorescent indicator of Ca2+, were assessed for CaSR function by the change in intracellular calcium [as measured by the 340 nm/380 nm fluorescence intensity ratio (F340/F380)] made in response to challenge with extracellular Ca2+. Both WT and G571W cells had equivalent amounts of CaSR protein in the cell membrane. However, after challenge with extracellular Ca2+, cells transfected with G571W CaSR responded with a lower F340/F380 ratio than those transfected with WT CaSR and showed decreased sensitivity to extracellular Ca2+ concentrations. The G571W mutation had therefore impaired the CaSR function. In conclusion, we identified a novel loss-of-function mutation, G571W, in the CaSR gene in a Korean family with FHH.", "BACKGROUND: Bathing suit ichthyosis (BSI) is an uncommon phenotype classified as a minor variant of autosomal recessive congenital ichthyosis (ARCI).OBJECTIVES: We report a case of BSI in a 3-year-old Tunisian girl with a novel mutation of the transglutaminase 1 gene (TGM1).CASE REPORT: This infant had been born with a collodion membrane encasing her entire body. From the age of three months, brownish scaling was noted on the bathing suit area. Histology showed orthohyperkeratosis with acanthosis of the epidermis. The granular layer was normal, and the superficial dermis was mildly inflammatory, confirming a diagnosis of proliferating ichthyosis. Molecular analysis in the patient and her parents revealed the mutation I304F of TGM1. Treatment with emollients and keratolytics partially improved the patient's skin condition.CONCLUSIONS: Bathing suit ichthyosis is an uncommon phenotype unique in its topography, which involves the trunk but spares the face and extremities. Previous studies using molecular analysis have shown that BSI is caused mainly by mutations in TGM1. Twenty missense mutations have been reported in BSI. Of these 20 missense mutations, nine occurred only in patients with the BSI phenotype and 11 were common to BSI and other types of ARCI. Until recently, there has been no genotype-phenotype correlation. Therefore, the same mutation of the transglutaminase 1 could result in either generalized ARCI or BSI. The present case demonstrates this phenotype in a White Tunisian patient with a novel mutation of TGM1 (I304F) not previously reported in BSI.", "R-loops are structures where an RNA strand is base paired with one DNA strand of a DNA duplex, leaving the displaced DNA strand single-stranded. Stable R-loops exist in vivo at prokaryotic origins of replication, the mitochondrial origin of replication, and mammalian immunoglobulin (Ig) class switch regions in activated B lymphocytes. All of these R-loops arise upon generation of a G-rich RNA strand by an RNA polymerase upon transcription of a C-rich DNA template strand. These R-loops are of significant length. For example, the R-loop at the col E1 origin of replication appears to be about 140 bp. Our own lab has focused on class switch regions, where the R-loops can extend well over a kilobase in length. Here, methods are described for detection and analysis of R-loops in vitro and in vivo.", "At present two-dimensional polyacrylamide gel electrophoresis (2-DE) is the most widely used proteomic tool, which enables simultaneous separation of even thousands of proteins with a high degree of resolution. The quality of 2-DE separation depends on the type of biological material used as a protein source. The presence of interfering compounds (e.g., phenols, as it is the fact in plant material including oat seeds) impedes 2-DE run. With the use of this technique it is possible to analyze the complex protein mixtures, characteristic protein fractions, as well as individual proteins.The purpose of this chapter is to describe the 2-DE technique (the separate stages of the first and the second dimension) for determining the oat protein composition (oat seed proteome), separation and preliminary identification of oat prolamin fractions. Electrophoretically separated proteins are identified on the basis of pI markers (identifying the location of both ends of an IPG strip) and on 2D SDS-PAGE standards. The gel images of oat proteins are analyzed with the help of ImageMaster 2D Platinum 6.0 program (Amersham Bioscience, part of GE Healthcare, Uppsala, Sweden). It allows finding unique spot identifiers for the occurrence of oat prolamin fractions in oat total proteins. The characteristic spots of similar shape and intensity (anchoring spots) and characteristic groups of spots can be searched for the purpose of identification.", "OBJECTIVE: Genetic disorders of calcium metabolism arise in a familial or sporadic setting. The calcium-sensing receptor (CASR) plays a key role in maintaining calcium homeostasis and study of the CASR gene can be clinically useful in determining etiology and appropriate therapeutic approaches. We report two cases of novel CASR gene mutations that illustrate the varying clinical presentations and discuss these in terms of the current understanding of CASR function.PATIENTS AND METHODS: A 16-year-old patient had mild hypercalcemia associated with low-normal urinary calcium excretion and normal-to-high parathyroid hormone (PTH) levels. Because of negative family history, familial hypocalciuric hypercalcemia was originally excluded. The second patient was a 54-year-old man with symptomatic hypocalcemia, hyperphosphatemia, low PTH, and mild hypercalciuria. Familial investigation revealed the same phenotype in the patient's sister. The coding region of the CASR gene was sequenced in both probands and their available first-degree relatives.RESULTS: The first patient had a novel heterozygous inactivating CASR mutation in exon 4, which predicted a p.A423K change; genetic analysis was negative in the parents. The second patient had a novel heterozygous activating CASR mutation in exon 6, which predicted a p.E556K change; the affected sister of the proband was also positive.CONCLUSIONS: We reported two novel heterozygous mutations of the CASR gene, an inactivating mutation in exon 4 and the first activating mutation reported to date in exon 6. These cases illustrate the importance of genetic testing of CASR gene to aid correct diagnosis and to assist in clinical management.", "We previously reported that Neisseria meningitidis internalization into human brain microvasocular endothelial cells (HBMEC) was triggered by the influx of extracellular L-glutamate via the GltT-GltM L-glutamate ABC transporter, but the underlying mechanism remained unclear. We found that the ΔgltT ΔgltM invasion defect in assay medium (AM) was alleviated in AM without 10% fetal bovine serum (FBS) [AM(-S)]. The alleviation disappeared again in AM(-S) supplemented with 500 μM glutamate. Glutamate uptake by the ΔgltT ΔgltM mutant was less efficient than that by the wild-type strain, but only upon HBMEC infection. We also observed that both GltT-GltM-dependent invasion and accumulation of ezrin, a key membrane-cytoskeleton linker, were more pronounced when N. meningitidis formed larger colonies on HBMEC under physiological glutamate conditions. These results suggested that GltT-GltM-dependent meningococcal internalization into HBMEC might be induced by the reduced environmental glutamate concentration upon infection. Furthermore, we found that the amount of glutathione within the ΔgltT ΔgltM mutant was much lower than that within the wild-type N. meningitidis strain only upon HBMEC infection and was correlated with intracellular survival. Considering that the L-glutamate obtained via GltT-GltM is utilized as a nutrient in host cells, l-glutamate uptake via GltT-GltM plays multiple roles in N. meningitidis internalization into HBMEC.", "Patients with a family history of melanoma are at increased risk of this tumor. Those family members who also have the atypical mole syndrome are commonly targeted for screening in the belief that they are more likely to be mutant gene carriers. We have correlated the atypical mole syndrome phenotype and gene carrier status in five families with germline CDKN2A mutations and shown that family members with the atypical mole syndrome were three times more likely to be mutant gene carriers than their relatives who did not have the atypical mole syndrome (odds ratio 3.4; confidence interval 1.0-11. 1), supporting the view that CDKN2A is nevogenic. Individual characteristics which best predicted mutant gene carrier status were: nevi on the buttocks (odds ratio 4.4; confidence interval 1. 6-12.4), nevi on the feet (odds ratio 4.2; confidence interval 1. 4-12.5), total nevus number being at least 100 (nevi > or = 2 mm in diameter) (odds ratio 3.4; confidence interval 1.0-11.1) and two or more clinically atypical nevi (odds ratio 3.1; confidence interval 1. 1-9.0). Gene carriers were also significantly more likely to have noticeable freckling and possibly also Fitzpatrick skin types 1-3. The overlap between gene carriers and nongene carriers was, however, marked: the atypical mole syndrome did not clearly differentiate mutant gene carriers from those with a normal gene. This study is of significance to clinicians as the clinical practice of using the atypical mole syndrome to identify particular family members for surveillance is shown to be inappropriate. Until formal gene testing is available, all members of families with an excessive number of melanoma cases should be treated as potential mutation carriers at increased risk of melanoma.", "Residue and degree-specific methylation of histone lysines along with other epigenetic modifications organizes chromatin into distinct domains and regulates almost every aspect of DNA metabolism. Identification of histone methyltransferases and demethylases, as well as proteins that recognize methylated lysines, has clarified the role of each methylation event in regulating different biological pathways. Methylation of histone H4 lysine 20 (H4K20me) plays critical roles in diverse cellular processes such as gene expression, cell cycle progression and DNA damage repair, with each of the three degrees of methylation (mono-, di- and tri-methylation) making a unique contribution. Here we discuss recent studies of H4K20me that have greatly improved our understanding of the regulation and function of this fascinating histone modification.", "Osteogenesis imperfecta (OI) type I is characterized by bone fragility without significant deformity, osteopenia, normal stature, blue sclerae, and autosomal dominant inheritance. Dermal fibroblasts from most affected individuals produce about half the expected amount of type I collagen, suggesting that the OI type I phenotype results from a variety of mutations which alter the apparent expression of either COL1A1 or COL1A2, the genes encoding the chains of type I collagen. Short-pulse labeling of dermal fibroblasts with [3H]proline from affected individuals in 19 families indicates that most have alterations in the expected 2:1 synthetic ratio of pro alpha 1(I): pro alpha 2(I), with most having decreased production of pro alpha 1(I). Ratios of COL1A1:COL1A2 mRNA from these individuals, using slot-blot hybridization, indicate that they fall into different groups, but that most have decreased COL1A1 mRNA levels, compared with controls. These data suggest that most of our OI I families have COL1A1 mutations. Copy number and size of the COL1A1 gene by restriction endonuclease analysis of genomic DNA from affected individuals are normal in the families examined. We have identified one 3 generation family in which all affected members have one normal COL1A1 allele and another with a 5 base-pair deletion near the 3' end of the gene. The deletion creates a shift in the translational reading-frame and predicts the synthesis of an elongated pro alpha 1(I) chain. In a second family, a father and a son have a single exon deletion that results from a splicing mutation. Chemical cleavage analysis of amplified cDNA from affected individuals in different regions of the COL1A1 gene, including the promoter, suggests that several individuals have point mutations within the coding region of the gene, while one individual may have a small deletion within the alpha 1(I) carboxyl-terminal propeptide region. Our data provide evidence for significant molecular heterogeneity within the OI type I phenotype and indicate that a variety of mutations can result in decreased synthesis of type I collagen.", "The calcium-sensing receptor (CaSR) plays a pivotal role in systemic calcium metabolism by regulating parathyroid hormone secretion and urinary calcium excretion. The CaSR is ubiquitously expressed, implying a wide range of functions regulated by this receptor. Abnormal CaSR function affects the development of both calciotropic disorders such as hyperparathyroidism, and non-calciotropic disorders such as cardiovascular disease and cancer, which are the leading causes of mortality worldwide. The CaSR is able to bind a plethora of ligands; it interacts with multiple G protein subtypes, and regulates highly divergent downstream signalling pathways, depending on the cellular context. The CaSR is a key regulator for such diverse processes as hormone secretion, gene expression, inflammation, proliferation, differentiation, and apoptosis. Due to this pleiotropy, the CaSR is able to regulate cell fate and is implicated in the development of many types of benign or malignant tumours of the breast, prostate, parathyroid, and colon. In cancer, the CaSR appears to have paradoxical roles, and depending on the tissue involved, it is able to prevent or promote tumour growth. In tissues like the parathyroid or colon, the CaSR inhibits proliferation and induces terminal differentiation of the cells. Therefore, loss of the receptor, as seen in colorectal or parathyroid tumours, confers malignant potential, suggestive of a tumour suppressor role. In contrast, in prostate and breast tumours the expression of the CaSR is increased and it seems that it favours metastasis to the bone, acting as an oncogene. Deciphering the molecular mechanism driving the CaSR in the different tissues could lead to development of new allosteric drug compounds that selectively target the CaSR and have therapeutic potential for cancer. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.", "The BAFF system plays a key role in the development of autoimmunity, especially in systemic lupus erythematosus (SLE). This often leads to the assumption that BAFF is mostly a B cell factor with a specific role in autoimmunity. Focus on BAFF and autoimmunity, driven by pharmaceutical successes with the recent approval of a novel targeted therapy Belimumab, has relegated other potential roles of BAFF to the background. Far from being SLE-specific, the BAFF system has a much broader relevance in infection, cancer and allergy. In this review, we provide the latest views on additional roles of the BAFF system in health and diseases, as well as an update on BAFF and autoimmunity, with particular focus on current clinical trials.", "The hypocholesterolemic effect of tomato juice has been investigated in an intervention study with rats, along with the possible inhibition effect of bioactive tomato compounds binding to the HMGCR enzyme. Two experimental groups (n = 8 Sprague-Dawley rats) were fed ad libitum for five weeks, with water or tomato juice provided to the control and intervention groups, respectively. Total, LDL and HDL cholesterol, and total triglycerides were analysed in plasma, and the lycopene content and the expression and activity of the enzyme HMGCR were determined in liver samples. A computational molecular modelling was carried out to determine the interactions between HMGCR and lycopene, chlorogenic acid and naringenin. Total, LDL and HDL cholesterol were significantly lower in the intervention group after the intake of tomato juice. In addition, a significant reduction in HMGCR activity was observed, although this was not accompanied by changes in gene expression. The molecular modelling showed that components of tomato can bind to the active site of the enzyme and compete with the ligand HMGCoA. Lycopene, from tomato juice, accumulates in the liver and can inhibit the activity of the rate-limiting enzyme of cholesterol biosynthesis, HMGCR." ]
2,030
[ "BACKGROUND: Migraine is one of the most common health problems for children and adolescents. If not successfully treated, it can impact patients and families with significant disability due to loss of school, work, and social function. When headaches become frequent, it is essential to try to prevent the headaches. For children and adolescents, this is guided by extrapolation from adult studies, a limited number of small studies in children and adolescents and practitioner preference. The aim of the Childhood and Adolescent Migraine Prevention (CHAMP) study is to determine the most effective preventive agent to use in children and adolescents.METHODS: CHAMP is a double-blinded, placebo-controlled, multicenter, comparative effectiveness study of amitriptyline and topiramate for the prevention of episodic and chronic migraine, designed to mirror real-world practice, sponsored by the US National Institute of Neurological Disorders and Stroke/National Institutes of Health (U01NS076788). The study will recruit 675 subjects between the ages of 8 and 17 years old, inclusive, who have migraine with or without aura or chronic migraine as defined by the International Classification of Headache Disorders, 2nd Edition, with at least 4 headaches in the 28 days prior to randomization. The subjects will be randomized in a 2:2:1 (amitriptyline: topiramate: placebo) ratio. Doses are weight based and will be slowly titrated over an 8-week period to a target dose of 1 mg/kg of amitriptyline and 2 mg/kg of topiramate. The primary outcome will be a 50% reduction in headache frequency between the 28-day baseline and the final 28 days of treatment (weeks 20-24).CONCLUSIONS: The goal of the CHAMP study is to obtain level 1 evidence for the effectiveness of amitriptyline and topiramate in the prevention of migraine in children and adolescents. If this study proves to be positive, it will provide information to the practicing physician as how to best prevent migraine in children and adolescents and subsequently improve the disability and outcomes.", "Clinical guidelines now recognize the importance of a multifactorial approach to managing cardiovascular (CV) risk. This idea was taken a step further with the concept of the Polypill™. There are, however, considerable patent, pharmacokinetic, pharmacodynamic, registration, and cost implications that will need to be overcome before the Polypill™ or other single-pill combinations of CV medications become widely available. However, a medication targeting blood pressure (BP) and lipids provides much of the proposed benefits of the Polypill™. A single-pill combination of the antihypertensive amlodipine besylate and the lipid-lowering medication atorvastatin calcium (SPAA) is currently available in many parts of the world. This review describes the rationale for this combination therapy and the clinical trials that have demonstrated that these two agents can be combined without the loss of efficacy for either agent or an increase in the incidence of adverse events. The recently completed Cluster Randomized Usual Care vs Caduet Investigation Assessing Long-term-risk (CRUCIAL trial) is discussed in detail. CRUCIAL was a 12-month, international, multicenter, prospective, open-label, parallel design, cluster-randomized trial, which demonstrated that a proactive intervention strategy based on SPAA in addition to usual care (UC) had substantial benefits on estimated CV risk, BP, and lipids over continued UC alone. Adherence with antihypertensive and lipid-lowering therapies outside of the controlled environment of clinical trials is very low (~30%-40% at 12 months). Observational studies have demonstrated that improving adherence to lipid-lowering and antihypertensive medications may reduce CV events. One means of improving adherence is the use of single-pill combinations. Real-world observational studies have demonstrated that patients are more adherent to SPAA than co-administered antihypertensive and lipid-lowering therapy, and this improved adherence translated to reduced CV events. Taken together, these findings suggest that SPAA can play an important role in helping physicians improve the management of CV risk in their patients.", "BACKGROUND: Which medication, if any, to use to prevent the headache of pediatric migraine has not been established.METHODS: We conducted a randomized, double-blind, placebo-controlled trial of amitriptyline (1 mg per kilogram of body weight per day), topiramate (2 mg per kilogram per day), and placebo in children and adolescents 8 to 17 years of age with migraine. Patients were randomly assigned in a 2:2:1 ratio to receive one of the medications or placebo. The primary outcome was a relative reduction of 50% or more in the number of headache days in the comparison of the 28-day baseline period with the last 28 days of a 24-week trial. Secondary outcomes were headache-related disability, headache days, number of trial completers, and serious adverse events that emerged during treatment.RESULTS: A total of 361 patients underwent randomization, and 328 were included in the primary efficacy analysis (132 in the amitriptyline group, 130 in the topiramate group, and 66 in the placebo group). The trial was concluded early for futility after a planned interim analysis. There were no significant between-group differences in the primary outcome, which occurred in 52% of the patients in the amitriptyline group, 55% of those in the topiramate group, and 61% of those in the placebo group (amitriptyline vs. placebo, P=0.26; topiramate vs. placebo, P=0.48; amitriptyline vs. topiramate, P=0.49). There were also no significant between-group differences in headache-related disability, headache days, or the percentage of patients who completed the 24-week treatment period. Patients who received amitriptyline or topiramate had higher rates of several adverse events than those receiving placebo, including fatigue (30% vs. 14%) and dry mouth (25% vs. 12%) in the amitriptyline group and paresthesia (31% vs. 8%) and weight loss (8% vs. 0%) in the topiramate group. Three patients in the amitriptyline group had serious adverse events of altered mood, and one patient in the topiramate group had a suicide attempt.CONCLUSIONS: There were no significant differences in reduction in headache frequency or headache-related disability in childhood and adolescent migraine with amitriptyline, topiramate, or placebo over a period of 24 weeks. The active drugs were associated with higher rates of adverse events. (Funded by the National Institutes of Health; CHAMP ClinicalTrials.gov number, NCT01581281 ).", "Tirzepatide is a dual gastric inhibitory peptide/glucagon-like peptide 1 (GIP/GLP-1) receptor agonist formulated as a synthetic linear peptide, based on the native GIP sequence. It has a prolonged half-life of 5 days, which enables once-weekly dosing. Studies have hitherto demonstrated its superiority in achieving optimal glycaemic control and body weight management, as compared with various agents used in the treatment of type 2 diabetes mellitus (T2DM), including GLP-1 receptor agonists. Thus, it is expected to enrich our therapeutic armamentarium in T2DM. However, further experience, notably longer follow-up data and information on cardiovascular effects, is still needed.", "We performed partial evaluation of pemphigus vulgaris (PV) autoantibody profile using the protein array technology. The sera from seven patients with acute PV and five healthy donors were probed for the presence of autoantibodies characteristic of the organ-non-specific autoimmune disorders rheumatoid arthritis, lupus erythematosus, scleroderma, diabetes and some other autoimmune disorders, but not to desmosomal proteins. The array targeted 785 human genes amplified using Mammalian Gene Clone Collection with gene-specific primers containing 20-bp nucleotide extension complementary to ends of linear pXT7 vector. The array identified PV antibodies significantly (P<0.05) differentially reactive with 16 antigens, most of which were cell-surface proteins, such as CD2, CD31, CD33, CD36, CD37, CD40, CD54, CD66c and CD84 molecules, nicotinamide/nicotinic acid mononucleotide adenylyltransferase, immunoglobulin heavy chain constant region gamma 2 and others. Reactivity with Fc-IgG helps explain an ability of the chimeric desmoglein constructs to absorb out all disease-causing PV antibodies. Anti-M(1) muscarinic receptor antibody was also identified, consistent with the facts that while blockade of this receptor causes keratinocyte detachment, its activation is therapeutic in PV. Further proteomics analysis of PV antibodies should help elucidate the immunopathogenic mechanisms underlying keratinocyte detachment and blistering.", "Chromodomain from heterochromatin protein 1 and polycomb protein is known to be a lysine-methylated histone H3 tail-binding module. Chromo-helicase/ATPase DNA-binding protein 1 (CHD1) is an ATP-dependent chromatin remodeling factor, containing two tandem chromodomains. In human CHD1, both chromodomains are essential for specific binding to a K4 methylated histone H3 (H3 MeK4) peptide and are found to bind cooperatively in the crystal structure. For the budding yeast homologue, Chd1, the second but not the first chromodomain was once reported to bind to an H3 MeK4 peptide. Here, we reveal that neither the second chromodomain nor a region containing tandem chromodomains from yeast Chd1 bind to any lysine-methylated or arginine-methylated histone peptides that we examined. In addition, we examined the structures of the chromodomains from Chd1 by NMR. Although the tertiary structure of the region containing tandem chromodomains could not be obtained, the secondary structure deduced from NMR is well conserved in the tertiary structures of the corresponding first and second chromodomains determined individually by NMR. Both chromodomains of Chd1 demonstrate a structure similar to that of the corresponding part of CHD1, consisting of a three-stranded beta-sheet followed by a C-terminal alpha-helix. However, an additional helix between the first and second beta-strands, which is found in both of the first chromodomains of Chd1 and CHD1, is positioned in an entirely different manner in Chd1 and CHD1. In human CHD1 this helix forms the peptide-binding site. The amino acid sequences of the chromodomains could be well aligned on the basis of these structures. The alignment showed that yeast Chd1 lacks several key functional residues, which are responsible for specific binding to a methylated lysine residue in other chromodomains. Chd1 is likely to have no binding affinity for any H3 MeK peptide, as found in other chromodomain proteins.", "In this investigation an attempt has been made to determine the relationship between the staining of permanent teeth by tetracycline administered during the period of tooth formation with the dosage of the drug and the duration of therapy. Of 238 subjects whose hospital records indicated ingestion of stated doses of tetracycline, some 49 were seen to have staining which was confirmed by fluorescence, and a further six had staining which did not fluoresce and hence could not be confirmed. A definite relationship between total dosage and staining and duration of administration and staining was established; the condition occurred with greater frequency (in more than one-third of the children) when the total dosage exceeded 3 g. or the duration of treatment was longer than 10 days. However, as staining was seen at all dosage levels, whatever the duration, physicians should continue to follow previous advice and prescribe other antibiotics where possible for children under 8 years of age or for women in the last trimester of pregnancy.", "Clinicopathologic information of gastrointestinal (GI) lymphoma in Southeast Asia is lacking. A retrospective analysis of 120 cases of GI lymphoma in Thailand diagnosed at Siriraj Hospital based on WHO classification was performed. All were non-Hodgkin lymphoma (NHL). The peak age was in the sixth and seventh decades; a slight male preponderance was observed. Sites of involvement included stomach (49.2%), intestine (46.7%), and multiple sites (4.2%). There were 104 cases of primary GI lymphoma (86.7%) and 16 cases of secondary GI lymphoma (13.3%). Presenting GI symptoms were more common in the former; while superficial lymphadenopathy and fever were more common in the latter. Mass lesions were observed in both groups (72.1% vs 56.3%). Localized and advanced diseases were found in 68.3% and 31.7% of primary GI lymphomas, respectively. The most common type of lymphoma in both groups was diffuse large B-cell lymphoma. Lymphoepithelial lesions (LEL) were not significantly different between the two groups (58.2% vs 42.9%), but Helicobacterpylori infection was significantly associated with primary gastric lymphoma (p < 0.0001). The treatment of choice for localized primary GI lymphoma is controversial. Complete surgical resection may increase the chance of complete remission, but mortality and relapse rates might be higher than those observed with combination chemotherapy alone. GI lymphomas in Thailand are mostly primary B-cell NHL. LEL is not indicative of primary GI lymphoma, but H. pylori infection is closely associated with primary gastric lymphoma. A prospective study to determine the treatment of choice for localized GI lymphoma is needed.", "Systemic administration of naloxone usually produces either hyperalgesia or no change in nociception depending on the animal species used and/or the pain test employed. This study, however, demonstrates that naloxone produces a dose-dependent analgesia in the formalin pain test using an inbred strain of albino mouse. Female BALB/c, C57BL/6 and CD1 mice were injected subcutaneously with naloxone HCl in saline (0.1 10.0 mg/kg) or saline alone, and tested for analgesia using the formalin test. Naloxone produced a statistically significant dose-dependent analgesia in the BALB/c mice, with an ED50 of 0.24 mg/kg and almost total analgesia at doses of 1 mg/kg or greater. No changes in pain behaviour were observed in the C57BL/6 or CD1 strains of mice. We believe this to be the first report of analgesia following administration of doses of naloxone normally used for opioid antagonism. To determine if this effect was specific to the formalin test, the 3 strains of mice were injected subcutaneously with naloxone HCl and tested in the tail-flick test. Naloxone had no analgesic action in this test in any of the strains.", "OBJECTIVE: To describe baseline headache characteristics of children and adolescents participating in a multicenter, randomized, double-blinded, placebo-controlled, comparative effectiveness study of amitriptyline, topiramate, and placebo for the prevention of migraine (CHAMP Study).METHODS: Children and adolescents (age 8-17 years old, inclusive) diagnosed with migraine with or without aura, having headaches at least four times per month were enrolled from 2012 through 2014. The trial involved a baseline period (minimum of 28 days) during which prospective diaries were completed and demographics and headache features obtained.RESULTS: A total of 488 children and adolescents (mean age 14.0 ± 2.4 years) agreed to participate in the trial, with 361 randomized and 127 not randomized. Randomized subjects had a 5.5 ± 3.1 year history of headaches, with 15.1 ± 7.1 headache days per month (based upon retrospective report at screening visit). Prospective diaries reported 11.5 ± 6.1 headache days per 28 day baseline. Across this 28 day period, reported headache days per week were stable (about 3 headache days per week). Recording of individual headache features by diary (n = 4136 headache days) showed characteristics consistent with migraine (mean duration 10.5 ± 8.1 hours, mean severity 6.0 ± 2.1, 60% throbbing, 55% with activity worsening headaches, 55% with photophobia, and 47% with phonophobia).CONCLUSIONS: Baseline data from the CHAMP Study suggested that the randomized sample was representative of the real world population of children and adolescents that present for treatment of migraine. Headaches in children and adolescents recorded during a 28 day prospective baseline period in this multi-site comparative effectiveness study did not change over the course of the baseline period, even though a clear diagnosis, recommendation for effective acute treatment, and standardized education about healthy habits occurred prior to the diary collection period.", "Bronchial and head and neck (HN) cancers share similarities especially regarding the HER pathway. Therapeutic progresses targeting the HER pathway are based on monoclonal antibodies, especially cetuximab, and tyrosine kinase (TK) inhibitors, targeting HER only, as gefitinib and erlotinib, or HER and other receptor(s), as VEGFR for the ZD6474. The results obtained already led to the registration of cetuximab (combined with radiotherapy) for management of locally advanced HN cancers, and the registration of erlotinib (and gefitinib in some countries) for management of non-small-cell lung cancer (NSCLC) in the second or third line setting. Therefore, these first successes led to the development of several drugs including monoclonal antibodies (trastuzumab, panitumumab, matuzumab), TK inhibitors targeting one receptor as well as TK pan-inhibitors (lapatinib, HKI 272, PKI 166, EKB-569, AEE-788), currently assessed through clinical trials worldwide. In the same time, progresses regarding the HER pathway also focused on a better selection of patients who clearly beneficiate from these drugs (EGFR gene mutations, EGFR gene amplification by FISH) allowing the first steps in tailoring anticancer treatments in lung cancer. In conclusion, therapeutic progresses targeting the HER pathway have improve management of HN and NSCLC patients and rise hopes for the future.", "Congenital cataracts-facial dysmorphism-neuropathy syndrome (CCFDN, MIM: 604168), is a recently delineated neurogenetic disease causing recurrent episodes of rhabdomyolysis; prevention and early diagnosis of rhabdomyolysis should be part of the clinical management of the disease." ]
2,034
[ "INTRODUCTION: Koebner phenomenon in psoriasis presents development of psoriatic lesions, after injury of uninvolved skin, which are identical in morphology with the previous trauma. The aim of this study was to establish the correlation of Koebner phenomenon with sex and age distribution, clinical variants of psoriasis vulgaris, age of onset and incidence in psoriasis among relatives of affected patients.MATERIAL AND METHODS: Sixty patients, with severe clinical picture, participated in this study: 38 patients in acute flare of a chronic form; 10 with acute exanthematic form; 8 with a chronic stable form; 3 with psoriatic changes on palms and soles and one patient with psoriatic erythroderma. According to the presence of Koebner phenomenon they were divided in two groups, one with positive and the other with negative Koebner phenomenon which presented the control group at the same time.RESULTS AND DISCUSSION: The Koebner reaction is often thought to be more frequent in actively spreading, severe psoriasis. Although this may be true, it has to be established by prospective studies. According to our investigation, Koebner phenomenon did not depend on clinical picture of psoriasis vulgaris. This reaction also appears to be a marker for a subgroup of patients with a tendency to early onset, but that was not confirmed by our study. In available literature we did not find any data about relations of Koebner phenomenon to sex and age or familiar incidence of psoriasis vulgaris. Our results demonstrated no connection of Koebner phenomenon with sex and age structure. At the same time its presence did not depend on familiar incidence of psoriasis vulgaris.CONCLUSIONS: There is no relationship between Koebner phenomenon and sex and age distribution. It does not depend on clinical picture and also does not predict the age of onset and familiar incidence of psoriasis vulgaris.", "Outcomes of high-throughput biological experiments are typically interpreted by statistical testing for enriched gene functional categories defined by the Gene Ontology (GO). The resulting lists of GO terms may be large and highly redundant, and thus difficult to interpret.REVIGO is a Web server that summarizes long, unintelligible lists of GO terms by finding a representative subset of the terms using a simple clustering algorithm that relies on semantic similarity measures. Furthermore, REVIGO visualizes this non-redundant GO term set in multiple ways to assist in interpretation: multidimensional scaling and graph-based visualizations accurately render the subdivisions and the semantic relationships in the data, while treemaps and tag clouds are also offered as alternative views. REVIGO is freely available at http://revigo.irb.hr/.", "The p16-cyclin D-pRB-E2F pathway is frequently deregulated in human tumors. This critical regulatory pathway controls the G1/S transition of the mammalian cell cycle by positive and negative regulation of E2F-responsive genes required for DNA replication. To assess the value of the transcription factors E2Fs as targets for antiproliferative strategies, we have initiated a program aiming to develop inhibitors targeting specifically these proteins in vitro and in vivo. The cellular activity of E2F is the result of the heterodimeric association of two families of proteins, E2Fs and DPs, which then bind DNA. Here, we use a two hybrid approach to isolate from combinatorial libraries peptide aptamers that specifically interact with E2Fs DNA binding and dimerization domains. One of these is a potent inhibitor of E2F binding activity in vitro and in mammalian fibroblasts, blocks cells in G1, and the free variable region from this aptamer has the same effect. Our experiments argue that the variable region of this aptamer is structured, and that it functions by binding E2F with a motif that resembles a DP heterodimerization region, and blocking E2F's association with DP. These results show that cell proliferation can be inhibited using genetically-selected synthetic peptides that specifically target protein-protein interaction motifs within cell cycle regulators. These results also emphasize the critical role of the E2F pathway for cell proliferation and might allow the design of novel antiproliferative agents targeting the cyclin/CDK-pRB-E2F pathway.", "Cell migration is a multistep process initiated by extracellular matrix components that leads to cytoskeletal changes and formation of different protrusive structures at the cell periphery. Lumican, a small extracellular matrix leucine-rich proteoglycan, has been shown to inhibit human melanoma cell migration by binding to α2β1 integrin and affecting actin cytoskeleton organization. The aim of this study was to determine the effect of lumican overexpression on the migration ability of human colon adenocarcinoma LS180 cells. The cells stably transfected with plasmid containing lumican cDNA were characterized by the increased chemotactic migration measured on Transwell filters. Lumican-overexpressing cells presented the elevated filamentous to monomeric actin ratio and gelsolin up-regulation. This was accompanied by a distinct cytoskeletal actin rearrangement and gelsolin subcellular relocation, as observed under laser scaning confocal microscope. Moreover, LS180 cells overexpressing lumican tend to form podosome-like structures as indicated by vinculin redistribution and its colocalization with gelsolin and actin at the submembrane region of the cells. In conclusion, the elevated level of lumican secretion to extracellular space leads to actin cytoskeletal remodeling followed by an increase in migration capacity of human colon LS180 cells. These data suggest that lumican expression and its presence in ECM has an impact on colon cancer cells motility and may modulate invasiveness of colon cancer.", "PURPOSE OF REVIEW: Although glucocorticosteroids are considered the first-line treatment in sarcoidosis, refractory cases require alternatives, such as methotrexate (MTX). The aim of this study was to develop, on behalf of the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG), multinational evidence-based recommendations for the use of MTX in sarcoidosis for routine clinical practice.RECENT FINDINGS: A systematic literature search was conducted and combined with the opinions of sarcoidosis experts worldwide to formulate the recommendations. An online survey concerning 10 clinical questions was sent through the WASOG newsletter to sarcoidosis experts. Agreement about the recommendations amongst the world's leading sarcoidologists was evaluated. A total of 237 articles were identified, 43 of which were included. Randomized controlled trial evidence supporting the use of MTX in sarcoidosis was limited. Forty-five per cent (113 of 250) of the sarcoidosis experts contacted completed the survey (Europe 55%, North America 26% and Asia 12%). Ten recommendations were formulated concerning the indications for use, starting dose, folic acid, work-up, contraindications, monitoring, administration options in case of adverse gastrointestinal effects, hepatotoxicity, long-term safety and use during pregnancy and breast feeding.SUMMARY: Ten multinational evidence-based recommendations for the use of MTX in sarcoidosis were developed, which are supported by the world's foremost sarcoidosis experts.", "Recently, recommendations for the use of the Oncotype DX assay in estrogen receptor-positive node-negative breast cancer patients were incorporated into guidelines from both the American Society of Clinical Oncology and the National Comprehensive Cancer Network. The Oncotype DX assay is a diagnostic test which measures changes in a set of 21 genes in order to predict the likelihood of disease recurrence and also to predict which patients are most likely to respond to chemotherapy. Oncotype DX has been available commercially since January 2004 and has been used for more than 85,000 patients. Drs. William J. Gradishar, Nora M. Hansen, and Barbara Susnik answered questions regarding the incorporation of the Oncotype DX breast cancer assay into routine clinical practice. This expert dialog offers an update and clinical insights into when, how, and why clinicians might incorporate the Oncotype DX assay into the management of their breast cancer patients. Also, the latest research into the benefit of the Oncotype DX assay in node-positive patients is discussed. Finally, sample case studies offer clinically relevant examples of the practical application of the Oncotype DX assay.", "Sickle cell disease (SCD) is the most common inherited hemoglobinopathy in the world, with the majority of cases in sub-Saharan Africa. Concomitant nutritional deficiencies, infections or exposure to environmental toxins exacerbate chronic anemia in children with SCD. The resulting relative anemia is associated with increased risk of strokes, poor cognitive function and impaired growth. It may also attenuate optimal response to hydroxyurea therapy, the only effective and practical treatment option for SCD in sub-Saharan Africa. This review will focus on the epidemiology, clinical sequelae, and treatment of relative anemia in children with SCD living in low and middle-income countries in sub-Saharan Africa. Areas covered: The causes and treatment of relative anemia in children with SCD in sub-Saharan Africa. The MEDLINE database was searched using medical subject headings (MeSH) and keywords for articles regarding relative anemia in children with SCD in sub-Saharan Africa. Expert commentary: Anemia due to nutritional deficiencies and infectious diseases such as helminthiasis and malaria are prevalent in sub-Saharan Africa. Their co-existence in children with SCD increases morbidity and mortality. Therefore, preventing, diagnosing and treating the underlying cause of this relative anemia will improve SCD-related outcomes in children in sub-Saharan Africa." ]
2,045
[ "Preclinical work has led to an increased understanding of the immunomodulatory mechanisms involved in the regulation of the antitumor response in a variety of tumor types. PD-1 (programmed death 1) appears to be a key checkpoint involved in immune suppression in the tumor microenvironment, even in diseases not previously thought to be sensitive to immune manipulation. More recently, the subsequent clinical development of PD-1-based therapy has resulted in a major breakthrough in the field of oncology. Pembrolizumab, a humanized highly selective IgG4 anti-PD-1 monoclonal antibody, was recently approved for the treatment of advanced melanoma based on promising early-phase clinical data. Encouraging results have also been seen in other malignancies, and PD-1-targeted therapies are likely to markedly change the treatment landscape. Future work will center on rationally designed combination strategies in order to potentiate the antitumor immune response and overcome mechanisms of resistance.", "Disruption of the X-linked gene encoding NF-kappa B essential modulator (NEMO) produces male embryonic lethality, completely blocks NF-kappa B activation by proinflammatory cytokines, and interferes with the generation and/or persistence of lymphocytes. Heterozygous female mice develop patchy skin lesions with massive granulocyte infiltration and hyperproliferation and increased apoptosis of keratinocytes. Diseased animals present severe growth retardation and early mortality. Surviving mice recover almost completely, presumably through clearing the skin of NEMO-deficient keratinocytes. Male lethality and strikingly similar skin lesions in heterozygous females are hallmarks of the human genetic disorder incontinentia pigmenti (IP). Together with the recent discovery that mutations in the human NEMO gene cause IP, our results indicate that we have created a mouse model for that disease.", "BACKGROUND: Von Hippel-Lindau Disease (VHL) is an autosomal dominant inherited systemic cancer syndrome that gives rise to cystic and highly vascularized tumors in many organs, including the eye. Recent studies have contributed to the understanding of VHL pathophysiology, genetics, and the role of the VHL protein. This article reviews recent studies on VHL clinical findings, genetics and tumorigenesis.METHODS: Literature review of articles on VHL genetics with correlation to clinical findings.RESULTS: Genotype-phenotype correlation studies show that patients with a complete deletion mutation of the VHL gene, relative to participants with a missense or protein-truncating mutation, had better visual acuity and decreased tumorigenesis incidence of retinal hemangioblastomas. It has also been documented that higher levels of vascular endothelial growth factor (VEGF), hypoxia induced factor (HIF), and ubiquitin are found in ocular hemangioblastomas. The stromal foamy vacuolated cells seem to be the true tumor cells of the disease acting on the surrounding endothelial cells in ocular hemangioblastomas. Tumor cells and ocular lesions have shown increased levels of Erythropoietin (Epo), Epo receptor (EpoR), and CD133. Also, CXCR4, a CXC chemokine receptor, is expressed in retinal VHL hemangioblastomas. Recent studies suggest that the VHL mutation alone may not be sufficient to develop VHL-associated neoplasms. Studies suggest that targeting various proteins along with anti-angiogenesis molecules may be a better therapeutic approach than targeting VEGF alone.CONCLUSION: Understanding of the mechanisms and genetics underlying VHL and its associated retinal hemangioblastomas has increased substantially in recent years. This knowledge suggests that future advances may include better identification of individuals at higher risk of vision loss and the development of novel individualized therapies.", "Cancer cells frequently induce aberrant centrosomes, which have been implicated in cancer initiation and progression. Human colorectal cancer cells, HCT116, contain aberrant centrioles composed of disorganized cylindrical microtubules and displaced appendages. These cells also express unique centrosome-related structures associated with a subset of centrosomal components, including gamma-tubulin, centrin and PCM1. During hydroxyurea treatment, these abnormal structures become more abundant and undergo a change in shape from small dots to elongated fibers. Although gamma-tubulin seems to exist as a ring complex, the abnormal structures do not support microtubule nucleation. Several lines of evidence suggest that the fibers correspond to a disorganized form of centriolar microtubules. Plk4, a mammalian homolog of ZYG-1 essential for initiation of centriole biogenesis, is not associated with the gamma-tubulin-specific abnormal centrosomes. The amount of Plk4 at each centrosome was less in cells with abnormal centrosomes than cells without gamma-tubulin-specific abnormal centrosomes. In addition, the formation of abnormal structures was abolished by expression of exogenous Plk4, but not SAS6 and Cep135/Bld10p, which are downstream regulators required for the organization of nine-triplet microtubules. These results suggest that HCT116 cells fail to organize the ninefold symmetry of centrioles due to insufficient Plk4.", "Zika virus has rapidly spread through the World Health Organization's Region of the Americas since being identified in Brazil in early 2015. Transmitted primarily through the bite of infected Aedes species mosquitoes, Zika virus infection during pregnancy can cause spontaneous abortion and birth defects, including microcephaly (1,2). New York City (NYC) is home to a large number of persons who travel frequently to areas with active Zika virus transmission, including immigrants from these areas. In November 2015, the NYC Department of Health and Mental Hygiene (DOHMH) began developing and implementing plans for managing Zika virus and on February 1, 2016, activated its Incident Command System. During January 1-June 17, 2016, DOHMH coordinated diagnostic laboratory testing for 3,605 persons with travel-associated exposure, 182 (5.0%) of whom had confirmed Zika virus infection. Twenty (11.0%) confirmed patients were pregnant at the time of diagnosis. In addition, two cases of Zika virus-associated Guillain-Barré syndrome were diagnosed. DOHMH's response has focused on 1) identifying and diagnosing suspected cases; 2) educating the public and medical providers about Zika virus risks, transmission, and prevention strategies, particularly in areas with large populations of immigrants from areas with ongoing Zika virus transmission; 3) monitoring pregnant women with Zika virus infection and their fetuses and infants; 4) detecting local mosquito-borne transmission through both human and mosquito surveillance; and 5) modifying existing Culex mosquito control measures by targeting Aedes species of mosquitoes through the use of larvicides and adulticides.", "Congenital disorder of glycosylation (CDG), formerly representing a group of diseases due to defects in the biosynthetic pathway of protein N-glycosylation, currently covers a wide range of disorders affecting glycoconjugates. Since its first application to serum transferrin from a CDG patient with phosphomannomutase-2 deficiency in 1992, mass spectrometry (MS) has been playing a key role in identification and characterization of glycosylation defects affecting glycoproteins. MS of native transferrin detects a lack of glycans characteristic to the classical CDG-I type of molecular abnormality. Electrospray ionization MS of native transferrin, especially, allows glycoforms to be analyzed precisely but requires basic knowledge regarding deconvolution of multiply-charged ions which may generate ghost signals upon transformation into a singly-charged form. MS of glycopeptides from tryptic digestion of transferrin delineates site-specific glycoforms and reveals a delicate balance of donor/acceptor substrates or the conformational effect of nascent proteins in cells. Matrix-assisted laser desorption ionization MS of apolipoprotein C-III is a simple method of elucidating the profiles of mucin-type core 1 O-glycans including site occupancy and glycoforms. In this technological review, the principle and pitfalls of MS for CDG are discussed and mass spectra of various types of CDG are presented.", "Congenital disorders of glycosylation form a rapidly growing group of inherited metabolic diseases. As glycosylation affects proteins all over the organism, a mutation in a single gene leads to a multisystemic disorder. We describe a patient with TMEM165-CDG with facial dysmorphism, nephrotic syndrome, cardiac defects, enlarged cerebral ventricles, feeding problems, and neurological involvement. Having confirmed the diagnosis via prenatal diagnostics, we were able to observe the glycosylation right from birth, finding a pathological pattern already on the first day of life. Within the next few weeks, hypoglycosylation progressed to less sialylated and then also to hypogalactosylated isoforms. On the whole, there has not been much published evidence concerning postnatal glycosylation and its adaptational process. This is the first paper reporting changes in glycosylation patterns over the first postnatal weeks in TMEM165-CDG.", "Phosphoinositide 3-kinase δ is upregulated in lymphocytic leukemias. Because the p85-regulatory subunit binds to any class IA subunit, it was assumed there is a single universal p85-mediated regulatory mechanism; however, we find isozyme-specific inhibition by p85α. Using deuterium exchange mass spectrometry (DXMS), we mapped regulatory interactions of p110δ with p85α. Both nSH2 and cSH2 domains of p85α contribute to full inhibition of p110δ, the nSH2 by contacting the helical domain and the cSH2 via the C terminus of p110δ. The cSH2 inhibits p110β and p110δ, but not p110α, implying that p110α is uniquely poised for oncogenic mutations. Binding RTK phosphopeptides disengages the SH2 domains, resulting in exposure of the catalytic subunit. We find that phosphopeptides greatly increase the affinity of the heterodimer for PIP2-containing membranes measured by FRET. DXMS identified regions decreasing exposure at membranes and also regions gaining exposure, indicating loosening of interactions within the heterodimer at membranes.", "Kartagener's syndrome is a very rare congenital malformation comprising of a classic triad of sinusitis, situs inversus and bronchiectasis. Primary ciliary dyskinesia is a genetic disorder with manifestations present from early life and this distinguishes it from acquired mucociliary disorders. Approximately one half of patients with primary ciliary dyskinesia have situs inversus and, thus are having Kartagener syndrome. We present a case of 12 year old boy with sinusitis, situs inversus and bronchiectasis. The correct diagnosis of this rare congenital autosomal recessive disorder in early life is important in the overall prognosis of the syndrome, as many of the complications can be prevented if timely management is instituted, as was done in this in this case.", "Amphibians such as Xenopus laevis and Ambystoma mexicanum are capable of whole structure regeneration. However, transcriptional control over these events is not well understood. Here, we investigate the role of histone deacetylase (HDAC) enzymes in regeneration using HDAC inhibitors. The class I/II HDAC inhibitor valproic acid (VPA) inhibits tail regeneration in embryos of the anuran amphibian Xenopus laevis, confirming a recent report by others (Tseng et al., 2011). This inhibition correlates with a sixfold reduction in endogenous HDAC activity. VPA also inhibited tail regeneration in post-refractory stage Xenopus larvae and larvae of the urodele A. mexicanum (axolotl). Furthermore, Xenopus limb regeneration was also significantly impaired by post-amputation treatment with VPA, suggesting a general requirement for HDAC activity in the process of appendage regeneration in amphibians. The most potent inhibition of tail regeneration was observed following treatment with VPA during the wound healing, pre-blastema phase. A second HDAC inhibitor, sodium butyrate, was also shown to inhibit tail regeneration. While both VPA and sodium butyrate are reported to block sodium channel function as well as HDACs, regeneration was not inhibited by valpromide, an analogue of VPA that lacks HDAC inhibition but retains sodium channel blocking activity. Finally, although VPA is a known teratogen, we show that neither tailbud nor limb bud development are affected by exposure to this compound. We conclude that histone deacetylation is specifically required for the earliest events in appendage regeneration in amphibians, and suggest that this may act as a switch to trigger re-expression of developmental genes.", "This review presents principles of glycosylation, describes the relevant glycosylation pathways and their related disorders, and highlights some of the neurological aspects and issues that continue to challenge researchers. More than 100 rare human genetic disorders that result from deficiencies in the different glycosylation pathways are known today. Most of these disorders impact the central and/or peripheral nervous systems. Patients typically have developmental delays/intellectual disabilities, hypotonia, seizures, neuropathy, and metabolic abnormalities in multiple organ systems. Among these disorders there is great clinical diversity because all cell types differentially glycosylate proteins and lipids. The patients have hundreds of misglycosylated products, which afflict a myriad of processes, including cell signaling, cell-cell interaction, and cell migration. This vast complexity in glycan composition and function, along with the limited availability of analytic tools, has impeded the identification of key glycosylated molecules that cause pathologies. To date, few critical target proteins have been pinpointed.", "We report the prenatal diagnosis of a fetus with a de novo Robertsonian translocation: 45,XY,der(15;15)(q10;q10). Although Robertsonian translocations are common chromosomal rearrangements, those involving homologous chromosomes are infrequent. Since chromosome 15 is imprinted, uniparental disomy (UPD) is a concern when chromosomal rearrangements involving chromosome 15 are identified. In the present case, UPD studies showed normal biparental inheritance. In contrast to the fact that most homologous acrocentric rearrangements are isochromosomes, these results indicate postzygotic formation of a Robertsonian translocation between biparentally inherited chromosomes 15.", "Fusarium graminearum is a major fungal pathogen of cereals worldwide, causing seedling, stem base and floral diseases, including Fusarium head blight (FHB). In addition to yield and quality losses, FHB contaminates cereal grain with mycotoxins, including deoxynivalenol, which are harmful to human, animal and ecosystem health. Currently, FHB control is only partially effective due to several intractable problems. RNA interference (RNAi) is a natural mechanism that regulates gene expression. RNAi has been exploited in the development of new genomic tools that allow the targeted silencing of genes of interest in many eukaryotes. Host-induced gene silencing (HIGS) is a transgenic technology used to silence fungal genes in planta during attempted infection and thereby reduces disease levels. HIGS relies on the host plant's ability to produce mobile small interfering RNA molecules, generated from long double-stranded RNA, which are complementary to targeted fungal genes. These molecules are transferred from the plant to invading fungi via an uncharacterised mechanism, to cause gene silencing. Here, we describe recent advances in RNAi-mediated control of plant pathogenic fungi, highlighting the key advantages and disadvantages. We then discuss the developments and implications of combining HIGS with other methods of disease control. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.", "AIM: A clinical trial (IMbrave150) indicated the efficacy and safety of atezolizumab plus bevacizumab for patients with unresectable hepatocellular carcinoma (HCC). In this study, we evaluated this therapeutic combination in a real-world setting, with a focus on patients who did not meet the IMbrave150 eligibility criteria.METHODS: In this multicenter study, patients with unresectable HCC treated with atezolizumab plus bevacizumab between October 2020 and May 2021 were screened. In patients who did not meet IMbrave150 eligibility criteria, treatment responses and safety at 6 and 12 weeks were evaluated.RESULTS: Atezolizumab plus bevacizumab was initiated in 64 patients, including 46 patients (71.9%) who did not meet IMbrave150 eligibility criteria. Most of these patients had a history of systemic therapy (44/46). The objective response rate and disease control rate observed using Response Evaluation Criteria in Solid Tumors 1.1 were 5.2% and 82.8% at 6 weeks and 10.0% and 84.0% at 12 weeks, respectively; these rates were similar between patients who met and did not meet the IMbrave150 criteria. Ten patients experienced progressive disease (PD) at 6 weeks. Portal vein tumor thrombosis was significantly associated with PD (p = 0.039); none of the 15 patients with hepatitis B virus-related HCC experienced PD (p = 0.050). The most common adverse events of grade 3 or higher were aspartate aminotransferase elevation (n = 8, 13.8%) and the safety profile was similar between patients who met and did not meet the IMbrave150 criteria.CONCLUSION: Most patients treated with atezolizumab plus bevacizumab did not meet the IMbrave150 criteria; however, the combination therapy showed good safety and efficacy at the early treatment phase.", "Current knowledge of the physiology and phylogeny of polycyclic aromatic hydrocarbon (PAH) degrading bacteria often relies on laboratory enrichments and isolations. In the present study, in situ microcosms consisting of activated carbon pellets (BACTRAP®s) were loaded with either (13) C-naphthalene or (13) C-fluorene and were subsequently exposed in the contaminant source and plume fringe region of a PAH-contaminated aquifer. Metaproteomic analysis and protein-stable isotope probing revealed Burkholderiales, Actinomycetales, and Rhizobiales as the most active microorganisms in the groundwater communities. Proteins identified of the naphthalene degradation pathway showed a relative (13) C isotope abundance of approximately 50 atom% demonstrating that the identified naphthalene-degrading bacteria gained at least 80% of their carbon by PAH degradation. Although the microbial community grown on the fluorene-BACTRAPs showed a structure similar to the naphthalene-BACTRAPs, the identification of fluorene degraders and degradation pathways failed in situ. In complementary laboratory microcosms, a clear enrichment in proteins related to Rhodococcus and possible fluorene degradation enzymes was observed. This result demonstrates the impact of laboratory conditions on microbial community structure and activity of certain species and underlines the need on in situ exploration of microbial community functions. In situ microcosms in combination with protein-stable isotope probing may be a significant tool for in situ identification of metabolic key players as well as degradation pathways.", "Glycosylation is an integral part in health and disease, as emphasized by the growing number of identified glycosylation defects. In humans, proteins are modified with a diverse range of glycoforms synthesized in complex biosynthetic pathways. Glycosylation disorders have been described in congenital disorders of glycosylation (CDG) as well as in acquired disease conditions such and non-alcoholic fatty liver disease (NAFLD). A hallmark in a subset of CDG cases is the reduced glycosylation site occupancy of asparagine-linked glycans. Using an optimized method protocol, we determined the glycosylation site occupancy from four proteins of hepatic and lymphatic origin from CDG and NAFLD patients. We found variable degrees of site occupancy, depending on the tissue of origin and the disease condition. In CDG glycosylation sites of IgG2 and IgA1 were occupied to normal levels. In NAFLD haptoglobin and transferrin glycosylation sites were hyper-glycosylated, a property qualifying for its use as a potential biomarker. Furthermore, we observed, that glycosylation sites of liver-originating transferrin and haptoglobin are differentially occupied under physiological conditions, a further instance not noticed in serum proteins to date. Our findings suggest the use of serum protein hyperglycosylation as a biomarker for early stages of NAFLD.", "Statin adherence is often limited by side effects. The SLCO1B1*5 variant is a risk factor for statin side effects and exhibits statin-specific effects: highest with simvastatin/atorvastatin and lowest with pravastatin/rosuvastatin. The effects of SLCO1B1*5 genotype guided statin therapy (GGST) are unknown. Primary care patients (n = 58) who were nonadherent to statins and their providers received SLCO1B1*5 genotyping and guided recommendations via the electronic medical record (EMR). The primary outcome was the change in Beliefs about Medications Questionnaire, which measured patients' perceived needs for statins and concerns about adverse effects, measured before and after SLCO1B1*5 results. Concurrent controls (n = 59) were identified through the EMR to compare secondary outcomes: new statin prescriptions, statin utilization, and change in LDL-cholesterol (LDL-c). GGST patients had trends (p = 0.2) towards improved statin necessity and concerns. The largest changes were the \"need for statin to prevent sickness\" (p < 0.001) and \"concern for statin to disrupt life\" (p = 0.006). GGST patients had more statin prescriptions (p < 0.001), higher statin use (p < 0.001), and greater decrease in LDL-c (p = 0.059) during follow-up. EMR delivery of SLCO1B1*5 results and recommendations is feasible in the primary care setting. This novel intervention may improve patients' perceptions of statins and physician behaviors that promote higher statin adherence and lower LDL-c.", "INTRODUCTION: Juvenile systemic lupus erythematosus is more incident in female affecting different systems including the central nervous system. The aim of this study was to check the incidence of seizures and electroencephalographic features in these patients.METHOD: It was analyzed all patients with juvenile systemic lupus erythematosus referred to the Pequeno Príncipe Hospital in Curitiba, PR, Brazil, in the year of 2007. The patients were submitted to EEG and subdivided into two groups according to the presence or absence of epileptic seizures. Mann-Whitney statistical test was used.RESULTS: Forty-nine cases were included, there were 73.45% female, with an age between 3 and 28 years (micro=17.00 years; s=5.01 years). Seizures (13/26.50%) were the most frequent manifestation followed by headache (13/26.50%) and ischemic stroke (6/12.25%). Cerebral vasculites were the most frequent alteration in neuroimage. The abnormalities of EEG were characterized by asymmetry of the electric cerebral activity, diffuse disorganized background activity, focal epileptiform discharges in the right central-temporal region, generalized paroxysmal of 3 Hz spike-waves, and bursts of theta-delta slowness activity in the right parietal-occiptal region. The statistic analysis showed no significantly difference between age of onset of symptoms and the risk of seizures (p 0.675) as well as between time of the disease and the risk of seizures (p 0.436).CONCLUSION: Neurologic manifestations, in special epileptic seizures, are frequent in systemic lupus erythematosus. Age of onset of symptoms and the time of disease did not increase the risk of epileptic seizures in this disease.", "Congenital disorders of glycosylation (CDG) are a growing group of inherited metabolic disorders where enzymatic defects in the formation or processing of glycolipids and/or glycoproteins lead to variety of different diseases. The deficiency of GDP-Man:GlcNAc2-PP-dolichol mannosyltransferase, encoded by the human ortholog of ALG1 from yeast, is known as ALG1-CDG (CDG-Ik). The phenotypical, molecular and biochemical analysis of a severely affected ALG1-CDG patient is the focus of this paper. The patient's main symptoms were feeding problems and diarrhea, profound hypoproteinemia with massive ascites, muscular hypertonia, seizures refractory to treatment, recurrent episodes of apnoea, cardiac and hepatic involvement and coagulation anomalies. Compound heterozygosity for the mutations c.1145T>C (M382T) and c.1312C>T (R438W) was detected in the patient's ALG1-coding sequence. In contrast to a previously reported speculation on R438W we confirmed both mutations as disease-causing in ALG1-CDG.", "Mitochondria are highly dynamic and undergo constant fusion and fission that are essential for maintaining physiological functions of cells. Although dysfunction of mitochondria has been implicated in tumorigenesis, little is known about the roles of mitochondrial dynamics in metastasis, the major cause of cancer death. In the present study, we found a marked upregulation of mitochondrial fission protein dynamin-related protein 1 (Drp1) expression in human invasive breast carcinoma and metastases to lymph nodes. Compared with non-metastatic breast cancer cells, mitochondria also were more fragmented in metastatic breast cancer cells that express higher levels of total and active Drp1 and less mitochondrial fusion protein 1 (Mfn1). Silencing Drp1 or overexpression of Mfn1 resulted in mitochondria elongation or clusters, respectively, and significantly suppressed metastatic abilities of breast cancer cells. In contrast, silencing Mfn proteins led to mitochondrial fragmentation and enhanced metastatic abilities of breast cancer cells. Interestingly, these manipulations of mitochondrial dynamics altered the subcellular distribution of mitochondria in breast cancer cells. For example, silencing Drp1 or overexpression of Mfn1 inhibited lamellipodia formation, a key step for cancer metastasis, and suppressed chemoattractant-induced recruitment of mitochondria to lamellipodial regions. Conversely, silencing Mfn proteins resulted in more cell spreading and lamellipodia formation, causing accumulation of more mitochondria in lamellipodia regions. More importantly, treatment with a mitochondrial uncoupling agent or adenosine triphosphate synthesis inhibitor reduced lamellipodia formation and decreased breast cancer cell migration and invasion, suggesting a functional importance of mitochondria in breast cancer metastasis. Together, our findings show a new role and mechanism for regulation of cancer cell migration and invasion by mitochondrial dynamics. Thus targeting dysregulated Drp1-dependent mitochondrial fission may provide a novel strategy for suppressing breast cancer metastasis." ]
2,046
[ "TGF-beta (Transforming Growth Factor-beta) cytokines employ Smad proteins as the intracellular mediator of signaling. Upon TGF-beta stimulation, the cytoplasmic Smads become phosphorylated and consequently accumulate in the nucleus to regulate target gene expression. The cytoplasm-to-nucleus redistribution of Smads, as well as the ability of Smads to activate or repress gene transcription, is under multiple layers of regulation by factors not limited to TGF-beta. With recent advance in the knowledge of regulatory factors impinged on Smads, we are beginning to understand the complexity in cellular responses to TGF-beta.", "Recent randomised phase II trial data have indicated that the addition of olaratumab, a novel monoclonal antibody against platelet-derived growth factor receptor alpha (PDGFRα), to doxorubicin confers an unprecedented improvement in overall survival to patients with anthracycline-naïve advanced soft tissue sarcoma. However, this result was disproportionate with progression-free survival and response rate, and consequently there are unanswered questions regarding the precise mechanism of action of olaratumab. While preclinical data show that olaratumab specifically inhibits PDGFRα-mediated oncogenic signalling with attendant anti-tumour effects, a lack of correlation between pharmacodynamics markers of PDGFRα inhibition and clinical benefit from olaratumab suggest other mechanisms beyond modulation of downstream PDGFRα molecular pathways. Proposed mechanisms of olaratumab activity include engagement of anti-tumour immune responses and alterations of the tumour stroma, but these require further evaluation. Meanwhile, the drug-specific contribution of cytotoxic agents to olaratumab-containing combinations has yet to be characterised. Ongoing and future preclinical and translational studies, coupled with the anticipated results of a phase III trial that has completed enrolment, should provide greater insight into the efficacy and mode of action of olaratumab in soft tissue sarcomas.", "JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release.", "BACKGROUND: Pancreatic neuroendocrine tumors (PNETs) are a group of rare tumors. Chromogranin A (CgA) was considered as the most practical and useful serum tumor marker in PNET patients. But peripheral blood levels of CgA are not routinely tested in Chinese patients with PNETs. This study was to assess the diagnostic value of CgA in Chinese patients with PNETs especially in patients with insulinomas.METHODS: Eighty-nine patients with PNETs including 57 insulinomas and 32 non-insulinoma PNETs as well as 86 healthy participants were enrolled in this study between September 2003 and June 2013. Serum levels of CgA were measured by ELISA method. Expression of CgA protein was detected in 26 PNET tissues including 14 insulinomas by immunohistochemical staining.RESULTS: Serum levels of CgA in 89 PNET patients were significantly higher than that in healthy controls (P = 7.2 × 10-9). Serum levels of CgA in 57 patients with insulinomas (median 64.8 ng/ml, range 25-164) were slightly higher than the levels in healthy controls (median 53.4 ng/ml, range 39-94) but much lower than the levels in 32 patients with non-insulinoma PNETs (median 193 ng/ml, range 27-9021), P = 0.001. The serum CgA levels were reduced in 16 of 17 patients with insulinomas after tumor resection. ROC curve showed that CgA values at 60 ng/ml distinguished patients with insulinomas from healthy controls but its sensitivity and specificity were 66.7% and 73.3%, respectively. In contrast, CgA values at 74 ng/ml distinguished patients with non-insulinoma PNETs from healthy controls, and the sensitivity and specificity were 65.6% and 91.9%, respectively. Except for two insulinomas with negative staining of CgA, 12 insulinoma tissues showed positive staining of CgA.CONCLUSION: CgA is a reliable serum diagnostic biomarker for PNETs but not for insulinomas.", "Tay syndrome or IBIDS is a rare autosomal recessive genetic disorder characterized by congenital ichthyosis and abnormal brittle hair (trichothiodystrophy). Other features include photosensitivity, abnormal nails and multiple developmental defects affecting organs mainly derived from neuroectoderm. The exact prevalence of this condition is not known, but up to 1991, clinical data of 15 cases with IBIDS were published .We report a case of Tay syndrome with additional features of Duane's retraction syndrome and Perthes disease, which have not yet been reported in literature.", "Dyskeratosis congenita (DC) is a rare inherited disorder characterised by the early onset of reticulate skin pigmentation, nail dystrophy, and mucosal leucoplakia. In over 80% of cases bone marrow failure develops and this is the main cause of early mortality. The DC1 gene responsible for the X linked form (MIM 305000) of dyskeratosis congenita has been mapped to Xq28. In order to narrow the candidate gene region, genetic linkage analysis was performed in eight X linked pedigrees using a set of markers spanning Xq28. A maximum lod score of 5.31 with no recombinations was achieved with marker DXS1073. Two recombination events were identified; one of these uses X chromosome inactivation pattern analysis to determine carrier status and haplotype analysis to fine map the recombination breakpoint. The fine mapping of these recombination events has enabled the candidate gene region for X linked dyskeratosis congenita to be defined as the 1.4 Mb interval between Xq3274 and DXS1108.", "A rare syndrome, Dyke-Davidoff-Masson Syndrome (DDMS), with a diagnostic conundrum, and the way it was solved is presented. A 13-year-old boy presented with recurrent seizures for the past 10 years. He had been treated with anticonvulsant medication which was satisfactory at first but later the seizures recurred. Recently, the frequency of the seizures increased with preictal dizziness and postictal drowsiness. Physical examination revealed mild left hemiparesis and left deviated gait irregularity. He was mentally alert but had not achieved all the developmental milestones as compared to normal child of his age. CT and MRI scan of the head showed hemiatrophic cerebral parenchyma with prominent sulci and encephalomalacia. 24-hour intensive video EEG monitoring revealed suppression of alpha rhythm and local slow wave activity on the side of the atrophic hemisphere. PET-CT showed highly functional left cerebral hemisphere and less functional right cerebral hemisphere. The patient underwent functional hemispherectomy under neurophysiological monitoring and the nonfunctional brain tissues were resected while selectively preserving the functional areas detected by fMRI and PET-CT scan. During follow up, the patient was seizure free as well as without difficulties in performing his daily activities and communications. Functional hemispherectomy for DDMS patient has a good prognosis." ]
2,052
[ "The methyl-directed mismatch repair (MMR) mechanism has been extensively studied in vitro and in vivo, but one of the difficulties in determining the biological relationships between the MMR-related proteins is the tendency of MutL to self-aggregate. The properties of a stable MutL homologue were investigated using a thermostable MutL (TmL) from Thermotoga maritima MSB8 and whose size exclusion chromatographic and crosslinking analyses were compatible with a dimeric form of TmL. TmL underwent conformational changes in the presence of nucleotides and single-stranded DNA (ssDNA) with ATP binding not requiring ssDNA binding activity of TmL, while ADPnP-stimulated TmL showed a high ssDNA binding affinity. Finally, TmL interacted with the T. maritima MutS (TmS), increasing the affinity of TmS to mismatched DNA base pairs and suggesting that the role of TmL in the formation of a mismatched DNA-TmS complex may be a pivotal observation for the study of the initial MMR system. [BMB reports 2009; 42(1): 53-58].", "Muller's ratchet, the inevitable accumulation of deleterious mutations in asexual populations, has been proposed as a major factor in genome degradation of obligate symbiont organisms. Essentially, if left unchecked the ratchet will with certainty cause extinction due to the ever increasing mutational load. This paper examines the evolutionary fate of insect symbionts, using mathematical modelling to simulate the accumulation of deleterious mutations. We investigate the effects of a hierarchical two level population structure. Since each host contains its own subpopulation of symbionts, there will be a large number of small symbiont populations linked indirectly via selection on the host level. We show that although the separate subpopulations will accumulate deleterious mutations quickly, the symbiont population as a whole will be protected from extinction by selection acting on the hosts. As a consequence, the extent of genome degradation observed in present day symbionts is more likely to represent loss of functions that were (near-) neutral to the host, rather than a snap shot of a decline towards complete genetic collapse.", "Preterm birth remains one of the most important issues facing perinatal medicine today, with chronic inflammation and/or infection being the biggest etiological factor. The nucleotide oligomerization domain (NOD) intracellular molecules recognize a wide range of microbial products as well as other intracellular danger signals, thereby initiating inflammation through activation of nuclear factor KB (NFKB), a central regulator of the terminal processes of human labor and delivery. The aims of this study were to determine the effect of 1) human labor, proinflammatory cytokines, and bacterial endotoxin LPS on NOD1 and NOD2 expression and 2) NOD1 and NOD2 activation on the expression of prolabor mediators in human fetal membranes and myometrium. NOD1 and NOD2 expression was significantly higher in fetal membranes and myometrium after spontaneous labor when compared to nonlaboring tissues. Bacterial endotoxin LPS and the proinflammatory cytokines TNF and IL1B significantly increased NOD2, but not NOD1, expression. Furthermore, LPS-induced NOD2 expression was decreased by the NFKB inhibitor BAY 11-7082. In both fetal membranes and myometrium, the NOD1 ligand bacterial iE-DAP and the NOD2 ligand bacterial MDP significantly increased the expression and secretion of proinflammatory cytokines (IL6 and IL8), cyclooxygenase (PTGS2) expression and subsequent release of prostaglandins PGE2 and PGF2alpha, and the expression and activity of MMP9. The effects of these NOD1 and NOD2 ligands were mediated via NFKB, as 1) both iE-DAP and MDP significantly increased NFKB activation and 2) the NFKB inhibitor BAY 11-7082 attenuated iE-DAP- and MDP-induced expression and secretion of prolabor mediators. In conclusion, NOD1 and NOD2 are increased in laboring fetal membranes and myometrium and with bacterial infection. Agonist activation of NOD1 and NOD2 by bacterial products leads to NFKB activation and transcription of NFKB induced prolabor genes. NOD1 and NOD2 may thus represent therapeutic targets for the treatment and/or management of preterm birth.", "We describe a family of seven boys affected by Lesch-Nyhan disease with various phenotypes. Further investigations revealed a mutation c.203T>C in the gene encoding HGprt of all members, with substitution of leucine to proline at residue 68 (p.Leu68Pro). Thus patients from this family display a wide variety of symptoms although sharing the same mutation. Mutant HGprt enzyme was prepared by site-directed mutagenesis and the kinetics of the enzyme revealed that the catalytic activity of the mutant was reduced, in association with marked reductions in the affinity towards phosphoribosylpyrophosphate (PRPP). Its Km for PRPP was increased 215-fold with hypoxanthine as substrate and 40-fold with guanine as substrate with associated reduced catalytic potential. Molecular modeling confirmed that the most prominent defect was the dramatically reduced affinity towards PRPP. Our studies suggest that the p.Leu68Pro mutation has a strong impact on PRPP binding and on stability of the active conformation. This suggests that factors other than HGprt activity per se may influence the phenotype of Lesch-Nyhan patients.", "1. ", "In ciliates, only one of the alternative forms of the immunodominant membrane glycoprotein usually coats the external surface of the cell. Such mutual exclusion is regulated at the pretranslational level by mechanisms that result in the expression of a single protein gene. In the holotrich Tetrahymena thermophila five alternative cell surface immobilization proteins (i-antigens) are expressed under different conditions of temperature (L, H, T) and culture media (I, S). Using polyclonal and monoclonal antibodies to these proteins and a cDNA probe derived from the SerH3 gene, we have reinvestigated expression of i-antigens in media supplemented with 0.2 M NaCl. We find that in addition to S, the H and L antigens are also present on the cell surface. While all three i-antigens may be simultaneously present on the cell surface, the combinations S/L and S/H are more frequent. Compared to cells expressing H and L singly, the level of H3 mRNA is diminished, and a subset of the L family of polypeptides is variably expressed. The expression of S begins within 30 min after transfer to NaCl-supplemented medium, while the expression of L begins three days to several weeks after transfer. When cells are transferred out of NaCl-supplemented medium, S is turned off within 24 h, and L is expressed for at least 1 wk prior to the return of full H expression. Although these differences in kinetics suggest differences in control mechanism(s), the absence of I and T on the surface of NaCl-grown cells suggests that there is also a common regulatory link among H, S and L.(ABSTRACT TRUNCATED AT 250 WORDS)", "OBJECTIVE: Postoperative nausea and vomiting (PONV) still represent an important problem in surgery. Treatment and prevention of PONV requires accurate risk stratification. The simplified Apfel-score includes the four factors female gender, no smoking, postoperative use of opioides and previous PONV or motion-sickness in patients' history. Each of these risk factors is supposed to elevate the PONV-incidence about 20%. The aim of the study was to validate this clinical risk assessment score in patients with high risk for PONV.METHODS: In a prospective study 93 patients with high risk preoperative score for PONV (Apfel Score III and IV) were analyzed. Patients and nurses were interviewed using a standardized questionnaire at the time of discharge from the post-anesthesia care unit (PACU) as well as 6 hours and 24 hours after admission to the PACU. General anaesthesia was applied as total intravenous anaesthesia (TIVA) with mivacurium, propofol and remifentanil (no nitrous oxide / FI 02 0.5)RESULTS: In the group with Apfel score III PONV occurred in 59.7% of patients and in the Apfel score group IV in 91.3% of all patients. The incidence of PONV corresponds to the predicted values of 60% for Apfel III and 80% for Apfel IV although the use of TIVA should have reduced the incidence of PONV about 26%. This apparent overestimation could be explained by the frequent questioning of patients and nurses for PONV leading to assessment of very minor symptoms.CONCLUSION: The Apfel-score is a useful and simple tool for stratification of patients with high risk for PONV." ]
2,057
[ "We used authentication tests developed for ancient DNA to evaluate claims by Asara et al. (Reports, 13 April 2007, p. 280) of collagen peptide sequences recovered from mastodon and Tyrannosaurus rex fossils. Although the mastodon samples pass these tests, absence of amino acid composition data, lack of evidence for peptide deamidation, and association of alpha1(I) collagen sequences with amphibians rather than birds suggest that T. rex does not.", "Objective We aimed to investigate the clinical features of acute acalculous cholecystitis (AAC) in patients with systemic lupus erythematosus (SLE). Methods SLE patients with AAC hospitalized in the Peking Union Medical College Hospital (PUMCH) from January 2001 to September 2015 were retrospectively analyzed. Their medical records were systematically reviewed. The diagnosis of AAC was based on clinical manifestations and confirmed by radiologic findings including a distended gallbladder with thickened wall, pericholecystic fluid and absence of gallstones. Results Among the 8411 hospitalized SLE patients in PUMCH, 13 (0.15%) were identified to have SLE-AAC. Eleven (84.6%) of them were female, with a mean age of 30.1 ± 8.6 years. AAC was the initial manifestation of SLE in four (30.8%) cases. Eleven (84.6%) patients complained of fever and abdominal pain, four (30.8%) had positive Murphy's sign and six (46.2%) had elevated liver enzymes. The median SLE Disease Activity Index was 8.0 (range 0-20.0) at the time of AAC. Other affected organs in SLE-AAC included kidney (11, 84.6%) and hematologic system (11, 84.6%), followed by mucocutaneous (seven, 53.8%), musculoskeletal (seven, 53.8%) and neuropsychiatric (two, 15.4%) systems. All patients received treatment of glucocorticoids and immunosuppressants but none underwent surgical intervention. During a median follow-up of 28 months (range, 2-320 months), 12 cases (92.4%) responded to treatment with no relapse and one patient (7.6%) died of septic shock. Conclusion Our study suggests that AAC is a relatively uncommon and underestimated gastrointestinal involvement of SLE that is often associated with active disease. For patients with AAC in SLE, treatment with aggressive glucocorticoids could result in a good prognosis.", "Author information:(1)Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain. estel.aparicio@crg.eu.(2)Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain. estel.aparicio@crg.eu.(3)Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain. estel.aparicio@crg.eu.(4)Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain. carme.arnan@crg.eu.(5)Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain. carme.arnan@crg.eu.(6)Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain. carme.arnan@crg.eu.(7)Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain. ilaria.sala@crg.eu.(8)Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain. ilaria.sala@crg.eu.(9)Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain. ilaria.sala@crg.eu.(10)Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain. nuria.bosch@crg.eu.(11)Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain. nuria.bosch@crg.eu.(12)Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain. nuria.bosch@crg.eu.(13)Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain. roderic.guigo@crg.cat.(14)Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain. roderic.guigo@crg.cat.(15)Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain. roderic.guigo@crg.cat.(16)Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain. rory.johnson@crg.eu.(17)Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain. rory.johnson@crg.eu.(18)Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain. rory.johnson@crg.eu.", "Protirelin (thyrotropin-releasing hormone) appears to be a neuromodulator in the extrahypothalamic nervous system and has been suggested as an adjunct in the treatment of amyotrophic lateral sclerosis (ALS). Clinical studies have been divided on the efficacy of protirelin (TRH) despite strong experimental findings that are consistent with a role for the peptide in ALS. Recent findings provide evidence of a gender-related specificity in the ability of protirelin to potentiate the monosynaptic reflex. While castration in male neonatal rats lowered the sensitivity to protirelin, testosterone treatment restored that sensitivity. An examination of the clinical studies reveals a failure either to identify patients' sex or to separate the results on the basis of sex. These findings provide convincing evidence for the potential efficacy of protirelin in ALS if the patient's sex and underlying hormonal status are taken into account.", "Transcriptional elongation involves dynamic interactions among RNA polymerase and single-stranded and double-stranded nucleic acids in the ternary complex. In prokaryotes its regulation provides an important mechanism of genetic control. Analogous eukaryotic mechanisms are not well understood, but may control expression of proto-oncogenes and viruses, including the human immunodeficiency virus HIV-1 (ref. 8). The highly conserved eukaryotic transcriptional elongation factor TFIIS enables RNA polymerase II (RNAPII) to read though pause or termination sites, nucleosomes and sequence-specific DNA-binding proteins. Two distinct domains of human TFIIS, which bind RNAPII and nucleic acids, regulate read-through and possibly nascent transcript cleavage. Here we describe the three-dimensional NMR structure of a Cys4 nucleic-acid-binding domain from human TFIIS. Unlike previously characterized zinc modules, which contain an alpha-helix, this structure consists of a three-stranded beta-sheet. Analogous Cys4 structural motifs may occur in other proteins involved in DNA or RNA transactions, including RNAPII itself. This new structure, designated the Zn ribbon, extends the repertoire of Zn-mediated peptide architectures and highlights the growing recognition of the beta-sheet as a motif of nucleic-acid recognition.", "PURPOSE: Pyridoxine-dependent epilepsy (PDE) is characterized by therapy-resistant seizures (TRS) responding to intravenous (IV) pyridoxine. PDE can be identified by increased urinary alpha-aminoadipic semialdehyde (α-AASA) concentrations and mutations in the ALDH7A1 (antiquitin) gene. Prompt recognition of PDE is important for treatment and prognosis of seizures. We aimed to determine whether immediate electroencephalography (EEG) alterations by pyridoxine-IV can identify PDE in neonates with TRS.METHODS: In 10 neonates with TRS, we compared online EEG alterations by pyridoxine-IV between PDE (n = 6) and non-PDE (n = 4). EEG segments were visually and digitally analyzed for average background amplitude and total power and relative power (background activity magnitude per frequency band and contribution of the frequency band to the spectrum).RESULTS: In 3 of 10 neonates with TRS (2 of 6 PDE and 1 of 4 non-PDE neonates), pyridoxine-IV caused flattening of the EEG amplitude and attenuation of epileptic activity. Quantitative EEG alterations by pyridoxine-IV consisted of (1) decreased central amplitude, p < 0.05 [PDE: median -30% (range -78% to -3%); non-PDE: -20% (range -45% to -12%)]; (2) unaltered relative power; (3) decreased total power, p < 0.05 [PDE: -31% (-77% to -1%); -27% (-73% to -13%); -35% (-56% to -8%) and non-PDE: -16% (-43% to -5%); -28% (-29% to -17%); -26% (-54% to -8%), in delta-, theta- and beta-frequency bands, respectively]; and (4) similar EEG responses in PDE and non-PDE.DISCUSSION: In neonates with TRS, pyridoxine-IV induces nonspecific EEG responses that neither identify nor exclude PDE. These data suggest that neonates with TRS should receive pyridoxine until PDE is fully excluded by metabolic and/or DNA analysis.", "Author information:(1)Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.(2)1st Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava and University Hospital, Bratislava, Slovakia.(3)Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia; Department of Experimental Carcinogenesis, Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.(4)Mosjøen, Norway.(5)Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.(6)Department of Neurology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.(7)Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia.(8)Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania.(9)Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.(10)Department of Psychiatry, Faculty of Medicine, Pavol Jozef Safarik University and University Hospital, Kosice, Slovakia.(11)Department of Cardiology, National Institute of Cardiovascular Diseases and Slovak Medical University, Bratislava, Slovakia.(12)Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, Doha, Qatar.(13)Centre for Chronic Disease (CCD), College of Health & Biomedicine, Victoria University, Melbourne, Victoria, Australia.(14)Faculty of Medicine, University of Oviedo, Central University Hospital of Asturias (HUCA), Oviedo, Spain.(15)Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic; 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic. Electronic address: kruzliakp@vfu.cz.(16)Department of Ophthalmology, Faculty of Medicine, Comenius University in Bratislava and University Hospital, Bratislava, Slovakia." ]
2,064
[ "Alzheimer's disease (AD) is the primary cause of dementia in the elderly. It remains incurable and poses a huge socio-economic challenge for developed countries with an aging population. AD manifests by progressive decline in cognitive functions and alterations in behaviour, which are the result of the extensive degeneration of brain neurons. The AD pathogenic mechanism involves the accumulation of amyloid beta peptide (Aβ), an aggregating protein fragment that self-associates to form neurotoxic fibrils that trigger a cascade of cellular events leading to neuronal injury and death. Researchers from academia and the pharmaceutical industry have pursued a rational approach to AD drug discovery and targeted the amyloid cascade. Schemes have been devised to prevent the overproduction and accumulation of Aβ in the brain. The extensive efforts of the past 20 years have been translated into bringing new drugs to advanced clinical trials. The most progressed mechanism-based therapies to date consist of immunological interventions to clear Aβ oligomers, and pharmacological drugs to inhibit the secretase enzymes that produce Aβ, namely β-site amyloid precursor-cleaving enzyme (BACE) and γ-secretase. After giving an update on the development and current status of new AD therapeutics, this review will focus on BACE inhibitors and, in particular, will discuss the prospects of verubecestat (MK-8931), which has reached phase III clinical trials.", "17β-estradiol (E2 or estrogen) is an endogenous steroid hormone that is well known to exert neuroprotection. Along these lines, one mechanism through which E2 protects the hippocampus from cerebral ischemia is by preventing the post-ischemic elevation of Dkk1, a neurodegenerative factor that serves as an antagonist of the canonical Wnt signaling pathway, and simultaneously inducing pro-survival Wnt/β-Catenin signaling in hippocampal neurons. Intriguingly, while expression of Dkk1 is required for proper neural development, overexpression of Dkk1 is characteristic of many neurodegenerative diseases, such as stroke, Alzheimer's disease, Parkinson's disease, and temporal lobe epilepsy. In this review, we will briefly summarize the canonical Wnt signaling pathway, highlight the current literature linking alterations of Dkk1 and Wnt/β-Catenin signaling with neurological disease, and discuss E2's role in maintaining the delicate balance of Dkk1 and Wnt/β-Catenin signaling in the adult brain. Finally, we will consider the implications of long-term E2 deprivation and hormone therapy on this crucial neural pathway. This article is part of a Special Issue entitled Hormone Therapy.", "The first successful human heart transplantation was reported on 3 December 1967, by Christiaan Barnard in South Africa. Since then this life-saving procedure has been performed in over 120 000 patients. A limitation to the performance of this procedure is the availability of donor hearts with as many as 20% of patients dying before a donor's heart is available for transplant. Today, hearts for transplantation are procured from individuals experiencing donation after brain death (DBD). Interestingly, this, however, was not always the case as the first heart transplants occurred after circulatory death. Revisiting the availability of hearts for transplant from those experiencing donation after circulatory death (DCD) could further expand the number of hearts suitable for transplantation. There are several considerations pertinent to transplanting hearts from those undergoing circulatory death. In this review, we summarize the main distinctions between DBD and DCD heart donation and discuss the research relevant to increasing the number of hearts available for transplantation by including individual's hearts that experience circulatory death.", "Author information:(1)Department of Neuroscience, Merck Research Laboratories, Kenilworth, NJ 07033, USA. matthew.kennedy@merck.com andy.stamford1@gmail.com ericmcparker@comcast.net mark.forman@merck.com.(2)Department of Global Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033, USA. matthew.kennedy@merck.com andy.stamford1@gmail.com ericmcparker@comcast.net mark.forman@merck.com.(3)Department of Neuroscience, Merck Research Laboratories, Kenilworth, NJ 07033, USA.(4)Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Kenilworth, NJ 07033, USA.(5)Department of Global Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033, USA.(6)Department of Clinical Research, Merck Research Laboratories, Kenilworth, NJ 07033, USA.(7)PAREXEL, Glendale, CA 91206, USA.(8)Department of Safety Assessment, Merck Research Laboratories, West Point, PA 19446, USA.(9)Department of Biostatistics, Merck Research Laboratories, Kenilworth, NJ 07033, USA.(10)Translational Biomarkers Department, Merck Research Laboratories, Kenilworth, NJ 07033, USA.(11)Department of Translational Medicine, Merck Research Laboratories, Kenilworth, NJ 07033, USA.(12)Department of Translational Medicine, Merck Research Laboratories, Kenilworth, NJ 07033, USA. matthew.kennedy@merck.com andy.stamford1@gmail.com ericmcparker@comcast.net mark.forman@merck.com.", "The first human tumor derived protein with in vivo angiogenic activity to be obtained in pure form has been isolated from serum-free supernatants of an established human adenocarcinoma cell line (HT-29) and named angiogenin. It was purified by cation-exchange and reversed-phase high-performance liquid chromatography; the yield was approximately 0.5 microgram/L of medium. Biological activity of angiogenin was monitored throughout purification by using the chick embryo chorioallantoic membrane assay. Statistical evaluation demonstrates that it displays activity in this system with as little as 35 fmol per egg. Moreover, only 3.5 pmol is required to induce extensive blood vessel growth in the rabbit cornea. The amino acid composition of this basic (isoelectric point greater than 9.5), single-chain protein of molecular weight approximately 14 400 has been determined. The amino terminus is blocked, and the carboxyl-terminal residue is proline.", "BACKGROUND: We determined the relationship between fragmented QRS (fQRS) on electrocardiograms (ECG) as well as myocardial fibrosis measured by delayed enhancement of cardiac magnetic resonance imaging (DE-CMR) and its prognostic implication in patients with non-ischemic dilated cardiomyopathy (DCM).METHODS: The ECGs of 86 subjects with dilated non-ischemic DCM who underwent DE-CMR were analyzed. DCM was defined as LV end-diastolic dimension >55 mm with LVEF <45% and chronic symptomatic heart failure for ≥ 9 months. Cardiac events (re-hospitalization due to heart failure, arrhythmic event, cardiac death) were reviewed retrospectively. fQRS was defined by the presence of an additional R wave (R\"), or notching of the S wave, or the presence of more than one R prime in two contiguous leads.RESULTS: In 86 patients, fQRS developed in 53 patients (61.6%) and delayed enhancement was observed in 42 patients (48.8%). The mean ejection fraction was 25.0%. Baseline characteristics were similar in both groups. Analyses of echocardiographic parameters revealed left ventricular end-diastolic and end-systolic dimensions were significantly higher in the fQRS group, but that the left ventricular ejection fraction was not significantly different. The prevalence of delayed enhancement between two groups was not significantly different (50.9% in fQRS vs. 45.5% in the non-fQRS group; p=0.62). MACE-free survival was significantly decreased in the fQRS group compared with the non-fQRS group.CONCLUSION: There was no spatial relationship between fQRS and DE-CMR in patients with non-ischemic DCM. fQRS was associated with lower event-free survival for major cardiac events on long-term follow-up.", "Verubecestat is an inhibitor of β-secretase being evaluated for the treatment of Alzheimer's disease. The first-generation route relies on an amide coupling with a functionalized aniline, the preparation of which introduces synthetic inefficiencies. The second-generation route replaces this with a copper-catalyzed C-N coupling, allowing for more direct access to the target. Other features of the new route include a diastereoselective Mannich-type addition into an Ellman sulfinyl ketimine and a late-stage guanidinylation.", "The review considers the original and published data on the molecular genetic basis of proximal spinal muscular atrophy (SMA), the most common monogenic neuromuscular disease. The structures of the SMN1 gene and SMN2 pseudogene, mutations distorting the SMN1 function, the structure and functions of the Smn neurotrophic protein, its role in biogenesis of small nuclear ribonucleoproteins (snRNPs), and the principles and prdblems of molecular diagnosis in SMA are described. Special consideration is given to the current approaches and prospects of gene and cell therapy of SMA, pharmacogenetic methods to correct the SMN2 function, and original results of long-term treatment of SMA patients with valproic acid drugs.", "Emery-Dreifuss myopathy can be associated with a cardiomyopathy and cardiac dysrhythmias. The inheritance pattern of Emery-Dreifuss muscular dystrophy (EDMD) is X linked, whereas EDMD2 is autosomal dominant. EDMD2 is caused by lamin A/C gene (LMNA) mutations that produce alterations in the lamin proteins that are integral to nuclear and cell integrity. A 53-year-old man was brought to us with a right internal carotid artery dissection. Detailed work-up of the patient and family members revealed some unusual features, and genetic sequencing of the LMNA gene was undertaken. A novel mutation was identified in two of the samples sent for analysis. We present the first Indian family of EDMD2 with familial dilated cardiomyopathy and cardiac dysrhythmias in whom LMNA gene sequencing was performed. A novel mutation was identified and additional unusual clinical features were described.", "Transcriptional silencing is known to occur at centromeres, telomeres and the mating type region in the nucleus of fission yeast, Schizosaccharomyces pombe. Mating-type silencing factors have previously been shown also to affect transcriptional repression within centromeres and to some extent at telomeres. Mutations in the clr4+, rik1+ and swi6+ genes dramatically reduce silencing at certain centromeric regions and cause elevated chromosome loss rates. Recently, Swi6p was found to co-localise with the three silent chromosomal regions. Here the involvement of clr4+, rik1+ and swi6+ in centromere function is investigated in further detail. Fluorescence in situ hybridisation (FISH) was used to show that, as in swi6 mutant cells, centromeres lag on late anaphase spindles in clr4 and rik1 mutant cells. This phenotype is consistent with a role for these three gene products in fission yeast centromere function. The Swi6 protein was found to be delocalised from all three silent chromosomal regions, and dispersed within the nucleus, in both clr4 and rik1 mutant cells. The phenotypic similarity observed in all three mutants is consistent with the products of both the clr4+ and rik1+ genes being required to recruit Swi6p to the centromere and other silent regions. Mutations in clr4, rik1 and swi6 also result in elevated sensitivity to reagents which destabilise microtubules and show a synergistic interaction with a mutation in the beta-tubulin gene (nda3). These observations suggest that clr4+ and rik1+ must play a role in the assembly of Swi6p into a transcriptionally silent, inaccessible chromatin structure at fission yeast centromeres which is required to facilitate interactions with spindle microtubules and to ensure normal chromosome segregation.", "Currently available drugs against Alzheimer's disease (AD) target cholinergic and glutamatergic neurotransmissions without affecting the underlying disease process. Putative disease-modifying drugs are in development and target β-amyloid (Aβ) peptide and tau protein, the principal neurophatological hallmarks of the disease. Areas covered: Phase III clinical studies of emerging anti-Aβ drugs for the treatment of AD were searched in US and EU clinical trial registries and in the medical literature until May 2016. Expert opinion: Drugs in Phase III clinical development for AD include one inhibitor of the β-secretase cleaving enzyme (BACE) (verubecestat), three anti-Aβ monoclonal antibodies (solanezumab, gantenerumab, and aducanumab), an inhibitor of receptor for advanced glycation end products (RAGE) (azeliragon) and the combination of cromolyn sodium and ibuprofen (ALZT-OP1). These drugs are mainly being tested in subjects during early phases of AD or in subjects at preclinical stage of familial AD or even in asymptomatic subjects at high risk of developing AD. The hope is to intervene in the disease process when it is not too late. However, previous clinical failures with anti-Aβ drugs and the lack of fully understanding of the pathophysiological role of Aβ in the development of AD, put the new drugs at substantial risk of failure.", "In order to efficiently select aptamers that bind to and inhibit proteins, we developed a method that involves screening DNA aptamers based on their inhibitory activities using an evolution-mimicking algorithm after the pre-selection by SELEX. The value of this method was demonstrated by the identification of an inhibitor of Taq DNA polymerase in a unique single-stranded DNA library, which was expected to form a G-quartet structure. This method consists of selection via an inhibition assay, sequence shuffling, and mutation in silico. After six rounds of selection, the inhibitory activities of the aptamers had evolved significantly. This demonstrates the utility of this strategy for screening aptamers based on their inhibitory actions.", "Nonalcoholic steatohepatitis (NASH) is the advanced form of nonalcoholic fatty liver disease (NAFLD) which sets the stage for further liver damage. The mechanism for the progression of NASH involves multiple parallel hits including oxidative stress, mitochondrial dysfunction, inflammation and others. Manipulation of any of these pathways may be an approach to prevent NASH development and progression. Aramchol (arachidyl-amido cholanoic acid) is presently in a phase IIb NASH study. The aim of this study was to investigate Aramchol's mechanism of action and its effect on fibrosis using the methionine- and choline-deficient (MCD) diet model of NASH. We collected liver and serum from mice fed a MCD diet containing 0.1% methionine (0.1MCD) for four weeks, which developed steatohepatitis and fibrosis, as well as mice receiving a control diet; the metabolomes and proteomes were determined. 0.1MCD fed mice were given Aramchol (5mg/kg/day for the last 2 weeks); liver samples were analyzed histologically. Aramchol administration reduced features of steatohepatitis and fibrosis in 0.1MCD fed mice. Aramchol downregulated stearoyl-CoA desaturase 1 (SCD1), a key enzyme involved in triglyceride biosynthesis whose loss enhances fatty acid β-oxidation. Aramchol increased the flux through the transsulfuration pathway, leading to a rise in glutathione (GSH) and GSH/GSSG ratio, the main cellular antioxidant that maintains intracellular redox status. Comparison of serum metabolomic pattern between 0.1MCD fed mice and NAFLD patients showed a substantial overlap.CONCLUSIONS: Aramchol treatment improved steatohepatitis and fibrosis by 1) decreasing SCD1, and 2) increasing the flux through the transsulfuration pathway maintaining cellular redox homeostasis. We also demonstrated that the 0.1MCD model resembles the metabolic phenotype observed in about 50% of NAFLD patients, which supports the potential use of Aramchol in NASH treatment.", "Verubecestat 3 (MK-8931), a diaryl amide-substituted 3-imino-1,2,4-thiadiazinane 1,1-dioxide derivative, is a high-affinity β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor currently undergoing Phase 3 clinical evaluation for the treatment of mild to moderate and prodromal Alzheimer's disease. Although not selective over the closely related aspartyl protease BACE2, verubecestat has high selectivity for BACE1 over other key aspartyl proteases, notably cathepsin D, and profoundly lowers CSF and brain Aβ levels in rats and nonhuman primates and CSF Aβ levels in humans. In this annotation, we describe the discovery of 3, including design, validation, and selected SAR around the novel iminothiadiazinane dioxide core as well as aspects of its preclinical and Phase 1 clinical characterization.", "Fanconi anemia (FA) is a rare genetic disease characterized by chromosome instability, progressive pancytopenia and cancer susceptibility. Telomeres are intimately related to chromosome stability and play an important role in organismal viability at the hematological level. Since previous works suggested an accelerated shortening of telomeres in FA, we have studied several markers of telomere integrity and function in FA patients and age-matched controls to get insights into the mechanisms and consequences of telomere erosion in FA. A higher frequency of extra-chromosomic TTAGGG signals and of chromosome ends with undetectable TTAGGG repeats was observed in FA cells by fluorescence in situ hybridization (FISH), suggesting intensive breakage at telomeric sequences. This was proven by measuring the frequency of excess of telomeric signals per cell, which was 2.8-fold higher in FA. Consistent with previous reports, quantitative FISH analysis showed an accelerated telomere shortening of 0.68 kb in FA, which occurred concurrently in both chromosome arms in a similar magnitude. Our data therefore suggest that the telomere erosion in FA is caused by a higher rate of breakage at TTAGGG sequences in vivo in differentiated cells, in addition to mere replicative shortening during lymphocyte proliferation. Consistent with impaired telomeres in FA patients, we observed a >10-fold increase in chromosome end fusions in FA compared to normal controls. This observation was independent of TRF2, a telomere binding factor that protects human telomeres from end fusions, since immunohistochemistry studies in FA cell lines and corrected counterparts by retrovirus-mediated transfer of FANCA and FANCD2 cDNA showed that a functional FA pathway is not required for telomere binding of TRF2.", "Disassembly of the Cdc45-MCM-GINS (CMG) DNA helicase is the key regulated step during DNA replication termination in eukaryotes, involving ubiquitylation of the Mcm7 helicase subunit, leading to a disassembly process that requires the Cdc48 \"segregase\". Here, we employ a screen to identify partners of budding yeast Cdc48 that are important for disassembly of ubiquitylated CMG helicase at the end of chromosome replication. We demonstrate that the ubiquitin-binding Ufd1-Npl4 complex recruits Cdc48 to ubiquitylated CMG. Ubiquitylation of CMG in yeast cell extracts is dependent upon lysine 29 of Mcm7, which is the only detectable site of ubiquitylation both in vitro and in vivo (though in vivo other sites can be modified when K29 is mutated). Mutation of K29 abrogates in vitro recruitment of Ufd1-Npl4-Cdc48 to the CMG helicase, supporting a model whereby Ufd1-Npl4 recruits Cdc48 to ubiquitylated CMG at the end of chromosome replication, thereby driving the disassembly reaction.", "We review here some recent data about Glucose-6-phosphate dehydrogenase (G6PD), the housekeeping X-linked gene encoding the first enzyme of the pentose phosphate pathway (PPP), a NADPH-producing dehydrogenase. This enzyme has been popular among clinicians, biochemists, geneticists and molecular biologists because it is the most common form of red blood cell enzymopathy. G6PD deficient erythrocytes do not generate NADPH in any other way than through the PPP and for this reason they are more susceptible than any other cells to oxidative damage. Moreover, this enzyme has also been of crucial importance in many significant discoveries; indeed, G6PD polymorphisms have been instrumental in studying X-inactivation in the human species, as well as in establishing the clonal nature of certain tumors. G6PD deficiency, generally considered as a mild and benign condition, is significantly disadvantageous in certain environmental conditions like in presence of certain drugs. Nevertheless, G6PD deficiency has been positively selected by malaria, and recent knowledge seems to show that it also confers an advantage against the development of cancer, reduces the risk of coronary diseases and has a beneficial effect in terms of longevity.", "Influenza is an infectious disease caused by RNA viruses of the family Orthomyxoviridae. The new influenza H1N1 viral stain has emerged by the genetic combination of genes from human, pig, and bird's H1N1 virus. The influenza virus is roughly spherical and is enveloped by a lipid membrane. There are two glycoproteins in this lipid membrane; namely, hemagglutinin (HA) which helps in attachment of the viral strain on the host cell surface and neuraminidase (NA) that is responsible for initiation of viral infection. We have developed homology models of both Hemagglutinin and Neuraminidase receptors from H1N1 strains in eastern India. The docking studies of B-Sialic acid and O-Sialic acid in the optimized and energy-minimized homology models show important H-bonding interactions with ALA142, ASP230, GLN231, GLU232, and THR141. This information can be used for structure-based and pharmacophore-based new drug design. We have also calculated ADME properties (Human Oral Absorption (HOA) and % HOA) for Oseltamivir which have been subject of debate for long.", "AIMS: Thermal ablation can evoke an immune response, which may have effects on the prognosis of patients with hepatocellular carcinoma (HCC). Our aim is to investigate the changes of circulating T-cell subsets after microwave ablation (MWA) and to explore the risk factors of tumor recurrence in patients with hepatitis B virus (HBV)-related HCC.METHODS: Thirty patients with HBV-related HCC were enrolled in this study. The blood samples were collected both before and after MWA (24 h, 72 h, and 1 month after MWA). The distributions of Th17 cells, regulatory Treg-cells, CD4+ T-cells, CD8+ T-cells, and CD3+ T-cells were determined by flow cytometer. The potential-related factors of tumor recurrence were analyzed by logistic regression.RESULTS: The levels of circulating T-cell subsets, except for Th17 cells, were relatively stable after MWA. The frequency of Th17 cells increased from 3.98% ± 2.40% before treatment to 5.53% ±3.27% 24 h after treatment. Eight of 30 patients had a tumor recurrence. The results of logistic regression suggested that among 11 candidates, only the level of Th17 cells was the risk factor of tumor recurrence. To remove the interference from other factors, seven patients with tumor(s) >3 cm or alpha-fetoprotein >400 ng/mL were excluded in another parallel logistic regression. The results of such regression clearly demonstrated that circulating Th17 cells is indeed a related factor of tumor recurrence.CONCLUSIONS: Thermal ablation may evoke a transitional immune response by increasing the frequency of Th17 cells. Patients with high levels of baseline circulating Th17 cells, instead of the transient elevation of Th17 cells induced by MWA, are at the risk of tumor recurrence.", "A mutant of Bacillus subtilis defective in the constitutive activity of O6-alkylguanine-DNA alkyltransferase was isolated from a strain (ada-1) deficient in the adaptive response to DNA alkylation. Cells carrying the mutation dat-1 which was responsible for the defect in constitutive activity exhibited hypersensitivity for lethality and mutagenesis when challenged with methyl-nitroso compounds. The constitutive activity is independent of the adaptive response, and seems to function as a basal defense against environmental alkylating agents." ]
2,068
[ "The objective of this study is to identify the contribution that selected demographic characteristics, health behaviors, physical health outcomes, and workplace environmental factors have on presenteeism (on-the-job productivity loss attributed to poor health and other personal issues). Analyses are based on a cross-sectional survey administered to 3 geographically diverse US companies in 2010. Work-related factors had the greatest influence on presenteeism (eg, too much to do but not enough time to do it, insufficient technological support/resources). Personal problems and financial stress/concerns also contributed substantially to presenteeism. Factors with less contribution to presenteeism included physical limitations, depression or anxiety, inadequate job training, and problems with supervisors and coworkers. Presenteeism was greatest for those ages 30-49, women, separated/divorced/widowed employees, and those with a high school degree or some college. Clerical/office workers and service workers had higher presenteeism. Managers and professionals had the highest level of presenteeism related to having too much to do but too little time to do it, and transportation workers had the greatest presenteeism because of physical health limitations. Lowering presenteeism will require that employers have realistic expectations of workers, help workers prioritize, and provide sufficient technological support. Financial stress and concerns may warrant financial planning services. Health promotion interventions aimed at improving nutrition and physical and mental health also may contribute to reducing presenteeism.", "Cytogenetic analysis of subependymal giant-cell astrocytomas (SEGAs) from two patients presenting the clinical symptoms of tuberous sclerosis complex (TSC) revealed clonal chromosomal changes, resulting in the partial loss of chromosome 22q in both tumors. Immunohistochemically, tumors exhibited features of glial differentiation, while ultrastructural studies identified the characteristic paracrystalline inclusions within the tumor cells. To our knowledge, it is the first cytogenetic description of SEGAs associated with TSC.", "In this era of more rational therapies, substantial efforts are being made to identify optimal targets. The discovery of translocations involving the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase in a subset of non-small cell lung cancers has become a paradigm for precision medicine. Notably, ALK was initially discovered as the fusion gene in anaplastic large cell non-Hodgkin lymphoma, a disease predominantly of childhood. The discovery of activating kinase domain mutations of the full-length ALK receptor as the major cause of hereditary neuroblastoma, and that somatically acquired mutations and amplification events often drive the malignant process in a subset of sporadic tumors, has established ALK as a tractable molecular target across histologically diverse tumors in which ALK is a critical mediator of oncogenesis. We are now uncovering the reexpression of this developmentally regulated protein in a broader subset of pediatric cancers, providing therapeutic targeting opportunities for diseases with shared molecular etiology. This review focuses on the role of ALK in pediatric malignancies, alongside the prospects and challenges associated with the development of effective ALK-inhibition strategies.", "Inflammasome is an intracellular signaling complex of the innate immune system. Activation of inflammasomes promotes the secretion of interleukin 1β (IL-1β) and IL-18 and triggers pyroptosis. Caspase-1 and -11 (or -4/5 in human) in the canonical and non-canonical inflammasome pathways, respectively, are crucial for inflammasome-mediated inflammatory responses. Here we report that gasdermin D (GSDMD) is another crucial component of inflammasomes. We discovered the presence of GSDMD protein in nigericin-induced NLRP3 inflammasomes by a quantitative mass spectrometry-based analysis. Gene deletion of GSDMD demonstrated that GSDMD is required for pyroptosis and for the secretion but not proteolytic maturation of IL-1β in both canonical and non-canonical inflammasome responses. It was known that GSDMD is a substrate of caspase-1 and we showed its cleavage at the predicted site during inflammasome activation and that this cleavage was required for pyroptosis and IL-1β secretion. Expression of the N-terminal proteolytic fragment of GSDMD can trigger cell death and N-terminal modification such as tagging with Flag sequence disrupted the function of GSDMD. We also found that pro-caspase-1 is capable of processing GSDMD and ASC is not essential for GSDMD to function. Further analyses of LPS plus nigericin- or Salmonella typhimurium-treated macrophage cell lines and primary cells showed that apoptosis became apparent in Gsdmd(-/-) cells, indicating a suppression of apoptosis by pyroptosis. The induction of apoptosis required NLRP3 or other inflammasome receptors and ASC, and caspase-1 may partially contribute to the activation of apoptotic caspases in Gsdmd(-/-) cells. These data provide new insights into the molecular mechanisms of pyroptosis and reveal an unexpected interplay between apoptosis and pyroptosis.", "Restless legs syndrome (RLS) is a common sensory motor neurological disorder that is characterised by an irresistible urge to move the legs that significantly affects the quality of life of the patient. Prevalence in the general population is 5-25% and it is twice as prevalent in women as in men. RLS is the most common movement disorder in pregnancy with a fourfold increased risk of developing this disorder later in life. The pathophysiology of RLS is centred on dopaminergic dysfunction, reduced central nervous system iron, genetic linkages, or alteration in neurotransmitters such as hypocretins, endorphins levels and immune dysfunction and inflammatory mechanisms. With the emergence of new evidence, there are changes to the previous treatment recommendations for RLS. There is sufficient evidence to conclude that dopamine agonists such as rotigotine transdermal patch, pramipexole, ropinirole, gabapentin enacarbil, pregabalin and gabapentin are effective in the short-term treatment of RLS and rotigotine, followed by gabapentin enacarbil, ropinirole, pramipexole and gabapentin for long-term treatment. Based on expert consensus, the recommendation for daily RLS is dopamine agonists or gabapentin or low-potency opioids. Levodopa is less preferred for treating daily RLS due to its high risk of augmentation. For intermittent RLS, it is levodopa or dopamine agonists or low-potency opioids or benzodiazepines. For refractory RLS, the choice is to change to gabapentin or a different dopamine agonist, addition of a second agent like gabapentin or benzodiazepine to the existing drug or changing to a high-potency opioid or tramadol. Medications with safety record in pregnancy include opioids and antiepileptics such as carbamazepine and gabapentin. There are concerns that patients with RLS are at risk for metabolic deregulation, autonomic dysfunction and cardiovascular morbidity. However, a recent study concluded that RLS is not associated with increased risk of cardiovascular complications.", "OBJECTIVE: To determine the appropriate method to calculate the rate of methicillin-resistant Staphylococcus aureus (MRSA) infection and colonization (hereafter, MRSA rates) for interhospital comparisons, such that the large number of patients who are already MRSA positive on admission is taken into account.DESIGN: A prospective, multicenter, hospital-based surveillance of MRSA-positive case patients from January through December 2004.SETTING: Data from 31 hospitals participating in the German national nosocomial infections surveillance system (KISS) were recorded during routine surveillance by the infection control team at each hospital.RESULTS: Data for 4,215 MRSA-positive case patients were evaluated. From this data, the following values were calculated. The median incidence density was 0.71 MRSA-positive case patients per 1,000 patient-days, and the median nosocomial incidence density was 0.27 patients with nosocomial MRSA infection or colonization per 1,000 patient-days (95% CI, 0.18-0.34). The median average daily MRSA burden was 1.13 MRSA patient-days per 100 patient-days (95% CI, 0.86-1.51), with the average daily MRSA burden defined as the total number of MRSA patient-days divided by the total number of patient-days times 100. The median MRSA-days-associated nosocomial MRSA infection and colonization rate, which describes the MRSA infection risk for other patients in hospitals housing large numbers of MRSA-positive patients and/or many patients who were MRSA positive on admission, was 23.1 cases of nosocomial MRSA infection and colonization per 1,000 MRSA patient-days (95% CI, 17.4-28.6). The values were also calculated for various MRSA screening levels.CONCLUSIONS: The MRSA-days-associated nosocomial MRSA rate allows investigators to assess the extent of MRSA colonization and infection at each hospital, taking into account cases that have been imported from other hospitals, as well as from the community. This information provides an appropriate incentive for hospitals to introduce further infection control measures.", "BACKGROUND: The pediatric diffuse intrinsic pontine glioma (DIPG) outcome remains dismal despite multiple therapeutic attempts.PURPOSE: To compare the results of treatment of pediatric diffuse intrinsic pontine glioma (DIPG) using hypofractionated versus conventional radiotherapy.PATIENTS AND METHODS: Seventy-one newly diagnosed DIPG children were randomized into hypofractionated (HF) (39Gy/13 fractions in 2.6weeks) and conventional (CF) arm (54Gy/30 fractions in 6weeks).RESULTS: The median and one-year overall survival (OS) was 7.8months and 36.4±8.2% for the hypofractionated arm, and 9.5 and 26.2±7.4% for the conventional arm respectively. The 18-month OS difference was 2.2%. The OS hazard ratio (HR) was 1.14 (95% CI: 0.70-1.89) (p=0.59). The hypofractionated arm had a median and one-year progression-free survival (PFS) of 6.6months and 22.5±7.1%, compared to 7.3 and 17.9±7.1% for the conventional arm. The PFS HR was 1.10 (95% CI: 0.67-1.90) (p=0.71). The 18-month PFS difference was 1.1%. These differences exceed the non-inferiority margin. The immediate and delayed side effects were not different in the 2 arms.CONCLUSIONS: Hypofractionated radiotherapy offers lesser burden on the patients, their families and the treating departments, with nearly comparable results to conventional fractionation, though not fulfilling the non-inferiority assumption.", "Melanocortin receptor 1 (MC1R) and agouti signaling protein (ASIP) are two major genes affecting coat color phenotypes in mammals, and inactivation mutations in the MC1R gene are responsible for red coat color in European pig breeds. Conversely, the gain-of-function ASIP mutations block MC1R signaling and lead to the production of red pheomelanin. Chinese Tibetan pigs have three types of coat color phenotypes, including brownish red, solid black and black with patches of brownish red and white. Herein, we investigated variations of the MC1R and ASIP genes in Tibetan pigs. The results showed that the brownish red Tibet pig had the dominant black MC1R allele (E(D1)). No loss-of-function mutation in MC1R responsible for red coat color in European breeds was observed in this breed. No causal mutation for the red coat color phenotype was found in the coding sequence of the ASIP gene. A novel missense mutation c.157G > A was firstly identified in exon 2 of ASIP, which was further genotyped in 285 pigs from five Chinese breeds and three Western breeds having different coat color phenotypes. Nearly all pigs were GG homozygotes. In conclusion, no functional variant responsible for brownish red coloration was found in the coding region of MC1R and ASIP in Tibetan pigs.", "Inflammatory caspases drive a lytic form of cell death called pyroptosis in response to microbial infection and endogenous damage-associated signals. Two studies now demonstrate that cleavage of the substrate gasdermin D by inflammatory caspases necessitates eventual pyroptotic demise of a cell.", "Albuminuria is an early marker of renovascular damage associated to an increase in oxidative stress. The Munich Wistar Frömter (MWF) rat is a model of chronic kidney disease (CKD), which exhibits endothelial dysfunction associated to low nitric oxide availability. We hypothesize that the new highly selective, non-steroidal mineralocorticoid receptor (MR) antagonist, finerenone, reverses both endothelial dysfunction and microalbuminuria. Twelve-week-old MWF (MWF-C; MWF-FIN) and aged-matched normoalbuminuric Wistar (W-C; W-FIN) rats were treated with finerenone (FIN, 10 mg/kg/day p.o.) or vehicle (C) for 4-week. Systolic blood pressure (SBP) and albuminuria were determined the last day of treatment. Finerenone lowered albuminuria by >40% and significantly reduced SBP in MWF. Aortic rings of MWF-C showed higher contractions to either noradrenaline (NA) or angiotensin II (Ang II), and lower relaxation to acetylcholine (Ach) than W-C rings. These alterations were reversed by finerenone to W-C control levels due to an upregulation in phosphorylated Akt and eNOS, and an increase in NO availability. Apocynin and 3-amino-1,2,4-triazole significantly reduced contractions to NA or Ang II in MWF-C, but not in MWF-FIN rings. Accordingly, a significant increase of Mn-superoxide dismutase (SOD) and Cu/Zn-SOD protein levels were observed in rings of MWF-FIN, without differences in p22phox, p47phox or catalase levels. Total SOD activity was increased in kidneys from MWF-FIN rats. In conclusion, finerenone improves endothelial dysfunction through an enhancement in NO bioavailability and a decrease in superoxide anion levels due to an upregulation in SOD activity. This is associated with an increase in renal SOD activity and a reduction of albuminuria.", "Pyroptosis was long regarded as caspase-1-mediated monocyte death in response to certain bacterial insults. Caspase-1 is activated upon various infectious and immunological challenges through different inflammasomes. The discovery of caspase-11/4/5 function in sensing intracellular lipopolysaccharide expands the spectrum of pyroptosis mediators and also reveals that pyroptosis is not cell type specific. Recent studies identified the pyroptosis executioner, gasdermin D (GSDMD), a substrate of both caspase-1 and caspase-11/4/5. GSDMD represents a large gasdermin family bearing a novel membrane pore-forming activity. Thus, pyroptosis is redefined as gasdermin-mediated programmed necrosis. Gasdermins are associated with various genetic diseases, but their cellular function and mechanism of activation (except for GSDMD) are unknown. The gasdermin family suggests a new area of research on pyroptosis function in immunity, disease, and beyond.", "Epithelial-mesenchymal transition (EMT), a biological process by which polarized epithelial cells convert into a mesenchymal phenotype, has been implicated to contribute to the molecular heterogeneity of epithelial ovarian cancer (EOC). Here we report that a transcription factor--Grainyhead-like 2 (GRHL2) maintains the epithelial phenotype. EOC tumours with lower GRHL2 levels are associated with the Mes/Mesenchymal molecular subtype and a poorer overall survival. shRNA-mediated knockdown of GRHL2 in EOC cells with an epithelial phenotype results in EMT changes, with increased cell migration, invasion and motility. By ChIP-sequencing and gene expression microarray, microRNA-200b/a is identified as the direct transcriptional target of GRHL2 and regulates the epithelial status of EOC through ZEB1 and E-cadherin. Our study demonstrates that loss of GRHL2 increases the levels of histone mark H3K27me3 on promoters and GRHL2-binding sites at miR-200b/a and E-cadherin genes. These findings support GRHL2 as a pivotal gatekeeper of EMT in EOC via miR-200-ZEB1.", "BACKGROUND: The incidence of thyroid cancer is increasing worldwide. The findings of up to 30% of thyroid fine-needle aspiration biopsies (FNAB) are inconclusive, primarily as a result of several thyroid histologic subtypes with overlapping cytologic features. MicroRNAs (miRNAs) are small noncoding RNAs and have been implicated in carcinogenesis. We hypothesized that there are miRNAs that are differentially expressed between benign and malignant thyroid tumors that are difficult to distinguish by FNAB.METHODS: The expression of 1263 human miRNAs was profiled in 47 tumor samples representing difficult to diagnose histologic subtypes of thyroid neoplasm (21 benign, 26 malignant). Differentially expressed miRNAs were validated by quantitative real-time reverse transcriptase-polymerase chain reaction. The area under the receiver operating characteristic curve (AUC) was used to determine the diagnostic accuracy of differentially expressed miRNAs.RESULTS: Supervised hierarchical cluster analysis demonstrated grouping of 2 histologies (papillary and follicular thyroid carcinoma). A total of 34 miRNAs were differentially expressed in malignant compared to benign thyroid neoplasms (P<0.05). A total of 25 of the 34 nonproprietary miRNAs were selected for validation, and 15 of the 25 miRNAs were differentially expressed between benign and malignant samples with P-value<0.05. Seven miRNAs had AUC values of >0.7. miR-7 and miR-126 had the highest diagnostic accuracy with AUCs values of 0.81 and 0.77, respectively.CONCLUSION: To our knowledge, this is the first study to evaluate the diagnostic accuracy of miRNAs in thyroid histologies that are difficult to distinguish as benign or malignant by FNAB. miR-126 and miR-7 had high diagnostic accuracy and could be helpful adjuncts to thyroid FNAB.", "The presence of pathogenic bacteria is a major health risk factor in food samples and the commercial food supply chain is susceptible to bacterial contamination. Thus, rapid and sensitive identification methods are in demand for the food industry. Quantitative polymerase chain reaction (PCR) is one of the reliable specific methods with reasonably fast assay times. However, many constituents in food samples interfere with PCR, resulting in false results and thus hindering the usability of the method. Therefore, we aimed to develop an aptamer-based magnetic separation system as a sample preparation method for subsequent identification and quantification of the contaminant bacteria by real-time PCR. To achieve this goal, magnetic beads were prepared via suspension polymerization and grafted with glycidylmethacrylate (GMA) brushes that were modified into high quantities of amino groups. The magnetic beads were decorated with two different aptamer sequences binding specifically to Escherichia coli or Salmonella typhimurium. The results showed that even 1.0% milk inhibited PCR, but our magnetic affinity system capture of bacteria from 100% milk samples allowed accurate determination of bacterial contamination at less than 2.0 h with limit of detection around 100 CFU/mL for both bacteria in spiked-milk samples.", "Inflammatory caspases cleave the gasdermin D (GSDMD) protein to trigger pyroptosis, a lytic form of cell death that is crucial for immune defences and diseases. GSDMD contains a functionally important gasdermin-N domain that is shared in the gasdermin family. The functional mechanism of action of gasdermin proteins is unknown. Here we show that the gasdermin-N domains of the gasdermin proteins GSDMD, GSDMA3 and GSDMA can bind membrane lipids, phosphoinositides and cardiolipin, and exhibit membrane-disrupting cytotoxicity in mammalian cells and artificially transformed bacteria. Gasdermin-N moved to the plasma membrane during pyroptosis. Purified gasdermin-N efficiently lysed phosphoinositide/cardiolipin-containing liposomes and formed pores on membranes made of artificial or natural phospholipid mixtures. Most gasdermin pores had an inner diameter of 10–14 nm and contained 16 symmetric protomers. The crystal structure of GSDMA3 showed an autoinhibited two-domain architecture that is conserved in the gasdermin family. Structure-guided mutagenesis demonstrated that the liposome-leakage and pore-forming activities of the gasdermin-N domain are required for pyroptosis. These findings reveal the mechanism for pyroptosis and provide insights into the roles of the gasdermin family in necrosis, immunity and diseases.", "This study aimed to examine outcome in low risk transient ischaemic attack (TIA) patients presenting to emergency departments (ED) in a regional Australian setting discharged on antiplatelet therapy with expedited neurology review. All patients presenting to Gosford or Wyong Hospital ED with TIA, for whom faxed referrals to the neurology department were received between October 2008 and July 2010, were included in this prospective cohort study. Classification of low risk was based on an age, blood pressure, clinical features, duration of symptoms and diabetes (ABCD2) score <4 and the absence of high risk features, including known carotid disease, crescendo TIA, or atrial fibrillation. Patients with ABCD2 scores > or =4 or with high risk features were discussed with the neurologist on call (a decision regarding discharge or admission was then made at the neurologist's discretion). Patients were investigated with a brain CT scan and/or CT angiography, routine pathology, and an electrocardiogram. All discharged patients were commenced on antiplatelet therapy and asked to follow up with their local medical officer within 7 days. The patients were contacted by the neurology department to arrange follow-up. Our primary outcome was the number of subsequent strokes occurring within 90 days. Of 200 discharged patients for whom referrals were received, three patients had a stroke within 90 days. None of these would have been prevented through hospitalisation. In conclusion, medical assessment, expedited investigation with immediate commencement of secondary prevention and outpatient neurology review may be a reasonable alternative to admission for low risk patients presenting to the ED with TIA." ]
2,069
[ "The purpose of imaging of the elbow region in children after acute trauma is the diagnosis of injuries that require further treatment. Basic diagnostic consists of standard X-rays of the elbow in two planes. Exceptions can be made in the case of nursemaid's elbow lesion (subluxation of the radial head; pronation douloureuse; Chassaignac lesion) with unambiguous mechanism of the trauma where no X-ray imaging is needed and in heavily dislocated fractures for which one plane can be sufficient. X-ray imaging of the uninjured side is obsolete. Follow-up X-ray imaging is only allowed if consequences for the further treatment are expected. Ultrasound may partially replace X-rays in the future if further standardization of this technique can be achieved. MRI provides additional information in acute trauma which, however, remains currently without consequences for the further treatment strategy.", "MicroRNAs (miRNAs) are short regulatory RNAs that down-regulate gene expression. They are essential for cell homeostasis and active in many disease states. A major discovery is the ability of miRNAs to determine the efficacy of drugs, which has given rise to the field of 'miRNA pharmacogenomics' through 'Pharmaco-miRs'. miRNAs play a significant role in pharmacogenomics by down-regulating genes that are important for drug function. These interactions can be described as triplet sets consisting of a miRNA, a target gene and a drug associated with the gene. We have developed a web server which links miRNA expression and drug function by combining data on miRNA targeting and protein-drug interactions. miRNA targeting information derive from both experimental data and computational predictions, and protein-drug interactions are annotated by the Pharmacogenomics Knowledge base (PharmGKB). Pharmaco-miR's input consists of miRNAs, genes and/or drug names and the output consists of miRNA pharmacogenomic sets or a list of unique associated miRNAs, genes and drugs. We have furthermore built a database, named Pharmaco-miR Verified Sets (VerSe), which contains miRNA pharmacogenomic data manually curated from the literature, can be searched and downloaded via Pharmaco-miR and informs on trends and generalities published in the field. Overall, we present examples of how Pharmaco-miR provides possible explanations for previously published observations, including how the cisplatin and 5-fluorouracil resistance induced by miR-148a may be caused by miR-148a targeting of the gene KIT. The information is available at www.Pharmaco-miR.org.", "We have identified a mutant of pea cultivar Alaska that has many of the characteristics normally associated with light-grown seedlings even when grown in complete darkness. We have designated this mutant lip1, for light independent photomorphogenesis. Etiolated wild-type pea seedlings are white to slightly yellow in color and have a distinct morphology characterized by elongated epicotyls and buds containing unexpanded leaves with small, undifferentiated cells. In contrast, mutant seedlings grown under the same conditions are yellow in color and have short epicotyls and expanded leaves showing clear cellular differentiation. Transmission electron microscopy revealed partially developed, agranal plastids in the dark-grown mutant, unlike wild-type seedlings that contain etioplasts with prolamellar bodies. The mutant also exhibits a much shorter lag period for chlorophyll accumulation when etiolated seedlings are transferred from darkness to white light. The dark-grown mutant has 10-fold less spectrally detectable phytochrome, which can be attributed to a 10-fold reduction in the level of the PHYA polypeptide. Cab, Fed1, and RbcS transcripts are present in dark-grown mutant seedlings at levels comparable to those produced in light-grown material. The levels of these transcripts show a normal decrease when green plants grown for 15 days in a light/dark cycle are transferred to continuous darkness. However, transcript levels remain high during dark treatment of seedlings grown for 9 days in continuous light, indicating that the dark adaptation response in this mutant is developmentally plastic. The lip1 mutant has several features in common with the deetiolated Arabidopsis mutants det1, det2, and cop1. However, there are also several important differences, including varying effects on phytochrome levels, organ-specific gene expression, plastid development, and response to dark adaptation.", "Author information:(1)UF Innovation en diagnostic genomique des maladies rares, CHU Dijon Bourgogne, Dijon, France. frederic.tran-mau-them@u-bourgogne.fr.(2)INSERM UMR1231 GAD, F-21000, Dijon, France. frederic.tran-mau-them@u-bourgogne.fr.(3)Universite Claude Bernard Lyon I, CHU de Lyon, Lyon, France.(4)Service de Radiologie, Hopital-Femme-Mère-Enfant, Hospices Civils de Lyon, Lyon, France.(5)INSERM UMR1231 GAD, F-21000, Dijon, France.(6)Departement de Genetique, Hopital Pitie-Salpetriere, Paris, France.(7)Division of Genetics and Metabolic Phoenix Children's Hospital, Phoenix, Arizona, USA.(8)Inserm U 1127, CNRS UMR 7225, Sorbonne Universites, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle epinière, ICM, Paris, France.(9)Reference Center for Adult Neurometabolic Diseases, Pitie-Salpêtrière University Hospital, Paris, France.(10)Department of Genetics, University Medical Center, Utrecht, The Netherlands.(11)Centre de Reference maladies rares « Anomalies du Developpement et syndrome malformatifs » de l'Est, Centre de Genetique, Hopital d'Enfants, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France.(12)UF Innovation en diagnostic genomique des maladies rares, CHU Dijon Bourgogne, Dijon, France.(13)Department of Child Neurology, Brain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands.(14)Department of Pediatrics, Division of Medical Genetics, Cedars-Sinai Medical Center and Harbor-UCLA Medical Center, Los Angeles, California, USA.(15)Division of Pediatric Neurology, Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles, California, USA.(16)GeneDx, Gaithersburg, Maryland, USA.(17)Genomed Ltd., Moscow, Russia.(18)Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia.(19)Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA.(20)Departments of Human Genetics and Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.(21)Institute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland.(22)Division of Pediatric Neurology, Children's Hospital, Lucerne, Switzerland.(23)Department of Neurosciences and Pediatrics UCSD/Rady Children's Hospital San Diego, Rady Children's Institute for Genomic Medicine, San Diego, California, USA.(24)UF Innovation en diagnostic genomique des maladies rares, CHU Dijon Bourgogne, Dijon, France. antonio.vitobello@u-bourgogne.fr.(25)INSERM UMR1231 GAD, F-21000, Dijon, France. antonio.vitobello@u-bourgogne.fr.", "BACKGROUND: We had previously reported that the Suppression Subtractive Hybridization (SSH) approach was relevant for the isolation of new mammalian genes involved in oogenesis and early follicle development. Some of these transcripts might be potential new oocyte and granulosa cell markers. We have now characterized one of them, named TOPAZ1 for the Testis and Ovary-specific PAZ domain gene.PRINCIPAL FINDINGS: Sheep and mouse TOPAZ1 mRNA have 4,803 bp and 4,962 bp open reading frames (20 exons), respectively, and encode putative TOPAZ1 proteins containing 1,600 and 1653 amino acids. They possess PAZ and CCCH domains. In sheep, TOPAZ1 mRNA is preferentially expressed in females during fetal life with a peak during prophase I of meiosis, and in males during adulthood. In the mouse, Topaz1 is a germ cell-specific gene. TOPAZ1 protein is highly conserved in vertebrates and specifically expressed in mouse and sheep gonads. It is localized in the cytoplasm of germ cells from the sheep fetal ovary and mouse adult testis.CONCLUSIONS: We have identified a novel PAZ-domain protein that is abundantly expressed in the gonads during germ cell meiosis. The expression pattern of TOPAZ1, and its high degree of conservation, suggests that it may play an important role in germ cell development. Further characterization of TOPAZ1 may elucidate the mechanisms involved in gametogenesis, and particularly in the RNA silencing process in the germ line.", "Intracellular mRNA transport and local translation play a key role in neuronal physiology. Translationally repressed mRNAs are transported as a part of ribonucleoprotein (RNP) particles to distant dendritic sites, but the properties of different RNP particles and mechanisms of their repression and transport remain largely unknown. Here, we describe a new class of RNP-particles, the dendritic P-body-like structures (dlPbodies), which are present in the soma and dendrites of mammalian neurons and have both similarities and differences to P-bodies of non-neuronal cells. These structures stain positively for a number of P-body and microRNP components, a microRNA-repressed mRNA and some translational repressors. They appear more heterogeneous than P-bodies of HeLa cells, and they rarely contain the exonuclease Xrn1 but are positive for rRNA. These particles show motorized movements along dendrites and relocalize to distant sites in response to synaptic activation. Furthermore, Dcp1a is stably associated with dlP-bodies in unstimulated cells, but exchanges rapidly on neuronal activation, concomitantly with the loss of Ago2 from dlP-bodies. Thus, dlP-bodies may regulate local translation by storing repressed mRNPs in unstimulated cells, and releasing them on synaptic activation.", "Many bacterial genomes are under asymmetric mutational pressure which introduces compositional asymmetry into DNA molecule resulting in many biases in coding structure of chromosomes. One of the processes affected by the asymmetry is translocation changing the position of the coding sequence on chromosome in respect to the orientation on the leading and lagging DNA strand. When analysing sets of paralogs in 50 genomes, we found that the number of observed genes which switched their positions on DNA strand is lowest for genomes with the highest DNA asymmetry. However, the number of orthologs which changed DNA strand increases with the phylogenetic distance between the compared genomes. Nevertheless, there is a fraction of coding sequences that stay on the leading strand in all analysed genomes, whereas there are no sequences that stay always on the lagging strand. Since sequences diverge very fast after switching the DNA strand, this bias in mobility of sequences is responsible, in part, for higher divergence rates among some of coding sequences located on the lagging DNA strand.", "Topaz1 (Testis and Ovary-specific PAZ domain gene 1) is a germ cell specific gene highly conserved in vertebrates. The putative protein TOPAZ1 contains a PAZ domain, specifically found in PIWI, Argonaute and Zwille proteins. Consequently, Topaz1 is supposed to have a role during gametogenesis and may be involved in the piRNA pathway and contribute to silencing of transposable elements and maintenance of genome integrity. Here we report Topaz1 inactivation in mouse. Female fertility was not affected, but male sterility appeared exclusively in homozygous mutants in accordance with the high expression of Topaz1 in male germ cells. Pachytene Topaz1--deficient spermatocytes progress through meiosis without either derepression of retrotransposons or MSCI dysfunction, but become arrested before the post-meiotic round spermatid stage with extensive apoptosis. Consequently, an absence of spermatids and spermatozoa was observed in Topaz1(-/-) testis. Histological analysis also revealed that disturbances of spermatogenesis take place between post natal days 15 and 20, during the first wave of male meiosis and before the generation of haploid germ cells. Transcriptomic analysis at these two stages showed that TOPAZ1 influences the expression of one hundred transcripts, most of which are up-regulated in mutant testis at post natal day 20. Our results also showed that 10% of these transcripts are long non-coding RNA. This suggests that a highly regulated balance of lncRNAs seems to be essential during spermatogenesis for induction of appropriate male gamete production." ]
2,076
[ "Familial pituitary adenoma is a rare syndrome which may present either as isolated lesions, or in association with other endocrine tumors, for example in the frame of multiple endocrine neoplasia (MEN-1) or Carney complex (CNC). The most frequently described forms of familial isolated pituitary adenoma (FIPA) are familial somatotropinomas or prolactinomas. Recently, some cases of familial isolated somatotropinoma have been associated with germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. The present report shows heterogeneous FIPA with 3 subtypes of tumor in 3 individuals of the same family: somatotropinoma in the proband, giant prolactinoma in a brother, and gonadotroph cell macroadenoma in the father. A prospective survey also suggested the occurrence of a silent microadenoma in the proband's sister. Clinical screening was performed in the 3 affected members, the 4th suspected case, and 9 additional, asymptomatic relatives. They had no clinical evidence of associated endocrine lesion suggesting MEN-1 or CNC. Genetic screening for germline mutation of the MEN-1, the gene encoding the protein kinase A (PKA) type 1 alpha regulatory subunit (R1 alpha) (PRKAR1alpha) and AIP gene was negative in 2 affected members. In conclusion, these data suggest that familial pituitary adenomas can occur with a heterogeneous functional pattern that is distinguished from MEN-1 or CNC. The absence of mutation of the recently described AIP gene suggests the implication of other predisposing gene(s). Collaborative, multicentric studies are needed to further define the location of gene(s) involved in heterogeneous FIPA.", "Striatonigral degeneration (SND) is difficult to diagnose in vivo. The purpose of this study was to detect the best indicators for an early and reliable diagnosis of the disease. Eighteen patients clinically diagnosed as having SND were selected with rigorous inclusion criteria and compared to 18 patients with Parkinson's disease (PD) matched for age and disease duration. Apart from dysautonomia, the principal discriminant clinical features that distinguished SND from PD were the early appearance of the following symptoms and signs: (a) severe and atypical progressive parkinsonism characterized by bilateral bradykinesia and rigidity, slowness of gait, postural instability, and falls, and poor or absent response to adequate levodopa treatment; (b) increased tendon reflexes associated or not with frank pyramidal signs, severe dysarthria, and less consistently, dysphagia, stridor, antecollis, and stimulus-sensitive myoclonus, which, when present, are highly suggestive of the disease.", "Multiple myeloma (MM) displays an NFκB activity-related gene expression signature and about 20% of primary MM samples harbor genetic alterations conducive to intrinsic NFκB signaling activation. The relevance of blocking the classical versus the alternative NFκB signaling pathway and the molecular execution mechanisms involved, however, are still poorly understood. Here, we comparatively tested NFκB activity abrogation through TPCA-1 (an IKK2 inhibitor), BAY 11-7082 (an IKK inhibitor poorly selective for IKK1 and IKK2), and MLN4924 (an NEDD8 activating enzyme (NAE)-inhibitor), and analyzed their anti-MM activity. Whereas TPCA-1 interfered selectively with activation of the classical NFκB pathway, the other two compounds inhibited classical and alternative NFκB signaling without significant discrimination. Noteworthy, whereas TPCA-1 and MLN4924 elicited rather mild anti-MM effects with slight to moderate cell death induction after 1 day BAY 11-7082 was uniformly highly toxic to MM cell lines and primary MM cells. Treatment with BAY 11-7082 induced rapid cell swelling and its initial effects were blocked by necrostatin-1 or the ROS scavenger BHA, but a lasting protective effect was not achieved even with additional blockade of caspases. Because MLN4924 inhibits the alternative NFκB pathway downstream of IKK1 at the level of p100 processing, the quite discordant effects between MLN4924 and BAY 11-7082 must thus be due to blockade of IKK1-mediated NFκB-independent necrosis-inhibitory functions or represent an off-target effect of BAY 11-7082. In accordance with the latter, we further observed that concomitant knockdown of IKK1 and IKK2 did not have any major short-term adverse effect on the viability of MM cells.", "BACKGROUND: By comparing fibroblasts collected from animals at 5-months or 16-months of age we have previously found that the cultures from older animals produce much more IL-8 in response to lipopolysaccharide (LPS) stimulation. We now expand this finding by examining whole transcriptome differences in the LPS response between cultures from the same animals at different ages, and also investigate the contribution of DNA methylation to the epigenetic basis for the age-dependent increases in responsiveness.RESULTS: Age-dependent differences in IL-8 production by fibroblasts in response to LPS exposure for 24 h were abolished by pretreatment of cultures with a DNA demethylation agent, 5-aza-2'deoxycytidine (AZA). RNA-Seq analysis of fibroblasts collected from the same individuals at either 5 or 16 months of age and exposed in parallel to LPS for 0, 2, and 8 h revealed a robust response to LPS that was much greater in the cultures from older animals. Pro-inflammatory genes including IL-8, IL-6, TNF-α, and CCL20 (among many other immune associated genes), were more highly expressed (FDR < 0.05) in the 16-month old cultures following LPS exposure. Methylated CpG island recovery assay sequencing (MIRA-Seq) revealed numerous methylation peaks spread across the genome, combined with an overall hypomethylation of gene promoter regions, and a remarkable similarity, except for 20 regions along the genome, between the fibroblasts collected at the two ages from the same animals.CONCLUSIONS: The fibroblast pro-inflammatory response to LPS increases dramatically from 5 to 16 months of age within individual animals. A better understanding of the mechanisms underlying this process could illuminate the physiological processes by which the innate immune response develops and possibly individual variation in innate immune response arises. In addition, although relatively unchanged by age, our data presents a general overview of the bovine fibroblast methylome as a guide for future studies in cattle epigenetics utilizing this cell type.", "Efficient synthesis of many small abundant RNAs is achieved by the proficient recycling of RNA polymerase (pol) III and stable transcription complexes. Cellular Alu and related retroposons represent unusual pol III genes that are normally repressed but are activated by viral infection and other conditions. The core sequences of these elements contain pol III promoters but must rely on fortuitous downstream oligo(dT) tracts for terminator function. We show that a B1-Alu gene differs markedly from a classical pol III gene (tRNAiMet) in terminator sequence requirements. B1-Alu genes that differ only in terminator sequence context direct differential RNA 3' end formation. These genes are assembled into stable transcription complexes but differ in their ability to be recycled in the presence of the La transcription termination factor. La binds to the nascent RNA 3' UUUOH end motif that is generated by transcriptional termination within the pol III termination signal, oligo(dT). We found that the recycling efficiency of the B1-Alu genes is correlated with the ability of La to access the 3' end of the nascent transcript and protect it from 3'-5' exonucleolytic processing. These results illuminate a relationship between RNA 3' end formation and transcription termination, and La-mediated reinitiation by pol III.", "The soilborne fungus Fusarium oxysporum f. sp. radicis-lycopersici causes tomato foot and root rot (TFRR), which can be controlled by the addition of the nonpathogenic fungus F. oxysporum Fo47 to the soil. To improve our understanding of the interactions between the two Fusarium strains on tomato roots during biocontrol, the fungi were labeled using different autofluorescent proteins as markers and subsequently visualized using confocal laser scanning microscopy. The results were as follows. i) An at least 50-fold excess of Fo47over F. oxysporum f. sp. radicis-lycopersici was required to obtain control of TFRR. ii) When seedlings were planted in sand infested with spores of a single fungus, Fo47 hyphae attached to the root earlier than those of F. oxysporum f. sp. radicis-lycopersici. iii) Subsequent root colonization by F. oxysporum f. sp. radicis-lycopersici was faster and to a larger extent than that by Fo47. iv) Under disease-controlling conditions, colonization of tomato roots by the pathogenic fungus was significantly reduced. v) When the inoculum concentration of Fo47 was increased, root colonization by the pathogen was arrested at the stage of initial attachment to the root. vi) The percentage of spores of Fo47 that germinates in tomato root exudate in vitro is higher than that of the pathogen F. oxysporum f. sp. radicis-lycopersici. Based on these results, the mechanisms by which Fo47 controls TFRR are discussed in terms of i) rate of spore germination and competition for nutrients before the two fungi reach the rhizoplane; ii) competition for initial sites of attachment, intercellular junctions, and nutrients on the tomato root surface; and iii) inducing systemic resistance.", "Transposons have been promising elements for gene integration, and the Sleeping Beauty (SB) system has been the major one for many years, although there have been several other transposon systems available, for example, Tol2. However, recently another system known as PiggyBac (PB) has been introduced and developed for fulfilling the same purposes, for example, mutagenesis, transgenesis and gene therapy and in some cases with improved transposition efficiency and advantages over the Sleeping Beauty transposon system, although improved hyperactive transposase has highly increased the transposition efficacy for SB. The PB systems have been used in many different scientific research fields; therefore, the purpose of this review is to describe some of these versatile uses of the PiggyBac system to give readers an overview on the usage of PiggyBac system.", "AIM: To develop a reliable method for whole genome analysis of DNA methylation.MATERIALS & METHODS: Genome-scale analysis of DNA methylation includes affinity-based approaches such as enrichment using methyl-CpG-binding proteins. One of these methods, the methylated-CpG island recovery assay (MIRA), is based on the high affinity of the MBD2b-MBD3L1 complex for CpG-methylated DNA. Here we provide a detailed description of MIRA and combine it with next generation sequencing platforms (MIRA-seq).RESULTS: We assessed the performance of MIRA-seq and compared the data with whole genome bisulfite sequencing.CONCLUSION: MIRA-seq is a reliable, genome-scale DNA methylation analysis platform for scoring DNA methylation differences at CpG-rich genomic regions. The method is not limited by primer or probe design and is cost effective.", "This report describes the reliability, validity, treatment sensitivity, diagnostic performance and normative values for the Short Post-Traumatic Stress Disorder (PTSD) Rating Interview (SPRINT), a brief, global assessment for PTSD. The SPRINT was administered to subjects participating in a clinical trial of PTSD and in a population survey assessing PTSD prevalence. The 8-item SPRINT includes questions assessing the core symptoms of PTSD, as well as related aspects of somatic malaise, stress vulnerability and functional impairment. Validity was assessed against the MINI structured interview, the Davidson Trauma Scale, Treatment Outcome for PTSD Scale, Connor-Davidson Resilience Scale, Sheehan Stress Vulnerability Scale, Sheehan Disability Scale and Clinical Global Impressions of Severity and Improvement Scales. Good test-retest reliability, internal consistency, convergent and divergent validity were obtained. The SPRINT was responsive to symptom change over time and correlated with comparable PTSD symptom measures. In victims of trauma, a score of 14-17 was associated with 96% diagnostic accuracy, whereas in those with PTSD, highest efficiency corresponded to a range of 11-13. The SPRINT demonstrates solid psychometric properties and can serve as a reliable, valid and homogeneous measure of PTSD illness severity and of global improvement.", "BACKGROUND: We have previously found substantial animal-to-animal and age-dependent variation in the response of Holstein fibroblast cultures challenged with LPS. To expand on this finding, fibroblast cultures were established from dairy (Holstein) and beef (Angus) cattle and challenged with LPS to examine breed-dependent differences in the innate immune response. Global gene expression was measured by RNA-Seq, while an epigenetic basis for expression differences was examined by methylated CpG island recovery assay sequencing (MIRA-Seq) analysis.RESULTS: The Holstein breed displayed a more robust response to LPS than the Angus breed based on RNA-Seq analysis of cultures challenged with LPS for 0, 2, and 8 h. Several immune-associated genes were expressed at greater levels (FDR < 0.05) in Holstein cultures including TLR4 at all time points and a number of pro-inflammatory genes such as IL8, CCL20, CCL5, and TNF following LPS exposure. Despite extensive breed differences in the transcriptome, MIRA-Seq unveiled relatively similar patterns of genome-wide DNA methylation between breeds, with an overall hypomethylation of gene promoters. However, by examining the genome in 3Kb windows, 49 regions of differential methylation were discovered between Holstein and Angus fibroblasts, and two of these regions fell within the promoter region (-2500 to +500 bp of the transcription start site) of the genes NTRK2 and ADAMTS5.CONCLUSIONS: Fibroblasts isolated from Holstein cattle display a more robust response to LPS in comparison to cultures from Angus cattle. Different selection strategies and management practices exist between these two breeds that likely give rise to genetic and epigenetic factors contributing to the different immune response phenotypes.", "Using MIRA-seq, we have characterized the DNA methylome of metastatic melanoma and normal melanocytes. Individual tumors contained several thousand hypermethylated regions. We discovered 179 tumor-specific methylation peaks present in all (27/27) melanomas that may be effective disease biomarkers, and 3113 methylation peaks were seen in >40% of the tumors. We found that 150 of the approximately 1200 tumor-associated methylation peaks near transcription start sites (TSSs) were marked by H3K27me3 in melanocytes. DNA methylation in melanoma was specific for distinct H3K27me3 peaks rather than for broadly covered regions. However, numerous H3K27me3 peak-associated TSS regions remained devoid of DNA methylation in tumors. There was no relationship between BRAF mutations and the number of methylation peaks. Gene expression analysis showed upregulated immune response genes in melanomas presumably as a result of lymphocyte infiltration. Down-regulated genes were enriched for melanocyte differentiation factors; e.g., KIT, PAX3 and SOX10 became methylated and downregulated in melanoma.", "PURPOSE: To report a case of idiopathic retinal vasculitis, aneurysms and neuroretinitis (IRVAN) syndrome associated with positive perinuclear antineutrophil cytoplasmic antibody (P-ANCA).CASE REPORT: A 51-year-old man presented with loss of vision in his right eye since many years ago and blurred vision in his left eye over the past year. Ophthalmologic examination revealed optic atrophy and old vascular sheathing in the right eye and blurred disc margin, macular exudation, flame shaped hemorrhages, retinal vascular sheathing and multiple aneurysms at arterial bifurcation sites in the left eye, findings compatible with IRVAN syndrome. On systemic workup, the only notable finding was P-ANCA positivity.CONCLUSION: IRVAN syndrome may be a retinal component of P-ANCA associated vasculitis.", "INTRODUCTION: The limited availability of effective drugs causes difficulties in the management of multidrug-resistant tuberculosis (MDR-TB) and novel therapeutic agents are needed. Delamanid , a new nitro-hydro-imidazooxazole derivative, inhibits mycolic acid synthesis. This review covers the efficacy and safety of delamanid for MDR-TB.AREA COVERED: This paper reviews the pharmacological profile of delamanid and the results of clinical trials evaluating its efficacy for treating MDR-TB in combination with other anti-TB drugs. The drug's safety and tolerability profiles are also considered.EXPERT OPINION: Delamanid showed potent activity against drug-susceptible and -resistant Mycobacterium tuberculosis in both in vitro and in vivo studies. In clinical trials, the drug showed significant early bactericidal activity in pulmonary TB patients, and increased culture conversion after 2 months of treatment in combination with an optimized background regimen in MDR-TB patients. In addition, decreased mortality was observed in MDR-TB patients who received > 6 months of delamanid treatment. The drug was generally tolerable, but QT prolongation should be monitored carefully using electrocardiograms and potassium levels. Therefore, delamanid could be used as part of an appropriate combination regimen for pulmonary MDR-TB in adult patients when an effective treatment regimen cannot otherwise be composed for reasons of resistance or tolerability.", "In mass spectrometry-based shotgun proteomics, protein quantification and protein identification are two major computational problems. To quantify the protein abundance, a list of proteins must be firstly inferred from the raw data. Then the relative or absolute protein abundance is estimated with quantification methods, such as spectral counting. Until now, most researchers have been dealing with these two processes separately. In fact, the protein inference problem can be regarded as a special protein quantification problem in the sense that truly present proteins are those proteins whose abundance values are not zero. Some recent published papers have conceptually discussed this possibility. However, there is still a lack of rigorous experimental studies to test this hypothesis. In this paper, we investigate the feasibility of using protein quantification methods to solve the protein inference problem. Protein inference methods aim to determine whether each candidate protein is present in the sample or not. Protein quantification methods estimate the abundance value of each inferred protein. Naturally, the abundance value of an absent protein should be zero. Thus, we argue that the protein inference problem can be viewed as a special protein quantification problem in which one protein is considered to be present if its abundance is not zero. Based on this idea, our paper tries to use three simple protein quantification methods to solve the protein inference problem effectively. The experimental results on six data sets show that these three methods are competitive with previous protein inference algorithms. This demonstrates that it is plausible to model the protein inference problem as a special protein quantification task, which opens the door of devising more effective protein inference algorithms from a quantification perspective. The source codes of our methods are available at: http://code.google.com/p/protein-inference/.", "Cellular senescence is a stable cell cycle arrest that can be triggered in normal cells in response to various intrinsic and extrinsic stimuli, as well as developmental signals. Senescence is considered to be a highly dynamic, multi-step process, during which the properties of senescent cells continuously evolve and diversify in a context dependent manner. It is associated with multiple cellular and molecular changes and distinct phenotypic alterations, including a stable proliferation arrest unresponsive to mitogenic stimuli. Senescent cells remain viable, have alterations in metabolic activity and undergo dramatic changes in gene expression and develop a complex senescence-associated secretory phenotype. Cellular senescence can compromise tissue repair and regeneration, thereby contributing toward aging. Removal of senescent cells can attenuate age-related tissue dysfunction and extend health span. Senescence can also act as a potent anti-tumor mechanism, by preventing proliferation of potentially cancerous cells. It is a cellular program which acts as a double-edged sword, with both beneficial and detrimental effects on the health of the organism, and considered to be an example of evolutionary antagonistic pleiotropy. Activation of the p53/p21WAF1/CIP1 and p16INK4A/pRB tumor suppressor pathways play a central role in regulating senescence. Several other pathways have recently been implicated in mediating senescence and the senescent phenotype. Herein we review the molecular mechanisms that underlie cellular senescence and the senescence associated growth arrest with a particular focus on why cells stop dividing, the stability of the growth arrest, the hypersecretory phenotype and how the different pathways are all integrated.", "The product of the SLC40A1 gene, ferroportin 1, is a main iron export protein. Pathogenic mutations in ferroportin 1 lead to an autosomal dominant hereditary iron overload syndrome characterized by high serum ferritin concentration, normal transferrin saturation, iron accumulation predominantly in macrophages, and marginal anemia. Iron overload occurs in both the African and the African-American populations, but a possible genetic basis has not been established. We analyzed the ferroportin 1 gene in 19 unrelated patients from southern Africa (N = 15) and the United States (N = 4) presenting with primary iron overload. We found a new c. 744 C-->T (Q248H) mutation in the SLC40A1 gene in 4 of these patients (3 Africans and 1 African-American). Among 22 first degree family members, 10 of whom were Q248H heterozygotes, the mutation was associated with a trend to higher serum ferritin to amino aspartate transferase ratios (means of 14.8 versus 4.3 microg/U; P = 0.1) and lower hemoglobin concentrations (means of 11.8 versus 13.2 g/dL; P = 0.1). The ratio corrects serum ferritin concentration for alcohol-induced hepatocellular damage. We also found heterozygosity for the Q248H mutation in 7 of 51 (14%) southern African community control participants selected because they had a serum ferritin concentration below 400 microg/L and in 5 of 100 (5%) anonymous African-Americans, but we did not find the change in 300 Caucasians with normal iron status and 25 Caucasians with non-HFE iron overload. The hemoglobin concentration was significantly lower in the African community controls with the Q248H mutation than in those without it. We conclude that the Q248H mutation is a common polymorphism in the ferroportin 1 gene in African populations that may be associated with mild anemia and a tendency to iron loading." ]
2,081
[ "Hypercontractile esophagus (HE), also known as jackhammer esophagus, is an esophageal motility disorder. Nowadays, high-resolution manometry (HRM) is used to diagnose the disorder. According to the latest iteration of the Chicago classification, HE is present when at least 2 out 10 liquid swallow-induced peristaltic waves have an abnormally high Distal Contractile Integral. In the era of conventional manometry, a similar condition, referred to as nutcracker esophagus, was diagnosed when the peristaltic contractions had an abnormally high mean amplitude. Although the HRM diagnosis of HE is relatively straight-forward, effective management of the disorder is challenging as the correlation with symptoms is variable and treatment effects are dubious. In this mini-review, we discuss the most troublesome uncertainties that still surround HE, in the light of new data on etiology and epidemiology published in this issue of Neurogastroenterology and Motility.", "This article reviews pegaptanib sodium, a compound developed by Eyetech Pharmaceuticals Inc. and Pfizer Inc., for the treatment of neovascular age-related macular degeneration (AMD). Traditional treatment approaches to neovascular AMD have included destructive therapies such as thermal laser photocoagulation and photodynamic therapy; the use of pegaptanib sodium heralds a new treatment approach that is a non-destructive therapy based on the inhibition of vascular endothelial growth factor activity in the eye. This diminishes the neovascular drive in the pathologically hyperpermeable state of the diseased eye. Pegaptanib sodium is one of the first therapeutics belonging to the class of compounds known as aptamers. The chemistry, mechanism of action, pharmacokinetics and rationale for the clinical use of the drug are reviewed. The article highlights and summarises the results of the multi-centre, randomised, sham-controlled clinical trials with pegaptanib sodium to treat subfoveal choroidal neovascularisation in AMD. In addition, the safety profile is reviewed.", "This paper presents a framework for predicting protein-protein interactions (PPI) that integrates structure-based information with other functional annotations, e.g. GO, co-expression and co-localization, etc., Given two protein sequences, the structure-based interaction prediction technique threads these two sequences to all the protein complexes in the PDB and then chooses the best potential match. Based on this match, structural information is incorporated into logistic regression to evaluate the probability of these two proteins interacting. This paper also describes a random forest classifier which can effectively combine the structure-based prediction results and other functional annotations together to predict protein interactions. Experimental results indicate that the predictive power of the structure-based method is better than many other information sources. Also, combining the structure-based method with other information sources allows us to achieve a better performance than when structure information is not used. We also tested our method on a set of approximately 1000 yeast genes and, interestingly, the predicted interaction network is a scale-free network. Our method predicted some potential interactions involving yeast homologs of human disease-related proteins.SUPPLEMENTARY INFORMATION: http://theory.csail.mit.edu/struct2net", "In this study, we investigated the influence of children's level of executive functioning on two types of metamemory knowledge following a traumatic brain injury (TBI). For this purpose, 22 children (aged 7 to 14 years) who had sustained a moderate to severe TBI and 44 typically developing children were recruited. The children with TBI were divided into two groups according to the severity of their executive impairment. Injury severity was determined by the Glasgow Coma Scale (GCS) score on admission or by the duration of unconsciousness. All children were then tested on both their knowledge of general memory functioning and their level of memory self-awareness, respectively assessed using the total number of correct responses on an adapted version of a metamemory interview and a self-other discrepancy score on a questionnaire evaluating everyday memory abilities. Data analyses revealed that participants with TBI who suffered impaired executive functions demonstrated less general metamemory knowledge, and underestimated the frequency of their memory problems, compared with children with TBI who had preserved executive functions and with control participants. Considering the well-established effect of metamemory knowledge on people's spontaneous implementation of strategies, the interest and the importance of these findings on both theoretical and clinical grounds are discussed.", "Nivolumab was developed as a monoclonal antibody against programmed death receptor-1, an immune checkpoint inhibitor which negatively regulates T-cell proliferation and activation. Intravenous administration of nivolumab was approved for the treatment of unresectable malignant melanoma in 2014 in Japan. When advanced melanoma patients were treated with nivolumab, median overall survival became longer. Overall survival rate was significantly better in nivolumab-treated melanoma patients than dacarbazine-treated melanoma patients. Nivolumab had an acceptable long-term tolerability profile, with 22% of patients experiencing grade 3 or 4 adverse events related to the drug. Therefore, nivolumab can become an alternative therapy for advanced malignant melanoma.", "A wide spectrum of skin toxicities has been described in patients receiving epidermal growth factor receptor (EGFR), inhibitors, including papulopustular rash, xerosis and fissures, pruritus, mucositis, paronychia, and hair changes.Trichomegaly of the eyelashes is a rare adverse effect of EGFR inhibitor therapy and is characterized by a paradoxical overgrowth of eyelashes. We present 3 cases of trichomegaly occurred during EGFR inhibitor therapy.", "OBJECTIVE: To determine the strength of the correlation between the Hunt and Hess scale, Fisher score, Brussels coma score, World Federation of Neurosurgeons score, and Glasgow coma score and health-related quality of life.METHODS: Evaluable questionnaires from 236 patients (5.6 years [± standard deviation, 2.854 years] on average after hemorrhage) were included in the analysis. Quality of life was documented using the MOS-36 item short form health survey. Because of the ordinal nature of the variables, Kendall tau was used for calculation. Significance was established as P ≤ 0.05.RESULTS: Weak and very weak correlations were found in general (r ≤ 0.28). The strongest correlations were found between the Glasgow coma score and quality of life (r = 0.236, P = 0.0001). In particular, the \"best verbal response\" achieved the strongest correlations in the comparison, at r = 0.28/P = 0.0001. The Fisher score showed very weak correlations (r = -0.148/P = 0.012). The Brussels coma score (r = -0.216/P = 0.0001), Hunt and Hess scale (r = -0.197/P = 0.0001), and the World Federation of Neurosurgeons score (r = -0.185/P = 0.0001) revealed stronger correlations, especially in terms of the physical aspects of quality of life.CONCLUSIONS: The Glasgow coma scale revealed the strongest, and the Fisher score showed the weakest correlations. Thus the Fisher score, as an indicator of the severity of a hemorrhage, has little significance in terms of health-related quality of life.", "von Hippel-Lindau (VHL) disease is an inheritable multisystem tumor syndrome characterized by multiple benign and malignant tumors affecting multiple organs. VHL is the result of a germline mutation in the VHL tumor suppressor gene. Molecular genomic analysis routinely confirms the clinical diagnosis. However, the use of molecular diagnostic methods can often be insufficient for the detection of mosaic germline VHL mutations, making the diagnosis of some cases of VHL difficult. Here, we report the case of a VHL mosaic patient with bilateral renal lesions in the absence of other VHL-associated lesions. A VHL mutation was not originally detected by routine molecular testing. Nonetheless, the detection of a heterozygous c.194C>G (p.Ser65Trp) VHL mutation in the patient's daughter prompted further genetic assessment and eventually resulted in the finding of a mosaic c.194C>G (p.Ser65Trp) VHL mutation in the patient. The mutation rate was 18.8 ± 3.84% in peripheral leukocytes. As the frequency of VHL mosaicism remains underdetermined, the possibility of a diagnosis of mosaic VHL should be considered in patients with both typical and atypical VHL-associated manifestations.", "INTRODUCTION: Our aim in this study was to assess whether the new Glasgow Coma Scale, Age, and Systolic Blood Pressure (GAP) scoring system, which is a modification of the Mechanism, Glasgow Coma Scale, Age, and Arterial Pressure (MGAP) scoring system, better predicts in-hospital mortality and can be applied more easily than previous trauma scores among trauma patients in the emergency department (ED).METHODS: This multicenter, prospective, observational study was conducted to analyze readily available variables in the ED, which are associated with mortality rates among trauma patients. The data used in this study were derived from the Japan Trauma Data Bank (JTDB), which consists of 114 major emergency hospitals in Japan. A total of 35,732 trauma patients in the JTDB from 2004 to 2009 who were 15 years of age or older were eligible for inclusion in the study. Of these patients, 27,154 (76%) with complete sets of important data (patient age, Glasgow Coma Scale (GCS) score, systolic blood pressure (SBP), respiratory rate and Injury Severity Score (ISS)) were included in our analysis. We calculated weight for the predictors of the GAP scores on the basis of the records of 13,463 trauma patients in a derivation data set determined by using logistic regression. Scores derived from four existing scoring systems (Revised Trauma Score, Triage Revised Trauma Score, Trauma and Injury Severity Score and MGAP score) were calibrated using logistic regression models that fit in the derivation set. The GAP scoring system was compared to the calibrated scoring systems with data from a total of 13,691 patients in a validation data set using c-statistics and reclassification tables with three defined risk groups based on a previous publication: low risk (mortality < 5%), intermediate risk, and high risk (mortality > 50%).RESULTS: Calculated GAP scores involved GCS score (from three to fifteen points), patient age < 60 years (three points) and SBP (> 120 mmHg, six points; 60 to 120 mmHg, four points). The c-statistics for the GAP scores (0.933 for long-term mortality and 0.965 for short-term mortality) were better than or comparable to the trauma scores calculated using other scales. Compared with existing instruments, our reclassification tables show that the GAP scoring system reclassified all patients except one in the correct direction. In most cases, the observed incidence of death in patients who were reclassified matched what would have been predicted by the GAP scoring system.CONCLUSIONS: The GAP scoring system can predict in-hospital mortality more accurately than the previously developed trauma scoring systems.", "MOTIVATION: While drug combination therapies are a well-established concept in cancer treatment, identifying novel synergistic combinations is challenging due to the size of combinatorial space. However, computational approaches have emerged as a time- and cost-efficient way to prioritize combinations to test, based on recently available large-scale combination screening data. Recently, Deep Learning has had an impact in many research areas by achieving new state-of-the-art model performance. However, Deep Learning has not yet been applied to drug synergy prediction, which is the approach we present here, termed DeepSynergy. DeepSynergy uses chemical and genomic information as input information, a normalization strategy to account for input data heterogeneity, and conical layers to model drug synergies.RESULTS: DeepSynergy was compared to other machine learning methods such as Gradient Boosting Machines, Random Forests, Support Vector Machines and Elastic Nets on the largest publicly available synergy dataset with respect to mean squared error. DeepSynergy significantly outperformed the other methods with an improvement of 7.2% over the second best method at the prediction of novel drug combinations within the space of explored drugs and cell lines. At this task, the mean Pearson correlation coefficient between the measured and the predicted values of DeepSynergy was 0.73. Applying DeepSynergy for classification of these novel drug combinations resulted in a high predictive performance of an AUC of 0.90. Furthermore, we found that all compared methods exhibit low predictive performance when extrapolating to unexplored drugs or cell lines, which we suggest is due to limitations in the size and diversity of the dataset. We envision that DeepSynergy could be a valuable tool for selecting novel synergistic drug combinations.AVAILABILITY AND IMPLEMENTATION: DeepSynergy is available via www.bioinf.jku.at/software/DeepSynergy.CONTACT: klambauer@bioinf.jku.at.SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.", "An instrument in neurologic rehabilitation for the assessment of a person's clarity of consciousness must fulfill the need to provide the rehabilitation team with some information regarding the structuring of the rehabilitation process. The Vienna Vigilance Score is oriented toward cooperation within the rehabilitation team with the specific advantage of focus on the subject status of the patient on the basis of the dialogue. It does not use painful stimuli and is oriented toward the next developmental step of the rehabilitation process. The first extensive application of the Vienna Vigilance Score was carried out in a 3-year study of 38 children and adolescents. We report the comparison with other coma scales (Glasgow Coma Scale, Children's Coma Score, and Modified Glasgow Coma Scale) on 24 children and adolescents (1.4-16.8 years of age). The results showed satisfying statistical parameters: measuring range comparable with other scales; a Kendall tau correlation of .59 on both the Modified Glasgow Coma Scale and the Children's Coma Scale and of .66 on the Glasgow Coma Scale; a Spearman's rank order correlation of .70 to both the Modified Glasgow Coma Scale and the Children's Coma Scale and of .78 on the Glasgow Coma Scale. By accepting the Glasgow Coma Scale as a gold standard for classification of the level of coma, we can confirm satisfactory measuring qualities for the Vienna Vigilance Score.", "Belzutifan (Welireg™) is an oral small molecule inhibitor of hypoxia-inducible factor (HIF)-2α being developed by Peloton Therapeutics for the treatment of solid tumours, including renal cell carcinoma (RCC) with clear cell histology (ccRCC) and von Hippel-Lindau (VHL) disease-associated RCC. In August 2021, belzutifan received its first approval in the USA for the treatment of patients with VHL disease who require therapy for associated RCC, central nervous system (CNS) haemangioblastomas or pancreatic neuroendocrine tumours (pNET), not requiring immediate surgery. Clinical studies of belzutifan (as monotherapy or combination therapy) in other indications, including ccRCC, pNET and phaeochromocytoma/paraganglioma, are also underway in various countries. This article summarizes the milestones in the development of belzutifan leading to this first approval for certain VHL disease-associated tumours.", "Calciphylaxis is a metastatic calcification-induced vasculopathy that results in the occlusion of small blood vessels. Although calciphylaxis is normally associated with end-stage renal disease, calciphylaxis from non-uremic origin occurs as well. While the number of reports continues to increase, a standard treatment for non-uremic calciphylaxis has yet to be established. Sodium thiosulfate (STS), which has been proven to be effective in the treatment of uremic calciphylaxis, shows promise; however, reports of its use in non-uremic cases are limited. We describe a case of non-uremic calciphylaxis in a patient with normal renal and parathyroid function who had complete resolution of disease after treatment with STS, and we review similar cases in the published work. Based on the successful outcomes detailed in this case series, STS appears to be an effective therapy for non-uremic calciphylaxis.", "A cardinal feature of malignant melanoma is its metastatic propensity. An incomplete view of the genetic events driving metastatic progression has been a major barrier to rational development of effective therapeutics and prognostic diagnostics for melanoma patients. In this study, we conducted global genomic characterization of primary and metastatic melanomas to examine the genomic landscape associated with metastatic progression. In addition to uncovering three genomic subclasses of metastastic melanomas, we delineated 39 focal and recurrent regions of amplification and deletions, many of which encompassed resident genes that have not been implicated in cancer or metastasis. To identify progression-associated metastasis gene candidates, we applied a statistical approach, Integrative Genome Comparison (IGC), to define 32 genomic regions of interest that were significantly altered in metastatic relative to primary melanomas, encompassing 30 resident genes with statistically significant expression deregulation. Functional assays on a subset of these candidates, including MET, ASPM, AKAP9, IMP3, PRKCA, RPA3, and SCAP2, validated their pro-invasion activities in human melanoma cells. Validity of the IGC approach was further reinforced by tissue microarray analysis of Survivin showing significant increased protein expression in thick versus thin primary cutaneous melanomas, and a progression correlation with lymph node metastases. Together, these functional validation results and correlative analysis of human tissues support the thesis that integrated genomic and pathological analyses of staged melanomas provide a productive entry point for discovery of melanoma metastases genes.", "Morton's neuroma is the fibrous enlargement of the interdigital nerve branches, usually in the second and third interspace between the metatarsal heads where the lateral and medial plantar nerves often join. Specific symptoms are dull or sharp pain, numbness and/or tingling in the third and fourth digits, burning sensation, cramping, and a feeling of \"walking on a stone\" around the metatarsal heads. Numerous clinical tests for Morton's neuroma have been described, such as thumb index finger squeeze, and Mulder's click and foot squeeze tests. Ultrasound and magnetic resonance imaging can be used for confirmation, especially for differential diagnosis, exact localization, and number of neuromas. Further, performing dynamic imaging during the aforementioned tests is paramount and can readily be carried out with ultrasound. The treatment mainly comprises footwear modifications, radiofrequency ablation, physical therapy, local (corticosteroid and anesthetic) injections into the affected webspace, and surgery. Again the use of real-time ultrasound guidance during such interventions is noteworthy.", "OBJECTIVE: Treatment of rheumatoid arthritis (RA) with tumor necrosis factor (TNF) antagonists is highly effective, but their mechanisms of action are not completely clear. Since anti-TNF therapy induces a decrease in synovial cellularity, this study focused on the modulation of RA synovial apoptosis following treatment with either soluble TNF receptor (etanercept) or TNF chimeric monoclonal antibody (infliximab).METHODS: Apoptosis (TUNEL and active caspase 3 staining) and cell surface markers were evaluated by immunohistochemistry in synovial biopsy samples obtained before and after 8 weeks of treatment with etanercept (12 patients) or infliximab (9 patients). We also determined by flow cytometry the in vitro effect of etanercept and infliximab on apoptosis of RA mononuclear cells derived from the synovial fluid (SF) and peripheral blood (PB).RESULTS: Eight weeks of treatment with etanercept and with infliximab significantly increased synovial apoptosis. This change was accompanied by a significant decrease in the synovial monocyte/macrophage population. The decrease in lymphocyte numbers did not reach statistical significance. In vitro, 24 hours of incubation with either etanercept or infliximab induced apoptosis of the SF monocyte/macrophage population. PB monocyte/macrophages were less susceptible to anti-TNF-mediated apoptosis. No changes in the rate of apoptosis were observed in the lymphocyte population derived from either SF or PB.CONCLUSION: In RA patients, both etanercept and infliximab are able to induce cell type-specific apoptosis in the monocyte/macrophage population. This suggests a potential pathway that would account for the diminished synovial inflammation and the decreased numbers of synovial macrophages evident after TNF blockade.", "On the basis of sequence homology a model is proposed for five structural and functional domains in viroids. These domains include (i) a conserved central region capable of forming two alternative structures that may regulate two phases of the viroid replication cycle, (ii) a region associated with pathogenicity, (iii) a domain with high sequence variability, (iv and v) two terminal domains that are interchangeable between viroids. That the evolution of viroids has involved RNA rearrangements of domains is supported by the partial duplication of coconut cadang cadang viroid, which arises de novo during each infection. Similar RNA rearrangements have been established for animal viral defective interfering RNAs, which arise by some form of discontinuous transcription. This mechanism could account for the origin of viroids and also RNA viruses, whereby modules of genetic information may have undergone repeated exchange between RNA pathogens and the RNA of their hosts.", "We have conducted a comprehensive search for conserved elements in vertebrate genomes, using genome-wide multiple alignments of five vertebrate species (human, mouse, rat, chicken, and Fugu rubripes). Parallel searches have been performed with multiple alignments of four insect species (three species of Drosophila and Anopheles gambiae), two species of Caenorhabditis, and seven species of Saccharomyces. Conserved elements were identified with a computer program called phastCons, which is based on a two-state phylogenetic hidden Markov model (phylo-HMM). PhastCons works by fitting a phylo-HMM to the data by maximum likelihood, subject to constraints designed to calibrate the model across species groups, and then predicting conserved elements based on this model. The predicted elements cover roughly 3%-8% of the human genome (depending on the details of the calibration procedure) and substantially higher fractions of the more compact Drosophila melanogaster (37%-53%), Caenorhabditis elegans (18%-37%), and Saccharaomyces cerevisiae (47%-68%) genomes. From yeasts to vertebrates, in order of increasing genome size and general biological complexity, increasing fractions of conserved bases are found to lie outside of the exons of known protein-coding genes. In all groups, the most highly conserved elements (HCEs), by log-odds score, are hundreds or thousands of bases long. These elements share certain properties with ultraconserved elements, but they tend to be longer and less perfectly conserved, and they overlap genes of somewhat different functional categories. In vertebrates, HCEs are associated with the 3' UTRs of regulatory genes, stable gene deserts, and megabase-sized regions rich in moderately conserved noncoding sequences. Noncoding HCEs also show strong statistical evidence of an enrichment for RNA secondary structure.", "OBJECTIVE: There are limited data regarding concussion among youth skiers and snowboarders. The objective of this study was to examine the frequency of concussion among helmeted and unhelmeted youth skiers and snowboarders presenting to trauma centers.METHODS: Subjects 18 years or younger with a ski- or snowboard-related injury were studied using data from the National Trauma Data Bank from 2009 to 2010. We further selected those with head/neck injuries and stratified based on helmet status. Concussive injuries were identified from International Classification of Diseases, 9th Revision codes. Severity analysis was based on the Glasgow Coma Scale and Injury Severity Score.RESULTS: A total of 1001 subjects met inclusion criteria with 678 subjects having documented helmet status. Subjects 12 years or younger were more likely to use helmets compared to 13-18 year-olds (odds ratio, 2.21; 95% confidence interval [95% CI], 1.52-3.21). Skiers were more likely to use helmets compared to snowboarders (odds ratios, 1.60; 95% CI, 1.16-2.19). Snowboarders had a greater likelihood of concussion (estimated-β, 2.1; 95% CI, 1.48-2.85) after adjusting for helmet status and age. There was no significant difference in the frequency of concussion among helmeted compared to unhelmeted subjects. Imputing missing values for helmets status had no effect on outcome for concussion. We found no difference in injury severity among helmeted compared to unhelmeted subjects.CONCLUSIONS: Among youth skiers and snowboarders who present to trauma centers with a head injury, the likelihood of that injury involving a concussion was not associated with helmet use.", "Absorbed thyroid dose and effective half-life were determined in 46 hyperthyroid cats after treatment with a low dose (mean 111MBq) of radioiodine intravenously. Thirteen of these cats had received iohexol for glomerular filtration rate (GFR) measurement within 24h before treatment with radioiodine in view of another ongoing study at our institution. Pre-therapy values were obtained for total thyroxine (TT(4)) and for the thyroid to salivary gland ratio with sodium pertechnetate gamma-camera imaging. All cats underwent post-therapy scans at 24, 48 and 120 h for evaluation of radioactive iodine uptake (RAIU) and the effective half-life of radioiodine. The absorbed dose was calculated from the cumulative activity with Olinda software. Both groups were comparable in age, TT(4) and the ratio of thyroid activity to salivary gland activity. Statistical analysis revealed a significant decreased absorbed dose in the thyroid in the iohexol group. This decreased uptake was not accompanied by an decreased effective half-life of the radioiodine. The variation of inter-individual RAIU decreased in this group and more homogenous absorbed doses were obtained. No significant difference in outcome could be demonstrated. However, a tendency towards a higher number of residual hyperthyroidism in the iohexol group was noted (15 versus 6% in control group). This study demonstrates that iohexol interferes with the uptake of radioiodine in the hyperthyroid cat but does not provoke increased turnover. In this study, albeit including a small number of cats, outcome did not seem to be significantly affected." ]
2,087
[ "OBJECTIVES: The increasing number of prostatectomies entails an increasing number of patients suffering from iatrogenic incontinence despite improved surgical techniques. The severity of this problem often requires invasive treatments such as periurethral injection of bulking agents, artificial urinary sphincter (AUS) implantation, and sub-urethral sling positioning. The artificial urethral sphincter has represented, until today, the gold standard but, in the recent years, sling systems have been investigated as minimally invasive alternative options. Today, three different sling procedures are commonly performed: bone-anchored, readjustable, and trans-obturator slings systems. The aim of this review is to critically report the current status of sling systems in the treatment of iatrogenic male incontinence.MATERIALS AND METHODS: MEDLINE and PubMed databases were searched and all articles between 1974 and 2009 were evaluated.RESULTS: With regard to bone-anchored, readjustable, and trans-obturator slings systems, cure rates ranged between 58.0% and 86.0%, 55.5% and 73.0%, and 40.0% and 63.0%, respectively, while major complication rates ranged between 0 and 14.5%, 10.0 and 22.2%, and 0 and 10.0%, respectively.CONCLUSIONS: Suburethral slings are the only alternative techniques which can be favorably compared with the AUS, showing more advantages with respect to AUS implantations which are mainly represented by a quick and less invasive approach, low morbidity, and low costs. In spite of the difficulty in identifying the most effective sling procedure, overall, sling systems can be recommended for patients with persistent mild or moderate incontinence. However, the indication can also be extended to patients with severe incontinence, after appropriate counseling, allowing AUS implantation in the event of sling failure.", "OBJECTIVE: To describe the clinical features, treatment and prognosis of acquired thrombotic thrombocytopenic purpura (TTP) in children based on a single institution experience.METHODS: This study is a retrospective review of all 12 children with TTP seen at New York Medical College- Westchester Medical Center during a period of 15 y from 1993 to 2008.RESULTS: There were 7 females and 5 males with acquired TTP, with a median age of 13 (range, 6-17); and no cases of congenital TTP. The classic pentad of TTP (microangiopathic hemolytic anemia, thrombocytopenia, neurologic symptoms, renal dysfunction and fever) was seen in only three patients. Nine had renal involvement; eight had neurologic symptoms; and four had fever. All 12 patients had thrombocytopenia, anemia, and elevated LDH. Nine had idiopathic TTP. Three patients had one of the following underlying disorders: systemic lupus erythematosus, mixed connective tissue disorder, and aplastic anemia (post-bone marrow transplant on cyclosporine). ADAMTS13 level was decreased in 7 of 8 patients studied. Eight of 10 patients achieved remission with plasmapheresis alone. Two needed additional treatment before achieving remission. Two had one or more relapses, requiring immunosupressive treatment with vincrisine, prednisone, or rituximab. The patient with aplastic anemia died of pulmonary hypertension 5 y after bone marrow transplantation. All other 11 patients are alive and free of TTP for a median follow-up of 12 mo (range, 3-72 mo).CONCLUSIONS: Acquired pediatric TTP responds well to plasmapheresis. However, many patients do require additional treatment because of refractoriness to plasmapheresis or relapse. The clinical features, response to treatment, and relapse rate of pediatric TTP appear similar to those of adult TTP.", "Low dose pulse methotrexate (MTX) has become a widely used therapy for rheumatoid arthritis (RA) because of its good response rate profile. With the increased use of MTX, reports of opportunistic infections associated with MTX therapy have appeared. Fourteen cases of pneumocystis carinii (PC) pneumonia in patients receiving low dose MTX have been previously reported. Yet, no case of PC pneumonia associated with low dose MTX has so far been reported in Japan. We report the first case in Japan of PC pneumonia occurring in a patient with rheumatoid vasculitis who was receiving low dose MTX. A 70-year old woman with 13 year history of RA presented with 3-day history of rapidly aggravating dyspnea, dry cough and fever. She had been receiving MTX 7.5 mg/week for 2.5 months because of her vasculitis symptoms. She had also been receiving prednisolone 7.5 mg/day which had been successfully tapered from an initial dose of 15 mg/day. At the time of her presentation with respiratory symptoms, all of her vasculitis symptoms had been alleviated. A chest radiograph revealed diffuse interstitial shadowing bilaterally and bilateral hilar and right lower lung field infiltrates. Her arterial blood gas showed severe hypoxemia (PaO2 27.7 torr). Polymerase chain reaction assay of bronchoalveolar lavage fluid showed PC. Although the patient required ventilatory support for 9 days, she was successfully treated with trimethoprime-sulphamethoxazole and methylprednisolone pulse therapy. Eight months later, the patient was well with no evidence of vasculitis or respiratory symptoms.", "OBJECTIVE: This meta-analysis was performed to evaluate the efficacy and safety of monoclonal antibodies against calcitonin gene-related peptide (CGRP) for episodic migraine prevention.METHODS: MEDLINE, EMBASE, Web of Science, and the Cochrane Library were searched from inception to April 2018. Studies considered to be eligible were randomized controlled trials about efficacy and safety of calcitonin gene-related peptide monoclonal antibody for episodic migraine prevention.RESULTS: Eight randomized controlled trials involving 2292 patients were included. The outcomes of this meta-analysis presented that CGRP monoclonal antibodies for preventive treatment of episodic migraine significantly reduced the monthly migraine days from baseline [weighted mean difference (WMD) = - 1.52; 95%CI, - 1.92 to - 1.11; Z = 7.40; P < 0.001] and monthly acute migraine-specific medication consumption from baseline [WMD = - 1.45; 95%CI, - 2.17 to - 0.72; Z = 3.93; P < 0.001], as compared with placebo group. CGRP monoclonal antibodies for preventive treatment of episodic migraine significantly increased the ≥ 50% reduction from baseline in migraine days per month [RR = 1.54; 95%CI, 1.38 to1.71; Z = 7.88; P < 0.001]. The adverse events were similar between the CGRP monoclonal antibody group and placebo group (P = 0.998). The outcomes of subgroup analysis showed that erenumab, galcanezumab, and fremanezumab significantly reduced the monthly migraine days from baseline and increased the ≥ 50% reduction from baseline in migraine days per month. Both erenumab and fremanezumab significantly reduced from baseline.CONCLUSIONS: Based on the results of this meta-analysis, CGRP monoclonal antibodies significantly reduced the monthly migraine days and acute migraine-specific medication. CGRP monoclonal antibodies were effective and safe for preventive treatment of episodic migraine.", "At 17(+4) week, non-invasive prenatal testing (NIPT) results of a 24-years-old mother showed high risk of monosomy X (45, X). Abnormally shaped head and cardiac defects were observed in prenatal ultrasound scan at 19(+3) week. Amniocentesis conducted at 19(+3) week identified karyotype 47, XX, +18, which suggested that the NIPT failed to detect trisomy 18 (T18) in this case. With a further massively parallel sequencing (MPS) of maternal blood, fetal and placental tissues, we found a confined placental mosaicism (CPM) with non-mosaic T18 fetus and multiclonal placenta with high prevalence of 45, X and low level of T18 cells. FISH and SNP-array evidence from the placental tissue confirmed genetic discrepancy between the fetus and placenta. Because the primary source of the fetal cell-free DNA that NIPT assesses is mostly originated from trophoblast cells, the level of T18 placental mosaicism may cause false negative NIPT result in this rare case of double aneuploidy.", "Among 62 children with myoclonic epilepsy who had first seizures between 1 and 10 years, without clinical or radiological evidence of brain lesion, we selected the 16 patients who had exhibited several types of fits and had stopped having seizures for over two years. First seizures occurred between 18 months and 4 years, and they were generalized clonic, tonic-clonic or tonic. After a mean 3 months' period, patients started also to have absence and myoclonic fits. During the period with various types of seizures, that lasted a mean 10 months, patients were ataxic and hyperkinetic, and 11 of them suffered myoclonic absence status for several hours or days. The EEG showed a high voltage rhythmic slow-wave activity with spikes, differing from the slow spike wave tracing of the Lennox-Gastaut syndrome, and there was no photosensitivity. The mean duration of the epilepsy was 1 year and 4 months and the last seizures were convulsive, occurring mainly during sleep. The clinical and EEG pattern, the high familial incidence are shared by the Doose syndrome, of which the present series seems to be a subgroup, as are other well-defined syndromes: benign and severe myoclonic epilepsies of infancy.", "BACKGROUND & AIMS: T-cell-mediated biliary injury is a feature of primary sclerosing cholangitis (PSC). We studied the roles of CD28(-) T cells in PSC and their regulation by vitamin D.METHODS: Peripheral and liver-infiltrating mononuclear cells were isolated from blood or fresh liver tissue. We analyzed numbers, phenotypes, functions, and localization patterns of CD28(-) T cells, along with their ability to activate biliary epithelial cells. We measured levels of tumor necrosis factor (TNF)α in liver tissues from patients with PSC and the effects of exposure to active vitamin D (1,25[OH]2D3) on expression of CD28.RESULTS: A significantly greater proportion of CD4(+) and CD8(+) T cells that infiltrated liver tissues of patients with PSC were CD28(-), compared with control liver tissue (CD4(+): 30.3% vs 2.5%, P < .0001; and CD8(+): 68.5% vs 31.9%, P < .05). The mean percentage of CD4(+)CD28(-) T cells in liver tissues from patients with PSC was significantly higher than from patients with primary biliary cirrhosis or nonalcoholic steatohepatitis (P < .05). CD28(-) T cells were activated CD69(+)CD45RA(-) C-C chemokine receptor (CCR)7(-) effector memory and perforin(+) granzyme B(+) cytotoxic cells, which express CD11a, CX3CR1, C-X3-C motif receptor 6 (CXCR6), and CCR10-consistent with their infiltration of liver and localization around bile ducts. Compared with CD28(+) T cells, activated CD28(-) T cells produced significantly higher levels of interferon γ and TNFα (P < .05), and induced up-regulation of intercellular cell adhesion molecule-1, HLA-DR, and CD40 by primary epithelial cells (3.6-fold, 1.5-fold, and 1.2-fold, respectively). Liver tissue from patients with PSC contained high levels of TNFα; TNFα down-regulated the expression of CD28 by T cells in vitro (P < .01); this effect was prevented by administration of 1,25(OH)2D3 (P < .05).CONCLUSIONS: Inflammatory CD28(-) T cells accumulate in livers of patients with PSC and localize around bile ducts. The TNFα-rich microenvironment of this tissue promotes inflammation; these effects are reversed by vitamin D in vitro." ]
2,088
[ "Partial deficiency of enzymes in the haem synthetic pathway gives rise to a group of seven inherited metabolic disorders, the porphyrias. Each deficiency is associated with a characteristic increase in haem precursors that correlates with the symptoms associated with individual porphyrias and allows accurate diagnosis. Two types of clinical presentation occur separately or in combination; acute life-threatening neurovisceral attacks and/or cutaneous symptoms. Five of the porphyrias are low-penetrance autosomal dominant conditions in which clinical expression results from additional factors that act by increasing demand for haem or by causing an additional decrease in enzyme activity or by a combination of these effects. These include both genetic and environmental factors. In familial porphyria cutanea tarda (PCTF), environmental factors that include alcohol, exogenous oestrogens and hepatotropic viruses result in inhibition of hepatic enzyme activity via a mechanism that involves excess iron accumulation. In erythropoietic protoporphyria (EPP), co-inheritance of a functional polymorphism in trans to a null ferrochelatase allele accounts for most clinically overt cases. In the autosomal dominant acute hepatic porphyrias (acute intermittent porphyria, variegate porphyria, hereditary coproporphyria), acute neurovisceral attacks occur in a minority of those who inherit one of these disorders. Although various exogenous (e.g. drugs, alcohol) and endogenous factors (e.g. hormones) have been identified as provoking acute attacks, these do not provide a full explanation for the low penetrance of these disorders. It seems probable that genetic background influences susceptibility to acute attacks, but the genes that are involved have not yet been identified.", "IMPORTANCE OF THE FIELD: Type 1 diabetes mellitus (T1D) is a T-cell mediated autoimmune disease with selective destruction of beta cells. Immunological interventions are directed at arresting the loss of beta-cell function with the promise that this will make it easier for patients to control their glucose levels.AREAS COVERED IN THIS REVIEW: This review provides a summary of the preclinical and clinical research published between 1992 and 2009 using teplizumab and other anti-CD3 antibodies to arrest the loss of beta-cell function in new onset T1D. Data from animal and human studies on the probable mechanism of action of teplizumab are also reviewed.WHAT THE READER WILL GAIN: A broad perspective on the use of teplizumab in inducing disease specific tolerance.TAKE HOME MESSAGE: In Phase I/II randomized control trials, in patients with new onset T1D, teplizumab slowed the rate of loss of beta-cell function over 2 years of follow-up. Treated patients had better glycemic control and lower insulin requirements. Adverse events so far are mild and of limited duration. Phase III clinical trials are underway to confirm these results and to determine if two courses of drug have greater efficacy in arresting loss of beta-cell function.", "In 2016 and 2017, monoclonal antibodies targeting PD-L1, including atezolizumab, durvalumab, and avelumab, were approved by the FDA for the treatment of multiple advanced cancers. And many other anti-PD-L1 antibodies are under clinical trials. Recently, the crystal structures of PD-L1 in complex with BMS-936559 and avelumab have been determined, revealing details of the antigen-antibody interactions. However, it is still unknown how atezolizumab and durvalumab specifically recognize PD-L1, although this is important for investigating novel binding sites on PD-L1 targeted by other therapeutic antibodies for the design and improvement of anti-PD-L1 agents. Here, we report the crystal structures of PD-L1 in complex with atezolizumab and durvalumab to elucidate the precise epitopes involved and the structural basis for PD-1/PD-L1 blockade by these antibodies. A comprehensive comparison of PD-L1 interactions with anti-PD-L1 antibodies provides a better understanding of the mechanism of PD-L1 blockade as well as new insights into the rational design of improved anti-PD-L1 therapeutics.", "The acute porphyrias constitute a group of metabolic disorders engaging enzymes in the haem synthetic chain and generally following dominant inheritance patterns. Some gene carriers are vulnerable to a range of exogenous and endogenous factors, which may trigger neuropsychiatric symptoms. Early diagnosis is of prime importance since it makes way for counselling with the aim to block the development of acute, as well as late, disease. The medical and psycho-social consequences of a porphyria diagnosis are considerable and the freedom for maldiagnosis correspondingly small. The strain imposed upon the diagnostic process makes management in specialized laboratories necessary. Inadvertent handling of the diagnostic procedures in laboratories lacking in knowledge, experience and technical competence is repeatedly the reason for harmful underdiagnosis and overdiagnosis. Gene diagnosis of the carrier condition, principally within reach in all types of acute porphyria, is of incomparable versatility and accuracy. However, despite recent great achievements in the molecular biology of porphyric disease, genomic procedures cannot replace biochemical methods in monitoring the activity and progress of the disease, or the effects of therapy. The classical methods are also useful when it comes to screening for the associated disease states. In these tasks, professional handling of the methods and skillful interpretation of the results are of paramount importance. Knowledge of the limitations and pitfalls of the procedures is a guard against maldiagnosis, which may be fatal. In the article the main diagnostic challenges are discussed; the strategy for early detection of the gene carrier state, the recognition and surveillance of the acute porphyric crisis, the evaluation of subacute/subchronic symptoms, the differential diagnoses of the cutaneous porphyrias and the monitoring of late complications.", "Variegate porphyria (VP) is an autosomal-dominant disorder that is caused by inheritance of a partial deficiency of the enzyme protoporphyrinogen oxidase (EC 1.3.3.4). It is characterized by cutaneous photosensitivity and/or various neurological manifestations. Protoporphyrinogen oxidase catalyses the penultimate step of haem biosynthesis, and mutations in the PPOX gene have been coupled to VP. In the present study, sequencing analysis revealed 10 different mutations in the PPOX gene in 14 out of 17 apparently unrelated Swedish VP families. Six of the identified mutations, 3G > A (exon 2), 454C > T (exon 5), 472G > C (exon 6), 614C > T (exon 6), 988G > C (exon 10) and IVS12 + 2T > G (intron 12), are single nucleotide substitutions, while 604delC (exon 6), 916-17delCT (exon 9) and 1330-31delCT (exon 13) are small deletions, and IVS12 + 2-3insT (intron 12) is a small insertion. Only one of these 10 mutations has been reported previously. Three of the mutations were each identified in two or more families, while the remaining mutations were specific for an individual family. In addition to the 10 mutations, one previously unreported single nucleotide polymorphism was identified. Mutation analysis of family members revealed two adults and four children who were silent carriers of the VP trait. Genetic analysis can now be added to the conventional biochemical analyses and used in investigation of putative carriers of a VP trait in these families.", "Septins comprise a conserved family of GTPases important in cytokinesis. These proteins polymerize into filaments from rod-shaped heteromeric septin complexes. Septins interact with one another at two interfaces (NC and G) that alternate within the complex. Here, we show that small mutations at the N terminus greatly enhance the formation of SEPT2 homopolymers. Taking advantage of this mutation to examine polymer formation using SEPT2 alone, we show that both NC and G interfaces are required for filament formation. However, co-expression of wild type SEPT2 with SEPT2 containing mutations at either NC or G interfaces revealed that only the NC mutant suppressed filament formation. NC mutants are able to interact with one another at putative G interfaces, whereas G mutants fail to interact at NC interfaces. In addition, all promiscuous septin pairwise interactions occur at the G interface. These findings suggest that G interface interactions must occur before NC interactions during polymer formation.", "The suprachiasmatic nucleus of the brain is the circadian center, relaying rhythmic environmental and behavioral information to peripheral tissues to control circadian physiology. As such, central clock dysfunction can alter systemic homeostasis to consequently impair peripheral physiology in a manner that is secondary to circadian malfunction. To determine the impact of circadian clock function in organ transplantation and dissect the influence of intrinsic tissue clocks versus extrinsic clocks, we implemented a blood vessel grafting approach to surgically assemble a chimeric mouse that was part wild-type (WT) and part circadian clock mutant. Arterial isografts from donor WT mice that had been anastamosed to common carotid arteries of recipient WT mice (WT:WT) exhibited no pathology in this syngeneic transplant strategy. Similarly, when WT grafts were anastamosed to mice with disrupted circadian clocks, the structural features of the WT grafts immersed in the milieu of circadian malfunction were normal and absent of lesions, comparable to WT:WT grafts. In contrast, aortic grafts from Bmal1 knockout (KO) or Period-2,3 double-KO mice transplanted into littermate control WT mice developed robust arteriosclerotic disease. These lesions observed in donor grafts of Bmal1-KO were associated with up-regulation in T-cell receptors, macrophages, and infiltrating cells in the vascular grafts, but were independent of hemodynamics and B and T cell-mediated immunity. These data demonstrate the significance of intrinsic tissue clocks as an autonomous influence in experimental models of arteriosclerotic disease, which may have implications with regard to the influence of circadian clock function in organ transplantation.", "INTRODUCTION: The majority of human sarcomas, particularly soft tissue sarcomas, are relatively resistant to traditional cytotoxic therapies. The proof-of-concept study by Ray-Coquard et al., using the Nutlin human double minute (HDM)2-binding antagonist RG7112, has recently opened a new chapter in the molecular targeting of human sarcomas.AREAS COVERED: In this review, the authors discuss the challenges and prospective remedies for minimizing the significant haematological toxicities of the cis-imidazole Nutlin HDM2-binding antagonists. Furthermore, they also chart the future direction of the development of p53-reactivating (p53-RA) drugs in 12q13-15 amplicon sarcomas and as potential chemopreventative therapies against sarcomagenesis in germ line mutated TP53 carriers. Drawing lessons from the therapeutic use of Imatinib in gastrointestinal tumours, the authors predict the potential pitfalls, which may lie in ahead for the future clinical development of p53-RA agents, as well as discussing potential non-invasive methods to identify the development of drug resistance.EXPERT OPINION: Medicinal chemistry strategies, based on structure-based drug design, are required to re-engineer cis-imidazoline Nutlin HDM2-binding antagonists into less haematologically toxic drugs. In silico modelling is also required to predict toxicities of other p53-RA drugs at a much earlier stage in drug development. Whether p53-RA drugs will be therapeutically effective as a monotherapy remains to be determined.", "Loss of Dicer, an enzyme critical for microRNA biogenesis, results in lethality due to a block in mouse embryonic stem cell (mES) differentiation. Using ChIP-Seq we found increased H3K9me2 at over 900 CpG islands in the Dicer(-/-)ES epigenome. Gene ontology analysis revealed that promoters of chromatin regulators to be among the most impacted by increased CpG island H3K9me2 in ES (Dicer(-/-)). We therefore, extended the study to include H3K4me3 and H3K27me3 marks for selected genes. We found that the ES (Dicer(-/-)) mutant epigenome was characterized by a shift in the overall balance between transcriptionally favorable (H3K4me3) and unfavorable (H3K27me3) marks at key genes regulating ES cell differentiation. Pluripotency genes Oct4, Sox2 and Nanog were not impacted in relation to patterns of H3K27me3 and H3K4me3 and showed no changes in the rates of transcript down-regulation in response to RA. The most striking changes were observed in regards to genes regulating differentiation and the transition from self-renewal to differentiation. An increase in H3K4me3 at the promoter of Lin28b was associated with the down-regulation of this gene at a lower rate in Dicer(-/-)ES as compared to wild type ES. An increase in H3K27me3 in the promoters of differentiation genes Hoxa1 and Cdx2 in Dicer(-/-)ES cells was coincident with an inability to up-regulate these genes at the same rate as ES upon retinoic acid (RA)-induced differentiation. We found that siRNAs Ezh2 and post-transcriptional silencing of Ezh2 by let-7 g rescued this effect suggesting that Ezh2 up-regulation is in part responsible for increased H3K27me3 and decreased rates of up-regulation of differentiation genes in Dicer(-/-)ES.", "INTRODUCTION: Alterations in the CDK4/6-RB signaling pathway are common causes of cell cycle dysregulation in many cancers, including glioblastoma. Palbociclib is an oral inhibitor of CDK4/6, which leads to phosphorylation of RB1 and cell-cycle arrest. We conducted a two-arm study evaluating efficacy and tissue pharmacokinetics/pharmacodynamics of palbociclib in patients with recurrent glioblastoma.METHODS: Eligibility criteria included confirmation of RB1 proficiency by IHC; ≤ 3 relapses; KPS ≥ 60; no limit on prior treatments. Arm 1 received palbociclib for 7 days prior to indicated resection followed by adjuvant palbociclib. Arm 2 received palbociclib without resection. Primary objective was PFS6; secondary included toxicity, OS, and ORR. Exploratory aims included biomarker assessment and pharmacokinetic/pharmacodynamic effects in surgical patients.RESULTS: Total of 22 patients were enrolled; 6 on Arm 1 and 16 on Arm 2. Trial was stopped early secondary to lack of efficacy, with 95% of evaluable patients progressing within 6 months. Median PFS was 5.14 weeks (range 5 days-142 weeks) and median OS was 15.4 weeks (range 2-274 weeks). Two patients (10%) had related grade ≥ 3 AEs. In Arm 1, 5 patients had tissue concentrations of palbociclib felt to be sufficient for biological effect and paired samples available for RB1 IHC. There were no consistent changes in RB1 expression or cell proliferation in the paired tissue.CONCLUSION: In this trial, despite adequate tissue PK, palbociclib monotherapy was not an effective treatment for recurrent glioblastoma. However, these were heavily pretreated patients and targeting the CDK4/6 pathway may still deserve further exploration.", "Noncoding DNA regions have central roles in human biology, evolution, and disease. ChromHMM helps to annotate the noncoding genome using epigenomic information across one or multiple cell types. It combines multiple genome-wide epigenomic maps, and uses combinatorial and spatial mark patterns to infer a complete annotation for each cell type. ChromHMM learns chromatin-state signatures using a multivariate hidden Markov model (HMM) that explicitly models the combinatorial presence or absence of each mark. ChromHMM uses these signatures to generate a genome-wide annotation for each cell type by calculating the most probable state for each genomic segment. ChromHMM provides an automated enrichment analysis of the resulting annotations to facilitate the functional interpretations of each chromatin state. ChromHMM is distinguished by its modeling emphasis on combinations of marks, its tight integration with downstream functional enrichment analyses, its speed, and its ease of use. Chromatin states are learned, annotations are produced, and enrichments are computed within 1 d.", "Author information:(1)International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, Lyon, 69008, France.(2)Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.(3)School of Pharmacy and Life Sciences, The Robert Gordon University, Aberdeen, United Kingdom.(4)Gillings School of Global Public Health, UNC, Chapel Hill, NC.(5)Fels Institute for Cancer Research & Molecular Biology, Philadelphia, PA.(6)Texas Children's Hospital, Baylor College of Medicine, TX.(7)University of Arkansas for Medical Sciences, AR.(8)Aichi Cancer Center Research Institute, Nagoya, Japan.(9)INSERM, Albert Bonniot Institute, Grenoble, France.(10)National Cancer Institute (INCA), Rio de Janeiro, Brazil.(11)Emory University, Atlanta, GA.(12)Centre for Genomics and Child Health, Blizard Institute, London, United Kingdom.(13)Murdoch Childrens Research Institute, Melbourne, Australia.(14)National Institute of Health, NC.(15)Statistical Cancer Genomics, UCL Cancer Institute & Dept. of Woman's Cancer, University College London, United Kingdom.(16)CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Shanghai, 200031, China.(17)National Cancer Center Research Institute, Tokyo, Japan.(18)MRC/PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.(19)Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX.(20)Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, TX.(21)UCSF School of Medicine, Epidemiology & Biostatistics, San Francisco, CA." ]
2,091
[ "The nuclear foci of phosphorylated histone H2AX (γH2AX) are frequently used as a marker for DNA double-strand breaks (DSBs) following ionizing radiation (IR). However, recent studies reported that γH2AX foci do not necessarily correlate with DSBs under other conditions. We showed that γH2AX foci induced by oxidative stress in hydrogen peroxide (H2O2)-treated cells displayed several different features from those induced by IR. The magnitude of γH2AX induction was heterogeneous among H2O2-treated cells. Some cells expressed small discrete γH2AX foci, whereas others expressed a gross γH2AX signal that was distributed throughout the nucleus. Oxidative stress-induced γH2AX was eliminated in DSB repair-deficient mutant cells as efficiently as in wild-type cells and was not necessarily accompanied by phosphorylated ataxia telangiectasia mutated (ATM) or 53BP1 foci. Analyses using specific inhibitors showed that ATM- and Rad3-related (ATR), rather than ATM, was the prominent kinase mediating the oxidative stress response. These results suggest that a major fraction of γH2AX induced by oxidative stress is not associated with DSBs. Single-stranded DNA arisen from stalled replication forks can cause the ATR-mediated induction of γH2AX. However, oxidative stress appeared to induce γH2AX in both S- and non-S-phase cells. These results suggest that there may be another pathway leading to the ATR-mediated induction of γH2AX in non-S-phase cells without DSBs.", "BACKGROUND AND AIMS: Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is a pro-atherogenic phospholipase A(2), which is predominantly complexed to low-density lipoprotein (LDL) particles. Proprotein convertase subtilisin-kexin type 9 (PCSK9) provides a key step in LDL metabolism by stimulating LDL receptor degradation. We determined relationships between plasma PCSK9 and Lp-PLA(2) mass.METHODS: Lp-PLA(2) mass (turbidimetric immunoassay), PCSK9 (enzyme-linked immunosorbent assay) and (apo) lipoproteins were measured in 53 nondiabetic subjects (27 women) with body mass index <30 kg/m(2).RESULTS: Lp-PLA(2) and PCSK9 levels were both correlated positively with LDL cholesterol and non-high-density lipoprotein (HDL) cholesterol (r = 0.330 to r = 0.382, p ≤0.02). Remarkably, Lp-PLA(2) was inversely related to PCSK9 (r = -0.388, p = 0.004). The Lp-PLA(2)/apolipoprotein B ratio, as a measure of the Lp-PLA(2) content in apolipoprotein B-containing lipoproteins, was also inversely correlated with PCSK9 (r = -0.575, p <0.001). The inverse relationships of Lp-PLA(2) (p = 0.023) and the Lp-PLA(2)/apolipoprotein B ratio (p = 0.001) with PCSK9 levels remained significant after controlling for age, gender, triglycerides and HDL cholesterol.CONCLUSIONS: Despite increasing effects on LDL cholesterol, higher PCSK9 levels are unlikely to confer impaired Lp-PLA(2) metabolism. We propose to evaluate the possible influence of PCSK9 inhibiting strategies on Lp-PLA(2) regulation and vice versa to determine effects of Lp-PLA(2) inhibitors on the PCSK9 pathway.", "Analyses of the genetic relationships among modern humans, Neanderthals and Denisovans have suggested that 1-4% of the non-Sub-Saharan African gene pool may be Neanderthal derived, while 6-8% of the Melanesian gene pool may be the product of admixture between the Denisovans and the direct ancestors of Melanesians. In the present study, we analyzed single nucleotide polymorphism (SNP) diversity among a worldwide collection of contemporary human populations with respect to the genetic constitution of these two archaic hominins and Pan troglodytes (chimpanzee). We partitioned SNPs into subsets, including those that are derived in both archaic lineages, those that are ancestral in both archaic lineages and those that are only derived in one archaic lineage. By doing this, we have conducted separate examinations of subsets of mutations with higher probabilities of divergent phylogenetic origins. While previous investigations have excluded SNPs from common ancestors in principal component analyses, we included common ancestral SNPs in our analyses to visualize the relative placement of the Neanderthal and Denisova among human populations. To assess the genetic similarities among the various hominin lineages, we performed genetic structure analyses to provide a comparison of genetic patterns found within contemporary human genomes that may have archaic or common ancestral roots. Our results indicate that 3.6% of the Neanderthal genome is shared with roughly 65.4% of the average European gene pool, which clinally diminishes with distance from Europe. Our results suggest that Neanderthal genetic associations with contemporary non-Sub-Saharan African populations, as well as the genetic affinities observed between Denisovans and Melanesians most likely result from the retention of ancient mutations in these populations.", "Electrically-induced twitch responses of the prostatic segment of vas deferens (0.1 Hz, 65 V, 1 ms) are mainly due to the transient presynaptic release of ATP, which acts postsynaptically on non-adrenergic receptors to contract smooth muscle cells. These responses were fully blocked by nanomolar concentrations of the omega-conotoxins GVIA, MVIIA, and MVIIC, most likely by inhibiting Ca2+ entry through presynaptic N-type Ca2+ channels controlling the release of ATP. Repeated washout of the toxins allowed the recovery of contractions, except for omega-conotoxin GVIA, whose inhibitory effects remained unchanged for at least 60 min. In addition, micromolar concentrations of omega-conotoxin MVIIC were unable to protect against the irreversible inhibition of twitch contractions induced by nanomolar concentrations of omega-conotoxin GVIA. At low extracellular Ca2+ concentrations (1.5 mM), 20 nM of omega-conotoxin GVIA or MVIIA inhibited completely the twitch contractions in about 10 min. In 5 mM Ca2+ the blockade of twitch contractions after 10 min was 70% for both toxins. In 1.5 mM Ca2+ omega-conotoxin MVIIC (1 microM) inhibited completely the twitch contraction after 10 min. In 5 mM Ca2+ blockade developed very slowly and was very poor after 30 min, omega-conotoxin MVIIC depressed the response by only 20%. These results are compatible with the idea that the three omega-conotoxins block the purinergic neurotransmission of the vas deferens by acting on presynaptic N-type voltage-dependent Ca2+ channels. However, omega-conotoxin MVIIC seems to bind to sites different from those recognised by omega-conotoxin GVIA and MVIIA, which are markedly differentiated by their Ca2+ requirements for binding to their receptors.", "OBJECTIVE: Defective or inefficient DNA double-strand break (DSB) repair results in failure to preserve genomic integrity leading to apoptotic cell death, a hallmark of systemic lupus erythematosus (SLE). Compelling evidence linked environmental factors that increase oxidative stress with SLE risk and the formation of DSBs. In this study, we sought to further explore genotoxic stress sensitivity in SLE by investigating DSB accumulation as a marker linking the effect of environmental stressors and the chromatin microenvironment.METHODS: DSBs were quantified in peripheral blood mononuclear cell subsets from patients with SLE, healthy controls, and patients with rheumatoid arthritis (RA) by measuring phosphorylated H2AX (phospho-H2AX) levels with flow cytometry. Phospho-H2AX levels were assessed in G0/G1, S and G2 cell-cycle phases using propidium iodide staining, and after oxidative stress using 0.5 µM hydrogen peroxide exposure for 0, 2, 5, 10, 30 and 60 min.RESULTS: DSB levels were significantly increased in CD4+ T cells, CD8+ T cells and monocytes in SLE compared with healthy controls (p=2.16×10(-4), 1.68×10(-3) and 4.74×10(-3), respectively) and RA (p=1.05×10(-3), 1.78×10(-3) and 2.43×10(-2), respectively). This increase in DSBs in SLE was independent of the cell-cycle phase, and correlated with disease activity. In CD4+ T cells, CD8+ T cells and monocytes, oxidative stress exposure induced significantly higher DSB accumulation in SLE compared with healthy controls (60 min; p=1.64×10(-6), 8.11×10(-7) and 2.04×10(-3), respectively).CONCLUSIONS: Our data indicate that SLE T cells and monocytes have increased baseline DSB levels and an increased sensitivity to acquiring DSBs in response to oxidative stress. Although the mechanism underlying DSB sensitivity in SLE requires further investigation, accumulation of DSB may serve a biomarker for disease activity in SLE and help explain increased apoptotic cell accumulation in this disease.", "A sequence variant of histone H2A called H2AX is one of the key components of chromatin involved in DNA damage response induced by different genotoxic stresses. Phosphorylated H2AX (γH2AX) is rapidly concentrated in chromatin domains around DNA double-strand breaks (DSBs) after the action of ionizing radiation or chemical agents and at stalled replication forks during replication stress. γH2AX foci could be easily detected in cell nuclei using immunofluorescence microscopy that allows to use γH2AX as a quantitative marker of DSBs in various applications. H2AX is phosphorylated in situ by ATM, ATR, and DNA-PK kinases that have distinct roles in different pathways of DSB repair. The γH2AX serves as a docking site for the accumulation of DNA repair proteins, and after rejoining of DSBs, it is released from chromatin. The molecular mechanism of γH2AX dephosphorylation is not clear. It is complicated and requires the activity of different proteins including phosphatases and chromatin-remodeling complexes. In this review, we summarize recently published data concerning the mechanisms and kinetics of γH2AX loss in normal cells and tissues as well as in those deficient in ATM, DNA-PK, and DSB repair proteins activity. The results of the latest scientific research of the low-dose irradiation phenomenon are presented including the bystander effect and the adaptive response estimated by γH2AX detection in cells and tissues.", "Introduction: Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype associated with an increased risk of recurrence and cancer-related death. Unlike hormone receptor-positive or HER2-positive breast cancers, there are limited targeted therapies available to treat TNBC and cytotoxic chemotherapy remains the mainstay of treatment. Sacituzumab govitecan (IMMU-132) is an antibody-drug conjugate targeting Trop-2 expressing cells and selectively delivering SN-38, an active metabolite of irinotecan. Areas covered: This review covers the mechanism of action, safety and efficacy of sacituzumab govitecan in patients with previously treated, metastatic TNBC. Additionally, efficacy data in other epithelial malignancies is included based on a PubMed search for 'sacituzumab govitecan' and 'clinical trial'. Expert opinion: Sacituzumab govitecan has promising anti-cancer activity in patients with metastatic TNBC previously treated with at least two prior lines of systemic therapy based on a single arm Phase I/II clinical trial. A confirmatory Phase III randomized clinical trial is ongoing. Sacituzumab govitecan has a manageable side effect profile, with the most common adverse events being nausea, neutropenia, and diarrhea. The activity of sacituzumab govitecan likely extends beyond TNBC with promising early efficacy data in many other epithelial cancers, including hormone receptor-positive breast cancer.", "Psoriasis is a chronic, systemic T-cell mediated autoimmune skin disease, potentially associated with arthritis. The new understanding of immunopathogenesis and inflammatory cytokine pathways was actually the rationale for developing and introducing biological drugs in the treatment of moderate to severe psoriasis and psoriatic arthritis. Different from the traditional systemic drugs that impact the entire immune system, bio-logics target only specific points of the immune system. This review focuses on five biologics which target either T-cells (alefacept) or TNF-alpha (etanercept, adalimumab and infliximab) or interleukin IL-12/IL-23 (ustekinumab)--their efficacy, safety, patient monitoring and recommended dosage. The purpose of the treatment guidelines presented here is to provide a high standard of continuing care of psoriasis and psoriatic arthritis patients.", "Primary congenital hypothyroidism is characterized by low levels of circulating thyroid hormones and raised levels of thyrotropin at birth. It can be either permanent or transitory. Most permanent cases (80-85%) result from alterations in the formation of the thyroid gland during embryogenesis (thyroid dysgenesis), and several were shown recently to be produced by mutations in genes responsible for the development of thyroid follicular cells (TITF1, TITF2, PAX8 and TSHR). Less frequently, congenital hypothyroidism is determined by defects in thyroid hormone synthesis (hormonogenesis defects). The latter are usually associated with goiter. Recently, the molecular mechanisms of two forms of hormonogenesis defects (iodine transport defects and Pendred syndrome) were elucidated.", "RATIONALE: The role of Parkin in hearts is unclear. Germ-line Parkin knockout mice have normal hearts, but Parkin is protective in cardiac ischemia. Parkin-mediated mitophagy is reportedly either irrelevant, or a major factor, in the lethal cardiomyopathy evoked by cardiac myocyte-specific interruption of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission.OBJECTIVE: To understand the role of Parkin-mediated mitophagy in normal and mitochondrial fission-defective adult mouse hearts.METHODS AND RESULTS: Parkin mRNA and protein were present at low levels in normal mouse hearts, but were upregulated after cardiac myocyte-directed Drp1 gene deletion in adult mice. Alone, forced cardiac myocyte Parkin overexpression activated mitophagy without adverse effects. Likewise, cardiac myocyte-specific Parkin deletion evoked no adult cardiac phenotype, revealing no essential function for, and tolerance of, Parkin-mediated mitophagy in normal hearts. Concomitant conditional Parkin deletion with Drp1 ablation in adult mouse hearts prevented Parkin upregulation in mitochondria of fission-defective hearts, also increasing 6-week survival, improving ventricular ejection performance, mitigating adverse cardiac remodeling, and decreasing cardiac myocyte necrosis and replacement fibrosis. Underlying the Parkin knockout rescue was suppression of Drp1-induced hyper-mitophagy, assessed as ubiquitination of mitochondrial proteins and mitochondrial association of autophagosomal p62/sequestosome 1 (SQSTM1) and processed microtubule-associated protein 1 light chain 3 (LC3-II). Consequently, mitochondrial content of Drp1-deficient hearts was preserved. Parkin deletion did not alter characteristic mitochondrial enlargement of Drp1-deficient cardiac myocytes.CONCLUSIONS: Parkin is rare in normal hearts and dispensable for constitutive mitophagic quality control. Ablating Drp1 in adult mouse cardiac myocytes not only interrupts mitochondrial fission, but also markedly upregulates Parkin, thus provoking mitophagic mitochondrial depletion that contributes to the lethal cardiomyopathy.", "Cariprazine is an oral antipsychotic approved in the US and EU for the treatment of schizophrenia. Cariprazine differs from other antipsychotics in that it is a dopamine D3- and D2-receptor partial agonist, with tenfold higher affinity for D3 receptors than for D2 receptors. Cariprazine is metabolized in two steps by CYP3A4 to didesmethyl-cariprazine (DDCAR). DDCAR has a long half-life of 1-3 weeks and is the predominant circulating active moiety. Efficacy and safety in persons with acute schizophrenia were assessed in four similarly designed, short-term, randomized, placebo-controlled clinical trials in nonelderly adults, with three studies considered positive and yielding a number needed to treat vs placebo for response (change from baseline ≥30% in Positive and Negative Syndrome Scale total score) of ten for the approved dose range of cariprazine 1.5-6 mg/day. The most common adverse reactions were extrapyramidal symptoms (15% and 19% for 1.5-3 and 4.5-6 mg/day, respectively, vs 8% for placebo) and akathisia (9% and 12.5% for 1.5-3 and 4.5-6 mg/day, respectively, vs 4% for placebo). For the approved dose range, rates of discontinuation because of an adverse event were lower overall for patients receiving cariprazine vs placebo (9% vs 12%). Weight and metabolic profile appear favorable. Cariprazine does not increase prolactin levels or prolong the electrocardiographic QT interval. Cariprazine has also been found to be effective for the maintenance treatment of schizophrenia by delaying time to relapse when compared with placebo (HR 0.45). A 26-week randomized clinical trial evidenced superiority of cariprazine over risperidone for the treatment of predominantly negative symptoms in patients with schizophrenia. Cariprazine is also approved in the US for the acute treatment of manic or mixed episodes associated with bipolar I disorder in adults and is being studied for the treatment of bipolar I depression and major depressive disorder.", "Degradation and remodelling of the extracellular matrix has been investigated, with the main focus on the balance between matrix metalloproteinases (MMP) and tissue inhibitor of metalloproteinases (TIMP). Recent reports disclose the presence of a novel MMP-inhibiting cell membrane-anchored glycoprotein designated 'reversion-inducing cysteine-rich protein with Kazal motifs' (RECK). Our main aim in this study was to elucidate the role of RECK in cell invasion of pituitary adenomas and its contribution to signal transduction. The function of RECK in cell invasion was investigated by comparing data obtained from full-length RECK clone transfection and gene silencing with RECK mRNA-targeting siRNA. RECK expression was confirmed using real-time RT-PCR and Western blotting. Levels of matrix metalloproteinases (MMP-2 and -9) and TIMP-1 were measured by zymography and reverse zymography, respectively. Cell invasion was examined with a 3-D invasion assay. The signal cascade was investigated by cDNA microarray analysis. As expected, expression of RECK was elevated upon cDNA transfection, and diminished using siRNA. We observed elevation of MMP-2 and -9 expression and consequent 3-D cell invasion in cells under-expressing RECK. However, TIMP expression was not affected by RECK. Analysis with cDNA microarray revealed that RECK additionally upregulates growth hormone-releasing hormone receptor (GHRHR) and latrophilin 2 at the transcriptional level. Our findings collectively suggest that RECK regulates the cell signalling pathway, playing a critical neuroendocrinological role in the pituitary adenoma cell line.", "BACKGROUND: Surgical treatments for deep-seated intracranial lesions have been limited by morbidities associated with resection. Real-time magnetic resonance imaging-guided focused laser interstitial thermal therapy (LITT) offers a minimally invasive surgical treatment option for such lesions.OBJECTIVE: To review treatments and results of patients treated with LITT for intracranial lesions at Washington University School of Medicine.METHODS: In a review of 17 prospectively recruited LITT patients (34-78 years of age; mean, 59 years), we report demographics, treatment details, postoperative imaging characteristics, and peri- and postoperative clinical courses.RESULTS: Targets included 11 gliomas, 5 brain metastases, and 1 epilepsy focus. Lesions were lobar (n = 8), thalamic/basal ganglia (n = 5), insular (n = 3), and corpus callosum (n = 1). Mean target volume was 11.6 cm, and LITT produced 93% target ablation. Patients with superficial lesions had shorter intensive care unit stays. Ten patients experienced no perioperative morbidities. Morbidities included transient aphasia, hemiparesis, hyponatremia, deep venous thrombosis, and fatal meningitis. Postoperative magnetic resonance imaging showed blood products within the lesion surrounded by new thin uniform rim of contrast enhancement and diffusion restriction. In conjunction with other therapies, LITT targets often showed stable or reduced local disease. Epilepsy focus LITT produced seizure freedom at 8 months. Preliminary overall median progression-free survival and survival from LITT in tumor patients were 7.6 and 10.9 months, respectively. However, this small cohort has not been followed for a sufficient length of time, necessitating future outcomes studies.CONCLUSION: Early peri- and postoperative clinical data demonstrate that LITT is a safe and viable ablative treatment option for intracranial lesions, and may be considered for select patients.", "BACKGROUND AND AIMS: Peyer's patches play a major role in intestinal immunity, are portals of entry for significant pathogens, and may be important in Crohn's disease. Whereas their microscopic anatomy and immune function are well described, surprisingly little is known of their macroscopic anatomy and distribution. Our aim was to assess their number, area, and distribution in the normal distal ileum, with particular reference to patient age.METHODS: Distal ilea (200 cm) obtained at autopsy from 55 adults without intestinal disease were opened along the mesenteric border, fixed in acetic acid, and transilluminated. Peyer's patches were counted, and the length, breadth, and distance from the ileocecal valve were recorded.RESULTS: Patches were most numerous in the terminal 10-15 cm where they formed a lymphoid ring. More proximal patches were oval, antimesenteric, and irregularly spaced. By area, 46% of patch tissue occurred in the terminal 25 cm. The mean number of patches ranged from 29.4 +/- 5.4 in the youngest group studied, to 19.0 +/- 3.0 in the oldest. Total patch area was greatest in the group aged 21-30 (47.4 +/- 1.0 cm2).CONCLUSION: Peyer's patches are concentrated in the distal 25 cm of ileum but extend proximally for 200 cm. The variation in their size, shape, and distribution in different individuals is greater than often appreciated and may influence the presentation of diseases centered on these structures.", "DNA double-strand breaks (DSBs) can induce chromosomal aberrations and carcinogenesis and their correct repair is crucial for genetic stability. The cellular response to DSBs depends on damage signaling including the phosphorylation of the histone H2AX (γH2AX). However, a lack of γH2AX formation in heterochromatin (HC) is generally observed after DNA damage induction. Here, we examine γH2AX and repair protein foci along linear ion tracks traversing heterochromatic regions in human or murine cells and find the DSBs and damage signal streaks bending around highly compacted DNA. Given the linear particle path, such bending indicates a relocation of damage from the initial induction site to the periphery of HC. Real-time imaging of the repair protein GFP-XRCC1 confirms fast recruitment to heterochromatic lesions inside murine chromocenters. Using single-ion microirradiation to induce localized DSBs directly within chromocenters, we demonstrate that H2AX is early phosphorylated within HC, but the damage site is subsequently expelled from the center to the periphery of chromocenters within ∼ 20 min. While this process can occur in the absence of ATM kinase, the repair of DSBs bordering HC requires the protein. Finally, we describe a local decondensation of HC at the sites of ion hits, potentially allowing for DSB movement via physical forces.", "In Saccharomyces, an ancient whole-genome duplication (WGD) and widespread duplicate gene deletion resulted in extensive reorganization of adjacent gene relationships. We have studied the evolution of adjacent gene pairs' identity, orientation, and spacing following whole-genome duplication and deletion (WGD-D) using comparative genomic analyses and simulations. Surveying adjacent gene organization across the Saccharomyces species complex, we find a genome-wide bias toward divergently and convergently transcribed gene pairs in all species but a reduction in this bias in the species that underwent WGD-D. Among neutral models of WGD-D, only single-gene deletion can produce the appropriate reduction in orientation bias and recapitulate the pattern of short, highly dispersed deletions we observe in Saccharomyces cerevisiae. To characterize the dynamics of WGD-D, we trace the conservation and creation of adjacent gene pairs along the S. cerevisiae lineage. We find that newly created adjacencies have a tandem orientation bias, while adjacencies conserved from prior to WGD-D have the same divergent-convergent bias as found in the species that diverged before WGD. We also find that adjacent gene pairs produced by WGD-D gained greater intergenic spacing but that this is reduced in the older adjacencies. Given this, and the preponderance of short deleted blocks, we argue that the deletion phase of WGD-D occurred primarily by small inactivating mutations followed by numerous small deletions. Newly created adjacent gene pairs also have an initial increase in mean log2 expression ratios and maximal expression levels, suggesting that increased intergenic spacing caused a genome-wide reduction in transcriptional interference." ]
2,093
[ "In this study, the Audioscan test has been used to detect early signs of hearing abnormalities in 80 patients with King-Kopetzky syndrome. A significantly higher prevalence of Audioscan notches between 500 and 3,000 Hz was found for each age band and gender in patients with King-Kopetzky syndrome than in control subjects. This indicates that Audioscan notches between 500 and 3,000 Hz may represent a fine hearing deficit as an indicator of mild auditory dysfunction in patients with King-Kopetzky syndrome. However, there was no significant difference in the percentage of notches in the 3,001-8,000 Hz frequency band between the King-Kopetzky syndrome and control groups.", "The purpose of this article is to ascertain and appraise the ethical issues inherent to the utilisation of preimplantation genetic diagnosis for gender selection in infertile patients anticipating undergoing a medically indicated assisted reproductive technique procedure. Performance of preimplantation genetic diagnosis per request specifically for gender selection by an infertile couple undergoing medically indicated assisted reproductive technique may not breach the principles of ethics, and is unlikely to alter the population balance of sexes.", "OBJECTIVES: Mast cells (MCs) may play an important role in plaque destabilization and atherosclerotic coronary complications. Here, we have studied the presence of MCs in the intima and media of unstable and stable coronary lesions at different time points after myocardial infarction (MI).METHODS: Coronary arteries were obtained at autopsy from patients with acute MI (up to 5 days old; n=27) and with chronic MI (5-14 days old; n=18), as well as sections from controls without cardiac disease (n=10). Herein, tryptase-positive MCs were quantified in the intima and media of both unstable and stable atherosclerotic plaques in infarct-related and non-infarct-related coronary arteries.RESULTS: In the media of both acute and chronic MI patients, the number of MCs was significantly higher than in controls. This was also found when evaluating unstable and stable plaques separately. In patients with chronic MI, the number of MCs in unstable lesions was significantly higher than in stable lesions. This coincided with a significant increase in the relative number of unstable plaques in patients with chronic MI compared with control and acute MI. No differences in MC density were found between infarct-related and non-infarct-related coronary arteries in patients with MI.CONCLUSION: The presence of MCs in the media of both stable and unstable atherosclerotic coronary lesions after MI suggests that MCs may be involved in the onset of MI and, on the other hand, that MI triggers intra-plaque infiltration of MCs especially in unstable plaques, possibly increasing the risk of re-infarction.", "We present the first case of abnormal neuroimaging in a case of infant botulism. The clinical findings of the patient with constipation, bulbar weakness, and descending, symmetric motor weakness are consistent with the classic findings of infant botulism. Magnetic resonance imaging (MRI), however, revealed restricted diffusion in the brain and enhancement of the cervical nerve roots. Traditionally, normal neuroimaging was used to help differentiate infant botulism from other causes of weakness in infants. Abnormal neuroimaging is seen in other causes of weakness in an infant including metabolic disorders and hypoxic-ischemic injury, but these diagnoses did not fit the clinical findings in this case. The explanation for the MRI abnormalities in the brain and cervical nerve roots is unclear as botulinum toxin acts at presynaptic nerve terminals and does not cross the blood-brain barrier. Possible explanations for the findings include inflammation from the botulinum toxin at the synapse, alterations in sensory signaling and retrograde transport of the botulinum toxin. The patient was treated with human botulism immune globulin and had rapid recovery in weakness. A stool sample from the patient was positive for Type A Clostridium botulinum toxin eventually confirming the diagnosis of infant botulism. The findings in this case support use of human botulism immune globulin when the clinical findings are consistent with infant botulism despite the presence of MRI abnormalities in the brain and cervical nerve roots.", "BACKGROUND AND PURPOSE: The electric field and the concomitant heat (electrohyperthermia) can synergistically induce cell death in tumor tissue, due to elevated glycolysis, ion concentration, and permittivity in malignant compared with nonmalignant tissues. Here we studied the mechanism and time course of tumor destruction caused by electrohyperthermia.MATERIAL AND METHODS: Bilateral implants of HT29 colorectal cancer in the femoral regions of Balb/c (nu/nu) mice were treated with a single 30-min shot of modulated, 13.56-MHz, radiofrequency-generated electrohyperthermia (mEHT). Tumors at 0, 1, 4, 8, 14, 24, 48, and 72 h posttreatment were studied for morphology, DNA fragmentation, and cell death response-related protein expression using tissue microarrays, immunohistochemistry, Western immunoblots, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays.RESULTS: Modulated EHT treatment induced significant tumor destruction in HT29 xenografts with a peak of a sevenfold increase compared with the untreated controls. The significant treatment-related elevation of DNA fragmentation--detected with TUNEL assay--and apoptotic bodies between 24 and 72 h posttreatment was proof of a programmed cell death response. This was associated with significant mitochondrial accumulation of bax and mitochondrial-to-cytoplasmic release of cytochrome c proteins between 8 and 14 h. Cleaved caspase-3 levels were low and mainly localized to inflammatory cells. The substantial cytoplasmic-to-nuclear translocation of apoptosis-inducing factor (AIF) and its 57-kDa activated fragment detected between 14 and 24 h after treatment indicated AIF as an effector for DNA fragmentation.CONCLUSION: Modulated EHT treatment can induce programmed cell death-related tumor destruction in HT29 colorectal adenocarcinoma xenografts, which dominantly follows a caspase-independent subroutine.", "'miR2Disease', a manually curated database, aims at providing a comprehensive resource of microRNA deregulation in various human diseases. The current version of miR2Disease documents 1939 curated relationships between 299 human microRNAs and 94 human diseases by reviewing more than 600 published papers. Around one-seventh of the microRNA-disease relationships represent the pathogenic roles of deregulated microRNA in human disease. Each entry in the miR2Disease contains detailed information on a microRNA-disease relationship, including a microRNA ID, the disease name, a brief description of the microRNA-disease relationship, an expression pattern of the microRNA, the detection method for microRNA expression, experimentally verified target gene(s) of the microRNA and a literature reference. miR2Disease provides a user-friendly interface for a convenient retrieval of each entry by microRNA ID, disease name, or target gene. In addition, miR2Disease offers a submission page that allows researchers to submit established microRNA-disease relationships that are not documented. Once approved by the submission review committee, the submitted records will be included in the database. miR2Disease is freely available at http://www.miR2Disease.org.", "Ikaros and Foxp1 are transcription factors that play key roles in normal lymphopoiesis and lymphoid malignancies. We describe a novel physical and functional interaction between the proteins, which requires the central zinc finger domain of Ikaros. The Ikaros-Foxp1 interaction is abolished by deletion of this region, which corresponds to the IK6 isoform that is commonly associated with high-risk acute lymphoblastic leukemia (ALL). We also identify the Gpr132 gene, which encodes the orphan G protein-coupled receptor G2A, as a novel target for Foxp1. Increased expression of Foxp1 enhanced Gpr132 transcription and caused cell cycle changes, including G2 arrest. Co-expression of wild-type Ikaros, but not IK6, displaced Foxp1 binding from the Gpr132 gene, reversed the increase in Gpr132 expression and inhibited G2 arrest. Analysis of primary ALL samples revealed a significant increase in GPR132 expression in IKZF1-deleted BCR-ABL negative patients, suggesting that levels of wild-type Ikaros may influence the regulation of G2A in B-ALL. Our results reveal a novel effect of Ikaros haploinsufficiency on Foxp1 functioning, and identify G2A as a potential modulator of the cell cycle in Ikaros-deleted B-ALL." ]
2,094
[ "Cellular commitment to a specific lineage is controlled by differential silencing of genes, which in turn depends on epigenetic processes such as DNA methylation and histone modification. During early embryogenesis, the mammalian genome is 'wiped clean' of most epigenetic modifications, which are progressively re-established during embryonic development. Thus, the epigenome of each mature cellular lineage carries the record of its developmental history. The subsequent trajectory and pattern of development are also responsive to environmental influences, and such plasticity is likely to have an epigenetic basis. Epigenetic marks may be transmitted across generations, either directly by persisting through meiosis or indirectly through replication in the next generation of the conditions in which the epigenetic change occurred. Developmental plasticity evolved to match an organism to its environment, and a mismatch between the phenotypic outcome of adaptive plasticity and the current environment increases the risk of metabolic and cardiovascular disease. These considerations point to epigenetic processes as a key mechanism that underpins the developmental origins of chronic noncommunicable disease. Here, we review the evidence that environmental influences during mammalian development lead to stable changes in the epigenome that alter the individual's susceptibility to chronic metabolic and cardiovascular disease, and discuss the clinical implications.", "Medulloblastoma (MB) is the most common malignant pediatric brain tumor and is thought to arise from genetic anomalies in developmental pathways required for the normal maturation of the cerebellar cortex, notably developmental pathways for granule cell progenitor (GCP) neurogenesis. Over the past decade, a wide range of studies have identified genes and their regulators within signaling pathways, as well as noncoding RNAs, that have crucial roles in both normal cerebellar development and pathogenesis. These include the Notch, Wnt/β-catenin, bone morphogenic proteins (Bmp) and Sonic Hedgehog (Shh) pathways. In this review, we highlight the function of these pathways in the growth of the cerebellum and the formation of MB. A better understanding of the developmental origins of these tumors will have significant implications for enhancing the treatment of this important childhood cancer.", "PDS5B is a sister chromatid cohesion protein that is crucial for faithful segregation of duplicated chromosomes in lower organisms. Mutations in cohesion proteins are associated with the developmental disorder Cornelia de Lange syndrome (CdLS) in humans. To delineate the physiological roles of PDS5B in mammals, we generated mice lacking PDS5B (APRIN). Pds5B-deficient mice died shortly after birth. They exhibited multiple congenital anomalies, including heart defects, cleft palate, fusion of the ribs, short limbs, distal colon aganglionosis, abnormal migration and axonal projections of sympathetic neurons, and germ cell depletion, many of which are similar to abnormalities found in humans with CdLS. Unexpectedly, we found no cohesion defects in Pds5B(-/-) cells and detected high PDS5B expression in post-mitotic neurons in the brain. These results, along with the developmental anomalies of Pds5B(-/-) mice, the presence of a DNA-binding domain in PDS5B in vertebrates and its nucleolar localization, suggest that PDS5B and the cohesin complex have important functions beyond their role in chromosomal dynamics.", "Dipeptidyl peptidase-4 (DPP-4) inhibitors have recently emerged as a new class of antidiabetic that show favorable results in improving glycemic control with a minimal risk of hypoglycemia and weight gain. Teneligliptin, a novel DPP-4 inhibitor, exhibits a unique structure characterized by five consecutive rings, which produce a potent and long-lasting effect. Teneligliptin is currently used in cases showing insufficient improvement in glycemic control even after diet control and exercise or a combination of diet control, exercise, and sulfonylurea- or thiazolidine-class drugs. In adults, teneligliptin is orally administered at a dosage of 20 mg once daily, which can be increased up to 40 mg per day. Because the metabolites of this drug are eliminated via renal and hepatic excretion, no dose adjustment is necessary in patients with renal impairment. The safety profile of teneligliptin is similar to those of other available DPP-4 inhibitors. However, caution needs to be exercised when administering teneligliptin to patients who are prone to QT prolongation. One study has reported that the postprandial blood glucose-lowering effects of teneligliptin administered prior to breakfast were sustained throughout the day, and the effects observed after dinner were similar to those observed after breakfast or lunch. Thus, although clinical data for this new drug are limited, this drug shows promise in stabilizing glycemic fluctuations throughout the day and consequently suppressing the progression of diabetic complications. However, continued evaluation in long-term studies and clinical trials is required to evaluate the efficacy and safety of the drug as well as to identify additional indications for its clinical use.", "Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system with no clear etiology. Until recently, most studies have emphasized the role of T cells in the pathogenesis of multiple sclerosis. Data suggesting that B cells play a role in the pathogenesis of multiple sclerosis have been accumulating for the past five decades, demonstrating that the cerebrospinal fluid and central nervous system tissues of multiple sclerosis patients contain B cells, plasma cells, antibodies, and immunoglobulins. Data suggest that B cells are involved in antigen capture and presentation to T cells, cytokine production, antibody secretion, demyelination, tissue damage, and remyelination in multiple sclerosis. These advances in the understanding of B-cell and antibody roles in the pathophysiology of multiple sclerosis provide a strong rationale for B-cell-targeted therapies.", "Exercise training improves the aging-induced downregulation of myosin heavy chain (MHC) and sarcoplasmic reticulum (SR) Ca(2+)-ATPase, which participate in the regulation of cardiac contraction and relaxation. Thyroid hormone receptor (TR), a transcriptional activator, affected the regulation of gene expression of MHC and SR Ca(2+)-ATPase. We hypothesized that myocardial TR signaling contributes to a molecular mechanism of exercise training-induced improvement of MHC and SR Ca(2+)-ATPase genes with cardiac function in old age. We investigated whether TR signaling and gene expression of MHC and SR Ca(2+)-ATPase in the aged heart are affected by exercise training, using the hearts of sedentary young rats (4 mo old), sedentary aged rats (23 mo old), and trained aged rats (23 mo old, swimming training for 8 wk). Trained aged rats showed improvement in cardiac function. Expression of TR-alpha1 and TR-beta1 proteins in the heart were significantly lower in sedentary aged rats than in sedentary young rats and were significantly higher in trained aged rats than in sedentary aged rats. The activity of TR DNA binding to the transcriptional regulatory region in the alpha-MHC and SR Ca(2+)-ATPase genes and the mRNA and protein expression of alpha-MHC and SR Ca(2+)-ATPase in the heart and plasma 3,3'-triiodothyronine and thyroxine levels were altered in association with changes in the myocardial TR protein levels. These findings suggest that exercise training improves the aging-induced downregulation of myocardial TR signaling-mediated transcription of MHC and SR Ca(2+)-ATPase genes, thereby contributing to the improvement of cardiac function in trained aged hearts.", "Increasingly, methotrexate (MTX) and sulphasalazine (SASP) are used initially for second-line therapy of rheumatoid arthritis (RA). Although SASP and MTX are commonly used, the mechanism(s) by which these drugs control the inflammation that characterizes RA have remained obscure. Results from my laboratory indicate that these agents share a mode of action; the anti-inflammatory effects of both SASP and MTX are due, in both in vitro and in vivo studies, to their capacity to enhance adenosine release at inflamed sites. This mode of action suggests that the development of agents that directly alter adenosine metabolism may lead to new, more effective and safer antirheumatic drugs than those currently available.", "Cornelia de Lange syndrome (CdLS), a disorder caused by mutations in cohesion proteins, is characterized by multisystem developmental abnormalities. PDS5, a cohesion protein, is important for proper chromosome segregation in lower organisms and has two homologues in vertebrates (PDS5A and PDS5B). Pds5B mutant mice have developmental abnormalities resembling CdLS; however the role of Pds5A in mammals and the association of PDS5 proteins with CdLS are unknown. To delineate genetic interactions between Pds5A and Pds5B and explore mechanisms underlying phenotypic variability, we generated Pds5A-deficient mice. Curiously, these mice exhibit multiple abnormalities that were previously observed in Pds5B-deficient mice, including cleft palate, skeletal patterning defects, growth retardation, congenital heart defects and delayed migration of enteric neuron precursors. They also frequently display renal agenesis, an abnormality not observed in Pds5B(-/-) mice. While Pds5A(-/-) and Pds5B(-/-) mice die at birth, embryos harboring 3 mutant Pds5 alleles die between E11.5 and E12.5 most likely of heart failure, indicating that total Pds5 gene dosage is critical for normal development. In addition, characterization of these compound homozygous-heterozygous mice revealed a severe abnormality in lens formation that does not occur in either Pds5A(-/-) or Pds5B(-/-) mice. We further identified a functional missense mutation (R1292Q) in the PDS5B DNA-binding domain in a familial case of CdLS, in which affected individuals also develop megacolon. This study shows that PDS5A and PDS5B functions other than those involving chromosomal dynamics are important for normal development, highlights the sensitivity of key developmental processes on PDS5 signaling, and provides mechanistic insights into how PDS5 mutations may lead to CdLS." ]