doc_id
stringlengths
4
9
doi
stringlengths
11
63
corpus_id
uint64
2.15k
236M
title
stringlengths
7
281
abstract
stringlengths
18
6.92k
label
uint32
0
1
venue
stringlengths
0
183
14995403
10.1007/S00360-013-0789-5
14,995,403
Ingestion and absorption of particles derived from different macrophyta in the cockle Cerastoderma edule: effects of food ration
We analyzed the capacity of the common cockle Cerastodermaedule to utilize detrital food particles obtained from three different macrophytes: the vascular plant Juncusmaritimus and two green macroalgae (Ulva lactuca and Enteromorpha sp.). We measured feeding and digestive parameters at three concentrations of detritus (0.5, 1.0 and 3.0 mm3 l−1), so that functional relationships between ingestive and digestive processes could be assessed. Increasing concentrations of detritus (food) resulted in a reduction in filtering activity (clearance rate l h−1), but an increase in ingestion rate. Consequently, gut content also increased with increasing food concentration, irrespective of food type. In contrast, the trend followed by absorption efficiency with increasing ingestion rate was determined by food type, being significantly reduced (from 0.63 to 0.11) with Juncus but remaining almost constant with the green macroalgae (0.58 ± 0.07 with Ulva) or only minimally reduced (from 0.66 to 0.48 with Enteromorpha). This differential response had clear consequences for energy uptake: absorption rate increased with increasing particulate organic matter with Enteromorpha but decreased with Juncus. We discuss the possible role of digestive parameters such as digestibility, gut content and gut-residence time in the differential utilization of detrital matter from different vegetal origins by cockles.
0
Journal of Comparative Physiology B
6193606
10.1007/S00359-013-0861-3
6,193,606
Mechanisms underlying odorant-induced and spontaneous calcium signals in olfactory receptor neurons of spiny lobsters, Panulirus argus
We determined if a newly developed antennule slice preparation allows studying chemosensory properties of spiny lobster olfactory receptor neurons under in situ conditions with Ca2+ imaging. We show that chemical stimuli reach the dendrites of olfactory receptor neurons but not their somata, and that odorant-induced Ca2+ signals in the somata are sufficiently stable over time to allow stimulation with a substantial number of odorants. Pharmacological manipulations served to elucidate the source of odorant-induced Ca2+ transients and spontaneous Ca2+ oscillations in the somata of olfactory receptor neurons. Both Ca2+ signals are primarily mediated by an influx of extracellular Ca2+ through voltage-activated Ca2+ channels that can be blocked by CoCl2 and the L-type Ca2+ channel blocker verapamil. Intracellular Ca2+ stores contribute little to odorant-induced Ca2+ transients and spontaneous Ca2+ oscillations. The odorant-induced Ca2+ transients as well as the spontaneous Ca2+ oscillations depend on action potentials mediated by Na+ channels that are largely TTX-insensitive but blocked by the local anesthetics tetracaine and lidocaine. Collectively, these results corroborate the conclusion that odorant-induced Ca2+ transients and spontaneous Ca2+ oscillations in the somata of olfactory receptor neurons closely reflect action potential activity associated with odorant-induced phasic-tonic responses and spontaneous bursting, respectively. Therefore, both types of Ca2+ signals represent experimentally accessible proxies of spiking.
0
Journal of Comparative Physiology A
10950000
10.1007/S00360-013-0788-6
10,950,000
Roles of carbohydrate reserves for local adaptation to low temperatures in the freeze tolerant oligochaete Enchytraeus albidus
Geographic variation in cold tolerance and associated physiological adaptations were investigated in the freeze tolerant enchytraeid Enchytraeus albidus (Oligochaeta). Specimens from Svalbard, Greenland (Nuuk), Iceland (Hólar and Mossfellsbær) and continental Europe [Norway (Bergen), Sweden (Kullen) and Germany] were reared in the laboratory in a common-garden experiment. The aim was to test for variations in minimum lethal temperature, freeze duration tolerance, carbohydrate reserves and metabolic rate among the populations. Cold tolerance was related to environmental temperature of the respective location. Populations from the coldest climatic regions were able to tolerate freezing down to at least −15 °C and endured being frozen at −5 °C for 27–48 days, respectively. Populations from milder climates had a lower freeze duration tolerance (about −9 °C) and endured −5 °C for a shorter period (between 9 and 16 days). Glucose accumulation and glycogen reserves varied significantly between populations, but was not related directly to cold tolerance. Metabolic rate varied significantly between populations, but was not significantly related to cold tolerance. The metabolic rates at −2 °C of frozen and unfrozen worms from Germany and Svalbard were tested. The metabolic depression due to freezing of these populations was relatively small (<50 %), suggesting that the large carbohydrate accumulations may also be important as fuel during long-term freezing at moderately low temperatures. Differences in metabolic depression may partly explain the difference in cold tolerance of these two populations, however, the mechanisms behind local adaptation to low winter temperatures in these enchytraeid populations seem more complex than earlier studies have indicated.
0
Journal of Comparative Physiology B
17559734
10.1007/S00359-013-0862-2
17,559,734
Both PKMζ and KIBRA are closely related to reference memory but not working memory in a T-maze task in rats
Protein kinase M zeta (PKMζ) and the kidney and brain protein (KIBRA) play important roles in various forms of memories. However, whether they are involved in performing the T-maze task is still unknown. In this study, the delayed nonmatch-to-sample (DNMS) task in a T-maze was given to rats. The percentage of correct choices denoting the performance accuracy was calculated and the protein levels of PKMζ and KIBRA in rat’s prefrontal cortex were measured. The results showed significantly increased performance accuracy after the training phase, which was maintained on the next day in groups with a delay of 10 s but not 30 s, indicating that 30 s is too long for rats to maintain working memory. As for the expressions of PKMζ and KIBRA, significant increases were observed 1 day after the training phase, indicating that the formation of reference memory accompanies an increase in PKMζ and KIBRA. No significant difference was found among groups with various delay intervals, indicating that the expressions of PKMζ and KIBRA exert no effects on the performance of working memory. These results provide the first evidence that KIBRA as well as PKMζ is closely related to reference memory but not working memory in rats.
0
Journal of Comparative Physiology A
14789300
10.1007/S00360-013-0780-1
14,789,300
Sequence and expression of an α-amylase gene in four related species of prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and species-level effects
Partial α-amylase gene sequences were determined and α-amylase gene expression was quantified in four species of carnivorous, omnivorous, and herbivorous prickleback fishes (family Stichaeidae) to assess the effects of ontogeny, diet, and species on expression of this gene. Pairwise comparison of α-amylase nucleotide sequences revealed 96–98 % identity, and comparison of amino acid portions revealed 93–95 % similarity among the four prickleback species. Expression was determined using in situ hybridization and intensity of expression quantified using image analysis. Alpha-amylase expression level was compared in three feeding categories of the four species: (1) small, wild-caught carnivorous juveniles; (2) larger, wild-caught juveniles of the carnivorous species and the three that had shifted to herbivory or omnivory; and (3) larger, juveniles produced by feeding a low-starch artificial diet to small juveniles until they reached the size of the larger wild-caught juveniles. The results showed no dietary effect in any species but significant ontogenetic and species-level effects in Cebidichthys violaceus, as well as in the sister species Xiphister mucosus and X. atropurpureus. Based on a phylogeny for the Stichaeidae produced for this study using two mtDNA genes and one nuclear gene, the ontogenetic dietary shifts to herbivory/omnivory evolved independently in C. violaceus and in the clade containing the two species of Xiphister. All three of these species increased α-amylase gene expression with increase in size and had higher expression than Anoplarchuspurpurescens, which is a member of a third, stichaeid clade comprising carnivores. These results show the importance of α-amylase in the herbivores and omnivores.
0
Journal of Comparative Physiology B
1099411
10.1007/S00359-013-0860-4
1,099,411
Incorporating variability in honey bee waggle dance decoding improves the mapping of communicated resource locations
Honey bees communicate to nestmates locations of resources, including food, water, tree resin and nest sites, by making waggle dances. Dances are composed of repeated waggle runs, which encode the distance and direction vector from the hive or swarm to the resource. Distance is encoded in the duration of the waggle run, and direction is encoded in the angle of the dancer’s body relative to vertical. Glass-walled observation hives enable researchers to observe or video, and decode waggle runs. However, variation in these signals makes it impossible to determine exact locations advertised. We present a Bayesian duration to distance calibration curve using Markov Chain Monte Carlo simulations that allows us to quantify how accurately distance to a food resource can be predicted from waggle run durations within a single dance. An angular calibration shows that angular precision does not change over distance, resulting in spatial scatter proportional to distance. We demonstrate how to combine distance and direction to produce a spatial probability distribution of the resource location advertised by the dance. Finally, we show how to map honey bee foraging and discuss how our approach can be integrated with Geographic Information Systems to better understand honey bee foraging ecology.
0
Journal of Comparative Physiology A
18080096
10.1007/S00360-013-0786-8
18,080,096
Polyunsaturated fats, membrane lipids and animal longevity
Fatty acids are essential for life because they are essential components of cellular membranes. Lower animals can synthesize all four classes of fatty acids from non-lipid sources, but both omega-6 and omega-3 cannot be synthesized de novo by ‘higher’ animals and are therefore essential components of their diet. The relationship between normal variation in diet fatty acid composition and membrane fatty acid composition is little investigated. Studies in the rat show that, with respect to the general classes of fatty acids (saturated, monounsaturated and polyunsaturated) membrane fatty acid composition is homeostatically regulated despite diet variation. This is not the case for fatty acid composition of storage lipids, which responds to diet variation. Polyunsaturated fatty acids are important determinants of physical and chemical properties of membranes. They are the substrates for lipid peroxidation and it is possible to calculate a peroxidation index (PI) for a particular membrane composition. Membrane PI appears to be homeostatically regulated with respect to diet PI. Membrane fatty acid composition varies among species and membrane PI is inversely correlated to longevity in mammals, birds, bivalve molluscs, honeybees and the nematode Caenorhabditis elegans.
0
Journal of Comparative Physiology B
14266143
10.1007/S00360-013-0785-9
14,266,143
Species-specific responses of N homeostasis and electrolyte handling to low N intake: a comparative physiological approach in a monogastric and a ruminant species
In our former studies low crude protein (LCP) intake influenced N homeostasis and electrolyte handling in goats. We hypothesised that due to rumino-hepatic nitrogen (N) recycling adaptation of N homeostasis and adjustment of electrolyte handling to LCP intake differs between goats and monogastric animals. Therefore, an experiment similar to that with goats was conducted with rats. Two feeding groups received a diet either containing 20 or 8 % crude protein (as fed basis) for 5 weeks and intake and excretion of N, calcium (Ca) and phosphorus (P) were determined. To detect systemic and endocrine adaptation to LCP intake plasma concentrations of urea, Ca, phosphate (Pi), insulin-like growth factor 1 (IGF-1), 1,25-dihydroxyvitamin D3 (calcitriol), parathyroid hormone (PTH) and cross-linked telopeptide of type I collagen (CTX) were measured. Adjustment of renal electrolyte transport was assessed by detecting protein expression of key proteins of renal Pi transport. All data were compared with the data of the goat experiment. LCP intake decreased plasma urea concentration stronger in goats than in rats. In both species urinary N excretion declined, but faecal N excretion decreased in goats only. Furthermore, in goats urinary Ca excretion decreased, but in rats urinary Ca concentration increased. Decreased plasma IGF-1 and calcitriol concentrations were found in goats only. Thus, renal Ca excretion appears to be a common target in adaptation of electrolyte homeostasis in both species, but is regulated differently.
0
Journal of Comparative Physiology B
10890450
10.1007/S00360-013-0787-7
10,890,450
Fatty acid mobilization and comparison to milk fatty acid content in northern elephant seals
A fundamental feature of the life history of true seals, bears and baleen whales is lactation while fasting. This study examined the mobilization of fatty acids from blubber and their subsequent partitioning into maternal metabolism and milk production in northern elephant seals (Mirounga angustirostris). The fatty acid composition of blubber and milk was measured in both early and late lactation. Proportions of fatty acids in milk and blubber were found to display a high degree of similarity both early and late in lactation. Seals mobilized an enormous amount of lipid (~66 kg in 17 days), but thermoregulatory fatty acids, those that remain fluid at low temperatures, were relatively conserved in the outer blubber layer. Despite the stratification, the pattern of mobilization of specific fatty acids conforms to biochemical predictions. Long chain (>20C) monounsaturated fatty acids (MUFAs) were the least mobilized from blubber and the only class of fatty acids that showed a proportional increase in milk in late lactation. Polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) were more mobilized from the blubber, but neither proportion increased in milk at late lactation. These data suggest that of the long chain MUFA mobilized, the majority is directed to milk synthesis. The mother may preferentially use PUFA and SFA for her own metabolism, decreasing the availability for deposition into milk. The potential impacts of milk fatty acid delivery on pup diving development and thermoregulation are exciting avenues for exploration.
0
Journal of Comparative Physiology B
18064147
10.1007/S00360-013-0782-Z
18,064,147
A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: from biochemistry to behavior
Marine mammals exhibit multi-level adaptations, from cellular biochemistry to behavior, that maximize aerobic dive duration. A dive response during aerobic dives enables the efficient use of blood and muscle oxygen stores, but it is exercise modulated to maximize the aerobic dive limit at different levels of exertion. Blood volume and concentrations of blood hemoglobin and muscle myoglobin are elevated and serve as a significant oxygen store that increases aerobic dive duration. However, myoglobin is not homogeneously distributed in the locomotory muscles and is highest in areas that produce greater force and consume more oxygen during aerobic swimming. Muscle fibers are primarily fast and slow twitch oxidative with elevated mitochondrial volume densities and enhanced oxidative enzyme activities that are highest in areas that produce more force generation. Most of the muscle mitochondria are interfibriller and homogeneously distributed. This reduces the diffusion distance between mitochondria and helps maintain aerobic metabolism under hypoxic conditions. Mitochondrial volume densities and oxidative enzyme activities are also elevated in certain organs such as liver, kidneys, and stomach. Hepatic and renal function along with digestion and assimilation continue during aerobic dives to maintain physiological homeostasis. Most ATP production comes from aerobic fat metabolism in carnivorous marine mammals. Glucose is derived mostly from gluconeogenesis and is conserved for tissues such as red blood cells and the central nervous system. Marine mammals minimize the energetic cost of swimming and diving through body streamlining, efficient, lift-based propulsive appendages, and cost-efficient modes of locomotion that reduce drag and take advantage of changes in buoyancy with depth. Most dives are within the animal’s aerobic dive limit, which maximizes time underwater and minimizes recovery time at the surface. The result of these adaptations is increased breath-hold duration and enhanced foraging ability that maximizes energy intake and minimizes energy output while making aerobic dives to depth. These adaptations are the long, evolutionary legacy of an aquatic lifestyle that directly affects the fitness of marine mammal species for different diving abilities and environments.
0
Journal of Comparative Physiology B
18553307
10.1007/S00360-013-0784-X
18,553,307
Ammonia transport across the skin of adult rainbow trout (Oncorhynchus mykiss) exposed to high environmental ammonia (HEA)
Recent molecular evidence points towards a capacity for ammonia transport across the skin of adult rainbow trout. A series of in vivo and in vitro experiments were conducted to understand the role of cutaneous ammonia excretion (Jamm) under control conditions and after 12-h pre-exposure to high environmental ammonia (HEA; 2 mmol/l NH4HCO3). Divided chamber experiments with bladder-catheterized, rectally ligated fish under light anesthesia were performed to separate cutaneous Jamm from branchial, renal, and intestinal Jamm. Under control conditions, cutaneous Jamm accounted for 4.5 % of total Jamm in vivo. In fish pre-exposed to HEA, plasma total ammonia concentration increased 20-fold to approximately 1,000 μmol/l, branchial Jamm increased 1.5- to 2.7-fold, and urinary Jamm increased about 7-fold. Urinary Jamm still accounted for less than 2 % of total Jamm. Cutaneous Jamm increased 4-fold yet amounted to only 5.7 % of total Jamm in these fish. Genes (Rhcg1, Rhcg2, Rhbg, NHE-2, v-type H+-ATPase) known to be involved in ammonia excretion at the gills of trout were all expressed at the mRNA level in the skin, but their expression did not increase with HEA pre-exposure. In vitro analyses using [14C] methylamine (MA), an ammonia analog which is transported by Rh proteins, demonstrated that MA permeability in isolated skin sections was higher in HEA pre-exposed fish than in control fish. The addition of basolateral ammonia (1,000 μmol/l) to this system abolished this increase in permeability, suggesting ammonia competition with MA for Rh-mediated transport across the skin of HEA pre-exposed trout; this did not occur in skin sections from control trout. Moreover, in vitro Jamm by the skin of fish which had been pre-exposed to HEA was also higher than in control fish in the absence of basolateral ammonia, pointing towards a possible cutaneous ammonia loading in response to HEA. In vitro MA permeability was reduced upon the addition of amiloride (10−4 mol/l), but not phenamil (10−5 mol/l) suggesting a role for a Na/H-exchanger (NHE) in cutaneous ammonia transport, as has been previously described in the skin of larval fish. Overall, it appears that under control conditions and in response to HEA pre-exposure, the skin makes only a very minor contribution to total Jamm, but the observed increases in cutaneous Jamm in vivo and in cutaneous Jamm and MA permeability in vitro demonstrate the capacity for ammonia transport in the skin of adult trout. It remains unclear if this capacity may become significant under certain environmental challenges or if it is merely a remnant of cutaneous transport capacity from early life stages in these fish.
0
Journal of Comparative Physiology B
15257119
10.1007/S00359-013-0859-X
15,257,119
Place learning prior to and after telencephalon ablation in bamboo and coral cat sharks (Chiloscyllium griseum and Atelomycterus marmoratus)
This study assessed complex spatial learning and memory in two species of shark, the grey bamboo shark (Chiloscyllium griseum) and the coral cat shark (Atelomycterus marmoratus). It was hypothesized that sharks can learn and apply an allocentric orientation strategy. Eight out of ten sharks successfully completed the initial training phase (by locating a fixed goal position in a diamond maze from two possible start points) within 14.9 ± 7.6 sessions and proceeded to seven sets of transfer tests, in which sharks had to perform under altered environmental conditions. Transfer tests revealed that sharks had oriented and solved the tasks visually, using all of the provided environmental cues. Unintentional cueing did not occur. Results correspond to earlier studies on spatial memory and cognitive mapping in other vertebrates. Future experiments should investigate whether sharks possess a cognitive spatial mapping system as has already been found in several teleosts and stingrays. Following the completion of transfer tests, sharks were subjected to ablation of most of the pallium, which compromised their previously acquired place learning abilities. These results indicate that the telencephalon plays a crucial role in the processing of information on place learning and allocentric orientation strategies.
0
Journal of Comparative Physiology A
8884592
10.1007/S00359-013-0858-Y
8,884,592
The shark Chiloscyllium griseum can orient using turn responses before and after partial telencephalon ablation
This study assessed spatial memory and orientation strategies in Chiloscyllium griseum. In the presence of visual landmarks, six sharks were trained in a fixed turn response. Group 1 started from two possible compartments approaching two goal locations, while group 2 started from and approached only one location, respectively. The learning criterion was reached within 9 ± 5.29 (group 1) and 8.3 ± 3.51 sessions (group 2). Transfer tests revealed that sharks had applied a direction strategy, possibly in combination with some form of place learning. Without visual cues, sharks relied solely on the former. To identify the underlying neural substrate(s), telencephalic were lesioned and performance compared before and after surgery. Ablation of the dorsal and medial pallia only had an effect on one shark (group 1), indicating that the acquisition and retention of previously gained knowledge were unaffected in the remaining four individuals. Nonetheless, the shark re-learned the task. In summary, C. griseum can utilize fixed turn responses to navigate to a goal; there is also some evidence for the use of external visual landmarks while orienting. Probably, strategies can be used alone or in combination. Neither the dorsal nor medial pallium seems to be responsible for the acquisition and processing of egocentric information.
0
Journal of Comparative Physiology A
26860581
10.1007/S00359-013-0857-Z
26,860,581
Insect chemoreception: a tribute to John G. Hildebrand
2010; Hansson and Stensmyr 2011; Martin et al. 2011). Especially, research on sex-pheromone systems in Lepidoptera has significantly contributed to the understanding of the functional organization and physiology of the insect olfactory system (Hildebrand 1996). The pioneering studies on moths were followed by research on other insect chemosensory model systems, which boosted the whole field of chemosensory sciences. Social Hymenoptera like the honeybee and ants have opened up the field for the study of mechanisms of chemosensory behavior in the context of social communication, learning and memory (e.g. Hölldobler 1999; Menzel and Giurfa 2001; Galizia and Rössler 2010). The astounding genetic tool-box of Drosophila melanogaster allowed for the rise of neurogenetics that dissected chemosensory behavior all the way down to the level of behaviorally relevant genes (e.g. Konopka and Benzer 1971; Fernández and Kravitz 2013, in this issue). Due to the enormous breadth of experimental approaches that can be applied, chemosensory research on insects today represents a most lively, original, stimulating, and innovative field in the behavioral neurosciences with a close link to chemical and behavioral ecology. On one hand, it demonstrates common principles of chemosensory systems even shared between insects and mammals (e.g. Hildebrand and Shepherd 1997), and on the other hand, it illustrates the amazingly inventive variations to common schemes across different species adapted to various environments (Galizia and Rössler 2010; Hansson and Stensmyr 2011). This special issue is based upon the topics of an international symposium at the University of Würzburg, Germany, in July 2012, in honor of John Hildebrand. The symposium was initiated by Ed Kravitz and Monika Stengl and was organized by Wolfgang Rössler (University Würzburg, Germany) and Monika Stengl (University of Kassel, Germany). The meeting was supported by the DFG priority This special issue is dedicated to John G. Hildebrand, Regents Professor, founding director and many years (1985–2013) head of the Arizona Research Laboratories Division of Neurobiology (since 2009 the Department of Neuroscience), University of Arizona in Tucson, to pay tribute to his outstanding contributions over his long career devoted to understanding the neuroethology of insect chemoreception. Chemosensory systems play key roles for the survival and reproduction of most animal species. It has puzzled scientists since many years how the highly complex molecular olfactory world is detected by olfactory receptors, encoded into neuronal activity, and processed within the central nervous system to finally trigger adaptive behavior. Even today, olfactory transduction as well as encoding and perception are far from being understood and are lively debated in the various areas of chemosensory research. Since the beginning, insects have played a very influential role in this field, due to the important role of olfaction for insect behavior and the accessibility of insects for different experimental manipulations. Insect model systems allow integrative analyses at all levels of complexity: from molecular genetics and identified single-cell studies to the analysis of neuronal networks and the examination of insect behavior in interaction with its ecological niche (for recent reviews Galizia and Rössler
0
Journal of Comparative Physiology A
8647158
10.1007/S00360-013-0783-Y
8,647,158
Developmental and physiological challenges of octopus (Octopus vulgaris) early life stages under ocean warming
The ability to understand and predict the effects of ocean warming (under realistic scenarios) on marine biota is of paramount importance, especially at the most vulnerable early life stages. Here we investigated the impact of predicted environmental warming (+3 °C) on the development, metabolism, heat shock response and antioxidant defense mechanisms of the early stages of the common octopus, Octopus vulgaris. As expected, warming shortened embryonic developmental time by 13 days, from 38 days at 18 °C to 25 days at 21 °C. Concomitantly, survival decreased significantly (~29.9 %). Size at hatching varied inversely with temperature, and the percentage of smaller premature paralarvae increased drastically, from 0 % at 18 °C to 17.8 % at 21 °C. The metabolic costs of the transition from an encapsulated embryo to a free planktonic form increased significantly with warming, and HSP70 concentrations and glutathione S-transferase activity levels were significantly magnified from late embryonic to paralarval stages. Yet, despite the presence of effective antioxidant defense mechanisms, ocean warming led to an augmentation of malondialdehyde levels (an indicative of enhanced ROS action), a process considered to be one of the most frequent cellular injury mechanisms. Thus, the present study provides clues about how the magnitude and rate of ocean warming will challenge the buffering capacities of octopus embryos and hatchlings’ physiology. The prediction and understanding of the biochemical and physiological responses to warmer temperatures (under realistic scenarios) is crucial for the management of highly commercial and ecologically important species, such as O. vulgaris.
0
Journal of Comparative Physiology B
6629072
10.1007/S00359-013-0856-0
6,629,072
Odor tracking flight of male Manduca sexta moths along plumes of different cross-sectional area
Males of the hawkmoth, Manduca sexta, track wind-borne plumes of female sex pheromone by flying upwind, while continuously turning from side-to-side and changing altitude. Their characteristic “zigzagging” trajectory has long been thought to result from the interaction of two mechanisms, an odor-modulated orientation to wind and a built-in central nervous system turning program. An interesting and as of yet unanswered question about this tracking behavior is how the cross-section of an odor plume or its clean-air “edges” affects moths’ odor tracking behavior. This study attempts to address this question by video recording and analyzing the behavior of freely flying M. sexta males tracking plumes from pheromone sources of different lengths and orientations with equal odor concentration per unit area. Our results showed that moths generated significantly wider tracks in wide plumes from the longest horizontally-oriented sources as compared to narrower point-source plumes, but had relatively unaltered tracks when orienting to plumes from the same length sources oriented vertically. This suggests that in addition to wind and the presence of pheromones, the area of the plume’s cross section or its edges may also play an important role in the plume tracking mechanisms of M. sexta.
0
Journal of Comparative Physiology A
1654919
10.1007/S00359-013-0855-1
1,654,919
A physiological analysis of color vision in batoid elasmobranchs
The potential for color vision in elasmobranchs has been studied in detail; however, a high degree of variation exists among the group. Evidence for ultraviolet (UV) vision is lacking, despite the presence of UV vision in every other vertebrate class. An integrative physiological approach was used to investigate color and ultraviolet vision in cownose rays and yellow stingrays, two batoids that inhabit different spectral environments. Both species had peaks in UV, short, medium, and long wavelength spectral regions in dark-, light-, and chromatic-adapted electroretinograms. Although no UV cones were found with microspectrophotometric analysis, both rays had multiple cone visual pigments with λmax at 470 and 551 nm in cownose rays (Rhinoptera bonasus) and 475, 533, and 562 nm in yellow stingrays (Urobatis jamaicensis). The same analysis demonstrated that both species had rod λmax at 500 and 499 nm, respectively. The lens and cornea of cownose rays maximally transmitted wavelengths greater than 350 nm and greater than 376 nm in yellow stingrays. These results support the potential for color vision in these species and future investigations should reveal the extent to which color discrimination is significant in a behavioral context.
0
Journal of Comparative Physiology A
18515735
10.1007/S00359-013-0854-2
18,515,735
Biogenic amines are associated with worker task but not patriline in the leaf-cutting ant Acromyrmex echinatior
Division of labor among eusocial insect workers is a hallmark of advanced social organization, but its underlying neural mechanisms are not well understood. We investigated whether differences in whole-brain levels of the biogenic amines dopamine (DA), serotonin (5HT), and octopamine (OA) are associated with task specialization and genotype in similarly sized and aged workers of the leaf-cutting ant Acromyrmex echinatior, a polyandrous species in which genotype correlates with worker task specialization. We compared amine levels of foragers and waste management workers to test for an association with worker task, and young in-nest workers across patrilines to test for a genetic influence on brain amine levels. Foragers had higher levels of DA and OA and a higher OA:5HT ratio than waste management workers. Patrilines did not significantly differ in amine levels or their ratios, although patriline affected worker body size, which correlated with amine levels despite the small size range sampled. Levels of all three amines were correlated within individuals in both studies. Among patrilines, mean levels of DA and OA, and OA and 5HT were also correlated. Our results suggest that differences in biogenic amines could regulate worker task specialization, but may be not be significantly affected by genotype.
0
Journal of Comparative Physiology A
16513178
10.1007/S00359-013-0853-3
16,513,178
Removing sensory input disrupts spinal locomotor activity in the early postnatal period
Motor patterns driving rhythmic movements of our lower limbs during walking are generated by groups of neurons within the spinal cord, called central pattern generators (CPGs). After suffering a spinal cord injury (SCI), many descending fibers from our brain are severed or become nonfunctional, leaving the spinal CPG network without its initiating drive. Recent studies have focused on the importance of maintaining sensory stimulation to the limbs of SCI patients as a way to initiate and control the CPG locomotor network. We began assessing the role of sensory feedback to the locomotor CPG network using a neonatal mouse spinal cord preparation where the hindlimbs are still attached. Removing sensory feedback coming from the hindlimbs by way of a lower lumbar transection or by ventral root denervation revealed a positive correlation in the ability of sensory input deprivation to disrupt ongoing locomotor activity on older versus younger animals. The differences in the motor responses as a function of age could be correlated with the loss of excitatory activity from sensory afferents. Continued studies on this field could eventually provide key information that translates into the design of novel therapeutic strategies to treat patients who have suffered a SCI.
0
Journal of Comparative Physiology A
1734063
10.1007/S00359-013-0851-5
1,734,063
Aggression and courtship in Drosophila: pheromonal communication and sex recognition
Upon encountering a conspecific in the wild, males have to rapidly detect, integrate and process the most relevant signals to evoke an appropriate behavioral response. Courtship and aggression are the most important social behaviors in nature for procreation and survival: for males, making the right choice between the two depends on the ability to identify the sex of the other individual. In flies as in most species, males court females and attack other males. Although many sensory modalities are involved in sex recognition, chemosensory communication mediated by specific molecules that serve as pheromones plays a key role in helping males distinguish between courtship and aggression targets. The chemosensory signals used by flies include volatile and non-volatile compounds, detected by the olfactory and gustatory systems. Recently, several putative olfactory and gustatory receptors have been identified that play key roles in sex recognition, allowing investigators to begin to map the neuronal circuits that convey this sensory information to higher processing centers in the brain. Here, we describe how Drosophila melanogaster males use taste and smell to make correct behavioral choices.
0
Journal of Comparative Physiology A
17394784
10.1007/S00359-013-0846-2
17,394,784
Exploring the mammalian sensory space: co-operations and trade-offs among senses
The evolution of a particular sensory organ is often discussed with no consideration of the roles played by other senses. Here, we treat mammalian vision, olfaction and hearing as an interconnected whole, a three-dimensional sensory space, evolving in response to ecological challenges. Until now, there has been no quantitative method for estimating how much a particular animal invests in its different senses. We propose an anatomical measure based on sensory organ sizes. Dimensions of functional importance are defined and measured, and normalized in relation to animal mass. For 119 taxonomically and ecologically diverse species, we can define the position of the species in a three-dimensional sensory space. Thus, we can ask questions related to possible trade-off vs. co-operation among senses. More generally, our method allows morphologists to identify sensory organ combinations that are characteristic of particular ecological niches. After normalization for animal size, we note that arboreal mammals tend to have larger eyes and smaller noses than terrestrial mammals. On the other hand, we observe a strong correlation between eyes and ears, indicating that co-operation between vision and hearing is a general mammalian feature. For some groups of mammals we note a correlation, and possible co-operation between olfaction and whiskers.
0
Journal of Comparative Physiology A
16194776
10.1007/S00360-013-0781-0
16,194,776
An in vitro analysis of intestinal ammonia handling in fasted and fed freshwater rainbow trout (Oncorhynchus mykiss)
Ammonia transport and metabolism were investigated in the intestinal tract of freshwater rainbow trout which had been either fasted for 7 days, or fasted then fed a satiating meal of commercial trout pellets. In vivo, total ammonia concentrations (Tamm) in the chyme were approximately 1 mmol L−1 across the entire intestine at 24 h after the meal. Highest chyme pH and PNH3 values occurred in the posterior intestine. In vitro gut sac experiments examined ammonia handling with mucosal (Jmamm) and serosal (Jsamm) fluxes under conditions of fasting and feeding, with either background (control ≤0.013 mmol L−1) or high luminal ammonia concentrations (HLA = 1 mmol L−1), the latter mimicking those seen in chyme in vivo. Feeding status (fasted or fed) appeared to influence ammonia handling by each individual section. The anterior intestine exhibited the greatest Jmamm and Jsamm values under fasted control conditions, but these differences tended to disappear under typical post-feeding conditions when total endogenous ammonia production (Jtamm = Jsamm − Jmamm, signs considered) was greatly elevated in all intestinal sections. Under fasted conditions, glutamate dehydrogenase (GDH) and glutaminase (GLN) activities were equal across all sections, but the ammonia-trapping enzyme glutamine synthetase (GS) exhibited highest activity in the posterior intestine, in contradiction to previous literature. Feeding clearly stimulated the total rate of endogenous ammonia production (Jtamm), even in the absence of a high luminal ammonia load. This was accompanied by an increase in GDH activity of the anterior intestine, which was also the site of the largest Jtamm. In all sections, during HLA exposure, either alone or in combination with feeding, there were much larger increases in endogenous Jtamm, most of which was effluxed to the serosal solution. This is interpreted as a response to avoid potential cytotoxicity due to overburdened detoxification mechanisms in the face of elevated mucosal ammonia. Thus Tamm of the intestinal tissue remained relatively constant regardless of feeding status and exposure to HLA. Ammonia production by the gut may explain up to 18 % of whole-body ammonia excretion in vivo under fasting conditions, and 47 % after feeding, of which more than half originates from endogenous production rather than from absorption from the lumen.
0
Journal of Comparative Physiology B
14587435
10.1007/S00360-013-0777-9
14,587,435
Renal, metabolic and hematological effects of trans-retinoic acid during critical developmental windows in the embryonic chicken
All-trans-retinoic acid (tRA), an active metabolite of vitamin A, directly influences the developing kidney, and is a major regulatory signal during vertebrate organogenesis. The aim of the current study was to specifically target potential critical windows in renal development, and assess altered renal function through disruptions in embryonic fluid compartments. In addition, the effect of exogenous tRA administration on embryonic growth and metabolism was determined. Embryos were exposed to 0.1 or 0.3 mg tRA on embryonic day 8. Morphological and physiological measurements were made on days 12, 14, 16 and 18. Embryo wet mass on day 18 was reduced by 23 % (0.1 mg tRA) and 44 % (0.3 mg tRA). tRA exposure elevated mass-specific oxygen consumption in embryos exposed to 0.1 mg (21.2 ± 0.3 μL−1 g−1 min−1) and 0.3 mg (23.4 ± 0.4 μL−1 g−1 min−1) when compared to sham (18.9 ± 0.6 μL−1 g−1 min−1) on day 14, but not subsequent incubation days. Osmolality of blood plasma was transiently lowered in embryos exposed to 0.3 mg tRA between days 14 and 16. Allantoic fluid osmolality was significantly elevated by tRA to ~220 mmol L−1 from days 16 to 18 compared to controls. Blood plasma [Na+] was reduced by ~17 % over the same period, while allantoic fluid [Na+] was elevated in tRA-treated embryos compared to control embryos. Collectively, our data indicates that exogenous administration of tRA produces significant alterations to the developmental trajectory of the developing embryonic chicken.
0
Journal of Comparative Physiology B
2527065
10.1007/S00359-013-0852-4
2,527,065
Evaporative respiratory cooling augments pit organ thermal detection in rattlesnakes
Abstract Rattlesnakes use their facial pit organs to sense external thermal fluctuations. A temperature decrease in the heat-sensing membrane of the pit organ has the potential to enhance heat flux between their endothermic prey and the thermal sensors, affect the optimal functioning of thermal sensors in the pit membrane and reduce the formation of thermal “afterimages”, improving thermal detection. We examined the potential for respiratory cooling to improve strike behaviour, capture, and consumption of endothermic prey in the South American rattlesnake, as behavioural indicators of thermal detection. Snakes with a higher degree of rostral cooling were more accurate during the strike, attacking warmer regions of their prey, and relocated and consumed their prey faster. These findings reveal that by cooling their pit organs, rattlesnakes increase their ability to detect endothermic prey; disabling the pit organs caused these differences to disappear. Rattlesnakes also modify the degree of rostral cooling by altering their breathing pattern in response to biologically relevant stimuli, such as a mouse odour. Our findings reveal that low humidity increases their ability to detect endothermic prey, suggesting that habitat and ambush site selection in the wild may be influenced by external humidity levels as well as temperature.
0
Journal of Comparative Physiology A
18784865
10.1007/S00359-013-0849-Z
18,784,865
Synchronous firing of antennal-lobe projection neurons encodes the behaviorally effective ratio of sex-pheromone components in male Manduca sexta
Olfactory stimuli that are essential to an animal’s survival and reproduction are often complex mixtures of volatile organic compounds in characteristic proportions. Here, we investigated how these proportions are encoded in the primary olfactory processing center, the antennal lobe, of male Manduca sexta moths. Two key components of the female’s sex pheromone, present in an approximately 2:1 ratio, are processed in each of two neighboring glomeruli in the macroglomerular complex (MGC) of males of this species. In wind-tunnel flight experiments, males exhibited behavioral selectivity for ratios approximating the ratio released by conspecific females. The ratio between components was poorly represented, however, in the firing-rate output of uniglomerular MGC projection neurons (PNs). PN firing rate was mostly insensitive to the ratio between components, and individual PNs did not exhibit a preference for a particular ratio. Recording simultaneously from pairs of PNs in the same glomerulus, we found that the natural ratio between components elicited the most synchronous spikes, and altering the proportion of either component decreased the proportion of synchronous spikes. The degree of synchronous firing between PNs in the same glomerulus thus selectively encodes the natural ratio that most effectively evokes the natural behavioral response to pheromone.
0
Journal of Comparative Physiology A
18039870
10.1007/S00360-013-0778-8
18,039,870
Modulation of redox regulatory molecules and electron transport chain activity in muscle of air breathing fish Heteropneustes fossilis under air exposure stress
Responses of redox regulatory system to long-term survival (>18 h) of the catfish Heteropneustes fossilis in air are not yet understood. Lipid and protein oxidation level, oxidant (H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of respiratory complexes (I, II, III and IV) in mitochondria were investigated in muscle of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 °C). The increased levels of both H2O2 and tissue oxidation were observed due to the decreased activities of antioxidant enzymes in muscle under water deprivation condition. However, ascorbic acid and non-protein thiol groups were the highest at 18 h air exposure time. A linear increase in complex II activity with air exposure time and an increase up to 12 h followed by a decrease in activity of complex I at 18 h were observed. Negative correlation was observed for complex III and V activity with exposure time. Critical time to modulate the above parameters was found to be 3 h air exposure. Dehydration induced oxidative stress due to modulation of electron transport chain and redox metabolizing enzymes in muscle of H. fossilis was clearly observed. Possible contribution of redox regulatory system in muscle tissue of the fish for long-term survival in air is elucidated. Results of the present study may be useful to understand the redox metabolism in muscle of fishes those are exposed to air in general and air breathing fishes in particular.
0
Journal of Comparative Physiology B
14568950
10.1007/S00360-013-0776-X
14,568,950
Lizard thermal trait variation at multiple scales: a review
Thermal trait variation is of fundamental importance to forecasting the impacts of environmental change on lizard diversity. Here, we review the literature for patterns of variation in traits of upper and lower sub-lethal temperature limits, temperature preference and active body temperature in the field, in relation to space, time and phylogeny. Through time, we focus on the direction and magnitude of trait change within days, among seasons and as a consequence of acclimation. Across space, we examine altitudinal and latitudinal patterns, incorporating inter-specific analyses at regional and global scales. This synthesis highlights the consistency or lack thereof, of thermal trait responses, the relative magnitude of change among traits and several knowledge gaps identified in the relationships examined. We suggest that physiological information is becoming essential for forecasting environmental change sensitivity of lizards by providing estimates of plasticity and evolutionary scope.
0
Journal of Comparative Physiology B
7806532
10.1007/S00360-013-0775-Y
7,806,532
Seasonal stress physiology and body condition differ among co-occurring tropical finch species
Seasonal changes in avian hormonal stress responses and condition are well known for common species found at temperate and arctic latitudes, but declining and tropical species are poorly studied. This study compares stress and condition measures of co-occurring declining and non-declining tropical grass finch species in Australia. We monitored declining Gouldian finches (Erythrura gouldiae) and non-declining long-tailed and masked finches (Poepila acuticauda and P. personata) during two seasons that are potentially stressful: peak breeding (early dry season when food is plentiful) and moult (late dry to early wet season when food may be scarce). We measured body condition (muscle and fat), haematocrit, and stress response to capture using plasma corticosterone and binding globulin concentrations. All species had higher muscle and lower fat indices during breeding than moult. Haematocrit did not consistently differ between seasons. Long-tailed finches had higher stress responses during breeding than moult, similar to other passerines studied. Masked finches showed no seasonal changes in stress response. Gouldian finches had stress response patterns opposite to those of long-tailed finches, with higher stress responses during moult. However, seasonal trends in Gouldian and long-tailed finch stress responses sometimes differed between years or sites. The differences in stress response patterns between species suggest that the declining Gouldian finch is more sensitive to recent environmental changes which are thought to further reduce grass seed food resources during the late dry to early wet season. Retention of stress responsiveness during a protracted moult could increase the survival potential of Gouldian finches. This study highlights the utility of stress and condition indices to determine the sensitivity of co-occurring species to environmental conditions.
0
Journal of Comparative Physiology B
13966439
10.1007/S00360-013-0779-7
13,966,439
Some like it cold: summer torpor by freetail bats in the Australian arid zone
Bats are among the most successful groups of Australian arid-zone mammals and, therefore, must cope with pronounced seasonal fluctuations in ambient temperature (Ta), food availability and unpredictable weather patterns. As knowledge about the energy conserving strategies in desert bats is scant, we used temperature-telemetry to quantify the thermal physiology of tree-roosting inland freetail bats (Mormopterus species 3, 8.5 g, n = 8) at Sturt National Park over two summers (2010–2012), when Ta was high and insects were relatively abundant. Torpor use and activity were affected by Ta. Bats remained normothermic on the warmest days; they employed one “morning” torpor bout on most days and typically exhibited two torpor bouts on the coolest days. Overall, animals employed torpor on 67.9 % of bat-days and torpor bout duration ranged from 0.5 to 39.3 h. At any given Ta, torpor bouts were longer in Mormopterus than in bats from temperate and subtropical habitats. Furthermore, unlike bats from other climatic regions that used only partial passive rewarming, Mormopterus aroused from torpor using either almost entirely passive (68.9 % of all arousals) or active rewarming (31.1 %). We provide the first quantitative data on torpor in a free-ranging arid-zone molossid during summer. They demonstrate that this desert bat uses torpor extensively in summer and often rewarms passively from torpor to maximise energy and water conservation.
0
Journal of Comparative Physiology B
10423919
10.1007/S00359-013-0845-3
10,423,919
A naturally occurring amino acid substitution in the voltage-dependent sodium channel selectivity filter affects channel gating
The pore of sodium channels contains a selectivity filter made of 4 amino acids, D/E/K/A. In voltage sensitive sodium channel (Nav) channels from jellyfish to human the fourth amino acid is Ala. This Ala, when mutated to Asp, promotes slow inactivation. In some Nav channels of pufferfishes, the Ala is replaced with Gly. We studied the biophysical properties of an Ala-to-Gly substitution (A1529G) in rat Nav1.4 channel expressed in Xenopus oocytes alone or with a β1 subunit. The Ala-to-Gly substitution does not affect monovalent cation selectivity and positively shifts the voltage-dependent inactivation curve, although co-expression with a β1 subunit eliminates the difference between A1529G and WT. There is almost no difference in channel fast inactivation, but the β1 subunit accelerates WT current inactivation significantly more than it does the A1529G channels. The Ala-to-Gly substitution mainly influences the rate of recovery from slow inactivation. Again, the β1 subunit is less effective on speeding recovery of A1529G than the WT. We searched Nav channels in numerous databases and noted at least four other independent Ala-to-Gly substitutions in Nav channels in teleost fishes. Thus, the Ala-to-Gly substitution occurs more frequently than previously realized, possibly under selection for alterations of channel gating.
0
Journal of Comparative Physiology A
3844441
10.1007/S00359-013-0850-6
3,844,441
Guidance by odors in honeybee navigation
Animal navigation is guided by multiple sensory cues. Here, we ask whether and how olfactory stimuli emanating from places other than the trained feeding site redirect the flight paths of honeybees. The flight trajectories of individual bees were registered using harmonic radar tracking. Sensory cues (compass direction, distance, visual cues en route and close to the feeding site) associated with the trained flight route dominated wayfinding, but a learned odorant carried by air flow induced excursions into the wind. These redirections were largely restricted to rather small deviations from the trained route (<60°, <200 m) and occurred only if the animal did not receive the trained odorant stimulus at the trained feeding site. Under certain conditions, larger excursions were observed. These findings are discussed in the context of odor guidance of honeybees over longer distances (>300 m from the hive).
0
Journal of Comparative Physiology A
2980587
10.1007/S00359-013-0844-4
2,980,587
Responses of protocerebral neurons in Manduca sexta to sex-pheromone mixtures
Male Manduca sexta moths are attracted to a mixture of two components of the female’s sex pheromone at the natural concentration ratio. Deviation from this ratio results in reduced attraction. Projection neurons innervating prominent male-specific glomeruli in the male’s antennal lobe produce maximal synchronized spiking activity in response to synthetic mixtures of the two components centering around the natural ratio, suggesting that behaviorally effective mixture ratios are encoded by synchronous neuronal activity. We investigated the physiological activity and morphology of downstream protocerebral neurons that responded to antennal stimulation with single pheromone components and their mixtures at various concentration ratios. Among the tested neurons, only a few gave stronger responses to the mixture at the natural ratio whereas most did not distinguish among the mixtures that were tested. We also found that the population response distinguished among the two pheromone components and their mixtures, prior to the peak population response. This observation is consistent with our previous finding that synchronous firing of antennal-lobe projection neurons reaches its maximum before the firing rate reaches its peak. Moreover, the response patterns of protocerebral neurons are diverse, suggesting that the representation of olfactory stimuli at the level of protocerebrum is complex.
0
Journal of Comparative Physiology A
15831835
10.1007/S00359-013-0848-0
15,831,835
Development of longitudinal smooth muscle in the posterior mesenteric artery and purinergic regulation of its contractile responses in chickens
This study was designed to clarify development and the neural regulation of longitudinal smooth muscle in the chicken posterior mesenteric artery to generate new hypotheses for the roles of arterial longitudinal muscles. The existence of longitudinal muscles was examined with hematoxylin-eosin staining. A well-developed longitudinal muscle layer exists in the posterior mesenteric artery of adult female chickens but not adult male chickens. The muscle layer is poorly developed in chickens aged < 15 weeks, even in female chickens. Mechanical responses of muscles were recorded and perivascular nerves were stimulated by electrical field stimulation (EFS). EFS induced monophasic contractions in longitudinal muscle of the posterior mesenteric artery segment, and those responses were inhibited by pretreatment with tetrodotoxin. Blockers for cholinoceptors and adrenoceptors did not affect EFS-evoked contractions but an antagonist for P2X purinoceptors blocked them. The present study demonstrated that the longitudinal muscle in the posterior mesenteric artery of the domestic fowl develops between the 5th and 15th week of life, suggesting that its development is involved in oviposition. The longitudinal muscle might have a role in resisting extensional stress from the oviduct containing eggs. Moreover, the arterial longitudinal muscle is regulated by purinergic neurons via P2X purinoceptors.
0
Journal of Comparative Physiology A
18977904
10.1007/S00359-013-0847-1
18,977,904
Avoidance conditioning in bamboo sharks (Chiloscyllium griseum and C. punctatum): behavioral and neuroanatomical aspects
Animals face different threats; to survive, they have to anticipate how to react or how to avoid these. It has already been shown in teleosts that selected regions in the telencephalon, i.e., the medial pallium, are involved in avoidance learning strategies. No such study exists for any chondrichthyan. In nature, an avoidance reaction may vary, ranging from a ‘freeze’ reaction to a startling response and quick escape. This study investigated whether elasmobranchs (Chiloscyllium griseum and C. punctatum) can be conditioned in an aversive classical conditioning paradigm. Upon successful conditioning, the dorsal, medial and lateral pallium were removed (group 1) and performance tested again. In a second group, the same operation was performed prior to training. While conditioning was successful in individuals of both groups, no escape responses were observed. Post-operative performance was assessed and compared between individual and groups to reveal if the neural substrates governing avoidance behavior or tasks learned in a classical conditioning paradigm are located within the telencephalon, as has been shown for teleosts such as goldfish.
0
Journal of Comparative Physiology A
17885421
10.1007/S00360-013-0774-Z
17,885,421
Measurements of substrate oxidation using 13CO2-breath testing reveals shifts in fuel mix during starvation
Most fasting animals are believed to sequentially switch from predominantly utilizing one metabolic substrate to another from carbohydrates, to lipids, then to proteins. The timing of these physiological transitions has been estimated using measures of substrate oxidation including changes in respiratory exchange ratios, blood metabolites, nitrogen excretion, or enzyme activities in tissues. Here, we demonstrate how 13CO2-breath testing can be used to partition among the oxidation of distinct nutrient pools in the body (i.e., carbohydrates, lipids, and proteins) that have become artificially enriched in 13C. Seventy-two Swiss Webster mice were raised to adulthood on diets supplemented with 13C-1-l-leucine, 13C-1-palmitic acid, 13C-1-d-glucose, or no tracer. Mice were then fasted for 72 h during which $$ \dot{V}{\text{O}}_{2} $$V·O2, $$ \dot{V}{\text{CO}}_{2} $$V·CO2, δ13C of exhaled CO2, body temperature, body mass, and blood metabolites (i.e., glucose, ketone bodies, and triacylglycerols) were measured. The fasting mice exhibited reductions in body mass (29 %), body temperature (3.3 °C), minimum observed metabolic rates (24 %), and respiratory exchange ratio (0.18), as well as significant changes in blood metabolites; but these responses were not particularly indicative of changes in oxidative fuel mixture. Measurements of endogenous nutrient oxidation by way of 13CO2-breath testing revealed a decrease in the rate of oxidation of carbohydrates from 61 to 10 % of the total energy expenditure during the first 6 h without food. This response was mirrored by a coincidental increase in rate of endogenous lipid oxidation from 18 to 64 %. A transient peak in carbohydrate oxidation occurred between 8 and 14 h, presumably during increased glycogen mobilization. A well-defined period of protein sparing between 8 and 12 h was observed where endogenous protein oxidation accounted for as little as 8 % of the total energy expenditure. Thereafter, protein oxidation continually increased accounting for as much as 24 % of the total energy expenditure by 72 h. This study demonstrates that 13CO2-breath testing may provide a complementary approach to characterizing the timing and magnitude of sequential changes in substrate oxidation that occur during prolonged fasting and starvation.
0
Journal of Comparative Physiology B
14147671
10.1007/S00360-013-0773-0
14,147,671
Characterization of blubber fatty acid signatures in northern elephant seals (Mirounga angustirostris) over the postweaning fast
Phocids routinely fast for extended periods. During these fasts, energetic requirements are met primarily through the catabolism of blubber lipid. To assess whether fatty acid (FA) composition changes during the postweaning fast in northern elephant seals, blubber biopsies were acquired longitudinally from 43 pups at 2.3 ± 1.5 and 55.2 ± 3.7 days postweaning in 1999 and 2000. At weaning, short-chain monounsaturated FA (SC-MUFA, ≤18 carbons) dominated the blubber while saturated FA (SFA) were found in the next highest proportion. The major FA (all ≥1 % by mass) comprised approximately 91 % of total blubber FA. In both years, 18:1n-9 and 16:0 were the most prevalent FA. Major FA mobilized during the fast consisted of polyunsaturated FA (PUFA), SFA, and SC-MUFA. Long-chain MUFA (>18 carbons) tended to be conserved. The fractional mobilization value of 20:5n-3 was the highest, resulting in significant reductions of this PUFA. Although concentrations of some blubber FA changed significantly during the postweaning fast, the general FA signature of blubber was similar at weaning and near the end of the fast. Changes in some FA differed across years. For example, the concentration of 20:4n-6, a minor PUFA, was significantly reduced in 1999 but not in 2000. FA mobilization patterns in northern elephant seal pups are somewhat similar to those reported previously for other fasting phocids and terrestrial mammals, though there are some notable differences. Differences in FA mobilization patterns across mammalian species may be related to differences in diets, geographical distribution, environmental factors, physiological adaptations, and life history stage.
0
Journal of Comparative Physiology B
5699901
10.1007/S00359-013-0843-5
5,699,901
Blue colour preference in honeybees distracts visual attention for learning closed shapes
Spatial vision is an important cue for how honeybees (Apis mellifera) find flowers, and previous work has suggested that spatial learning in free-flying bees is exclusively mediated by achromatic input to the green photoreceptor channel. However, some data suggested that bees may be able to use alternative channels for shape processing, and recent work shows conditioning type and training length can significantly influence bee learning and cue use. We thus tested the honeybees’ ability to discriminate between two closed shapes considering either absolute or differential conditioning, and using eight stimuli differing in their spectral characteristics. Consistent with previous work, green contrast enabled reliable shape learning for both types of conditioning, but surprisingly, we found that bees trained with appetitive-aversive differential conditioning could additionally use colour and/or UV contrast to enable shape discrimination. Interestingly, we found that a high blue contrast initially interferes with bee shape learning, probably due to the bees innate preference for blue colours, but with increasing experience bees can learn a variety of spectral and/or colour cues to facilitate spatial learning. Thus, the relationship between bee pollinators and the spatial and spectral cues that they use to find rewarding flowers appears to be a more rich visual environment than previously thought.
0
Journal of Comparative Physiology A
15568061
10.1007/S00359-013-0840-8
15,568,061
Mothers under stress? Hatching sex ratio in relation to maternal baseline corticosterone in the common tern (Sterna hirundo)
Sex ratio of progeny should be balanced if costs and benefits of rearing sons and daughters are equal. However, shifts in sex ratio have been demonstrated across bird species and it was suggested that females are able to adjust the primary sex ratio. One possible mechanism is the glucocorticoid corticosterone which rises under stressful conditions and can be deposited into egg yolk by mothers. We analysed primary sex ratio of common terns Sterna hirundo from 2006 to 2008 and related it to maternal baseline corticosterone level, laying date and year. Therefore, we took 101 blood samples of 71 breeding females via blood sucking bugs, a method with negligible stress for the birds. Sex ratio did not differ from parity in any of the analysed years, which were characterized by poor food availability and breeding success. Only within 1 year there was a tendency for more females in the last hatched chick. Neither corticosterone level nor laying date or year showed an influence on hatching sex ratio. The negative result concerning primary sex ratio and maternal baseline corticosterone level might suggest conditions to be good enough for mothers to prevent them from depositing high levels of corticosterone into eggs.
0
Journal of Comparative Physiology A
14419698
10.1007/S00359-013-0841-7
14,419,698
Effects of prolonged exposure to cold on the spontaneous activity of two different types of filiform sensilla in Pyrrhocoris apterus
We recorded the spontaneous activity of T1 and T2 filiform sensilla from October to May in Pyrrhocoris apterus acclimatized to outdoor conditions. The aim of the study was to determine how prolonged exposure to cold affects two closely related mechanosensitive sensilla. We recorded the activity at seven temperatures from 5 to 35 °C. In both sensilla types the activity level was reduced during winter, which correlated to changes in acclimatization temperature (r = 0.7), the reduction was greater at high recording temperatures, and the effects of exposure to cold were reversed by transferring the animals indoors. However, T1 activity always increased monotonically, if the recording temperature was increased from 5 to 35 °C, whereas T2 activity in cold-acclimatized animals increased to temperatures between 20 and 30 °C and then started decreasing. As a result, the temperature sensitivity of the activity was reduced more profoundly in T2 sensilla (in T2Q10 was reduced from 3.5 in October to 1.4 in January, whereas in T1 it was reduced from 2.5 to 2.2). In conclusion, we have shown that prolonged exposure to cold does affect filiform sensilla; however, the effect is significantly different in the two sensilla types.
0
Journal of Comparative Physiology A
15529671
10.1007/S00359-013-0842-6
15,529,671
Glomerular interactions in olfactory processing channels of the antennal lobes
An open question in olfactory coding is the extent of interglomerular connectivity: do olfactory glomeruli and their neurons regulate the odorant responses of neurons innervating other glomeruli? In the olfactory system of the moth Manduca sexta, the response properties of different types of antennal olfactory receptor cells are known. Likewise, a subset of antennal lobe glomeruli has been functionally characterized and the olfactory tuning of their innervating neurons identified. This provides a unique opportunity to determine functional interactions between glomeruli of known input, specifically, (1) glomeruli processing plant odors and (2) glomeruli activated by antennal stimulation with pheromone components of conspecific females. Several studies describe reciprocal inhibitory effects between different types of pheromone-responsive projection neurons suggesting lateral inhibitory interactions between pheromone component-selective glomerular neural circuits. Furthermore, antennal lobe projection neurons that respond to host plant volatiles and innervate single, ordinary glomeruli are inhibited during antennal stimulation with the female’s sex pheromone. The studies demonstrate the existence of lateral inhibitory effects in response to behaviorally significant odorant stimuli and irrespective of glomerular location in the antennal lobe. Inhibitory interactions are present within and between olfactory subsystems (pheromonal and non-pheromonal subsystems), potentially to enhance contrast and strengthen odorant discrimination.
0
Journal of Comparative Physiology A
12923389
10.1007/S00359-013-0839-1
12,923,389
Swim pacemaker response to bath applied neurotransmitters in the cubozoan Tripedalia cystophora
The four rhopalia of cubomedusae are integrated parts of the central nervous system carrying their many eyes and thought to be the centres of visual information processing. Rhopalial pacemakers control locomotion through a complex neural signal transmitted to the ring nerve and the signal frequency is modulated by the visual input. Since electrical synapses have never been found in the cubozoan nervous system all signals are thought to be transmitted across chemical synapses, and so far information about the neurotransmitters involved are based on immunocytochemical or behavioural data. Here we present the first direct physiological evidence for the types of neurotransmitters involved in sensory information processing in the rhopalial nervous system. FMRFamide, serotonin and dopamine are shown to have inhibitory effect on the pacemaker frequency. There are some indications that the fast acting acetylcholine and glycine have an initial effect and then rapidly desensitise. Other tested neuroactive compounds (GABA, glutamate, and taurine) could not be shown to have a significant effect.
0
Journal of Comparative Physiology A
11478611
10.1007/S00360-013-0772-1
11,478,611
Overexpression of suppressor of cytokine signaling 3 in the arcuate nucleus of juvenile Phodopus sungorus alters seasonal body weight changes
The profound seasonal cycle in body weight exhibited by the Djungarian hamster (Phodopus sungorus) is associated with the development of hypothalamic leptin resistance during long day photoperiod (LD, 16:8 h light dark cycle), when body weight is elevated relative to short day photoperiod (SD, 8:16 h light dark cycle). We previously have shown that this seasonal change in physiology is associated with higher levels of mRNA for the potent inhibitor of leptin signaling, suppressor of cytokine signaling-3 (SOCS3), in the arcuate nucleus (ARC) of LD hamsters relative to hamsters in SD. The alteration in SOCS3 gene expression preceded the body weight change suggesting that SOCS3 might be the molecular switch of seasonal body weight changes. To functionally characterize the role of SOCS3 in seasonal body weight regulation, we injected SOCS3 expressing recombinant adeno-associated virus type-2 (rAAV2-SOCS3) constructs into the ARC of leptin sensitive SD hamsters immediately after weaning. Hamsters that received rAAV2 expressing enhanced green fluorescent protein (rAAV2-EGFP) served as controls. ARC-directed SOCS3 overexpression led to a significant increase in body weight over a period of 12 weeks without fully restoring the LD phenotype. This increase was partially due to elevated brown and white adipose tissue mass. Gene expression of pro-opiomelanocortin was increased while thyroid hormone converting enzyme DIO3 mRNA levels were reduced in SD hamsters with SOCS3 overexpression. In conclusion, our data suggest that ARC-directed SOCS3 overexpression partially overcomes the profound seasonal body weight cycle exhibited by the hamster which is associated with altered pro-opiomelanocortin and DIO3 gene expression.
0
Journal of Comparative Physiology B
7508111
10.1007/S00359-013-0836-4
7,508,111
Daily variations in plasma melatonin and melatonin receptor (MT1), PER1 and CRY1 expression in suprachiasmatic nuclei of tropical squirrel, Funambulus pennanti
The suprachiasmatic nucleus (SCN) plays a major role in photoperiodic regulation of seasonal functions by modulating the melatonin signal. To date no report exists regarding the role of the ambient photoperiod in the regulation of melatonin receptor MT1 and clock gene (PER1 and CRY1) expression in the SCN of any tropical rodent that experiences the least variation in the photoperiod. We noted the expression of MT1, PER1 and CRY1 in the SCN of a tropical squirrel, Funambulus pennanti, along with the plasma level of melatonin over 24 h during the reproductively active (summer) and inactive (winter) phases. The seasonal day length affected the peripheral melatonin, which was inversely related with the MT1 expression in the SCN. The timing for peak expression of PER1 was the same in both phases, while the decline in PER1 expression was delayed by 4 h during the inactive phase. The CRY1 peak advanced by 4 h during the active phase, while the interval between the peak and decline of CRY1 remained the same in both phases. It can be suggested that seasonally changing melatonin levels modulate MT1 expression dynamics in the SCN, altering its functional state, and gate SCN molecular “clock” gene profiles through changes in PER/CRY expression. Such a regulation is important for photo-physiological adaptation (reproduction/immunity) in seasonal breeders.
0
Journal of Comparative Physiology A
32731
10.1007/S00359-013-0838-2
32,731
Distress calls of the greater short-nosed fruit bat Cynopterus sphinx activate hypothalamic-pituitary-adrenal (HPA) axis in conspecifics
In a stressful situation, greater short-nosed fruit bats (Cynopterus sphinx) emit audible vocalization either to warn or to inform conspecifics. We examined the effect of distress calls on bats emitting the call as well as the bats receiving the distress signal through analysis of the hypothalamic-pituitary-adrenal axis and catacholaminargic systems. We measured the levels of neurotransmitters [serotonin (5-HT), dopamine (DA), norepinephrine (NE)] and stress hormones [(adrenocorticotropic hormone (ACTH) and corticosterone (CORT)]. Our results showed that distress call emission elevated the level of ACTH and CORT, as well as 5-HT, DA and NE in the amygdala, for both the call emitting bat and the responding bat. Subsequently, we observed increased activity of glucocorticoid receptor and its steroid receptor co-activator (SRC-1). An expression of SRC-1 was up-regulated in the distress call emitter only, whereas it was at a similar level in both the call responder and silent bats. These findings suggest that bats emitting distress calls and also bats responding to such calls have similar neurotransmitter expression patterns, and may react similarly in response to stress.
0
Journal of Comparative Physiology A
14109170
10.1007/S00359-013-0837-3
14,109,170
The role of the coreceptor Orco in insect olfactory transduction
Insects sense odorants with specialized odorant receptors (ORs). Each antennal olfactory receptor neuron expresses one OR with an odorant binding site together with a conserved coreceptor called Orco which does not bind odorants. Orco is necessary for localization of ORs to dendritic membranes and, thus, is essential for odorant detection. It forms a spontaneously opening cation channel, activated via phosphorylation by protein kinase C. Thereafter, Orco is also activated via cyclic adenosine monophosphate (cAMP). Orco forms homo—as well as heteromers with ORs with unknown stoichiometry. Contradictory publications suggest different mechanisms of olfactory transduction. On the one hand, evidence accumulates for the employment of more than one G protein-coupled olfactory transduction cascade in different insects. On the other hand, results from other studies suggest that the OR–Orco complex functions as an odorant-gated cation channel mediating ionotropic signal transduction. This review analyzes conflicting hypotheses concerning the role of Orco in insect olfactory transduction. In conclusion, in situ studies in hawkmoths falsify the hypothesis that Orco underlies odorant-induced ionotropic signal transduction in all insect species. Instead, Orco forms a metabotropically gated, slow cation channel which controls odorant response threshold and kinetics of the sensory neuron.
0
Journal of Comparative Physiology A
18580438
10.1007/S00359-013-0834-6
18,580,438
The functional significance of lateral line canal morphology on the trunk of the marine teleost Xiphister atropurpureus (Stichaeidae)
We investigated the filter properties of the highly branched trunk lateral lines of the stichaeid Xiphister atropurpureus and compared them to the filter properties of simple lateral line canals. For this purpose artificial canals were constructed, some of which were fitted with artificial neuromasts. In still water, the response of a simple canal versus two types of Xiphister-like canals to a vibrating sphere stimulus were similar, as was the decrease in the responses as a function of sphere distance. Also comparable was the mechanical coupling between neighboring parts of the main canal. However, compared to the simple canal, the Xiphister-like canals showed a lower spatial resolution. Equipping artificial lateral line canals with artificial neuromasts revealed that Xiphister-like canals, i.e., lateral lines canals with tubuli that contained widely spaced pores, improve the signal-to-noise ratio in a highly turbulent environment. Even though a reduced spatial resolution is the price for this improvement, Xiphister may compensate for this compromise by having four instead of the usual single trunk lateral line canal. We suggest that lateral line canals with tubuli that contain widely spaced pores and multiple lateral line canals on each body side are an adaptation to a highly turbulent aquatic environment.
0
Journal of Comparative Physiology A
1520409
10.1007/S00360-013-0771-2
1,520,409
Effects of dietary fibre and protein on urea transport across the cecal mucosa of piglets
In ruminants, gastrointestinal recycling of urea is acutely enhanced by fibre-rich diets that lead to high ruminal concentration of short chain fatty acids (SCFA), while high ammonia has inhibitory effects. This study attempted to clarify if urea flux to the porcine cecum is similarly regulated. Thirty-two weaned piglets were fed diets containing protein (P) of poor prececal digestibility and fibre (F) at high (H) or low levels (L) in a 2 × 2 factorial design. After slaughter, cecal content was analyzed and the cecal mucosa incubated in Ussing chambers to measure the effect of pH, SCFA and NH4+ on the flux rates of urea, short-circuit current (Isc) and tissue conductance (Gt). NH4+ significantly enhanced Isc (from 0.5 ± 0.2 to 1.2 ± 0.1 μEq cm−2 h−1). No acute effects of SCFA or ammonia on urea flux were observed. Tissue conductance was significantly lower in the high dietary fibre groups irrespective of the protein content. Only the HP-LF group emerged as different from all others in terms of urea flux (74 ± 6 versus 53 ± 3 nmol cm−2 h−1), associated with higher cecal ammonia concentration and reduced fecal consistency. The data suggest that as in the rumen, uptake of ammonia by the cecum may involve electrogenic transport of the ionic form (NH4+). In contrast to findings in the rumen, neither a high fibre diet nor acute addition of SCFA enhanced urea transport across the pig cecum. Instead, a HP-LF diet had stimulatory effects. A potential role for urea recycling in stabilizing luminal pH is discussed.
0
Journal of Comparative Physiology B
8758969
10.1007/S00359-013-0835-5
8,758,969
Perception of floral volatiles involved in host-plant finding behaviour: comparison of a bee specialist and generalist
Specialist and generalist bees use olfactory and visual cues to find and recognise flowering plants. Specialised (oligolectic) bees rely on few host plants for pollen collection. These bee species are suggested to use specific volatiles, but it is unknown whether they have dedicated adaptations for these particular compounds compared to bees not specialised on the same plants. In the present study, we investigated the perception of host odorants and its neuronal substrate with regard to host-plant finding behaviour in oligolectic bees. We reconstructed the antennal lobes (AL) in the Salix specialist, Andrena vaga, and counted about 135 glomeruli and thereby less than the approximately 160 in honeybees. Using calcium imaging experiments to measure neural activity in the bee brain, we recorded odorant-evoked activity patterns in the AL of A. vaga and, for comparison, in the generalist honeybee, Apis mellifera. Our physiological experiments demonstrated that A. vaga bees were particularly sensitive to 1,4-dimethoxybenzene, a behaviour-mediating odorant of Salix host flowers. We found more sensitive glomeruli in the specialised bees as compared to generalist honeybees. This neural adaptation might allow oligolectic A. vaga bees to effectively locate host plants from distances.
0
Journal of Comparative Physiology A
14380324
10.1007/S00359-013-0829-3
14,380,324
The effect of ambient humidity on the foraging behavior of the hawkmoth Manduca sexta
The foraging decisions of flower-visiting animals are contingent upon the need of an individual to meet both energetic and osmotic demands. Insects can alter their food preferences to prioritize one need over the other, depending on environmental conditions. In this study, preferences in nectar sugar concentrations (0, 12, 24 %) were tested in the hawkmoth Manduca sexta, in response to different levels of ambient humidity (20, 40, 60, and 80 % RH). Moths altered their foraging behavior when placed in low humidity environments by increasing the volume of nectar imbibed and by consuming more dilute nectar. When placed in high humidity environments the total volume imbibed decreased, because moths consumed less from dilute nectars (water and 12 % sucrose). Survivorship was higher with higher humidity. Daily foraging patterns changed with relative humidity (RH): moths maximized their nectar consumption earlier, at lower humidities. Although ambient humidity had an impact on foraging activity, activity levels and nectar preferences, total energy intake was not affected. These results show that foraging decisions made by M. sexta kept under different ambient RH levels allow individuals to meet their osmotic demands while maintaining a constant energy input.
0
Journal of Comparative Physiology A
18368226
10.1007/S00359-013-0832-8
18,368,226
Insect–machine hybrid system for understanding and evaluating sensory-motor control by sex pheromone in Bombyx mori
To elucidate the dynamic information processing in a brain underlying adaptive behavior, it is necessary to understand the behavior and corresponding neural activities. This requires animals which have clear relationships between behavior and corresponding neural activities. Insects are precisely such animals and one of the adaptive behaviors of insects is high-accuracy odor source orientation. The most direct way to know the relationships between neural activity and behavior is by recording neural activities in a brain from freely behaving insects. There is also a method to give stimuli mimicking the natural environment to tethered insects allowing insects to walk or fly at the same position. In addition to these methods an ‘insect–machine hybrid system’ is proposed, which is another experimental system meeting the conditions necessary for approaching the dynamic processing in the brain of insects for generating adaptive behavior. This insect–machine hybrid system is an experimental system which has a mobile robot as its body. The robot is controlled by the insect through its behavior or the neural activities recorded from the brain. As we can arbitrarily control the motor output of the robot, we can intervene at the relationship between the insect and the environmental conditions.
0
Journal of Comparative Physiology A
14443308
10.1007/S00359-013-0830-X
14,443,308
Group recruitment in a thermophilic desert ant, Ocymyrmex robustior
Thermophilic desert ants—Cataglyphis, Ocymyrmex, and Melophorus species inhabiting the arid zones of the Palaearctic region, southern Africa and central Australia, respectively—are solitary foragers, which have been considered to lack any kind of chemical recruitment. Here we show that besides mainly employing the solitary mode of food retrieval Ocymyrmex robustior regularly exhibits group recruitment to food patches that cannot be exploited individually. Running at high speed to recruitment sites that may be more than 60 m apart from the nest a leading ant, the recruiter, is followed by a loose and often quite dispersed group of usually 2–7 recruits, which often overtake the leader, or may lose contact, fall back and return to the nest. As video recordings show the leader, while continually keeping her gaster in a downward position, intermittently touches the surface of the ground with the tip of the gaster most likely depositing a volatile pheromone signal. These recruitment events occur during the entire diurnal activity period of the Ocymyrmex foragers, that is, even at surface temperatures of more than 60 °C. They may provide promising experimental paradigms for studying the interplay of orientation by chemical signals and path integration as well as other visual guidance routines.
0
Journal of Comparative Physiology A
18258057
10.1007/S00360-013-0770-3
18,258,057
A vagal nerve branch controls swallowing directly in the seawater eel
By developing a new in vivo method to evaluate the esophageal closure, which reflects inhibition of swallowing, we demonstrate that the vagal X1 branch projected from the glossopharyngeal-vagal motor complex (GVC) controls the upper esophageal sphincter (UES) muscle directly. Although eel vagal nerve consisted of five branches, other branches (X2, X3, X4 and X5) did not influence the esophageal pressure. When the X1 nerve branch was stimulated electrically, the balloon pressure in the UES area increased with optimum frequency of 20 Hz. Since similar optimum frequency was observed both in the pithed eel and in the isolated UES preparation, such characteristic of X1 nerve is not due to anesthetic used during experiment. As the isolated UES preparation consists of muscle cells and nerve terminals, and as the optimum frequency of the nerve terminal is identical with that of the X1 branch, it is most likely that the X1 nerve branch is identical with the nerve terminals within the UES preparation. On the other hand, since the GVC neurons fire spontaneously at around 20 Hz, the optimum frequency of 20 Hz means that the eel UES is usually closed vigorously and relaxed only when the GVC neuron is inactivated. The effect of X1 stimulation was inhibited by curare, but not by atropine, indicating that the X1 nerve branch releases acetylcholine, which acts on the nicotinic receptor on the UES striated muscle. Beside vagal nerve X1 branch, spinal nerve SN2, SN3 and SN4 also contributed to the UES closure, but SN1 did not influence the UES movement. However, since the efficacy of these spinal nerve stimulations is about 1/10 of that by vagal X1 branch, the eel UES may be controlled primarily by a vagal nerve X1 branch, and secondarily by spinal nerves (SN2, SN3 and SN4).
0
Journal of Comparative Physiology B
2969258
10.1007/S00359-013-0831-9
2,969,258
Severe constraints for sound communication in a frog from the South American temperate forest
The efficiency of acoustic communication depends on the power generated by the sound source, the quality of the environment across which signals propagate, the environmental noise and the sensitivity of the intended receivers. Eupsophus calcaratus, an anuran from the temperate austral forest, communicates by means of an advertisement call of weak intensity in a sound-attenuating environment. To estimate the range over which these frogs communicate effectively, we conducted measurements of sound level and degradation patterns of propagating advertisement calls in the field, and measurements of auditory thresholds to pure tones and to natural calls in laboratory conditions. The results show that E. calcaratus produces weak advertisement calls of about 72 dB sound pressure level (SPL) at 0.25 m from the caller. The signals are affected by attenuation and degradation patterns as they propagate in their native environment, reaching average values of 61 and 51 dB SPL at 1 and 2 m from the sound source, respectively. Midbrain multi-unit recordings show a relatively low auditory sensitivity, with thresholds of about 58 dB SPL for conspecific calls, which are likely to restrict communication to distances shorter than 2 m, a remarkably short range as compared to other anurans.
0
Journal of Comparative Physiology A
1012753
10.1007/S00360-013-0769-9
1,012,753
Digestive strategies and food choice in mantled howler monkeys Alouatta palliata mexicana: bases of their dietary flexibility
Mantled howler monkeys (Alouatta palliata) occupy a wide variety of tropical habitats and are the most folivorous of New World primates. However, their diet may include fruits, buds, petioles, and flowers, as well as leaves, suggesting they must cope with variations in the nutrient composition of their food. We studied the physiological basis of the dietary flexibility of these monkeys by comparing food choice, digestive performance and patterns of digesta flow in six adults, fed diets of either leaves or a mixture of fruit and leaves. Although monkeys ate similar amounts of the two diets, they ingested more digestible protein when offered the leaf diet, on which they lost body mass, but they ingested much more soluble sugars when offered fruit and leaves on which they gained mass. Digestibilities of dry matter, fat, energy and fibre did not differ between diets, but those of crude protein, soluble sugars and minerals were higher on the fruit–leaf diet. Mean retention times in the gut of solute (Co-EDTA) and particulate markers (Cr-mordanted cell walls) did not differ between diets, but on both diets the monkeys retained the particulate marker (mean retention time ca 55 h) for longer than they did the solute marker (MRT ca 50 h). A lack of selective retention of solutes and small particles in the gastro-intestinal tract of howler monkeys probably restricts them to mixed diets but their digestive strategy is sufficiently flexible to allow them to feed on a diet of leaves when fruit is unavailable.
0
Journal of Comparative Physiology B
16064052
10.1007/S00360-013-0768-X
16,064,052
Liver glucose-6-phosphatase proteins in suckling and weaned grey seal pups: structural similarities to other mammals and relationship to nutrition, insulin signalling and metabolite levels
Phocid seals have been proposed as models for diabetes because they exhibit limited insulin response to glucose, high blood glucose and increasing insulin resistance when fasting. Liver glucose-6-phosphatase (G6Pase) catalyses the final step in glucose production and is central to glucose regulation in other animals. G6Pase comprises a translocase (SLC37A4) and a catalytic subunit (G6PC). G6PC and SLC37A4 expression and activity are normally regulated by nutritional state and glucostatic hormones, particularly insulin, and are elevated in diabetes. We tested the hypotheses that (1) grey seal G6PC and SLC37A4 cDNA and predicted protein sequences differ from other species’ at functional sites, (2) relative G6Pase protein abundances are lower during feeding than fasting and (3) relative G6Pase protein abundances are related to insulin, insulin receptor phosphorylation and key metabolite levels. We show that G6PC and partial SLC37A4 cDNA sequences encode proteins sharing 82–95 % identity with other mammals. Seal G6PC contained no differences in sites responsible for activity, stability or subcellular location. Several substitutions in seal SLC37A4 were predicted to be tolerated with low probability, which could affect glucose production. Suckling pups had higher relative abundance of both subunits than healthy, postweaned fasting pups. Furthermore, relative G6PC abundance was negatively related to glucose levels. These findings contrast markedly with the response of relative hepatic G6Pase abundance to feeding, fasting, insulin, insulin sensitivity and key metabolites in other animals, and highlight the need to understand the regulation of enzymes involved in glucose control in phocids if these animals are to be informative models of diabetes.
0
Journal of Comparative Physiology B
12884863
10.1007/S00360-013-0766-Z
12,884,863
The breeding season duration hypothesis: acute handling stress and total plasma concentrations of corticosterone and androgens in male and female striped plateau lizards (Sceloporus virgatus)
Acute glucocorticoid elevations can be adaptations to short-term stressors. The breeding season hypothesis predicts reduced glucocorticoid responsiveness to acute stressors in populations or species with short breeding seasons. The striped plateau lizard (Sceloporus virgatus) has a short breeding season in Arizona. We measured plasma corticosterone and total androgen levels (dihydrotestosterone and testosterone) following one of the four stress-handling treatments (0, 10, 60, or 180 min). In both sexes, longer handling stress yielded higher corticosterone; females had higher corticosterone than males at all time points. Androgens did not vary with handling duration, in either sex. Combining treatments, plasma androgens correlated positively with corticosterone (CORT) in females but not in males; plasma CORT and body mass residuals were negatively correlated in both sexes, suggesting lizards in poor body condition and/or not investing heavily in reproduction (follicle mass) have higher acute corticosterone. Total plasma androgens and body mass residuals were positively associated in males, but showed no association in females. The maximal CORT elevation after handling stress in this single-clutching species was of comparable magnitude to responses in related multi-clutching lizard species with longer breeding seasons. Using data from studies of multiple populations of three Sceloporus species, we found no relationship between the relative magnitude of the CORT increase and either latitude or elevation, two variables in the literature correlated with duration of the breeding season, and only weak relationships with geographic elevation and actual (not relative) stress-elevated CORT values in this multi-population comparison.
0
Journal of Comparative Physiology B
17218507
10.1007/S00360-013-0765-0
17,218,507
Separating the contributions of vascular anatomy and blood viscosity to peripheral resistance and the physiological implications of interspecific resistance variation in amphibians
Amphibian pulmonary and systemic vascular circuits are arranged in parallel, with potentially important consequences for resistance (R) to blood flow. The contribution of the parallel anatomic arrangement to total vascular R (RT), independent of blood viscosity, is unknown. We measured pulmonary (RP) and systemic (RS) vascular R with an in situ Ringer’s solution perfusion technique using anesthetized anuran and urodele species to determine: (1) relative contributions of vascular anatomy and blood viscosity to RT; (2) distensibility index (%Δ flow kPa−1) of the pulmonary and systemic vascular circuits; and (3) interspecific correlates of variation in these parameters with red blood cell size, cardiac power output, and aerobic capacities. RP was lower than RS in anurans, while RP of the urodeles was greater than RS and significantly greater than anuran RP. Anuran RT was lowest and did not vary interspecifically, whereas urodele RT was significantly greater than anuran, and varied interspecifically. Pulmonary and systemic circuit distensibility differences may explain cardiac shunt patterns in toads with changes in cardiac output from rest to activity. When blood viscosity was taken into account, vascular resistance accounted for about 25 % of RT while blood viscosity accounted for the remaining 75 %. Owing to lower RT, terrestrial anuran species required lower cardiac power outputs when moving fluid through their vasculature compared to aquatic species. These results indicate that physical characteristics of the vasculature can account for interspecific differences in cardiovascular physiology and suggest a co-evolution of cardiac and vascular anatomy among amphibians.
0
Journal of Comparative Physiology B
16158869
10.1007/S00359-013-0828-4
16,158,869
Function of head-bobbing behavior in diving little grebes
Most birds show a characteristic head movement that consists of head stabilization and quick displacement. In this movement, which is analogous to saccadic eye movement in mammals, head stabilization plays an important role in stabilizing the retinal image. This head movement, called “head bobbing”, is particularly pronounced during walking. Previous studies focusing on anatomical and behavioral features have pointed out that visual information is also important for diving birds, indicating its significance in the head movements of diving birds. In the present study, the kinematic and behavioral features of head bobbing in diving little grebes were described by motion analysis to identify the head movement in diving birds. The results showed that head-bobbing stroke (HBS) consisted of a thrust phase and a hold phase as is typical for head bobbing during walking birds. This suggests that HBS is related to visual stabilization under water. In HBS, grebes tended to dive with longer stroke length and smaller stroke frequency than in non-bobbing stroke. This suggests that the behavior, which is related to vision, affects the kinematic stroke parameters. This clarification of underwater head movement will help in our understanding not only of vision, but also of the kinematic strategy of diving birds.
0
Journal of Comparative Physiology A
18648547
10.1007/S00360-013-0767-Y
18,648,547
Energetics and metabolite profiles during early flight in American robins (Turdus Migratorius)
Although birds use fat as the primary fuel for migratory flights, carbohydrate and protein catabolism could be significant in the early stages of flight while pathways of fatty acid transport and oxidation are induced. The fuel mixture of long distance migrant birds can also be affected by the rate of water loss, where birds catabolize more protein to increase endogenous water production under dehydrating flight conditions. Despite many studies investigating flight metabolism, few have focused on the metabolic response to flight during the switchover to fat catabolism in migrants, and none have examined the effect of ambient conditions on fuel selection during early flight. We investigated the effect of water loss on the metabolic response to short duration flight in the American robin (Turdus migratorius). Birds were flown in a climatic wind tunnel and changes in body composition and plasma metabolites were measured. As flight duration increased, there was a gradual switchover from carbohydrate and protein catabolism to fat catabolism. Plasma metabolite profiles indicate that the mobilization of fat occurred within 20 min of initiating flight. Plasma glucose decreased and uric acid increased with flight duration. Ambient humidity did not affect fuel mixture. Thus, it seems that the utilization of fat may be delayed as migrants initiate flight. Short-hop migrants may exploit high rates of endogenous water production resulting from carbohydrate and protein catabolism early in flight to offset high water loss associated with low humidity. Rapid catabolism of lean body components at the start of a flight also reduces mass quickly, and may reduce energy costs.
0
Journal of Comparative Physiology B
15125359
10.1007/S00359-013-0827-5
15,125,359
Cattle on pastures do align along the North–South axis, but the alignment depends on herd density
Alignment is a spontaneous behavioral preference of particular body orientation that may be seen in various vertebrate or invertebrate taxa. Animals often optimize their positions according to diverse directional environmental factors such as wind, stream, slope, sun radiation, etc. Magnetic alignment represents the simplest directional response to the geomagnetic field and a growing body of evidence of animals aligning their body positions according to geomagnetic lines whether at rest or during feedings is accumulating. Recently, with the aid of Google Earth application, evidence of prevailing North–South (N–S) body orientation of cattle on pastures was published (Begall et al. PNAS 105:13451–13455, 2008; Burda et al. PNAS 106:5708–5713, 2009). Nonetheless, a subsequent study from a different laboratory did not confirm this phenomenon (Hert et al. J Comp Physiol A 197:677–682, 2011). The aim of our study was to enlarge the pool of independently gained data on this remarkable animal behavior. By satellite snapshots analysis and using blinded protocol we scored positions of 2,235 individuals in 74 herds. Our results are in line with the original findings of prevailing N–S orientation of grazing cattle. In addition, we found that mutual distances between individual animals within herds (herd density) affect their N–S preference—a new phenomenon giving some insight into biological significance of alignment.
0
Journal of Comparative Physiology A
10492208
10.1007/S00360-013-0764-1
10,492,208
Thermal dependence of clearance and metabolic rates in slow- and fast-growing spats of manila clam Ruditapes philippinarum
Thermal dependence of clearance rate (CR: l h−1), standard (SMR: J h−1) and routine metabolic rates (RMR: J h−1), were analyzed in fast (F)- and slow (S)-growing juveniles of the clam Ruditapes philippinarum. Physiological rates were measured at the maintenance temperature (17 °C), and compared with measurements performed at 10 and 24 °C after 16 h and 14 days to analyze acute and acclimated responses, respectively. Metabolic rates (both RMR and SMR) differed significantly between F and S seeds, irrespective of temperature. Mass-specific CRs were not different for F and S seeds but were significantly higher in F clams for rates standardized according to allometric size-scaling rules. Acute thermal dependency of CR was equal for F and S clams: mean Q10 were ≈3 and 2 in temperature ranges of 10–17 and 17–24 °C, respectively. CR did not change after 2 weeks of acclimation to temperatures. Acute thermal effects on SMR were similar in both groups (Q10 ≈ 1 and 1.6 in temperature ranges of 10–17 and 17–24 °C, respectively). Large differences between groups were found in the acute thermal dependence of RMR: Q10 in F clams (≈1.2 and 1.9 at temperature ranges of 10–17 and 17–24 °C, respectively) were similar to those found for SMR (Q10 = 1.0 and 1.7). In contrast, RMR of S clams exhibited maximum thermal dependence (Q10 = 3.1) at 10–17 °C and become depressed at higher temperatures (Q10 = 0.9 at 17–24 °C). A recovery of RMR in S clams was recorded upon acclimation to 24 °C. Contrasting metabolic patterns between fast and slow growers are interpreted as a consequence of differential thermal sensitivity of the fraction of metabolism associated to food processing and assimilation.
0
Journal of Comparative Physiology B
4294965
10.1007/S00360-013-0763-2
4,294,965
Thermoregulation in African Green Pigeons (Treron calvus) and a re-analysis of insular effects on basal metabolic rate and heterothermy in columbid birds
Columbid birds represent a useful model taxon for examining adaptation in metabolic and thermal traits, including the effects of insularity. To test predictions concerning the role of insularity and low predation risk as factors selecting for the use of torpor, and the evolution of low basal metabolic rate in island species, we examined thermoregulation under laboratory and semi-natural conditions in a mainland species, the African Green Pigeon (Treron calvus). Under laboratory conditions, rest-phase body temperature (Tb) was significantly and positively correlated with air temperature (Ta) between 0 and 35 °C, and the relationship between resting metabolic rate (RMR) and Ta differed from typical endothermic patterns. The minimum RMR, which we interpret as basal metabolic rate (BMR), was 0.825 ± 0.090 W. Green pigeons responded to food restriction by significantly decreasing rest-phase Tb, but the reductions were small (at most ~5 °C below normothermic values), with a minimum Tb of 33.1 °C recorded in a food-deprived bird. We found no evidence of the large reductions in Tb and metabolic rate and the lethargic state characteristic of torpor. The absence of torpor in T. calvus lends support to the idea that species restricted to islands that are free of predators are more likely to use torpor than mainland species that face the risk of predation during the rest-phase. We also analysed interspecific variation in columbid BMR in a phylogenetically informed framework and verified the conclusions of an earlier study which found that BMR is significantly lower in island species compared to those that occur on mainlands.
0
Journal of Comparative Physiology B
3163392
10.1007/S00359-013-0826-6
3,163,392
Social signals increase monoamine levels in the tegmentum of juvenile Mexican spadefoot toads (Spea multiplicata)
Monoamines are important neuromodulators that respond to social cues and that can, in turn, modify social responses. Yet we know very little about the ontogeny of monoaminergic systems and whether they contribute to the development of social behavior. Anurans are an excellent model for studying the development of social behavior because one of its primary components, phonotaxis, is expressed early in life. To examine the effect of social signals on monoamines early in ontogeny, we presented juvenile Mexican spadefoot toads (Spea multiplicata) with a male mating call or no sound and measured norepinephrine, epinephrine, dopamine, serotonin, and a serotonin metabolite, across the brain using high-pressure liquid chromatography. Our results demonstrate that adult-like monoaminergic systems are in place shortly after metamorphosis. Perhaps more interestingly, we found that mating calls increased the level of monoamines in the juvenile tegmentum, a midbrain region involved in sensory-motor integration and that contributes to brain arousal and attention. We saw no such increase in the auditory midbrain or in forebrain regions. We suggest that changes in monoamine levels in the juvenile tegmentum may reflect the effects of social signals on arousal state and could contribute to context-dependent modulation of social behavior.
0
Journal of Comparative Physiology A
1746183
10.1007/S00359-013-0805-Y
1,746,183
Octopamine modulates activity of neural networks in the honey bee antennal lobe
Neuronal plasticity allows an animal to respond to environmental changes by modulating its response to stimuli. In the honey bee (Apis mellifera), the biogenic amine octopamine plays a crucial role in appetitive odor learning, but little is known about how octopamine affects the brain. We investigated its effect in the antennal lobe, the first olfactory center in the brain, using calcium imaging to record background activity and odor responses before and after octopamine application. We show that octopamine increases background activity in olfactory output neurons, while reducing average calcium levels. Odor responses were modulated both upwards and downwards, with more odor response increases in glomeruli with negative or weak odor responses. Importantly, the octopamine effect was variable across glomeruli, odorants, odorant concentrations and animals, suggesting that the octopaminergic network is shaped by plasticity depending on an individual animal’s history and possibly other factors. Using RNA interference, we show that the octopamine receptor AmOA1 (homolog of the Drosophila OAMB receptor) is involved in the octopamine effect. We propose a network model in which octopamine receptors are plastic in their density and located on a subpopulation of inhibitory neurons in a disinhibitory pathway. This would improve odor-coding of behaviorally relevant, previously experienced odors.
0
Journal of Comparative Physiology A
16693760
10.1007/S00360-013-0762-3
16,693,760
Strategies for hypoxia adaptation in fish species: a review
Aquatic environments exhibit wide temporal and spatial variations in oxygen levels compared to terrestrial environments. Fish are an excellent model for elucidating the underlying mechanisms of hypoxia adaptation. Over the past decade, several hypoxia-related proteins have been reported to act in concert to convey oxygen change information to downstream signaling effectors. Some signaling pathways, such as redox status, AMPK, MAPK and IGF/PI3K/Akt, are known to play a central role in hypoxia adaptation. These networks regulate oxygen-sensitive transcription factors which, in turn, affect the expression of hypoxia adaptation-related genes. This review summarizes current insights into hypoxia adaptation-related proteins and signaling pathways in fish.
0
Journal of Comparative Physiology B
17089043
10.1007/S00360-013-0761-4
17,089,043
The skin of fish as a transport epithelium: a review
The primary function of fish skin is to act as a barrier. It provides protection against physical damage and assists with the maintenance of homoeostasis by minimising exchange between the animal and the environment. However in some fish, the skin may play a more active physiological role. This is particularly true in species that inhabit specialised environmental niches (e.g. amphibious and air-breathing fish such as the lungfish), those with physiological characteristics that may subvert the need for the integument as a barrier (e.g. the osmoconforming hagfish), and/or fish with anatomical modifications of the epidermis (e.g. reduced epithelial thickness). Using examples from different fish groups (e.g. hagfishes, elasmobranchs and teleosts), the importance of fish skin as a transport epithelium for gases, ions, nitrogenous waste products, and nutrients was reviewed. The role of the skin in larval fish was also examined, with early life stages often utilising the skin as a surrogate gill, prior to the development of a functional branchial epithelium.
0
Journal of Comparative Physiology B
9152922
10.1007/S00359-013-0822-X
9,152,922
Detection of hydrodynamic stimuli by the Florida manatee (Trichechus manatus latirostris)
Florida manatees inhabit the coastal and inland waters of the peninsular state. They have little difficulty navigating the turbid waterways, which often contain obstacles that they must circumnavigate. Anatomical and behavioral research suggests that the vibrissae and associated follicle–sinus complexes that manatees possess over their entire body form a sensory array system for detecting hydrodynamic stimuli analogous to the lateral line system of fish. This is consistent with data highlighting that manatees are tactile specialists, evidenced by their specialized facial morphology and use of their vibrissae during feeding and active investigation/manipulation of objects. Two Florida manatees were tested in a go/no-go procedure using a staircase method to assess their ability to detect low-frequency water movement. Hydrodynamic vibrations were created by a sinusoidally oscillating sphere that generated a dipole field at frequencies from 5 to 150 Hz, which are below the apparent functional hearing limit of the manatee. The manatees detected particle displacement of less than 1 μm for frequencies of 15–150 Hz and of less than a nanometer at 150 Hz. Restricting the facial vibrissae with various size mesh openings indicated that the specialized sensory hairs played an important role in the manatee’s exquisite tactile sensitivity.
0
Journal of Comparative Physiology A
13003017
10.1007/S00359-013-0818-6
13,003,017
Mixture and odorant processing in the olfactory systems of insects: a comparative perspective
Natural olfactory stimuli are often complex mixtures of volatiles, of which the identities and ratios of constituents are important for odor-mediated behaviors. Despite this importance, the mechanism by which the olfactory system processes this complex information remains an area of active study. In this review, we describe recent progress in how odorants and mixtures are processed in the brain of insects. We use a comparative approach toward contrasting olfactory coding and the behavioral efficacy of mixtures in different insect species, and organize these topics around four sections: (1) Examples of the behavioral efficacy of odor mixtures and the olfactory environment; (2) mixture processing in the periphery; (3) mixture coding in the antennal lobe; and (4) evolutionary implications and adaptations for olfactory processing. We also include pertinent background information about the processing of individual odorants and comparative differences in wiring and anatomy, as these topics have been richly investigated and inform the processing of mixtures in the insect olfactory system. Finally, we describe exciting studies that have begun to elucidate the role of the processing of complex olfactory information in evolution and speciation.
0
Journal of Comparative Physiology A
1064215
10.1007/S00360-013-0760-5
1,064,215
A review of the energetics of pollination biology
Pollination biology is often associated with mutualistic interactions between plants and their animal pollen vectors, with energy rewards as the foundation for co-evolution. Energy is supplied as food (often nectar from flowers) or as heat (in sun-tracking or thermogenic plants). The requirements of pollinators for these resources depend on many factors, including the costs of living, locomotion, thermoregulation and behaviour, all of which are influenced by body size. These requirements are modified by the availability of energy offered by plants and environmental conditions. Endothermic insects, birds and bats are very effective, because they move faster and are more independent of environmental temperatures, than are ectothermic insects, but they are energetically costly for the plant. The body size of endothermic pollinators appears to be influenced by opposing requirements of the animals and plants. Large body size is advantageous for endotherms to retain heat. However, plants select for small body size of endotherms, as energy costs of larger size are not matched by increases in flight speed. If high energy costs of endothermy cannot be met, birds and mammals employ daily torpor, and large insects reduce the frequency of facultative endothermy. Energy uptake can be limited by the time required to absorb the energy or eliminate the excess water that comes with it. It can also be influenced by variations in climate that determine temperature and flowering season.
0
Journal of Comparative Physiology B
11939436
10.1007/S00359-013-0825-7
11,939,436
Polarotaxis and scototaxis in the supratidal amphipod Platorchestia platensis
Talitrid amphipods use many cues for orientation during forays between temporary burrows and feeding areas, and for locating beaches when submerged, with visual cues being particularly important. Little evidence exists for polarized light among these visual cues despite extensive orientation by celestial and underwater polarized light in other crustaceans and in insects. We used electroretinography to assess spectral sensitivity in the eye of the beach flea Platorchestia platensis, and behavioral studies to test whether linearly polarized light serves as an orientation cue. Two spectral classes were present in the P. platensis eye with maxima at 431 and 520 nm. Non-uniform orientation of amphipods in the laboratory arena required either light/dark or polarized cues. Scototactic movements depended on arena conditions (day/night, wet/dry), while orientation under linearly polarized light was wavelength-dependent and parallel to the e-vector. Subsequent tests presented conflicting and additive scototactic and polarotactic cues to differentiate among these responses. In dry conditions, orientation parallel to the polarization e-vector overcame a dominant negative scototaxis, confirming that polarotaxis and scototaxis are separate orientation responses in this species. These behavioral results demonstrate talitrid amphipods can perceive and orient to linearly polarized light, and may use it to orient toward preferred zones on beaches.
0
Journal of Comparative Physiology A
15378374
10.1007/S00359-013-0817-7
15,378,374
Communication in bottlenose dolphins: 50 years of signature whistle research
Bottlenose dolphins (Tursiops truncatus) produce individually distinctive signature whistles that broadcast the identity of the caller. Unlike voice cues that affect all calls of an animal, signature whistles are distinct whistle types carrying identity information in their frequency modulation pattern. Signature whistle development is influenced by vocal production learning. Animals use a whistle from their environment as a model, but modify it, and thus invent a novel signal. Dolphins also copy signature whistles of others, effectively addressing the whistle owner. This copying occurs at low rates and the resulting copies are recognizable as such by parameter variations in the copy. Captive dolphins can learn to associate novel whistles with objects and use these whistles to report on the presence or absence of the object. If applied to signature whistles, this ability would make the signature whistle a rare example of a learned referential signal in animals. Here, we review the history of signature whistle research, covering definitions, acoustic features, information content, contextual use, developmental aspects, and species comparisons with mammals and birds. We show how these signals stand out amongst recognition calls in animals and how they contribute to our understanding of complexity in animal communication.
0
Journal of Comparative Physiology A
9871588
10.1007/S00359-013-0816-8
9,871,588
Consciousness in dolphins? A review of recent evidence
For millennia, dolphins have intrigued humans. Scientific study has confirmed that bottlenose dolphins are large-brained, highly social mammals with an extended developmental period, flexible cognitive capacities, and powerful acoustic abilities including a sophisticated echolocation system. These findings have led some to ask if dolphins experience aspects of consciousness. Recent investigations targeting self-recognition/self-awareness and metacognition, constructs tied to consciousness on some accounts, have analyzed the dolphin’s ability to recognize itself in a mirror or on a video as well as to monitor its own knowledge in a perceptual categorization task. The current article reviews this work with dolphins and grapples with some of the challenges in designing, conducting, and interpreting these studies as well as with general issues related to studying consciousness in animals. The existing evidence does not provide a convincing case for consciousness in dolphins. For productive scientific work on consciousness in dolphins (and other animals including humans), we need clearer characterizations of consciousness, better methods for studying it, and appropriate paradigms for interpreting outcomes. A current focus on metamemory in animals offers promise for future discovery in this area.
0
Journal of Comparative Physiology A
18610118
10.1007/S00359-013-0823-9
18,610,118
Sensory biology of aquatic mammals
Mammals that exclusively or partly live in the water have to cope with many physiological challenges, including challenges to their sensory systems. With the transition from the terrestrial to the aquatic environment, the different physical properties of air and water required new adaptations. Many mammalian species still live in both worlds, and we include these semi-aquatic mammals in our present definition of aquatic mammals. This special issue on the ‘‘Sensory biology of aquatic mammals’’ presents reviews and original studies on most major taxa that have been studied so far. The authors of original studies were encouraged to extend the discussion part to aid the nonspecialist reader in gaining an overview. This special issue is closely related to, but not exactly congruent with, an international conference with the same title that was held at the Marine Science Center in Rostock, Germany, in October 2012. Marine mammals are the most extensively studied group of aquatic mammals. This is partly due to the fact that they represent the majority of species of aquatic mammals. Furthermore, marine mammals have often been more relevant economically to humans than freshwater species, e.g. in fisheries or whaling. And last but not least, people have a deeply rooted fascination for marine mammals. Maybe this is founded in the awareness that in the animal kingdom marine mammals are our close relatives, but at the same time they easily roam the last unexplored areas of the earth, where humans have not really managed to follow them even with modern technology. The three major groups of marine mammals are the pinnipeds, the cetaceans and the sirenians (dugong and manatees). They are covered by original work and a review in this special issue. In addition, the polar bear (Ursus maritimus) and the sea otter (Enhydra lutris) are counted among the marine mammals. For information on the sensory biology of the polar bear, the reader is referred to Nachtigall et al. (2007); for the sea otter, to Murphy et al. (1990) and Ghoul and Reichmuth (2012); for marine mammals in general, to Supin et al. (2001), Dehnhardt (2002) and Thewissen and Nummela (2008). All major clades of marine mammals also include species that live fully or partly in fresh water, such as the Baikal seal (Pusa sibirica), two families of river dolphins (Iniidae and Platinistidae), dolphins of the genera Sotalia, Sousa and Orcaella, and the manatees (Trichechus). Aquatic mammals originally living in limnic waters have also attracted a lot of attention. In the present special issue, they are represented by an insectivore and a monotreme, the American water shrew (see article by K. C. Catania) and the duck-billed platypus (see article by N. Czech-Damal et al.). The anatomy of some sensory systems was also studied in other originally limnic mammals: the otters of the genus Lutra, the hippopotamus (Hippopotamus amphibius), the beavers (Castor spp.) and the Australian water rat (Hydromys chrysogaster). A particularly large body of scientific literature has dealt with the sense of hearing. This focus is partly due to the For special issue ‘‘Sensory biology of aquatic mammals’’.
0
Journal of Comparative Physiology A
11798087
10.1007/S00360-013-0757-0
11,798,087
Mechanisms of acetylcholine-mediated vasodilation in systemic arteries from mourning doves (Zenaida macroura)
For mammals, acetylcholine (ACh) promotes endothelium-dependent vasodilation primarily through nitric oxide (NO) and prostaglandin-mediated pathways, with varying reliance on endothelial-derived hyperpolarizing factors. Currently, no studies have been conducted on small systemic arteries from wild birds. We hypothesized that ACh-mediated vasodilation of isolated small arteries from mourning doves (Zenaida macroura) would likewise depend on endothelial-derived factors. Small resistance mesenteric and cranial tibial (c. tibial) arteries (80–150 μm, inner diameter) were cannulated and pre-constricted to 50 % of resting inner diameter with phenylephrine then exposed to increasing concentrations of ACh (10−9–10−5 M) or the NO donor, sodium nitroprusside (SNP; 10−12–10−3 M). For mesenteric arteries, ACh-mediated vasodilation was significantly blunted with the potassium channel antagonist tetraethylammonium chloride (TEA, 10 mM); whereas responses were only moderately impaired with endothelial disruption or inhibition of prostaglandins (indomethacin, 10 μM). In contrast, endothelial disruption as well as exposure to TEA largely abolished vasodilatory responses to ACh in c. tibial arteries while no effect of prostaglandin inhibition was observed. For both vascular beds, responses to ACh were moderately dependent on the NO signaling pathway. Inhibition of NO synthase had no impact, despite complete reversal of phenylephrine-mediated tone with SNP, whereas inhibition of soluble guanylate cyclase (sGC) caused minor impairments. Endothelium-independent vasodilation also relied on potassium channels. In summary, ACh-mediated vasodilation of mesenteric and c. tibial arteries occurs through the activation of potassium channels to induce hyperpolarization with moderate reliance on sGC. Prostaglandins likewise play a small role in the vasodilatory response to ACh in mesenteric arteries.
0
Journal of Comparative Physiology B
15008028
10.1007/S00360-013-0754-3
15,008,028
Whole-body protein turnover reveals the cost of detoxification of secondary metabolites in a vertebrate browser
The detoxification limitation hypothesis predicts that the metabolism and biotransformation of plant secondary metabolites (PSMs) elicit a cost to herbivores. There have been many attempts to estimate these costs to mammalian herbivores in terms of energy, but this ignores what may be a more important cost—increases in protein turnover and concomitant losses of amino acids. We measured the effect of varying dietary protein concentrations on the ingestion of two PSMs (1,8 cineole—a monoterpene, and benzoic acid—an aromatic carboxylic acid) by common brushtail possums (Trichosurus vulpecula). The dietary protein concentration had a small effect on how much cineole possums ingested. In contrast, protein had a large effect on how much benzoate they ingested, especially at high dietary concentrations of benzoate. This prompted us to measure the effects of dietary protein and benzoate on whole-body protein turnover using the end-product method following an oral dose of [15N] glycine. Increasing the concentration of dietary protein in diets without PSMs improved N balance but did not influence whole-body protein turnover. In contrast, feeding benzoate in a low-protein diet pushed animals into negative N balance. The concomitant increases in the rates of whole-body protein turnover in possums eating diets with more benzoate were indicative of a protein cost of detoxification. This was about 30 % of the dietary N intake and highlights the significant effects that PSMs can have on nutrient metabolism and retention.
0
Journal of Comparative Physiology B
10120218
10.1007/S00359-013-0824-8
10,120,218
Echolocation in Blainville’s beaked whales (Mesoplodon densirostris)
Here we use sound and movement recording tags to study how deep-diving Blainville’s beaked whales (Mesoplodon densirostris) use echolocation to forage in their natural mesopelagic habitat. These whales ensonify thousands of organisms per dive but select only about 25 prey for capture. They negotiate their cluttered environment by radiating sound in a narrow 20° field of view which they sample with 1.5–3 clicks per metre travelled requiring only some 60 clicks to locate, select and approach each prey. Sampling rates do not appear to be defined by the range to individual targets, but rather by the movement of the predator. Whales sample faster when they encounter patches of prey allowing them to search new water volumes while turning rapidly to stay within a patch. This implies that the Griffin search–approach–capture model of biosonar foraging must be expanded to account for sampling behaviours adapted to the overall prey distribution. Beaked whales can classify prey at more than 15 m range adopting stereotyped motor patterns when approaching some prey. This long detection range relative to swimming speed facilitates a deliberate mode of sensory-motor operation in which prey and capture tactics can be selected to optimize energy returns during long breath-hold dives.
0
Journal of Comparative Physiology A
13888618
10.1007/S00360-013-0759-Y
13,888,618
The hemoglobin system of the serpent eel Ophisurus serpens: structural and functional characterization
The hemoglobin system of the serpent eel Ophisurus serpens was structurally and functionally characterized with the aim of comparing it to the hemoglobin system of other fish species, as oxygen loading under the severe habitat conditions experienced by O. serpens could have necessitated specific adaptation mechanisms during evolution. The hemoglobin system of O. serpens includes one cathodic and four anodic components. The molecular mass of the α and β chains of the cathodic component as well as the 2 α and 4 β of the anodic components were determined. Analysis of the intact α and β chains from cathodic hemoglobin and their proteolytic digestion products by high-resolution MS and MS/MS experiments resulted in 92 and 95 % sequence coverage of the α and β globins, respectively. The oxygen binding properties of both hemoglobin components were analyzed with respect to their interactions with their physiological effectors. Stripped cathodic hemoglobin displayed the highest oxygen affinity among Anguilliformes with no significant effect of pH on O2-affinity. In the presence of both chloride and organic phosphates, O2-affinity was strongly reduced, and cooperativity was enhanced; moreover, cathodic hemoglobin contains two indistinguishable GTP-binding sites. Stripped anodic hemoglobins exhibited both low O2-affinity and low cooperativity and a larger Bohr effect than cathodic hemoglobin. The cathodic hemoglobin of O. serpens and the corresponding component of Conger conger share the greatest structural and functional similarity among hemoglobin systems of Anguilliformes studied to date, consistent with their phylogenetic relationship.
0
Journal of Comparative Physiology B
10267423
10.1007/S00360-013-0755-2
10,267,423
Chronic hypoxic incubation blunts thermally dependent cholinergic tone on the cardiovascular system in embryonic American alligator (Alligator mississippiensis)
Environmental conditions play a major role in shaping reptilian embryonic development, but studies addressing the impact of interactions between chronic and acute environmental stressors on embryonic systems are lacking. In the present study, we investigated thermal dependence of cholinergic and adrenergic cardiovascular tone in embryonic American alligators (Alligator mississippiensis) and assessed possible phenotypic plasticity in a chronic hypoxic incubation treatment. We compared changes in heart rate (fH) and mean arterial blood pressure (PM) for chronically hypoxic and normoxic-incubated embryos after cholinergic and adrenergic blockade following three different acute temperature treatments: (1) 30 °C (control incubation temperature), (2) acute, progressive decrease 30–24 °C then held at 24 °C, and (3) acute, progressive increase 30–36 °C then held at 36 °C. fH progressively fell in response to decreasing temperature and rose in response to increasing temperature. PM did not significantly change with decreasing temperature, but was lowered significantly with increasing acute temperature in the normoxic group at 90 % of development only. Propranolol administration (β adrenergic antagonist) produced a significant fH decrease at 24, 30, and 36 °C that was similar at all temperatures for all groups. For normoxic-incubated embryos at 90 % of development, atropine administration (cholinergic antagonist) significantly increased fH in both 24 and 36 °C treatments, but not in the 30 °C control treatment. This atropine response at 24 and 36 °C demonstrated acute thermally dependent cholinergic tone on fH late in development for normoxic-incubated, but not chronically hypoxic-incubated embryos. Collectively, data indicated that cardiovascular control mechanisms in embryonic alligators may be activated by thermal extremes, and the maturation of control mechanisms was delayed by chronic hypoxia.
0
Journal of Comparative Physiology B
14663289
10.1007/S00360-013-0756-1
14,663,289
Cardiac performance correlates of relative heart ventricle mass in amphibians
This study used an in situ heart preparation to analyze the power output and stroke work of spontaneously beating hearts of four anurans (Rhinella marina, Lithobates catesbeianus, Xenopus laevis, Pyxicephalus edulis) and three urodeles (Necturus maculosus, Ambystoma tigrinum, Amphiuma tridactylum) that span a representative range of relative ventricle mass (RVM) found in amphibians. Previous research has documented that RVM correlates with dehydration tolerance and maximal aerobic capacity in amphibians. The power output (mW g−1 ventricle mass) and stroke work (mJ g−1 ventricle muscle mass) were independent of RVM and were indistinguishable from previously published results for fish and reptiles. RVM was significantly correlated with maximum power output (Pmax, mW kg−1 body mass), stroke volume, cardiac output, afterload pressure (PO) at Pmax, and preload pressure (PI) at Pmax. PI at Pmax and PO at Pmax also correlated very closely with each other. The increases in both PI and PO at maximal power outputs in large hearts suggest that concomitant increases in blood volume and/or increased modulation of vascular compliance either anatomically or via sympathetic tone on the venous vasculature would be necessary to achieve Pmax in vivo. Hypotheses for variation in RVM and its concomitant increased Pmax in amphibians are developed.
0
Journal of Comparative Physiology B
14226070
10.1007/S00360-013-0758-Z
14,226,070
l-leucine, l-methionine, and l-phenylalanine share a Na+/K+-dependent amino acid transporter in shrimp hepatopancreas
Hepatopancreatic brush border membrane vesicles (BBMV), made from Atlantic White shrimp (Litopenaeus setiferus), were used to characterize the transport properties of 3H-l-leucine influx by these membrane systems and how other essential amino acids and the cations, sodium and potassium, interact with this transport system. 3H-l-leucine uptake by BBMV was pH-sensitive and occurred against transient transmembrane concentration gradients in both Na+- and K+-containing incubation media, suggesting that either cation was capable of providing a driving force for amino acid accumulation. 3H-l-leucine uptake in NaCl or KCl media were each three times greater in acidic pH (pH 5.5) than in alkaline pH (pH 8.5). The essential amino acid, l-methionine, at 20 mM significantly (p < 0.0001) inhibited the 2-min uptakes of 1 mM 3H-l-leucine in both Na+- and K+-containing incubation media. The residual 3H-l-leucine uptake in the two media were significantly greater than zero (p < 0.001), but not significantly different from each other (p > 0.05) and may represent an l-methionine- and cation-independent transport system. 3H-l-leucine influxes in both NaCl and KCl incubation media were hyperbolic functions of [l-leucine], following the carrier-mediated Michaelis–Menten equation. In NaCl, 3H-l-leucine influx displayed a low apparent KM (high affinity) and low apparent Jmax, while in KCl the transport exhibited a high apparent KM (low affinity) and high apparent Jmax. l-methionine or l-phenylalanine (7 and 20 mM) were competitive inhibitors of 3H-l-leucine influxes in both NaCl and KCl media, producing a significant (p < 0.01) increase in 3H-l-leucine influx KM, but no significant response in 3H-l-leucine influx Jmax. Potassium was a competitive inhibitor of sodium co-transport with 3H-l-leucine, significantly (p < 0.01) increasing 3H-l-leucine influx KM in the presence of sodium, but having negligible effect on 3H-l-leucine influx Jmax in the same medium. These results suggest that shrimp BBMV transport 3H-l-leucine by a single l-methionine- and l-phenylalanine-shared carrier system that is enhanced by acidic pH and can be stimulated by either Na+ or K+ acting as co-transport drivers binding to shared activator sites.
0
Journal of Comparative Physiology B
8687898
10.1007/S00359-013-0820-Z
8,687,898
A proposed mechanism for the observed ontogenetic improvement in the hearing ability of hapuka (Polyprion oxygeneios)
Swim bladder extensions and hearing ability were examined in the temperate reef fish Polyprion oxygeneios (hapuka). Using the auditory evoked potential (AEP) technique, hearing thresholds were determined in four age-classes of hapuka, from larvae to juveniles. The youngest age-class had poor hearing abilities, with lowest thresholds of 132 dB re 1 μPa, and a narrow auditory bandwidth (100–800 Hz). Hearing ability improved significantly throughout the remainder of their first year, including decreases in thresholds of up to 27 dB, and an increase in auditory bandwidth (up to 1,000 Hz). Magnetic resonance imaging (MRI) was used to investigate structural mechanisms that may account for this ontogenetic improvement in hearing. These showed rostral extensions of the swim bladder developing early in the juvenile stage, and extending with increasing age closer to the otic capsule. It is suggested that this indirect connection between the swim bladder and the otic capsule could impart pressure sensitivity closer to the inner ear, accounting for the increase in sensitivity seen during development, although further investigation of older fish is required for conclusive evidence. The improvement in hearing ability in hapuka could be potentially related to a unique life history of extended pelagic durations up to 4 years.
0
Journal of Comparative Physiology A
17147472
10.1007/S00359-013-0819-5
17,147,472
Prey processing in the Siamese fighting fish (Betta splendens)
We studied prey processing in the Siamese fighting fish (Betta splendens), involving slow, easily observed head-bobbing movements, which were compared with prey processing in other aquatic feeding vertebrates. We hypothesized that head-bobbing is a unique prey-processing behaviour, which alternatively could be structurally and functionally analogous with raking in basal teleosts, or with pharyngognathy in neoteleosts. Modulation of head-bobbing was elicited by prey with different motility and toughness. Head-bobbing involved sustained mouth occlusion and pronounced cranial elevation, similar to raking. However, the hyoid and pectoral girdle were protracted, and not retracted as in both raking and pharyngognathy. High-speed videofluoroscopy of hyoid movements confirmed that head-bobbing differs from other known aquatic prey-processing behaviours. Nevertheless, head-bobbing and other prey-processing behaviours converge on a recurrent functional theme in the trophic ecology of aquatic feeding vertebrates; the use of intraoral and oropharyngeal dentition surfaces to immobilize, reduce and process relatively large, tough or motile prey. Prey processing outside the pharyngeal region has not been described for neoteleosts previously, but morphological evidence suggests that relatives of Betta might use similar processing behaviours. Thus, our results suggest that pharyngognathy did not out-compete ancestral prey-processing mechanisms completely during the evolution of neoteleosts.
0
Journal of Comparative Physiology A
9521124
10.1007/S00359-013-0821-Y
9,521,124
Parallel processing in the honeybee olfactory pathway: structure, function, and evolution
Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite sequence with the mushroom bodies and lateral horn. Comparative studies suggest that this dual-tract circuit represents a unique adaptation in Hymenoptera. Imaging studies indicate that glomeruli in both hemilobes receive redundant sensory input. Recent simultaneous multi-unit recordings from projection neurons of both tracts revealed widely overlapping response profiles strongly indicating parallel olfactory processing. Whereas lateral-tract neurons respond fast with broad (generalistic) profiles, medial-tract neurons are odorant specific and respond slower. In analogy to “what-” and “where” subsystems in visual pathways, this suggests two parallel olfactory subsystems providing “what-” (quality) and “when” (temporal) information. Temporal response properties may support across-tract coincidence coding in higher centers. Parallel olfactory processing likely enhances perception of complex odorant mixtures to decode the diverse and dynamic olfactory world of a social insect.
0
Journal of Comparative Physiology A
15921473
10.1007/S00359-013-0801-2
15,921,473
Social regulation of electric signal plasticity in male Brachyhypopomus gauderio
In animal communication, the social context that elicits particular dynamic changes in the signal can provide indirect clues to signal function. Female presence should increase the expression of male signal traits relevant for mate-choice, while male presence should promote the enhancement of traits involved in male-male competition. The electric fish Brachyhypopomus gauderio produces a biphasic electric pulse for electrolocation and communication. Pulse amplitude predicts the signaler’s body size while pulse duration predicts circulating androgen levels. Males enhance pulse amplitude and duration when the numbers of males and females increase simultaneously. Here we tested the relative effects of female presence and male presence on male signal enhancement, and whether the size of the male competitor affected this enhancement. We found that male presence drives the enhancement of both pulse amplitude and second phase duration, independently of the size of the male competitor. Female presence induces the enhancement of pulse duration, but not pulse amplitude. These data suggest that males probably attend to information about a competitor’s body size coded by pulse amplitude and attend to aggressiveness coded by a competitor’s pulse duration, both potential predictors of fight outcome. Females may be primarily concerned about information on reproductive condition coded by pulse duration.
0
Journal of Comparative Physiology A
17768701
10.1007/S00359-013-0814-X
17,768,701
Membrane filtering properties of the bumblebee (Bombus terrestris) photoreceptors across three spectral classes
Filtering properties of the membrane form an integral part of the mechanisms producing the light-induced electrical signal in insect photoreceptors. Insect photoreceptors vary in response speed between different species, but recently it has also been shown that different spectral photoreceptor classes within a species possess diverse response characteristics. However, it has not been quantified what roles phototransduction and membrane properties play in such diversity. Here, we use electrophysiological methods in combination with system analysis to study whether the membrane properties could create the variation of the response speed found in the bumblebee (Bombus terrestris) photoreceptors. We recorded intracellular responses from each photoreceptor class to white noise-modulated current stimuli and defined their input resistance and linear filtering properties. We found that green sensitive cells exhibit smaller input resistance and membrane impedance than other cell classes. Since green sensitive cells are the fastest photoreceptor class in the bumblebee retina, our results suggest that the membrane filtering properties are correlated with the speed of light responses across the spectral classes. In general, our results provide a compelling example of filtering at the sensory cell level where the biophysical properties of the membrane are matched to the performance requirements set by visual ecology.
0
Journal of Comparative Physiology A
18620977
10.1007/S00359-013-0812-Z
18,620,977
Kinetics of olfactory responses might largely depend on the odorant–receptor interaction and the odorant deactivation postulated for flux detectors
Experimental data together with modeling of pheromone perireceptor and receptor events in moths (Bombyx mori, Antheraea polyphemus) suggest that the kinetics of olfactory receptor potentials largely depend on the association of the odorant with the neuronal receptor molecules and the deactivation of the odorant accumulated around the receptor neuron. The first process could be responsible for the reaction times (mean about 400 ms) of the nerve impulses at threshold. The second process has been postulated for flux detectors such as olfactory sensilla of moths. The odorant deactivation could involve a modification of the pheromone-binding protein (PBP) that “locks” the pheromone inside the inner binding cavity of the protein. The model combines seemingly contradictory functions of the PBP such as pheromone transport, protection of the pheromone from enzymatic degradation, pheromone deactivation, and pheromone–receptor interaction. Model calculations reveal a density of at least 6,000 receptor molecules per µm2 of neuronal membrane. The volatile decanoyl-thio-1,1,1-trifluoropropanone specifically blocks pheromone receptor neurons, probably when bound to the PBP and by competitive binding to the receptor molecules. The shallow dose–response curve of the receptor potential and altered response properties observed with pheromone derivatives or after adaptation may indicate shortened opening of ion channels.
0
Journal of Comparative Physiology A
17081983
10.1007/S00359-013-0813-Y
17,081,983
Comparative assessment of amphibious hearing in pinnipeds
Auditory sensitivity in pinnipeds is influenced by the need to balance efficient sound detection in two vastly different physical environments. Previous comparisons between aerial and underwater hearing capabilities have considered media-dependent differences relative to auditory anatomy, acoustic communication, ecology, and amphibious life history. New data for several species, including recently published audiograms and previously unreported measurements obtained in quiet conditions, necessitate a re-evaluation of amphibious hearing in pinnipeds. Several findings related to underwater hearing are consistent with earlier assessments, including an expanded frequency range of best hearing in true seals that spans at least six octaves. The most notable new results indicate markedly better aerial sensitivity in two seals (Phoca vitulina and Mirounga angustirostris) and one sea lion (Zalophus californianus), likely attributable to improved ambient noise control in test enclosures. An updated comparative analysis alters conventional views and demonstrates that these amphibious pinnipeds have not necessarily sacrificed aerial hearing capabilities in favor of enhanced underwater sound reception. Despite possessing underwater hearing that is nearly as sensitive as fully aquatic cetaceans and sirenians, many seals and sea lions have retained acute aerial hearing capabilities rivaling those of terrestrial carnivores.
0
Journal of Comparative Physiology A
18003278
10.1007/S00360-013-0752-5
18,003,278
The physiology of rainbow trout in social hierarchies: two ways of looking at the same data
Salmonids form dominance hierarchies in environments, where space or food are limiting. Our first objective was to investigate the physiology of individual rainbow trout in 4-fish hierarchies. Our second was to compare conclusions drawn from grouping physiological data on the basis of social rank with those based on relating individual physiology to individual aggressive behavior. To create a social hierarchy, groups of 4 juvenile trout were fed (1 % ration) using a darkened feeding container, twice daily (morning and evening). Each morning feeding was videotaped to record aggressive behavior, thereby facilitating the assignment of a social status rank to each fish. On days 5 and 10–11, physiological parameters were measured in fish fasted for 24 h. Social hierarchies formed in all tested groups. One fish would become dominant, whereas the three subordinate individuals would each assume a stable social rank. When classified according to this social rank, the three subordinate individuals all displayed similar physiology, different from the physiology of the dominant fish. The latter included higher ammonia excretion rate, greater protein utilization in aerobic metabolism, greater feeding, higher specific growth rate, greater increase in condition factor, and lower routine oxygen consumption rate. However, when individual aggression was taken into account, a continuous gradient was observed between aggression and physiology for most parameters, regardless of social status. These relationships could be improved by normalizing the aggression score to the overall level of aggression in each hierarchy. We argue that individual behavior should be considered instead of just social rank when studying the physiology of trout in social hierarchies.
0
Journal of Comparative Physiology B
15550839
10.1007/S00360-013-0753-4
15,550,839
Staying cold through dinner: cold-climate bats rewarm with conspecifics but not sunset during hibernation
For temperate endotherms (i.e., mammals and birds) energy costs are highest during winter but food availability is lowest and many mammals depend on hibernation as a result. Hibernation is made up of energy-saving torpor bouts [periods of controlled reduction in body temperature (Tb)], which are interrupted by brief periodic arousals to normothermic Tb. What triggers these arousals in free-ranging hibernators is not well understood. Some temperate bats with intermittent access to flying insects during winter synchronize arousals with sunset, which suggests that, in some species, feeding opportunities influence arousal timing. We tested whether hibernating bats from a cold climate without access to food during winter also maintain a circadian rhythm for arousals or whether cues from conspecifics in the same cluster are more important. We used temperature telemetry to monitor skin temperature (Tsk) of free-ranging little brown bats (Myotis lucifugus) hibernating in central Manitoba, Canada, where temperatures from 22 October to 22 March were too cold for flying insects. We found no evidence bats synchronized arousals with photoperiod but they did arouse synchronously with other bats in the same cluster. Thus, in the northern part of their range where flying insects are almost never available during winter, little brown bats exhibit no circadian pattern to arousals. Warming synchronously with others could reduce the energetic costs of arousal for individuals or could reflect disturbance of torpid bats by cluster-mates.
0
Journal of Comparative Physiology B
10946140
10.1007/S00360-013-0750-7
10,946,140
Effects of fatty acid provision during severe hypoxia on routine and maximal performance of the in situ tilapia heart
The ability to maintain stable cardiac function during environmental hypoxia exposure is crucial for hypoxia tolerance in animals and depends upon the maintenance of cardiac energy balance as well as the state of the heart’s extracellular environment (e.g., availability of metabolic fuels). Hypoxic depression of plasma [non-esterified fatty acids] (NEFA), an important cardiac aerobic fuel, is a common response in many species of hypoxia-tolerant fishes, including tilapia. We tested the hypothesis that decreased plasma [NEFA] is important for maintaining stable cardiac function during and following hypoxia exposure, based on the premise that continued reliance upon cardiac fatty acid metabolism under such conditions could impair cardiac function. We examined the effect of severe hypoxia exposure (PO2 < 0.2 kPa) on routine and maximum performance of the in situ perfused tilapia heart under conditions of routine (400 μmol L−1) and low (75 μmol L−1) [palmitate], which mimicked the in vivo levels of plasma [NEFA] found in normoxic and hypoxic tilapia, respectively. Under both concentrations of palmitate, the in situ tilapia heart showed exceptional hypoxic performance as a result of a high maximum glycolytic potential, confirming our previous results using a perfusate without fatty acids. We additionally provide evidence suggesting that non-contractile ATP demand is depressed in tilapia heart during hypoxia exposure. Cardiac performance during and following severe hypoxia exposure was unaffected by the level of palmitate. Thus, we conclude that hypoxic depression of plasma [NEFA] in fishes does not play a role in cardiac hypoxia tolerance.
0
Journal of Comparative Physiology B
17645155
10.1007/S00360-013-0751-6
17,645,155
Catch-up growth in Japanese quail (Coturnix Japonica): relationships with food intake, metabolic rate and sex
The effects of early environmental conditions can profoundly affect individual development and adult phenotype. In birds, limiting resources can affect growth as nestlings, but also fitness and survival as adults. Following periods of food restriction, individuals may accelerate development, undergoing a period of rapid “catch-up” growth, in an attempt to reach the appropriate size at adulthood. Previous studies of altricial birds have shown that catch-up growth can have negative consequences in adulthood, although this has not been explored in species with different developmental strategies. Here, we investigated the effects of resource limitation and the subsequent period of catch-up growth, on the morphological and metabolic phenotype of adult Japanese quail (Coturnix japonica), a species with a precocial developmental strategy. Because males and females differ in adult body size, we also test whether food restriction had sex-specific effects. Birds that underwent food restriction early in development had muscles of similar size and functional maturity, but lower adult body mass than controls. There was no evidence of sex-specific sensitivity of food restriction on adult body mass; however, there was evidence for body size. Females fed ad lib were larger than males fed ad lib, while females subjected to food restriction were of similar size to males. Adults that had previously experienced food restriction did not have an elevated metabolic rate, suggesting that in contrast to altricial nestlings, there was no metabolic carry-over effect of catch-up growth into adulthood. While Japanese quail can undergo accelerated growth after re-feeding, timing of food restriction may be important to adult size, particularly in females. However, greater developmental flexibility compared to altricial birds may contribute to the lack of metabolic carryover effects at adulthood.
0
Journal of Comparative Physiology B
17903545
10.1007/S00359-013-0811-0
17,903,545
Use of a light-dependent magnetic compass for y-axis orientation in European common frog (Rana temporaria) tadpoles
We provide evidence for the use of a magnetic compass for y-axis orientation (i.e., orientation along the shore-deep water axis) by tadpoles of the European common frog (Rana temporaria). Furthermore, our study provides evidence for a wavelength-dependent effect of light on magnetic compass orientation in amphibians. Tadpoles trained and then tested under full-spectrum light displayed magnetic compass orientation that coincided with the trained shore-deep water axes of their training tanks. Conversely, tadpoles trained under long-wavelength (≥500 nm) light and tested under full-spectrum light, and tadpoles trained under full-spectrum light and tested under long-wavelength (≥500 nm) light, exhibited a 90° shift in magnetic compass orientation relative to the trained y-axis direction. Our results are consistent with earlier studies showing that the observed 90° shift in the direction of magnetic compass orientation under long-wavelength (≥500 nm) light is due to a direct effect of light on the underlying magnetoreception mechanism. These findings also show that wavelength-dependent effects of light do not compromise the function of the magnetic compass under a wide range of natural lighting conditions, presumably due to a large asymmetry in the relatively sensitivity of antagonistic short- and long-wavelength inputs to the light-dependent magnetic compass.
0
Journal of Comparative Physiology A
8262090
10.1007/S00360-013-0749-0
8,262,090
Physiological and biochemical responses to cold and drought in the rock-dwelling pulmonate snail, Chondrina avenacea
The pulmonate snail Chondrina avenacea lives on exposed rock walls where it experiences drastic daily and seasonal fluctuations of abiotic conditions and food availability. We found that tolerance to dry conditions was maintained at a very high level throughout the year and was mainly based on the snails’ ability to promptly enter into estivation (quiescence) whenever they experienced drying out of their environment. Snails rapidly suppressed their metabolism and minimized their water loss using discontinuous gas exchange pattern. The metabolic suppression probably included periods of tissue hypoxia and anaerobism as indicated by accumulation of typical end products of anaerobic metabolism: lactate, alanine and succinate. Though the drought-induced metabolic suppression was sufficient to stimulate moderate increase of supercooling capacity, the seasonally highest levels of supercooling capacity and the highest tolerance to subzero temperatures were tightly linked to hibernation (diapause). Hibernating snails did not survive freezing of their body fluids and instead relied on supercooling strategy which allowed them to survive when air temperatures dropped to as low as −21 °C. No accumulation of low-molecular weight compounds (potential cryoprotectants) was detected in hibernating snails except for small amounts of the end products of anaerobic metabolism.
0
Journal of Comparative Physiology B
4676828
10.1007/S00359-013-0810-1
4,676,828
Audio–vocal interactions during vocal communication in squirrel monkeys and their neurobiological implications
Several strategies have evolved in the vertebrate lineage to facilitate signal transmission in vocal communication. Here, I present a mechanism to facilitate signal transmission in a group of communicating common squirrel monkeys (Saimiri sciureus sciureus). Vocal onsets of a conspecific affect call initiation in all other members of the group in less than 100 ms. The probability of vocal onsets in a range of 100 ms after the beginning of a vocalization of another monkey was significantly decreased compared to the mean probability of call onsets. Additionally, the probability for vocal onsets of conspecifics was significantly increased just a few hundreds of milliseconds after call onset of others. These behavioral data suggest neural mechanisms that suppress vocal output just after the onset of environmental noise, such as vocalizations of conspecifics, and increase the probability of call initiation of group mates shortly after. These findings add new audio–vocal behaviors to the known strategies that modulate signal transmission in vocal communication. The present study will guide future neurobiological studies that explore how the observed audio–vocal behaviors are implemented in the monkey brain.
0
Journal of Comparative Physiology A
17858635
10.1007/S00359-013-0809-7
17,858,635
Hypoxia impairs visual acuity in snapper (Pagrus auratus)
We investigated the effect of environmental hypoxia on vision in snapper (Pagrus auratus). Juvenile snapper inhabit estuarine environments where oxygen conditions fluctuate on a seasonal basis. Optomotor experiments demonstrated that visual acuity is impaired by environmental hypoxia, but not until levels approach the critical oxygen tension (Pcrit) of this species (around 25 % air-saturated seawater). In 100, 80, and 60 % air-saturated seawater, a positive optomotor response was present at a minimum separable angle (MSA) of 1°. In 40 % air-saturated seawater, vision was partially impaired with positive responses at MSAs of 2° and above. However, in 25 % air-saturated seawater, visual acuity was seriously impaired, with positive responses only present at MSAs of 6° and above. Snapper were found to possess a choroid rete, facilitating the maintenance of high ocular oxygen partial pressures (PO2) during normoxia and moderate hypoxia (PO2, between 269 and 290 mmHg). However, at 40 and 25 % water oxygen saturation, ocular PO2 was reduced to below 175 mmHg, which is perhaps linked to impairment of visual acuity in these conditions. The ability to preserve visual function during moderate hypoxia is beneficial for the maintenance of a visual lifestyle in the fluctuating oxygen environments of estuaries.
0
Journal of Comparative Physiology A
3209293
10.1007/S00359-013-0806-X
3,209,293
Neuronal encoding of sound, gravity, and wind in the fruit fly
The fruit fly Drosophila melanogaster responds behaviorally to sound, gravity, and wind. Exposure to male courtship songs results in reduced locomotion in females, whereas males begin to chase each other. When agitated, fruit flies tend to move against gravity. When faced with air currents, they ‘freeze’ in place. Based on recent studies, Johnston’s hearing organ, the antennal ear of the fruit fly, serves as a sensor for all of these mechanosensory stimuli. Compartmentalization of sense cells in Johnston’s organ into vibration-sensitive and deflection-sensitive neural groups allows this single organ to mediate such varied functions. Sound and gravity/wind signals sensed by these two neuronal groups travel in parallel from the fly ear to the brain, feeding into neural pathways reminiscent of the auditory and vestibular pathways in the human brain. Studies of the similarities between mammals and flies will lead to a better understanding of the principles of how sound and gravity information is encoded in the brain. Here, we review recent advances in our understanding of these principles and discuss the advantages of the fruit fly as a model system to explore the fundamental principles of how neural circuits and their ensembles process and integrate sensory information in the brain.
0
Journal of Comparative Physiology A
11752758
10.1007/S00360-013-0748-1
11,752,758
A review of the thermal sensitivity of the mechanics of vertebrate skeletal muscle
Environmental temperature varies spatially and temporally, affecting many aspects of an organism’s biology. In ectotherms, variation in environmental temperature can cause parallel changes in skeletal muscle temperature, potentially leading to significant alterations in muscle performance. Endotherms can also undergo meaningful changes in skeletal muscle temperature that can affect muscle performance. Alterations in skeletal muscle temperature can affect contractile performance in both endotherms and ectotherms, changing the rates of force generation and relaxation, shortening velocity, and consequently mechanical power. Such alterations in the mechanical performance of skeletal muscle can in turn affect locomotory performance and behaviour. For instance, as temperature increases, a consequent improvement in limb muscle performance causes some lizard species to be more likely to flee from a potential predator. However, at lower temperatures, they are much more likely to stand their ground, show threatening displays and even bite. There is no consistent pattern in reported effects of temperature on skeletal muscle fatigue resistance. This review focuses on the effects of temperature variation on skeletal muscle performance in vertebrates, and investigates the thermal sensitivity of different mechanical measures of skeletal muscle performance. The plasticity of thermal sensitivity in skeletal muscle performance has been reviewed to investigate the extent to which individuals can acclimate to chronic changes in their thermal environment. The effects of thermal sensitivity of muscle performance are placed in a wider context by relating thermal sensitivity of skeletal muscle performance to aspects of vertebrate species distribution.
0
Journal of Comparative Physiology B
13890164
10.1007/S00359-013-0802-1
13,890,164
Ecomorphology of eye shape and retinal topography in waterfowl (Aves: Anseriformes: Anatidae) with different foraging modes
Despite the large body of literature on ecomorphological adaptations to foraging in waterfowl, little attention has been paid to their sensory systems, especially vision. Here, we compare eye shape and retinal topography across 12 species representing 4 different foraging modes. Eye shape was significantly different among foraging modes, with diving and pursuit-diving species having relatively smaller corneal diameters compared to non-diving species. This may be associated with differences in ambient light intensity while foraging or an ability to tightly constrict the pupil in divers in order to facilitate underwater vision. Retinal topography was similar across all species, consisting of an oblique visual streak, a central area of peak cell density, and no discernible fovea. Because the bill faces downwards when the head is held in the normal posture in waterfowl, the visual streak will be held horizontally, allowing the horizon to be sampled with higher visual acuity. Estimates of spatial resolving power were similar among species with only the Canada goose having a higher spatial resolution. Overall, we found no evidence of ecomorphological adaptations to different foraging modes in the retinal ganglion cell layer in waterfowl. Rather, retinal topography in these birds seems to reflect the ‘openness’ of their habitats.
0
Journal of Comparative Physiology A
14574103
10.1007/S00359-013-0804-Z
14,574,103
Serotonin precursor (5-hydroxytryptophan) causes substantial changes in the fighting behavior of male crickets, Gryllus bimaculatus
This study demonstrates that injection of the serotonin precursor 5-HTP causes substantial changes in the behavioral state, fighting behavior and ability to establish winner–loser relationships in male crickets (Gryllus bimaculatus). The characteristic features of 5-HTP-treated crickets include an elevated posture, enhanced general activity, longer duration of fighting, enhanced rival singing and a decreased ability to produce a clear fight loser. In addition, 5-HTP-treated males showed a slightly delayed latency to spread their mandibles, a decreased number of attacks and an equal potential to win in comparison to controls (physiological solution-treated males). The obtained results imply a significant role for serotonin in the regulation of social status-related behaviors in G. bimaculatus. Specifically, these data indicate that a decrease in serotonergic activity may be functionally important for the control of loser behavior and that some behavioral features of dominant male crickets are likely to be connected with the activation of the serotonergic system.
0
Journal of Comparative Physiology A
17576423
10.1007/S00360-013-0747-2
17,576,423
Does low daily energy expenditure drive low metabolic capacity in the tropical robin, Turdus grayi?
Temperate and tropical birds possess divergent life history strategies. Physiological parameters including energy metabolism correlate with the life history such that tropical species with a slower ‘pace of life’ have lower resting and maximal metabolic rates than temperate congeners. To better understand the physiological mechanisms underlying these differences, we investigated the relationship of metabolic capacity, muscle oxidative capacity and activity patterns to variation in life history patterns in American robins (Turdus migratorius), while resident in central North America and Clay-colored robins (Turdus grayi) resident in Panama. We measured summit metabolism $$ \left( {\dot{V}{\text{O}_{2\text{summit}}}} \right) $$ in birds from both tropical and temperate habitats and found that the temperate robins have a 60 % higher metabolic capacity. We also measured the field metabolic rate (FMR) of free-living birds using heart rate (HR) telemetry and found that temperate robins’ daily energy expenditure was also 60 % higher. Thus, $$\dot{V}{\text{O}_{2\text{summit}}} $$ and FMR both reflect life history differences between the species. Further, both species operate at a nearly identical ~50 % of their thermogenic capacity throughout a given day. As a potential mechanism to explain differences in activity and metabolic capacity, we ask whether oxidative properties of flight muscle are altered in accordance with life history variation and found minimal differences in oxidative capacity of skeletal muscle. These data demonstrate a close relationship between thermogenic capacity and daily activity in free-living birds. Further, they suggest that the slow pace of life in tropical birds may be related to the maintenance of low activity rather than functional capacity of the muscle tissue.
0
Journal of Comparative Physiology B