hip
stringlengths
140
3.32k
cuda
stringlengths
84
3.33k
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/ceil_op.h" #include "caffe2/utils/math.h" namespace caffe2 { template <typename T> __global__ void CeilKernel(const int N, const T* X, T* Y) { HIP_1D_KERNEL_LOOP(i, N) { Y[i] = ::ceil(X[i]); } } template <> bool CeilOp<float, HIPContext>::RunOnDevice() { auto& X = Input(0); CAFFE_ENFORCE_GT(X.numel(), 0); auto* Y = Output(0, X.sizes(), at::dtype<float>()); hipLaunchKernelGGL(( CeilKernel), dim3(CAFFE_GET_BLOCKS(X.numel())), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), X.numel(), X.data<float>(), Y->template mutable_data<float>()); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR(Ceil, CeilOp<float, HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/ceil_op.h" #include "caffe2/utils/math.h" namespace caffe2 { template <typename T> __global__ void CeilKernel(const int N, const T* X, T* Y) { CUDA_1D_KERNEL_LOOP(i, N) { Y[i] = std::ceil(X[i]); } } template <> bool CeilOp<float, CUDAContext>::RunOnDevice() { auto& X = Input(0); CAFFE_ENFORCE_GT(X.numel(), 0); auto* Y = Output(0, X.sizes(), at::dtype<float>()); CeilKernel<<< CAFFE_GET_BLOCKS(X.numel()), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( X.numel(), X.data<float>(), Y->template mutable_data<float>()); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR(Ceil, CeilOp<float, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/clip_op.h" namespace caffe2 { namespace { template <typename T> __device__ T hip_min(T x, T y); template <typename T> __device__ T hip_max(T x, T y); template <> __device__ float hip_min(float x, float y) { return fminf(x, y); } template <> __device__ float hip_max(float x, float y) { return fmaxf(x, y); } // Disabled since we don't use it right now. /* template <> __device__ double hip_min(double x, double y) { return fmin(x, y); } template <> __device__ double hip_max(double x, double y) { return fmax(x, y); } */ template <typename T> __global__ void ClipKernel(const int N, const T minval, const T maxval, const T* X, T* Y) { HIP_1D_KERNEL_LOOP(i, N) { Y[i] = hip_min<T>(hip_max<T>(X[i], minval), maxval); } } template <typename T> __global__ void ClipGradientKernel(const int N, const T minval, const T maxval, const T* Y, const T* dY, T* dX) { HIP_1D_KERNEL_LOOP(i, N) { dX[i] = dY[i] * (Y[i] > minval && Y[i] < maxval); } } } // namespace template <> bool ClipOp<float, HIPContext>::RunOnDevice() { auto& X = Input(0); CAFFE_ENFORCE_GE(X.numel(), 0); auto* Y = Output(0, X.sizes(), at::dtype<float>()); hipLaunchKernelGGL(( ClipKernel), dim3(CAFFE_GET_BLOCKS(X.numel())), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), X.numel(), min_, max_, X.data<float>(), Y->template mutable_data<float>()); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } template <> bool ClipGradientOp<float, HIPContext>::RunOnDevice() { auto& Y = Input(0); auto& dY = Input(1); CAFFE_ENFORCE_GE(Y.numel(), 0); CAFFE_ENFORCE_EQ(dY.numel(), Y.numel()); auto* dX = Output(0, Y.sizes(), at::dtype<float>()); hipLaunchKernelGGL(( ClipGradientKernel), dim3(CAFFE_GET_BLOCKS(Y.numel())), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), Y.numel(), min_, max_, Y.data<float>(), dY.data<float>(), dX->template mutable_data<float>()); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR(Clip, ClipOp<float, HIPContext>); REGISTER_HIP_OPERATOR(ClipGradient, ClipGradientOp<float, HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/clip_op.h" namespace caffe2 { namespace { template <typename T> __device__ T cuda_min(T x, T y); template <typename T> __device__ T cuda_max(T x, T y); template <> __device__ float cuda_min(float x, float y) { return fminf(x, y); } template <> __device__ float cuda_max(float x, float y) { return fmaxf(x, y); } // Disabled since we don't use it right now. /* template <> __device__ double cuda_min(double x, double y) { return fmin(x, y); } template <> __device__ double cuda_max(double x, double y) { return fmax(x, y); } */ template <typename T> __global__ void ClipKernel(const int N, const T minval, const T maxval, const T* X, T* Y) { CUDA_1D_KERNEL_LOOP(i, N) { Y[i] = cuda_min<T>(cuda_max<T>(X[i], minval), maxval); } } template <typename T> __global__ void ClipGradientKernel(const int N, const T minval, const T maxval, const T* Y, const T* dY, T* dX) { CUDA_1D_KERNEL_LOOP(i, N) { dX[i] = dY[i] * (Y[i] > minval && Y[i] < maxval); } } } // namespace template <> bool ClipOp<float, CUDAContext>::RunOnDevice() { auto& X = Input(0); CAFFE_ENFORCE_GE(X.numel(), 0); auto* Y = Output(0, X.sizes(), at::dtype<float>()); ClipKernel<<< CAFFE_GET_BLOCKS(X.numel()), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( X.numel(), min_, max_, X.data<float>(), Y->template mutable_data<float>()); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } template <> bool ClipGradientOp<float, CUDAContext>::RunOnDevice() { auto& Y = Input(0); auto& dY = Input(1); CAFFE_ENFORCE_GE(Y.numel(), 0); CAFFE_ENFORCE_EQ(dY.numel(), Y.numel()); auto* dX = Output(0, Y.sizes(), at::dtype<float>()); ClipGradientKernel<<< CAFFE_GET_BLOCKS(Y.numel()), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( Y.numel(), min_, max_, Y.data<float>(), dY.data<float>(), dX->template mutable_data<float>()); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR(Clip, ClipOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(ClipGradient, ClipGradientOp<float, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/core/operator.h" #include "caffe2/operators/no_default_engine_op.h" namespace caffe2 { // Communication operators do not have default engines. REGISTER_HIP_OPERATOR(CreateCommonWorld, NoDefaultEngineOp<HIPContext>); REGISTER_HIP_OPERATOR(CloneCommonWorld, NoDefaultEngineOp<HIPContext>); REGISTER_HIP_OPERATOR(Broadcast, NoDefaultEngineOp<HIPContext>); REGISTER_HIP_OPERATOR(Reduce, NoDefaultEngineOp<HIPContext>); REGISTER_HIP_OPERATOR(Allgather, NoDefaultEngineOp<HIPContext>); REGISTER_HIP_OPERATOR(Allreduce, NoDefaultEngineOp<HIPContext>); REGISTER_HIP_OPERATOR(SendTensor, NoDefaultEngineOp<HIPContext>); REGISTER_HIP_OPERATOR(ReceiveTensor, NoDefaultEngineOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/core/operator.h" #include "caffe2/operators/no_default_engine_op.h" namespace caffe2 { // Communication operators do not have default engines. REGISTER_CUDA_OPERATOR(CreateCommonWorld, NoDefaultEngineOp<CUDAContext>); REGISTER_CUDA_OPERATOR(CloneCommonWorld, NoDefaultEngineOp<CUDAContext>); REGISTER_CUDA_OPERATOR(Broadcast, NoDefaultEngineOp<CUDAContext>); REGISTER_CUDA_OPERATOR(Reduce, NoDefaultEngineOp<CUDAContext>); REGISTER_CUDA_OPERATOR(Allgather, NoDefaultEngineOp<CUDAContext>); REGISTER_CUDA_OPERATOR(Allreduce, NoDefaultEngineOp<CUDAContext>); REGISTER_CUDA_OPERATOR(SendTensor, NoDefaultEngineOp<CUDAContext>); REGISTER_CUDA_OPERATOR(ReceiveTensor, NoDefaultEngineOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/concat_split_op.h" namespace caffe2 { REGISTER_HIP_OPERATOR(Split, SplitOp<HIPContext>); REGISTER_HIP_OPERATOR(Concat, ConcatOp<HIPContext>); // Backward compatibility settings REGISTER_HIP_OPERATOR(DepthSplit, SplitOp<HIPContext>); REGISTER_HIP_OPERATOR(DepthConcat, ConcatOp<HIPContext>); REGISTER_HIP_OPERATOR(SplitByLengths, SplitByLengthsOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/concat_split_op.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(Split, SplitOp<CUDAContext>); REGISTER_CUDA_OPERATOR(Concat, ConcatOp<CUDAContext>); // Backward compatibility settings REGISTER_CUDA_OPERATOR(DepthSplit, SplitOp<CUDAContext>); REGISTER_CUDA_OPERATOR(DepthConcat, ConcatOp<CUDAContext>); REGISTER_CUDA_OPERATOR(SplitByLengths, SplitByLengthsOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/operators/conv_op.h" #include "caffe2/operators/conv_op_impl.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { REGISTER_HIP_OPERATOR(Conv, ConvOp<float, HIPContext>); REGISTER_HIP_OPERATOR(ConvGradient, ConvGradientOp<float, HIPContext>); REGISTER_HIP_OPERATOR(Conv1D, ConvOp<float, HIPContext>); REGISTER_HIP_OPERATOR(Conv1DGradient, ConvGradientOp<float, HIPContext>); REGISTER_HIP_OPERATOR(Conv2D, ConvOp<float, HIPContext>); REGISTER_HIP_OPERATOR(Conv2DGradient, ConvGradientOp<float, HIPContext>); REGISTER_HIP_OPERATOR(Conv3D, ConvOp<float, HIPContext>); REGISTER_HIP_OPERATOR(Conv3DGradient, ConvGradientOp<float, HIPContext>); } // namespace caffe2 ###
#include "caffe2/operators/conv_op.h" #include "caffe2/operators/conv_op_impl.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(Conv, ConvOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(ConvGradient, ConvGradientOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(Conv1D, ConvOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(Conv1DGradient, ConvGradientOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(Conv2D, ConvOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(Conv2DGradient, ConvGradientOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(Conv3D, ConvOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(Conv3DGradient, ConvGradientOp<float, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/conv_op_shared.h" namespace caffe2 { template <> void createSharedBuffer<HIPContext>(Workspace* ws) { auto* mutexPtr = ws->CreateBlob("__CAFFE2_SHARED_CONV_BUFFER_HIP_MUTEX__") ->GetMutable<std::unique_ptr<std::mutex>>(); mutexPtr->reset(new std::mutex()); ws->CreateBlob("__CAFFE2_SHARED_CONV_BUFFER_HIP__"); } template <> void runWithSharedBuffer<HIPContext>( Workspace* ws, std::function<void(Tensor* buffer)> f) { auto* mutexBlob = ws->GetBlob("__CAFFE2_SHARED_CONV_BUFFER_HIP_MUTEX__"); CAFFE_ENFORCE(mutexBlob, "Must call createSharedBuffer() first"); auto* mutexPtr = mutexBlob->GetMutable<std::unique_ptr<std::mutex>>(); std::lock_guard<std::mutex> g(**mutexPtr); auto* buffer = BlobGetMutableTensor( ws->GetBlob("__CAFFE2_SHARED_CONV_BUFFER_HIP__"), HIP); f(buffer); } } ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/conv_op_shared.h" namespace caffe2 { template <> void createSharedBuffer<CUDAContext>(Workspace* ws) { auto* mutexPtr = ws->CreateBlob("__CAFFE2_SHARED_CONV_BUFFER_CUDA_MUTEX__") ->GetMutable<std::unique_ptr<std::mutex>>(); mutexPtr->reset(new std::mutex()); ws->CreateBlob("__CAFFE2_SHARED_CONV_BUFFER_CUDA__"); } template <> void runWithSharedBuffer<CUDAContext>( Workspace* ws, std::function<void(Tensor* buffer)> f) { auto* mutexBlob = ws->GetBlob("__CAFFE2_SHARED_CONV_BUFFER_CUDA_MUTEX__"); CAFFE_ENFORCE(mutexBlob, "Must call createSharedBuffer() first"); auto* mutexPtr = mutexBlob->GetMutable<std::unique_ptr<std::mutex>>(); std::lock_guard<std::mutex> g(**mutexPtr); auto* buffer = BlobGetMutableTensor( ws->GetBlob("__CAFFE2_SHARED_CONV_BUFFER_CUDA__"), CUDA); f(buffer); } } ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/conv_transpose_op.h" #include "caffe2/operators/conv_transpose_op_impl.h" namespace caffe2 { REGISTER_HIP_OPERATOR(ConvTranspose, ConvTransposeOp<float, HIPContext>); REGISTER_HIP_OPERATOR( ConvTransposeGradient, ConvTransposeGradientOp<float, HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/conv_transpose_op.h" #include "caffe2/operators/conv_transpose_op_impl.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(ConvTranspose, ConvTransposeOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR( ConvTransposeGradient, ConvTransposeGradientOp<float, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/copy_op.h" namespace caffe2 { template <> class CopyOnDeviceLikeOp<HIPContext, HIPContext, HIPContext> : public Operator<HIPContext> { public: template <class... Args> explicit CopyOnDeviceLikeOp(Args&&... args) : Operator<HIPContext>(std::forward<Args>(args)...) {} USE_OPERATOR_FUNCTIONS(HIPContext); bool RunOnDevice() override { auto& input = Input(0); auto* output = OperatorBase::Output<Tensor>(0, HIP); HIPContext context(GetGPUIDForPointer(Input(1).raw_data())); output->ResizeLike(input); context.template CopyItems<HIPContext, HIPContext>( input.meta(), input.numel(), input.raw_data(), output->raw_mutable_data(input.meta())); return true; } }; // From CPU, copy it to whatever the current context REGISTER_HIP_OPERATOR( CopyFromCPUInput, CopyOp<HIPContext, HIPContext, CPUContext>); // CopyGPUToCPU and CopyCPUToGPU should both be carried out in a cuda context, // since gpu code will be involved. REGISTER_HIP_OPERATOR( CopyGPUToCPU, CopyOp<HIPContext, CPUContext, HIPContext>); REGISTER_HIP_OPERATOR( CopyCPUToGPU, CopyOp<HIPContext, HIPContext, CPUContext>); // If we only specify Copy, we assume that it is a gpu to gpu copy - maybe // involving different GPUs. REGISTER_HIP_OPERATOR(Copy, CopyOp<HIPContext, HIPContext, HIPContext>); REGISTER_HIP_OPERATOR( CopyOnDeviceLike, CopyOnDeviceLikeOp<HIPContext, HIPContext, HIPContext>); } // namespace caffe2 using CopyGPUToCPU_HIP = caffe2:: CopyOp<caffe2::HIPContext, caffe2::CPUContext, caffe2::HIPContext>; using CopyCPUToGPU_HIP = caffe2:: CopyOp<caffe2::HIPContext, caffe2::HIPContext, caffe2::CPUContext>; C10_EXPORT_CAFFE2_OP_TO_C10_HIP(CopyGPUToCPU, CopyGPUToCPU_HIP); C10_EXPORT_CAFFE2_OP_TO_C10_CPU_KERNEL_ONLY(CopyCPUToGPU, CopyCPUToGPU_HIP); ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/copy_op.h" namespace caffe2 { template <> class CopyOnDeviceLikeOp<CUDAContext, CUDAContext, CUDAContext> : public Operator<CUDAContext> { public: template <class... Args> explicit CopyOnDeviceLikeOp(Args&&... args) : Operator<CUDAContext>(std::forward<Args>(args)...) {} USE_OPERATOR_FUNCTIONS(CUDAContext); bool RunOnDevice() override { auto& input = Input(0); auto* output = OperatorBase::Output<Tensor>(0, CUDA); CUDAContext context(GetGPUIDForPointer(Input(1).raw_data())); output->ResizeLike(input); context.template CopyItems<CUDAContext, CUDAContext>( input.meta(), input.numel(), input.raw_data(), output->raw_mutable_data(input.meta())); return true; } }; // From CPU, copy it to whatever the current context REGISTER_CUDA_OPERATOR( CopyFromCPUInput, CopyOp<CUDAContext, CUDAContext, CPUContext>); // CopyGPUToCPU and CopyCPUToGPU should both be carried out in a cuda context, // since gpu code will be involved. REGISTER_CUDA_OPERATOR( CopyGPUToCPU, CopyOp<CUDAContext, CPUContext, CUDAContext>); REGISTER_CUDA_OPERATOR( CopyCPUToGPU, CopyOp<CUDAContext, CUDAContext, CPUContext>); // If we only specify Copy, we assume that it is a gpu to gpu copy - maybe // involving different GPUs. REGISTER_CUDA_OPERATOR(Copy, CopyOp<CUDAContext, CUDAContext, CUDAContext>); REGISTER_CUDA_OPERATOR( CopyOnDeviceLike, CopyOnDeviceLikeOp<CUDAContext, CUDAContext, CUDAContext>); } // namespace caffe2 using CopyGPUToCPU_CUDA = caffe2:: CopyOp<caffe2::CUDAContext, caffe2::CPUContext, caffe2::CUDAContext>; using CopyCPUToGPU_CUDA = caffe2:: CopyOp<caffe2::CUDAContext, caffe2::CUDAContext, caffe2::CPUContext>; C10_EXPORT_CAFFE2_OP_TO_C10_CUDA(CopyGPUToCPU, CopyGPUToCPU_CUDA); C10_EXPORT_CAFFE2_OP_TO_C10_CPU_KERNEL_ONLY(CopyCPUToGPU, CopyCPUToGPU_CUDA); ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/cosh_op.h" #include <c10/util/accumulate.h> #include "caffe2/core/hip/context_gpu.h" #include <algorithm> #include <functional> namespace caffe2 { namespace { __global__ void CoshGradientHIPKernel( const int N, const float* dY, const float* X, float* dX) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 dX[i] = __ldg(dY + i) * sinhf(__ldg(X + i)); #else dX[i] = dY[i] * sinhf(X[i]); #endif } } } // namespace template <> template <typename T> bool CoshGradientFunctor<HIPContext>::Forward( const std::vector<int>& /* dY_dims */, const std::vector<int>& X_dims, const T* dY, const T* X, T* dX, HIPContext* context) const { const auto size = c10::multiply_integers(X_dims.cbegin(), X_dims.cend()); hipLaunchKernelGGL(( CoshGradientHIPKernel), dim3(CAFFE_GET_BLOCKS(size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), size, dY, X, dX); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( Cosh, UnaryElementwiseOp< TensorTypes<float>, HIPContext, CoshFunctor<HIPContext>>); REGISTER_HIP_OPERATOR( CoshGradient, BinaryElementwiseOp< TensorTypes<float>, HIPContext, CoshGradientFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/cosh_op.h" #include <c10/util/accumulate.h> #include "caffe2/core/context_gpu.h" #include <algorithm> #include <functional> namespace caffe2 { namespace { __global__ void CoshGradientCUDAKernel( const int N, const float* dY, const float* X, float* dX) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 dX[i] = __ldg(dY + i) * sinhf(__ldg(X + i)); #else dX[i] = dY[i] * sinhf(X[i]); #endif } } } // namespace template <> template <typename T> bool CoshGradientFunctor<CUDAContext>::Forward( const std::vector<int>& /* dY_dims */, const std::vector<int>& X_dims, const T* dY, const T* X, T* dX, CUDAContext* context) const { const auto size = c10::multiply_integers(X_dims.cbegin(), X_dims.cend()); CoshGradientCUDAKernel<<< CAFFE_GET_BLOCKS(size), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(size, dY, X, dX); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( Cosh, UnaryElementwiseOp< TensorTypes<float>, CUDAContext, CoshFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR( CoshGradient, BinaryElementwiseOp< TensorTypes<float>, CUDAContext, CoshGradientFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/cosine_embedding_criterion_op.h" namespace caffe2 { namespace { __global__ void CECKernel( const int N, const float* S, const int* Y, const float margin, float* output) { HIP_1D_KERNEL_LOOP(i, N) { output[i] = Y[i] == 1 ? (1. - S[i]) : fmaxf(0.f, S[i] - margin); } } __global__ void CECGradientKernel( const int N, const float* S, const int* Y, const float* dOutput, const float margin, float* dS) { HIP_1D_KERNEL_LOOP(i, N) { dS[i] = dOutput[i] * (Y[i] == 1 ? -1 : static_cast<float>(S[i] >= margin)); } } } // namespace template <> bool CosineEmbeddingCriterionOp<HIPContext>::RunOnDevice() { auto& S = Input(0); auto& Y = Input(1); CAFFE_ENFORCE(S.numel() == Y.numel(), "The embedding and label should have the same size."); auto* output = Output(0, S.sizes(), at::dtype<float>()); const float* Sdata = S.data<float>(); const int* Ydata = Y.data<int>(); float* output_data = output->template mutable_data<float>(); hipLaunchKernelGGL(( CECKernel), dim3(CAFFE_GET_BLOCKS(S.numel())), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), S.numel(), Sdata, Ydata, margin_, output_data); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } template <> bool CosineEmbeddingCriterionGradientOp<HIPContext>::RunOnDevice() { auto& S = Input(0); auto& Y = Input(1); auto& dOutput = Input(2); auto* dS = Output(0, S.sizes(), at::dtype<float>()); const float* Sdata = S.data<float>(); const int* Ydata = Y.data<int>(); const float* dOutput_data = dOutput.data<float>(); float* dSdata = dS->template mutable_data<float>(); hipLaunchKernelGGL(( CECGradientKernel), dim3(CAFFE_GET_BLOCKS(S.numel())), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), S.numel(), Sdata, Ydata, dOutput_data, margin_, dSdata); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( CosineEmbeddingCriterion, CosineEmbeddingCriterionOp<HIPContext>); REGISTER_HIP_OPERATOR( CosineEmbeddingCriterionGradient, CosineEmbeddingCriterionGradientOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/cosine_embedding_criterion_op.h" namespace caffe2 { namespace { __global__ void CECKernel( const int N, const float* S, const int* Y, const float margin, float* output) { CUDA_1D_KERNEL_LOOP(i, N) { output[i] = Y[i] == 1 ? (1. - S[i]) : fmaxf(0.f, S[i] - margin); } } __global__ void CECGradientKernel( const int N, const float* S, const int* Y, const float* dOutput, const float margin, float* dS) { CUDA_1D_KERNEL_LOOP(i, N) { dS[i] = dOutput[i] * (Y[i] == 1 ? -1 : static_cast<float>(S[i] >= margin)); } } } // namespace template <> bool CosineEmbeddingCriterionOp<CUDAContext>::RunOnDevice() { auto& S = Input(0); auto& Y = Input(1); CAFFE_ENFORCE(S.numel() == Y.numel(), "The embedding and label should have the same size."); auto* output = Output(0, S.sizes(), at::dtype<float>()); const float* Sdata = S.data<float>(); const int* Ydata = Y.data<int>(); float* output_data = output->template mutable_data<float>(); CECKernel<<<CAFFE_GET_BLOCKS(S.numel()), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( S.numel(), Sdata, Ydata, margin_, output_data); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } template <> bool CosineEmbeddingCriterionGradientOp<CUDAContext>::RunOnDevice() { auto& S = Input(0); auto& Y = Input(1); auto& dOutput = Input(2); auto* dS = Output(0, S.sizes(), at::dtype<float>()); const float* Sdata = S.data<float>(); const int* Ydata = Y.data<int>(); const float* dOutput_data = dOutput.data<float>(); float* dSdata = dS->template mutable_data<float>(); CECGradientKernel<<<CAFFE_GET_BLOCKS(S.numel()), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( S.numel(), Sdata, Ydata, dOutput_data, margin_, dSdata); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( CosineEmbeddingCriterion, CosineEmbeddingCriterionOp<CUDAContext>); REGISTER_CUDA_OPERATOR( CosineEmbeddingCriterionGradient, CosineEmbeddingCriterionGradientOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #define _USE_MATH_DEFINES #include <ATen/native/Activation.h> #include <cmath> #include <thrust/tuple.h> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/core/TensorBase.h> #include <c10/core/Scalar.h> #include <c10/hip/HIPMathCompat.h> #include <ATen/hip\ApplyGridUtils.cuh> #include <ATen/hip/detail\OffsetCalculator.cuh> #include <ATen/native/hip\Loops.cuh> namespace at::native { namespace { void hardswish_kernel(TensorIterator& iter) { AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "hardswish_hip", [&]() { using opmath_t = at::opmath_type<scalar_t>; const opmath_t zero(0.0f); const opmath_t one_sixth(1.0f / 6.0f); const opmath_t three(3.0f); const opmath_t six(6.0f); gpu_kernel(iter, [zero, one_sixth, three, six]GPU_LAMBDA(scalar_t self_val) -> scalar_t { opmath_t x = static_cast<opmath_t>(self_val); return x * ::min(::max(x + three, zero), six) * one_sixth; }); }); } void hardswish_backward_kernel(TensorIterator& iter) { AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "hardswish_backward_hip", [&]() { using opmath_t = at::opmath_type<scalar_t>; const opmath_t zero(0.0f); const opmath_t three(3.0f); const opmath_t neg_three(-3.0f); const opmath_t one_half(0.5f); gpu_kernel( iter, [zero, three, neg_three, one_half]GPU_LAMBDA(scalar_t grad_val_, scalar_t self_val_) -> scalar_t { opmath_t grad_val = static_cast<opmath_t>(grad_val_); opmath_t self_val = static_cast<opmath_t>(self_val_); if (self_val < neg_three) { return zero; } else if (self_val <= three) { return grad_val * ((self_val / three) + one_half); } else { return grad_val; } }); }); } } // namespace REGISTER_DISPATCH(hardswish_stub, &hardswish_kernel); REGISTER_DISPATCH(hardswish_backward_stub, &hardswish_backward_kernel); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #define _USE_MATH_DEFINES #include <ATen/native/Activation.h> #include <cmath> #include <thrust/tuple.h> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/core/TensorBase.h> #include <c10/core/Scalar.h> #include <c10/cuda/CUDAMathCompat.h> #include <ATen/cuda/ApplyGridUtils.cuh> #include <ATen/cuda/detail/OffsetCalculator.cuh> #include <ATen/native/cuda/Loops.cuh> namespace at::native { namespace { void hardswish_kernel(TensorIterator& iter) { AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "hardswish_cuda", [&]() { using opmath_t = at::opmath_type<scalar_t>; const opmath_t zero(0.0f); const opmath_t one_sixth(1.0f / 6.0f); const opmath_t three(3.0f); const opmath_t six(6.0f); gpu_kernel(iter, [zero, one_sixth, three, six]GPU_LAMBDA(scalar_t self_val) -> scalar_t { opmath_t x = static_cast<opmath_t>(self_val); return x * std::min(std::max(x + three, zero), six) * one_sixth; }); }); } void hardswish_backward_kernel(TensorIterator& iter) { AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "hardswish_backward_cuda", [&]() { using opmath_t = at::opmath_type<scalar_t>; const opmath_t zero(0.0f); const opmath_t three(3.0f); const opmath_t neg_three(-3.0f); const opmath_t one_half(0.5f); gpu_kernel( iter, [zero, three, neg_three, one_half]GPU_LAMBDA(scalar_t grad_val_, scalar_t self_val_) -> scalar_t { opmath_t grad_val = static_cast<opmath_t>(grad_val_); opmath_t self_val = static_cast<opmath_t>(self_val_); if (self_val < neg_three) { return zero; } else if (self_val <= three) { return grad_val * ((self_val / three) + one_half); } else { return grad_val; } }); }); } } // namespace REGISTER_DISPATCH(hardswish_stub, &hardswish_kernel); REGISTER_DISPATCH(hardswish_backward_stub, &hardswish_backward_kernel); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/hip\HIPConfig.h> #include <ATen/hip\cub.cuh> namespace at { namespace hip { namespace cub { template <typename key_t> void radix_sort_keys( const key_t* keys_in, key_t* keys_out, int64_t n, bool descending, int64_t begin_bit, int64_t end_bit) { TORCH_CHECK( n <= std::numeric_limits<int>::max(), "cub sort does not support sorting more than INT_MAX elements"); using key_t_ = typename detail::hip_type<key_t>::type; const key_t_* keys_in_ = reinterpret_cast<const key_t_*>(keys_in); key_t_* keys_out_ = reinterpret_cast<key_t_*>(keys_out); if (descending) { CUB_WRAPPER( NO_ROCM(at_hip_detail)::hipcub::DeviceRadixSort::SortKeysDescending, keys_in_, keys_out_, n, begin_bit, end_bit, c10::hip::getCurrentHIPStream()); } else { CUB_WRAPPER( NO_ROCM(at_hip_detail)::hipcub::DeviceRadixSort::SortKeys, keys_in_, keys_out_, n, begin_bit, end_bit, c10::hip::getCurrentHIPStream()); } } #define AT_INSTATIATE_CUB_TEMPLATES(scalar_t, ScalarType) \ template void radix_sort_keys( \ const scalar_t* keys_in, \ scalar_t* keys_out, \ int64_t n, \ bool descending, \ int64_t begin_bit, \ int64_t end_bit); AT_FORALL_SCALAR_TYPES_AND2(Bool, Half, AT_INSTATIATE_CUB_TEMPLATES) } // namespace cub } // namespace hip } // namespace at ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/cuda/CUDAConfig.h> #include <ATen/cuda/cub.cuh> namespace at { namespace cuda { namespace cub { template <typename key_t> void radix_sort_keys( const key_t* keys_in, key_t* keys_out, int64_t n, bool descending, int64_t begin_bit, int64_t end_bit) { TORCH_CHECK( n <= std::numeric_limits<int>::max(), "cub sort does not support sorting more than INT_MAX elements"); using key_t_ = typename detail::cuda_type<key_t>::type; const key_t_* keys_in_ = reinterpret_cast<const key_t_*>(keys_in); key_t_* keys_out_ = reinterpret_cast<key_t_*>(keys_out); if (descending) { CUB_WRAPPER( NO_ROCM(at_cuda_detail)::cub::DeviceRadixSort::SortKeysDescending, keys_in_, keys_out_, n, begin_bit, end_bit, c10::cuda::getCurrentCUDAStream()); } else { CUB_WRAPPER( NO_ROCM(at_cuda_detail)::cub::DeviceRadixSort::SortKeys, keys_in_, keys_out_, n, begin_bit, end_bit, c10::cuda::getCurrentCUDAStream()); } } #define AT_INSTATIATE_CUB_TEMPLATES(scalar_t, ScalarType) \ template void radix_sort_keys( \ const scalar_t* keys_in, \ scalar_t* keys_out, \ int64_t n, \ bool descending, \ int64_t begin_bit, \ int64_t end_bit); AT_FORALL_SCALAR_TYPES_AND2(Bool, Half, AT_INSTATIATE_CUB_TEMPLATES) } // namespace cub } // namespace cuda } // namespace at ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/cos_op.h" #include <algorithm> #include <functional> #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void CosGradientHIPKernel(const int N, const T* dY, const T* X, T* dX) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 dX[i] = -__ldg(dY + i) * sin(__ldg(X + i)); #else dX[i] = -dY[i] * sin(X[i]); #endif } } } // namespace template <> template <typename T> bool CosGradientFunctor<HIPContext>::Forward( const std::vector<int>& X_dims, const std::vector<int>& /* dY_dims */, const T* X, const T* dY, T* dX, HIPContext* context) const { const int size = std::accumulate( X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); hipLaunchKernelGGL(( CosGradientHIPKernel), dim3(CAFFE_GET_BLOCKS(size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), size, dY, X, dX); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( Cos, UnaryElementwiseOp< TensorTypes<float>, HIPContext, CosFunctor<HIPContext>>); REGISTER_HIP_OPERATOR( CosGradient, BinaryElementwiseOp< TensorTypes<float>, HIPContext, CosGradientFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/cos_op.h" #include <algorithm> #include <functional> #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void CosGradientCUDAKernel(const int N, const T* dY, const T* X, T* dX) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 dX[i] = -__ldg(dY + i) * sin(__ldg(X + i)); #else dX[i] = -dY[i] * sin(X[i]); #endif } } } // namespace template <> template <typename T> bool CosGradientFunctor<CUDAContext>::Forward( const std::vector<int>& X_dims, const std::vector<int>& /* dY_dims */, const T* X, const T* dY, T* dX, CUDAContext* context) const { const int size = std::accumulate( X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); CosGradientCUDAKernel<<< CAFFE_GET_BLOCKS(size), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(size, dY, X, dX); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( Cos, UnaryElementwiseOp< TensorTypes<float>, CUDAContext, CosFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR( CosGradient, BinaryElementwiseOp< TensorTypes<float>, CUDAContext, CosGradientFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/counter_ops.h" namespace caffe2 { REGISTER_HIP_OPERATOR(CreateCounter, CreateCounterOp<int64_t, HIPContext>); REGISTER_HIP_OPERATOR(ResetCounter, ResetCounterOp<int64_t, HIPContext>); REGISTER_HIP_OPERATOR(CountDown, CountDownOp<int64_t, HIPContext>); REGISTER_HIP_OPERATOR( CheckCounterDone, CheckCounterDoneOp<int64_t, HIPContext>); REGISTER_HIP_OPERATOR(CountUp, CountUpOp<int64_t, HIPContext>); REGISTER_HIP_OPERATOR(RetrieveCount, RetrieveCountOp<int64_t, HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/counter_ops.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(CreateCounter, CreateCounterOp<int64_t, CUDAContext>); REGISTER_CUDA_OPERATOR(ResetCounter, ResetCounterOp<int64_t, CUDAContext>); REGISTER_CUDA_OPERATOR(CountDown, CountDownOp<int64_t, CUDAContext>); REGISTER_CUDA_OPERATOR( CheckCounterDone, CheckCounterDoneOp<int64_t, CUDAContext>); REGISTER_CUDA_OPERATOR(CountUp, CountUpOp<int64_t, CUDAContext>); REGISTER_CUDA_OPERATOR(RetrieveCount, RetrieveCountOp<int64_t, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/cube_op.h" #include <algorithm> #include <functional> #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void CubeGradientHIPKernel(const int N, const T* dY, const T* X, T* dX) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 dX[i] = __ldg(dY + i) * __ldg(X + i) * __ldg(X + i) * T(3); #else dX[i] = dY[i] * X[i] * X[i] * T(3); #endif } } } // namespace template <> template <typename T> bool CubeGradientFunctor<HIPContext>::Forward( const std::vector<int>& dY_dims, const std::vector<int>& /* X_dims */, const T* dY, const T* X, T* dX, HIPContext* context) const { const int size = std::accumulate( dY_dims.cbegin(), dY_dims.cend(), 1, std::multiplies<int>()); hipLaunchKernelGGL(( CubeGradientHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), size, dY, X, dX); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( Cube, UnaryElementwiseOp<NumericTypes, HIPContext, CubeFunctor<HIPContext>>); REGISTER_HIP_OPERATOR( CubeGradient, BinaryElementwiseOp< NumericTypes, HIPContext, CubeGradientFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/cube_op.h" #include <algorithm> #include <functional> #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void CubeGradientCUDAKernel(const int N, const T* dY, const T* X, T* dX) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 dX[i] = __ldg(dY + i) * __ldg(X + i) * __ldg(X + i) * T(3); #else dX[i] = dY[i] * X[i] * X[i] * T(3); #endif } } } // namespace template <> template <typename T> bool CubeGradientFunctor<CUDAContext>::Forward( const std::vector<int>& dY_dims, const std::vector<int>& /* X_dims */, const T* dY, const T* X, T* dX, CUDAContext* context) const { const int size = std::accumulate( dY_dims.cbegin(), dY_dims.cend(), 1, std::multiplies<int>()); CubeGradientCUDAKernel<T> <<<CAFFE_GET_BLOCKS(size), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(size, dY, X, dX); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( Cube, UnaryElementwiseOp<NumericTypes, CUDAContext, CubeFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR( CubeGradient, BinaryElementwiseOp< NumericTypes, CUDAContext, CubeGradientFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/data_couple.h" namespace caffe2 { REGISTER_HIP_OPERATOR(DataCouple, DataCoupleOp<HIPContext>); } ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/data_couple.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(DataCouple, DataCoupleOp<CUDAContext>); } ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/operators/do_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { REGISTER_HIP_OPERATOR(Do, DoOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/operators/do_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(Do, DoOp<CUDAContext>); } // namespace caffe2 ###
#include "hip/hip_runtime.h" #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/dropout_op.h" namespace caffe2 { namespace { __global__ void DropoutKernel( const int N, const float ratio, const float* Xdata, float* Ydata, bool* maskdata) { const float scale = 1. / (1. - ratio); HIP_1D_KERNEL_LOOP(i, N) { maskdata[i] = (Ydata[i] > ratio); Ydata[i] = Xdata[i] * scale * maskdata[i]; } } } template <> bool DropoutOp<float, HIPContext>::RunOnDevice() { auto& X = Input(0); auto* Y = Output(0, X.sizes(), at::dtype<float>()); if (is_test_) { if (Y != &X) { context_.CopySameDevice<float>( X.numel(), X.data<float>(), Y->template mutable_data<float>()); } return true; } else { float* Ydata = Y->template mutable_data<float>(); auto* mask = Output(1, X.sizes(), at::dtype<bool>()); CAFFE_ENFORCE(X.data<float>() != Ydata, "In-place GPU dropout is broken"); HIPRAND_ENFORCE( hiprandGenerateUniform(context_.hiprand_generator(), Ydata, X.numel())); hipLaunchKernelGGL(( DropoutKernel), dim3(CAFFE_GET_BLOCKS(X.numel())), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), X.numel(), ratio_, X.data<float>(), Ydata, mask->template mutable_data<bool>()); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } } namespace { __global__ void DropoutGradientKernel( const int N, const float* dYdata, const bool* maskdata, const float scale, float* dXdata) { HIP_1D_KERNEL_LOOP(i, N) { dXdata[i] = dYdata[i] * maskdata[i] * scale; } } } template <> bool DropoutGradientOp<float, HIPContext>::RunOnDevice() { auto& dY = Input(0); auto* dX = Output(0, dY.sizes(), at::dtype<float>()); if (is_test_) { if (dX != &dY) { context_.CopySameDevice<float>( dY.numel(), dY.data<float>(), dX->template mutable_data<float>()); } return true; } else { auto& mask = Input(1); CAFFE_ENFORCE_EQ(dY.numel(), mask.numel()); const float scale = 1. / (1. - ratio_); hipLaunchKernelGGL(( DropoutGradientKernel), dim3(CAFFE_GET_BLOCKS(dY.numel())), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), dY.numel(), dY.data<float>(), mask.data<bool>(), scale, dX->template mutable_data<float>()); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } } REGISTER_HIP_OPERATOR(Dropout, DropoutOp<float, HIPContext>); REGISTER_HIP_OPERATOR(DropoutGrad, DropoutGradientOp<float, HIPContext>); } ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/dropout_op.h" namespace caffe2 { namespace { __global__ void DropoutKernel( const int N, const float ratio, const float* Xdata, float* Ydata, bool* maskdata) { const float scale = 1. / (1. - ratio); CUDA_1D_KERNEL_LOOP(i, N) { maskdata[i] = (Ydata[i] > ratio); Ydata[i] = Xdata[i] * scale * maskdata[i]; } } } template <> bool DropoutOp<float, CUDAContext>::RunOnDevice() { auto& X = Input(0); auto* Y = Output(0, X.sizes(), at::dtype<float>()); if (is_test_) { if (Y != &X) { context_.CopySameDevice<float>( X.numel(), X.data<float>(), Y->template mutable_data<float>()); } return true; } else { float* Ydata = Y->template mutable_data<float>(); auto* mask = Output(1, X.sizes(), at::dtype<bool>()); CAFFE_ENFORCE(X.data<float>() != Ydata, "In-place GPU dropout is broken"); CURAND_ENFORCE( curandGenerateUniform(context_.curand_generator(), Ydata, X.numel())); DropoutKernel<<< CAFFE_GET_BLOCKS(X.numel()), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( X.numel(), ratio_, X.data<float>(), Ydata, mask->template mutable_data<bool>()); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } } namespace { __global__ void DropoutGradientKernel( const int N, const float* dYdata, const bool* maskdata, const float scale, float* dXdata) { CUDA_1D_KERNEL_LOOP(i, N) { dXdata[i] = dYdata[i] * maskdata[i] * scale; } } } template <> bool DropoutGradientOp<float, CUDAContext>::RunOnDevice() { auto& dY = Input(0); auto* dX = Output(0, dY.sizes(), at::dtype<float>()); if (is_test_) { if (dX != &dY) { context_.CopySameDevice<float>( dY.numel(), dY.data<float>(), dX->template mutable_data<float>()); } return true; } else { auto& mask = Input(1); CAFFE_ENFORCE_EQ(dY.numel(), mask.numel()); const float scale = 1. / (1. - ratio_); DropoutGradientKernel<<< CAFFE_GET_BLOCKS(dY.numel()), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( dY.numel(), dY.data<float>(), mask.data<bool>(), scale, dX->template mutable_data<float>()); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } } REGISTER_CUDA_OPERATOR(Dropout, DropoutOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(DropoutGrad, DropoutGradientOp<float, CUDAContext>); } ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/operators/elementwise_add_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { REGISTER_HIP_OPERATOR( Add, BinaryElementwiseOp<NumericTypes, HIPContext, AddFunctor<HIPContext>>); REGISTER_HIP_OPERATOR( AddGradient, BinaryElementwiseGradientOp< NumericTypes, HIPContext, AddFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/elementwise_add_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { REGISTER_CUDA_OPERATOR( Add, BinaryElementwiseOp<NumericTypes, CUDAContext, AddFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR( AddGradient, BinaryElementwiseGradientOp< NumericTypes, CUDAContext, AddFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/operators/elementwise_op_test.h" #include "caffe2/core/hip/context_gpu.h" #include "caffe2/core/flags.h" C10_DECLARE_string(caffe_test_root); template <> void CopyVector<caffe2::HIPContext>(const int N, const bool* x, bool* y) { HIP_CHECK(hipMemcpy(y, x, N * sizeof(bool), hipMemcpyHostToDevice)); } template <> caffe2::OperatorDef CreateOperatorDef<caffe2::HIPContext>() { caffe2::OperatorDef def; def.mutable_device_option()->set_device_type(caffe2::PROTO_HIP); return def; } TEST(ElementwiseGPUTest, And) { if (!caffe2::HasHipGPU()) return; elementwiseAnd<caffe2::HIPContext>(); } TEST(ElementwiseGPUTest, Or) { if (!caffe2::HasHipGPU()) return; elementwiseOr<caffe2::HIPContext>(); } TEST(ElementwiseGPUTest, Xor) { if (!caffe2::HasHipGPU()) return; elementwiseXor<caffe2::HIPContext>(); } TEST(ElementwiseGPUTest, Not) { if (!caffe2::HasHipGPU()) return; elementwiseNot<caffe2::HIPContext>(); } ###
#include "caffe2/operators/elementwise_op_test.h" #include "caffe2/core/context_gpu.h" #include "caffe2/core/flags.h" C10_DECLARE_string(caffe_test_root); template <> void CopyVector<caffe2::CUDAContext>(const int N, const bool* x, bool* y) { CUDA_CHECK(cudaMemcpy(y, x, N * sizeof(bool), cudaMemcpyHostToDevice)); } template <> caffe2::OperatorDef CreateOperatorDef<caffe2::CUDAContext>() { caffe2::OperatorDef def; def.mutable_device_option()->set_device_type(caffe2::PROTO_CUDA); return def; } TEST(ElementwiseGPUTest, And) { if (!caffe2::HasCudaGPU()) return; elementwiseAnd<caffe2::CUDAContext>(); } TEST(ElementwiseGPUTest, Or) { if (!caffe2::HasCudaGPU()) return; elementwiseOr<caffe2::CUDAContext>(); } TEST(ElementwiseGPUTest, Xor) { if (!caffe2::HasCudaGPU()) return; elementwiseXor<caffe2::CUDAContext>(); } TEST(ElementwiseGPUTest, Not) { if (!caffe2::HasCudaGPU()) return; elementwiseNot<caffe2::CUDAContext>(); } ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/operators/elementwise_sub_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { REGISTER_HIP_OPERATOR( Sub, BinaryElementwiseOp<NumericTypes, HIPContext, SubFunctor<HIPContext>>); REGISTER_HIP_OPERATOR( SubGradient, BinaryElementwiseGradientOp< NumericTypes, HIPContext, SubFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/elementwise_sub_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { REGISTER_CUDA_OPERATOR( Sub, BinaryElementwiseOp<NumericTypes, CUDAContext, SubFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR( SubGradient, BinaryElementwiseGradientOp< NumericTypes, CUDAContext, SubFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/elu_op.h" #include <algorithm> #include <functional> #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void EluHIPKernel(const int N, const T alpha, const T* X, T* Y); template <> __global__ void EluHIPKernel<float>(const int N, const float alpha, const float* X, float* Y) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 Y[i] = __ldg(X + i) < 0 ? alpha * (expf(__ldg(X + i)) - 1.0f) : __ldg(X + i); #else Y[i] = X[i] < 0 ? alpha * (expf(X[i]) - 1.0f) : X[i]; #endif } } template <typename T> __global__ void EluGradientHIPKernel( const int N, const T alpha, const T* dY, const T* Y, T* dX) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 dX[i] = __ldg(Y + i) < 0 ? __ldg(dY + i) * (__ldg(Y + i) + alpha) : __ldg(dY + i); #else dX[i] = Y[i] < 0 ? dY[i] * (Y[i] + alpha) : dY[i]; #endif } } } // namespace template <> template <typename T> bool EluFunctor<HIPContext>:: operator()(const int N, const T* X, T* Y, HIPContext* context) const { hipLaunchKernelGGL(( EluHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(N)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), N, alpha, X, Y); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } template <> template <typename T> bool EluGradientFunctor<HIPContext>::Forward( const std::vector<int>& Y_dims, const std::vector<int>& /* dY_dims */, const T* Y, const T* dY, T* dX, HIPContext* context) const { const int size = std::accumulate( Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>()); hipLaunchKernelGGL(( EluGradientHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), size, alpha, dY, Y, dX); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( Elu, UnaryElementwiseWithArgsOp< TensorTypes<float>, HIPContext, EluFunctor<HIPContext>>); REGISTER_HIP_OPERATOR( EluGradient, BinaryElementwiseWithArgsOp< TensorTypes<float>, HIPContext, EluGradientFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/elu_op.h" #include <algorithm> #include <functional> #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void EluCUDAKernel(const int N, const T alpha, const T* X, T* Y); template <> __global__ void EluCUDAKernel<float>(const int N, const float alpha, const float* X, float* Y) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 Y[i] = __ldg(X + i) < 0 ? alpha * (expf(__ldg(X + i)) - 1.0f) : __ldg(X + i); #else Y[i] = X[i] < 0 ? alpha * (expf(X[i]) - 1.0f) : X[i]; #endif } } template <typename T> __global__ void EluGradientCUDAKernel( const int N, const T alpha, const T* dY, const T* Y, T* dX) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 dX[i] = __ldg(Y + i) < 0 ? __ldg(dY + i) * (__ldg(Y + i) + alpha) : __ldg(dY + i); #else dX[i] = Y[i] < 0 ? dY[i] * (Y[i] + alpha) : dY[i]; #endif } } } // namespace template <> template <typename T> bool EluFunctor<CUDAContext>:: operator()(const int N, const T* X, T* Y, CUDAContext* context) const { EluCUDAKernel<T> <<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(N, alpha, X, Y); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } template <> template <typename T> bool EluGradientFunctor<CUDAContext>::Forward( const std::vector<int>& Y_dims, const std::vector<int>& /* dY_dims */, const T* Y, const T* dY, T* dX, CUDAContext* context) const { const int size = std::accumulate( Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>()); EluGradientCUDAKernel<T> <<<CAFFE_GET_BLOCKS(size), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(size, alpha, dY, Y, dX); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( Elu, UnaryElementwiseWithArgsOp< TensorTypes<float>, CUDAContext, EluFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR( EluGradient, BinaryElementwiseWithArgsOp< TensorTypes<float>, CUDAContext, EluGradientFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #define _USE_MATH_DEFINES #include <ATen/native/Activation.h> #include <cmath> #include <thrust/tuple.h> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/core/TensorBase.h> #include <c10/core/Scalar.h> #include <c10/hip/HIPMathCompat.h> #include <ATen/hip\ApplyGridUtils.cuh> #include <ATen/hip/detail\OffsetCalculator.cuh> #include <ATen/native/hip\Loops.cuh> namespace at::native { namespace { void hardtanh_backward_kernel( TensorIterator& iter, const Scalar& min, const Scalar& max) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "hardtanh_backward_hip", [&]() { using opmath_t = at::opmath_type<scalar_t>; auto min_val = min.to<opmath_t>(); auto max_val = max.to<opmath_t>(); gpu_kernel( iter, [min_val, max_val] GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t { opmath_t aop = static_cast<opmath_t>(a); opmath_t bop = static_cast<opmath_t>(b); return (bop <= min_val) || (bop >= max_val) ? opmath_t(0) : aop; }); }); } } // namespace REGISTER_DISPATCH(hardtanh_backward_stub, &hardtanh_backward_kernel); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #define _USE_MATH_DEFINES #include <ATen/native/Activation.h> #include <cmath> #include <thrust/tuple.h> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/core/TensorBase.h> #include <c10/core/Scalar.h> #include <c10/cuda/CUDAMathCompat.h> #include <ATen/cuda/ApplyGridUtils.cuh> #include <ATen/cuda/detail/OffsetCalculator.cuh> #include <ATen/native/cuda/Loops.cuh> namespace at::native { namespace { void hardtanh_backward_kernel( TensorIterator& iter, const Scalar& min, const Scalar& max) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "hardtanh_backward_cuda", [&]() { using opmath_t = at::opmath_type<scalar_t>; auto min_val = min.to<opmath_t>(); auto max_val = max.to<opmath_t>(); gpu_kernel( iter, [min_val, max_val] GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t { opmath_t aop = static_cast<opmath_t>(a); opmath_t bop = static_cast<opmath_t>(b); return (bop <= min_val) || (bop >= max_val) ? opmath_t(0) : aop; }); }); } } // namespace REGISTER_DISPATCH(hardtanh_backward_stub, &hardtanh_backward_kernel); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/operators/enforce_finite_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { template <> template <typename T> bool EnforceFiniteOp<HIPContext>::DoRunWithType() { buffer_.CopyFrom(Input(0)); // sync copy EnforceOnCPU<T>(buffer_); return true; } REGISTER_HIP_OPERATOR(EnforceFinite, EnforceFiniteOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/operators/enforce_finite_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { template <> template <typename T> bool EnforceFiniteOp<CUDAContext>::DoRunWithType() { buffer_.CopyFrom(Input(0)); // sync copy EnforceOnCPU<T>(buffer_); return true; } REGISTER_CUDA_OPERATOR(EnforceFinite, EnforceFiniteOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/operators/ensure_cpu_output_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { // From HIP Context, takes either HIP or CPU tensor as input, and produce // TensorCPU REGISTER_HIP_OPERATOR(EnsureCPUOutput, EnsureCPUOutputOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/operators/ensure_cpu_output_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { // From CUDA Context, takes either CUDA or CPU tensor as input, and produce // TensorCPU REGISTER_CUDA_OPERATOR(EnsureCPUOutput, EnsureCPUOutputOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/erf_op.h" #include <algorithm> #include <functional> #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace { __global__ void ErfGradientHIPKernel( const int N, const float* dY, const float* X, float* dX) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 dX[i] = 2.0f / sqrtf(PI) * expf(-powf(__ldg(X+i), 2.0f)) * __ldg(dY + i); #else dX[i] = 2.0f / sqrtf(PI) * expf(-powf(X[i], 2.0f)) * dY[i]; #endif } } } // namespace template <> template <typename T> bool ErfGradientFunctor<HIPContext>::Forward( const std::vector<int>& X_dims, const std::vector<int>& /* dY_dims */, const T* X, const T* dY, T* dX, HIPContext* context) const { const int size = std::accumulate( X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); hipLaunchKernelGGL(( ErfGradientHIPKernel), dim3(CAFFE_GET_BLOCKS(size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), size, dY, X, dX); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( Erf, UnaryElementwiseOp< TensorTypes<float>, HIPContext, ErfFunctor<HIPContext>>); REGISTER_HIP_OPERATOR( ErfGradient, BinaryElementwiseOp< TensorTypes<float>, HIPContext, ErfGradientFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/erf_op.h" #include <algorithm> #include <functional> #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace { __global__ void ErfGradientCUDAKernel( const int N, const float* dY, const float* X, float* dX) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 dX[i] = 2.0f / sqrtf(PI) * expf(-powf(__ldg(X+i), 2.0f)) * __ldg(dY + i); #else dX[i] = 2.0f / sqrtf(PI) * expf(-powf(X[i], 2.0f)) * dY[i]; #endif } } } // namespace template <> template <typename T> bool ErfGradientFunctor<CUDAContext>::Forward( const std::vector<int>& X_dims, const std::vector<int>& /* dY_dims */, const T* X, const T* dY, T* dX, CUDAContext* context) const { const int size = std::accumulate( X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); ErfGradientCUDAKernel<<< CAFFE_GET_BLOCKS(size), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(size, dY, X, dX); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( Erf, UnaryElementwiseOp< TensorTypes<float>, CUDAContext, ErfFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR( ErfGradient, BinaryElementwiseOp< TensorTypes<float>, CUDAContext, ErfGradientFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/operators/expand_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { REGISTER_HIP_OPERATOR( Expand, ExpandOp< TensorTypes<std::int32_t, std::int64_t, float, double>, HIPContext>); REGISTER_HIP_OPERATOR( ExpandGradient, ExpandGradientOp< TensorTypes<std::int32_t, std::int64_t, float, double>, HIPContext>); } // namespace caffe2 ###
#include "caffe2/operators/expand_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { REGISTER_CUDA_OPERATOR( Expand, ExpandOp< TensorTypes<std::int32_t, std::int64_t, float, double>, CUDAContext>); REGISTER_CUDA_OPERATOR( ExpandGradient, ExpandGradientOp< TensorTypes<std::int32_t, std::int64_t, float, double>, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/expand_squeeze_dims_op.h" namespace caffe2 { REGISTER_HIP_OPERATOR(Squeeze, SqueezeOp<HIPContext>); REGISTER_HIP_OPERATOR(ExpandDims, ExpandDimsOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/expand_squeeze_dims_op.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(Squeeze, SqueezeOp<CUDAContext>); REGISTER_CUDA_OPERATOR(ExpandDims, ExpandDimsOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/operators/exp_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { REGISTER_HIP_OPERATOR( Exp, UnaryElementwiseOp< TensorTypes<float>, HIPContext, ExpFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/exp_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { REGISTER_CUDA_OPERATOR( Exp, UnaryElementwiseOp< TensorTypes<float>, CUDAContext, ExpFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <cmath> #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/filler_op.h" #include "caffe2/operators/hip/operator_fallback_gpu.h" namespace caffe2 { namespace { __global__ void FillRangeKernel(const int n, float* data) { HIP_1D_KERNEL_LOOP(index, n) { data[index] = index; } } template <typename T> __global__ void FillDiagonalKernel( const int num_diagonal_elements, const int64_t step_size, const T value, T* data) { HIP_1D_KERNEL_LOOP(index, num_diagonal_elements) { data[index * step_size] = value; } } } template <> bool RangeFillOp<float, HIPContext>::Fill(Tensor* output) { int N = output->numel(); hipLaunchKernelGGL(( FillRangeKernel), dim3(CAFFE_GET_BLOCKS(N)), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), N, output->template mutable_data<float>()); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } template <> template <typename T> bool DiagonalFillOp<HIPContext>::FillWithType(Tensor* output) { VerifyOutputShape(output); auto* data = output->template mutable_data<T>(); int size = output->numel(); // first fill everything with 0 math::Set<T, HIPContext>(size, T(0), data, &context_); T value = OperatorBase::GetSingleArgument<T>("value", 0); int64_t step_size = GetStepSize(output); int num_diagonal_elements = ceil((float)size / step_size); hipLaunchKernelGGL(( FillDiagonalKernel), dim3(CAFFE_GET_BLOCKS(num_diagonal_elements)), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), num_diagonal_elements, step_size, value, data); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR(UniformFill, UniformFillOp<float, HIPContext>); REGISTER_HIP_OPERATOR(UniformIntFill, UniformFillOp<int, HIPContext>); REGISTER_HIP_OPERATOR(ConstantFill, ConstantFillOp<HIPContext>); REGISTER_HIP_OPERATOR(DiagonalFill, DiagonalFillOp<HIPContext>); REGISTER_HIP_OPERATOR(GaussianFill, GaussianFillOp<float, HIPContext>); REGISTER_HIP_OPERATOR(XavierFill, XavierFillOp<float, HIPContext>); REGISTER_HIP_OPERATOR(MSRAFill, MSRAFillOp<float, HIPContext>); REGISTER_HIP_OPERATOR(RangeFill, RangeFillOp<float, HIPContext>); REGISTER_HIP_OPERATOR(LengthsRangeFill, GPUFallbackOp); } // namespace caffe2 ###
#include <cmath> #include "caffe2/core/context_gpu.h" #include "caffe2/operators/filler_op.h" #include "caffe2/operators/operator_fallback_gpu.h" namespace caffe2 { namespace { __global__ void FillRangeKernel(const int n, float* data) { CUDA_1D_KERNEL_LOOP(index, n) { data[index] = index; } } template <typename T> __global__ void FillDiagonalKernel( const int num_diagonal_elements, const int64_t step_size, const T value, T* data) { CUDA_1D_KERNEL_LOOP(index, num_diagonal_elements) { data[index * step_size] = value; } } } template <> bool RangeFillOp<float, CUDAContext>::Fill(Tensor* output) { int N = output->numel(); FillRangeKernel<<< CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(N, output->template mutable_data<float>()); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } template <> template <typename T> bool DiagonalFillOp<CUDAContext>::FillWithType(Tensor* output) { VerifyOutputShape(output); auto* data = output->template mutable_data<T>(); int size = output->numel(); // first fill everything with 0 math::Set<T, CUDAContext>(size, T(0), data, &context_); T value = OperatorBase::GetSingleArgument<T>("value", 0); int64_t step_size = GetStepSize(output); int num_diagonal_elements = ceil((float)size / step_size); FillDiagonalKernel<<< CAFFE_GET_BLOCKS(num_diagonal_elements), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(num_diagonal_elements, step_size, value, data); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR(UniformFill, UniformFillOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(UniformIntFill, UniformFillOp<int, CUDAContext>); REGISTER_CUDA_OPERATOR(ConstantFill, ConstantFillOp<CUDAContext>); REGISTER_CUDA_OPERATOR(DiagonalFill, DiagonalFillOp<CUDAContext>); REGISTER_CUDA_OPERATOR(GaussianFill, GaussianFillOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(XavierFill, XavierFillOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(MSRAFill, MSRAFillOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(RangeFill, RangeFillOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(LengthsRangeFill, GPUFallbackOp); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <hipcub/hipcub.hpp> #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/find_op.h" #include "caffe2/utils/cub_namespace.cuh" namespace caffe2 { template <typename T> __global__ void FindKernel( int num_needles, int idx_size, const T* idx, const T* needles, int* out, int missing_value) { int needle_idx = blockIdx.x; // One cuda block per needle T q = needles[needle_idx]; int res = (-1); for (int j = threadIdx.x; j < idx_size; j += CAFFE_HIP_NUM_THREADS) { if (idx[j] == q) { res = max(res, j); } } typedef hipcub::BlockReduce<int, CAFFE_HIP_NUM_THREADS> BlockReduce; __shared__ typename BlockReduce::TempStorage temp_storage; int min_res = BlockReduce(temp_storage).Reduce(res, hipcub::Max()); if (threadIdx.x == 0) { out[needle_idx] = min_res == (-1) ? missing_value : min_res; } } template <> template <typename T> bool FindOp<HIPContext>::DoRunWithType() { auto& idx = Input(0); auto& needles = Input(1); auto* res_indices = Output(0, needles.sizes(), at::dtype<int>()); const T* idx_data = idx.data<T>(); const T* needles_data = needles.data<T>(); int* res_data = res_indices->template mutable_data<int>(); hipLaunchKernelGGL(( FindKernel< T>), dim3(needles.numel()), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), needles.numel(), idx.numel(), idx_data, needles_data, res_data, missing_value_); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR(Find, FindOp<HIPContext>) } // namespace caffe2 ###
#include <cub/block/block_reduce.cuh> #include "caffe2/core/context_gpu.h" #include "caffe2/operators/find_op.h" #include "caffe2/utils/cub_namespace.cuh" namespace caffe2 { template <typename T> __global__ void FindKernel( int num_needles, int idx_size, const T* idx, const T* needles, int* out, int missing_value) { int needle_idx = blockIdx.x; // One cuda block per needle T q = needles[needle_idx]; int res = (-1); for (int j = threadIdx.x; j < idx_size; j += CAFFE_CUDA_NUM_THREADS) { if (idx[j] == q) { res = max(res, j); } } typedef cub::BlockReduce<int, CAFFE_CUDA_NUM_THREADS> BlockReduce; __shared__ typename BlockReduce::TempStorage temp_storage; int min_res = BlockReduce(temp_storage).Reduce(res, cub::Max()); if (threadIdx.x == 0) { out[needle_idx] = min_res == (-1) ? missing_value : min_res; } } template <> template <typename T> bool FindOp<CUDAContext>::DoRunWithType() { auto& idx = Input(0); auto& needles = Input(1); auto* res_indices = Output(0, needles.sizes(), at::dtype<int>()); const T* idx_data = idx.data<T>(); const T* needles_data = needles.data<T>(); int* res_data = res_indices->template mutable_data<int>(); FindKernel< T><<<needles.numel(), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( needles.numel(), idx.numel(), idx_data, needles_data, res_data, missing_value_); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR(Find, FindOp<CUDAContext>) } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/floor_op.h" #include "caffe2/utils/math.h" namespace caffe2 { template <typename T> __global__ void FloorKernel(const int N, const T* X, T* Y) { HIP_1D_KERNEL_LOOP(i, N) { Y[i] = ::floor(X[i]); } } template <> bool FloorOp<float, HIPContext>::RunOnDevice() { auto& X = Input(0); CAFFE_ENFORCE_GT(X.numel(), 0); auto* Y = Output(0, X.sizes(), at::dtype<float>()); hipLaunchKernelGGL(( FloorKernel), dim3(CAFFE_GET_BLOCKS(X.numel())), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), X.numel(), X.data<float>(), Y->template mutable_data<float>()); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR(Floor, FloorOp<float, HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/floor_op.h" #include "caffe2/utils/math.h" namespace caffe2 { template <typename T> __global__ void FloorKernel(const int N, const T* X, T* Y) { CUDA_1D_KERNEL_LOOP(i, N) { Y[i] = std::floor(X[i]); } } template <> bool FloorOp<float, CUDAContext>::RunOnDevice() { auto& X = Input(0); CAFFE_ENFORCE_GT(X.numel(), 0); auto* Y = Output(0, X.sizes(), at::dtype<float>()); FloorKernel<<< CAFFE_GET_BLOCKS(X.numel()), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( X.numel(), X.data<float>(), Y->template mutable_data<float>()); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR(Floor, FloorOp<float, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/free_op.h" namespace caffe2 { REGISTER_HIP_OPERATOR(Free, FreeOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/free_op.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(Free, FreeOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #define _USE_MATH_DEFINES #include <ATen/native/Activation.h> #include <cmath> #include <thrust/tuple.h> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/core/TensorBase.h> #include <c10/core/Scalar.h> #include <c10/hip/HIPMathCompat.h> #include <ATen/hip\ApplyGridUtils.cuh> #include <ATen/hip/detail\OffsetCalculator.cuh> #include <ATen/native/hip\Loops.cuh> namespace at::native { namespace { void leaky_relu_kernel(TensorIteratorBase& iter, const Scalar& negval_) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "leaky_relu_hip", [&]() { using opmath_t = at::opmath_type<scalar_t>; auto negval = negval_.to<opmath_t>(); gpu_kernel(iter, [negval] GPU_LAMBDA(scalar_t a) -> scalar_t { opmath_t aop = static_cast<opmath_t>(a); return aop > opmath_t(0) ? aop : aop * negval; }); }); } void leaky_relu_backward_kernel( TensorIteratorBase& iter, const Scalar& negval_) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "leaky_relu_backward_hip", [&]() { using opmath_t = at::opmath_type<scalar_t>; auto negval = negval_.to<opmath_t>(); gpu_kernel( iter, [negval] GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t { opmath_t aop = static_cast<opmath_t>(a); opmath_t bop = static_cast<opmath_t>(b); return aop > opmath_t(0) ? bop : bop * negval; }); }); } } // namespace REGISTER_DISPATCH(leaky_relu_stub, &leaky_relu_kernel); REGISTER_DISPATCH(leaky_relu_backward_stub, &leaky_relu_backward_kernel); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #define _USE_MATH_DEFINES #include <ATen/native/Activation.h> #include <cmath> #include <thrust/tuple.h> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/core/TensorBase.h> #include <c10/core/Scalar.h> #include <c10/cuda/CUDAMathCompat.h> #include <ATen/cuda/ApplyGridUtils.cuh> #include <ATen/cuda/detail/OffsetCalculator.cuh> #include <ATen/native/cuda/Loops.cuh> namespace at::native { namespace { void leaky_relu_kernel(TensorIteratorBase& iter, const Scalar& negval_) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "leaky_relu_cuda", [&]() { using opmath_t = at::opmath_type<scalar_t>; auto negval = negval_.to<opmath_t>(); gpu_kernel(iter, [negval] GPU_LAMBDA(scalar_t a) -> scalar_t { opmath_t aop = static_cast<opmath_t>(a); return aop > opmath_t(0) ? aop : aop * negval; }); }); } void leaky_relu_backward_kernel( TensorIteratorBase& iter, const Scalar& negval_) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "leaky_relu_backward_cuda", [&]() { using opmath_t = at::opmath_type<scalar_t>; auto negval = negval_.to<opmath_t>(); gpu_kernel( iter, [negval] GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t { opmath_t aop = static_cast<opmath_t>(a); opmath_t bop = static_cast<opmath_t>(b); return aop > opmath_t(0) ? bop : bop * negval; }); }); } } // namespace REGISTER_DISPATCH(leaky_relu_stub, &leaky_relu_kernel); REGISTER_DISPATCH(leaky_relu_backward_stub, &leaky_relu_backward_kernel); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/gather_op.h" #include "caffe2/operators/hip/gather_op.cuh" namespace caffe2 { template <> bool GatherOp<HIPContext>::RunOnDevice() { return DispatchHelper<TensorTypes<int32_t, int64_t>>::call( this, OperatorBase::Input<Tensor>(INDICES, HIP)); } template <> template <typename Index> bool GatherOp<HIPContext>::DoRunWithType() { // Use shared implementation with BatchGather return gather_helper::gather_impl_hip<Index>( this, DATA, INDICES, 0, axis_, wrap_indices_, match_outer_); } REGISTER_HIP_OPERATOR(Gather, GatherOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/gather_op.h" #include "caffe2/operators/gather_op.cuh" namespace caffe2 { template <> bool GatherOp<CUDAContext>::RunOnDevice() { return DispatchHelper<TensorTypes<int32_t, int64_t>>::call( this, OperatorBase::Input<Tensor>(INDICES, CUDA)); } template <> template <typename Index> bool GatherOp<CUDAContext>::DoRunWithType() { // Use shared implementation with BatchGather return gather_helper::gather_impl_cuda<Index>( this, DATA, INDICES, 0, axis_, wrap_indices_, match_outer_); } REGISTER_CUDA_OPERATOR(Gather, GatherOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #ifndef CAFFE2_OPERATORS_UTILS_NMS_GPU_H_ #define CAFFE2_OPERATORS_UTILS_NMS_GPU_H_ #include <vector> #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace utils { // Computes Non-Maximum Suppression on the GPU // Reject a bounding box if its region has an intersection-overunion (IoU) // overlap with a higher scoring selected bounding box larger than a // threshold. // // d_desc_sorted_boxes : pixel coordinates of proposed bounding boxes // size: (N,4), format: [x1; y1; x2; y2] // the boxes are sorted by scores in descending order // N : number of boxes // d_keep_sorted_list : row indices of the selected proposals, sorted by score // h_nkeep : number of selected proposals // dev_delete_mask, host_delete_mask : Tensors that will be used as temp storage // by NMS // Those tensors will be resized to the necessary size // context : current HIP context TORCH_API void nms_gpu_upright( const float* d_desc_sorted_boxes, const int N, const float thresh, const bool legacy_plus_one, int* d_keep_sorted_list, int* h_nkeep, TensorHIP& dev_delete_mask, TensorCPU& host_delete_mask, HIPContext* context); struct RotatedBox { float x_ctr, y_ctr, w, h, a; }; // Same as nms_gpu_upright, but for rotated boxes with angle info. // d_desc_sorted_boxes : pixel coordinates of proposed bounding boxes // size: (N,5), format: [x_ct; y_ctr; width; height; angle] // the boxes are sorted by scores in descending order TORCH_API void nms_gpu_rotated( const float* d_desc_sorted_boxes, const int N, const float thresh, int* d_keep_sorted_list, int* h_nkeep, TensorHIP& dev_delete_mask, TensorCPU& host_delete_mask, HIPContext* context); TORCH_API void nms_gpu( const float* d_desc_sorted_boxes, const int N, const float thresh, const bool legacy_plus_one, int* d_keep_sorted_list, int* h_nkeep, TensorHIP& dev_delete_mask, TensorCPU& host_delete_mask, HIPContext* context, const int box_dim); } // namespace utils } // namespace caffe2 #endif // CAFFE2_OPERATORS_UTILS_NMS_GPU_H_ ###
#ifndef CAFFE2_OPERATORS_UTILS_NMS_GPU_H_ #define CAFFE2_OPERATORS_UTILS_NMS_GPU_H_ #include <vector> #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace utils { // Computes Non-Maximum Suppression on the GPU // Reject a bounding box if its region has an intersection-overunion (IoU) // overlap with a higher scoring selected bounding box larger than a // threshold. // // d_desc_sorted_boxes : pixel coordinates of proposed bounding boxes // size: (N,4), format: [x1; y1; x2; y2] // the boxes are sorted by scores in descending order // N : number of boxes // d_keep_sorted_list : row indices of the selected proposals, sorted by score // h_nkeep : number of selected proposals // dev_delete_mask, host_delete_mask : Tensors that will be used as temp storage // by NMS // Those tensors will be resized to the necessary size // context : current CUDA context TORCH_API void nms_gpu_upright( const float* d_desc_sorted_boxes, const int N, const float thresh, const bool legacy_plus_one, int* d_keep_sorted_list, int* h_nkeep, TensorCUDA& dev_delete_mask, TensorCPU& host_delete_mask, CUDAContext* context); struct RotatedBox { float x_ctr, y_ctr, w, h, a; }; // Same as nms_gpu_upright, but for rotated boxes with angle info. // d_desc_sorted_boxes : pixel coordinates of proposed bounding boxes // size: (N,5), format: [x_ct; y_ctr; width; height; angle] // the boxes are sorted by scores in descending order TORCH_API void nms_gpu_rotated( const float* d_desc_sorted_boxes, const int N, const float thresh, int* d_keep_sorted_list, int* h_nkeep, TensorCUDA& dev_delete_mask, TensorCPU& host_delete_mask, CUDAContext* context); TORCH_API void nms_gpu( const float* d_desc_sorted_boxes, const int N, const float thresh, const bool legacy_plus_one, int* d_keep_sorted_list, int* h_nkeep, TensorCUDA& dev_delete_mask, TensorCPU& host_delete_mask, CUDAContext* context, const int box_dim); } // namespace utils } // namespace caffe2 #endif // CAFFE2_OPERATORS_UTILS_NMS_GPU_H_ ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/given_tensor_byte_string_to_uint8_fill_op.h" namespace caffe2 { REGISTER_HIP_OPERATOR( GivenTensorByteStringToUInt8Fill, GivenTensorByteStringToUInt8FillOp<HIPContext>); } ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/given_tensor_byte_string_to_uint8_fill_op.h" namespace caffe2 { REGISTER_CUDA_OPERATOR( GivenTensorByteStringToUInt8Fill, GivenTensorByteStringToUInt8FillOp<CUDAContext>); } ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/given_tensor_fill_op.h" namespace caffe2 { REGISTER_HIP_OPERATOR(GivenTensorFill, GivenTensorFillOp<float, HIPContext>); REGISTER_HIP_OPERATOR( GivenTensorDoubleFill, GivenTensorFillOp<double, HIPContext>); REGISTER_HIP_OPERATOR( GivenTensorInt16Fill, GivenTensorFillOp<int16_t, HIPContext>); REGISTER_HIP_OPERATOR(GivenTensorIntFill, GivenTensorFillOp<int, HIPContext>); REGISTER_HIP_OPERATOR( GivenTensorInt64Fill, GivenTensorFillOp<int64_t, HIPContext>); REGISTER_HIP_OPERATOR( GivenTensorBoolFill, GivenTensorFillOp<bool, HIPContext>); } ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/given_tensor_fill_op.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(GivenTensorFill, GivenTensorFillOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR( GivenTensorDoubleFill, GivenTensorFillOp<double, CUDAContext>); REGISTER_CUDA_OPERATOR( GivenTensorInt16Fill, GivenTensorFillOp<int16_t, CUDAContext>); REGISTER_CUDA_OPERATOR(GivenTensorIntFill, GivenTensorFillOp<int, CUDAContext>); REGISTER_CUDA_OPERATOR( GivenTensorInt64Fill, GivenTensorFillOp<int64_t, CUDAContext>); REGISTER_CUDA_OPERATOR( GivenTensorBoolFill, GivenTensorFillOp<bool, CUDAContext>); } ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/glu_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace { __global__ void glu_kernel( const int M, const int split_dim_size, const int N, const float* Xdata, float* Ydata) { const int xOffset = 2 * split_dim_size * N; const int yOffset = split_dim_size * N; HIP_1D_KERNEL_LOOP(index, M * split_dim_size * N) { const int i = index / split_dim_size / N; const int j = index / N % split_dim_size; const int k = index % N; const float x1 = Xdata[i * xOffset + j * N + k]; const float x2 = Xdata[i * xOffset + (j + split_dim_size) * N + k]; Ydata[i * yOffset + j * N + k] = x1 * (1. / (1. + exp(-x2))); } } } // namespace template <> void GluOp<float, HIPContext>::ComputeGlu( const int M, const int split_dim_size, const int N, const float* x_data, float* y_data) { hipLaunchKernelGGL(( glu_kernel), dim3(CAFFE_GET_BLOCKS(M * N * split_dim_size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), M, split_dim_size, N, x_data, y_data); C10_HIP_KERNEL_LAUNCH_CHECK(); } REGISTER_HIP_OPERATOR(Glu, GluOp<float, HIPContext>); } // namespace caffe2 ###
#include "caffe2/operators/glu_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace { __global__ void glu_kernel( const int M, const int split_dim_size, const int N, const float* Xdata, float* Ydata) { const int xOffset = 2 * split_dim_size * N; const int yOffset = split_dim_size * N; CUDA_1D_KERNEL_LOOP(index, M * split_dim_size * N) { const int i = index / split_dim_size / N; const int j = index / N % split_dim_size; const int k = index % N; const float x1 = Xdata[i * xOffset + j * N + k]; const float x2 = Xdata[i * xOffset + (j + split_dim_size) * N + k]; Ydata[i * yOffset + j * N + k] = x1 * (1. / (1. + exp(-x2))); } } } // namespace template <> void GluOp<float, CUDAContext>::ComputeGlu( const int M, const int split_dim_size, const int N, const float* x_data, float* y_data) { glu_kernel<<< CAFFE_GET_BLOCKS(M * N * split_dim_size), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(M, split_dim_size, N, x_data, y_data); C10_CUDA_KERNEL_LAUNCH_CHECK(); } REGISTER_CUDA_OPERATOR(Glu, GluOp<float, CUDAContext>); } // namespace caffe2 ###
#include "hip/hip_runtime.h" #include "caffe2/operators/half_float_ops.h" #include "caffe2/core/hip/context_gpu.h" #ifdef CAFFE_HAS_HIP_FP16 namespace caffe2 { namespace { __global__ void FloatToHalfKernel(const int N, const float* X, half* Y) { HIP_1D_KERNEL_LOOP(i, N) { Y[i] = __float2half(X[i]); } } __global__ void HalfToFloatKernel(const int N, const half* X, float* Y) { HIP_1D_KERNEL_LOOP(i, N) { Y[i] = __half2float(X[i]); } } } template <> bool FloatToHalfOp<HIPContext>::RunOnDevice() { auto& X = Input(0); auto* Y = Output(0, X.sizes(), at::dtype<at::Half>()); hipLaunchKernelGGL(( FloatToHalfKernel), dim3(CAFFE_GET_BLOCKS(X.numel())), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), X.numel(), X.data<float>(), reinterpret_cast<half*>(Y->template mutable_data<at::Half>())); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } template <> bool HalfToFloatOp<HIPContext>::RunOnDevice() { auto& X = Input(0); auto* Y = Output(0, X.sizes(), at::dtype<float>()); hipLaunchKernelGGL(( HalfToFloatKernel), dim3(CAFFE_GET_BLOCKS(X.numel())), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), X.numel(), reinterpret_cast<const half*>(X.data<at::Half>()), Y->template mutable_data<float>()); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } template <> bool Float16UniformFillOp<HIPContext>::RunOnDevice() { auto* output = Output(0, shape_, at::dtype<at::Half>()); at::Half* out = output->template mutable_data<at::Half>(); auto leading_dim_sz = output->size(0); CAFFE_ENFORCE_GT(leading_dim_sz, 0, "The input shape should have the first dimension greater than 0"); int rowsz = output->numel() / output->size(0); ReinitializeTensor( &temp_data_buffer_, {rowsz}, at::dtype<float>().device(HIP)); float* temp_data = temp_data_buffer_.template mutable_data<float>(); for (uint64_t i = 0; i < leading_dim_sz; i++) { math::RandUniform<float, HIPContext>( rowsz, min_, max_, temp_data, &context_); hipLaunchKernelGGL(( FloatToHalfKernel), dim3(CAFFE_GET_BLOCKS(rowsz)), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), rowsz, temp_data, reinterpret_cast<half*>(out + i * rowsz)); C10_HIP_KERNEL_LAUNCH_CHECK(); } return true; } REGISTER_HIP_OPERATOR(FloatToHalf, FloatToHalfOp<HIPContext>); REGISTER_HIP_OPERATOR(HalfToFloat, HalfToFloatOp<HIPContext>); REGISTER_HIP_OPERATOR(Float16UniformFill, Float16UniformFillOp<HIPContext>); } #endif ###
#include "caffe2/operators/half_float_ops.h" #include "caffe2/core/context_gpu.h" #ifdef CAFFE_HAS_CUDA_FP16 namespace caffe2 { namespace { __global__ void FloatToHalfKernel(const int N, const float* X, half* Y) { CUDA_1D_KERNEL_LOOP(i, N) { Y[i] = __float2half(X[i]); } } __global__ void HalfToFloatKernel(const int N, const half* X, float* Y) { CUDA_1D_KERNEL_LOOP(i, N) { Y[i] = __half2float(X[i]); } } } template <> bool FloatToHalfOp<CUDAContext>::RunOnDevice() { auto& X = Input(0); auto* Y = Output(0, X.sizes(), at::dtype<at::Half>()); FloatToHalfKernel<<< CAFFE_GET_BLOCKS(X.numel()), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( X.numel(), X.data<float>(), reinterpret_cast<half*>(Y->template mutable_data<at::Half>())); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } template <> bool HalfToFloatOp<CUDAContext>::RunOnDevice() { auto& X = Input(0); auto* Y = Output(0, X.sizes(), at::dtype<float>()); HalfToFloatKernel<<< CAFFE_GET_BLOCKS(X.numel()), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( X.numel(), reinterpret_cast<const half*>(X.data<at::Half>()), Y->template mutable_data<float>()); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } template <> bool Float16UniformFillOp<CUDAContext>::RunOnDevice() { auto* output = Output(0, shape_, at::dtype<at::Half>()); at::Half* out = output->template mutable_data<at::Half>(); auto leading_dim_sz = output->size(0); CAFFE_ENFORCE_GT(leading_dim_sz, 0, "The input shape should have the first dimension greater than 0"); int rowsz = output->numel() / output->size(0); ReinitializeTensor( &temp_data_buffer_, {rowsz}, at::dtype<float>().device(CUDA)); float* temp_data = temp_data_buffer_.template mutable_data<float>(); for (uint64_t i = 0; i < leading_dim_sz; i++) { math::RandUniform<float, CUDAContext>( rowsz, min_, max_, temp_data, &context_); FloatToHalfKernel<<< CAFFE_GET_BLOCKS(rowsz), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( rowsz, temp_data, reinterpret_cast<half*>(out + i * rowsz)); C10_CUDA_KERNEL_LAUNCH_CHECK(); } return true; } REGISTER_CUDA_OPERATOR(FloatToHalf, FloatToHalfOp<CUDAContext>); REGISTER_CUDA_OPERATOR(HalfToFloat, HalfToFloatOp<CUDAContext>); REGISTER_CUDA_OPERATOR(Float16UniformFill, Float16UniformFillOp<CUDAContext>); } #endif ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/hard_sigmoid_op.h" #include <algorithm> #include <functional> #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void HardSigmoidHIPKernel( const int N, const T alpha, const T beta, const T* X, T* Y) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 Y[i] = max(T(0), min(T(1), alpha * __ldg(X + i) + beta)); #else Y[i] = max(T(0), min(T(1), alpha * X[i] + beta)); #endif } } template <typename T> __global__ void HardSigmoidGradientHIPKernel( const int N, const T alpha, const T* dY, const T* Y, T* dX) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 dX[i] = (__ldg(Y + i) > T(0) && __ldg(Y + i) < T(1)) ? __ldg(dY + i) * alpha : T(0); #else dX[i] = (Y[i] > T(0) && Y[i] < T(1)) ? dY[i] * alpha : T(0); #endif } } } // namespace template <> template <typename T> bool HardSigmoidFunctor<HIPContext>:: operator()(const int N, const T* X, T* Y, HIPContext* context) const { hipLaunchKernelGGL(( HardSigmoidHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(N)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), N, alpha, beta, X, Y); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } template <> template <typename T> bool HardSigmoidGradientFunctor<HIPContext>::Forward( const std::vector<int>& Y_dims, const std::vector<int>& /* dY_dims */, const T* Y, const T* dY, T* dX, HIPContext* context) const { const int size = std::accumulate( Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>()); hipLaunchKernelGGL(( HardSigmoidGradientHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), size, alpha, dY, Y, dX); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( HardSigmoid, UnaryElementwiseWithArgsOp< TensorTypes<float>, HIPContext, HardSigmoidFunctor<HIPContext>>); REGISTER_HIP_OPERATOR( HardSigmoidGradient, BinaryElementwiseWithArgsOp< TensorTypes<float>, HIPContext, HardSigmoidGradientFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/hard_sigmoid_op.h" #include <algorithm> #include <functional> #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void HardSigmoidCUDAKernel( const int N, const T alpha, const T beta, const T* X, T* Y) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 Y[i] = max(T(0), min(T(1), alpha * __ldg(X + i) + beta)); #else Y[i] = max(T(0), min(T(1), alpha * X[i] + beta)); #endif } } template <typename T> __global__ void HardSigmoidGradientCUDAKernel( const int N, const T alpha, const T* dY, const T* Y, T* dX) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 dX[i] = (__ldg(Y + i) > T(0) && __ldg(Y + i) < T(1)) ? __ldg(dY + i) * alpha : T(0); #else dX[i] = (Y[i] > T(0) && Y[i] < T(1)) ? dY[i] * alpha : T(0); #endif } } } // namespace template <> template <typename T> bool HardSigmoidFunctor<CUDAContext>:: operator()(const int N, const T* X, T* Y, CUDAContext* context) const { HardSigmoidCUDAKernel<T> <<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(N, alpha, beta, X, Y); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } template <> template <typename T> bool HardSigmoidGradientFunctor<CUDAContext>::Forward( const std::vector<int>& Y_dims, const std::vector<int>& /* dY_dims */, const T* Y, const T* dY, T* dX, CUDAContext* context) const { const int size = std::accumulate( Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>()); HardSigmoidGradientCUDAKernel<T> <<<CAFFE_GET_BLOCKS(size), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(size, alpha, dY, Y, dX); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( HardSigmoid, UnaryElementwiseWithArgsOp< TensorTypes<float>, CUDAContext, HardSigmoidFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR( HardSigmoidGradient, BinaryElementwiseWithArgsOp< TensorTypes<float>, CUDAContext, HardSigmoidGradientFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/operators/if_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { REGISTER_HIP_OPERATOR(If, IfOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/operators/if_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(If, IfOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/im2col_op.h" namespace caffe2 { REGISTER_HIP_OPERATOR(Im2Col, Im2ColOp<float, HIPContext>); REGISTER_HIP_OPERATOR(Col2Im, Col2ImOp<float, HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/im2col_op.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(Im2Col, Im2ColOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(Col2Im, Col2ImOp<float, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/leaky_relu_op.h" #include "caffe2/utils/math.h" namespace caffe2 { namespace { template <typename T> __global__ void LeakyReluKernel(const int N, const T alpha, const T* X, T* Y) { HIP_1D_KERNEL_LOOP(i, N) { Y[i] = X[i] >= 0 ? X[i] : X[i] * alpha; } } template <typename T> __global__ void LeakyReluGradientKernel( const int N, const T alpha, const T* Y, const T* dY, T* dX) { HIP_1D_KERNEL_LOOP(i, N) { dX[i] = Y[i] >= 0 ? dY[i] : dY[i] * alpha; } } } // namespace template <> bool LeakyReluOp<float, HIPContext>::RunOnDevice() { const auto& X = Input(0); CAFFE_ENFORCE_GT(X.numel(), 0); auto* Y = Output(0, X.sizes(), at::dtype<float>()); hipLaunchKernelGGL(( LeakyReluKernel), dim3(CAFFE_GET_BLOCKS(X.numel())), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), X.numel(), alpha_, X.data<float>(), Y->template mutable_data<float>()); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } template <> bool LeakyReluGradientOp<float, HIPContext>::RunOnDevice() { const auto& Y = Input(0); const auto& dY = Input(1); auto* dX = Output(0, Y.sizes(), at::dtype<float>()); CAFFE_ENFORCE_EQ(Y.numel(), dY.numel()); hipLaunchKernelGGL(( LeakyReluGradientKernel), dim3(CAFFE_GET_BLOCKS(Y.numel())), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), Y.numel(), alpha_, Y.data<float>(), dY.data<float>(), dX->template mutable_data<float>()); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR(LeakyRelu, LeakyReluOp<float, HIPContext>); REGISTER_HIP_OPERATOR( LeakyReluGradient, LeakyReluGradientOp<float, HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/leaky_relu_op.h" #include "caffe2/utils/math.h" namespace caffe2 { namespace { template <typename T> __global__ void LeakyReluKernel(const int N, const T alpha, const T* X, T* Y) { CUDA_1D_KERNEL_LOOP(i, N) { Y[i] = X[i] >= 0 ? X[i] : X[i] * alpha; } } template <typename T> __global__ void LeakyReluGradientKernel( const int N, const T alpha, const T* Y, const T* dY, T* dX) { CUDA_1D_KERNEL_LOOP(i, N) { dX[i] = Y[i] >= 0 ? dY[i] : dY[i] * alpha; } } } // namespace template <> bool LeakyReluOp<float, CUDAContext>::RunOnDevice() { const auto& X = Input(0); CAFFE_ENFORCE_GT(X.numel(), 0); auto* Y = Output(0, X.sizes(), at::dtype<float>()); LeakyReluKernel<<< CAFFE_GET_BLOCKS(X.numel()), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( X.numel(), alpha_, X.data<float>(), Y->template mutable_data<float>()); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } template <> bool LeakyReluGradientOp<float, CUDAContext>::RunOnDevice() { const auto& Y = Input(0); const auto& dY = Input(1); auto* dX = Output(0, Y.sizes(), at::dtype<float>()); CAFFE_ENFORCE_EQ(Y.numel(), dY.numel()); LeakyReluGradientKernel<<< CAFFE_GET_BLOCKS(Y.numel()), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( Y.numel(), alpha_, Y.data<float>(), dY.data<float>(), dX->template mutable_data<float>()); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR(LeakyRelu, LeakyReluOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR( LeakyReluGradient, LeakyReluGradientOp<float, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #define _USE_MATH_DEFINES #include <ATen/native/Activation.h> #include <cmath> #include <thrust/tuple.h> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/core/TensorBase.h> #include <c10/core/Scalar.h> #include <c10/hip/HIPMathCompat.h> #include <ATen/hip\ApplyGridUtils.cuh> #include <ATen/hip/detail\OffsetCalculator.cuh> #include <ATen/native/hip\Loops.cuh> namespace at::native { // ----------------------------------- // log_sigmoid forward // ----------------------------------- void launch_log_sigmoid_forward_kernel(TensorIteratorBase& iter) { AT_DISPATCH_FLOATING_TYPES_AND2( kHalf, kBFloat16, iter.common_dtype(), "log_sigmoid_forward_hip", [&] { using opmath_t = at::opmath_type<scalar_t>; gpu_kernel(iter, [] GPU_LAMBDA(scalar_t in_) -> scalar_t { const opmath_t in = in_; const auto min = ::min(opmath_t(0), in); const auto z = ::exp(-std::abs(in)); return min - std::log1p(z); }); }); } namespace { // ----------------------------------- // log_sigmoid backward // ----------------------------------- void log_sigmoid_backward_kernel(TensorIterator& iter) { AT_DISPATCH_FLOATING_TYPES_AND2( kHalf, kBFloat16, iter.common_dtype(), "log_sigmoid_backward_hip", [&] { using opmath_t = at::opmath_type<scalar_t>; gpu_kernel( iter, [] GPU_LAMBDA(scalar_t in_, scalar_t grad_out_) -> scalar_t { const opmath_t in = in_; const opmath_t grad_out = grad_out_; auto in_negative = in < opmath_t(0); auto max_deriv = in_negative ? opmath_t(1) : opmath_t(0); auto sign = in_negative ? opmath_t(1) : -opmath_t(1); const auto z = ::exp(-std::abs(in)); return grad_out * (max_deriv - sign * (z / (opmath_t(1) + z))); }); }); } } // namespace REGISTER_DISPATCH(log_sigmoid_backward_stub, &log_sigmoid_backward_kernel); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #define _USE_MATH_DEFINES #include <ATen/native/Activation.h> #include <cmath> #include <thrust/tuple.h> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/core/TensorBase.h> #include <c10/core/Scalar.h> #include <c10/cuda/CUDAMathCompat.h> #include <ATen/cuda/ApplyGridUtils.cuh> #include <ATen/cuda/detail/OffsetCalculator.cuh> #include <ATen/native/cuda/Loops.cuh> namespace at::native { // ----------------------------------- // log_sigmoid forward // ----------------------------------- void launch_log_sigmoid_forward_kernel(TensorIteratorBase& iter) { AT_DISPATCH_FLOATING_TYPES_AND2( kHalf, kBFloat16, iter.common_dtype(), "log_sigmoid_forward_cuda", [&] { using opmath_t = at::opmath_type<scalar_t>; gpu_kernel(iter, [] GPU_LAMBDA(scalar_t in_) -> scalar_t { const opmath_t in = in_; const auto min = std::min(opmath_t(0), in); const auto z = std::exp(-std::abs(in)); return min - std::log1p(z); }); }); } namespace { // ----------------------------------- // log_sigmoid backward // ----------------------------------- void log_sigmoid_backward_kernel(TensorIterator& iter) { AT_DISPATCH_FLOATING_TYPES_AND2( kHalf, kBFloat16, iter.common_dtype(), "log_sigmoid_backward_cuda", [&] { using opmath_t = at::opmath_type<scalar_t>; gpu_kernel( iter, [] GPU_LAMBDA(scalar_t in_, scalar_t grad_out_) -> scalar_t { const opmath_t in = in_; const opmath_t grad_out = grad_out_; auto in_negative = in < opmath_t(0); auto max_deriv = in_negative ? opmath_t(1) : opmath_t(0); auto sign = in_negative ? opmath_t(1) : -opmath_t(1); const auto z = std::exp(-std::abs(in)); return grad_out * (max_deriv - sign * (z / (opmath_t(1) + z))); }); }); } } // namespace REGISTER_DISPATCH(log_sigmoid_backward_stub, &log_sigmoid_backward_kernel); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/operators/lengths_pad_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { REGISTER_HIP_OPERATOR(LengthsPad, LengthsPadOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/operators/lengths_pad_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(LengthsPad, LengthsPadOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/load_save_op.h" namespace caffe2 { template <> void LoadOp<HIPContext>::SetCurrentDevice(BlobProto* proto) { if (proto->has_tensor()) { proto->mutable_tensor()->clear_device_detail(); auto* device_detail = proto->mutable_tensor()->mutable_device_detail(); device_detail->set_device_type(PROTO_HIP); device_detail->set_device_id(CaffeHipGetDevice()); } } REGISTER_HIP_OPERATOR(Load, LoadOp<HIPContext>); REGISTER_HIP_OPERATOR(Save, SaveOp<HIPContext>); REGISTER_HIP_OPERATOR(Checkpoint, CheckpointOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/load_save_op.h" namespace caffe2 { template <> void LoadOp<CUDAContext>::SetCurrentDevice(BlobProto* proto) { if (proto->has_tensor()) { proto->mutable_tensor()->clear_device_detail(); auto* device_detail = proto->mutable_tensor()->mutable_device_detail(); device_detail->set_device_type(PROTO_CUDA); device_detail->set_device_id(CaffeCudaGetDevice()); } } REGISTER_CUDA_OPERATOR(Load, LoadOp<CUDAContext>); REGISTER_CUDA_OPERATOR(Save, SaveOp<CUDAContext>); REGISTER_CUDA_OPERATOR(Checkpoint, CheckpointOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/locally_connected_op.h" #include "caffe2/operators/locally_connected_op_impl.h" namespace caffe2 { REGISTER_HIP_OPERATOR(LC, LocallyConnectedOp<float, HIPContext>); REGISTER_HIP_OPERATOR( LCGradient, LocallyConnectedGradientOp<float, HIPContext>); REGISTER_HIP_OPERATOR(LC1D, LocallyConnectedOp<float, HIPContext>); REGISTER_HIP_OPERATOR( LC1DGradient, LocallyConnectedGradientOp<float, HIPContext>); REGISTER_HIP_OPERATOR(LC2D, LocallyConnectedOp<float, HIPContext>); REGISTER_HIP_OPERATOR( LC2DGradient, LocallyConnectedGradientOp<float, HIPContext>); REGISTER_HIP_OPERATOR(LC3D, LocallyConnectedOp<float, HIPContext>); REGISTER_HIP_OPERATOR( LC3DGradient, LocallyConnectedGradientOp<float, HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/locally_connected_op.h" #include "caffe2/operators/locally_connected_op_impl.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(LC, LocallyConnectedOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR( LCGradient, LocallyConnectedGradientOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(LC1D, LocallyConnectedOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR( LC1DGradient, LocallyConnectedGradientOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(LC2D, LocallyConnectedOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR( LC2DGradient, LocallyConnectedGradientOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(LC3D, LocallyConnectedOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR( LC3DGradient, LocallyConnectedGradientOp<float, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/log1p_op.h" #include <algorithm> #include <functional> #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void Log1pGradientHIPKernel(const int N, const T* dY, const T* X, T* dX) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 dX[i] = __ldg(dY + i) / (__ldg(X + i) + T(1)); #else dX[i] = dY[i] / (X[i] + T(1)); #endif } } } // namespace template <> template <typename T> bool Log1pGradientFunctor<HIPContext>::Forward( const std::vector<int>& X_dims, const std::vector<int>& /* dY_dims */, const T* X, const T* dY, T* dX, HIPContext* context) const { const int size = std::accumulate( X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); hipLaunchKernelGGL(( Log1pGradientHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), size, dY, X, dX); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( Log1p, UnaryElementwiseOp< TensorTypes<float>, HIPContext, Log1pFunctor<HIPContext>>); REGISTER_HIP_OPERATOR( Log1pGradient, BinaryElementwiseOp< TensorTypes<float>, HIPContext, Log1pGradientFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/log1p_op.h" #include <algorithm> #include <functional> #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void Log1pGradientCUDAKernel(const int N, const T* dY, const T* X, T* dX) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 dX[i] = __ldg(dY + i) / (__ldg(X + i) + T(1)); #else dX[i] = dY[i] / (X[i] + T(1)); #endif } } } // namespace template <> template <typename T> bool Log1pGradientFunctor<CUDAContext>::Forward( const std::vector<int>& X_dims, const std::vector<int>& /* dY_dims */, const T* X, const T* dY, T* dX, CUDAContext* context) const { const int size = std::accumulate( X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); Log1pGradientCUDAKernel<T> <<<CAFFE_GET_BLOCKS(size), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(size, dY, X, dX); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( Log1p, UnaryElementwiseOp< TensorTypes<float>, CUDAContext, Log1pFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR( Log1pGradient, BinaryElementwiseOp< TensorTypes<float>, CUDAContext, Log1pGradientFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/logit_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void LogitKernel(const int N, const T* X, const float eps, T* Y) { HIP_1D_KERNEL_LOOP(i, N) { Y[i] = fminf(X[i], (T(1) - eps)); Y[i] = fmaxf(Y[i], eps); Y[i] = logf(Y[i] / (T(1) - Y[i])); } } template <typename T> __global__ void LogitGradientKernel( const int N, const T* X, const T* dY, const float eps, T* dX) { HIP_1D_KERNEL_LOOP(i, N) { dX[i] = (X[i] < eps || X[i] > T(1) - eps) ? T(0) : (dY[i] / X[i] / (T(1) - X[i])); } } } // namespace template <> template <typename T> bool LogitFunctor<HIPContext>:: operator()(const int N, const T* X, T* Y, HIPContext* context) const { hipLaunchKernelGGL(( LogitKernel<T>) , dim3(CAFFE_GET_BLOCKS(N)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), N, X, eps_, Y); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } template <> bool LogitGradientOp<float, HIPContext>::RunOnDevice() { auto& X = Input(0); auto& dY = Input(1); auto* dX = Output(0); dX->ResizeLike(X); int n = X.size(); hipLaunchKernelGGL(( LogitGradientKernel), dim3(CAFFE_GET_BLOCKS(n)), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), n, X.data<float>(), dY.data<float>(), eps_, dX->template mutable_data<float>()); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( Logit, UnaryElementwiseWithArgsOp< TensorTypes<float>, HIPContext, LogitFunctor<HIPContext>>); REGISTER_HIP_OPERATOR(LogitGradient, LogitGradientOp<float, HIPContext>); } // namespace caffe2 ###
#include "caffe2/operators/logit_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void LogitKernel(const int N, const T* X, const float eps, T* Y) { CUDA_1D_KERNEL_LOOP(i, N) { Y[i] = fminf(X[i], (T(1) - eps)); Y[i] = fmaxf(Y[i], eps); Y[i] = logf(Y[i] / (T(1) - Y[i])); } } template <typename T> __global__ void LogitGradientKernel( const int N, const T* X, const T* dY, const float eps, T* dX) { CUDA_1D_KERNEL_LOOP(i, N) { dX[i] = (X[i] < eps || X[i] > T(1) - eps) ? T(0) : (dY[i] / X[i] / (T(1) - X[i])); } } } // namespace template <> template <typename T> bool LogitFunctor<CUDAContext>:: operator()(const int N, const T* X, T* Y, CUDAContext* context) const { LogitKernel<T> <<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(N, X, eps_, Y); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } template <> bool LogitGradientOp<float, CUDAContext>::RunOnDevice() { auto& X = Input(0); auto& dY = Input(1); auto* dX = Output(0); dX->ResizeLike(X); int n = X.size(); LogitGradientKernel<<< CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( n, X.data<float>(), dY.data<float>(), eps_, dX->template mutable_data<float>()); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( Logit, UnaryElementwiseWithArgsOp< TensorTypes<float>, CUDAContext, LogitFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR(LogitGradient, LogitGradientOp<float, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/operators/log_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { REGISTER_HIP_OPERATOR( Log, UnaryElementwiseOp< TensorTypes<float>, HIPContext, LogFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/log_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { REGISTER_CUDA_OPERATOR( Log, UnaryElementwiseOp< TensorTypes<float>, CUDAContext, LogFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/loss_op.h" namespace caffe2 { REGISTER_HIP_OPERATOR(AveragedLoss, AveragedLoss<float, HIPContext>); REGISTER_HIP_OPERATOR( AveragedLossGradient, AveragedLossGradient<float, HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/loss_op.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(AveragedLoss, AveragedLoss<float, CUDAContext>); REGISTER_CUDA_OPERATOR( AveragedLossGradient, AveragedLossGradient<float, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/lpnorm_op.h" #include "caffe2/operators/hip/operator_fallback_gpu.h" namespace caffe2 { REGISTER_HIP_OPERATOR(LpNorm, GPUFallbackOp); REGISTER_HIP_OPERATOR(LpNormGradient, GPUFallbackOp); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/lpnorm_op.h" #include "caffe2/operators/operator_fallback_gpu.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(LpNorm, GPUFallbackOp); REGISTER_CUDA_OPERATOR(LpNormGradient, GPUFallbackOp); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/operators/matmul_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { REGISTER_HIP_OPERATOR(MatMul, MatMulOp<float, HIPContext>); } ###
#include "caffe2/operators/matmul_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(MatMul, MatMulOp<float, CUDAContext>); } ###
// !!! This is a file automatically generated by hipify!!! #pragma once #include <cfloat> #include "caffe2/core/context.h" #include "caffe2/core/hip/context_gpu.h" #include "caffe2/core/logging.h" #include "caffe2/core/operator.h" #include "caffe2/operators/conv_pool_op_base.h" #include "caffe2/operators/pool_op.h" #include "caffe2/utils/math.h" namespace caffe2 { class MaxPoolWithIndexOp final : public ConvPoolOpBase<HIPContext> { public: USE_CONV_POOL_BASE_FUNCTIONS(HIPContext); MaxPoolWithIndexOp(const OperatorDef& operator_def, Workspace* ws) : ConvPoolOpBase<HIPContext>(operator_def, ws) {} ~MaxPoolWithIndexOp() {} template <typename T> bool DoRunWithType(); bool RunOnDevice() override; // Input: X // Output: Y, mask }; class MaxPoolWithIndexGradientOp final : public ConvPoolOpBase<HIPContext> { public: USE_CONV_POOL_BASE_FUNCTIONS(HIPContext); MaxPoolWithIndexGradientOp(const OperatorDef& operator_def, Workspace* ws) : ConvPoolOpBase<HIPContext>(operator_def, ws) {} ~MaxPoolWithIndexGradientOp() {} template <typename T> bool DoRunWithType(); bool RunOnDevice() override; // Input: X, dY, mask // Output: dX }; }; // namespace caffe2 ###
#pragma once #include <cfloat> #include "caffe2/core/context.h" #include "caffe2/core/context_gpu.h" #include "caffe2/core/logging.h" #include "caffe2/core/operator.h" #include "caffe2/operators/conv_pool_op_base.h" #include "caffe2/operators/pool_op.h" #include "caffe2/utils/math.h" namespace caffe2 { class MaxPoolWithIndexOp final : public ConvPoolOpBase<CUDAContext> { public: USE_CONV_POOL_BASE_FUNCTIONS(CUDAContext); MaxPoolWithIndexOp(const OperatorDef& operator_def, Workspace* ws) : ConvPoolOpBase<CUDAContext>(operator_def, ws) {} ~MaxPoolWithIndexOp() {} template <typename T> bool DoRunWithType(); bool RunOnDevice() override; // Input: X // Output: Y, mask }; class MaxPoolWithIndexGradientOp final : public ConvPoolOpBase<CUDAContext> { public: USE_CONV_POOL_BASE_FUNCTIONS(CUDAContext); MaxPoolWithIndexGradientOp(const OperatorDef& operator_def, Workspace* ws) : ConvPoolOpBase<CUDAContext>(operator_def, ws) {} ~MaxPoolWithIndexGradientOp() {} template <typename T> bool DoRunWithType(); bool RunOnDevice() override; // Input: X, dY, mask // Output: dX }; }; // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #define _USE_MATH_DEFINES #include <ATen/native/Activation.h> #include <cmath> #include <thrust/tuple.h> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/core/TensorBase.h> #include <c10/core/Scalar.h> #include <c10/hip/HIPMathCompat.h> #include <ATen/hip\ApplyGridUtils.cuh> #include <ATen/hip/detail\OffsetCalculator.cuh> #include <ATen/native/hip\Loops.cuh> namespace at::native { namespace { void mish_kernel(TensorIteratorBase& iter) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "mish_hip", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t x) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; const opmath_t x_acc = static_cast<opmath_t>(x); return x_acc * c10::hip::compat::tanh( c10::hip::compat::log1p(c10::hip::compat::exp(x_acc))); }); }); } void mish_backward_kernel(TensorIterator& iter) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "mish_backward_hip", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t dy, scalar_t x) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; const opmath_t dy_acc = static_cast<opmath_t>(dy); const opmath_t x_acc = static_cast<opmath_t>(x); const opmath_t s_acc = opmath_t(1) / (opmath_t(1) + c10::hip::compat::exp(-x_acc)); const opmath_t t_acc = c10::hip::compat::tanh( c10::hip::compat::log1p(c10::hip::compat::exp(x_acc))); return dy_acc * (t_acc + x_acc * s_acc * (opmath_t(1) - t_acc * t_acc)); }); }); } } // namespace REGISTER_DISPATCH(mish_stub, &mish_kernel); REGISTER_DISPATCH(mish_backward_stub, &mish_backward_kernel); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #define _USE_MATH_DEFINES #include <ATen/native/Activation.h> #include <cmath> #include <thrust/tuple.h> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/core/TensorBase.h> #include <c10/core/Scalar.h> #include <c10/cuda/CUDAMathCompat.h> #include <ATen/cuda/ApplyGridUtils.cuh> #include <ATen/cuda/detail/OffsetCalculator.cuh> #include <ATen/native/cuda/Loops.cuh> namespace at::native { namespace { void mish_kernel(TensorIteratorBase& iter) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "mish_cuda", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t x) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; const opmath_t x_acc = static_cast<opmath_t>(x); return x_acc * c10::cuda::compat::tanh( c10::cuda::compat::log1p(c10::cuda::compat::exp(x_acc))); }); }); } void mish_backward_kernel(TensorIterator& iter) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "mish_backward_cuda", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t dy, scalar_t x) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; const opmath_t dy_acc = static_cast<opmath_t>(dy); const opmath_t x_acc = static_cast<opmath_t>(x); const opmath_t s_acc = opmath_t(1) / (opmath_t(1) + c10::cuda::compat::exp(-x_acc)); const opmath_t t_acc = c10::cuda::compat::tanh( c10::cuda::compat::log1p(c10::cuda::compat::exp(x_acc))); return dy_acc * (t_acc + x_acc * s_acc * (opmath_t(1) - t_acc * t_acc)); }); }); } } // namespace REGISTER_DISPATCH(mish_stub, &mish_kernel); REGISTER_DISPATCH(mish_backward_stub, &mish_backward_kernel); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/mean_op.h" namespace caffe2 { REGISTER_HIP_OPERATOR(Mean, MeanOp<HIPContext>); REGISTER_HIP_OPERATOR(MeanGradient, MeanGradientOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/mean_op.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(Mean, MeanOp<CUDAContext>); REGISTER_CUDA_OPERATOR(MeanGradient, MeanGradientOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/core/operator.h" namespace caffe2 { namespace { class GetGPUMemoryUsageOp final : public Operator<HIPContext> { public: template<class... Args> explicit GetGPUMemoryUsageOp(Args&&... args) : Operator<HIPContext>(std::forward<Args>(args)...) {} ~GetGPUMemoryUsageOp() override {} bool RunOnDevice() override { TORCH_CHECK_EQ(InputSize(), 0); TORCH_CHECK_EQ(OutputSize(), 1); std::vector<long> total_by_gpu = HIPContext::TotalMemoryByGpu(); std::vector<long> max_by_gpu = HIPContext::MaxMemoryByGpu(); TORCH_CHECK_EQ(total_by_gpu.size(), max_by_gpu.size()); auto* stats = Output(0, {2, static_cast<int64_t>(total_by_gpu.size())}, at::dtype<long>()); context_.CopyFromCPU<long>( total_by_gpu.size(), total_by_gpu.data(), stats->template mutable_data<long>()); context_.CopyFromCPU<long>( max_by_gpu.size(), max_by_gpu.data(), stats->template mutable_data<long>() + total_by_gpu.size()); return true; } }; OPERATOR_SCHEMA(GetGPUMemoryUsage) .NumInputs(0) .NumOutputs(1) .SetDoc(R"DOC(Fetches GPU memory stats from HIPContext. Result is stored in output blob with shape (2, num_gpus). First row contains the total current memory usage, and the second row the maximum usage during this execution. NOTE: --caffe2_gpu_memory_tracking flag must be enabled to use this op. )DOC"); REGISTER_HIP_OPERATOR(GetGPUMemoryUsage, GetGPUMemoryUsageOp); } } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/core/operator.h" namespace caffe2 { namespace { class GetGPUMemoryUsageOp final : public Operator<CUDAContext> { public: template<class... Args> explicit GetGPUMemoryUsageOp(Args&&... args) : Operator<CUDAContext>(std::forward<Args>(args)...) {} ~GetGPUMemoryUsageOp() override {} bool RunOnDevice() override { TORCH_CHECK_EQ(InputSize(), 0); TORCH_CHECK_EQ(OutputSize(), 1); std::vector<long> total_by_gpu = CUDAContext::TotalMemoryByGpu(); std::vector<long> max_by_gpu = CUDAContext::MaxMemoryByGpu(); TORCH_CHECK_EQ(total_by_gpu.size(), max_by_gpu.size()); auto* stats = Output(0, {2, static_cast<int64_t>(total_by_gpu.size())}, at::dtype<long>()); context_.CopyFromCPU<long>( total_by_gpu.size(), total_by_gpu.data(), stats->template mutable_data<long>()); context_.CopyFromCPU<long>( max_by_gpu.size(), max_by_gpu.data(), stats->template mutable_data<long>() + total_by_gpu.size()); return true; } }; OPERATOR_SCHEMA(GetGPUMemoryUsage) .NumInputs(0) .NumOutputs(1) .SetDoc(R"DOC(Fetches GPU memory stats from CUDAContext. Result is stored in output blob with shape (2, num_gpus). First row contains the total current memory usage, and the second row the maximum usage during this execution. NOTE: --caffe2_gpu_memory_tracking flag must be enabled to use this op. )DOC"); REGISTER_CUDA_OPERATOR(GetGPUMemoryUsage, GetGPUMemoryUsageOp); } } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/minmax_ops.h" #include "caffe2/core/hip/context_gpu.h" #include "caffe2/utils/math.h" namespace caffe2 { namespace { template <typename T> __global__ void SelectGradientHIPKernel( const int N, const T* dY, const T* X, const T* Y, T* dX) { const int i = blockIdx.x * CAFFE_HIP_NUM_THREADS + threadIdx.x; if (i < N) { #if __HIP_ARCH__ >= 350 || defined(USE_ROCM) dX[i] = __ldg(X + i) == __ldg(Y + i) ? __ldg(dY + i) : T(0); #else dX[i] = X[i] == Y[i] ? dY[i] : T(0); #endif } } } // namespace template <> bool SelectGradientOpBase<float, HIPContext>::RunOnDevice() { const auto& Y = Input(0); const auto& dY = Input(1); const int N = Y.numel(); const int M = math::DivUp(N, CAFFE_HIP_NUM_THREADS); const float* dY_data = dY.data<float>(); const float* Y_data = Y.data<float>(); for (int i = 0; i < OutputSize(); i++) { const auto& Xi = Input(i + 2); auto* dXi = Output(i, Xi.sizes(), at::dtype<float>()); const float* Xi_data = Xi.data<float>(); float* dXi_data = dXi->mutable_data<float>(); if (N > 0) { hipLaunchKernelGGL(( SelectGradientHIPKernel<float>) , dim3(M), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), N, dY_data, Xi_data, Y_data, dXi_data); C10_HIP_KERNEL_LAUNCH_CHECK(); } } return true; } REGISTER_HIP_OPERATOR(Min, MinOp<float, HIPContext>); REGISTER_HIP_OPERATOR(MinGradient, MinGradientOp<float, HIPContext>); REGISTER_HIP_OPERATOR(Max, MaxOp<float, HIPContext>); REGISTER_HIP_OPERATOR(MaxGradient, MaxGradientOp<float, HIPContext>); } // namespace caffe2 ###
#include "caffe2/operators/minmax_ops.h" #include "caffe2/core/context_gpu.h" #include "caffe2/utils/math.h" namespace caffe2 { namespace { template <typename T> __global__ void SelectGradientCUDAKernel( const int N, const T* dY, const T* X, const T* Y, T* dX) { const int i = blockIdx.x * CAFFE_CUDA_NUM_THREADS + threadIdx.x; if (i < N) { #if __CUDA_ARCH__ >= 350 || defined(USE_ROCM) dX[i] = __ldg(X + i) == __ldg(Y + i) ? __ldg(dY + i) : T(0); #else dX[i] = X[i] == Y[i] ? dY[i] : T(0); #endif } } } // namespace template <> bool SelectGradientOpBase<float, CUDAContext>::RunOnDevice() { const auto& Y = Input(0); const auto& dY = Input(1); const int N = Y.numel(); const int M = math::DivUp(N, CAFFE_CUDA_NUM_THREADS); const float* dY_data = dY.data<float>(); const float* Y_data = Y.data<float>(); for (int i = 0; i < OutputSize(); i++) { const auto& Xi = Input(i + 2); auto* dXi = Output(i, Xi.sizes(), at::dtype<float>()); const float* Xi_data = Xi.data<float>(); float* dXi_data = dXi->mutable_data<float>(); if (N > 0) { SelectGradientCUDAKernel<float> <<<M, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( N, dY_data, Xi_data, Y_data, dXi_data); C10_CUDA_KERNEL_LAUNCH_CHECK(); } } return true; } REGISTER_CUDA_OPERATOR(Min, MinOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(MinGradient, MinGradientOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(Max, MaxOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(MaxGradient, MaxGradientOp<float, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/mod_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void ModOpSimpleKernel(const int N, const int64_t divisor_, const T* data_ptr, T* output_ptr) { HIP_1D_KERNEL_LOOP(i, N) { output_ptr[i] = data_ptr[i] % divisor_; } } template <typename T> __global__ void ModOpKernel(const int N, const int64_t divisor_, const T* data_ptr, T* output_ptr) { HIP_1D_KERNEL_LOOP(i, N) { output_ptr[i] = data_ptr[i] % divisor_; if (output_ptr[i] && ((output_ptr[i] > 0) != (divisor_ > 0))) { output_ptr[i] += divisor_; } } } } // namespace template <> template <typename T> bool ModOp<HIPContext>::DoRunWithType() { auto& data = Input(DATA); auto N = data.numel(); const auto* data_ptr = data.template data<T>(); auto* output = Output(0, data.sizes(), at::dtype<T>()); auto* output_ptr = output->template mutable_data<T>(); if (sign_follow_divisor_) { hipLaunchKernelGGL(( ModOpKernel), dim3(CAFFE_GET_BLOCKS(N)), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), N, divisor_, data_ptr, output_ptr); C10_HIP_KERNEL_LAUNCH_CHECK(); } else { hipLaunchKernelGGL(( ModOpSimpleKernel), dim3(CAFFE_GET_BLOCKS(N)), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), N, divisor_, data_ptr, output_ptr); C10_HIP_KERNEL_LAUNCH_CHECK(); } return true; } REGISTER_HIP_OPERATOR(Mod, ModOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/operators/mod_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void ModOpSimpleKernel(const int N, const int64_t divisor_, const T* data_ptr, T* output_ptr) { CUDA_1D_KERNEL_LOOP(i, N) { output_ptr[i] = data_ptr[i] % divisor_; } } template <typename T> __global__ void ModOpKernel(const int N, const int64_t divisor_, const T* data_ptr, T* output_ptr) { CUDA_1D_KERNEL_LOOP(i, N) { output_ptr[i] = data_ptr[i] % divisor_; if (output_ptr[i] && ((output_ptr[i] > 0) != (divisor_ > 0))) { output_ptr[i] += divisor_; } } } } // namespace template <> template <typename T> bool ModOp<CUDAContext>::DoRunWithType() { auto& data = Input(DATA); auto N = data.numel(); const auto* data_ptr = data.template data<T>(); auto* output = Output(0, data.sizes(), at::dtype<T>()); auto* output_ptr = output->template mutable_data<T>(); if (sign_follow_divisor_) { ModOpKernel<<< CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( N, divisor_, data_ptr, output_ptr); C10_CUDA_KERNEL_LAUNCH_CHECK(); } else { ModOpSimpleKernel<<< CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( N, divisor_, data_ptr, output_ptr); C10_CUDA_KERNEL_LAUNCH_CHECK(); } return true; } REGISTER_CUDA_OPERATOR(Mod, ModOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/multi_class_accuracy_op.h" #include "caffe2/utils/hip/GpuAtomics.cuh" #include "caffe2/utils/math.h" namespace caffe2 { namespace { __global__ void MultiClassAccuracyKernel(const int N, const int D, const float* Xdata, const int* labeldata, float* accuracies, int* amounts) { HIP_1D_KERNEL_LOOP(i, N) { float maxval = Xdata[i * D]; int maxid = 0; for (int j = 1; j < D; ++j) { if (Xdata[i * D + j] > maxval) { maxval = Xdata[i * D + j]; maxid = j; } } int labelid = labeldata[i]; if (maxid == labelid) { gpu_atomic_add(accuracies + labelid, static_cast<float>(1)); } gpu_atomic_add(amounts + labelid, static_cast<int>(1)); } } __global__ void MultiClassAccuracyDivideKernel( const int D, float* accuracies, const int* amounts) { HIP_1D_KERNEL_LOOP(i, D) { if (amounts[i]) { accuracies[i] /= amounts[i]; } } } } // namespace template <> bool MultiClassAccuracyOp<float, HIPContext>::RunOnDevice() { auto& X = Input(PREDICTION); auto& label = Input(LABEL); TORCH_DCHECK_EQ(X.dim(), 2); // amount, number of instances int N = X.dim32(0); // dimension, number of classes int D = X.dim32(1); TORCH_DCHECK_EQ(label.dim(), 1); TORCH_DCHECK_EQ(label.dim32(0), N); auto* Y0 = Output(0, {D}, at::dtype<float>()); auto* Y1 = Output(1, {D}, at::dtype<int>()); const float* Xdata = X.data<float>(); const int* labeldata = label.data<int>(); float* accuracies = Y0->template mutable_data<float>(); int* amounts = Y1->template mutable_data<int>(); math::Set<float, HIPContext>(D, 0.0, accuracies, &context_); math::Set<int, HIPContext>(D, 0, amounts, &context_); hipLaunchKernelGGL(( MultiClassAccuracyKernel), dim3(CAFFE_GET_BLOCKS(N)), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), N, D, Xdata, labeldata, accuracies, amounts); C10_HIP_KERNEL_LAUNCH_CHECK(); hipLaunchKernelGGL(( MultiClassAccuracyDivideKernel), dim3(CAFFE_GET_BLOCKS(D)), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), D, accuracies, amounts); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( MultiClassAccuracy, MultiClassAccuracyOp<float, HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/multi_class_accuracy_op.h" #include "caffe2/utils/GpuAtomics.cuh" #include "caffe2/utils/math.h" namespace caffe2 { namespace { __global__ void MultiClassAccuracyKernel(const int N, const int D, const float* Xdata, const int* labeldata, float* accuracies, int* amounts) { CUDA_1D_KERNEL_LOOP(i, N) { float maxval = Xdata[i * D]; int maxid = 0; for (int j = 1; j < D; ++j) { if (Xdata[i * D + j] > maxval) { maxval = Xdata[i * D + j]; maxid = j; } } int labelid = labeldata[i]; if (maxid == labelid) { gpu_atomic_add(accuracies + labelid, static_cast<float>(1)); } gpu_atomic_add(amounts + labelid, static_cast<int>(1)); } } __global__ void MultiClassAccuracyDivideKernel( const int D, float* accuracies, const int* amounts) { CUDA_1D_KERNEL_LOOP(i, D) { if (amounts[i]) { accuracies[i] /= amounts[i]; } } } } // namespace template <> bool MultiClassAccuracyOp<float, CUDAContext>::RunOnDevice() { auto& X = Input(PREDICTION); auto& label = Input(LABEL); TORCH_DCHECK_EQ(X.dim(), 2); // amount, number of instances int N = X.dim32(0); // dimension, number of classes int D = X.dim32(1); TORCH_DCHECK_EQ(label.dim(), 1); TORCH_DCHECK_EQ(label.dim32(0), N); auto* Y0 = Output(0, {D}, at::dtype<float>()); auto* Y1 = Output(1, {D}, at::dtype<int>()); const float* Xdata = X.data<float>(); const int* labeldata = label.data<int>(); float* accuracies = Y0->template mutable_data<float>(); int* amounts = Y1->template mutable_data<int>(); math::Set<float, CUDAContext>(D, 0.0, accuracies, &context_); math::Set<int, CUDAContext>(D, 0, amounts, &context_); MultiClassAccuracyKernel<<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( N, D, Xdata, labeldata, accuracies, amounts); C10_CUDA_KERNEL_LAUNCH_CHECK(); MultiClassAccuracyDivideKernel<<<CAFFE_GET_BLOCKS(D), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( D, accuracies, amounts); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( MultiClassAccuracy, MultiClassAccuracyOp<float, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/negate_gradient_op.h" namespace caffe2 { REGISTER_HIP_OPERATOR(NegateGradient, NegateGradientOp<HIPContext>) } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/negate_gradient_op.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(NegateGradient, NegateGradientOp<CUDAContext>) } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/operators/negative_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { REGISTER_HIP_OPERATOR( Negative, UnaryElementwiseOp< NumericTypes, HIPContext, NegativeFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/negative_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { REGISTER_CUDA_OPERATOR( Negative, UnaryElementwiseOp< NumericTypes, CUDAContext, NegativeFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <hipcub/hipcub.hpp> #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/one_hot_ops.h" #include "caffe2/utils/cub_namespace.cuh" namespace caffe2 { __global__ void OneHotOpKernel( const int64_t batch_size, const int64_t index_size, const int64_t* indices, float* output) { HIP_1D_KERNEL_LOOP(i, batch_size) { output[i * index_size + indices[i]] = 1.; } } template <> void OneHotOp<HIPContext>::DoOneHotOp( int64_t batch_size, int64_t index_size, const Tensor& indices, Tensor* output) { float* output_ptr = output->template mutable_data<float>(); math::Set<float, HIPContext>(output->numel(), 0., output_ptr, &context_); hipLaunchKernelGGL(( OneHotOpKernel), dim3(CAFFE_GET_BLOCKS(batch_size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), batch_size, index_size, indices.data<int64_t>(), output_ptr); C10_HIP_KERNEL_LAUNCH_CHECK(); } REGISTER_HIP_OPERATOR(OneHot, OneHotOp<HIPContext>); } // namespace ###
#include <cub/block/block_reduce.cuh> #include "caffe2/core/context_gpu.h" #include "caffe2/operators/one_hot_ops.h" #include "caffe2/utils/cub_namespace.cuh" namespace caffe2 { __global__ void OneHotOpKernel( const int64_t batch_size, const int64_t index_size, const int64_t* indices, float* output) { CUDA_1D_KERNEL_LOOP(i, batch_size) { output[i * index_size + indices[i]] = 1.; } } template <> void OneHotOp<CUDAContext>::DoOneHotOp( int64_t batch_size, int64_t index_size, const Tensor& indices, Tensor* output) { float* output_ptr = output->template mutable_data<float>(); math::Set<float, CUDAContext>(output->numel(), 0., output_ptr, &context_); OneHotOpKernel<<< CAFFE_GET_BLOCKS(batch_size), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( batch_size, index_size, indices.data<int64_t>(), output_ptr); C10_CUDA_KERNEL_LAUNCH_CHECK(); } REGISTER_CUDA_OPERATOR(OneHot, OneHotOp<CUDAContext>); } // namespace ###
#ifndef CAFFE2_OPERATORS_OPERATOR_FALLBACK_H_ #define CAFFE2_OPERATORS_OPERATOR_FALLBACK_H_ #include "caffe2/core/common.h" #include "caffe2/core/context.h" #include "caffe2/core/hip/context_gpu.h" #include "caffe2/core/operator.h" #include "caffe2/proto/caffe2_pb.h" namespace caffe2 { template <typename SkipOutputCopy> class GPUFallbackOpEx final : public Operator<HIPContext> { public: USE_OPERATOR_FUNCTIONS(HIPContext); explicit GPUFallbackOpEx(const OperatorDef& def, Workspace* ws) : Operator<HIPContext>(def, ws) { CAFFE_ENFORCE_EQ(def.device_option().device_type(), PROTO_HIP); OperatorDef base_def_(def); base_def_.clear_device_option(); base_def_.mutable_device_option()->set_device_type(PROTO_CPU); for (const string& name : def.input()) { local_input_blobs_.push_back(local_ws_.CreateBlob(name)); TORCH_CHECK_NOTNULL(local_input_blobs_.back()); } base_op_ = CreateOperator(base_def_, &local_ws_); for (const string& name : def.output()) { local_output_blobs_.push_back(local_ws_.GetBlob(name)); TORCH_CHECK_NOTNULL(local_output_blobs_.back()); } } bool RunOnDevice() override { for (const auto i : c10::irange(InputSize())) { if (this->InputIsTensorType(i, HIP)) { BlobGetMutableTensor(local_input_blobs_[i], CPU)->CopyFrom(Input(i)); } else { VLOG(1) << "Input " << i << " is not TensorHIP. Skipping copy."; local_input_blobs_[i]->ShareExternal( const_cast<void*>(OperatorBase::Inputs()[i]->GetRaw()), OperatorBase::Inputs()[i]->meta()); } } if (!base_op_->Run()) { LOG(ERROR) << "Base op run failed in GPUFallbackOp. Def: " << ProtoDebugString(this->debug_def()); return false; } for (const auto i : c10::irange(OutputSize())) { if (SkipOutputCopy::Contains(i)) { VLOG(1) << "Copy output: index " << i << " skipped."; continue; } CAFFE_ENFORCE( BlobIsTensorType(*local_output_blobs_[i], CPU), "GPU fallback op currently does not support non-TensorCPU " "output type who needs copying."); Output(i)->CopyFrom(local_output_blobs_[i]->template Get<TensorCPU>()); } return true; } protected: Workspace local_ws_; vector<Blob*> local_input_blobs_; vector<Blob*> local_output_blobs_; unique_ptr<OperatorBase> base_op_; }; using GPUFallbackOp = GPUFallbackOpEx<SkipIndices<>>; } #endif ###
#ifndef CAFFE2_OPERATORS_OPERATOR_FALLBACK_H_ #define CAFFE2_OPERATORS_OPERATOR_FALLBACK_H_ #include "caffe2/core/common.h" #include "caffe2/core/context.h" #include "caffe2/core/context_gpu.h" #include "caffe2/core/operator.h" #include "caffe2/proto/caffe2_pb.h" namespace caffe2 { template <typename SkipOutputCopy> class GPUFallbackOpEx final : public Operator<CUDAContext> { public: USE_OPERATOR_FUNCTIONS(CUDAContext); explicit GPUFallbackOpEx(const OperatorDef& def, Workspace* ws) : Operator<CUDAContext>(def, ws) { CAFFE_ENFORCE_EQ(def.device_option().device_type(), PROTO_CUDA); OperatorDef base_def_(def); base_def_.clear_device_option(); base_def_.mutable_device_option()->set_device_type(PROTO_CPU); for (const string& name : def.input()) { local_input_blobs_.push_back(local_ws_.CreateBlob(name)); TORCH_CHECK_NOTNULL(local_input_blobs_.back()); } base_op_ = CreateOperator(base_def_, &local_ws_); for (const string& name : def.output()) { local_output_blobs_.push_back(local_ws_.GetBlob(name)); TORCH_CHECK_NOTNULL(local_output_blobs_.back()); } } bool RunOnDevice() override { for (const auto i : c10::irange(InputSize())) { if (this->InputIsTensorType(i, CUDA)) { BlobGetMutableTensor(local_input_blobs_[i], CPU)->CopyFrom(Input(i)); } else { VLOG(1) << "Input " << i << " is not TensorCUDA. Skipping copy."; local_input_blobs_[i]->ShareExternal( const_cast<void*>(OperatorBase::Inputs()[i]->GetRaw()), OperatorBase::Inputs()[i]->meta()); } } if (!base_op_->Run()) { LOG(ERROR) << "Base op run failed in GPUFallbackOp. Def: " << ProtoDebugString(this->debug_def()); return false; } for (const auto i : c10::irange(OutputSize())) { if (SkipOutputCopy::Contains(i)) { VLOG(1) << "Copy output: index " << i << " skipped."; continue; } CAFFE_ENFORCE( BlobIsTensorType(*local_output_blobs_[i], CPU), "GPU fallback op currently does not support non-TensorCPU " "output type who needs copying."); Output(i)->CopyFrom(local_output_blobs_[i]->template Get<TensorCPU>()); } return true; } protected: Workspace local_ws_; vector<Blob*> local_input_blobs_; vector<Blob*> local_output_blobs_; unique_ptr<OperatorBase> base_op_; }; using GPUFallbackOp = GPUFallbackOpEx<SkipIndices<>>; } #endif ###
#include <iostream> #include "caffe2/core/operator.h" #include "caffe2/operators/hip/operator_fallback_gpu.h" #include <gtest/gtest.h> namespace caffe2 { class IncrementByOneOp final : public Operator<CPUContext> { public: template <class... Args> explicit IncrementByOneOp(Args&&... args) : Operator<CPUContext>(std::forward<Args>(args)...) {} bool RunOnDevice() override { const auto& in = Input(0); auto* out = Output(0, in.sizes(), at::dtype<float>()); const float* in_data = in.template data<float>(); float* out_data = out->template mutable_data<float>(); for (int i = 0; i < in.numel(); ++i) { out_data[i] = in_data[i] + 1.f; } return true; } }; OPERATOR_SCHEMA(IncrementByOne) .NumInputs(1).NumOutputs(1).AllowInplace({{0, 0}}); REGISTER_CPU_OPERATOR(IncrementByOne, IncrementByOneOp); REGISTER_HIP_OPERATOR(IncrementByOne, GPUFallbackOp); TEST(OperatorFallbackTest, IncrementByOneOp) { OperatorDef op_def = CreateOperatorDef( "IncrementByOne", "", vector<string>{"X"}, vector<string>{"X"}); Workspace ws; Tensor source_tensor(vector<int64_t>{2, 3}, CPU); for (int i = 0; i < 6; ++i) { source_tensor.mutable_data<float>()[i] = i; } BlobGetMutableTensor(ws.CreateBlob("X"), CPU)->CopyFrom(source_tensor); unique_ptr<OperatorBase> op(CreateOperator(op_def, &ws)); EXPECT_TRUE(op.get() != nullptr); EXPECT_TRUE(op->Run()); const TensorCPU& output = ws.GetBlob("X")->Get<TensorCPU>(); EXPECT_EQ(output.dim(), 2); EXPECT_EQ(output.size(0), 2); EXPECT_EQ(output.size(1), 3); for (int i = 0; i < 6; ++i) { EXPECT_EQ(output.data<float>()[i], i + 1); } } TEST(OperatorFallbackTest, GPUIncrementByOneOp) { if (!HasHipGPU()) return; OperatorDef op_def = CreateOperatorDef( "IncrementByOne", "", vector<string>{"X"}, vector<string>{"X"}); op_def.mutable_device_option()->set_device_type(PROTO_HIP); Workspace ws; Tensor source_tensor(vector<int64_t>{2, 3}, CPU); for (int i = 0; i < 6; ++i) { source_tensor.mutable_data<float>()[i] = i; } BlobGetMutableTensor(ws.CreateBlob("X"), HIP)->CopyFrom(source_tensor); unique_ptr<OperatorBase> op(CreateOperator(op_def, &ws)); EXPECT_TRUE(op.get() != nullptr); EXPECT_TRUE(op->Run()); const TensorHIP& output = ws.GetBlob("X")->Get<TensorHIP>(); Tensor output_cpu(output, CPU); EXPECT_EQ(output.dim(), 2); EXPECT_EQ(output.size(0), 2); EXPECT_EQ(output.size(1), 3); for (int i = 0; i < 6; ++i) { EXPECT_EQ(output_cpu.data<float>()[i], i + 1); } } } ###
#include <iostream> #include "caffe2/core/operator.h" #include "caffe2/operators/operator_fallback_gpu.h" #include <gtest/gtest.h> namespace caffe2 { class IncrementByOneOp final : public Operator<CPUContext> { public: template <class... Args> explicit IncrementByOneOp(Args&&... args) : Operator<CPUContext>(std::forward<Args>(args)...) {} bool RunOnDevice() override { const auto& in = Input(0); auto* out = Output(0, in.sizes(), at::dtype<float>()); const float* in_data = in.template data<float>(); float* out_data = out->template mutable_data<float>(); for (int i = 0; i < in.numel(); ++i) { out_data[i] = in_data[i] + 1.f; } return true; } }; OPERATOR_SCHEMA(IncrementByOne) .NumInputs(1).NumOutputs(1).AllowInplace({{0, 0}}); REGISTER_CPU_OPERATOR(IncrementByOne, IncrementByOneOp); REGISTER_CUDA_OPERATOR(IncrementByOne, GPUFallbackOp); TEST(OperatorFallbackTest, IncrementByOneOp) { OperatorDef op_def = CreateOperatorDef( "IncrementByOne", "", vector<string>{"X"}, vector<string>{"X"}); Workspace ws; Tensor source_tensor(vector<int64_t>{2, 3}, CPU); for (int i = 0; i < 6; ++i) { source_tensor.mutable_data<float>()[i] = i; } BlobGetMutableTensor(ws.CreateBlob("X"), CPU)->CopyFrom(source_tensor); unique_ptr<OperatorBase> op(CreateOperator(op_def, &ws)); EXPECT_TRUE(op.get() != nullptr); EXPECT_TRUE(op->Run()); const TensorCPU& output = ws.GetBlob("X")->Get<TensorCPU>(); EXPECT_EQ(output.dim(), 2); EXPECT_EQ(output.size(0), 2); EXPECT_EQ(output.size(1), 3); for (int i = 0; i < 6; ++i) { EXPECT_EQ(output.data<float>()[i], i + 1); } } TEST(OperatorFallbackTest, GPUIncrementByOneOp) { if (!HasCudaGPU()) return; OperatorDef op_def = CreateOperatorDef( "IncrementByOne", "", vector<string>{"X"}, vector<string>{"X"}); op_def.mutable_device_option()->set_device_type(PROTO_CUDA); Workspace ws; Tensor source_tensor(vector<int64_t>{2, 3}, CPU); for (int i = 0; i < 6; ++i) { source_tensor.mutable_data<float>()[i] = i; } BlobGetMutableTensor(ws.CreateBlob("X"), CUDA)->CopyFrom(source_tensor); unique_ptr<OperatorBase> op(CreateOperator(op_def, &ws)); EXPECT_TRUE(op.get() != nullptr); EXPECT_TRUE(op->Run()); const TensorCUDA& output = ws.GetBlob("X")->Get<TensorCUDA>(); Tensor output_cpu(output, CPU); EXPECT_EQ(output.dim(), 2); EXPECT_EQ(output.size(0), 2); EXPECT_EQ(output.size(1), 3); for (int i = 0; i < 6; ++i) { EXPECT_EQ(output_cpu.data<float>()[i], i + 1); } } } ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #define _USE_MATH_DEFINES #include <ATen/native/Activation.h> #include <cmath> #include <thrust/tuple.h> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/core/TensorBase.h> #include <c10/core/Scalar.h> #include <c10/hip/HIPMathCompat.h> #include <ATen/hip\ApplyGridUtils.cuh> #include <ATen/hip/detail\OffsetCalculator.cuh> #include <ATen/native/hip\Loops.cuh> namespace at::native { // ----------------------------------- // prelu // ----------------------------------- void prelu_kernel(TensorIterator &iter) { AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, iter.dtype(), "prelu_hip", [&] { gpu_kernel(iter, [] GPU_LAMBDA (scalar_t input, scalar_t weight) -> scalar_t { return (input > 0) ? input : weight * input; }); }); } void prelu_backward_kernel(TensorIterator &iter) { AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, iter.dtype(), "prelu_backward_hip", [&] { gpu_kernel_multiple_outputs(iter, [] GPU_LAMBDA (scalar_t input, scalar_t weight, scalar_t grad) -> thrust::tuple<scalar_t, scalar_t> { auto mask = input > 0; auto grad_input = mask ? grad : weight * grad; auto grad_weight = mask ? scalar_t{0} : input * grad; return {grad_input, grad_weight}; }); }); } REGISTER_DISPATCH(prelu_stub, &prelu_kernel); REGISTER_DISPATCH(prelu_backward_stub, &prelu_backward_kernel); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #define _USE_MATH_DEFINES #include <ATen/native/Activation.h> #include <cmath> #include <thrust/tuple.h> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/core/TensorBase.h> #include <c10/core/Scalar.h> #include <c10/cuda/CUDAMathCompat.h> #include <ATen/cuda/ApplyGridUtils.cuh> #include <ATen/cuda/detail/OffsetCalculator.cuh> #include <ATen/native/cuda/Loops.cuh> namespace at::native { // ----------------------------------- // prelu // ----------------------------------- void prelu_kernel(TensorIterator &iter) { AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, iter.dtype(), "prelu_cuda", [&] { gpu_kernel(iter, [] GPU_LAMBDA (scalar_t input, scalar_t weight) -> scalar_t { return (input > 0) ? input : weight * input; }); }); } void prelu_backward_kernel(TensorIterator &iter) { AT_DISPATCH_FLOATING_TYPES_AND2(kBFloat16, kHalf, iter.dtype(), "prelu_backward_cuda", [&] { gpu_kernel_multiple_outputs(iter, [] GPU_LAMBDA (scalar_t input, scalar_t weight, scalar_t grad) -> thrust::tuple<scalar_t, scalar_t> { auto mask = input > 0; auto grad_input = mask ? grad : weight * grad; auto grad_weight = mask ? scalar_t{0} : input * grad; return {grad_input, grad_weight}; }); }); } REGISTER_DISPATCH(prelu_stub, &prelu_kernel); REGISTER_DISPATCH(prelu_backward_stub, &prelu_backward_kernel); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/operators/order_switch_ops.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { REGISTER_HIP_OPERATOR(NHWC2NCHW, NHWC2NCHWOp<float, HIPContext>); REGISTER_HIP_OPERATOR(NCHW2NHWC, NCHW2NHWCOp<float, HIPContext>); } // namespace caffe2 ###
#include "caffe2/operators/order_switch_ops.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(NHWC2NCHW, NHWC2NCHWOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(NCHW2NHWC, NCHW2NHWCOp<float, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/perplexity_op.h" #include "caffe2/utils/math.h" #include <thrust/device_vector.h> #include <thrust/transform_reduce.h> #include <thrust/system/hip/execution_policy.h> namespace caffe2 { struct perplexity_function { perplexity_function(float p) : pow(p) {} __host__ __device__ float operator()(float x) const { return powf(1.0f/x, pow); } float pow; }; template <> bool PerplexityOp<float, HIPContext>::RunOnDevice() { auto& X = Input(0); TORCH_DCHECK_EQ(X.dim(), 1); int N = X.dim32(0); auto* Y = Output(0, vector<int64_t>(), at::dtype<float>()); float* Ydata = Y->template mutable_data<float>(); const float* Xdata = X.data<float>(); float perplexity = thrust::transform_reduce( #if THRUST_VERSION >= 100800 thrust::hip::par.on(context_.hip_stream()), #endif // THRUST_VERSION >= 100800 Xdata, Xdata + N, perplexity_function(1.0f/N), 1.0f, thrust::multiplies<float>()); math::Set<float, HIPContext>(1, perplexity, Ydata, &context_); return true; } REGISTER_HIP_OPERATOR(Perplexity, PerplexityOp<float, HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/perplexity_op.h" #include "caffe2/utils/math.h" #include <thrust/device_vector.h> #include <thrust/transform_reduce.h> #include <thrust/system/cuda/execution_policy.h> namespace caffe2 { struct perplexity_function { perplexity_function(float p) : pow(p) {} __host__ __device__ float operator()(float x) const { return powf(1.0f/x, pow); } float pow; }; template <> bool PerplexityOp<float, CUDAContext>::RunOnDevice() { auto& X = Input(0); TORCH_DCHECK_EQ(X.dim(), 1); int N = X.dim32(0); auto* Y = Output(0, vector<int64_t>(), at::dtype<float>()); float* Ydata = Y->template mutable_data<float>(); const float* Xdata = X.data<float>(); float perplexity = thrust::transform_reduce( #if THRUST_VERSION >= 100800 thrust::cuda::par.on(context_.cuda_stream()), #endif // THRUST_VERSION >= 100800 Xdata, Xdata + N, perplexity_function(1.0f/N), 1.0f, thrust::multiplies<float>()); math::Set<float, CUDAContext>(1, perplexity, Ydata, &context_); return true; } REGISTER_CUDA_OPERATOR(Perplexity, PerplexityOp<float, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/prepend_dim_op.h" namespace caffe2 { REGISTER_HIP_OPERATOR(PrependDim, PrependDimOp<HIPContext>); REGISTER_HIP_OPERATOR(MergeDim, MergeDimOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/prepend_dim_op.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(PrependDim, PrependDimOp<CUDAContext>); REGISTER_CUDA_OPERATOR(MergeDim, MergeDimOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/reciprocal_op.h" #include <algorithm> #include <functional> #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void ReciprocalGradientHIPKernel(const int N, const T* dY, const T* Y, T* dX) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 dX[i] = __ldg(dY + i) * (-__ldg(Y + i) * __ldg(Y + i)); #else dX[i] = dY[i] * (-Y[i] * Y[i]); #endif } } } // namespace template <> template <typename T> bool ReciprocalGradientFunctor<HIPContext>::Forward( const std::vector<int>& Y_dims, const std::vector<int>& /* dY_dims */, const T* Y, const T* dY, T* dX, HIPContext* context) const { const int size = std::accumulate( Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>()); hipLaunchKernelGGL(( ReciprocalGradientHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), size, dY, Y, dX); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( Reciprocal, UnaryElementwiseOp< TensorTypes<float, double>, HIPContext, ReciprocalFunctor<HIPContext>>); REGISTER_HIP_OPERATOR( ReciprocalGradient, BinaryElementwiseOp< TensorTypes<float, double>, HIPContext, ReciprocalGradientFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/reciprocal_op.h" #include <algorithm> #include <functional> #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void ReciprocalGradientCUDAKernel(const int N, const T* dY, const T* Y, T* dX) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 dX[i] = __ldg(dY + i) * (-__ldg(Y + i) * __ldg(Y + i)); #else dX[i] = dY[i] * (-Y[i] * Y[i]); #endif } } } // namespace template <> template <typename T> bool ReciprocalGradientFunctor<CUDAContext>::Forward( const std::vector<int>& Y_dims, const std::vector<int>& /* dY_dims */, const T* Y, const T* dY, T* dX, CUDAContext* context) const { const int size = std::accumulate( Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>()); ReciprocalGradientCUDAKernel<T> <<<CAFFE_GET_BLOCKS(size), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(size, dY, Y, dX); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( Reciprocal, UnaryElementwiseOp< TensorTypes<float, double>, CUDAContext, ReciprocalFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR( ReciprocalGradient, BinaryElementwiseOp< TensorTypes<float, double>, CUDAContext, ReciprocalGradientFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/relu_n_op.h" #include <algorithm> #include <functional> #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void ReluNHIPKernel(const int N, const T threshold, const T* X, T* Y) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 Y[i] = __ldg(X + i) > 0 ? (__ldg(X + i) < threshold ? __ldg(X + i) : threshold) : T(0); #else Y[i] = X[i] > 0 ? (X[i] < threshold ? X[i] : threshold) : T(0); #endif } } template <typename T> __global__ void ReluNGradientHIPKernel( const int N, const T threshold, const T* dY, const T* Y, T* dX) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 dX[i] = (__ldg(Y + i) > 0 && __ldg(Y + i) < threshold) ? dY[i] : T(0); #else dX[i] = (Y[i] > 0 && Y[i] < threshold) ? dY[i] : T(0); #endif } } } // namespace template <> template <typename T> bool ReluNFunctor<HIPContext>:: operator()(const int N, const T* X, T* Y, HIPContext* context) const { hipLaunchKernelGGL(( ReluNHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(N)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), N, n, X, Y); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } template <> template <typename T> bool ReluNGradientFunctor<HIPContext>::Forward( const std::vector<int>& Y_dims, const std::vector<int>& /* dY_dims */, const T* Y, const T* dY, T* dX, HIPContext* context) const { const int size = std::accumulate( Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>()); hipLaunchKernelGGL(( ReluNGradientHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), size, n, dY, Y, dX); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( ReluN, UnaryElementwiseWithArgsOp< TensorTypes<float>, HIPContext, ReluNFunctor<HIPContext>>); REGISTER_HIP_OPERATOR( ReluNGradient, BinaryElementwiseWithArgsOp< TensorTypes<float>, HIPContext, ReluNGradientFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/relu_n_op.h" #include <algorithm> #include <functional> #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void ReluNCUDAKernel(const int N, const T threshold, const T* X, T* Y) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 Y[i] = __ldg(X + i) > 0 ? (__ldg(X + i) < threshold ? __ldg(X + i) : threshold) : T(0); #else Y[i] = X[i] > 0 ? (X[i] < threshold ? X[i] : threshold) : T(0); #endif } } template <typename T> __global__ void ReluNGradientCUDAKernel( const int N, const T threshold, const T* dY, const T* Y, T* dX) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 dX[i] = (__ldg(Y + i) > 0 && __ldg(Y + i) < threshold) ? dY[i] : T(0); #else dX[i] = (Y[i] > 0 && Y[i] < threshold) ? dY[i] : T(0); #endif } } } // namespace template <> template <typename T> bool ReluNFunctor<CUDAContext>:: operator()(const int N, const T* X, T* Y, CUDAContext* context) const { ReluNCUDAKernel<T> <<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(N, n, X, Y); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } template <> template <typename T> bool ReluNGradientFunctor<CUDAContext>::Forward( const std::vector<int>& Y_dims, const std::vector<int>& /* dY_dims */, const T* Y, const T* dY, T* dX, CUDAContext* context) const { const int size = std::accumulate( Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>()); ReluNGradientCUDAKernel<T> <<<CAFFE_GET_BLOCKS(size), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(size, n, dY, Y, dX); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( ReluN, UnaryElementwiseWithArgsOp< TensorTypes<float>, CUDAContext, ReluNFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR( ReluNGradient, BinaryElementwiseWithArgsOp< TensorTypes<float>, CUDAContext, ReluNGradientFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/replace_nan_op.h" namespace caffe2 { namespace { template <typename T> __global__ void replace_nan_kernel(const T value, const int64_t size, const T* X, T* Y) { HIP_1D_KERNEL_LOOP(i, size) { if (isnan(X[i])) { Y[i] = value; } else { Y[i] = X[i]; } } } } // namespace template <> template <typename T> void ReplaceNaNOp<HIPContext>::ReplaceNaN( const T& value, const int64_t size, const T* X, T* Y) { hipLaunchKernelGGL(( replace_nan_kernel), dim3(CAFFE_GET_BLOCKS(size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), value, size, X, Y); C10_HIP_KERNEL_LAUNCH_CHECK(); } REGISTER_HIP_OPERATOR(ReplaceNaN, ReplaceNaNOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/replace_nan_op.h" namespace caffe2 { namespace { template <typename T> __global__ void replace_nan_kernel(const T value, const int64_t size, const T* X, T* Y) { CUDA_1D_KERNEL_LOOP(i, size) { if (isnan(X[i])) { Y[i] = value; } else { Y[i] = X[i]; } } } } // namespace template <> template <typename T> void ReplaceNaNOp<CUDAContext>::ReplaceNaN( const T& value, const int64_t size, const T* X, T* Y) { replace_nan_kernel<<< CAFFE_GET_BLOCKS(size), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(value, size, X, Y); C10_CUDA_KERNEL_LAUNCH_CHECK(); } REGISTER_CUDA_OPERATOR(ReplaceNaN, ReplaceNaNOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/reshape_op.h" #include "caffe2/utils/math.h" namespace caffe2 { REGISTER_HIP_OPERATOR(Reshape, ReshapeOp<float, HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/reshape_op.h" #include "caffe2/utils/math.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(Reshape, ReshapeOp<float, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include <iostream> #include <gtest/gtest.h> #include "caffe2/core/context.h" #include "caffe2/core/hip/context_gpu.h" #include "caffe2/core/flags.h" #include "caffe2/operators/reshape_op.h" #include "caffe2/utils/math.h" C10_DECLARE_string(caffe_test_root); namespace caffe2 { static void AddConstInput( const vector<int64_t>& shape, const float value, const string& name, Workspace* ws) { DeviceOption option; option.set_device_type(PROTO_HIP); HIPContext context(option); Blob* blob = ws->CreateBlob(name); auto* tensor = BlobGetMutableTensor(blob, HIP); tensor->Resize(shape); math::Set<float, HIPContext>( tensor->numel(), value, tensor->template mutable_data<float>(), &context); return; } TEST(ReshapeOpGPUTest, testReshapeWithScalar) { if (!HasHipGPU()) return; Workspace ws; OperatorDef def; def.set_name("test_reshape"); def.set_type("Reshape"); def.add_input("X"); def.add_output("XNew"); def.add_output("OldShape"); def.add_arg()->CopyFrom(MakeArgument("shape", vector<int64_t>{1})); def.mutable_device_option()->set_device_type(PROTO_HIP); AddConstInput(vector<int64_t>(), 3.14, "X", &ws); // execute the op unique_ptr<OperatorBase> op(CreateOperator(def, &ws)); EXPECT_TRUE(op->Run()); Blob* XNew = ws.GetBlob("XNew"); const Tensor& XNewTensor = XNew->Get<Tensor>(); EXPECT_EQ(1, XNewTensor.dim()); EXPECT_EQ(1, XNewTensor.numel()); } } // namespace caffe2 ###
#include <iostream> #include <gtest/gtest.h> #include "caffe2/core/context.h" #include "caffe2/core/context_gpu.h" #include "caffe2/core/flags.h" #include "caffe2/operators/reshape_op.h" #include "caffe2/utils/math.h" C10_DECLARE_string(caffe_test_root); namespace caffe2 { static void AddConstInput( const vector<int64_t>& shape, const float value, const string& name, Workspace* ws) { DeviceOption option; option.set_device_type(PROTO_CUDA); CUDAContext context(option); Blob* blob = ws->CreateBlob(name); auto* tensor = BlobGetMutableTensor(blob, CUDA); tensor->Resize(shape); math::Set<float, CUDAContext>( tensor->numel(), value, tensor->template mutable_data<float>(), &context); return; } TEST(ReshapeOpGPUTest, testReshapeWithScalar) { if (!HasCudaGPU()) return; Workspace ws; OperatorDef def; def.set_name("test_reshape"); def.set_type("Reshape"); def.add_input("X"); def.add_output("XNew"); def.add_output("OldShape"); def.add_arg()->CopyFrom(MakeArgument("shape", vector<int64_t>{1})); def.mutable_device_option()->set_device_type(PROTO_CUDA); AddConstInput(vector<int64_t>(), 3.14, "X", &ws); // execute the op unique_ptr<OperatorBase> op(CreateOperator(def, &ws)); EXPECT_TRUE(op->Run()); Blob* XNew = ws.GetBlob("XNew"); const Tensor& XNewTensor = XNew->Get<Tensor>(); EXPECT_EQ(1, XNewTensor.dim()); EXPECT_EQ(1, XNewTensor.numel()); } } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/reverse_packed_segs_op.h" namespace caffe2 { namespace { template <typename T, typename LengthType> __global__ void ReversePackedSegments_kernel( size_t max_length, size_t batch_size, size_t block_size, const LengthType* lengths_ptr, const T* data_ptr, T* rev_data_ptr) { const int block_id = blockIdx.x; // index into [0, batch_size) const int batch = block_id / max_length; // index into [0, segment) const int segment = block_id % max_length; if (batch >= batch_size || segment >= max_length) return; const int seg_length = lengths_ptr[batch]; // unique data pointer for this CTA const T* local_data_ptr = data_ptr + (segment * batch_size + batch) * block_size; // unique pointer for result T* local_rev_data_ptr; if (segment < seg_length) { local_rev_data_ptr = rev_data_ptr + ((seg_length - 1 - segment) * batch_size + batch) * block_size; } else { local_rev_data_ptr = rev_data_ptr + (segment * batch_size + batch) * block_size; } // copy using 1 element / thread for now for (int idx = threadIdx.x; idx < block_size; idx+=blockDim.x) { local_rev_data_ptr[idx] = local_data_ptr[idx]; } } } // namespace // specialization of DoRunWithLengthType template <> template <typename T, typename LengthType> void ReversePackedSegsOp<HIPContext>::DoRunWithLengthType() { const auto& data = Input(DATA); const auto& lengths = Input(LENGTHS); CAFFE_ENFORCE( data.dim() == 3, "DATA should be 3-D tensor <lengths, " "segments, embeddings>"); CAFFE_ENFORCE(lengths.dim() == 1, "LENGTH should be 1-D"); auto* output = Output(0, data.sizes(), at::dtype<T>()); const auto max_length = data.size(0); const auto batch_size = data.size(1); const auto block_size = data.size(2); CAFFE_ENFORCE( lengths.sizes()[0] == batch_size, "lenths size should be" " equal to batch size"); const T* data_ptr = data.template data<T>(); const LengthType* lengths_ptr = lengths.template data<LengthType>(); // reversed data T* rev_data_ptr = output->template mutable_data<T>(); const int grid = max_length * batch_size; hipLaunchKernelGGL(( ReversePackedSegments_kernel<T,LengthType>), dim3(grid), dim3(512), 0, context_.hip_stream(), max_length, batch_size, block_size, lengths_ptr, data_ptr, rev_data_ptr); C10_HIP_KERNEL_LAUNCH_CHECK(); } REGISTER_HIP_OPERATOR(ReversePackedSegs, ReversePackedSegsOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/reverse_packed_segs_op.h" namespace caffe2 { namespace { template <typename T, typename LengthType> __global__ void ReversePackedSegments_kernel( size_t max_length, size_t batch_size, size_t block_size, const LengthType* lengths_ptr, const T* data_ptr, T* rev_data_ptr) { const int block_id = blockIdx.x; // index into [0, batch_size) const int batch = block_id / max_length; // index into [0, segment) const int segment = block_id % max_length; if (batch >= batch_size || segment >= max_length) return; const int seg_length = lengths_ptr[batch]; // unique data pointer for this CTA const T* local_data_ptr = data_ptr + (segment * batch_size + batch) * block_size; // unique pointer for result T* local_rev_data_ptr; if (segment < seg_length) { local_rev_data_ptr = rev_data_ptr + ((seg_length - 1 - segment) * batch_size + batch) * block_size; } else { local_rev_data_ptr = rev_data_ptr + (segment * batch_size + batch) * block_size; } // copy using 1 element / thread for now for (int idx = threadIdx.x; idx < block_size; idx+=blockDim.x) { local_rev_data_ptr[idx] = local_data_ptr[idx]; } } } // namespace // specialization of DoRunWithLengthType template <> template <typename T, typename LengthType> void ReversePackedSegsOp<CUDAContext>::DoRunWithLengthType() { const auto& data = Input(DATA); const auto& lengths = Input(LENGTHS); CAFFE_ENFORCE( data.dim() == 3, "DATA should be 3-D tensor <lengths, " "segments, embeddings>"); CAFFE_ENFORCE(lengths.dim() == 1, "LENGTH should be 1-D"); auto* output = Output(0, data.sizes(), at::dtype<T>()); const auto max_length = data.size(0); const auto batch_size = data.size(1); const auto block_size = data.size(2); CAFFE_ENFORCE( lengths.sizes()[0] == batch_size, "lenths size should be" " equal to batch size"); const T* data_ptr = data.template data<T>(); const LengthType* lengths_ptr = lengths.template data<LengthType>(); // reversed data T* rev_data_ptr = output->template mutable_data<T>(); const int grid = max_length * batch_size; ReversePackedSegments_kernel<T,LengthType><<<grid, 512, 0, context_.cuda_stream()>>>( max_length, batch_size, block_size, lengths_ptr, data_ptr, rev_data_ptr); C10_CUDA_KERNEL_LAUNCH_CHECK(); } REGISTER_CUDA_OPERATOR(ReversePackedSegs, ReversePackedSegsOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/rsqrt_op.h" #include <algorithm> #include <functional> #include "caffe2/core/hip/context_gpu.h" #include "caffe2/utils/math.h" namespace caffe2 { namespace { template <typename T> __global__ void RsqrtGradientHIPKernel(const int size, const T* dY, const T* Y, T* dX) { HIP_1D_KERNEL_LOOP(i, size) { #if __HIP_ARCH__ >= 350 dX[i] = __ldg(dY + i) * math::utils::Cube<T>(__ldg(Y + i)) * static_cast<T>(-0.5); #else dX[i] = dY[i] * math::utils::Cube<T>(Y[i]) * static_cast<T>(-0.5); #endif } } } // namespace template <> template <typename T> bool RsqrtGradientFunctor<HIPContext>::Forward( const std::vector<int>& dY_dims, const std::vector<int>& /* Y_dims */, const T* dY, const T* Y, T* dX, HIPContext* context) const { const int size = std::accumulate( dY_dims.cbegin(), dY_dims.cend(), 1, std::multiplies<int>()); hipLaunchKernelGGL(( RsqrtGradientHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), size, dY, Y, dX); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( Rsqrt, UnaryElementwiseOp< TensorTypes<float>, HIPContext, RsqrtFunctor<HIPContext>>); REGISTER_HIP_OPERATOR( RsqrtGradient, BinaryElementwiseOp< TensorTypes<float>, HIPContext, RsqrtGradientFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/rsqrt_op.h" #include <algorithm> #include <functional> #include "caffe2/core/context_gpu.h" #include "caffe2/utils/math.h" namespace caffe2 { namespace { template <typename T> __global__ void RsqrtGradientCUDAKernel(const int size, const T* dY, const T* Y, T* dX) { CUDA_1D_KERNEL_LOOP(i, size) { #if __CUDA_ARCH__ >= 350 dX[i] = __ldg(dY + i) * math::utils::Cube<T>(__ldg(Y + i)) * static_cast<T>(-0.5); #else dX[i] = dY[i] * math::utils::Cube<T>(Y[i]) * static_cast<T>(-0.5); #endif } } } // namespace template <> template <typename T> bool RsqrtGradientFunctor<CUDAContext>::Forward( const std::vector<int>& dY_dims, const std::vector<int>& /* Y_dims */, const T* dY, const T* Y, T* dX, CUDAContext* context) const { const int size = std::accumulate( dY_dims.cbegin(), dY_dims.cend(), 1, std::multiplies<int>()); RsqrtGradientCUDAKernel<T> <<<CAFFE_GET_BLOCKS(size), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(size, dY, Y, dX); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( Rsqrt, UnaryElementwiseOp< TensorTypes<float>, CUDAContext, RsqrtFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR( RsqrtGradient, BinaryElementwiseOp< TensorTypes<float>, CUDAContext, RsqrtGradientFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #define _USE_MATH_DEFINES #include <ATen/native/Activation.h> #include <cmath> #include <thrust/tuple.h> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/core/TensorBase.h> #include <c10/core/Scalar.h> #include <c10/hip/HIPMathCompat.h> #include <ATen/hip\ApplyGridUtils.cuh> #include <ATen/hip/detail\OffsetCalculator.cuh> #include <ATen/native/hip\Loops.cuh> namespace at::native { namespace { void silu_kernel(TensorIteratorBase& iter) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "silu_hip", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t x) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; const opmath_t x_acc = static_cast<opmath_t>(x); return x_acc / (opmath_t(1) + c10::hip::compat::exp(-x_acc)); }); }); } void silu_backward_kernel(TensorIteratorBase& iter) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "silu_backward_hip", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t dy, scalar_t x) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; const opmath_t dy_acc = static_cast<opmath_t>(dy); const opmath_t x_acc = static_cast<opmath_t>(x); const opmath_t s_acc = opmath_t(1) / (opmath_t(1) + c10::hip::compat::exp(-x_acc)); return dy_acc * s_acc * (opmath_t(1) + x_acc * (opmath_t(1) - s_acc)); }); }); } } // namespace REGISTER_DISPATCH(silu_stub, &silu_kernel); REGISTER_DISPATCH(silu_backward_stub, &silu_backward_kernel); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #define _USE_MATH_DEFINES #include <ATen/native/Activation.h> #include <cmath> #include <thrust/tuple.h> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/core/TensorBase.h> #include <c10/core/Scalar.h> #include <c10/cuda/CUDAMathCompat.h> #include <ATen/cuda/ApplyGridUtils.cuh> #include <ATen/cuda/detail/OffsetCalculator.cuh> #include <ATen/native/cuda/Loops.cuh> namespace at::native { namespace { void silu_kernel(TensorIteratorBase& iter) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "silu_cuda", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t x) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; const opmath_t x_acc = static_cast<opmath_t>(x); return x_acc / (opmath_t(1) + c10::cuda::compat::exp(-x_acc)); }); }); } void silu_backward_kernel(TensorIteratorBase& iter) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "silu_backward_cuda", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t dy, scalar_t x) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; const opmath_t dy_acc = static_cast<opmath_t>(dy); const opmath_t x_acc = static_cast<opmath_t>(x); const opmath_t s_acc = opmath_t(1) / (opmath_t(1) + c10::cuda::compat::exp(-x_acc)); return dy_acc * s_acc * (opmath_t(1) + x_acc * (opmath_t(1) - s_acc)); }); }); } } // namespace REGISTER_DISPATCH(silu_stub, &silu_kernel); REGISTER_DISPATCH(silu_backward_stub, &silu_backward_kernel); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/scale_op.h" namespace caffe2 { template <> bool ScaleOp<HIPContext>::RunOnDevice() { return DispatchHelper<TensorTypes<at::Half, float>>::call(this, Input(0)); } REGISTER_HIP_OPERATOR(Scale, ScaleOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/scale_op.h" namespace caffe2 { template <> bool ScaleOp<CUDAContext>::RunOnDevice() { return DispatchHelper<TensorTypes<at::Half, float>>::call(this, Input(0)); } REGISTER_CUDA_OPERATOR(Scale, ScaleOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/core/hip/common_gpu.h" #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/selu_op.h" namespace caffe2 { namespace { template <typename T> __global__ void SeluKernel(const int N, const T* X, T* Y, T alpha_, T lambda_) { HIP_1D_KERNEL_LOOP(i, N) { Y[i] = lambda_ * (X[i] > 0 ? X[i] : alpha_ * expf(X[i]) - alpha_); } } template <typename T> __global__ void SeluGradientKernel( const int N, const T* Y, const T* dY, T* dX, T alpha_, T lambda_) { const T c = lambda_ * alpha_; HIP_1D_KERNEL_LOOP(i, N) { // Reuse Y[i] to avoid computing exp(X[i]) dX[i] = Y[i] > 0 ? lambda_ * dY[i] : dY[i] * (Y[i] + c); } } } // namespace template <> bool SeluOp<float, HIPContext>::RunOnDevice() { auto& X = Input(0); CAFFE_ENFORCE_GT(X.numel(), 0); auto* Y = Output(0, X.sizes(), at::dtype<float>()); hipLaunchKernelGGL(( SeluKernel<float>) , dim3(CAFFE_GET_BLOCKS(X.numel())), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), X.numel(), X.data<float>(), Y->template mutable_data<float>(), alpha_, lambda_); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } template <> bool SeluGradientOp<float, HIPContext>::RunOnDevice() { auto& Y = Input(0); auto& dY = Input(1); CAFFE_ENFORCE_GT(Y.numel(), 0); CAFFE_ENFORCE_EQ(dY.numel(), Y.numel()); auto* dX = Output(0, Y.sizes(), at::dtype<float>()); hipLaunchKernelGGL(( SeluGradientKernel<float>) , dim3(CAFFE_GET_BLOCKS(Y.numel())), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), Y.numel(), Y.data<float>(), dY.data<float>(), dX->template mutable_data<float>(), alpha_, lambda_); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR(Selu, SeluOp<float, HIPContext>); REGISTER_HIP_OPERATOR(SeluGradient, SeluGradientOp<float, HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/common_gpu.h" #include "caffe2/core/context_gpu.h" #include "caffe2/operators/selu_op.h" namespace caffe2 { namespace { template <typename T> __global__ void SeluKernel(const int N, const T* X, T* Y, T alpha_, T lambda_) { CUDA_1D_KERNEL_LOOP(i, N) { Y[i] = lambda_ * (X[i] > 0 ? X[i] : alpha_ * __expf(X[i]) - alpha_); } } template <typename T> __global__ void SeluGradientKernel( const int N, const T* Y, const T* dY, T* dX, T alpha_, T lambda_) { const T c = lambda_ * alpha_; CUDA_1D_KERNEL_LOOP(i, N) { // Reuse Y[i] to avoid computing exp(X[i]) dX[i] = Y[i] > 0 ? lambda_ * dY[i] : dY[i] * (Y[i] + c); } } } // namespace template <> bool SeluOp<float, CUDAContext>::RunOnDevice() { auto& X = Input(0); CAFFE_ENFORCE_GT(X.numel(), 0); auto* Y = Output(0, X.sizes(), at::dtype<float>()); SeluKernel<float> <<<CAFFE_GET_BLOCKS(X.numel()), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( X.numel(), X.data<float>(), Y->template mutable_data<float>(), alpha_, lambda_); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } template <> bool SeluGradientOp<float, CUDAContext>::RunOnDevice() { auto& Y = Input(0); auto& dY = Input(1); CAFFE_ENFORCE_GT(Y.numel(), 0); CAFFE_ENFORCE_EQ(dY.numel(), Y.numel()); auto* dX = Output(0, Y.sizes(), at::dtype<float>()); SeluGradientKernel<float> <<<CAFFE_GET_BLOCKS(Y.numel()), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( Y.numel(), Y.data<float>(), dY.data<float>(), dX->template mutable_data<float>(), alpha_, lambda_); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR(Selu, SeluOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR(SeluGradient, SeluGradientOp<float, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/shape_op.h" namespace caffe2 { REGISTER_HIP_OPERATOR(Shape, ShapeOp<HIPContext>); } ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/shape_op.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(Shape, ShapeOp<CUDAContext>); } ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/sigmoid_op.h" #include <algorithm> #include <functional> #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void SigmoidHIPKernel(const int N, const T* X, T* Y); template <> __global__ void SigmoidHIPKernel<float>(const int N, const float* X, float* Y) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 Y[i] = 1.0f / (1.0f + expf(-__ldg(X + i))); #else Y[i] = 1.0f / (1.0f + expf(-X[i])); #endif } } template <typename T> __global__ void SigmoidGradientHIPKernel(const int N, const T* dY, const T* Y, T* dX) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 dX[i] = __ldg(dY + i) * __ldg(Y + i) * (T(1) - __ldg(Y + i)); #else dX[i] = dY[i] * Y[i] * (T(1) - Y[i]); #endif } } } // namespace template <> template <typename T> bool SigmoidFunctor<HIPContext>:: operator()(const int N, const T* X, T* Y, HIPContext* context) const { hipLaunchKernelGGL(( SigmoidHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(N)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), N, X, Y); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } template <> template <typename T> bool SigmoidGradientFunctor<HIPContext>::Forward( const std::vector<int>& Y_dims, const std::vector<int>& /* dY_dims */, const T* Y, const T* dY, T* dX, HIPContext* context) const { const int size = std::accumulate( Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>()); hipLaunchKernelGGL(( SigmoidGradientHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), size, dY, Y, dX); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( Sigmoid, UnaryElementwiseOp< TensorTypes<float>, HIPContext, SigmoidFunctor<HIPContext>>); REGISTER_HIP_OPERATOR( SigmoidGradient, BinaryElementwiseOp< TensorTypes<float>, HIPContext, SigmoidGradientFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/sigmoid_op.h" #include <algorithm> #include <functional> #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void SigmoidCUDAKernel(const int N, const T* X, T* Y); template <> __global__ void SigmoidCUDAKernel<float>(const int N, const float* X, float* Y) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 Y[i] = 1.0f / (1.0f + expf(-__ldg(X + i))); #else Y[i] = 1.0f / (1.0f + expf(-X[i])); #endif } } template <typename T> __global__ void SigmoidGradientCUDAKernel(const int N, const T* dY, const T* Y, T* dX) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 dX[i] = __ldg(dY + i) * __ldg(Y + i) * (T(1) - __ldg(Y + i)); #else dX[i] = dY[i] * Y[i] * (T(1) - Y[i]); #endif } } } // namespace template <> template <typename T> bool SigmoidFunctor<CUDAContext>:: operator()(const int N, const T* X, T* Y, CUDAContext* context) const { SigmoidCUDAKernel<T> <<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(N, X, Y); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } template <> template <typename T> bool SigmoidGradientFunctor<CUDAContext>::Forward( const std::vector<int>& Y_dims, const std::vector<int>& /* dY_dims */, const T* Y, const T* dY, T* dX, CUDAContext* context) const { const int size = std::accumulate( Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>()); SigmoidGradientCUDAKernel<T> <<<CAFFE_GET_BLOCKS(size), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(size, dY, Y, dX); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( Sigmoid, UnaryElementwiseOp< TensorTypes<float>, CUDAContext, SigmoidFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR( SigmoidGradient, BinaryElementwiseOp< TensorTypes<float>, CUDAContext, SigmoidGradientFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/sinh_op.h" #include <algorithm> #include <functional> #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace { __global__ void SinhGradientHIPKernel( const int N, const float* dY, const float* X, float* dX) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 dX[i] = __ldg(dY + i) * coshf(__ldg(X + i)); #else dX[i] = dY[i] * coshf(X[i]); #endif } } } // namespace template <> template <typename T> bool SinhGradientFunctor<HIPContext>::Forward( const std::vector<int>& /* dY_dims */, const std::vector<int>& X_dims, const T* dY, const T* X, T* dX, HIPContext* context) const { const int size = std::accumulate( X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); hipLaunchKernelGGL(( SinhGradientHIPKernel), dim3(CAFFE_GET_BLOCKS(size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), size, dY, X, dX); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( Sinh, UnaryElementwiseOp< TensorTypes<float>, HIPContext, SinhFunctor<HIPContext>>); REGISTER_HIP_OPERATOR( SinhGradient, BinaryElementwiseOp< TensorTypes<float>, HIPContext, SinhGradientFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/sinh_op.h" #include <algorithm> #include <functional> #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace { __global__ void SinhGradientCUDAKernel( const int N, const float* dY, const float* X, float* dX) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 dX[i] = __ldg(dY + i) * coshf(__ldg(X + i)); #else dX[i] = dY[i] * coshf(X[i]); #endif } } } // namespace template <> template <typename T> bool SinhGradientFunctor<CUDAContext>::Forward( const std::vector<int>& /* dY_dims */, const std::vector<int>& X_dims, const T* dY, const T* X, T* dX, CUDAContext* context) const { const int size = std::accumulate( X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); SinhGradientCUDAKernel<<< CAFFE_GET_BLOCKS(size), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(size, dY, X, dX); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( Sinh, UnaryElementwiseOp< TensorTypes<float>, CUDAContext, SinhFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR( SinhGradient, BinaryElementwiseOp< TensorTypes<float>, CUDAContext, SinhGradientFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/sin_op.h" #include <algorithm> #include <functional> #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void SinGradientHIPKernel(const int N, const T* dY, const T* X, T* dX) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 dX[i] = __ldg(dY + i) * cos(__ldg(X + i)); #else dX[i] = dY[i] * cos(X[i]); #endif } } } // namespace template <> template <typename T> bool SinGradientFunctor<HIPContext>::Forward( const std::vector<int>& X_dims, const std::vector<int>& /* dY_dims */, const T* X, const T* dY, T* dX, HIPContext* context) const { const int size = std::accumulate( X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); hipLaunchKernelGGL(( SinGradientHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), size, dY, X, dX); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( Sin, UnaryElementwiseOp< TensorTypes<float>, HIPContext, SinFunctor<HIPContext>>); REGISTER_HIP_OPERATOR( SinGradient, BinaryElementwiseOp< TensorTypes<float>, HIPContext, SinGradientFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/sin_op.h" #include <algorithm> #include <functional> #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void SinGradientCUDAKernel(const int N, const T* dY, const T* X, T* dX) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 dX[i] = __ldg(dY + i) * cos(__ldg(X + i)); #else dX[i] = dY[i] * cos(X[i]); #endif } } } // namespace template <> template <typename T> bool SinGradientFunctor<CUDAContext>::Forward( const std::vector<int>& X_dims, const std::vector<int>& /* dY_dims */, const T* X, const T* dY, T* dX, CUDAContext* context) const { const int size = std::accumulate( X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); SinGradientCUDAKernel<T> <<<CAFFE_GET_BLOCKS(size), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(size, dY, X, dX); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( Sin, UnaryElementwiseOp< TensorTypes<float>, CUDAContext, SinFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR( SinGradient, BinaryElementwiseOp< TensorTypes<float>, CUDAContext, SinGradientFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/softplus_op.h" namespace caffe2 { namespace { template <typename T> __global__ void SoftplusKernel(const int N, const T* X, T* Y) { HIP_1D_KERNEL_LOOP(i, N) { Y[i] = log(exp(X[i]) + 1.0f); } } template <typename T> __global__ void SoftplusGradientKernel(const int N, const T* Y, const T* dY, T* dX) { HIP_1D_KERNEL_LOOP(i, N) { const float nexpY = exp(-Y[i]); dX[i] = dY[i] * (1 - nexpY); } } } // namespace template <> bool SoftplusOp<float, HIPContext>::RunOnDevice() { auto& X = Input(0); TORCH_DCHECK_GT(X.numel(), 0); auto* Y = Output(0, X.sizes(), at::dtype<float>()); hipLaunchKernelGGL(( SoftplusKernel<float>) , dim3(CAFFE_GET_BLOCKS(X.numel())), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), X.numel(), X.data<float>(), Y->template mutable_data<float>()); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } template <> bool SoftplusGradientOp<float, HIPContext>::RunOnDevice() { auto& Y = Input(0); auto& dY = Input(1); TORCH_DCHECK_GT(Y.numel(), 0); TORCH_DCHECK_EQ(dY.numel(), Y.numel()); auto* dX = Output(0, Y.sizes(), at::dtype<float>()); hipLaunchKernelGGL(( SoftplusGradientKernel<float>) , dim3(CAFFE_GET_BLOCKS(Y.numel())), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), Y.numel(), Y.data<float>(), dY.data<float>(), dX->template mutable_data<float>()); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR(Softplus, SoftplusOp<float, HIPContext>); REGISTER_HIP_OPERATOR( SoftplusGradient, SoftplusGradientOp<float, HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/softplus_op.h" namespace caffe2 { namespace { template <typename T> __global__ void SoftplusKernel(const int N, const T* X, T* Y) { CUDA_1D_KERNEL_LOOP(i, N) { Y[i] = log(exp(X[i]) + 1.0f); } } template <typename T> __global__ void SoftplusGradientKernel(const int N, const T* Y, const T* dY, T* dX) { CUDA_1D_KERNEL_LOOP(i, N) { const float nexpY = exp(-Y[i]); dX[i] = dY[i] * (1 - nexpY); } } } // namespace template <> bool SoftplusOp<float, CUDAContext>::RunOnDevice() { auto& X = Input(0); TORCH_DCHECK_GT(X.numel(), 0); auto* Y = Output(0, X.sizes(), at::dtype<float>()); SoftplusKernel<float> <<<CAFFE_GET_BLOCKS(X.numel()), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( X.numel(), X.data<float>(), Y->template mutable_data<float>()); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } template <> bool SoftplusGradientOp<float, CUDAContext>::RunOnDevice() { auto& Y = Input(0); auto& dY = Input(1); TORCH_DCHECK_GT(Y.numel(), 0); TORCH_DCHECK_EQ(dY.numel(), Y.numel()); auto* dX = Output(0, Y.sizes(), at::dtype<float>()); SoftplusGradientKernel<float> <<<CAFFE_GET_BLOCKS(Y.numel()), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( Y.numel(), Y.data<float>(), dY.data<float>(), dX->template mutable_data<float>()); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR(Softplus, SoftplusOp<float, CUDAContext>); REGISTER_CUDA_OPERATOR( SoftplusGradient, SoftplusGradientOp<float, CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/softsign_op.h" #include <algorithm> #include <functional> #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace { using c10::hip::compat::abs; template <typename T> inline __host__ __device__ T SquareHIP(const T x) { return x * x; } template <typename T> __global__ void SoftsignHIPKernel(const int N, const T* X, T* Y) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 Y[i] = __ldg(X + i) / (T(1) + abs(__ldg(X + i))); #else Y[i] = X[i] / (T(1) + abs(X[i])); #endif } } template <typename T> __global__ void SoftsignGradientHIPKernel(const int N, const T* dY, const T* X, T* dX) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 dX[i] = __ldg(dY + i) / SquareHIP(T(1) + abs(__ldg(X + i))); #else dX[i] = dY[i] / SquareHIP(T(1) + abs(X[i])); #endif } } } // namespace template <> template <typename T> bool SoftsignFunctor<HIPContext>:: operator()(const int N, const T* X, T* Y, HIPContext* context) const { hipLaunchKernelGGL(( SoftsignHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(N)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), N, X, Y); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } template <> template <typename T> bool SoftsignGradientFunctor<HIPContext>::Forward( const std::vector<int>& X_dims, const std::vector<int>& /* dY_dims */, const T* X, const T* dY, T* dX, HIPContext* context) const { const int size = std::accumulate( X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); hipLaunchKernelGGL(( SoftsignGradientHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), size, dY, X, dX); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( Softsign, UnaryElementwiseOp< TensorTypes<float>, HIPContext, SoftsignFunctor<HIPContext>>); REGISTER_HIP_OPERATOR( SoftsignGradient, BinaryElementwiseOp< TensorTypes<float>, HIPContext, SoftsignGradientFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/softsign_op.h" #include <algorithm> #include <functional> #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace { using c10::cuda::compat::abs; template <typename T> inline __host__ __device__ T SquareCUDA(const T x) { return x * x; } template <typename T> __global__ void SoftsignCUDAKernel(const int N, const T* X, T* Y) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 Y[i] = __ldg(X + i) / (T(1) + abs(__ldg(X + i))); #else Y[i] = X[i] / (T(1) + abs(X[i])); #endif } } template <typename T> __global__ void SoftsignGradientCUDAKernel(const int N, const T* dY, const T* X, T* dX) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 dX[i] = __ldg(dY + i) / SquareCUDA(T(1) + abs(__ldg(X + i))); #else dX[i] = dY[i] / SquareCUDA(T(1) + abs(X[i])); #endif } } } // namespace template <> template <typename T> bool SoftsignFunctor<CUDAContext>:: operator()(const int N, const T* X, T* Y, CUDAContext* context) const { SoftsignCUDAKernel<T> <<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(N, X, Y); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } template <> template <typename T> bool SoftsignGradientFunctor<CUDAContext>::Forward( const std::vector<int>& X_dims, const std::vector<int>& /* dY_dims */, const T* X, const T* dY, T* dX, CUDAContext* context) const { const int size = std::accumulate( X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); SoftsignGradientCUDAKernel<T> <<<CAFFE_GET_BLOCKS(size), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(size, dY, X, dX); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( Softsign, UnaryElementwiseOp< TensorTypes<float>, CUDAContext, SoftsignFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR( SoftsignGradient, BinaryElementwiseOp< TensorTypes<float>, CUDAContext, SoftsignGradientFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/hip/operator_fallback_gpu.h" #include "caffe2/operators/sparse_lp_regularizer_op.h" namespace caffe2 { REGISTER_HIP_OPERATOR(SparseLpRegularizer, GPUFallbackOp); } ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/operator_fallback_gpu.h" #include "caffe2/operators/sparse_lp_regularizer_op.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(SparseLpRegularizer, GPUFallbackOp); } ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/hip/operator_fallback_gpu.h" #include "caffe2/operators/sparse_normalize_op.h" namespace caffe2 { REGISTER_HIP_OPERATOR( SparseNormalize, GPUFallbackOp); } ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/operator_fallback_gpu.h" #include "caffe2/operators/sparse_normalize_op.h" namespace caffe2 { REGISTER_CUDA_OPERATOR( SparseNormalize, GPUFallbackOp); } ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #define _USE_MATH_DEFINES #include <ATen/native/Activation.h> #include <cmath> #include <thrust/tuple.h> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/core/TensorBase.h> #include <c10/core/Scalar.h> #include <c10/hip/HIPMathCompat.h> #include <ATen/hip\ApplyGridUtils.cuh> #include <ATen/hip/detail\OffsetCalculator.cuh> #include <ATen/native/hip\Loops.cuh> namespace at::native { namespace { void softplus_kernel( TensorIteratorBase& iter, const Scalar& beta_, const Scalar& threshold_) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "softplus_hip", [&]() { using opmath_t = at::opmath_type<scalar_t>; auto beta = beta_.to<opmath_t>(); auto threshold = threshold_.to<opmath_t>(); gpu_kernel(iter, [beta, threshold] GPU_LAMBDA(scalar_t a) -> scalar_t { opmath_t aop = static_cast<opmath_t>(a); return (aop * beta) > threshold ? aop : (::log1p(::exp(aop * beta))) / beta; }); }); } void softplus_backward_kernel( TensorIteratorBase& iter, const Scalar& beta_, const Scalar& threshold_) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "softplus_backward_hip", [&]() { using opmath_t = at::opmath_type<scalar_t>; auto beta = beta_.to<opmath_t>(); auto threshold = threshold_.to<opmath_t>(); gpu_kernel( iter, [beta, threshold] GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t { opmath_t aop = static_cast<opmath_t>(a); opmath_t bop = static_cast<opmath_t>(b); opmath_t z = ::exp(bop * beta); return (bop * beta) > threshold ? aop : aop * z / (z + opmath_t(1.)); }); }); } } // namespace REGISTER_DISPATCH(softplus_stub, &softplus_kernel); REGISTER_DISPATCH(softplus_backward_stub, &softplus_backward_kernel); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #define _USE_MATH_DEFINES #include <ATen/native/Activation.h> #include <cmath> #include <thrust/tuple.h> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/core/TensorBase.h> #include <c10/core/Scalar.h> #include <c10/cuda/CUDAMathCompat.h> #include <ATen/cuda/ApplyGridUtils.cuh> #include <ATen/cuda/detail/OffsetCalculator.cuh> #include <ATen/native/cuda/Loops.cuh> namespace at::native { namespace { void softplus_kernel( TensorIteratorBase& iter, const Scalar& beta_, const Scalar& threshold_) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "softplus_cuda", [&]() { using opmath_t = at::opmath_type<scalar_t>; auto beta = beta_.to<opmath_t>(); auto threshold = threshold_.to<opmath_t>(); gpu_kernel(iter, [beta, threshold] GPU_LAMBDA(scalar_t a) -> scalar_t { opmath_t aop = static_cast<opmath_t>(a); return (aop * beta) > threshold ? aop : (::log1p(std::exp(aop * beta))) / beta; }); }); } void softplus_backward_kernel( TensorIteratorBase& iter, const Scalar& beta_, const Scalar& threshold_) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "softplus_backward_cuda", [&]() { using opmath_t = at::opmath_type<scalar_t>; auto beta = beta_.to<opmath_t>(); auto threshold = threshold_.to<opmath_t>(); gpu_kernel( iter, [beta, threshold] GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t { opmath_t aop = static_cast<opmath_t>(a); opmath_t bop = static_cast<opmath_t>(b); opmath_t z = std::exp(bop * beta); return (bop * beta) > threshold ? aop : aop * z / (z + opmath_t(1.)); }); }); } } // namespace REGISTER_DISPATCH(softplus_stub, &softplus_kernel); REGISTER_DISPATCH(softplus_backward_stub, &softplus_backward_kernel); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/sparse_to_dense_op.h" #include "caffe2/core/hip/common_gpu.h" #include "caffe2/core/hip/context_gpu.h" #include "caffe2/utils/hip/GpuAtomics.cuh" namespace caffe2 { template <typename TInd, typename TData> __global__ void SparseToDenseKernel( size_t N, int64_t block_nitems, const TInd* indices, const TData* vals, TData* dst) { HIP_1D_KERNEL_LOOP(i, N) { int idx = indices[i / block_nitems]; int dst_idx = block_nitems * idx + i % block_nitems; gpu_atomic_add(&dst[dst_idx], vals[i]); } } template <> bool SparseToDenseOp<HIPContext>::RunOnDevice() { return DispatchHelper<TensorTypes<int32_t>>::call( this, Input(INDICES)); } template <> template <typename TInd> bool SparseToDenseOp<HIPContext>::DoRunWithType() { return DispatchHelper< TensorTypes2< float, int32_t>, TInd>::call(this, Input(VALUES)); } template <> template <typename TInd, typename TData> bool SparseToDenseOp<HIPContext>::DoRunWithType2() { auto& sparse_indices = Input(INDICES); CAFFE_ENFORCE_EQ(sparse_indices.dim(), 1); auto& sparse_values = Input(VALUES); CAFFE_ENFORCE_GE(sparse_values.dim(), 1); CAFFE_ENFORCE_EQ(sparse_indices.numel(), sparse_values.dim(0)); const TInd* sparse_indices_vec = sparse_indices.template data<TInd>(); const int32_t sparse_indices_len = sparse_indices.dim32(0); const int output_first_dim = GetOutputFirstDim(sparse_indices_vec, sparse_indices_len); auto shape = sparse_values.sizes().vec(); shape[0] = output_first_dim; auto* output = Output(0, shape, at::dtype<TData>()); TData* output_data = output->template mutable_data<TData>(); math::Set<TData>(output->numel(), TData(0), output_data, &context_); const auto block_nitems = sparse_values.size_from_dim(1); const TData* sparse_values_vec = sparse_values.template data<TData>(); size_t N = block_nitems * sparse_indices_len; CAFFE_ENFORCE_EQ(output->numel(), output_first_dim * block_nitems); hipLaunchKernelGGL(( SparseToDenseKernel<TInd, TData>), dim3(CAFFE_GET_BLOCKS(N)), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), N, block_nitems, sparse_indices_vec, sparse_values_vec, output_data ); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR(SparseToDense, SparseToDenseOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/operators/sparse_to_dense_op.h" #include "caffe2/core/common_gpu.h" #include "caffe2/core/context_gpu.h" #include "caffe2/utils/GpuAtomics.cuh" namespace caffe2 { template <typename TInd, typename TData> __global__ void SparseToDenseKernel( size_t N, int64_t block_nitems, const TInd* indices, const TData* vals, TData* dst) { CUDA_1D_KERNEL_LOOP(i, N) { int idx = indices[i / block_nitems]; int dst_idx = block_nitems * idx + i % block_nitems; gpu_atomic_add(&dst[dst_idx], vals[i]); } } template <> bool SparseToDenseOp<CUDAContext>::RunOnDevice() { return DispatchHelper<TensorTypes<int32_t>>::call( this, Input(INDICES)); } template <> template <typename TInd> bool SparseToDenseOp<CUDAContext>::DoRunWithType() { return DispatchHelper< TensorTypes2< float, int32_t>, TInd>::call(this, Input(VALUES)); } template <> template <typename TInd, typename TData> bool SparseToDenseOp<CUDAContext>::DoRunWithType2() { auto& sparse_indices = Input(INDICES); CAFFE_ENFORCE_EQ(sparse_indices.dim(), 1); auto& sparse_values = Input(VALUES); CAFFE_ENFORCE_GE(sparse_values.dim(), 1); CAFFE_ENFORCE_EQ(sparse_indices.numel(), sparse_values.dim(0)); const TInd* sparse_indices_vec = sparse_indices.template data<TInd>(); const int32_t sparse_indices_len = sparse_indices.dim32(0); const int output_first_dim = GetOutputFirstDim(sparse_indices_vec, sparse_indices_len); auto shape = sparse_values.sizes().vec(); shape[0] = output_first_dim; auto* output = Output(0, shape, at::dtype<TData>()); TData* output_data = output->template mutable_data<TData>(); math::Set<TData>(output->numel(), TData(0), output_data, &context_); const auto block_nitems = sparse_values.size_from_dim(1); const TData* sparse_values_vec = sparse_values.template data<TData>(); size_t N = block_nitems * sparse_indices_len; CAFFE_ENFORCE_EQ(output->numel(), output_first_dim * block_nitems); SparseToDenseKernel<TInd, TData><<< CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( N, block_nitems, sparse_indices_vec, sparse_values_vec, output_data ); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR(SparseToDense, SparseToDenseOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/operators/spatial_batch_norm_op.h" #include "caffe2/operators/hip/spatial_batch_norm_op_impl.cuh" namespace caffe2 { REGISTER_HIP_OPERATOR(SpatialBN, SpatialBNOp<HIPContext>); REGISTER_HIP_OPERATOR(SpatialBNGradient, SpatialBNGradientOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/operators/spatial_batch_norm_op.h" #include "caffe2/operators/spatial_batch_norm_op_impl.cuh" namespace caffe2 { REGISTER_CUDA_OPERATOR(SpatialBN, SpatialBNOp<CUDAContext>); REGISTER_CUDA_OPERATOR(SpatialBNGradient, SpatialBNGradientOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/operators/sqrt_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { REGISTER_HIP_OPERATOR( Sqrt, UnaryElementwiseOp< TensorTypes<float>, HIPContext, SqrtFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/sqrt_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { REGISTER_CUDA_OPERATOR( Sqrt, UnaryElementwiseOp< TensorTypes<float>, CUDAContext, SqrtFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/operators/sqr_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { REGISTER_HIP_OPERATOR( Sqr, UnaryElementwiseOp< TensorTypes<float>, HIPContext, SqrFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/sqr_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { REGISTER_CUDA_OPERATOR( Sqr, UnaryElementwiseOp< TensorTypes<float>, CUDAContext, SqrFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/stop_gradient.h" namespace caffe2 { REGISTER_HIP_OPERATOR(StopGradient, StopGradientOp<HIPContext>); } // namespace caffe2 ###
#include "caffe2/core/context_gpu.h" #include "caffe2/operators/stop_gradient.h" namespace caffe2 { REGISTER_CUDA_OPERATOR(StopGradient, StopGradientOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /** * Copyright (c) 2016-present, Facebook, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "caffe2/core/hip/context_gpu.h" #include "caffe2/operators/stump_func_op.h" namespace caffe2 { namespace { template <typename TIN, typename TOUT> __global__ void StumpFuncKernel( const int N, const TIN threshold, const TOUT low_value, const TOUT high_value, const TIN* X, TOUT* Y) { HIP_1D_KERNEL_LOOP(i, N) { Y[i] = (X[i] <= threshold) ? low_value : high_value; } } } // template <> bool StumpFuncOp<float, float, HIPContext>::RunOnDevice() { auto& in = Input(0); const float* in_data = in.data<float>(); auto* out = Output(0, in.sizes(), at::dtype<float>()); float* out_data = out->template mutable_data<float>(); hipLaunchKernelGGL(( StumpFuncKernel), dim3(CAFFE_GET_BLOCKS(in.numel())), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), in.numel(), threshold_, low_value_, high_value_, in_data, out_data); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR(StumpFunc, StumpFuncOp<float, float, HIPContext>); // NO_GRADIENT(StumpFuncGpu); } // caffe2 ###
/** * Copyright (c) 2016-present, Facebook, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "caffe2/core/context_gpu.h" #include "caffe2/operators/stump_func_op.h" namespace caffe2 { namespace { template <typename TIN, typename TOUT> __global__ void StumpFuncKernel( const int N, const TIN threshold, const TOUT low_value, const TOUT high_value, const TIN* X, TOUT* Y) { CUDA_1D_KERNEL_LOOP(i, N) { Y[i] = (X[i] <= threshold) ? low_value : high_value; } } } // template <> bool StumpFuncOp<float, float, CUDAContext>::RunOnDevice() { auto& in = Input(0); const float* in_data = in.data<float>(); auto* out = Output(0, in.sizes(), at::dtype<float>()); float* out_data = out->template mutable_data<float>(); StumpFuncKernel<<<CAFFE_GET_BLOCKS(in.numel()), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>( in.numel(), threshold_, low_value_, high_value_, in_data, out_data); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR(StumpFunc, StumpFuncOp<float, float, CUDAContext>); // NO_GRADIENT(StumpFuncGpu); } // caffe2 ###
#include <hip/hip_runtime.h> #include <thrust/device_vector.h> #include <thrust/transform_reduce.h> #include <thrust/system/hip/execution_policy.h> #include "caffe2/operators/summarize_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace { template <typename T> struct SummaryStatsData { T n; T min; T max; T mean; T M2; void initialize() { n = mean = M2 = 0; min = std::numeric_limits<T>::max(); max = std::numeric_limits<T>::min(); } T variance() { return (n == 1 ? 0 : M2 / (n - 1)); } }; template <typename T> struct summary_stats_unary_op { __host__ __device__ SummaryStatsData<T> operator()(const T& x) const { SummaryStatsData<T> result; result.n = 1; result.min = x; result.max = x; result.mean = x; result.M2 = 0; return result; } }; template <typename T> struct summary_stats_binary_op : public thrust::binary_function<const SummaryStatsData<T>&, const SummaryStatsData<T>&, SummaryStatsData<T> > { __host__ __device__ SummaryStatsData<T> operator()( const SummaryStatsData<T>& x, const SummaryStatsData <T>& y) const { SummaryStatsData<T> result; T n = x.n + y.n; T delta = y.mean - x.mean; T delta2 = delta * delta; result.n = n; result.min = thrust::min(x.min, y.min); result.max = thrust::max(x.max, y.max); result.mean = x.mean + delta * y.n / n; result.M2 = x.M2 + y.M2; result.M2 += delta2 * x.n * y.n / n; return result; } }; } template<> bool SummarizeOp<float, HIPContext>::RunOnDevice() { auto& X = Input(0); const int N = X.numel(); TORCH_DCHECK_GT(N, 0); thrust::device_ptr<float> Xdata(const_cast<float*>(X.data<float>())); summary_stats_unary_op<float> unary_op; summary_stats_binary_op<float> binary_op; SummaryStatsData<float> init; init.initialize(); SummaryStatsData<float> result = thrust::transform_reduce( #if THRUST_VERSION >= 100800 thrust::hip::par.on(context_.hip_stream()), #endif Xdata, Xdata + N, unary_op, init, binary_op); float standard_deviation = std::sqrt(result.variance()); if (to_file_) { (*log_file_) << result.min << " " << result.max << " " << result.mean << " " << standard_deviation << std::endl; } if (OutputSize()) { auto* Y = Output(0, {4}, at::dtype<float>()); float output_buffer[NUM_STATS] = {result.min, result.max, result.mean, standard_deviation}; context_.CopyFromCPU<float>( NUM_STATS, output_buffer, Y->template mutable_data<float>()); } return true; } REGISTER_HIP_OPERATOR(Summarize, SummarizeOp<float, HIPContext>); } ###
#include <cuda.h> #include <thrust/device_vector.h> #include <thrust/transform_reduce.h> #include <thrust/system/cuda/execution_policy.h> #include "caffe2/operators/summarize_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace { template <typename T> struct SummaryStatsData { T n; T min; T max; T mean; T M2; void initialize() { n = mean = M2 = 0; min = std::numeric_limits<T>::max(); max = std::numeric_limits<T>::min(); } T variance() { return (n == 1 ? 0 : M2 / (n - 1)); } }; template <typename T> struct summary_stats_unary_op { __host__ __device__ SummaryStatsData<T> operator()(const T& x) const { SummaryStatsData<T> result; result.n = 1; result.min = x; result.max = x; result.mean = x; result.M2 = 0; return result; } }; template <typename T> struct summary_stats_binary_op : public thrust::binary_function<const SummaryStatsData<T>&, const SummaryStatsData<T>&, SummaryStatsData<T> > { __host__ __device__ SummaryStatsData<T> operator()( const SummaryStatsData<T>& x, const SummaryStatsData <T>& y) const { SummaryStatsData<T> result; T n = x.n + y.n; T delta = y.mean - x.mean; T delta2 = delta * delta; result.n = n; result.min = thrust::min(x.min, y.min); result.max = thrust::max(x.max, y.max); result.mean = x.mean + delta * y.n / n; result.M2 = x.M2 + y.M2; result.M2 += delta2 * x.n * y.n / n; return result; } }; } template<> bool SummarizeOp<float, CUDAContext>::RunOnDevice() { auto& X = Input(0); const int N = X.numel(); TORCH_DCHECK_GT(N, 0); thrust::device_ptr<float> Xdata(const_cast<float*>(X.data<float>())); summary_stats_unary_op<float> unary_op; summary_stats_binary_op<float> binary_op; SummaryStatsData<float> init; init.initialize(); SummaryStatsData<float> result = thrust::transform_reduce( #if THRUST_VERSION >= 100800 thrust::cuda::par.on(context_.cuda_stream()), #endif Xdata, Xdata + N, unary_op, init, binary_op); float standard_deviation = std::sqrt(result.variance()); if (to_file_) { (*log_file_) << result.min << " " << result.max << " " << result.mean << " " << standard_deviation << std::endl; } if (OutputSize()) { auto* Y = Output(0, {4}, at::dtype<float>()); float output_buffer[NUM_STATS] = {result.min, result.max, result.mean, standard_deviation}; context_.CopyFromCPU<float>( NUM_STATS, output_buffer, Y->template mutable_data<float>()); } return true; } REGISTER_CUDA_OPERATOR(Summarize, SummarizeOp<float, CUDAContext>); } ###
#include "hip/hip_runtime.h" #include "caffe2/operators/swish_op.h" #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void SwishHIPKernel(const int N, const T* X, T* Y) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 Y[i] = __ldg(X + i) / (T(1) + exp(-__ldg(X + i))); #else Y[i] = X[i] / (T(1) + exp(-X[i])); #endif } } template <typename T> __global__ void SwishGradientHIPKernel( const int N, const T* X, const T* Y, const T* dY, T* dX) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 dX[i] = __ldg(dY + i) * (__ldg(Y + i) + (T(1) - __ldg(Y + i)) / (T(1) + exp(-__ldg(X + i)))); #else dX[i] = dY[i] * (Y[i] + (T(1) - Y[i]) / (T(1) + exp(-X[i]))); #endif } } } template <> template <typename T> bool SwishFunctor<HIPContext>:: operator()(const int N, const T* X, T* Y, HIPContext* context) const { hipLaunchKernelGGL(( SwishHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(N)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), N, X, Y); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } template <> template <typename T> bool SwishGradientOp<HIPContext>::DoRunWithType() { auto& Xin = Input(X); auto& Yin = Input(Y); auto& DYin = Input(DY); auto* DXout = Output(DX); CAFFE_ENFORCE_EQ(Xin.size(), Yin.size()); CAFFE_ENFORCE_EQ(DYin.size(), Yin.size()); DXout->ResizeLike(Yin); const int n = Xin.size(); const T* x = Xin.template data<T>(); const T* y = Yin.template data<T>(); const T* dy = DYin.template data<T>(); T* dx = DXout->template mutable_data<T>(); hipLaunchKernelGGL(( SwishGradientHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(n)), dim3(CAFFE_HIP_NUM_THREADS), 0, context_.hip_stream(), n, x, y, dy, dx); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } template <> bool SwishGradientOp<HIPContext>::RunOnDevice() { return DispatchHelper<TensorTypes<float, double>>::call(this, Input(X)); } REGISTER_HIP_OPERATOR( Swish, UnaryElementwiseOp< TensorTypes<float, double>, HIPContext, SwishFunctor<HIPContext>>); REGISTER_HIP_OPERATOR(SwishGradient, SwishGradientOp<HIPContext>); } ###
#include "caffe2/operators/swish_op.h" #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void SwishCUDAKernel(const int N, const T* X, T* Y) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 Y[i] = __ldg(X + i) / (T(1) + exp(-__ldg(X + i))); #else Y[i] = X[i] / (T(1) + exp(-X[i])); #endif } } template <typename T> __global__ void SwishGradientCUDAKernel( const int N, const T* X, const T* Y, const T* dY, T* dX) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 dX[i] = __ldg(dY + i) * (__ldg(Y + i) + (T(1) - __ldg(Y + i)) / (T(1) + exp(-__ldg(X + i)))); #else dX[i] = dY[i] * (Y[i] + (T(1) - Y[i]) / (T(1) + exp(-X[i]))); #endif } } } // namespace template <> template <typename T> bool SwishFunctor<CUDAContext>:: operator()(const int N, const T* X, T* Y, CUDAContext* context) const { SwishCUDAKernel<T> <<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(N, X, Y); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } template <> template <typename T> bool SwishGradientOp<CUDAContext>::DoRunWithType() { auto& Xin = Input(X); auto& Yin = Input(Y); auto& DYin = Input(DY); auto* DXout = Output(DX); CAFFE_ENFORCE_EQ(Xin.size(), Yin.size()); CAFFE_ENFORCE_EQ(DYin.size(), Yin.size()); DXout->ResizeLike(Yin); const int n = Xin.size(); const T* x = Xin.template data<T>(); const T* y = Yin.template data<T>(); const T* dy = DYin.template data<T>(); T* dx = DXout->template mutable_data<T>(); SwishGradientCUDAKernel<T> <<<CAFFE_GET_BLOCKS(n), CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(n, x, y, dy, dx); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } template <> bool SwishGradientOp<CUDAContext>::RunOnDevice() { return DispatchHelper<TensorTypes<float, double>>::call(this, Input(X)); } REGISTER_CUDA_OPERATOR( Swish, UnaryElementwiseOp< TensorTypes<float, double>, CUDAContext, SwishFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR(SwishGradient, SwishGradientOp<CUDAContext>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/tanh_op.h" #include <algorithm> #include <functional> #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void TanhGradientHIPKernel(const int N, const T* dY, const T* Y, T* dX) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 dX[i] = __ldg(dY + i) * (T(1) - __ldg(Y + i) * __ldg(Y + i)); #else dX[i] = dY[i] * (T(1) - Y[i] * Y[i]); #endif } } } // namespace template <> template <typename T> bool TanhGradientFunctor<HIPContext>::Forward( const std::vector<int>& Y_dims, const std::vector<int>& /* dY_dims */, const T* Y, const T* dY, T* dX, HIPContext* context) const { const int size = std::accumulate( Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>()); hipLaunchKernelGGL(( TanhGradientHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), size, dY, Y, dX); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( Tanh, UnaryElementwiseOp< TensorTypes<float>, HIPContext, TanhFunctor<HIPContext>>); REGISTER_HIP_OPERATOR( TanhGradient, BinaryElementwiseOp< TensorTypes<float>, HIPContext, TanhGradientFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/tanh_op.h" #include <algorithm> #include <functional> #include "caffe2/core/context_gpu.h" namespace caffe2 { namespace { template <typename T> __global__ void TanhGradientCUDAKernel(const int N, const T* dY, const T* Y, T* dX) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 dX[i] = __ldg(dY + i) * (T(1) - __ldg(Y + i) * __ldg(Y + i)); #else dX[i] = dY[i] * (T(1) - Y[i] * Y[i]); #endif } } } // namespace template <> template <typename T> bool TanhGradientFunctor<CUDAContext>::Forward( const std::vector<int>& Y_dims, const std::vector<int>& /* dY_dims */, const T* Y, const T* dY, T* dX, CUDAContext* context) const { const int size = std::accumulate( Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>()); TanhGradientCUDAKernel<T> <<<CAFFE_GET_BLOCKS(size), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(size, dY, Y, dX); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( Tanh, UnaryElementwiseOp< TensorTypes<float>, CUDAContext, TanhFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR( TanhGradient, BinaryElementwiseOp< TensorTypes<float>, CUDAContext, TanhGradientFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "caffe2/operators/tan_op.h" #include <algorithm> #include <functional> #include "caffe2/core/hip/context_gpu.h" namespace caffe2 { template <typename T> inline __host__ __device__ T Square(const T& x) { return x * x; } template <typename T> __global__ void TanGradientHIPKernel(const int N, const T* dY, const T* X, T* dX) { HIP_1D_KERNEL_LOOP(i, N) { #if __HIP_ARCH__ >= 350 dX[i] = __ldg(dY + i) / Square(cos(__ldg(X + i))); #else dX[i] = dY[i] / Square(cos(X[i])); #endif } } template <> template <typename T> bool TanGradientFunctor<HIPContext>::Forward( const std::vector<int>& X_dims, const std::vector<int>& /* dY_dims */, const T* X, const T* dY, T* dX, HIPContext* context) const { const int size = std::accumulate( X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); hipLaunchKernelGGL(( TanGradientHIPKernel<T>) , dim3(CAFFE_GET_BLOCKS(size)), dim3(CAFFE_HIP_NUM_THREADS), 0, context->hip_stream(), size, dY, X, dX); C10_HIP_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_HIP_OPERATOR( Tan, UnaryElementwiseOp< TensorTypes<float>, HIPContext, TanFunctor<HIPContext>>); REGISTER_HIP_OPERATOR( TanGradient, BinaryElementwiseOp< TensorTypes<float>, HIPContext, TanGradientFunctor<HIPContext>>); } // namespace caffe2 ###
#include "caffe2/operators/tan_op.h" #include <algorithm> #include <functional> #include "caffe2/core/context_gpu.h" namespace caffe2 { template <typename T> inline __host__ __device__ T Square(const T& x) { return x * x; } template <typename T> __global__ void TanGradientCUDAKernel(const int N, const T* dY, const T* X, T* dX) { CUDA_1D_KERNEL_LOOP(i, N) { #if __CUDA_ARCH__ >= 350 dX[i] = __ldg(dY + i) / Square(cos(__ldg(X + i))); #else dX[i] = dY[i] / Square(cos(X[i])); #endif } } template <> template <typename T> bool TanGradientFunctor<CUDAContext>::Forward( const std::vector<int>& X_dims, const std::vector<int>& /* dY_dims */, const T* X, const T* dY, T* dX, CUDAContext* context) const { const int size = std::accumulate( X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>()); TanGradientCUDAKernel<T> <<<CAFFE_GET_BLOCKS(size), CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(size, dY, X, dX); C10_CUDA_KERNEL_LAUNCH_CHECK(); return true; } REGISTER_CUDA_OPERATOR( Tan, UnaryElementwiseOp< TensorTypes<float>, CUDAContext, TanFunctor<CUDAContext>>); REGISTER_CUDA_OPERATOR( TanGradient, BinaryElementwiseOp< TensorTypes<float>, CUDAContext, TanGradientFunctor<CUDAContext>>); } // namespace caffe2 ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #define _USE_MATH_DEFINES #include <ATen/native/Activation.h> #include <cmath> #include <thrust/tuple.h> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/core/TensorBase.h> #include <c10/core/Scalar.h> #include <c10/hip/HIPMathCompat.h> #include <ATen/hip\ApplyGridUtils.cuh> #include <ATen/hip/detail\OffsetCalculator.cuh> #include <ATen/native/hip\Loops.cuh> namespace at::native { namespace { void softshrink_kernel(TensorIteratorBase& iter, const Scalar& value) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "softshrink_hip", [&]() { auto lambd = value.to<scalar_t>(); gpu_kernel(iter, [lambd] GPU_LAMBDA(scalar_t a) -> scalar_t { return a > lambd ? a - lambd : (a < -lambd ? a + lambd : scalar_t(0)); }); }); } void shrink_backward_kernel(TensorIteratorBase& iter, const Scalar& value) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "shrink_backward_hip", [&]() { auto lambd = value.to<scalar_t>(); gpu_kernel( iter, [lambd] GPU_LAMBDA( scalar_t grad_val, scalar_t self_val) -> scalar_t { return (self_val >= -lambd && self_val <= lambd) ? scalar_t(0) : grad_val; }); }); } } // namespace REGISTER_DISPATCH(softshrink_stub, &softshrink_kernel); REGISTER_DISPATCH(shrink_backward_stub, &shrink_backward_kernel); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #define _USE_MATH_DEFINES #include <ATen/native/Activation.h> #include <cmath> #include <thrust/tuple.h> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/core/TensorBase.h> #include <c10/core/Scalar.h> #include <c10/cuda/CUDAMathCompat.h> #include <ATen/cuda/ApplyGridUtils.cuh> #include <ATen/cuda/detail/OffsetCalculator.cuh> #include <ATen/native/cuda/Loops.cuh> namespace at::native { namespace { void softshrink_kernel(TensorIteratorBase& iter, const Scalar& value) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "softshrink_cuda", [&]() { auto lambd = value.to<scalar_t>(); gpu_kernel(iter, [lambd] GPU_LAMBDA(scalar_t a) -> scalar_t { return a > lambd ? a - lambd : (a < -lambd ? a + lambd : scalar_t(0)); }); }); } void shrink_backward_kernel(TensorIteratorBase& iter, const Scalar& value) { AT_DISPATCH_FLOATING_TYPES_AND2( at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "shrink_backward_cuda", [&]() { auto lambd = value.to<scalar_t>(); gpu_kernel( iter, [lambd] GPU_LAMBDA( scalar_t grad_val, scalar_t self_val) -> scalar_t { return (self_val >= -lambd && self_val <= lambd) ? scalar_t(0) : grad_val; }); }); } } // namespace REGISTER_DISPATCH(softshrink_stub, &softshrink_kernel); REGISTER_DISPATCH(shrink_backward_stub, &shrink_backward_kernel); } // namespace at::native ###