hip
stringlengths
140
3.32k
cuda
stringlengths
84
3.33k
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/math/binary_elementwise_ops.h" #include "core/providers/rocm/rocm_common.h" #include "core/providers/rocm/shared_inc/fast_divmod.h" #include "core/providers/cpu/tensor/utils.h" using namespace onnxruntime::rocm; namespace onnxruntime { namespace contrib { namespace rocm { // AddGelu fuse Add + Gelu template <typename T> class BiasGelu final : public BinaryElementwise<ShouldBroadcast> { public: BiasGelu(const OpKernelInfo& info) : BinaryElementwise(info) { } Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace rocm } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/math/binary_elementwise_ops.h" #include "core/providers/cuda/cuda_common.h" #include "core/providers/cuda/shared_inc/fast_divmod.h" #include "core/providers/cpu/tensor/utils.h" using namespace onnxruntime::cuda; namespace onnxruntime { namespace contrib { namespace cuda { // AddGelu fuse Add + Gelu template <typename T> class BiasGelu final : public BinaryElementwise<ShouldBroadcast> { public: BiasGelu(const OpKernelInfo& info) : BinaryElementwise(info) { } Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace cuda } // namespace contrib } // namespace onnxruntime ###
#include <stdint.h> #include "core/providers/rocm/shared_inc/rocm_utils.h" using namespace onnxruntime::rocm; namespace onnxruntime { namespace contrib { namespace rocm { // These macros simplifies coding. To add a new op with following steps: // 1. Add a new entry in CONTRIB_BINARY_OPS() list // 2. (optional) Define templated single element operator in binary_elementwise_ops_impl.cu // 3. (optional) Implement specialized single element operator // 4. Add op kernel class definition in binary_elementwise_ops.h // 5. Add op kernel registration and compute specialization in binary_elementwise_ops.cc #define CONTRIB_BINARY_OPS() \ CONTRIB_BINARY_OP_NAME_EXPR(BiasGelu, _Gelu(a + b)) // NOTE that cu files are compiled with nvcc and should not refer to any onnxruntime headers // so struct BinaryElementwisePreparation cannot be used here #define CONTRIB_BINARY_ELEMENTWISE_IMPL_DECLARATION(name) \ template <typename T> \ void Impl_##name( \ hipStream_t stream, \ int32_t output_rank_or_simple_broadcast, \ const TArray<int64_t>* lhs_padded_strides, \ const T* lhs_data, \ const TArray<int64_t>* rhs_padded_strides, \ const T* rhs_data, \ const TArray<onnxruntime::rocm::fast_divmod>* fdm_output_strides, \ const onnxruntime::rocm::fast_divmod& fdm_H, \ const onnxruntime::rocm::fast_divmod& fdm_C, \ T* output_data, \ size_t count) #define CONTRIB_BINARY_OP_NAME_EXPR(name, expr) CONTRIB_BINARY_ELEMENTWISE_IMPL_DECLARATION(name); CONTRIB_BINARY_OPS() #undef CONTRIB_BINARY_OP_NAME_EXPR } // namespace rocm } // namespace contrib } // namespace onnxruntime ###
#include <stdint.h> #include "core/providers/cuda/shared_inc/cuda_utils.h" using namespace onnxruntime::cuda; namespace onnxruntime { namespace contrib { namespace cuda { // These macros simplifies coding. To add a new op with following steps: // 1. Add a new entry in CONTRIB_BINARY_OPS() list // 2. (optional) Define templated single element operator in binary_elementwise_ops_impl.cu // 3. (optional) Implement specialized single element operator // 4. Add op kernel class definition in binary_elementwise_ops.h // 5. Add op kernel registration and compute specialization in binary_elementwise_ops.cc #define CONTRIB_BINARY_OPS() \ CONTRIB_BINARY_OP_NAME_EXPR(BiasGelu, _Gelu(a + b)) // NOTE that cu files are compiled with nvcc and should not refer to any onnxruntime headers // so struct BinaryElementwisePreparation cannot be used here #define CONTRIB_BINARY_ELEMENTWISE_IMPL_DECLARATION(name) \ template <typename T> \ void Impl_##name( \ cudaStream_t stream, \ int32_t output_rank_or_simple_broadcast, \ const TArray<int64_t>* lhs_padded_strides, \ const T* lhs_data, \ const TArray<int64_t>* rhs_padded_strides, \ const T* rhs_data, \ const TArray<onnxruntime::cuda::fast_divmod>* fdm_output_strides, \ const onnxruntime::cuda::fast_divmod& fdm_H, \ const onnxruntime::cuda::fast_divmod& fdm_C, \ T* output_data, \ size_t count) #define CONTRIB_BINARY_OP_NAME_EXPR(name, expr) CONTRIB_BINARY_ELEMENTWISE_IMPL_DECLARATION(name); CONTRIB_BINARY_OPS() #undef CONTRIB_BINARY_OP_NAME_EXPR } // namespace cuda } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "core/providers/rocm/nn/dropout.h" #include "core/providers/rocm/shared_inc/rocm_utils.h" namespace onnxruntime { namespace contrib { namespace rocm { ONNX_OPERATOR_KERNEL_EX(BitmaskDropout, kMSDomain, 1, kRocmExecutionProvider, (*KernelDefBuilder::Create()) .TypeConstraint("T", BuildKernelDefConstraints<MLFloat16, float, double, BFloat16>()) .TypeConstraint("T1", BuildKernelDefConstraints<MLFloat16, float, double, BFloat16>()) .TypeConstraint("T2", DataTypeImpl::GetTensorType<bool>()) .TypeConstraint("T3", DataTypeImpl::GetTensorType<onnxruntime::rocm::BitmaskElementType>()) .InputMemoryType(OrtMemTypeCPUInput, 1) .InputMemoryType(OrtMemTypeCPUInput, 2), onnxruntime::rocm::Dropout<true>); } // namespace rocm } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "core/providers/cuda/nn/dropout.h" #include "core/providers/cuda/shared_inc/cuda_utils.h" namespace onnxruntime { namespace contrib { namespace cuda { ONNX_OPERATOR_KERNEL_EX(BitmaskDropout, kMSDomain, 1, kCudaExecutionProvider, (*KernelDefBuilder::Create()) .TypeConstraint("T", BuildKernelDefConstraints<MLFloat16, float, double, BFloat16>()) .TypeConstraint("T1", BuildKernelDefConstraints<MLFloat16, float, double, BFloat16>()) .TypeConstraint("T2", DataTypeImpl::GetTensorType<bool>()) .TypeConstraint("T3", DataTypeImpl::GetTensorType<onnxruntime::cuda::BitmaskElementType>()) .InputMemoryType(OrtMemTypeCPUInput, 1) .InputMemoryType(OrtMemTypeCPUInput, 2), onnxruntime::cuda::Dropout<true>); } // namespace cuda } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "core/providers/rocm/math/matmul.h" namespace onnxruntime { namespace contrib { namespace rocm { #define REGISTER_KERNEL_TYPED(op_name, T) \ ONNX_OPERATOR_TYPED_KERNEL_EX( \ op_name, \ kMSDomain, \ 1, \ T, \ kRocmExecutionProvider, \ (*KernelDefBuilder::Create()) \ .TypeConstraint("T", DataTypeImpl::GetTensorType<T>()), \ onnxruntime::rocm::MatMul<T>); // TransposeMatMul is kept here for backward compatibility REGISTER_KERNEL_TYPED(TransposeMatMul, float) REGISTER_KERNEL_TYPED(TransposeMatMul, double) REGISTER_KERNEL_TYPED(TransposeMatMul, MLFloat16) REGISTER_KERNEL_TYPED(TransposeMatMul, BFloat16) REGISTER_KERNEL_TYPED(FusedMatMul, float) REGISTER_KERNEL_TYPED(FusedMatMul, double) REGISTER_KERNEL_TYPED(FusedMatMul, MLFloat16) REGISTER_KERNEL_TYPED(FusedMatMul, BFloat16) } // namespace rocm } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "core/providers/cuda/math/matmul.h" namespace onnxruntime { namespace contrib { namespace cuda { #define REGISTER_KERNEL_TYPED(op_name, T) \ ONNX_OPERATOR_TYPED_KERNEL_EX( \ op_name, \ kMSDomain, \ 1, \ T, \ kCudaExecutionProvider, \ (*KernelDefBuilder::Create()) \ .TypeConstraint("T", DataTypeImpl::GetTensorType<T>()), \ onnxruntime::cuda::MatMul<T>); // TransposeMatMul is kept here for backward compatibility REGISTER_KERNEL_TYPED(TransposeMatMul, float) REGISTER_KERNEL_TYPED(TransposeMatMul, double) REGISTER_KERNEL_TYPED(TransposeMatMul, MLFloat16) REGISTER_KERNEL_TYPED(TransposeMatMul, BFloat16) REGISTER_KERNEL_TYPED(FusedMatMul, float) REGISTER_KERNEL_TYPED(FusedMatMul, double) REGISTER_KERNEL_TYPED(FusedMatMul, MLFloat16) REGISTER_KERNEL_TYPED(FusedMatMul, BFloat16) } // namespace cuda } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "contrib_ops/rocm/math/isfinite.h" #include "isfinite_impl.h" using namespace ONNX_NAMESPACE; using namespace onnxruntime::common; namespace onnxruntime { namespace rocm { #define REGISTER_ISALLFINITE_KERNEL_TYPED(T) \ ONNX_OPERATOR_TYPED_KERNEL_EX( \ IsAllFinite, \ kMSDomain, \ 1, \ T, \ kRocmExecutionProvider, \ (*KernelDefBuilder::Create()) \ .TypeConstraint("V", DataTypeImpl::GetTensorType<T>()) \ .TypeConstraint("T", DataTypeImpl::GetTensorType<bool>()), \ IsAllFiniteOp<T>); template <typename TSrc> Status IsAllFiniteOp<TSrc>::ComputeInternal(OpKernelContext* context) const { typedef typename ToHipType<TSrc>::MappedType TSrcCuda; // Get Input tensor count. const auto total_tensor_count = context->InputCount(); // Initialize the output to true. GPU kernel will set it // to false if any value in any tensor is non-finite. Tensor& output = *context->Output(0, {}); auto* output_data = reinterpret_cast<ToHipType<bool>::MappedType*>(output.MutableData<bool>()); HIP_RETURN_IF_ERROR(hipMemsetAsync(output_data, int(true), sizeof(bool), Stream(context))); std::vector<std::vector<void*>> grouped_tensor_pointers(total_tensor_count); std::vector<int> tensor_sizes(total_tensor_count); for (int i = 0; i < total_tensor_count; ++i) { const auto& input = context->Input<Tensor>(i); grouped_tensor_pointers[i] = {const_cast<TSrc*>(input->Data<TSrc>())}; tensor_sizes[i] = static_cast<int>(input->Shape().Size()); } typedef IsAllFiniteFunctor<TSrcCuda> TFunctor; TFunctor functor; // Check if all values are finite and write true to output. // Otherwise, false will be written. launch_multi_tensor_functor<1, TFunctor>( Stream(context), 2048 * 32, tensor_sizes, grouped_tensor_pointers, functor, output_data, isinf_only_, isnan_only_); return Status::OK(); } REGISTER_ISALLFINITE_KERNEL_TYPED(MLFloat16) REGISTER_ISALLFINITE_KERNEL_TYPED(float) REGISTER_ISALLFINITE_KERNEL_TYPED(double) } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "contrib_ops/cuda/math/isfinite.h" #include "isfinite_impl.h" using namespace ONNX_NAMESPACE; using namespace onnxruntime::common; namespace onnxruntime { namespace cuda { #define REGISTER_ISALLFINITE_KERNEL_TYPED(T) \ ONNX_OPERATOR_TYPED_KERNEL_EX( \ IsAllFinite, \ kMSDomain, \ 1, \ T, \ kCudaExecutionProvider, \ (*KernelDefBuilder::Create()) \ .TypeConstraint("V", DataTypeImpl::GetTensorType<T>()) \ .TypeConstraint("T", DataTypeImpl::GetTensorType<bool>()), \ IsAllFiniteOp<T>); template <typename TSrc> Status IsAllFiniteOp<TSrc>::ComputeInternal(OpKernelContext* context) const { typedef typename ToCudaType<TSrc>::MappedType TSrcCuda; // Get Input tensor count. const auto total_tensor_count = context->InputCount(); // Initialize the output to true. GPU kernel will set it // to false if any value in any tensor is non-finite. Tensor& output = *context->Output(0, {}); auto* output_data = reinterpret_cast<ToCudaType<bool>::MappedType*>(output.MutableData<bool>()); CUDA_RETURN_IF_ERROR(cudaMemsetAsync(output_data, int(true), sizeof(bool), Stream(context))); std::vector<std::vector<void*>> grouped_tensor_pointers(total_tensor_count); std::vector<int> tensor_sizes(total_tensor_count); for (int i = 0; i < total_tensor_count; ++i) { const auto& input = context->Input<Tensor>(i); grouped_tensor_pointers[i] = {const_cast<TSrc*>(input->Data<TSrc>())}; tensor_sizes[i] = static_cast<int>(input->Shape().Size()); } typedef IsAllFiniteFunctor<TSrcCuda> TFunctor; TFunctor functor; // Check if all values are finite and write true to output. // Otherwise, false will be written. launch_multi_tensor_functor<1, TFunctor>( Stream(context), 2048 * 32, tensor_sizes, grouped_tensor_pointers, functor, output_data, isinf_only_, isnan_only_); return Status::OK(); } REGISTER_ISALLFINITE_KERNEL_TYPED(MLFloat16) REGISTER_ISALLFINITE_KERNEL_TYPED(float) REGISTER_ISALLFINITE_KERNEL_TYPED(double) } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <hip/hip_fp16.h> #include "core/providers/rocm/cu_inc/common.cuh" #include "contrib_ops/rocm/math/isfinite.h" namespace onnxruntime { namespace rocm { template <typename T> __device__ __forceinline__ bool IsFiniteScalar(const T value) { return isfinite(value); } template <typename T> __device__ __forceinline__ bool IsInfScalar(const T value) { return isinf(value); } template <typename T> __device__ __forceinline__ bool IsNaNScalar(const T value) { return isnan(value); } template <> __device__ __forceinline__ bool IsFiniteScalar(const half value) { #if __CUDA_ARCH__ >= 530 || !defined(__CUDA_ARCH__) return !__hisinf(value) && !__hisnan(value); #else return isfinite(float(value)); #endif } template <> __device__ __forceinline__ bool IsInfScalar(const half value) { #if __CUDA_ARCH__ >= 530 || !defined(__CUDA_ARCH__) return __hisinf(value); #else return isinf(float(value)); #endif } template <> __device__ __forceinline__ bool IsNaNScalar(const half value) { #if __CUDA_ARCH__ >= 530 || !defined(__CUDA_ARCH__) return __hisnan(value); #else return isnan(float(value)); #endif } template <> __device__ __forceinline__ bool IsFiniteScalar(const BFloat16 value) { return isfinite(static_cast<float>(value)); } template <> __device__ __forceinline__ bool IsInfScalar(const BFloat16 value) { return isinf(static_cast<float>(value)); } template <> __device__ __forceinline__ bool IsNaNScalar(const BFloat16 value) { return isnan(static_cast<float>(value)); } } // namespace rocm } // namespace onnxruntime###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <cuda_fp16.h> #include "core/providers/cuda/cu_inc/common.cuh" #include "contrib_ops/cuda/math/isfinite.h" namespace onnxruntime { namespace cuda { template <typename T> __device__ __forceinline__ bool IsFiniteScalar(const T value) { return isfinite(value); } template <typename T> __device__ __forceinline__ bool IsInfScalar(const T value) { return isinf(value); } template <typename T> __device__ __forceinline__ bool IsNaNScalar(const T value) { return isnan(value); } template <> __device__ __forceinline__ bool IsFiniteScalar(const half value) { #if __CUDA_ARCH__ >= 530 || !defined(__CUDA_ARCH__) return !__hisinf(value) && !__hisnan(value); #else return isfinite(float(value)); #endif } template <> __device__ __forceinline__ bool IsInfScalar(const half value) { #if __CUDA_ARCH__ >= 530 || !defined(__CUDA_ARCH__) return __hisinf(value); #else return isinf(float(value)); #endif } template <> __device__ __forceinline__ bool IsNaNScalar(const half value) { #if __CUDA_ARCH__ >= 530 || !defined(__CUDA_ARCH__) return __hisnan(value); #else return isnan(float(value)); #endif } template <> __device__ __forceinline__ bool IsFiniteScalar(const BFloat16 value) { return isfinite(static_cast<float>(value)); } template <> __device__ __forceinline__ bool IsInfScalar(const BFloat16 value) { return isinf(static_cast<float>(value)); } template <> __device__ __forceinline__ bool IsNaNScalar(const BFloat16 value) { return isnan(static_cast<float>(value)); } } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_kernel.h" #include "core/providers/cpu/math/clip.h" namespace onnxruntime { namespace rocm { template <typename T> class Clip_6 final : public onnxruntime::clip_internal::Clip_6Base<T>, public RocmKernel { public: explicit Clip_6(const OpKernelInfo& info) : onnxruntime::clip_internal::Clip_6Base<T>(info), RocmKernel{info} { } Status ComputeInternal(OpKernelContext* context) const override; }; // Since version 11. Min and Max are inputs // version 12 adds type support class Clip final : public RocmKernel { public: explicit Clip(const OpKernelInfo& info) : RocmKernel{info} { } Status ComputeInternal(OpKernelContext* context) const override; private: template <typename T> struct ComputeImpl; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_kernel.h" #include "core/providers/cpu/math/clip.h" namespace onnxruntime { namespace cuda { template <typename T> class Clip_6 final : public onnxruntime::clip_internal::Clip_6Base<T>, public CudaKernel { public: explicit Clip_6(const OpKernelInfo& info) : onnxruntime::clip_internal::Clip_6Base<T>(info), CudaKernel{info} { } Status ComputeInternal(OpKernelContext* context) const override; }; // Since version 11. Min and Max are inputs // version 12 adds type support class Clip final : public CudaKernel { public: explicit Clip(const OpKernelInfo& info) : CudaKernel{info} { } Status ComputeInternal(OpKernelContext* context) const override; private: template <typename T> struct ComputeImpl; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { template <typename TSrc> class IsAllFiniteOp final : public RocmKernel { public: IsAllFiniteOp(const OpKernelInfo& info) : RocmKernel(info) { int64_t isinf_only; info.GetAttrOrDefault("isinf_only", &isinf_only, static_cast<int64_t>(0)); isinf_only_ = (isinf_only != 0); int64_t isnan_only; info.GetAttrOrDefault("isnan_only", &isnan_only, static_cast<int64_t>(0)); isnan_only_ = (isnan_only != 0); ORT_ENFORCE(!(isinf_only_ && isnan_only_), "Both attributes isinf_only and isnan_only cannot be set. Unset both to check for both conditions."); } Status ComputeInternal(OpKernelContext* context) const override; private: bool isinf_only_, isnan_only_; }; } // namespace rocm } // namespace onnxruntime###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { template <typename TSrc> class IsAllFiniteOp final : public CudaKernel { public: IsAllFiniteOp(const OpKernelInfo& info) : CudaKernel(info) { int64_t isinf_only; info.GetAttrOrDefault("isinf_only", &isinf_only, static_cast<int64_t>(0)); isinf_only_ = (isinf_only != 0); int64_t isnan_only; info.GetAttrOrDefault("isnan_only", &isnan_only, static_cast<int64_t>(0)); isnan_only_ = (isnan_only != 0); ORT_ENFORCE(!(isinf_only_ && isnan_only_), "Both attributes isinf_only and isnan_only cannot be set. Unset both to check for both conditions."); } Status ComputeInternal(OpKernelContext* context) const override; private: bool isinf_only_, isnan_only_; }; } // namespace cuda } // namespace onnxruntime ###
#include "hip/hip_runtime.h" // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include <hip/hip_fp16.h> #include "isfinite_impl.h" #include "core/providers/rocm/cu_inc/common.cuh" #include "contrib_ops/rocm/math/isfinite.cuh" namespace onnxruntime { namespace rocm { template <typename TSrc, bool isinf_only, bool isnan_only> __global__ void IsAllFiniteMultiTensorImpl(ChunkGroup<1> chunks, bool* output) { const int block_idx = blockIdx.x; const int tensor_idx = chunks.block_index_to_tensor_group_index[block_idx]; const int tensor_size = chunks.tensor_sizes[tensor_idx]; const TSrc* tensor_ptr = static_cast<TSrc*>(chunks.tensor_ptrs[0][tensor_idx]); const int chunk_start_idx = chunks.block_index_to_chunk_start_index[block_idx]; // chunk_size is chunks.chunk_size if the loaded chunk is full. Otherwise (this // chunk is the last one in the source tensor), the actual size is determined // by the bound of the source tensor. const int chunk_size = min(tensor_size, chunk_start_idx + chunks.chunk_size) - chunk_start_idx; const TSrc* chunk_ptr = tensor_ptr + chunk_start_idx; bool result = true; #pragma unroll 4 for (int i = threadIdx.x; i < chunk_size; i += blockDim.x) { if (isinf_only) { result &= !IsInfScalar(chunk_ptr[i]); } else if (isnan_only) { result &= !IsNaNScalar(chunk_ptr[i]); } else { result &= IsFiniteScalar(chunk_ptr[i]); } } if (!result) { *output = false; } } template <typename T> void IsAllFiniteFunctor<T>::operator()(hipStream_t stream, ChunkGroup<1> chunks, bool* output, const bool isinf_only, const bool isnan_only) { const int block_count = chunks.chunk_count; const int thread_count = ChunkGroup<1>::thread_count_per_block; if (isinf_only) { IsAllFiniteMultiTensorImpl<T, true, false><<<block_count, thread_count, 0, stream>>>(chunks, output); } else if (isnan_only) { IsAllFiniteMultiTensorImpl<T, false, true><<<block_count, thread_count, 0, stream>>>(chunks, output); } else { IsAllFiniteMultiTensorImpl<T, false, false><<<block_count, thread_count, 0, stream>>>(chunks, output); } } #define INSTANTIATE_ISALLFINITE_FUNCTOR(T) \ template void IsAllFiniteFunctor<T>::operator()(hipStream_t stream, \ ChunkGroup<1> chunks, \ bool* output, \ const bool isinf_only, \ const bool isnan_only); INSTANTIATE_ISALLFINITE_FUNCTOR(half) INSTANTIATE_ISALLFINITE_FUNCTOR(float) INSTANTIATE_ISALLFINITE_FUNCTOR(double) } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include <cuda_fp16.h> #include "isfinite_impl.h" #include "core/providers/cuda/cu_inc/common.cuh" #include "contrib_ops/cuda/math/isfinite.cuh" namespace onnxruntime { namespace cuda { template <typename TSrc, bool isinf_only, bool isnan_only> __global__ void IsAllFiniteMultiTensorImpl(ChunkGroup<1> chunks, bool* output) { const int block_idx = blockIdx.x; const int tensor_idx = chunks.block_index_to_tensor_group_index[block_idx]; const int tensor_size = chunks.tensor_sizes[tensor_idx]; const TSrc* tensor_ptr = static_cast<TSrc*>(chunks.tensor_ptrs[0][tensor_idx]); const int chunk_start_idx = chunks.block_index_to_chunk_start_index[block_idx]; // chunk_size is chunks.chunk_size if the loaded chunk is full. Otherwise (this // chunk is the last one in the source tensor), the actual size is determined // by the bound of the source tensor. const int chunk_size = min(tensor_size, chunk_start_idx + chunks.chunk_size) - chunk_start_idx; const TSrc* chunk_ptr = tensor_ptr + chunk_start_idx; bool result = true; #pragma unroll 4 for (int i = threadIdx.x; i < chunk_size; i += blockDim.x) { if (isinf_only) { result &= !IsInfScalar(chunk_ptr[i]); } else if (isnan_only) { result &= !IsNaNScalar(chunk_ptr[i]); } else { result &= IsFiniteScalar(chunk_ptr[i]); } } if (!result) { *output = false; } } template <typename T> void IsAllFiniteFunctor<T>::operator()(cudaStream_t stream, ChunkGroup<1> chunks, bool* output, const bool isinf_only, const bool isnan_only) { const int block_count = chunks.chunk_count; const int thread_count = ChunkGroup<1>::thread_count_per_block; if (isinf_only) { IsAllFiniteMultiTensorImpl<T, true, false><<<block_count, thread_count, 0, stream>>>(chunks, output); } else if (isnan_only) { IsAllFiniteMultiTensorImpl<T, false, true><<<block_count, thread_count, 0, stream>>>(chunks, output); } else { IsAllFiniteMultiTensorImpl<T, false, false><<<block_count, thread_count, 0, stream>>>(chunks, output); } } #define INSTANTIATE_ISALLFINITE_FUNCTOR(T) \ template void IsAllFiniteFunctor<T>::operator()(cudaStream_t stream, \ ChunkGroup<1> chunks, \ bool* output, \ const bool isinf_only, \ const bool isnan_only); INSTANTIATE_ISALLFINITE_FUNCTOR(half) INSTANTIATE_ISALLFINITE_FUNCTOR(float) INSTANTIATE_ISALLFINITE_FUNCTOR(double) } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <hip/hip_runtime.h> #include "core/providers/rocm/multi_tensor/common.cuh" namespace onnxruntime { namespace rocm { template <typename T> struct IsAllFiniteFunctor { void operator()(hipStream_t stream, ChunkGroup<1> chunks, bool* output, const bool isinf_only, const bool isnan_only); }; } // namespace rocm } // namespace onnxruntime###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <cuda_runtime.h> #include "core/providers/cuda/multi_tensor/common.cuh" namespace onnxruntime { namespace cuda { template <typename T> struct IsAllFiniteFunctor { void operator()(cudaStream_t stream, ChunkGroup<1> chunks, bool* output, const bool isinf_only, const bool isnan_only); }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #ifdef ENABLE_TRAINING_OPS // Should remove the shrunken_gather include from ENABLE_TRAINING_OPS once 1). compute optimizer is enabled for inference or // 2). this is needed by inference for other purpose. #include "contrib_ops/rocm/tensor/shrunken_gather.h" #include "contrib_ops/cpu/tensor/shrunken_gather.h" namespace onnxruntime { namespace contrib { namespace rocm { using namespace onnxruntime::rocm; ONNX_OPERATOR_KERNEL_EX( ShrunkenGather, kMSDomain, 1, kRocmExecutionProvider, (*KernelDefBuilder::Create()) .TypeConstraint("T", DataTypeImpl::AllTensorTypes()) .TypeConstraint("Tind", std::vector<MLDataType>{ DataTypeImpl::GetTensorType<int32_t>(), DataTypeImpl::GetTensorType<int64_t>()}), ShrunkenGather); Status ShrunkenGather::ComputeInternal(OpKernelContext* context) const { Prepare p; ORT_RETURN_IF_ERROR(PrepareForCompute(context, p)); ShrunkenGatherCommon::CheckInput(p.input_tensor, p.indices_tensor, p.axis); return onnxruntime::rocm::Gather::ComputeInternal(context); } } // namespace rocm } // namespace contrib } // namespace onnxruntime #endif ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #ifdef ENABLE_TRAINING_OPS // Should remove the shrunken_gather include from ENABLE_TRAINING_OPS once 1). compute optimizer is enabled for inference or // 2). this is needed by inference for other purpose. #include "contrib_ops/cuda/tensor/shrunken_gather.h" #include "contrib_ops/cpu/tensor/shrunken_gather.h" namespace onnxruntime { namespace contrib { namespace cuda { using namespace onnxruntime::cuda; ONNX_OPERATOR_KERNEL_EX( ShrunkenGather, kMSDomain, 1, kCudaExecutionProvider, (*KernelDefBuilder::Create()) .TypeConstraint("T", DataTypeImpl::AllTensorTypes()) .TypeConstraint("Tind", std::vector<MLDataType>{ DataTypeImpl::GetTensorType<int32_t>(), DataTypeImpl::GetTensorType<int64_t>()}), ShrunkenGather); Status ShrunkenGather::ComputeInternal(OpKernelContext* context) const { Prepare p; ORT_RETURN_IF_ERROR(PrepareForCompute(context, p)); ShrunkenGatherCommon::CheckInput(p.input_tensor, p.indices_tensor, p.axis); return onnxruntime::cuda::Gather::ComputeInternal(context); } } // namespace cuda } // namespace contrib } // namespace onnxruntime #endif ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #ifdef ENABLE_TRAINING_OPS // Should remove the shrunken_gather include from ENABLE_TRAINING_OPS once 1). compute optimizer is enabled for inference or // 2). this is needed by inference for other purpose. #include "core/providers/shared_library/provider_api.h" #include "core/providers/rocm/tensor/gather.h" #include "contrib_ops/cpu/tensor/shrunken_gather.h" namespace onnxruntime { namespace contrib { namespace rocm { class ShrunkenGather final : public onnxruntime::rocm::Gather, public ShrunkenGatherCommon { public: ShrunkenGather(const OpKernelInfo& info) : onnxruntime::rocm::Gather(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace rocm } // namespace contrib } // namespace onnxruntime #endif ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #ifdef ENABLE_TRAINING_OPS // Should remove the shrunken_gather include from ENABLE_TRAINING_OPS once 1). compute optimizer is enabled for inference or // 2). this is needed by inference for other purpose. #include "core/providers/shared_library/provider_api.h" #include "core/providers/cuda/tensor/gather.h" #include "contrib_ops/cpu/tensor/shrunken_gather.h" namespace onnxruntime { namespace contrib { namespace cuda { class ShrunkenGather final : public onnxruntime::cuda::Gather, public ShrunkenGatherCommon { public: ShrunkenGather(const OpKernelInfo& info) : onnxruntime::cuda::Gather(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace cuda } // namespace contrib } // namespace onnxruntime #endif ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "core/providers/rocm/tensor/trilu.h" namespace onnxruntime { namespace contrib { namespace rocm { ONNX_OPERATOR_KERNEL_EX( Trilu, kMSDomain, 1, kRocmExecutionProvider, (*KernelDefBuilder::Create()) .InputMemoryType(OrtMemTypeCPUInput, 1) .MayInplace(0, 0) .TypeConstraint("T", DataTypeImpl::AllFixedSizeTensorTypes()), onnxruntime::rocm::Trilu); } // namespace rocm } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "core/providers/cuda/tensor/trilu.h" namespace onnxruntime { namespace contrib { namespace cuda { ONNX_OPERATOR_KERNEL_EX( Trilu, kMSDomain, 1, kCudaExecutionProvider, (*KernelDefBuilder::Create()) .InputMemoryType(OrtMemTypeCPUInput, 1) .MayInplace(0, 0) .TypeConstraint("T", DataTypeImpl::AllFixedSizeTensorTypes()), onnxruntime::cuda::Trilu); } // namespace cuda } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "contrib_ops/cpu/transformers/beam_search.h" namespace onnxruntime { class SessionState; namespace contrib { namespace rocm { class BeamSearch final : public onnxruntime::contrib::transformers::BeamSearch { public: BeamSearch(const OpKernelInfo& info); Status Compute(OpKernelContext* context) const override; private: Status ComputeInternal(OpKernelContext* context) const; }; } // namespace rocm } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "contrib_ops/cpu/transformers/beam_search.h" namespace onnxruntime { class SessionState; namespace contrib { namespace cuda { class BeamSearch final : public onnxruntime::contrib::transformers::BeamSearch { public: BeamSearch(const OpKernelInfo& info); Status Compute(OpKernelContext* context) const override; private: Status ComputeInternal(OpKernelContext* context) const; }; } // namespace cuda } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <stdint.h> #include <hip/hip_runtime.h> namespace onnxruntime { namespace contrib { namespace rocm { template <typename T> void BeamSearchTopK( const T* input, int32_t batch_size, int32_t num_beams, int32_t vocab_size, int32_t k, T* tmp_values_1st_stage, int32_t* tmp_indices_1st_stage, T* tmp_values_2st_stage, int32_t* tmp_indices_2st_stage, T* output_values, int32_t* output_tokens, int32_t* output_indices, hipStream_t stream); } // namespace rocm } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <stdint.h> #include <cuda_runtime.h> namespace onnxruntime { namespace contrib { namespace cuda { template <typename T> void BeamSearchTopK( const T* input, int32_t batch_size, int32_t num_beams, int32_t vocab_size, int32_t k, T* tmp_values_1st_stage, int32_t* tmp_indices_1st_stage, T* tmp_values_2st_stage, int32_t* tmp_indices_2st_stage, T* output_values, int32_t* output_tokens, int32_t* output_indices, cudaStream_t stream); } // namespace cuda } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/framework/tensorprotoutils.h" #include "core/framework/ort_value.h" #include "contrib_ops/cpu/utils/console_dumper.h" namespace onnxruntime { namespace contrib { namespace rocm { namespace transformers { class HipTensorConsoleDumper : public onnxruntime::contrib::transformers::IConsoleDumper { public: HipTensorConsoleDumper() = default; virtual ~HipTensorConsoleDumper() {} void Print(const char* name, const float* tensor, int dim0, int dim1) const override; void Print(const char* name, const MLFloat16* tensor, int dim0, int dim1) const override; void Print(const char* name, const size_t* tensor, int dim0, int dim1) const override; void Print(const char* name, const half* tensor, int dim0, int dim1) const; void Print(const char* name, const int64_t* tensor, int dim0, int dim1) const override; void Print(const char* name, const int32_t* tensor, int dim0, int dim1) const override; void Print(const char* name, const float* tensor, int dim0, int dim1, int dim2) const override; void Print(const char* name, const float* tensor, int dim0, int dim1, int dim2, int dim3) const; void Print(const char* name, const MLFloat16* tensor, int dim0, int dim1, int dim2) const override; void Print(const char* name, const MLFloat16* tensor, int dim0, int dim1, int dim2, int dim3) const; void Print(const char* name, const half* tensor, int dim0, int dim1, int dim2) const; void Print(const char* name, const half* tensor, int dim0, int dim1, int dim2, int dim3) const; void Print(const char* name, const int64_t* tensor, int dim0, int dim1, int dim2) const override; void Print(const char* name, const int32_t* tensor, int dim0, int dim1, int dim2) const override; void Print(const char* name, const Tensor& value) const override; void Print(const char* name, const OrtValue& value) const override; void Print(const char* name, int index, bool end_line) const override; void Print(const char* name, const std::string& value, bool end_line) const override; }; } // namespace transformers } // namespace rocm } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/framework/tensorprotoutils.h" #include "core/framework/ort_value.h" #include "contrib_ops/cpu/utils/console_dumper.h" namespace onnxruntime { namespace contrib { namespace cuda { namespace transformers { class CudaTensorConsoleDumper : public onnxruntime::contrib::transformers::IConsoleDumper { public: CudaTensorConsoleDumper() = default; virtual ~CudaTensorConsoleDumper() {} void Print(const char* name, const float* tensor, int dim0, int dim1) const override; void Print(const char* name, const MLFloat16* tensor, int dim0, int dim1) const override; void Print(const char* name, const size_t* tensor, int dim0, int dim1) const override; void Print(const char* name, const half* tensor, int dim0, int dim1) const; void Print(const char* name, const int64_t* tensor, int dim0, int dim1) const override; void Print(const char* name, const int32_t* tensor, int dim0, int dim1) const override; void Print(const char* name, const float* tensor, int dim0, int dim1, int dim2) const override; void Print(const char* name, const float* tensor, int dim0, int dim1, int dim2, int dim3) const; void Print(const char* name, const MLFloat16* tensor, int dim0, int dim1, int dim2) const override; void Print(const char* name, const MLFloat16* tensor, int dim0, int dim1, int dim2, int dim3) const; void Print(const char* name, const half* tensor, int dim0, int dim1, int dim2) const; void Print(const char* name, const half* tensor, int dim0, int dim1, int dim2, int dim3) const; void Print(const char* name, const int64_t* tensor, int dim0, int dim1, int dim2) const override; void Print(const char* name, const int32_t* tensor, int dim0, int dim1, int dim2) const override; void Print(const char* name, const Tensor& value) const override; void Print(const char* name, const OrtValue& value) const override; void Print(const char* name, int index, bool end_line) const override; void Print(const char* name, const std::string& value, bool end_line) const override; }; } // namespace transformers } // namespace cuda } // namespace contrib } // namespace onnxruntime ###
#pragma once #include <stdint.h> #include <hip/hip_fp16.h> #include <hiprand/hiprand_kernel.h> namespace onnxruntime { namespace contrib { namespace rocm { void LaunchInitKernel( float* beam_scores, int batch_size, int num_beams, hipStream_t stream); template <typename T> void LaunchAddProbsKernel(T* log_probs, T* cum_log_probs, const int batch_size, const int num_beams, const int vocab_size, hipStream_t stream); template <typename T> void LaunchLogitsProcessKernel( T* next_token_scores, const int* vocab_mask, const int* prefix_vocab_mask, int* presence_mask, float presence_penalty, float temperature, int batch_size, int num_beams, int vocab_size, int padded_vocab_size, int demote_token_id, int32_t* sequences, int max_sequence_length, int current_sequence_length, float repetition_penalty, int no_repeat_ngram_size, hipStream_t stream); void LaunchNextTokenKernel(const int64_t* next_token_indices, int32_t* next_indices, int32_t* next_tokens, int batch_size, int top_k, int vocab_size, hipStream_t stream); void LaunchUpdateGptKernel(const int32_t* old_mask_data, int32_t* mask_data, int32_t* next_positions, int batch_beam_size, int current_length, hipStream_t stream); template <typename T> void GetTempStorageSize(const T* d_keys_in, const int* d_values_in, int* d_offsets, int num_items, int num_segments, hipStream_t stream, bool is_descending, size_t& temp_storage_bytes); void LaunchSetupParamsKernel(int* d_values_in, int* d_offsets, int batch_size, int vocab_size, hipStream_t stream); template <typename T> void LaunchSortPairs(void* d_temp_storage, size_t temp_storage_bytes, const T* d_keys_in, T* d_keys_out, const int* d_values_in, int* d_values_out, int num_items, int num_segments, int* d_offsets, hipStream_t stream, bool is_descending); template <typename T> void LaunchFilterLogitsKernel(float* d_sorted_logits_in, const int* d_sorted_indices, T* d_logits_in_out, float top_p, float filter_value, int min_tokens_to_keep, int batch_size, int vocab_size, hipStream_t stream, bool is_descending); void TorchMultinomialKernelLauncher(float* d_input, float* d_sampled, int32_t* d_output, int batch_size, int vocab_size, int* d_presence_mask, hipStream_t stream); void UpdateDecoderMaskedMultiHeadAttentionCacheIndirection(int32_t* tgt_indir_cache, const int32_t* src_indir_cache, const int32_t* beam_ids, int batch_size, int beam_width, int input_seq_length, int max_seq_length, int current_length, hipStream_t stream); template <typename T> void KeyCacheExpansionKernelLauncher(const T* key_cache, T* key_cache_expanded, int batch_size, int beam_width, int num_heads, int sequence_length, int max_seq_length, int head_size, hipStream_t stream); template <typename T> void BufferExpansionKernelLauncher(const T* input, T* output, int batch_size, int beam_width, int chunk_size, hipStream_t stream); } } } ###
#pragma once #include <stdint.h> #include <cuda_fp16.h> #include <curand_kernel.h> namespace onnxruntime { namespace contrib { namespace cuda { void LaunchInitKernel( float* beam_scores, int batch_size, int num_beams, cudaStream_t stream); template <typename T> void LaunchAddProbsKernel(T* log_probs, T* cum_log_probs, const int batch_size, const int num_beams, const int vocab_size, cudaStream_t stream); template <typename T> void LaunchLogitsProcessKernel( T* next_token_scores, const int* vocab_mask, const int* prefix_vocab_mask, int* presence_mask, float presence_penalty, float temperature, int batch_size, int num_beams, int vocab_size, int padded_vocab_size, int demote_token_id, int32_t* sequences, int max_sequence_length, int current_sequence_length, float repetition_penalty, int no_repeat_ngram_size, cudaStream_t stream); void LaunchNextTokenKernel(const int64_t* next_token_indices, int32_t* next_indices, int32_t* next_tokens, int batch_size, int top_k, int vocab_size, cudaStream_t stream); void LaunchUpdateGptKernel(const int32_t* old_mask_data, int32_t* mask_data, int32_t* next_positions, int batch_beam_size, int current_length, cudaStream_t stream); template <typename T> void GetTempStorageSize(const T* d_keys_in, const int* d_values_in, int* d_offsets, int num_items, int num_segments, cudaStream_t stream, bool is_descending, size_t& temp_storage_bytes); void LaunchSetupParamsKernel(int* d_values_in, int* d_offsets, int batch_size, int vocab_size, cudaStream_t stream); template <typename T> void LaunchSortPairs(void* d_temp_storage, size_t temp_storage_bytes, const T* d_keys_in, T* d_keys_out, const int* d_values_in, int* d_values_out, int num_items, int num_segments, int* d_offsets, cudaStream_t stream, bool is_descending); template <typename T> void LaunchFilterLogitsKernel(float* d_sorted_logits_in, const int* d_sorted_indices, T* d_logits_in_out, float top_p, float filter_value, int min_tokens_to_keep, int batch_size, int vocab_size, cudaStream_t stream, bool is_descending); void TorchMultinomialKernelLauncher(float* d_input, float* d_sampled, int32_t* d_output, int batch_size, int vocab_size, int* d_presence_mask, cudaStream_t stream); void UpdateDecoderMaskedMultiHeadAttentionCacheIndirection(int32_t* tgt_indir_cache, const int32_t* src_indir_cache, const int32_t* beam_ids, int batch_size, int beam_width, int input_seq_length, int max_seq_length, int current_length, cudaStream_t stream); template <typename T> void KeyCacheExpansionKernelLauncher(const T* key_cache, T* key_cache_expanded, int batch_size, int beam_width, int num_heads, int sequence_length, int max_seq_length, int head_size, cudaStream_t stream); template <typename T> void BufferExpansionKernelLauncher(const T* input, T* output, int batch_size, int beam_width, int chunk_size, cudaStream_t stream); } } } ###
#include "hip/hip_runtime.h" #include "core/providers/rocm/math/clip_impl.h" #include "core/providers/rocm/cu_inc/common.cuh" namespace onnxruntime { namespace rocm { template <typename T> __global__ void _Clip(const T* input, T* output, const T* min, const T* max, T min_default, T max_default, size_t N) { auto min_val = (min) ? *min : min_default; auto max_val = (max) ? *max : max_default; CALCULATE_ELEMENTWISE_INDEX_OR_EXIT(id, N); output[id] = (input[id] < min_val) ? min_val : ((input[id] > max_val) ? max_val : input[id]); } template <typename T> void ClipImpl(hipStream_t stream, const T* input_data, T* output_data, const T* min, const T* max, T min_default, T max_default, size_t count) { typedef typename ToHipType<T>::MappedType HipT; int blocksPerGrid = (int)(ceil(static_cast<float>(count) / GridDim::maxThreadsPerBlock)); union ConstAliasUnion { const T *t; const HipT *rocmT; ConstAliasUnion(const T* _t) { t = _t;} }; union AliasUnion { T *t; HipT *rocmT; AliasUnion(T* _t) { t = _t;} }; _Clip<HipT><<<blocksPerGrid, GridDim::maxThreadsPerBlock, 0, stream>>>(((union ConstAliasUnion)input_data).rocmT, ((union AliasUnion)output_data).rocmT, ((union ConstAliasUnion)min).rocmT, ((union ConstAliasUnion)max).rocmT, *((union AliasUnion)&min_default).rocmT, *((union AliasUnion)&max_default).rocmT, count); } template void ClipImpl<float>(hipStream_t stream, const float* input_data, float* output_data, const float* min, const float* max, float min_default, float max_default, size_t count); template void ClipImpl<double>(hipStream_t stream, const double* input_data, double* output_data, const double* min, const double* max, double min_default, double max_default, size_t count); template void ClipImpl<MLFloat16>(hipStream_t stream, const MLFloat16* input_data, MLFloat16* output_data, const MLFloat16* min, const MLFloat16* max, MLFloat16 min_default, MLFloat16 max_default, size_t count); template void ClipImpl<int8_t>(hipStream_t stream, const int8_t* input_data, int8_t* output_data, const int8_t* min, const int8_t* max, int8_t min_default, int8_t max_default, size_t count); template void ClipImpl<uint8_t>(hipStream_t stream, const uint8_t* input_data, uint8_t* output_data, const uint8_t* min, const uint8_t* max, uint8_t min_default, uint8_t max_default, size_t count); template void ClipImpl<int64_t>(hipStream_t stream, const int64_t* input_data, int64_t* output_data, const int64_t* min, const int64_t* max, int64_t min_default, int64_t max_default, size_t count); template void ClipImpl<uint64_t>(hipStream_t stream, const uint64_t* input_data, uint64_t* output_data, const uint64_t* min, const uint64_t* max, uint64_t min_default, uint64_t max_default, size_t count); } } ###
#include "core/providers/cuda/math/clip_impl.h" #include "core/providers/cuda/cu_inc/common.cuh" namespace onnxruntime { namespace cuda { template <typename T> __global__ void _Clip(const T* input, T* output, const T* min, const T* max, T min_default, T max_default, size_t N) { auto min_val = (min) ? *min : min_default; auto max_val = (max) ? *max : max_default; CALCULATE_ELEMENTWISE_INDEX_OR_EXIT(id, N); output[id] = (input[id] < min_val) ? min_val : ((input[id] > max_val) ? max_val : input[id]); } template <typename T> void ClipImpl(cudaStream_t stream, const T* input_data, T* output_data, const T* min, const T* max, T min_default, T max_default, size_t count) { typedef typename ToCudaType<T>::MappedType CudaT; int blocksPerGrid = (int)(ceil(static_cast<float>(count) / GridDim::maxThreadsPerBlock)); union ConstAliasUnion { const T *t; const CudaT *cudaT; ConstAliasUnion(const T* _t) { t = _t;} }; union AliasUnion { T *t; CudaT *cudaT; AliasUnion(T* _t) { t = _t;} }; _Clip<CudaT><<<blocksPerGrid, GridDim::maxThreadsPerBlock, 0, stream>>>(((union ConstAliasUnion)input_data).cudaT, ((union AliasUnion)output_data).cudaT, ((union ConstAliasUnion)min).cudaT, ((union ConstAliasUnion)max).cudaT, *((union AliasUnion)&min_default).cudaT, *((union AliasUnion)&max_default).cudaT, count); } template void ClipImpl<float>(cudaStream_t stream, const float* input_data, float* output_data, const float* min, const float* max, float min_default, float max_default, size_t count); template void ClipImpl<double>(cudaStream_t stream, const double* input_data, double* output_data, const double* min, const double* max, double min_default, double max_default, size_t count); template void ClipImpl<MLFloat16>(cudaStream_t stream, const MLFloat16* input_data, MLFloat16* output_data, const MLFloat16* min, const MLFloat16* max, MLFloat16 min_default, MLFloat16 max_default, size_t count); template void ClipImpl<int8_t>(cudaStream_t stream, const int8_t* input_data, int8_t* output_data, const int8_t* min, const int8_t* max, int8_t min_default, int8_t max_default, size_t count); template void ClipImpl<uint8_t>(cudaStream_t stream, const uint8_t* input_data, uint8_t* output_data, const uint8_t* min, const uint8_t* max, uint8_t min_default, uint8_t max_default, size_t count); template void ClipImpl<int64_t>(cudaStream_t stream, const int64_t* input_data, int64_t* output_data, const int64_t* min, const int64_t* max, int64_t min_default, int64_t max_default, size_t count); template void ClipImpl<uint64_t>(cudaStream_t stream, const uint64_t* input_data, uint64_t* output_data, const uint64_t* min, const uint64_t* max, uint64_t min_default, uint64_t max_default, size_t count); } } ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <stdint.h> #include <hip/hip_runtime.h> namespace onnxruntime { namespace contrib { namespace rocm { template <typename T> void GreedySearchTopOne( const T* input, int32_t batch_size, int32_t vocab_size, T* tmp_values, int32_t* tmp_tokens, T* output_values, int32_t* output_tokens, hipStream_t stream); } // namespace rocm } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <stdint.h> #include <cuda_runtime.h> namespace onnxruntime { namespace contrib { namespace cuda { template <typename T> void GreedySearchTopOne( const T* input, int32_t batch_size, int32_t vocab_size, T* tmp_values, int32_t* tmp_tokens, T* output_values, int32_t* output_tokens, cudaStream_t stream); } // namespace cuda } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "core/providers/rocm/rocm_common.h" #include "core/providers/rocm/rocm_execution_provider.h" #include "contrib_ops/rocm/transformers/sampling.h" #include "contrib_ops/rocm/transformers/generation_device_helper.h" #include "contrib_ops/rocm/transformers/dump_rocm_tensor.h" namespace onnxruntime { namespace contrib { namespace rocm { ONNX_OPERATOR_KERNEL_EX( Sampling, kMSDomain, 1, kRocmExecutionProvider, (*KernelDefBuilder::Create()) .InputMemoryType(OrtMemTypeCPUInput, 0) // 'input_ids' needs to be on CPU .InputMemoryType(OrtMemTypeCPUInput, 1) // 'max_length' needs to be on CPU .InputMemoryType(OrtMemTypeCPUInput, 2) // 'min_length' needs to be on CPU .InputMemoryType(OrtMemTypeCPUInput, 3) // 'repetition_penalty' needs to be on CPU .InputMemoryType(OrtMemTypeCPUInput, 6) // 'custom_attention_mask' needs to be on CPU .OutputMemoryType(OrtMemTypeCPUOutput, 0) // 'sequences' output on CPU .OutputMemoryType(OrtMemTypeCPUOutput, 1) // 'logits_to_debug' output on CPU .TypeConstraint("T", {DataTypeImpl::GetTensorType<float>(), DataTypeImpl::GetTensorType<MLFloat16>()}), Sampling); transformers::HipTensorConsoleDumper g_rocm_dumper_sampling; Sampling::Sampling(const OpKernelInfo& info) : onnxruntime::contrib::transformers::Sampling(info) { SetDeviceHelpers(GenerationCudaDeviceHelper::ReorderPastState, GenerationCudaDeviceHelper::AddToFeeds, GenerationCudaDeviceHelper::TopK, GenerationCudaDeviceHelper::DeviceCopy<float>, GenerationCudaDeviceHelper::GreedySearchProcessLogits<float>, GenerationCudaDeviceHelper::GreedySearchProcessLogits<MLFloat16>, GenerationCudaDeviceHelper::InitGreedyState<float>, GenerationCudaDeviceHelper::InitGreedyState<MLFloat16>); SetDeviceHelpers_Gpt(GenerationCudaDeviceHelper::UpdateGptFeeds<float>, GenerationCudaDeviceHelper::UpdateGptFeeds<MLFloat16>); SetConsoleDumper(&g_rocm_dumper_sampling); gpu_device_prop_ = &reinterpret_cast<const ROCMExecutionProvider*>(info.GetExecutionProvider())->GetDeviceProp(); gpu_device_arch_ = static_cast<const hipDeviceProp_t*>(gpu_device_prop_)->major * 100 + static_cast<const hipDeviceProp_t*>(gpu_device_prop_)->minor * 10; } Status Sampling::ComputeInternal(OpKernelContext* context) const { return onnxruntime::contrib::transformers::Sampling::Compute(context); } Status Sampling::Compute(OpKernelContext* context) const { auto s = ComputeInternal(context); if (s.IsOK()) { auto err = hipGetLastError(); if (err != hipSuccess) { return ORT_MAKE_STATUS(ONNXRUNTIME, FAIL, "ROCM error ", hipGetErrorName(err), ":", hipGetErrorString(err)); } } return s; } } // namespace rocm } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "core/providers/cuda/cuda_common.h" #include "core/providers/cuda/cuda_execution_provider.h" #include "contrib_ops/cuda/transformers/sampling.h" #include "contrib_ops/cuda/transformers/generation_device_helper.h" #include "contrib_ops/cuda/transformers/dump_cuda_tensor.h" namespace onnxruntime { namespace contrib { namespace cuda { ONNX_OPERATOR_KERNEL_EX( Sampling, kMSDomain, 1, kCudaExecutionProvider, (*KernelDefBuilder::Create()) .InputMemoryType(OrtMemTypeCPUInput, 0) // 'input_ids' needs to be on CPU .InputMemoryType(OrtMemTypeCPUInput, 1) // 'max_length' needs to be on CPU .InputMemoryType(OrtMemTypeCPUInput, 2) // 'min_length' needs to be on CPU .InputMemoryType(OrtMemTypeCPUInput, 3) // 'repetition_penalty' needs to be on CPU .InputMemoryType(OrtMemTypeCPUInput, 6) // 'custom_attention_mask' needs to be on CPU .OutputMemoryType(OrtMemTypeCPUOutput, 0) // 'sequences' output on CPU .OutputMemoryType(OrtMemTypeCPUOutput, 1) // 'logits_to_debug' output on CPU .TypeConstraint("T", {DataTypeImpl::GetTensorType<float>(), DataTypeImpl::GetTensorType<MLFloat16>()}), Sampling); transformers::CudaTensorConsoleDumper g_cuda_dumper_sampling; Sampling::Sampling(const OpKernelInfo& info) : onnxruntime::contrib::transformers::Sampling(info) { SetDeviceHelpers(GenerationCudaDeviceHelper::ReorderPastState, GenerationCudaDeviceHelper::AddToFeeds, GenerationCudaDeviceHelper::TopK, GenerationCudaDeviceHelper::DeviceCopy<float>, GenerationCudaDeviceHelper::GreedySearchProcessLogits<float>, GenerationCudaDeviceHelper::GreedySearchProcessLogits<MLFloat16>, GenerationCudaDeviceHelper::InitGreedyState<float>, GenerationCudaDeviceHelper::InitGreedyState<MLFloat16>); SetDeviceHelpers_Gpt(GenerationCudaDeviceHelper::UpdateGptFeeds<float>, GenerationCudaDeviceHelper::UpdateGptFeeds<MLFloat16>); SetConsoleDumper(&g_cuda_dumper_sampling); gpu_device_prop_ = &reinterpret_cast<const CUDAExecutionProvider*>(info.GetExecutionProvider())->GetDeviceProp(); gpu_device_arch_ = static_cast<const cudaDeviceProp*>(gpu_device_prop_)->major * 100 + static_cast<const cudaDeviceProp*>(gpu_device_prop_)->minor * 10; } Status Sampling::ComputeInternal(OpKernelContext* context) const { return onnxruntime::contrib::transformers::Sampling::Compute(context); } Status Sampling::Compute(OpKernelContext* context) const { auto s = ComputeInternal(context); if (s.IsOK()) { auto err = cudaGetLastError(); if (err != cudaSuccess) { return ORT_MAKE_STATUS(ONNXRUNTIME, FAIL, "CUDA error ", cudaGetErrorName(err), ":", cudaGetErrorString(err)); } } return s; } } // namespace cuda } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "contrib_ops/cpu/transformers/sampling.h" namespace onnxruntime { class SessionState; namespace contrib { namespace rocm { class Sampling final : public onnxruntime::contrib::transformers::Sampling { public: Sampling(const OpKernelInfo& info); Status Compute(OpKernelContext* context) const override; private: Status ComputeInternal(OpKernelContext* context) const; }; } // namespace rocm } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "contrib_ops/cpu/transformers/sampling.h" namespace onnxruntime { class SessionState; namespace contrib { namespace cuda { class Sampling final : public onnxruntime::contrib::transformers::Sampling { public: Sampling(const OpKernelInfo& info); Status Compute(OpKernelContext* context) const override; private: Status ComputeInternal(OpKernelContext* context) const; }; } // namespace cuda } // namespace contrib } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "orttraining/training_ops/rocm/activation/activations_grad.h" #include "core/framework/op_kernel.h" namespace onnxruntime { namespace rocm { #define REGISTER_ACTIVATION_GRAD_KERNEL(x, ver, domain, T) \ ONNX_OPERATOR_TYPED_KERNEL_EX( \ x, \ domain, \ ver, \ T, \ kRocmExecutionProvider, \ (*KernelDefBuilder::Create()) \ .TypeConstraint("T", DataTypeImpl::GetTensorType<T>()) \ .MayInplace(0, 0), \ x<T>); #define BINARY_ELEMENTWISE_COMPUTE(x, T) \ template <> \ Status x<T>::ComputeInternal(OpKernelContext* context) const { \ BinaryElementwisePreparation prepare; \ ORT_RETURN_IF_ERROR(Prepare(context, &prepare)); \ Ctx##x func_ctx = MakeFuncCtx(); \ Impl_##x<typename ToHipType<T>::MappedType>( \ Stream(context), \ reinterpret_cast<const typename ToHipType<T>::MappedType*>(prepare.lhs_tensor->template Data<T>()), \ reinterpret_cast<const typename ToHipType<T>::MappedType*>(prepare.rhs_tensor->template Data<T>()), \ reinterpret_cast<typename ToHipType<T>::MappedType*>(prepare.output_tensor->template MutableData<T>()), \ &func_ctx, prepare.output_tensor->Shape().Size()); \ return Status::OK(); \ } #define ACTIVATION_GRAD_OP_TYPED(name, ver, domain, T) \ REGISTER_ACTIVATION_GRAD_KERNEL(name, ver, domain, T) \ BINARY_ELEMENTWISE_COMPUTE(name, T) #define ACTIVATION_GRAD_OP_HFD(name, ver, domain) \ ACTIVATION_GRAD_OP_TYPED(name, ver, domain, MLFloat16) \ ACTIVATION_GRAD_OP_TYPED(name, ver, domain, float) \ ACTIVATION_GRAD_OP_TYPED(name, ver, domain, double) ACTIVATION_GRAD_OP_HFD(GeluGrad, 1, kMSDomain); ACTIVATION_GRAD_OP_HFD(FastGeluGrad, 1, kMSDomain); ACTIVATION_GRAD_OP_HFD(ReluGrad, 1, kMSDomain); ACTIVATION_GRAD_OP_HFD(SigmoidGrad, 1, kMSDomain); ACTIVATION_GRAD_OP_HFD(QuickGeluGrad, 1, kMSDomain); ACTIVATION_GRAD_OP_HFD(TanhGrad, 1, kMSDomain); } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "orttraining/training_ops/cuda/activation/activations_grad.h" #include "core/framework/op_kernel.h" namespace onnxruntime { namespace cuda { #define REGISTER_ACTIVATION_GRAD_KERNEL(x, ver, domain, T) \ ONNX_OPERATOR_TYPED_KERNEL_EX( \ x, \ domain, \ ver, \ T, \ kCudaExecutionProvider, \ (*KernelDefBuilder::Create()) \ .TypeConstraint("T", DataTypeImpl::GetTensorType<T>()) \ .MayInplace(0, 0), \ x<T>); #define BINARY_ELEMENTWISE_COMPUTE(x, T) \ template <> \ Status x<T>::ComputeInternal(OpKernelContext* context) const { \ BinaryElementwisePreparation prepare; \ ORT_RETURN_IF_ERROR(Prepare(context, &prepare)); \ Ctx##x func_ctx = MakeFuncCtx(); \ Impl_##x<typename ToCudaType<T>::MappedType>( \ Stream(context), \ reinterpret_cast<const typename ToCudaType<T>::MappedType*>(prepare.lhs_tensor->template Data<T>()), \ reinterpret_cast<const typename ToCudaType<T>::MappedType*>(prepare.rhs_tensor->template Data<T>()), \ reinterpret_cast<typename ToCudaType<T>::MappedType*>(prepare.output_tensor->template MutableData<T>()), \ &func_ctx, prepare.output_tensor->Shape().Size()); \ return Status::OK(); \ } #define ACTIVATION_GRAD_OP_TYPED(name, ver, domain, T) \ REGISTER_ACTIVATION_GRAD_KERNEL(name, ver, domain, T) \ BINARY_ELEMENTWISE_COMPUTE(name, T) #define ACTIVATION_GRAD_OP_HFD(name, ver, domain) \ ACTIVATION_GRAD_OP_TYPED(name, ver, domain, MLFloat16) \ ACTIVATION_GRAD_OP_TYPED(name, ver, domain, float) \ ACTIVATION_GRAD_OP_TYPED(name, ver, domain, double) ACTIVATION_GRAD_OP_HFD(GeluGrad, 1, kMSDomain); ACTIVATION_GRAD_OP_HFD(FastGeluGrad, 1, kMSDomain); ACTIVATION_GRAD_OP_HFD(ReluGrad, 1, kMSDomain); ACTIVATION_GRAD_OP_HFD(SigmoidGrad, 1, kMSDomain); ACTIVATION_GRAD_OP_HFD(QuickGeluGrad, 1, kMSDomain); ACTIVATION_GRAD_OP_HFD(TanhGrad, 1, kMSDomain); } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_common.h" #include "core/providers/rocm/math/binary_elementwise_ops.h" #include "core/providers/rocm/activation/activations.h" #include "orttraining/training_ops/rocm/activation/activations_grad_impl.h" namespace onnxruntime { namespace rocm { template <typename T> class GeluGrad final : public BinaryElementwise<ShouldNotBroadcast> { public: GeluGrad(const OpKernelInfo& info) : BinaryElementwise(info) {} Status ComputeInternal(OpKernelContext* context) const override; private: MAKE_FUNC_CTX_NULL() }; template <typename T> class FastGeluGrad final : public BinaryElementwise<ShouldNotBroadcast> { public: FastGeluGrad(const OpKernelInfo& info) : BinaryElementwise(info) {} Status ComputeInternal(OpKernelContext* context) const override; private: MAKE_FUNC_CTX_NULL() }; template <typename T> class ReluGrad final : public BinaryElementwise<ShouldNotBroadcast> { public: ReluGrad(const OpKernelInfo& info) : BinaryElementwise(info) {} Status ComputeInternal(OpKernelContext* context) const override; private: MAKE_FUNC_CTX_NULL() }; template <typename T> class SigmoidGrad final : public BinaryElementwise<ShouldNotBroadcast> { public: SigmoidGrad(const OpKernelInfo& info) : BinaryElementwise(info) {} Status ComputeInternal(OpKernelContext* context) const override; private: MAKE_FUNC_CTX_NULL() }; template <typename T> class QuickGeluGrad final : public BinaryElementwise<ShouldNotBroadcast> { public: QuickGeluGrad(const OpKernelInfo& info) : BinaryElementwise(info) { alpha_ = info.GetAttrOrDefault<float>("alpha", 1.702f); } Status ComputeInternal(OpKernelContext* context) const override; private: MAKE_FUNC_CTX_ALPHA() float alpha_; }; template <typename T> class TanhGrad final : public BinaryElementwise<ShouldNotBroadcast> { public: TanhGrad(const OpKernelInfo& info) : BinaryElementwise(info) {} Status ComputeInternal(OpKernelContext* context) const override; private: MAKE_FUNC_CTX_NULL() }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_common.h" #include "core/providers/cuda/math/binary_elementwise_ops.h" #include "core/providers/cuda/activation/activations.h" #include "orttraining/training_ops/cuda/activation/activations_grad_impl.h" namespace onnxruntime { namespace cuda { template <typename T> class GeluGrad final : public BinaryElementwise<ShouldNotBroadcast> { public: GeluGrad(const OpKernelInfo& info) : BinaryElementwise(info) {} Status ComputeInternal(OpKernelContext* context) const override; private: MAKE_FUNC_CTX_NULL() }; template <typename T> class FastGeluGrad final : public BinaryElementwise<ShouldNotBroadcast> { public: FastGeluGrad(const OpKernelInfo& info) : BinaryElementwise(info) {} Status ComputeInternal(OpKernelContext* context) const override; private: MAKE_FUNC_CTX_NULL() }; template <typename T> class ReluGrad final : public BinaryElementwise<ShouldNotBroadcast> { public: ReluGrad(const OpKernelInfo& info) : BinaryElementwise(info) {} Status ComputeInternal(OpKernelContext* context) const override; private: MAKE_FUNC_CTX_NULL() }; template <typename T> class SigmoidGrad final : public BinaryElementwise<ShouldNotBroadcast> { public: SigmoidGrad(const OpKernelInfo& info) : BinaryElementwise(info) {} Status ComputeInternal(OpKernelContext* context) const override; private: MAKE_FUNC_CTX_NULL() }; template <typename T> class QuickGeluGrad final : public BinaryElementwise<ShouldNotBroadcast> { public: QuickGeluGrad(const OpKernelInfo& info) : BinaryElementwise(info) { alpha_ = info.GetAttrOrDefault<float>("alpha", 1.702f); } Status ComputeInternal(OpKernelContext* context) const override; private: MAKE_FUNC_CTX_ALPHA() float alpha_; }; template <typename T> class TanhGrad final : public BinaryElementwise<ShouldNotBroadcast> { public: TanhGrad(const OpKernelInfo& info) : BinaryElementwise(info) {} Status ComputeInternal(OpKernelContext* context) const override; private: MAKE_FUNC_CTX_NULL() }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/activation/activations_impl.h" namespace onnxruntime { namespace rocm { typedef onnxruntime::rocm::CtxNull CtxGeluGrad; typedef onnxruntime::rocm::CtxNull CtxFastGeluGrad; typedef onnxruntime::rocm::CtxNull CtxReluGrad; typedef onnxruntime::rocm::CtxNull CtxSigmoidGrad; typedef onnxruntime::rocm::CtxAlpha CtxQuickGeluGrad; typedef onnxruntime::rocm::CtxNull CtxTanhGrad; #define ACTIVATION_GRAD_OPS() \ ACTIVATION_GRAD_OP_NAME(GeluGrad) \ ACTIVATION_GRAD_OP_NAME(FastGeluGrad) \ ACTIVATION_GRAD_OP_NAME(ReluGrad) \ ACTIVATION_GRAD_OP_NAME(SigmoidGrad) \ ACTIVATION_GRAD_OP_NAME(QuickGeluGrad) \ ACTIVATION_GRAD_OP_NAME(TanhGrad) #define BINARY_ELEMENTWISE_IMPL_DECLARATION(name) \ template <typename T> \ void Impl_##name(hipStream_t stream, \ const T* lhs_data, \ const T* rhs_data, \ T* output_data, \ const Ctx##name* func_ctx, \ size_t count) #define ACTIVATION_GRAD_OP_NAME(name) BINARY_ELEMENTWISE_IMPL_DECLARATION(name); ACTIVATION_GRAD_OPS() #undef ACTIVATION_GRAD_OP_NAME } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/activation/activations_impl.h" namespace onnxruntime { namespace cuda { typedef onnxruntime::cuda::CtxNull CtxGeluGrad; typedef onnxruntime::cuda::CtxNull CtxFastGeluGrad; typedef onnxruntime::cuda::CtxNull CtxReluGrad; typedef onnxruntime::cuda::CtxNull CtxSigmoidGrad; typedef onnxruntime::cuda::CtxAlpha CtxQuickGeluGrad; typedef onnxruntime::cuda::CtxNull CtxTanhGrad; #define ACTIVATION_GRAD_OPS() \ ACTIVATION_GRAD_OP_NAME(GeluGrad) \ ACTIVATION_GRAD_OP_NAME(FastGeluGrad) \ ACTIVATION_GRAD_OP_NAME(ReluGrad) \ ACTIVATION_GRAD_OP_NAME(SigmoidGrad) \ ACTIVATION_GRAD_OP_NAME(QuickGeluGrad) \ ACTIVATION_GRAD_OP_NAME(TanhGrad) #define BINARY_ELEMENTWISE_IMPL_DECLARATION(name) \ template <typename T> \ void Impl_##name(cudaStream_t stream, \ const T* lhs_data, \ const T* rhs_data, \ T* output_data, \ const Ctx##name* func_ctx, \ size_t count) #define ACTIVATION_GRAD_OP_NAME(name) BINARY_ELEMENTWISE_IMPL_DECLARATION(name); ACTIVATION_GRAD_OPS() #undef ACTIVATION_GRAD_OP_NAME } // namespace cuda } // namespace onnxruntime ###
#include "orttraining/training_ops/rocm/activation/bias_gelu_grad.h" #include "core/common/common.h" #include "orttraining/training_ops/cpu/activation/gelu_computation_mode.h" #include "orttraining/training_ops/rocm/activation/bias_gelu_grad_impl.h" namespace onnxruntime { namespace rocm { ONNX_OPERATOR_KERNEL_EX( BiasGeluGrad_dX, kMSDomain, 1, kRocmExecutionProvider, (*KernelDefBuilder::Create()) .TypeConstraint("T", BuildKernelDefConstraints<MLFloat16, float, double, BFloat16>()) .MayInplace(0, 0), BiasGeluGrad_dX<gelu_computation_mode::Default>); ONNX_OPERATOR_KERNEL_EX( BiasFastGeluGrad_dX, kMSDomain, 1, kRocmExecutionProvider, (*KernelDefBuilder::Create()) .TypeConstraint("T", BuildKernelDefConstraints<MLFloat16, float, double, BFloat16>()) .MayInplace(0, 0), BiasGeluGrad_dX<gelu_computation_mode::Approximation>); template <typename GeluComputationMode> template <typename T> void BiasGeluGrad_dX<GeluComputationMode>::KernelLaunchDispatcher<T>::operator()( hipStream_t stream, int64_t input_size, int64_t bias_size, const Tensor& dY, const Tensor& X, const Tensor& B, Tensor& dX) const { using HipT = typename ToHipType<T>::MappedType; LaunchBiasGeluGradDxKernel<HipT, GeluComputationMode>( stream, input_size, bias_size, reinterpret_cast<const HipT*>(dY.template Data<T>()), reinterpret_cast<const HipT*>(X.template Data<T>()), reinterpret_cast<const HipT*>(B.template Data<T>()), reinterpret_cast<HipT*>(dX.template MutableData<T>())); } template <typename GeluComputationMode> Status BiasGeluGrad_dX<GeluComputationMode>::ComputeInternal(OpKernelContext* context) const { const auto* dY = context->Input<Tensor>(0); ORT_ENFORCE(dY); const auto* X = context->Input<Tensor>(1); ORT_ENFORCE(X); const auto* B = context->Input<Tensor>(2); ORT_ENFORCE(B); const auto& input_shape = X->Shape(); ORT_ENFORCE(input_shape == dY->Shape(), "dY and X must have the same shape."); const auto& bias_shape = B->Shape(); ORT_ENFORCE( input_shape.NumDimensions() >= 1 && bias_shape.NumDimensions() == 1 && input_shape.GetDims().back() == bias_shape.GetDims().back(), "B must be 1-dimensional and match the last dimension of X."); auto* dX = context->Output(0, input_shape); ORT_ENFORCE(dX); const auto input_size = input_shape.Size(), bias_size = bias_shape.Size(); utils::MLTypeCallDispatcher<MLFloat16, float, double, BFloat16> dispatcher{X->GetElementType()}; dispatcher.Invoke<KernelLaunchDispatcher>(Stream(context), input_size, bias_size, *dY, *X, *B, *dX); return Status::OK(); } } } ###
#include "orttraining/training_ops/cuda/activation/bias_gelu_grad.h" #include "core/common/common.h" #include "orttraining/training_ops/cpu/activation/gelu_computation_mode.h" #include "orttraining/training_ops/cuda/activation/bias_gelu_grad_impl.h" namespace onnxruntime { namespace cuda { ONNX_OPERATOR_KERNEL_EX( BiasGeluGrad_dX, kMSDomain, 1, kCudaExecutionProvider, (*KernelDefBuilder::Create()) .TypeConstraint("T", BuildKernelDefConstraints<MLFloat16, float, double, BFloat16>()) .MayInplace(0, 0), BiasGeluGrad_dX<gelu_computation_mode::Default>); ONNX_OPERATOR_KERNEL_EX( BiasFastGeluGrad_dX, kMSDomain, 1, kCudaExecutionProvider, (*KernelDefBuilder::Create()) .TypeConstraint("T", BuildKernelDefConstraints<MLFloat16, float, double, BFloat16>()) .MayInplace(0, 0), BiasGeluGrad_dX<gelu_computation_mode::Approximation>); template <typename GeluComputationMode> template <typename T> void BiasGeluGrad_dX<GeluComputationMode>::KernelLaunchDispatcher<T>::operator()( cudaStream_t stream, int64_t input_size, int64_t bias_size, const Tensor& dY, const Tensor& X, const Tensor& B, Tensor& dX) const { using CudaT = typename ToCudaType<T>::MappedType; LaunchBiasGeluGradDxKernel<CudaT, GeluComputationMode>( stream, input_size, bias_size, reinterpret_cast<const CudaT*>(dY.template Data<T>()), reinterpret_cast<const CudaT*>(X.template Data<T>()), reinterpret_cast<const CudaT*>(B.template Data<T>()), reinterpret_cast<CudaT*>(dX.template MutableData<T>())); } template <typename GeluComputationMode> Status BiasGeluGrad_dX<GeluComputationMode>::ComputeInternal(OpKernelContext* context) const { const auto* dY = context->Input<Tensor>(0); ORT_ENFORCE(dY); const auto* X = context->Input<Tensor>(1); ORT_ENFORCE(X); const auto* B = context->Input<Tensor>(2); ORT_ENFORCE(B); const auto& input_shape = X->Shape(); ORT_ENFORCE(input_shape == dY->Shape(), "dY and X must have the same shape."); const auto& bias_shape = B->Shape(); ORT_ENFORCE( input_shape.NumDimensions() >= 1 && bias_shape.NumDimensions() == 1 && input_shape.GetDims().back() == bias_shape.GetDims().back(), "B must be 1-dimensional and match the last dimension of X."); auto* dX = context->Output(0, input_shape); ORT_ENFORCE(dX); const auto input_size = input_shape.Size(), bias_size = bias_shape.Size(); utils::MLTypeCallDispatcher<MLFloat16, float, double, BFloat16> dispatcher{X->GetElementType()}; dispatcher.Invoke<KernelLaunchDispatcher>(Stream(context), input_size, bias_size, *dY, *X, *B, *dX); return Status::OK(); } } } ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { template <typename GeluComputationMode> class BiasGeluGrad_dX : public RocmKernel { public: BiasGeluGrad_dX(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; private: template <typename T> struct KernelLaunchDispatcher { void operator()( hipStream_t stream, int64_t input_size, int64_t bias_size, const Tensor& dY, const Tensor& X, const Tensor& B, Tensor& dX) const; }; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { template <typename GeluComputationMode> class BiasGeluGrad_dX : public CudaKernel { public: BiasGeluGrad_dX(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; private: template <typename T> struct KernelLaunchDispatcher { void operator()( cudaStream_t stream, int64_t input_size, int64_t bias_size, const Tensor& dY, const Tensor& X, const Tensor& B, Tensor& dX) const; }; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <cstdint> namespace onnxruntime { namespace rocm { // assumptions: // - dY, X, dX have input_size elements // - B has bias_size elements // - input_size % bias_size == 0 template <typename T, typename GeluComputationMode> void LaunchBiasGeluGradDxKernel( hipStream_t stream, int64_t input_size, int64_t bias_size, const T* dY, const T* X, const T* B, T* dX); } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <cstdint> namespace onnxruntime { namespace cuda { // assumptions: // - dY, X, dX have input_size elements // - B has bias_size elements // - input_size % bias_size == 0 template <typename T, typename GeluComputationMode> void LaunchBiasGeluGradDxKernel( cudaStream_t stream, int64_t input_size, int64_t bias_size, const T* dY, const T* X, const T* B, T* dX); } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_kernel.h" #include "orttraining/core/graph/horovod_adapters.h" #include "orttraining/core/graph/optimizer_config.h" namespace onnxruntime { namespace rocm { class HorovodAllReduce final : public RocmKernel { public: HorovodAllReduce(const OpKernelInfo& info) : RocmKernel(info) { unique_name = "AllReduceNode_" + info.node().Name(); int64_t reduce_op; // bugbug int64_t adasum_type = training::AdasumReductionType::None; info.GetAttrOrDefault("reduce_op", &reduce_op, static_cast<int64_t>(hvd::ReduceOp::SUM)); info.GetAttrOrDefault("reduce_algo", &adasum_type, static_cast<int64_t>(training::AdasumReductionType::None)); reduce_op_ = GetReduceOp(reduce_op); adasum_type_ = static_cast<training::AdasumReductionType>(adasum_type); } Status ComputeInternal(OpKernelContext* context) const override; private: std::string unique_name; hvd::ReduceOp reduce_op_; training::AdasumReductionType adasum_type_; }; class HorovodBarrier final : public RocmKernel { public: HorovodBarrier(const OpKernelInfo& info) : RocmKernel(info) { // bugbug int64_t adasum_type = training::AdasumReductionType::None; info.GetAttrOrDefault("reduce_algo", &adasum_type, static_cast<int64_t>(training::AdasumReductionType::None)); adasum_type_ = static_cast<training::AdasumReductionType>(adasum_type); } Status ComputeInternal(OpKernelContext* context) const override; private: training::AdasumReductionType adasum_type_; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_kernel.h" #include "orttraining/core/graph/horovod_adapters.h" #include "orttraining/core/graph/optimizer_config.h" namespace onnxruntime { namespace cuda { class HorovodAllReduce final : public CudaKernel { public: HorovodAllReduce(const OpKernelInfo& info) : CudaKernel(info) { unique_name = "AllReduceNode_" + info.node().Name(); int64_t reduce_op; // bugbug int64_t adasum_type = training::AdasumReductionType::None; info.GetAttrOrDefault("reduce_op", &reduce_op, static_cast<int64_t>(hvd::ReduceOp::SUM)); info.GetAttrOrDefault("reduce_algo", &adasum_type, static_cast<int64_t>(training::AdasumReductionType::None)); reduce_op_ = GetReduceOp(reduce_op); adasum_type_ = static_cast<training::AdasumReductionType>(adasum_type); } Status ComputeInternal(OpKernelContext* context) const override; private: std::string unique_name; hvd::ReduceOp reduce_op_; training::AdasumReductionType adasum_type_; }; class HorovodBarrier final : public CudaKernel { public: HorovodBarrier(const OpKernelInfo& info) : CudaKernel(info) { // bugbug int64_t adasum_type = training::AdasumReductionType::None; info.GetAttrOrDefault("reduce_algo", &adasum_type, static_cast<int64_t>(training::AdasumReductionType::None)); adasum_type_ = static_cast<training::AdasumReductionType>(adasum_type); } Status ComputeInternal(OpKernelContext* context) const override; private: training::AdasumReductionType adasum_type_; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/math/clip.h" #include "core/providers/rocm/rocm_common.h" #include "core/providers/rocm/shared_inc/rocm_utils.h" namespace onnxruntime { namespace rocm { template <typename T> void ClipImpl(hipStream_t stream, const T* input_data, T* output_data, const T* min, const T* max, T min_default, T max_default, size_t count); } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/math/clip.h" #include "core/providers/cuda/cuda_common.h" #include "core/providers/cuda/shared_inc/cuda_utils.h" namespace onnxruntime { namespace cuda { template <typename T> void ClipImpl(cudaStream_t stream, const T* input_data, T* output_data, const T* min, const T* max, T min_default, T max_default, size_t count); } // namespace cuda } // namespace onnxruntime ###
#pragma once #include "core/providers/rocm/cu_inc/common.cuh" #include "core/providers/rocm/shared_inc/rocm_utils.h" namespace onnxruntime { namespace rocm { template <int NumUnroll> __device__ __forceinline__ void SetBitmask(const HIP_LONG id, const HIP_LONG mask_element_count, const fast_divmod fdm_bits_per_element, BitmaskElementType thread_bitmask, BitmaskElementType* mask_data) { int bitmask_idx, bitmask_shift; fdm_bits_per_element.divmod(id, bitmask_idx, bitmask_shift); BitmaskElementType bitmask = (thread_bitmask << bitmask_shift); #if defined(USE_ROCM) && __CUDA_ARCH__ >= 800 BitmaskElementType thread_mask = __match_any_sync(0xFFFFFFFF, bitmask_idx); bitmask = __reduce_or_sync(thread_mask, bitmask); #else #pragma unroll for (int stride = kNumBitsPerBitmaskElement / (NumUnroll * 2); stride > 0; stride /= 2) { bitmask |= WARP_SHFL_DOWN(bitmask, stride); } #endif if (bitmask_shift == 0 && bitmask_idx < mask_element_count) { mask_data[bitmask_idx] = bitmask; } } template <int NumUnroll> __device__ __forceinline__ void GetMasks(HIP_LONG id, const fast_divmod fdm_bits_per_element, const BitmaskElementType* mask_data, bool* mask_result) { int bitmask_idx, bitmask_shift; fdm_bits_per_element.divmod(id, bitmask_idx, bitmask_shift); BitmaskElementType shifted_mask = mask_data[bitmask_idx] >> bitmask_shift; #pragma unroll for (int i = 0; i < NumUnroll; i++) { mask_result[i] = (shifted_mask & (1 << i)) != 0; } } } } ###
#pragma once #include "core/providers/cuda/cu_inc/common.cuh" #include "core/providers/cuda/shared_inc/cuda_utils.h" namespace onnxruntime { namespace cuda { template <int NumUnroll> __device__ __forceinline__ void SetBitmask(const CUDA_LONG id, const CUDA_LONG mask_element_count, const fast_divmod fdm_bits_per_element, BitmaskElementType thread_bitmask, BitmaskElementType* mask_data) { int bitmask_idx, bitmask_shift; fdm_bits_per_element.divmod(id, bitmask_idx, bitmask_shift); BitmaskElementType bitmask = (thread_bitmask << bitmask_shift); #if defined(USE_CUDA) && __CUDA_ARCH__ >= 800 BitmaskElementType thread_mask = __match_any_sync(0xFFFFFFFF, bitmask_idx); bitmask = __reduce_or_sync(thread_mask, bitmask); #else #pragma unroll for (int stride = kNumBitsPerBitmaskElement / (NumUnroll * 2); stride > 0; stride /= 2) { bitmask |= WARP_SHFL_DOWN(bitmask, stride); } #endif if (bitmask_shift == 0 && bitmask_idx < mask_element_count) { mask_data[bitmask_idx] = bitmask; } } template <int NumUnroll> __device__ __forceinline__ void GetMasks(CUDA_LONG id, const fast_divmod fdm_bits_per_element, const BitmaskElementType* mask_data, bool* mask_result) { int bitmask_idx, bitmask_shift; fdm_bits_per_element.divmod(id, bitmask_idx, bitmask_shift); BitmaskElementType shifted_mask = mask_data[bitmask_idx] >> bitmask_shift; #pragma unroll for (int i = 0; i < NumUnroll; i++) { mask_result[i] = (shifted_mask & (1 << i)) != 0; } } } } ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_kernel.h" #include "orttraining/core/framework/distributed_run_context.h" #if defined(ORT_USE_NCCL) #include <rccl/rccl.h> #endif namespace onnxruntime { namespace rocm { #if defined(ORT_USE_NCCL) #define NCCL_RETURN_IF_ERROR(expr) ORT_RETURN_IF_ERROR(NCCL_CALL(expr)) #endif class NcclContext final { public: NcclContext(); ~NcclContext(); ncclComm_t Comm(training::WorkerGroupType group_type); int Rank(training::WorkerGroupType group_type) const { return training::DistributedRunContext::RankInGroup(group_type); } int Size(training::WorkerGroupType group_type) const { return training::DistributedRunContext::GroupSize(group_type); } private: ncclComm_t global_group_comm_; ncclComm_t data_group_comm_; ncclComm_t node_local_comm_; ncclComm_t cross_node_comm_; ncclComm_t horizontal_group_comm_; }; // ----------------------------------------------------------------------- // Base class for NCCL kernels // ----------------------------------------------------------------------- class NcclKernel : public RocmKernel { public: explicit NcclKernel(const OpKernelInfo& info); protected: NcclContext* nccl_ = nullptr; training::WorkerGroupType group_type_; }; ncclDataType_t GetNcclDataType(onnxruntime::MLDataType type); } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_kernel.h" #include "orttraining/core/framework/distributed_run_context.h" #if defined(ORT_USE_NCCL) #include <nccl.h> #endif namespace onnxruntime { namespace cuda { #if defined(ORT_USE_NCCL) #define NCCL_RETURN_IF_ERROR(expr) ORT_RETURN_IF_ERROR(NCCL_CALL(expr)) #endif class NcclContext final { public: NcclContext(); ~NcclContext(); ncclComm_t Comm(training::WorkerGroupType group_type); int Rank(training::WorkerGroupType group_type) const { return training::DistributedRunContext::RankInGroup(group_type); } int Size(training::WorkerGroupType group_type) const { return training::DistributedRunContext::GroupSize(group_type); } private: ncclComm_t global_group_comm_; ncclComm_t data_group_comm_; ncclComm_t node_local_comm_; ncclComm_t cross_node_comm_; ncclComm_t horizontal_group_comm_; }; // ----------------------------------------------------------------------- // Base class for NCCL kernels // ----------------------------------------------------------------------- class NcclKernel : public CudaKernel { public: explicit NcclKernel(const OpKernelInfo& info); protected: NcclContext* nccl_ = nullptr; training::WorkerGroupType group_type_; }; ncclDataType_t GetNcclDataType(onnxruntime::MLDataType type); } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "nccl_common.h" namespace onnxruntime { namespace rocm { class NcclAllReduce final : public NcclKernel { public: explicit NcclAllReduce(const OpKernelInfo& info); Status ComputeInternal(OpKernelContext* context) const override; }; class NcclAllGather final : public NcclKernel { public: explicit NcclAllGather(const OpKernelInfo& info); Status ComputeInternal(OpKernelContext* context) const override; }; class NcclReduceScatter final : public NcclKernel { public: explicit NcclReduceScatter(const OpKernelInfo& info); Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "nccl_common.h" namespace onnxruntime { namespace cuda { class NcclAllReduce final : public NcclKernel { public: explicit NcclAllReduce(const OpKernelInfo& info); Status ComputeInternal(OpKernelContext* context) const override; }; class NcclAllGather final : public NcclKernel { public: explicit NcclAllGather(const OpKernelInfo& info); Status ComputeInternal(OpKernelContext* context) const override; }; class NcclReduceScatter final : public NcclKernel { public: explicit NcclReduceScatter(const OpKernelInfo& info); Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #if defined(ORT_USE_NCCL) || defined(USE_MPI) #pragma once #include "core/common/common.h" #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { class Recv final : public RocmKernel { public: Recv(const OpKernelInfo& info) : RocmKernel(info) { ORT_ENFORCE(info.GetAttr<int64_t>("tag", &tag_).IsOK()); ORT_ENFORCE(info.GetAttrs<int64_t>("element_types", element_types_).IsOK()); } Status ComputeInternal(OpKernelContext* context) const override; private: void ReceiveData( const int num_tensors, std::vector<Tensor*> received_tensors, const int src, const size_t aggregated_aligned_tensor_bytes, OpKernelContext* context, IAllocatorUniquePtr<char>& buffer) const; int64_t tag_; std::vector<int64_t> element_types_; }; } // namespace rocm } // namespace onnxruntime #endif ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #if defined(ORT_USE_NCCL) || defined(USE_MPI) #pragma once #include "core/common/common.h" #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { class Recv final : public CudaKernel { public: Recv(const OpKernelInfo& info) : CudaKernel(info) { ORT_ENFORCE(info.GetAttr<int64_t>("tag", &tag_).IsOK()); ORT_ENFORCE(info.GetAttrs<int64_t>("element_types", element_types_).IsOK()); } Status ComputeInternal(OpKernelContext* context) const override; private: void ReceiveData( const int num_tensors, std::vector<Tensor*> received_tensors, const int src, const size_t aggregated_aligned_tensor_bytes, OpKernelContext* context, IAllocatorUniquePtr<char>& buffer) const; int64_t tag_; std::vector<int64_t> element_types_; }; } // namespace cuda } // namespace onnxruntime #endif ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #if defined(ORT_USE_NCCL) || defined(USE_MPI) #pragma once #include "core/common/common.h" #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { class Send final : public RocmKernel { public: Send(const OpKernelInfo& info) : RocmKernel(info) { ORT_ENFORCE(info.GetAttr<int64_t>("tag", &tag_).IsOK()); ORT_ENFORCE(info.GetAttrs<int64_t>("element_types", element_types_).IsOK()); } Status ComputeInternal(OpKernelContext* context) const override; private: void SendData( OpKernelContext* ctx, const int dst, const int num_tensors, size_t aggregated_aligned_tensor_bytes, std::vector<size_t> tensor_offsets_in_bytes, std::vector<size_t> tensor_sizes_in_bytes) const; int64_t tag_; std::vector<int64_t> element_types_; }; } // namespace rocm } // namespace onnxruntime #endif ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #if defined(ORT_USE_NCCL) || defined(USE_MPI) #pragma once #include "core/common/common.h" #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { class Send final : public CudaKernel { public: Send(const OpKernelInfo& info) : CudaKernel(info) { ORT_ENFORCE(info.GetAttr<int64_t>("tag", &tag_).IsOK()); ORT_ENFORCE(info.GetAttrs<int64_t>("element_types", element_types_).IsOK()); } Status ComputeInternal(OpKernelContext* context) const override; private: void SendData( OpKernelContext* ctx, const int dst, const int num_tensors, size_t aggregated_aligned_tensor_bytes, std::vector<size_t> tensor_offsets_in_bytes, std::vector<size_t> tensor_sizes_in_bytes) const; int64_t tag_; std::vector<int64_t> element_types_; }; } // namespace cuda } // namespace onnxruntime #endif ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "core/providers/shared_library/provider_api.h" #include "orttraining/training_ops/cpu/controlflow/group.h" #include "core/providers/rocm/rocm_fwd.h" namespace onnxruntime { namespace rocm { ONNX_OPERATOR_KERNEL_EX( Group, kMSDomain, 1, kRocmExecutionProvider, (*KernelDefBuilder::Create()) .OutputMemoryType(OrtMemTypeCPUOutput, 0) .TypeConstraint("B", DataTypeImpl::GetTensorType<bool>()) .TypeConstraint("T", DataTypeImpl::AllTensorTypes()), onnxruntime::contrib::Group); ONNX_OPERATOR_KERNEL_EX( PassThrough, kMSDomain, 1, kRocmExecutionProvider, (*KernelDefBuilder::Create()) .TypeConstraint("T", DataTypeImpl::AllTensorTypes()) .VariadicAlias(0, 0), // outputs and inputs are mapped one to one onnxruntime::contrib::PassThrough); } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "core/providers/shared_library/provider_api.h" #include "orttraining/training_ops/cpu/controlflow/group.h" #include "core/providers/cuda/cuda_fwd.h" namespace onnxruntime { namespace cuda { ONNX_OPERATOR_KERNEL_EX( Group, kMSDomain, 1, kCudaExecutionProvider, (*KernelDefBuilder::Create()) .OutputMemoryType(OrtMemTypeCPUOutput, 0) .TypeConstraint("B", DataTypeImpl::GetTensorType<bool>()) .TypeConstraint("T", DataTypeImpl::AllTensorTypes()), onnxruntime::contrib::Group); ONNX_OPERATOR_KERNEL_EX( PassThrough, kMSDomain, 1, kCudaExecutionProvider, (*KernelDefBuilder::Create()) .TypeConstraint("T", DataTypeImpl::AllTensorTypes()) .VariadicAlias(0, 0), // outputs and inputs are mapped one to one onnxruntime::contrib::PassThrough); } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "orttraining/training_ops/rocm/controlflow/record.h" #include "core/providers/cpu/tensor/utils.h" // Include event mechanism shared by CPU and GPU implementations. #include "orttraining/training_ops/cpu/controlflow/event_pool.h" #include "orttraining/training_ops/cpu/controlflow/record.h" #include "core/providers/rocm/nvtx_profile.h" #include "core/providers/rocm/nvtx_profile_context.h" namespace onnxruntime { namespace rocm { ONNX_OPERATOR_KERNEL_EX( RecordEvent, kMSDomain, 1, kRocmExecutionProvider, (*KernelDefBuilder::Create()) .InputMemoryType(OrtMemTypeCPUInput, 0) /* Keep EventIdentifier in CPU */ .TypeConstraint("TInt64", DataTypeImpl::GetTensorType<int64_t>()) .TypeConstraint("T", DataTypeImpl::AllFixedSizeTensorTypes()) .VariadicAlias(1, 0), // outputs and inputs are mapped one to one, with input offset by 1 RecordEvent); Status RecordEvent::ComputeInternal(OpKernelContext* ctx) const { #ifdef ENABLE_NVTX_PROFILE const Tensor* event_id_tensor = ctx->Input<Tensor>(0); const int64_t event_id = *(event_id_tensor->template Data<int64_t>()); auto& profile_context = profile::Context::GetInstance(); const auto tag = profile_context.GetThreadTagOrDefault(std::this_thread::get_id()); profile::NvtxRangeCreator range( "Batch-" + tag + " Record-" + std::to_string(event_id), profile::Color::Magenta); range.Begin(); #endif // Reuse CPU helper to record event because event tensor is a CPU tensor. onnxruntime::contrib::record_event_in_tensor(*ctx->Input<Tensor>(0)); ORT_ENFORCE(ctx->GetComputeStream()); for (int i_out = 0; i_out < ctx->OutputCount(); ++i_out) { // This iteration copies (i-1)-th input to i-th output. const Tensor* X = ctx->Input<Tensor>(i_out + 1); const TensorShape& data_shape = X->Shape(); Tensor* Y = ctx->Output(i_out, data_shape); ORT_RETURN_IF_ERROR(CopyTensor(*X, *Y, *ctx->GetComputeStream())); } #ifdef ENABLE_NVTX_PROFILE range.End(); #endif return Status::OK(); } } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "orttraining/training_ops/cuda/controlflow/record.h" #include "core/providers/cpu/tensor/utils.h" // Include event mechanism shared by CPU and GPU implementations. #include "orttraining/training_ops/cpu/controlflow/event_pool.h" #include "orttraining/training_ops/cpu/controlflow/record.h" #include "core/providers/cuda/nvtx_profile.h" #include "core/providers/cuda/nvtx_profile_context.h" namespace onnxruntime { namespace cuda { ONNX_OPERATOR_KERNEL_EX( RecordEvent, kMSDomain, 1, kCudaExecutionProvider, (*KernelDefBuilder::Create()) .InputMemoryType(OrtMemTypeCPUInput, 0) /* Keep EventIdentifier in CPU */ .TypeConstraint("TInt64", DataTypeImpl::GetTensorType<int64_t>()) .TypeConstraint("T", DataTypeImpl::AllFixedSizeTensorTypes()) .VariadicAlias(1, 0), // outputs and inputs are mapped one to one, with input offset by 1 RecordEvent); Status RecordEvent::ComputeInternal(OpKernelContext* ctx) const { #ifdef ENABLE_NVTX_PROFILE const Tensor* event_id_tensor = ctx->Input<Tensor>(0); const int64_t event_id = *(event_id_tensor->template Data<int64_t>()); auto& profile_context = profile::Context::GetInstance(); const auto tag = profile_context.GetThreadTagOrDefault(std::this_thread::get_id()); profile::NvtxRangeCreator range( "Batch-" + tag + " Record-" + std::to_string(event_id), profile::Color::Magenta); range.Begin(); #endif // Reuse CPU helper to record event because event tensor is a CPU tensor. onnxruntime::contrib::record_event_in_tensor(*ctx->Input<Tensor>(0)); ORT_ENFORCE(ctx->GetComputeStream()); for (int i_out = 0; i_out < ctx->OutputCount(); ++i_out) { // This iteration copies (i-1)-th input to i-th output. const Tensor* X = ctx->Input<Tensor>(i_out + 1); const TensorShape& data_shape = X->Shape(); Tensor* Y = ctx->Output(i_out, data_shape); ORT_RETURN_IF_ERROR(CopyTensor(*X, *Y, *ctx->GetComputeStream())); } #ifdef ENABLE_NVTX_PROFILE range.End(); #endif return Status::OK(); } } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/rocm/rocm_kernel.h" #include "core/providers/rocm/miopen_common.h" namespace onnxruntime { namespace rocm { class RecordEvent final : public RocmKernel { public: RecordEvent(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace rocm } // namespace onnxruntime###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/cuda/cuda_kernel.h" #include "core/providers/cuda/cudnn_common.h" namespace onnxruntime { namespace cuda { class RecordEvent final : public CudaKernel { public: RecordEvent(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "orttraining/training_ops/rocm/controlflow/wait.h" #include "core/providers/cpu/tensor/utils.h" // Include event mechanism shared by CPU and GPU implementations. #include "orttraining/training_ops/cpu/controlflow/event_pool.h" #include "orttraining/training_ops/cpu/controlflow/wait.h" #include "core/providers/rocm/nvtx_profile.h" #include "core/providers/rocm/nvtx_profile_context.h" namespace onnxruntime { namespace rocm { ONNX_OPERATOR_KERNEL_EX( WaitEvent, kMSDomain, 1, kRocmExecutionProvider, (*KernelDefBuilder::Create()) .InputMemoryType(OrtMemTypeCPUInput, 0) /* CPU variable */ .TypeConstraint("TInt64", DataTypeImpl::GetTensorType<int64_t>()) .TypeConstraint("T", DataTypeImpl::AllFixedSizeTensorTypes()) .VariadicAlias(1, 0), // outputs and inputs are mapped one to one, with input offset by 1 WaitEvent); Status WaitEvent::ComputeInternal(OpKernelContext* ctx) const { #ifdef ENABLE_NVTX_PROFILE const Tensor* event_id_tensor = ctx->Input<Tensor>(0); const int64_t event_id = *(event_id_tensor->template Data<int64_t>()); auto& profile_context = profile::Context::GetInstance(); const auto tag = profile_context.GetThreadTagOrDefault(std::this_thread::get_id()); profile::NvtxRangeCreator range( "Batch-" + tag + " Wait-" + std::to_string(event_id), profile::Color::Blue); range.Begin(); #endif // Reuse CPU helper to wait event because event tensor is a CPU tensor. onnxruntime::contrib::wait_event_in_tensor(*ctx->Input<Tensor>(0)); ORT_ENFORCE(ctx->GetComputeStream()); for (int i_out = 0; i_out < ctx->OutputCount(); ++i_out) { // This iteration copies (i-1)-th input to i-th output. const Tensor* X = ctx->Input<Tensor>(i_out + 1); const TensorShape& data_shape = X->Shape(); Tensor* Y = ctx->Output(i_out, data_shape); ORT_RETURN_IF_ERROR(CopyTensor(*X, *Y, *ctx->GetComputeStream())); } #ifdef ENABLE_NVTX_PROFILE range.End(); #endif return Status::OK(); } } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "orttraining/training_ops/cuda/controlflow/wait.h" #include "core/providers/cpu/tensor/utils.h" // Include event mechanism shared by CPU and GPU implementations. #include "orttraining/training_ops/cpu/controlflow/event_pool.h" #include "orttraining/training_ops/cpu/controlflow/wait.h" #include "core/providers/cuda/nvtx_profile.h" #include "core/providers/cuda/nvtx_profile_context.h" namespace onnxruntime { namespace cuda { ONNX_OPERATOR_KERNEL_EX( WaitEvent, kMSDomain, 1, kCudaExecutionProvider, (*KernelDefBuilder::Create()) .InputMemoryType(OrtMemTypeCPUInput, 0) /* CPU variable */ .TypeConstraint("TInt64", DataTypeImpl::GetTensorType<int64_t>()) .TypeConstraint("T", DataTypeImpl::AllFixedSizeTensorTypes()) .VariadicAlias(1, 0), // outputs and inputs are mapped one to one, with input offset by 1 WaitEvent); Status WaitEvent::ComputeInternal(OpKernelContext* ctx) const { #ifdef ENABLE_NVTX_PROFILE const Tensor* event_id_tensor = ctx->Input<Tensor>(0); const int64_t event_id = *(event_id_tensor->template Data<int64_t>()); auto& profile_context = profile::Context::GetInstance(); const auto tag = profile_context.GetThreadTagOrDefault(std::this_thread::get_id()); profile::NvtxRangeCreator range( "Batch-" + tag + " Wait-" + std::to_string(event_id), profile::Color::Blue); range.Begin(); #endif // Reuse CPU helper to wait event because event tensor is a CPU tensor. onnxruntime::contrib::wait_event_in_tensor(*ctx->Input<Tensor>(0)); ORT_ENFORCE(ctx->GetComputeStream()); for (int i_out = 0; i_out < ctx->OutputCount(); ++i_out) { // This iteration copies (i-1)-th input to i-th output. const Tensor* X = ctx->Input<Tensor>(i_out + 1); const TensorShape& data_shape = X->Shape(); Tensor* Y = ctx->Output(i_out, data_shape); ORT_RETURN_IF_ERROR(CopyTensor(*X, *Y, *ctx->GetComputeStream())); } #ifdef ENABLE_NVTX_PROFILE range.End(); #endif return Status::OK(); } } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/rocm/rocm_kernel.h" #include "core/providers/rocm/miopen_common.h" namespace onnxruntime { namespace rocm { class WaitEvent final : public RocmKernel { public: WaitEvent(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace rocm } // namespace onnxruntime###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/cuda/cuda_kernel.h" #include "core/providers/cuda/cudnn_common.h" namespace onnxruntime { namespace cuda { class WaitEvent final : public CudaKernel { public: WaitEvent(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "core/providers/shared_library/provider_api.h" #include "orttraining/training_ops/cpu/controlflow/yield.h" #include "core/providers/rocm/rocm_fwd.h" namespace onnxruntime { namespace rocm { ONNX_OPERATOR_KERNEL_EX( YieldOp, kMSDomain, 1, kRocmExecutionProvider, (*KernelDefBuilder::Create()) .TypeConstraint("T", DataTypeImpl::AllFixedSizeTensorTypes()) .ExternalOutputs(), onnxruntime::contrib::YieldOp); } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "core/providers/shared_library/provider_api.h" #include "orttraining/training_ops/cpu/controlflow/yield.h" #include "core/providers/cuda/cuda_fwd.h" namespace onnxruntime { namespace cuda { ONNX_OPERATOR_KERNEL_EX( YieldOp, kMSDomain, 1, kCudaExecutionProvider, (*KernelDefBuilder::Create()) .TypeConstraint("T", DataTypeImpl::AllFixedSizeTensorTypes()) .ExternalOutputs(), onnxruntime::contrib::YieldOp); } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { class CumSum final : public RocmKernel { public: explicit CumSum(const OpKernelInfo& info) : RocmKernel(info) { // Process exclusive attribute int64_t exclusive = 0; auto status = info.GetAttr("exclusive", &exclusive); if (status.IsOK()) { if (exclusive == 1 || exclusive == 0) { exclusive_ = (exclusive == 1); } else { ORT_ENFORCE("attribute exclusive can only be 0 or 1"); } } // Process reverse attribute int64_t reverse = 0; status = info.GetAttr("reverse", &reverse); if (status.IsOK()) { if (reverse == 1 || reverse == 0) { reverse_ = (reverse == 1); } else { ORT_ENFORCE("attribute reverse can only be 0 or 1"); } } } ~CumSum() = default; Status ComputeInternal(OpKernelContext* ctx) const override; private: bool exclusive_ = false; bool reverse_ = false; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { class CumSum final : public CudaKernel { public: explicit CumSum(const OpKernelInfo& info) : CudaKernel(info) { // Process exclusive attribute int64_t exclusive = 0; auto status = info.GetAttr("exclusive", &exclusive); if (status.IsOK()) { if (exclusive == 1 || exclusive == 0) { exclusive_ = (exclusive == 1); } else { ORT_ENFORCE("attribute exclusive can only be 0 or 1"); } } // Process reverse attribute int64_t reverse = 0; status = info.GetAttr("reverse", &reverse); if (status.IsOK()) { if (reverse == 1 || reverse == 0) { reverse_ = (reverse == 1); } else { ORT_ENFORCE("attribute reverse can only be 0 or 1"); } } } ~CumSum() = default; Status ComputeInternal(OpKernelContext* ctx) const override; private: bool exclusive_ = false; bool reverse_ = false; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_common.h" #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { template <typename T> class GistBinarizeEncoderOp final : public RocmKernel { public: GistBinarizeEncoderOp(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class GistBinarizeDecoderOp final : public RocmKernel { public: GistBinarizeDecoderOp(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class GistPack1EncoderOp final : public RocmKernel { public: static constexpr int GIST_PACK1_FACTOR = 8; GistPack1EncoderOp(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class GistPack1DecoderOp final : public RocmKernel { public: static constexpr int GIST_PACK1_FACTOR = 8; GistPack1DecoderOp(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class GistPack8EncoderOp final : public RocmKernel { public: GistPack8EncoderOp(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class GistPack8DecoderOp final : public RocmKernel { public: GistPack8DecoderOp(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class GistPack16EncoderOp final : public RocmKernel { public: GistPack16EncoderOp(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class GistPack16DecoderOp final : public RocmKernel { public: GistPack16DecoderOp(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class GistPackMsfp15EncoderOp final : public RocmKernel { public: GistPackMsfp15EncoderOp(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class GistPackMsfp15DecoderOp final : public RocmKernel { public: GistPackMsfp15DecoderOp(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_common.h" #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { template <typename T> class GistBinarizeEncoderOp final : public CudaKernel { public: GistBinarizeEncoderOp(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class GistBinarizeDecoderOp final : public CudaKernel { public: GistBinarizeDecoderOp(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class GistPack1EncoderOp final : public CudaKernel { public: static constexpr int GIST_PACK1_FACTOR = 8; GistPack1EncoderOp(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class GistPack1DecoderOp final : public CudaKernel { public: static constexpr int GIST_PACK1_FACTOR = 8; GistPack1DecoderOp(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class GistPack8EncoderOp final : public CudaKernel { public: GistPack8EncoderOp(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class GistPack8DecoderOp final : public CudaKernel { public: GistPack8DecoderOp(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class GistPack16EncoderOp final : public CudaKernel { public: GistPack16EncoderOp(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class GistPack16DecoderOp final : public CudaKernel { public: GistPack16DecoderOp(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class GistPackMsfp15EncoderOp final : public CudaKernel { public: GistPackMsfp15EncoderOp(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class GistPackMsfp15DecoderOp final : public CudaKernel { public: GistPackMsfp15DecoderOp(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/shared_inc/rocm_utils.h" #include <stdio.h> #include <assert.h> #include <hip/hip_runtime.h> namespace onnxruntime { namespace rocm { static constexpr int GIST_PACK1_FACTOR = 8; template <typename T> void GistBinarizeEncoderImpl( hipStream_t stream, const T* input_data, bool* output_data, const size_t nums_of_elements); template <typename T> void GistBinarizeDecoderImpl( hipStream_t stream, const bool* input_data, T* output_data, const size_t nums_of_elements); template <typename T> void GistPack1EncoderImpl( hipStream_t stream, const T* input_data, uint8_t* output_data, const size_t nums_of_elements); template <typename T> void GistPack1DecoderImpl( hipStream_t stream, const uint8_t* input_data, T* output_data, const size_t nums_of_elements); template <typename T> void GistPack8EncoderImpl( hipStream_t stream, const T* input_data, uint8_t* output_data, const size_t nums_of_elements); template <typename T> void GistPack8DecoderImpl( hipStream_t stream, const uint8_t* input_data, T* output_data, const size_t nums_of_elements); template <typename T> void GistPack16EncoderImpl( hipStream_t stream, const T* input_data, half* output_data, const size_t nums_of_elements); template <typename T> void GistPack16DecoderImpl( hipStream_t stream, const half* input_data, T* output_data, const size_t nums_of_elements); template <typename T> void GistPackMsfp15EncoderImpl( hipStream_t stream, const T* input_data, uint8_t* output_data, const size_t pre_axis_size, const size_t axis_size, const size_t tile_size); template <typename T> void GistPackMsfp15DecoderImpl( hipStream_t stream, const uint8_t* input_data, T* output_data, const size_t pre_axis_size, const size_t axis_size, const size_t tile_size); } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/shared_inc/cuda_utils.h" #include <stdio.h> #include <assert.h> #include <cuda_runtime.h> namespace onnxruntime { namespace cuda { static constexpr int GIST_PACK1_FACTOR = 8; template <typename T> void GistBinarizeEncoderImpl( cudaStream_t stream, const T* input_data, bool* output_data, const size_t nums_of_elements); template <typename T> void GistBinarizeDecoderImpl( cudaStream_t stream, const bool* input_data, T* output_data, const size_t nums_of_elements); template <typename T> void GistPack1EncoderImpl( cudaStream_t stream, const T* input_data, uint8_t* output_data, const size_t nums_of_elements); template <typename T> void GistPack1DecoderImpl( cudaStream_t stream, const uint8_t* input_data, T* output_data, const size_t nums_of_elements); template <typename T> void GistPack8EncoderImpl( cudaStream_t stream, const T* input_data, uint8_t* output_data, const size_t nums_of_elements); template <typename T> void GistPack8DecoderImpl( cudaStream_t stream, const uint8_t* input_data, T* output_data, const size_t nums_of_elements); template <typename T> void GistPack16EncoderImpl( cudaStream_t stream, const T* input_data, half* output_data, const size_t nums_of_elements); template <typename T> void GistPack16DecoderImpl( cudaStream_t stream, const half* input_data, T* output_data, const size_t nums_of_elements); template <typename T> void GistPackMsfp15EncoderImpl( cudaStream_t stream, const T* input_data, uint8_t* output_data, const size_t pre_axis_size, const size_t axis_size, const size_t tile_size); template <typename T> void GistPackMsfp15DecoderImpl( cudaStream_t stream, const uint8_t* input_data, T* output_data, const size_t pre_axis_size, const size_t axis_size, const size_t tile_size); } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "orttraining/training_ops/cpu/loss/reduction_type.h" #include "core/providers/rocm/reduction/reduction_ops.h" #include "orttraining/training_ops/rocm/loss/softmaxcrossentropy_impl.h" namespace onnxruntime { namespace rocm { template <typename T, typename TAcc, typename TLabel> void SoftmaxCrossEntropyLossImpl( hipStream_t stream, const T* log_prob, const TLabel* label, const T* weight, const TAcc* normalize_factor, size_t count, size_t label_depth, int64_t ignore_index, T* output_data); template <typename T, typename TAcc, typename TLabel, typename TOut> void SoftmaxCrossEntropyLossGradImpl( hipStream_t stream, const T* dY, const T* log_prob, const TLabel* label, const T* weight, const TAcc* normalize_factor, const TOut* bias_data, size_t count, size_t label_depth, bool reduction_none, TOut* output_data); template <typename T, typename TLabel, typename TOut> void ComputeSoftmaxCrossEntropyWeightsImpl( hipStream_t stream, const TLabel* label, const T* weight, size_t count, size_t label_depth, int64_t ignore_index, TOut* weight_data_nd); template <typename T, typename TLabel, typename TOut> class SoftmaxCrossEntropyLoss final : public LossBase { public: SoftmaxCrossEntropyLoss(const OpKernelInfo& info) : LossBase(info) { int64_t default_ignore_index = -1; info.GetAttrOrDefault<int64_t>("ignore_index", &ignore_index_, default_ignore_index); } Status ComputeInternal(OpKernelContext* context) const override; private: int64_t ignore_index_; }; template <typename T, typename TLabel, typename TOut> class SoftmaxCrossEntropyLossGrad final : public LossBase { public: SoftmaxCrossEntropyLossGrad(const OpKernelInfo& info) : LossBase(info) { int64_t default_ignore_index = -1; info.GetAttrOrDefault<int64_t>("ignore_index", &ignore_index_, default_ignore_index); } Status ComputeInternal(OpKernelContext* context) const override; private: int64_t ignore_index_; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "orttraining/training_ops/cpu/loss/reduction_type.h" #include "core/providers/cuda/reduction/reduction_ops.h" #include "orttraining/training_ops/cuda/loss/softmaxcrossentropy_impl.h" namespace onnxruntime { namespace cuda { template <typename T, typename TAcc, typename TLabel> void SoftmaxCrossEntropyLossImpl( cudaStream_t stream, const T* log_prob, const TLabel* label, const T* weight, const TAcc* normalize_factor, size_t count, size_t label_depth, int64_t ignore_index, T* output_data); template <typename T, typename TAcc, typename TLabel, typename TOut> void SoftmaxCrossEntropyLossGradImpl( cudaStream_t stream, const T* dY, const T* log_prob, const TLabel* label, const T* weight, const TAcc* normalize_factor, const TOut* bias_data, size_t count, size_t label_depth, bool reduction_none, TOut* output_data); template <typename T, typename TLabel, typename TOut> void ComputeSoftmaxCrossEntropyWeightsImpl( cudaStream_t stream, const TLabel* label, const T* weight, size_t count, size_t label_depth, int64_t ignore_index, TOut* weight_data_nd); template <typename T, typename TLabel, typename TOut> class SoftmaxCrossEntropyLoss final : public LossBase { public: SoftmaxCrossEntropyLoss(const OpKernelInfo& info) : LossBase(info) { int64_t default_ignore_index = -1; info.GetAttrOrDefault<int64_t>("ignore_index", &ignore_index_, default_ignore_index); } Status ComputeInternal(OpKernelContext* context) const override; private: int64_t ignore_index_; }; template <typename T, typename TLabel, typename TOut> class SoftmaxCrossEntropyLossGrad final : public LossBase { public: SoftmaxCrossEntropyLossGrad(const OpKernelInfo& info) : LossBase(info) { int64_t default_ignore_index = -1; info.GetAttrOrDefault<int64_t>("ignore_index", &ignore_index_, default_ignore_index); } Status ComputeInternal(OpKernelContext* context) const override; private: int64_t ignore_index_; }; } // namespace cuda } // namespace onnxruntime ###
#pragma once #include "orttraining/training_ops/cpu/loss/reduction_type.h" #include "core/providers/rocm/reduction/reduction_ops.h" namespace onnxruntime { namespace rocm { template <typename T> void SoftMaxCrossEntropyImpl( hipStream_t stream, const T* log_prob, const T* label, size_t normalize_factor, T* output_data, size_t count); template <typename T> void SoftMaxCrossEntropyGradImpl( hipStream_t stream, const T* dY, const T* log_prob, const T* label, size_t normalize_factor, T* output_data, size_t count); template <typename T, typename Tin> void SparseSoftmaxCrossEntropyImpl( hipStream_t stream, const T* log_prob, const Tin* label, const T* weight, const T* normalize_factor, T* output_data, size_t count, size_t label_depth); template <typename T, typename Tin> void SparseSoftmaxCrossEntropyGradImpl( hipStream_t stream, const T* dY, const T* log_prob, const Tin* label, const T* weight, const T* normalize_factor, T* output_data, size_t count, size_t label_depth); class LossBase : public ReduceKernel<true> { public: explicit LossBase(const OpKernelInfo& info) : ReduceKernel<true>(info, int64_t(0)) { std::string reduction; ORT_ENFORCE(info.GetAttr<std::string>("reduction", &reduction).IsOK()); reduction_ = StringToReductionType(reduction); } protected: ReductionType reduction_; }; template <typename T> class SoftmaxCrossEntropy final : public LossBase { public: SoftmaxCrossEntropy(const OpKernelInfo& info) : LossBase(info) { ORT_ENFORCE(reduction_ != ReductionType::NONE, "Loss with reduction 'none' is not implemented."); } Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class SoftmaxCrossEntropyGrad final : public LossBase { public: SoftmaxCrossEntropyGrad(const OpKernelInfo& info) : LossBase(info) { ORT_ENFORCE(reduction_ != ReductionType::NONE, "Loss with reduction 'none' is not implemented."); } Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T, typename Tin> class SparseSoftmaxCrossEntropy final : public LossBase { public: SparseSoftmaxCrossEntropy(const OpKernelInfo& info) : LossBase(info) { ORT_ENFORCE(reduction_ != ReductionType::NONE, "Loss with reduction 'none' is not implemented."); } Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T, typename Tin> class SparseSoftmaxCrossEntropyGrad final : public LossBase { public: SparseSoftmaxCrossEntropyGrad(const OpKernelInfo& info) : LossBase(info) { ORT_ENFORCE(reduction_ != ReductionType::NONE, "Loss with reduction 'none' is not implemented."); } Status ComputeInternal(OpKernelContext* context) const override; }; } } ###
#pragma once #include "orttraining/training_ops/cpu/loss/reduction_type.h" #include "core/providers/cuda/reduction/reduction_ops.h" namespace onnxruntime { namespace cuda { template <typename T> void SoftMaxCrossEntropyImpl( cudaStream_t stream, const T* log_prob, const T* label, size_t normalize_factor, T* output_data, size_t count); template <typename T> void SoftMaxCrossEntropyGradImpl( cudaStream_t stream, const T* dY, const T* log_prob, const T* label, size_t normalize_factor, T* output_data, size_t count); template <typename T, typename Tin> void SparseSoftmaxCrossEntropyImpl( cudaStream_t stream, const T* log_prob, const Tin* label, const T* weight, const T* normalize_factor, T* output_data, size_t count, size_t label_depth); template <typename T, typename Tin> void SparseSoftmaxCrossEntropyGradImpl( cudaStream_t stream, const T* dY, const T* log_prob, const Tin* label, const T* weight, const T* normalize_factor, T* output_data, size_t count, size_t label_depth); class LossBase : public ReduceKernel<true> { public: explicit LossBase(const OpKernelInfo& info) : ReduceKernel<true>(info, int64_t(0)) { std::string reduction; ORT_ENFORCE(info.GetAttr<std::string>("reduction", &reduction).IsOK()); reduction_ = StringToReductionType(reduction); } protected: ReductionType reduction_; }; template <typename T> class SoftmaxCrossEntropy final : public LossBase { public: SoftmaxCrossEntropy(const OpKernelInfo& info) : LossBase(info) { ORT_ENFORCE(reduction_ != ReductionType::NONE, "Loss with reduction 'none' is not implemented."); } Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T> class SoftmaxCrossEntropyGrad final : public LossBase { public: SoftmaxCrossEntropyGrad(const OpKernelInfo& info) : LossBase(info) { ORT_ENFORCE(reduction_ != ReductionType::NONE, "Loss with reduction 'none' is not implemented."); } Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T, typename Tin> class SparseSoftmaxCrossEntropy final : public LossBase { public: SparseSoftmaxCrossEntropy(const OpKernelInfo& info) : LossBase(info) { ORT_ENFORCE(reduction_ != ReductionType::NONE, "Loss with reduction 'none' is not implemented."); } Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T, typename Tin> class SparseSoftmaxCrossEntropyGrad final : public LossBase { public: SparseSoftmaxCrossEntropyGrad(const OpKernelInfo& info) : LossBase(info) { ORT_ENFORCE(reduction_ != ReductionType::NONE, "Loss with reduction 'none' is not implemented."); } Status ComputeInternal(OpKernelContext* context) const override; }; } } ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { class BiasSoftmaxDropout final : public onnxruntime::rocm::RocmKernel { public: BiasSoftmaxDropout(const OpKernelInfo& info) : RocmKernel{info} { info.GetAttrOrDefault("axis", &axis_, static_cast<int64_t>(1)); int64_t is_inner_broadcast_value; ORT_ENFORCE(info.GetAttr<int64_t>("is_inner_broadcast", &is_inner_broadcast_value).IsOK()); is_inner_broadcast_ = is_inner_broadcast_value != 0; int64_t seed = 0; if (info.GetAttr<int64_t>("seed", &seed).IsOK()) { generator_ = std::make_unique<PhiloxGenerator>(static_cast<uint64_t>(seed)); } } Status ComputeInternal(OpKernelContext* context) const override; private: // For Softmax. int64_t axis_; bool is_inner_broadcast_; // For Dropout. mutable std::unique_ptr<PhiloxGenerator> generator_; static constexpr float default_ratio_ = 0.5f; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { class BiasSoftmaxDropout final : public onnxruntime::cuda::CudaKernel { public: BiasSoftmaxDropout(const OpKernelInfo& info) : CudaKernel{info} { info.GetAttrOrDefault("axis", &axis_, static_cast<int64_t>(1)); int64_t is_inner_broadcast_value; ORT_ENFORCE(info.GetAttr<int64_t>("is_inner_broadcast", &is_inner_broadcast_value).IsOK()); is_inner_broadcast_ = is_inner_broadcast_value != 0; int64_t seed = 0; if (info.GetAttr<int64_t>("seed", &seed).IsOK()) { generator_ = std::make_unique<PhiloxGenerator>(static_cast<uint64_t>(seed)); } } Status ComputeInternal(OpKernelContext* context) const override; private: // For Softmax. int64_t axis_; bool is_inner_broadcast_; // For Dropout. mutable std::unique_ptr<PhiloxGenerator> generator_; static constexpr float default_ratio_ = 0.5f; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/framework/random_generator.h" #include "core/providers/rocm/rocm_common.h" namespace onnxruntime { namespace rocm { template <typename T> Status BiasSoftmaxDropoutImpl(hipStream_t stream, const hipDeviceProp_t& prop, miopenHandle_t miopen_handle, T* dropout_output_data, bool* mask_data, T* softmax_output_data, const T* input_data, const T* bias_data, int element_count, int batch_count, bool is_inner_broadcast, int bias_broadcast_size, const float ratio, PhiloxGenerator& generator); } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/framework/random_generator.h" #include "core/providers/cuda/cuda_common.h" namespace onnxruntime { namespace cuda { template <typename T> Status BiasSoftmaxDropoutImpl(cudaStream_t stream, const cudaDeviceProp& prop, cudnnHandle_t cudnn_handle, T* dropout_output_data, bool* mask_data, T* softmax_output_data, const T* input_data, const T* bias_data, int element_count, int batch_count, bool is_inner_broadcast, int bias_broadcast_size, const float ratio, PhiloxGenerator& generator); } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_common.h" #include "core/providers/rocm/reduction/reduction_ops.h" namespace onnxruntime { namespace rocm { template <typename T> class DivGrad : public ReduceKernel<true> { // TODO: not to derive from ReduceKernel. // Use a miopen reduce sum simple helper instead. public: DivGrad(const OpKernelInfo& info) : ReduceKernel<true>(info, /*keep_dims_override*/ int64_t(0)) {} Status ComputeInternal(OpKernelContext*) const override; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_common.h" #include "core/providers/cuda/reduction/reduction_ops.h" namespace onnxruntime { namespace cuda { template <typename T> class DivGrad : public ReduceKernel<true> { // TODO: not to derive from ReduceKernel. // Use a cudnn reduce sum simple helper instead. public: DivGrad(const OpKernelInfo& info) : ReduceKernel<true>(info, /*keep_dims_override*/ int64_t(0)) {} Status ComputeInternal(OpKernelContext*) const override; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <stdint.h> #include "core/providers/rocm/shared_inc/rocm_utils.h" namespace onnxruntime { namespace rocm { template <typename T> void ImplDivGradSimple( hipStream_t stream, SimpleBroadcast simpleBroadcast, const T* a_data, const T* b_data, const T* dy_data, size_t count, T* da_output_data, T* db_output_data); template <typename T> void ImplDivGradRhsPerChannelBatch1( hipStream_t stream, const T* a_data, const T* b_data, const T* dy_data, size_t count, const fast_divmod& fdm_H, T* da_output_data, T* db_output_data); template <typename T> void ImplDivGradRhsPerChannelBatchN( hipStream_t stream, const T* a_data, const T* b_data, const T* dy_data, size_t count, const fast_divmod& fdm_H, const fast_divmod& fdm_C, T* da_output_data, T* db_output_data); template <typename T> void ImplDivGrad( hipStream_t stream, int32_t output_rank, const TArray<int64_t>& a_padded_strides, const T* a_data, const TArray<int64_t>& b_padded_strides, const T* b_data, const T* dy_data, size_t count, const TArray<fast_divmod>& fdm_output_strides, T* da_output_data, T* db_output_data); } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <stdint.h> #include "core/providers/cuda/shared_inc/cuda_utils.h" namespace onnxruntime { namespace cuda { template <typename T> void ImplDivGradSimple( cudaStream_t stream, SimpleBroadcast simpleBroadcast, const T* a_data, const T* b_data, const T* dy_data, size_t count, T* da_output_data, T* db_output_data); template <typename T> void ImplDivGradRhsPerChannelBatch1( cudaStream_t stream, const T* a_data, const T* b_data, const T* dy_data, size_t count, const fast_divmod& fdm_H, T* da_output_data, T* db_output_data); template <typename T> void ImplDivGradRhsPerChannelBatchN( cudaStream_t stream, const T* a_data, const T* b_data, const T* dy_data, size_t count, const fast_divmod& fdm_H, const fast_divmod& fdm_C, T* da_output_data, T* db_output_data); template <typename T> void ImplDivGrad( cudaStream_t stream, int32_t output_rank, const TArray<int64_t>& a_padded_strides, const T* a_data, const TArray<int64_t>& b_padded_strides, const T* b_data, const T* dy_data, size_t count, const TArray<fast_divmod>& fdm_output_strides, T* da_output_data, T* db_output_data); } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "orttraining/training_ops/rocm/math/isfinite.h" #include "orttraining/training_ops/rocm/math/isfinite_impl.h" using namespace ONNX_NAMESPACE; using namespace onnxruntime::common; namespace onnxruntime { namespace rocm { #define REGISTER_ISFINITE_KERNEL_TYPED(T) \ ONNX_OPERATOR_TYPED_KERNEL_EX( \ IsFinite, \ kMSDomain, \ 1, \ T, \ kRocmExecutionProvider, \ (*KernelDefBuilder::Create()) \ .TypeConstraint("T", DataTypeImpl::GetTensorType<T>()) \ .TypeConstraint("T1", DataTypeImpl::GetTensorType<bool>()), \ IsFiniteOp<T>); template <typename TSrc> Status IsFiniteOp<TSrc>::ComputeInternal(OpKernelContext* context) const { typedef typename ToHipType<TSrc>::MappedType HipTSrc; const Tensor& input = *context->Input<Tensor>(0); Tensor& output = *context->Output(0, input.Shape()); IsFinite( Stream(context), reinterpret_cast<const HipTSrc*>(input.Data<TSrc>()), output.MutableData<bool>(), input.Shape().Size()); return Status::OK(); } REGISTER_ISFINITE_KERNEL_TYPED(MLFloat16) REGISTER_ISFINITE_KERNEL_TYPED(float) REGISTER_ISFINITE_KERNEL_TYPED(double) } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "orttraining/training_ops/cuda/math/isfinite.h" #include "orttraining/training_ops/cuda/math/isfinite_impl.h" using namespace ONNX_NAMESPACE; using namespace onnxruntime::common; namespace onnxruntime { namespace cuda { #define REGISTER_ISFINITE_KERNEL_TYPED(T) \ ONNX_OPERATOR_TYPED_KERNEL_EX( \ IsFinite, \ kMSDomain, \ 1, \ T, \ kCudaExecutionProvider, \ (*KernelDefBuilder::Create()) \ .TypeConstraint("T", DataTypeImpl::GetTensorType<T>()) \ .TypeConstraint("T1", DataTypeImpl::GetTensorType<bool>()), \ IsFiniteOp<T>); template <typename TSrc> Status IsFiniteOp<TSrc>::ComputeInternal(OpKernelContext* context) const { typedef typename ToCudaType<TSrc>::MappedType CudaTSrc; const Tensor& input = *context->Input<Tensor>(0); Tensor& output = *context->Output(0, input.Shape()); IsFinite( Stream(context), reinterpret_cast<const CudaTSrc*>(input.Data<TSrc>()), output.MutableData<bool>(), input.Shape().Size()); return Status::OK(); } REGISTER_ISFINITE_KERNEL_TYPED(MLFloat16) REGISTER_ISFINITE_KERNEL_TYPED(float) REGISTER_ISFINITE_KERNEL_TYPED(double) } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { template <typename TSrc> class IsFiniteOp final : public RocmKernel { public: IsFiniteOp(const OpKernelInfo& info) : RocmKernel(info) { } Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace rocm } // namespace onnxruntime###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { template <typename TSrc> class IsFiniteOp final : public CudaKernel { public: IsFiniteOp(const OpKernelInfo& info) : CudaKernel(info) { } Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <stdint.h> #include "core/providers/rocm/shared_inc/rocm_utils.h" namespace onnxruntime { namespace rocm { template <typename T> void CumSumImpl( hipStream_t stream, const T* input_data, const fast_divmod& input_dim_along_axis, const fast_divmod& input_stride_along_axis, T* output_data, int64_t output_size, bool exclusive, bool reverse); } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <stdint.h> #include "core/providers/cuda/shared_inc/cuda_utils.h" namespace onnxruntime { namespace cuda { template <typename T> void CumSumImpl( cudaStream_t stream, const T* input_data, const fast_divmod& input_dim_along_axis, const fast_divmod& input_stride_along_axis, T* output_data, int64_t output_size, bool exclusive, bool reverse); } // namespace cuda } // namespace onnxruntime ###
#include "hip/hip_runtime.h" // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "isfinite_impl.h" #include <hip/hip_fp16.h> #include "core/providers/rocm/cu_inc/common.cuh" #include "contrib_ops/rocm/math/isfinite.cuh" namespace onnxruntime { namespace rocm { template <typename TSrc> __global__ void _IsFinite(const TSrc* input, bool* output, HIP_LONG N) { CALCULATE_ELEMENTWISE_INDEX_OR_EXIT(id, N); output[id] = IsFiniteScalar(input[id]); } template <typename TSrc> void IsFinite(hipStream_t stream, const TSrc* input, bool* output, size_t count) { int blocksPerGrid = (int)(ceil(static_cast<float>(count) / GridDim::maxThreadsPerBlock)); HIP_LONG N = static_cast<HIP_LONG>(count); _IsFinite<<<blocksPerGrid, GridDim::maxThreadsPerBlock, 0, stream>>>(input, output, N); } #define SPECIALIZE_ISFINITE_IMPL(T) \ template void IsFinite(hipStream_t stream, const T* input, bool* output, size_t count); SPECIALIZE_ISFINITE_IMPL(half) SPECIALIZE_ISFINITE_IMPL(float) SPECIALIZE_ISFINITE_IMPL(double) } // namespace rocm } // namespace onnxruntime###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "isfinite_impl.h" #include <cuda_fp16.h> #include "core/providers/cuda/cu_inc/common.cuh" #include "contrib_ops/cuda/math/isfinite.cuh" namespace onnxruntime { namespace cuda { template <typename TSrc> __global__ void _IsFinite(const TSrc* input, bool* output, CUDA_LONG N) { CALCULATE_ELEMENTWISE_INDEX_OR_EXIT(id, N); output[id] = IsFiniteScalar(input[id]); } template <typename TSrc> void IsFinite(cudaStream_t stream, const TSrc* input, bool* output, size_t count) { int blocksPerGrid = (int)(ceil(static_cast<float>(count) / GridDim::maxThreadsPerBlock)); CUDA_LONG N = static_cast<CUDA_LONG>(count); _IsFinite<<<blocksPerGrid, GridDim::maxThreadsPerBlock, 0, stream>>>(input, output, N); } #define SPECIALIZE_ISFINITE_IMPL(T) \ template void IsFinite(cudaStream_t stream, const T* input, bool* output, size_t count); SPECIALIZE_ISFINITE_IMPL(half) SPECIALIZE_ISFINITE_IMPL(float) SPECIALIZE_ISFINITE_IMPL(double) } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <hip/hip_runtime.h> namespace onnxruntime { namespace rocm { template <typename TSrc> void IsFinite(hipStream_t stream, const TSrc* input, bool* output, size_t N); } } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <cuda_runtime.h> namespace onnxruntime { namespace cuda { template <typename TSrc> void IsFinite(cudaStream_t stream, const TSrc* input, bool* output, size_t N); } } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { template <typename SrcT> class MixedPrecisionScale final : public RocmKernel { public: MixedPrecisionScale(const OpKernelInfo& info); Status ComputeInternal(OpKernelContext* context) const override; private: ONNX_NAMESPACE::TensorProto_DataType to_; size_t bytes_per_output_elem_; bool fuse_outputs_; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { template <typename SrcT> class MixedPrecisionScale final : public CudaKernel { public: MixedPrecisionScale(const OpKernelInfo& info); Status ComputeInternal(OpKernelContext* context) const override; private: ONNX_NAMESPACE::TensorProto_DataType to_; size_t bytes_per_output_elem_; bool fuse_outputs_; }; } // namespace cuda } // namespace onnxruntime ###
#include "hip/hip_runtime.h" // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #ifdef _WIN32 #pragma warning(disable : 4244) #endif #include "mixed_precision_scale_impl.h" #include <hip/hip_fp16.h> #include "core/providers/rocm/cu_inc/common.cuh" namespace onnxruntime { namespace rocm { template <typename SrcT, typename DstT> __global__ void _MixedPrecisionScale( const SrcT* input_data, const float* scale_data, DstT* output_data, HIP_LONG N) { CALCULATE_ELEMENTWISE_INDEX_OR_EXIT(id, N); output_data[id] = static_cast<DstT>(*scale_data * static_cast<float>(input_data[id])); } template <typename SrcT, typename DstT> void Impl_MixedPrecisionScale( hipStream_t stream, const SrcT* input_data, const float* scale_data, DstT* output_data, size_t count){ int blocksPerGrid = static_cast<int>(CeilDiv(count, GridDim::maxThreadsPerBlock)); HIP_LONG N = static_cast<HIP_LONG>(count); _MixedPrecisionScale<SrcT, DstT><<<blocksPerGrid, GridDim::maxThreadsPerBlock, 0, stream>>>( input_data, scale_data, output_data, N); } #define SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(SrcT, DstT) \ template void Impl_MixedPrecisionScale<SrcT, DstT>( \ hipStream_t stream, \ const SrcT* input_data, \ const float* scale_data, \ DstT* output_data, \ size_t count); SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(half, half) SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(half, float) SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(float, half) SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(float, float) SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(BFloat16, BFloat16) SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(BFloat16, float) SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(float, BFloat16) SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(BFloat16, half) SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(half, BFloat16) } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #ifdef _WIN32 #pragma warning(disable : 4244) #endif #include "mixed_precision_scale_impl.h" #include <cuda_fp16.h> #include "core/providers/cuda/cu_inc/common.cuh" namespace onnxruntime { namespace cuda { template <typename SrcT, typename DstT> __global__ void _MixedPrecisionScale( const SrcT* input_data, const float* scale_data, DstT* output_data, CUDA_LONG N) { CALCULATE_ELEMENTWISE_INDEX_OR_EXIT(id, N); output_data[id] = static_cast<DstT>(*scale_data * static_cast<float>(input_data[id])); } template <typename SrcT, typename DstT> void Impl_MixedPrecisionScale( cudaStream_t stream, const SrcT* input_data, const float* scale_data, DstT* output_data, size_t count){ int blocksPerGrid = static_cast<int>(CeilDiv(count, GridDim::maxThreadsPerBlock)); CUDA_LONG N = static_cast<CUDA_LONG>(count); _MixedPrecisionScale<SrcT, DstT><<<blocksPerGrid, GridDim::maxThreadsPerBlock, 0, stream>>>( input_data, scale_data, output_data, N); } #define SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(SrcT, DstT) \ template void Impl_MixedPrecisionScale<SrcT, DstT>( \ cudaStream_t stream, \ const SrcT* input_data, \ const float* scale_data, \ DstT* output_data, \ size_t count); SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(half, half) SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(half, float) SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(float, half) SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(float, float) SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(BFloat16, BFloat16) SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(BFloat16, float) SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(float, BFloat16) SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(BFloat16, half) SPECIALIZE_MIXEDPRECISIONSCALE_IMPL(half, BFloat16) } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <hip/hip_runtime.h> namespace onnxruntime { namespace rocm { template <typename SrcT, typename DstT> void Impl_MixedPrecisionScale( hipStream_t stream, const SrcT* input_data, const float* scale_data, DstT* output_data, size_t count); } } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <cuda_runtime.h> namespace onnxruntime { namespace cuda { template <typename SrcT, typename DstT> void Impl_MixedPrecisionScale( cudaStream_t stream, const SrcT* input_data, const float* scale_data, DstT* output_data, size_t count); } } // namespace onnxruntime ###
#include "orttraining/training_ops/rocm/math/scale.h" #include "orttraining/training_ops/rocm/math/scale_impl.h" using namespace ONNX_NAMESPACE; using namespace onnxruntime::common; namespace onnxruntime { namespace rocm { #define REGISTER_SCALE_KERNEL_TYPED(T) ONNX_OPERATOR_TYPED_KERNEL_EX( Scale, kMSDomain, 1, T, kRocmExecutionProvider, (*KernelDefBuilder::Create()) .TypeConstraint("T", DataTypeImpl::GetTensorType<T>()) .TypeConstraint("ScaleT", {DataTypeImpl::GetTensorType<float>(), DataTypeImpl::GetTensorType<double>(), DataTypeImpl::GetTensorType<MLFloat16>(), DataTypeImpl::GetTensorType<int64_t>(), DataTypeImpl::GetTensorType<int32_t>()}) .InputMemoryType(OrtMemTypeCPUInput, 1), Scale<T>); template <typename ScaleT> struct GetScaleValueImpl { void operator()(const Tensor* scale, float& scale_value) const { ORT_ENFORCE(scale->Shape().Size() == 1, "Scale input should have a single value."); scale_value = static_cast<float>(*(scale->template Data<ScaleT>())); ORT_ENFORCE(scale_value != 0.0f, "Scale value must not be 0."); } }; template <typename T> Scale<T>::Scale(const OpKernelInfo& info) : RocmKernel(info) { int64_t scale_down; info.GetAttrOrDefault("scale_down", &scale_down, static_cast<int64_t>(0)); scale_down_ = (scale_down != 0); } template <typename T> Status Scale<T>::ComputeInternal(OpKernelContext* context) const { typedef typename ToHipType<T>::MappedType HipT; float scale_value; auto scale_tensor = context->Input<Tensor>(1); utils::MLTypeCallDispatcher<float, double, MLFloat16, int64_t, int32_t> t_disp(scale_tensor->GetElementType()); t_disp.Invoke<GetScaleValueImpl>(scale_tensor, scale_value); if (scale_down_) { scale_value = 1.0f / scale_value; } auto lhs_tensor = context->Input<Tensor>(0); auto output_tensor = context->Output(0, lhs_tensor->Shape()); Impl_Scale<HipT>( Stream(context), reinterpret_cast<const HipT*>(lhs_tensor->template Data<T>()), scale_value, reinterpret_cast<HipT*>(output_tensor->template MutableData<T>()), output_tensor->Shape().Size()); return Status::OK(); } REGISTER_SCALE_KERNEL_TYPED(MLFloat16) REGISTER_SCALE_KERNEL_TYPED(float) REGISTER_SCALE_KERNEL_TYPED(double) template Status Scale<MLFloat16>::ComputeInternal(OpKernelContext* context) const; template Status Scale<float>::ComputeInternal(OpKernelContext* context) const; template Status Scale<double>::ComputeInternal(OpKernelContext* context) const; } } ###
#include "orttraining/training_ops/cuda/math/scale.h" #include "orttraining/training_ops/cuda/math/scale_impl.h" using namespace ONNX_NAMESPACE; using namespace onnxruntime::common; namespace onnxruntime { namespace cuda { #define REGISTER_SCALE_KERNEL_TYPED(T) ONNX_OPERATOR_TYPED_KERNEL_EX( Scale, kMSDomain, 1, T, kCudaExecutionProvider, (*KernelDefBuilder::Create()) .TypeConstraint("T", DataTypeImpl::GetTensorType<T>()) .TypeConstraint("ScaleT", {DataTypeImpl::GetTensorType<float>(), DataTypeImpl::GetTensorType<double>(), DataTypeImpl::GetTensorType<MLFloat16>(), DataTypeImpl::GetTensorType<int64_t>(), DataTypeImpl::GetTensorType<int32_t>()}) .InputMemoryType(OrtMemTypeCPUInput, 1), Scale<T>); template <typename ScaleT> struct GetScaleValueImpl { void operator()(const Tensor* scale, float& scale_value) const { ORT_ENFORCE(scale->Shape().Size() == 1, "Scale input should have a single value."); scale_value = static_cast<float>(*(scale->template Data<ScaleT>())); ORT_ENFORCE(scale_value != 0.0f, "Scale value must not be 0."); } }; template <typename T> Scale<T>::Scale(const OpKernelInfo& info) : CudaKernel(info) { int64_t scale_down; info.GetAttrOrDefault("scale_down", &scale_down, static_cast<int64_t>(0)); scale_down_ = (scale_down != 0); } template <typename T> Status Scale<T>::ComputeInternal(OpKernelContext* context) const { typedef typename ToCudaType<T>::MappedType CudaT; float scale_value; auto scale_tensor = context->Input<Tensor>(1); utils::MLTypeCallDispatcher<float, double, MLFloat16, int64_t, int32_t> t_disp(scale_tensor->GetElementType()); t_disp.Invoke<GetScaleValueImpl>(scale_tensor, scale_value); if (scale_down_) { scale_value = 1.0f / scale_value; } auto lhs_tensor = context->Input<Tensor>(0); auto output_tensor = context->Output(0, lhs_tensor->Shape()); Impl_Scale<CudaT>( Stream(context), reinterpret_cast<const CudaT*>(lhs_tensor->template Data<T>()), scale_value, reinterpret_cast<CudaT*>(output_tensor->template MutableData<T>()), output_tensor->Shape().Size()); return Status::OK(); } REGISTER_SCALE_KERNEL_TYPED(MLFloat16) REGISTER_SCALE_KERNEL_TYPED(float) REGISTER_SCALE_KERNEL_TYPED(double) template Status Scale<MLFloat16>::ComputeInternal(OpKernelContext* context) const; template Status Scale<float>::ComputeInternal(OpKernelContext* context) const; template Status Scale<double>::ComputeInternal(OpKernelContext* context) const; } } ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { template <typename T> class Scale final : public RocmKernel { public: Scale(const OpKernelInfo& info); Status ComputeInternal(OpKernelContext* context) const override; private: bool scale_down_; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { template <typename T> class Scale final : public CudaKernel { public: Scale(const OpKernelInfo& info); Status ComputeInternal(OpKernelContext* context) const override; private: bool scale_down_; }; } // namespace cuda } // namespace onnxruntime ###
#include "hip/hip_runtime.h" // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "orttraining/training_ops/rocm/math/scale_impl.h" #include "core/providers/rocm/cu_inc/common.cuh" namespace onnxruntime { namespace rocm { template <typename T, int NumThreadsPerBlock, int NumElementsPerThread> __global__ void _Scale( const T* input_data, const T scale_value, T* output_data, HIP_LONG N) { HIP_LONG start = NumElementsPerThread * NumThreadsPerBlock * blockIdx.x + threadIdx.x; T input_value[NumElementsPerThread]; HIP_LONG id = start; #pragma unroll for (int i = 0; i < NumElementsPerThread; i++) { if (id < N) { input_value[i] = input_data[id]; id += NumThreadsPerBlock; } } id = start; #pragma unroll for (int i = 0; i < NumElementsPerThread; i++) { if (id < N) { output_data[id] = input_value[i] * scale_value; id += NumThreadsPerBlock; } } } template <typename T> void Impl_Scale( hipStream_t stream, const T* input_data, const float scale_value, T* output_data, size_t count) { int blocksPerGrid = static_cast<int>(CeilDiv(count, GridDim::maxThreadsPerBlock * GridDim::maxElementsPerThread)); HIP_LONG N = static_cast<HIP_LONG>(count); _Scale<T, GridDim::maxThreadsPerBlock, GridDim::maxElementsPerThread><<<blocksPerGrid, GridDim::maxThreadsPerBlock, 0, stream>>>( input_data, static_cast<T>(scale_value), output_data, N); } #define SPECIALIZE_SCALE_IMPL(T) \ template void Impl_Scale<T>( \ hipStream_t stream, \ const T* input_data, \ const float scale_value, \ T* output_data, \ size_t count); SPECIALIZE_SCALE_IMPL(half) SPECIALIZE_SCALE_IMPL(float) SPECIALIZE_SCALE_IMPL(double) } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "orttraining/training_ops/cuda/math/scale_impl.h" #include "core/providers/cuda/cu_inc/common.cuh" namespace onnxruntime { namespace cuda { template <typename T, int NumThreadsPerBlock, int NumElementsPerThread> __global__ void _Scale( const T* input_data, const T scale_value, T* output_data, CUDA_LONG N) { CUDA_LONG start = NumElementsPerThread * NumThreadsPerBlock * blockIdx.x + threadIdx.x; T input_value[NumElementsPerThread]; CUDA_LONG id = start; #pragma unroll for (int i = 0; i < NumElementsPerThread; i++) { if (id < N) { input_value[i] = input_data[id]; id += NumThreadsPerBlock; } } id = start; #pragma unroll for (int i = 0; i < NumElementsPerThread; i++) { if (id < N) { output_data[id] = input_value[i] * scale_value; id += NumThreadsPerBlock; } } } template <typename T> void Impl_Scale( cudaStream_t stream, const T* input_data, const float scale_value, T* output_data, size_t count) { int blocksPerGrid = static_cast<int>(CeilDiv(count, GridDim::maxThreadsPerBlock * GridDim::maxElementsPerThread)); CUDA_LONG N = static_cast<CUDA_LONG>(count); _Scale<T, GridDim::maxThreadsPerBlock, GridDim::maxElementsPerThread><<<blocksPerGrid, GridDim::maxThreadsPerBlock, 0, stream>>>( input_data, static_cast<T>(scale_value), output_data, N); } #define SPECIALIZE_SCALE_IMPL(T) \ template void Impl_Scale<T>( \ cudaStream_t stream, \ const T* input_data, \ const float scale_value, \ T* output_data, \ size_t count); SPECIALIZE_SCALE_IMPL(half) SPECIALIZE_SCALE_IMPL(float) SPECIALIZE_SCALE_IMPL(double) } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <hip/hip_runtime.h> namespace onnxruntime { namespace rocm { template <typename T> void Impl_Scale( hipStream_t stream, const T* input_data, const float scale_value, T* output_data, size_t count); } } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <cuda_runtime.h> namespace onnxruntime { namespace cuda { template <typename T> void Impl_Scale( cudaStream_t stream, const T* input_data, const float scale_value, T* output_data, size_t count); } } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { class SoftmaxDropoutGrad final : public RocmKernel { public: SoftmaxDropoutGrad(const OpKernelInfo& info) : RocmKernel(info) { info.GetAttrOrDefault("axis", &axis_, static_cast<int64_t>(1)); } Status ComputeInternal(OpKernelContext* context) const override; private: int64_t axis_; static constexpr float default_ratio_ = 0.5f; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { class SoftmaxDropoutGrad final : public CudaKernel { public: SoftmaxDropoutGrad(const OpKernelInfo& info) : CudaKernel(info) { info.GetAttrOrDefault("axis", &axis_, static_cast<int64_t>(1)); } Status ComputeInternal(OpKernelContext* context) const override; private: int64_t axis_; static constexpr float default_ratio_ = 0.5f; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { template <typename T> class Gemm final : public RocmKernel { using Base = RocmKernel; public: Gemm(const OpKernelInfo& info) : RocmKernel(info) { int64_t temp; ORT_ENFORCE(info.GetAttr<int64_t>("transA", &temp).IsOK()); trans_A_ = (temp != 0); ORT_ENFORCE(info.GetAttr<int64_t>("transB", &temp).IsOK()); trans_B_ = (temp != 0); ORT_ENFORCE(info.GetAttr<float>("alpha", &alpha_).IsOK()); ORT_ENFORCE(info.GetAttr<float>("beta", &beta_).IsOK()); } Status ComputeInternal(OpKernelContext* context) const override; private: bool trans_A_; bool trans_B_; float alpha_; float beta_; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { template <typename T> class Gemm final : public CudaKernel { using Base = CudaKernel; public: Gemm(const OpKernelInfo& info) : CudaKernel(info) { int64_t temp; ORT_ENFORCE(info.GetAttr<int64_t>("transA", &temp).IsOK()); trans_A_ = (temp != 0); ORT_ENFORCE(info.GetAttr<int64_t>("transB", &temp).IsOK()); trans_B_ = (temp != 0); ORT_ENFORCE(info.GetAttr<float>("alpha", &alpha_).IsOK()); ORT_ENFORCE(info.GetAttr<float>("beta", &beta_).IsOK()); } Status ComputeInternal(OpKernelContext* context) const override; private: bool trans_A_; bool trans_B_; float alpha_; float beta_; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_common.h" namespace onnxruntime { namespace rocm { template <typename T> Status SoftmaxDropoutGradImpl(hipStream_t stream, miopenHandle_t miopen_handle, T* input_grad_data, const T* output_grad_data, const bool* mask_data, const T* softmax_output_data, int element_count, int batch_count, const float ratio); } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_common.h" namespace onnxruntime { namespace cuda { template <typename T> Status SoftmaxDropoutGradImpl(cudaStream_t stream, cudnnHandle_t cudnn_handle, T* input_grad_data, const T* output_grad_data, const bool* mask_data, const T* softmax_output_data, int element_count, int batch_count, const float ratio); } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { class SoftmaxGrad final : public RocmKernel { public: SoftmaxGrad(const OpKernelInfo& info) : RocmKernel{info} { const auto& op_type = info.node().OpType(); is_since_opset_13_ = (op_type == "SoftmaxGrad_13" || op_type == "LogSoftmaxGrad_13"); info.GetAttrOrDefault("axis", &axis_, static_cast<int64_t>(is_since_opset_13_ ? -1 : 1)); is_log_softmax_ = (op_type == "LogSoftmaxGrad" || op_type == "LogSoftmaxGrad_13"); } Status ComputeInternal(OpKernelContext* context) const override; private: int64_t axis_; bool is_log_softmax_; bool is_since_opset_13_; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { class SoftmaxGrad final : public CudaKernel { public: SoftmaxGrad(const OpKernelInfo& info) : CudaKernel{info} { const auto& op_type = info.node().OpType(); is_since_opset_13_ = (op_type == "SoftmaxGrad_13" || op_type == "LogSoftmaxGrad_13"); info.GetAttrOrDefault("axis", &axis_, static_cast<int64_t>(is_since_opset_13_ ? -1 : 1)); is_log_softmax_ = (op_type == "LogSoftmaxGrad" || op_type == "LogSoftmaxGrad_13"); } Status ComputeInternal(OpKernelContext* context) const override; private: int64_t axis_; bool is_log_softmax_; bool is_since_opset_13_; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_common.h" #include "core/providers/rocm/shared_inc/rocm_utils.h" namespace onnxruntime { namespace rocm { template <typename T> Status SoftmaxGradImpl(hipStream_t stream, miopenHandle_t miopen_handle, T* input_grad, const T* output_grad, const T* softmax_output, int element_count, int batch_count, bool is_log_softmax); } } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_common.h" #include "core/providers/cuda/shared_inc/cuda_utils.h" namespace onnxruntime { namespace cuda { template <typename T> Status SoftmaxGradImpl(cudaStream_t stream, cudnnHandle_t cudnn_handle, T* input_grad, const T* output_grad, const T* softmax_output, int element_count, int batch_count, bool is_log_softmax); } } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { template <bool UseBitmask> class DropoutGrad final : public RocmKernel { public: DropoutGrad(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; private: static constexpr float default_ratio_ = 0.5f; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { template <bool UseBitmask> class DropoutGrad final : public CudaKernel { public: DropoutGrad(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; private: static constexpr float default_ratio_ = 0.5f; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <stdint.h> namespace onnxruntime { namespace rocm { template <typename T> void DropoutGradientKernelImpl(hipStream_t stream, const int64_t N, const T* dY_data, const void* mask_data, const float ratio, T* dX_data, bool use_bitmask); } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <stdint.h> namespace onnxruntime { namespace cuda { template <typename T> void DropoutGradientKernelImpl(cudaStream_t stream, const int64_t N, const T* dY_data, const void* mask_data, const float ratio, T* dX_data, bool use_bitmask); } // namespace cuda } // namespace onnxruntime ###
#pragma once #include "core/common/common.h" #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { template <typename T, typename U, typename V, bool simplified> class LayerNormGrad final : public RocmKernel { public: LayerNormGrad(const OpKernelInfo& op_kernel_info); Status ComputeInternal(OpKernelContext* ctx) const override; private: int64_t axis_; }; template <typename T, typename U, typename V> class InvertibleLayerNormGrad final : public RocmKernel { public: InvertibleLayerNormGrad(const OpKernelInfo& op_kernel_info); Status ComputeInternal(OpKernelContext* ctx) const override; private: int64_t axis_; }; } // namespace rocm } // namespace onnxruntime###
#pragma once #include "core/common/common.h" #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { template <typename T, typename U, typename V, bool simplified> class LayerNormGrad final : public CudaKernel { public: LayerNormGrad(const OpKernelInfo& op_kernel_info); Status ComputeInternal(OpKernelContext* ctx) const override; private: int64_t axis_; }; template <typename T, typename U, typename V> class InvertibleLayerNormGrad final : public CudaKernel { public: InvertibleLayerNormGrad(const OpKernelInfo& op_kernel_info); Status ComputeInternal(OpKernelContext* ctx) const override; private: int64_t axis_; }; } // namespace cuda } // namespace onnxruntime ###
/** * Copyright (c) 2016-present, Facebook, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // // Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved. // NVIDIA/apex is licensed under the // BSD 3 - Clause "New" or "Revised" License // /* Modifications Copyright (c) Microsoft. */ #pragma once #include "core/providers/rocm/rocm_common.h" namespace onnxruntime { namespace rocm { template <typename T, typename U, typename V, bool simplified> void HostLayerNormGradient( const hipDeviceProp_t& prop, hipStream_t stream, const V* dout, const T* input, const V* output, const V* gamma, const V* beta, const U* mean, const U* invvar, int64_t n1, int64_t n2, T* grad_input, V* grad_gamma, V* grad_beta, U* part_grad_gamma, U* part_grad_beta, const int part_size); } // namespace rocm } // namespace onnxruntime ###
/** * Copyright (c) 2016-present, Facebook, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // // Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved. // NVIDIA/apex is licensed under the // BSD 3 - Clause "New" or "Revised" License // /* Modifications Copyright (c) Microsoft. */ #pragma once #include "core/providers/cuda/cuda_common.h" namespace onnxruntime { namespace cuda { template <typename T, typename U, typename V, bool simplified> void HostLayerNormGradient( const cudaDeviceProp& prop, cudaStream_t stream, const V* dout, const T* input, const V* output, const V* gamma, const V* beta, const U* mean, const U* invvar, int64_t n1, int64_t n2, T* grad_input, V* grad_gamma, V* grad_beta, U* part_grad_gamma, U* part_grad_beta, const int part_size); } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { template <typename T1, typename T2, typename T3, typename T4, typename T_GRAD, typename T_GRAD_NORM, typename T_MIXED_PRECISION_FP> class AdamOptimizer final : public RocmKernel { public: AdamOptimizer(const OpKernelInfo& info) : RocmKernel(info) { info.GetAttrOrDefault("alpha", &alpha_, 0.9f); info.GetAttrOrDefault("beta", &beta_, 0.999f); info.GetAttrOrDefault("lambda", &lambda_, 0.0f); info.GetAttrOrDefault("epsilon", &epsilon_, 1e-8f); info.GetAttrOrDefault("max_norm_clip", &max_norm_clip_, 1.0f); int64_t tmp_flag = static_cast<int64_t>(0); ORT_ENFORCE(info.GetAttr<int64_t>("do_bias_correction", &tmp_flag).IsOK(), "Missing/Invalid do_bias_correction"); ORT_ENFORCE(tmp_flag == 0 || tmp_flag == 1, "do_bias_correction must be either 0 or 1."); ORT_ENFORCE(max_norm_clip_ != 0, "max_norm_clip must NOT be 0."); do_bias_correction_ = tmp_flag != 0 ? true : false; info.GetAttrOrDefault("weight_decay_mode", &weight_decay_mode_, static_cast<int64_t>(0)); } Status ComputeInternal(OpKernelContext* context) const override; private: float alpha_; float beta_; float lambda_; float epsilon_; float max_norm_clip_; bool do_bias_correction_; int64_t weight_decay_mode_; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { template <typename T1, typename T2, typename T3, typename T4, typename T_GRAD, typename T_GRAD_NORM, typename T_MIXED_PRECISION_FP> class AdamOptimizer final : public CudaKernel { public: AdamOptimizer(const OpKernelInfo& info) : CudaKernel(info) { info.GetAttrOrDefault("alpha", &alpha_, 0.9f); info.GetAttrOrDefault("beta", &beta_, 0.999f); info.GetAttrOrDefault("lambda", &lambda_, 0.0f); info.GetAttrOrDefault("epsilon", &epsilon_, 1e-8f); info.GetAttrOrDefault("max_norm_clip", &max_norm_clip_, 1.0f); int64_t tmp_flag = static_cast<int64_t>(0); ORT_ENFORCE(info.GetAttr<int64_t>("do_bias_correction", &tmp_flag).IsOK(), "Missing/Invalid do_bias_correction"); ORT_ENFORCE(tmp_flag == 0 || tmp_flag == 1, "do_bias_correction must be either 0 or 1."); ORT_ENFORCE(max_norm_clip_ != 0, "max_norm_clip must NOT be 0."); do_bias_correction_ = tmp_flag != 0 ? true : false; info.GetAttrOrDefault("weight_decay_mode", &weight_decay_mode_, static_cast<int64_t>(0)); } Status ComputeInternal(OpKernelContext* context) const override; private: float alpha_; float beta_; float lambda_; float epsilon_; float max_norm_clip_; bool do_bias_correction_; int64_t weight_decay_mode_; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <cstdint> #include <hip/hip_runtime.h> namespace onnxruntime { namespace rocm { template <typename T1, typename T2, typename T3, typename T4, typename T_GRAD, typename T_GRAD_NORM, typename T_MIXED_PRECISION_FP> void AdamOptimizerImpl( hipStream_t stream, const T1* eta, const T2 update_count, const T3* weights, const T_GRAD* grads, const T4* moment_1, const T4* moment_2, const T3* loss_scale, const T_GRAD_NORM* grad_norm, const float alpha, const float beta, const float lambda, const float epsilon, const float max_norm, const bool do_bias_correction, const int64_t weight_decay_mode, T4* moment_1_out, T4* moment_2_out, T3* weights_out, T_GRAD* grads_out, T_MIXED_PRECISION_FP* mixed_precision_weights_out, size_t count); } } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <cstdint> #include <cuda_runtime.h> namespace onnxruntime { namespace cuda { template <typename T1, typename T2, typename T3, typename T4, typename T_GRAD, typename T_GRAD_NORM, typename T_MIXED_PRECISION_FP> void AdamOptimizerImpl( cudaStream_t stream, const T1* eta, const T2 update_count, const T3* weights, const T_GRAD* grads, const T4* moment_1, const T4* moment_2, const T3* loss_scale, const T_GRAD_NORM* grad_norm, const float alpha, const float beta, const float lambda, const float epsilon, const float max_norm, const bool do_bias_correction, const int64_t weight_decay_mode, T4* moment_1_out, T4* moment_2_out, T3* weights_out, T_GRAD* grads_out, T_MIXED_PRECISION_FP* mixed_precision_weights_out, size_t count); } } // namespace onnxruntime ###
#include <memory> #include <utility> #include "core/providers/shared_library/provider_api.h" #include "orttraining/training_ops/rocm/optimizer/adamw/adamw.h" #include "orttraining/training_ops/rocm/optimizer/adamw/adamw_impl.h" #include "orttraining/training_ops/rocm/optimizer/common.h" namespace onnxruntime { namespace rocm { ONNX_OPERATOR_KERNEL_EX( AdamWOptimizer, kMSDomain, 1, kRocmExecutionProvider, (*KernelDefBuilder::Create()) .InputMemoryType(OrtMemTypeCPUInput, 0) .InputMemoryType(OrtMemTypeCPUInput, 1) .InputMemoryType(OrtMemTypeCPUInput, 6) .OutputMemoryType(OrtMemTypeCPUOutput, 0) .Alias(2, 1) .Alias(4, 2) .Alias(5, 3) .TypeConstraint("T1", DataTypeImpl::GetTensorType<float>()) .TypeConstraint("T2", DataTypeImpl::GetTensorType<int64_t>()) .TypeConstraint("S_WEIGHT", DataTypeImpl::AllFixedSizeSequenceTensorTypes()) .TypeConstraint("S_GRAD", DataTypeImpl::AllFixedSizeSequenceTensorTypes()) .TypeConstraint("S_MOMENT", DataTypeImpl::AllFixedSizeSequenceTensorTypes()), AdamWOptimizer); Status AdamWOptimizer::ComputeInternal(OpKernelContext* ctx) const { AdamWOptimizerBase::Prepare p; ORT_RETURN_IF_ERROR(PrepareForCompute(ctx, p)); int64_t* updated_flag_ptr = p.updated_flag->template MutableData<int64_t>(); const Tensor* update_signal = ctx->Input<Tensor>(6); if (update_signal == nullptr || *update_signal->template Data<bool>()) { typedef typename ToHipType<float>::MappedType HipT_FLOAT; typedef AdamWMTAFunctor<HipT_FLOAT, HipT_FLOAT, HipT_FLOAT> TFunctor; TFunctor functor; const float* lr_ptr = p.learning_rate->template Data<float>(); const int64_t* step_ptr = p.step->template Data<int64_t>(); ORT_ENFORCE(lr_ptr && step_ptr); launch_multi_tensor_functor<MTA_ADAMW_GROUP_SIZE, TFunctor>( Stream(ctx), MTA_ADAMW_CHUNK_SIZE, p.grouped_tensor_sizes, p.grouped_tensor_pointers, functor, alpha_, beta_, epsilon_, *lr_ptr, weight_decay_, adam_mode_, correct_bias_, *step_ptr); *updated_flag_ptr = 1; } else { *updated_flag_ptr = 0; } if (p.updated_weights != nullptr) { ORT_RETURN_IF_ERROR(CopyIfNotSameROCMBuffer(ctx, p.num_of_weights, p.weights, p.updated_weights)); } if (p.updated_momentums_1 != nullptr) { ORT_RETURN_IF_ERROR(CopyIfNotSameROCMBuffer(ctx, p.num_of_weights, p.momentums_1, p.updated_momentums_1)); } if (p.updated_momentums_2 != nullptr) { ORT_RETURN_IF_ERROR(CopyIfNotSameROCMBuffer(ctx, p.num_of_weights, p.momentums_2, p.updated_momentums_2)); } return Status::OK(); } } } ###
#include <memory> #include <utility> #include "core/providers/shared_library/provider_api.h" #include "orttraining/training_ops/cuda/optimizer/adamw/adamw.h" #include "orttraining/training_ops/cuda/optimizer/adamw/adamw_impl.h" #include "orttraining/training_ops/cuda/optimizer/common.h" namespace onnxruntime { namespace cuda { ONNX_OPERATOR_KERNEL_EX( AdamWOptimizer, kMSDomain, 1, kCudaExecutionProvider, (*KernelDefBuilder::Create()) .InputMemoryType(OrtMemTypeCPUInput, 0) .InputMemoryType(OrtMemTypeCPUInput, 1) .InputMemoryType(OrtMemTypeCPUInput, 6) .OutputMemoryType(OrtMemTypeCPUOutput, 0) .Alias(2, 1) .Alias(4, 2) .Alias(5, 3) .TypeConstraint("T1", DataTypeImpl::GetTensorType<float>()) .TypeConstraint("T2", DataTypeImpl::GetTensorType<int64_t>()) .TypeConstraint("S_WEIGHT", DataTypeImpl::AllFixedSizeSequenceTensorTypes()) .TypeConstraint("S_GRAD", DataTypeImpl::AllFixedSizeSequenceTensorTypes()) .TypeConstraint("S_MOMENT", DataTypeImpl::AllFixedSizeSequenceTensorTypes()), AdamWOptimizer); Status AdamWOptimizer::ComputeInternal(OpKernelContext* ctx) const { AdamWOptimizerBase::Prepare p; ORT_RETURN_IF_ERROR(PrepareForCompute(ctx, p)); int64_t* updated_flag_ptr = p.updated_flag->template MutableData<int64_t>(); const Tensor* update_signal = ctx->Input<Tensor>(6); if (update_signal == nullptr || *update_signal->template Data<bool>()) { typedef typename ToCudaType<float>::MappedType CudaT_FLOAT; typedef AdamWMTAFunctor<CudaT_FLOAT, CudaT_FLOAT, CudaT_FLOAT> TFunctor; TFunctor functor; const float* lr_ptr = p.learning_rate->template Data<float>(); const int64_t* step_ptr = p.step->template Data<int64_t>(); ORT_ENFORCE(lr_ptr && step_ptr); launch_multi_tensor_functor<MTA_ADAMW_GROUP_SIZE, TFunctor>( Stream(ctx), MTA_ADAMW_CHUNK_SIZE, p.grouped_tensor_sizes, p.grouped_tensor_pointers, functor, alpha_, beta_, epsilon_, *lr_ptr, weight_decay_, adam_mode_, correct_bias_, *step_ptr); *updated_flag_ptr = 1; } else { *updated_flag_ptr = 0; } if (p.updated_weights != nullptr) { ORT_RETURN_IF_ERROR(CopyIfNotSameCUDABuffer(ctx, p.num_of_weights, p.weights, p.updated_weights)); } if (p.updated_momentums_1 != nullptr) { ORT_RETURN_IF_ERROR(CopyIfNotSameCUDABuffer(ctx, p.num_of_weights, p.momentums_1, p.updated_momentums_1)); } if (p.updated_momentums_2 != nullptr) { ORT_RETURN_IF_ERROR(CopyIfNotSameCUDABuffer(ctx, p.num_of_weights, p.momentums_2, p.updated_momentums_2)); } return Status::OK(); } } } ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { template <typename T> class MatMul final : public RocmKernel { using Base = RocmKernel; public: MatMul(const OpKernelInfo& info) : RocmKernel(info), alpha_{info.GetAttrOrDefault<float>("alpha", 1.0f)}, trans_A_{info.GetAttrOrDefault<int64_t>("transA", 0) != 0}, trans_B_{info.GetAttrOrDefault<int64_t>("transB", 0) != 0}, trans_batch_a_{info.GetAttrOrDefault<int64_t>("transBatchA", 0) != 0}, trans_batch_b_{info.GetAttrOrDefault<int64_t>("transBatchB", 0) != 0} {} Status ComputeInternal(OpKernelContext* context) const override; private: const float alpha_; const bool trans_A_; const bool trans_B_; const bool trans_batch_a_; const bool trans_batch_b_; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { template <typename T> class MatMul final : public CudaKernel { using Base = CudaKernel; public: MatMul(const OpKernelInfo& info) : CudaKernel(info), alpha_{info.GetAttrOrDefault<float>("alpha", 1.0f)}, trans_A_{info.GetAttrOrDefault<int64_t>("transA", 0) != 0}, trans_B_{info.GetAttrOrDefault<int64_t>("transB", 0) != 0}, trans_batch_a_{info.GetAttrOrDefault<int64_t>("transBatchA", 0) != 0}, trans_batch_b_{info.GetAttrOrDefault<int64_t>("transBatchB", 0) != 0} {} Status ComputeInternal(OpKernelContext* context) const override; private: const float alpha_; const bool trans_A_; const bool trans_B_; const bool trans_batch_a_; const bool trans_batch_b_; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <vector> #include "core/common/common.h" #include "core/providers/rocm/rocm_kernel.h" #include "orttraining/training_ops/cpu/optimizer/adamw/adamwbase.h" namespace onnxruntime { namespace rocm { class AdamWOptimizer final : public RocmKernel, public contrib::AdamWOptimizerBase { public: AdamWOptimizer(const OpKernelInfo& info) : RocmKernel(info), contrib::AdamWOptimizerBase(info) { } Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <vector> #include "core/common/common.h" #include "core/providers/cuda/cuda_kernel.h" #include "orttraining/training_ops/cpu/optimizer/adamw/adamwbase.h" namespace onnxruntime { namespace cuda { class AdamWOptimizer final : public CudaKernel, public contrib::AdamWOptimizerBase { public: AdamWOptimizer(const OpKernelInfo& info) : CudaKernel(info), contrib::AdamWOptimizerBase(info) { } Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/multi_tensor/common.cuh" namespace onnxruntime { namespace rocm { #define MTA_ADAMW_GROUP_SIZE 4 #define MTA_ADAMW_CHUNK_SIZE 2048 * 32 template <typename T_WEIGHT, typename T_GRAD, typename T_MOMENTUM> struct AdamWMTAFunctor { void operator()(hipStream_t stream, ChunkGroup<MTA_ADAMW_GROUP_SIZE> chunks, const float alpha, const float beta, const float epsilon, const float lr, const float decay, const int64_t adam_mode, const int64_t correct_bias, const int64_t update_count); }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/multi_tensor/common.cuh" namespace onnxruntime { namespace cuda { #define MTA_ADAMW_GROUP_SIZE 4 #define MTA_ADAMW_CHUNK_SIZE 2048 * 32 template <typename T_WEIGHT, typename T_GRAD, typename T_MOMENTUM> struct AdamWMTAFunctor { void operator()(cudaStream_t stream, ChunkGroup<MTA_ADAMW_GROUP_SIZE> chunks, const float alpha, const float beta, const float epsilon, const float lr, const float decay, const int64_t adam_mode, const int64_t correct_bias, const int64_t update_count); }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <string> #include "core/common/common.h" #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { class InplaceClipGradNorm final : public RocmKernel { public: InplaceClipGradNorm(const OpKernelInfo& info) : RocmKernel(info) { info.GetAttrOrDefault("max_norm", &max_norm_, 1.0f); info.GetAttrOrDefault("norm_type", &norm_type_, std::string("fro")); ORT_ENFORCE(norm_type_ == "fro", "Given norm type ", norm_type_, " is not supported for InplaceClipGradNorm."); } Status ComputeInternal(OpKernelContext* context) const override; private: float max_norm_; std::string norm_type_; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <string> #include "core/common/common.h" #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { class InplaceClipGradNorm final : public CudaKernel { public: InplaceClipGradNorm(const OpKernelInfo& info) : CudaKernel(info) { info.GetAttrOrDefault("max_norm", &max_norm_, 1.0f); info.GetAttrOrDefault("norm_type", &norm_type_, std::string("fro")); ORT_ENFORCE(norm_type_ == "fro", "Given norm type ", norm_type_, " is not supported for InplaceClipGradNorm."); } Status ComputeInternal(OpKernelContext* context) const override; private: float max_norm_; std::string norm_type_; }; } // namespace cuda } // namespace onnxruntime ###
#include "hip/hip_runtime.h" // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include <algorithm> #include "core/providers/rocm/rocm_common.h" #include "orttraining/training_ops/rocm/optimizer/clip_grad_norm/clip_grad_norm_impl.h" namespace onnxruntime { namespace rocm { template <typename T> __global__ void ClipGradNorm( ChunkGroup<ClipGradNormGroupSize> chunks, const float* total_norm, const float epsilon, const float max_norm) { const int tensor_idx = chunks.block_index_to_tensor_group_index[blockIdx.x]; const int tensor_size = chunks.tensor_sizes[tensor_idx]; const int chunk_start_idx = chunks.block_index_to_chunk_start_index[blockIdx.x]; // chunk_size is chunks.chunk_size if the loaded chunk is full. Otherwise (this // chunk is the last one in the source tensor), the actual size is determined // by the bound of the source tensor. const int chunk_size = min(tensor_size, chunk_start_idx + chunks.chunk_size) - chunk_start_idx; T* gradients_chunk_ptr = static_cast<T*>(chunks.tensor_ptrs[0][tensor_idx]) + chunk_start_idx; #pragma unroll 4 for (int i = threadIdx.x; i < chunk_size; i += blockDim.x) { float clip_coefficient = max_norm / (*total_norm + epsilon); gradients_chunk_ptr[i] = static_cast<T>(gradients_chunk_ptr[i]) * static_cast<T>(fminf(clip_coefficient, 1.0f)); } } template <typename T> void ClipGradNormFunctor<T>::operator()( hipStream_t stream, ChunkGroup<ClipGradNormGroupSize> chunks, const float* total_norm, const float epsilon, const float max_norm) { const int num_blocks_per_grid = chunks.chunk_count; const int num_threads_per_block = ChunkGroup<ClipGradNormGroupSize>::thread_count_per_block; ClipGradNorm<T><<<num_blocks_per_grid, num_threads_per_block, 0, stream>>>(chunks, total_norm, epsilon, max_norm); } #define SPECIALIZE_CLIPGRADNORM_FUNCTOR(T) \ template void ClipGradNormFunctor<T>::operator()(hipStream_t stream, \ ChunkGroup<ClipGradNormGroupSize> chunks, \ const float* total_norm, \ const float epsilon, \ const float max_norm); \ \ template __global__ void ClipGradNorm<T>(ChunkGroup<ClipGradNormGroupSize> chunks, \ const float* total_norm, \ const float epsilon, \ const float max_norm); SPECIALIZE_CLIPGRADNORM_FUNCTOR(float); #undef SPECIALIZE_CLIPGRADNORM_FUNCTOR } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include <algorithm> #include "core/providers/cuda/cuda_common.h" #include "orttraining/training_ops/cuda/optimizer/clip_grad_norm/clip_grad_norm_impl.h" namespace onnxruntime { namespace cuda { template <typename T> __global__ void ClipGradNorm( ChunkGroup<ClipGradNormGroupSize> chunks, const float* total_norm, const float epsilon, const float max_norm) { const int tensor_idx = chunks.block_index_to_tensor_group_index[blockIdx.x]; const int tensor_size = chunks.tensor_sizes[tensor_idx]; const int chunk_start_idx = chunks.block_index_to_chunk_start_index[blockIdx.x]; // chunk_size is chunks.chunk_size if the loaded chunk is full. Otherwise (this // chunk is the last one in the source tensor), the actual size is determined // by the bound of the source tensor. const int chunk_size = min(tensor_size, chunk_start_idx + chunks.chunk_size) - chunk_start_idx; T* gradients_chunk_ptr = static_cast<T*>(chunks.tensor_ptrs[0][tensor_idx]) + chunk_start_idx; #pragma unroll 4 for (int i = threadIdx.x; i < chunk_size; i += blockDim.x) { float clip_coefficient = max_norm / (*total_norm + epsilon); gradients_chunk_ptr[i] = static_cast<T>(gradients_chunk_ptr[i]) * static_cast<T>(fminf(clip_coefficient, 1.0f)); } } template <typename T> void ClipGradNormFunctor<T>::operator()( cudaStream_t stream, ChunkGroup<ClipGradNormGroupSize> chunks, const float* total_norm, const float epsilon, const float max_norm) { const int num_blocks_per_grid = chunks.chunk_count; const int num_threads_per_block = ChunkGroup<ClipGradNormGroupSize>::thread_count_per_block; ClipGradNorm<T><<<num_blocks_per_grid, num_threads_per_block, 0, stream>>>(chunks, total_norm, epsilon, max_norm); } #define SPECIALIZE_CLIPGRADNORM_FUNCTOR(T) \ template void ClipGradNormFunctor<T>::operator()(cudaStream_t stream, \ ChunkGroup<ClipGradNormGroupSize> chunks, \ const float* total_norm, \ const float epsilon, \ const float max_norm); \ \ template __global__ void ClipGradNorm<T>(ChunkGroup<ClipGradNormGroupSize> chunks, \ const float* total_norm, \ const float epsilon, \ const float max_norm); SPECIALIZE_CLIPGRADNORM_FUNCTOR(float); #undef SPECIALIZE_CLIPGRADNORM_FUNCTOR } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/multi_tensor/common.cuh" namespace onnxruntime { namespace rocm { constexpr int ClipGradNormGroupSize = 1; template <typename T> struct ClipGradNormFunctor { void operator()(hipStream_t stream, ChunkGroup<ClipGradNormGroupSize> chunks, const float* l2_norm, const float epsilon, const float max_norm); }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/multi_tensor/common.cuh" namespace onnxruntime { namespace cuda { constexpr int ClipGradNormGroupSize = 1; template <typename T> struct ClipGradNormFunctor { void operator()(cudaStream_t stream, ChunkGroup<ClipGradNormGroupSize> chunks, const float* l2_norm, const float epsilon, const float max_norm); }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "orttraining/training_ops/rocm/optimizer/common.h" namespace onnxruntime { namespace rocm { Status CopyIfNotSameROCMBuffer(OpKernelContext* ctx, size_t number_of_values, const TensorSeq* values, TensorSeq* updated_values) { if (values != updated_values) { AllocatorPtr alloc; ORT_ENFORCE(ctx->GetTempSpaceAllocator(&alloc).IsOK(), "ROCM CopyIfNotSameBuffer for tensor sequence: Unable to get an allocator."); hipStream_t hip_stream = ctx->GetComputeStream() ? static_cast<hipStream_t>(ctx->GetComputeStream()->GetHandle()) : nullptr; updated_values->SetType(values->DataType()); updated_values->Reserve(number_of_values); for (size_t input_idx = 0; input_idx < number_of_values; ++input_idx) { const Tensor& source_tensor = values->Get(input_idx); std::unique_ptr<Tensor> target_tensor = Tensor::Create(source_tensor.DataType(), source_tensor.Shape(), alloc); HIP_RETURN_IF_ERROR(hipMemcpyAsync(target_tensor->MutableDataRaw(), source_tensor.DataRaw(), source_tensor.SizeInBytes(), hipMemcpyDeviceToDevice, hip_stream)); updated_values->Add(std::move(*target_tensor)); // Add will check for type consistency } } return Status::OK(); } } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "orttraining/training_ops/cuda/optimizer/common.h" namespace onnxruntime { namespace cuda { Status CopyIfNotSameCUDABuffer(OpKernelContext* ctx, size_t number_of_values, const TensorSeq* values, TensorSeq* updated_values) { if (values != updated_values) { AllocatorPtr alloc; ORT_ENFORCE(ctx->GetTempSpaceAllocator(&alloc).IsOK(), "CUDA CopyIfNotSameBuffer for tensor sequence: Unable to get an allocator."); cudaStream_t cuda_stream = ctx->GetComputeStream() ? static_cast<cudaStream_t>(ctx->GetComputeStream()->GetHandle()) : nullptr; updated_values->SetType(values->DataType()); updated_values->Reserve(number_of_values); for (size_t input_idx = 0; input_idx < number_of_values; ++input_idx) { const Tensor& source_tensor = values->Get(input_idx); std::unique_ptr<Tensor> target_tensor = Tensor::Create(source_tensor.DataType(), source_tensor.Shape(), alloc); CUDA_RETURN_IF_ERROR(cudaMemcpyAsync(target_tensor->MutableDataRaw(), source_tensor.DataRaw(), source_tensor.SizeInBytes(), cudaMemcpyDeviceToDevice, cuda_stream)); updated_values->Add(std::move(*target_tensor)); // Add will check for type consistency } } return Status::OK(); } } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <hip/hip_runtime.h> #include <hip/hip_fp16.h> namespace onnxruntime { namespace rocm { // --------------------------------------------------------------------------- // _ComputeGradScale -- helper to calculate gradient scales based on global norms // --------------------------------------------------------------------------- template <typename TLossScale, typename TGradNorm, typename TFinalScale> __device__ __forceinline__ TFinalScale _ComputeGradScale( const TLossScale* loss_scale, // Scale of the gradient (called "scaled_g_norm" below) const TGradNorm* scaled_g_norm, // Scaled gradient norm is an optimizer input const TFinalScale max_g_norm) { const TFinalScale scale = loss_scale != nullptr ? TFinalScale(*loss_scale) : TFinalScale(1.f); const TFinalScale scaled_max_g_norm = TFinalScale(scale * max_g_norm); // This number is used to divide the scaled gradient before applying optimizers. TFinalScale scaled_g_scaling_factor = scale; if (scaled_g_norm != nullptr && TFinalScale(*scaled_g_norm) > scaled_max_g_norm) { scaled_g_scaling_factor = TFinalScale(*scaled_g_norm) / max_g_norm; } return scaled_g_scaling_factor; } } // namespace rocm } // namespace onnxruntime###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <cuda_runtime.h> #include <cuda_fp16.h> namespace onnxruntime { namespace cuda { // --------------------------------------------------------------------------- // _ComputeGradScale -- helper to calculate gradient scales based on global norms // --------------------------------------------------------------------------- template <typename TLossScale, typename TGradNorm, typename TFinalScale> __device__ __forceinline__ TFinalScale _ComputeGradScale( const TLossScale* loss_scale, // Scale of the gradient (called "scaled_g_norm" below) const TGradNorm* scaled_g_norm, // Scaled gradient norm is an optimizer input const TFinalScale max_g_norm) { const TFinalScale scale = loss_scale != nullptr ? TFinalScale(*loss_scale) : TFinalScale(1.f); const TFinalScale scaled_max_g_norm = TFinalScale(scale * max_g_norm); // This number is used to divide the scaled gradient before applying optimizers. TFinalScale scaled_g_scaling_factor = scale; if (scaled_g_norm != nullptr && TFinalScale(*scaled_g_norm) > scaled_max_g_norm) { scaled_g_scaling_factor = TFinalScale(*scaled_g_norm) / max_g_norm; } return scaled_g_scaling_factor; } } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_common.h" namespace onnxruntime { namespace rocm { template <typename T> Status CopyIfNotSameBuffer(hipStream_t stream, const Tensor& source_tensor, Tensor& target_tensor) { const T* source = source_tensor.template Data<T>(); T* target = target_tensor.template MutableData<T>(); if (target != source) { HIP_RETURN_IF_ERROR(hipMemcpyAsync(target, source, source_tensor.SizeInBytes(), hipMemcpyDeviceToDevice, stream)); } return Status::OK(); } Status CopyIfNotSameROCMBuffer(OpKernelContext* ctx, size_t number_of_values, const TensorSeq* values, TensorSeq* updated_values); } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_common.h" namespace onnxruntime { namespace cuda { template <typename T> Status CopyIfNotSameBuffer(cudaStream_t stream, const Tensor& source_tensor, Tensor& target_tensor) { const T* source = source_tensor.template Data<T>(); T* target = target_tensor.template MutableData<T>(); if (target != source) { CUDA_RETURN_IF_ERROR(cudaMemcpyAsync(target, source, source_tensor.SizeInBytes(), cudaMemcpyDeviceToDevice, stream)); } return Status::OK(); } Status CopyIfNotSameCUDABuffer(OpKernelContext* ctx, size_t number_of_values, const TensorSeq* values, TensorSeq* updated_values); } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { template <typename T> class ZeroGradient final : public RocmKernel { public: ZeroGradient(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T, typename T_GRAD> class InPlaceAccumulator final : public RocmKernel { public: InPlaceAccumulator(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T, typename T_GRAD> class InPlaceAccumulatorV2 final : public RocmKernel { public: InPlaceAccumulatorV2(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace rocm } // namespace onnxruntime###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { template <typename T> class ZeroGradient final : public CudaKernel { public: ZeroGradient(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T, typename T_GRAD> class InPlaceAccumulator final : public CudaKernel { public: InPlaceAccumulator(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; template <typename T, typename T_GRAD> class InPlaceAccumulatorV2 final : public CudaKernel { public: InPlaceAccumulatorV2(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <hip/hip_runtime.h> namespace onnxruntime { namespace rocm { // Implementation can be found in rocm file template <typename T, typename T_GRAD> void InPlaceAccumulatorImpl( hipStream_t stream, const T* gradient_buffer, const T_GRAD* gradient, T* accumulated_gradient, size_t count); } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <cuda_runtime.h> namespace onnxruntime { namespace cuda { // Implementation can be found in cuda file template <typename T, typename T_GRAD> void InPlaceAccumulatorImpl( cudaStream_t stream, const T* gradient_buffer, const T_GRAD* gradient, T* accumulated_gradient, size_t count); } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "matmul_integer.h" #include "core/providers/cpu/math/matmul_helper.h" #include "core/providers/rocm/rocm_common.h" #include "core/providers/rocm/shared_inc/rocm_utils.h" namespace onnxruntime { namespace rocm { Status ReduceRowSumOnMatrixA(hipStream_t stream, const int8_t* matrix, int32_t* row_sum, const int8_t offset, const MatMulComputeHelper& helper); Status ReduceColSumOnMatrixB(hipStream_t stream, const int8_t* matrix, int32_t* col_sum, const int8_t offset, const MatMulComputeHelper& helper); Status OffsetOutput(hipStream_t stream, const int32_t* row_sum, const int32_t* col_sum, int32_t* output, const int8_t a_offset, const int8_t b_offset, const MatMulComputeHelper& helper); } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "matmul_integer.h" #include "core/providers/cpu/math/matmul_helper.h" #include "core/providers/cuda/cuda_common.h" #include "core/providers/cuda/shared_inc/cuda_utils.h" namespace onnxruntime { namespace cuda { Status ReduceRowSumOnMatrixA(cudaStream_t stream, const int8_t* matrix, int32_t* row_sum, const int8_t offset, const MatMulComputeHelper& helper); Status ReduceColSumOnMatrixB(cudaStream_t stream, const int8_t* matrix, int32_t* col_sum, const int8_t offset, const MatMulComputeHelper& helper); Status OffsetOutput(cudaStream_t stream, const int32_t* row_sum, const int32_t* col_sum, int32_t* output, const int8_t a_offset, const int8_t b_offset, const MatMulComputeHelper& helper); } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { template <typename T1, typename T2, typename T3, typename T4, typename T_GRAD_NORM, typename T_MIXED_PRECISION_FP> class LambOptimizer final : public RocmKernel { public: LambOptimizer(const OpKernelInfo& info) : RocmKernel(info) { alpha_ = info.GetAttrsOrDefault("alpha", std::vector<float>(1024, 0.9f)); beta_ = info.GetAttrsOrDefault("beta", std::vector<float>(1024, 0.999f)); lambda_ = info.GetAttrsOrDefault("lambda", std::vector<float>(1024, 0.0f)); epsilon_ = info.GetAttrsOrDefault("epsilon", std::vector<float>(1024, 1e-6f)); max_norm_clip_ = info.GetAttrsOrDefault("max_norm_clip", std::vector<float>(1024, 1.0f)); ORT_ENFORCE(info.GetAttr<float>("ratio_min", &ratio_min_).IsOK(), "Missing/Invalid 'ratio_min' attribute value"); ORT_ENFORCE(info.GetAttr<float>("ratio_max", &ratio_max_).IsOK(), "Missing/Invalid 'ratio_max' attribute value"); for (const auto& max_norm : max_norm_clip_) { ORT_ENFORCE(max_norm != 0, "max_norm_clip must NOT be 0."); } int64_t tmp_flag = static_cast<int64_t>(0); ORT_ENFORCE(info.GetAttr<int64_t>("do_bias_correction", &tmp_flag).IsOK(), "Missing/Invalid do_bias_correction"); ORT_ENFORCE(tmp_flag == 0 || tmp_flag == 1, "do_bias_correction must be either 0 or 1."); do_bias_correction_ = tmp_flag != 0 ? true : false; } Status ComputeInternal(OpKernelContext* context) const override; private: std::vector<float> alpha_; std::vector<float> beta_; std::vector<float> lambda_; std::vector<float> epsilon_; std::vector<float> max_norm_clip_; float ratio_min_; float ratio_max_; bool do_bias_correction_; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { template <typename T1, typename T2, typename T3, typename T4, typename T_GRAD_NORM, typename T_MIXED_PRECISION_FP> class LambOptimizer final : public CudaKernel { public: LambOptimizer(const OpKernelInfo& info) : CudaKernel(info) { alpha_ = info.GetAttrsOrDefault("alpha", std::vector<float>(1024, 0.9f)); beta_ = info.GetAttrsOrDefault("beta", std::vector<float>(1024, 0.999f)); lambda_ = info.GetAttrsOrDefault("lambda", std::vector<float>(1024, 0.0f)); epsilon_ = info.GetAttrsOrDefault("epsilon", std::vector<float>(1024, 1e-6f)); max_norm_clip_ = info.GetAttrsOrDefault("max_norm_clip", std::vector<float>(1024, 1.0f)); ORT_ENFORCE(info.GetAttr<float>("ratio_min", &ratio_min_).IsOK(), "Missing/Invalid 'ratio_min' attribute value"); ORT_ENFORCE(info.GetAttr<float>("ratio_max", &ratio_max_).IsOK(), "Missing/Invalid 'ratio_max' attribute value"); for (const auto& max_norm : max_norm_clip_) { ORT_ENFORCE(max_norm != 0, "max_norm_clip must NOT be 0."); } int64_t tmp_flag = static_cast<int64_t>(0); ORT_ENFORCE(info.GetAttr<int64_t>("do_bias_correction", &tmp_flag).IsOK(), "Missing/Invalid do_bias_correction"); ORT_ENFORCE(tmp_flag == 0 || tmp_flag == 1, "do_bias_correction must be either 0 or 1."); do_bias_correction_ = tmp_flag != 0 ? true : false; } Status ComputeInternal(OpKernelContext* context) const override; private: std::vector<float> alpha_; std::vector<float> beta_; std::vector<float> lambda_; std::vector<float> epsilon_; std::vector<float> max_norm_clip_; float ratio_min_; float ratio_max_; bool do_bias_correction_; }; } // namespace cuda } // namespace onnxruntime ###
#pragma once #include <hip/hip_runtime.h> #include "core/providers/rocm/rocm_kernel.h" #include "core/providers/rocm/multi_tensor/common.cuh" #include "core/framework/stream_handles.h" namespace onnxruntime { namespace rocm { template <typename T1, typename T2, typename T3, typename T_GRAD_NORM> void LambComputeDirection( hipStream_t stream, const T1* weights, const T2* grads, const T3* moment_1, const T3* moment_2, const T1* loss_scale, const T_GRAD_NORM* grad_norm, float alpha, float beta, float lambda, float epsilon, float max_norm, float alpha_correction, float beta_correction, T2* update_direction, T3* moment_1_out, T3* moment_2_out, size_t count); template <typename T1, typename T2, typename T3, typename T_MIXED_PRECISION_FP> void LambUpdate( hipStream_t stream, const T1* eta, const float ratio_min, const float ratio_max, const T2* r_norm, const T2* w_norm, const T2* weights, const T3* update_direction, T2* weights_out, T3* gradients_out, T_MIXED_PRECISION_FP* mixed_precision_weights_out, size_t count); template <typename T1, typename T2, typename T3, typename T_GRAD_NORM> struct LambMultiTensorComputeDirectionFunctor { void operator()( hipStream_t stream, ChunkGroup<6> chunk_group, const T1* loss_scale, const T_GRAD_NORM* grad_norm, const float lambda, const float alpha, const float beta, const float epsilon, const float max_norm, const float alpha_correction, const float beta_correction); }; template <typename TIn1, typename TIn2, typename TOut1, typename TOut2, typename TBuf> struct LambMultiTensorReductionFunctor { void operator()( hipStream_t stream, ChunkGroup<4> chunk_group, const RocmKernel& kernel, void* reduction_buffer, size_t reduction_buffer_size, onnxruntime::Stream* ort_stream); }; struct LambMultiTensorSyncRangeAndLock { int leading_block; int number_blocks; int completed_blocks; }; template <typename T1, typename T2, typename T3, typename T_MIXED_PRECISION_FP> struct LambMultiTensorUpdateFunctor { void operator()( hipStream_t stream, ChunkGroup<7> chunk_group, const T1* eta, const float ratio_min, const float ratio_max); }; } } ###
#pragma once #include <cuda_runtime.h> #include "core/providers/cuda/cuda_kernel.h" #include "core/providers/cuda/multi_tensor/common.cuh" #include "core/framework/stream_handles.h" namespace onnxruntime { namespace cuda { template <typename T1, typename T2, typename T3, typename T_GRAD_NORM> void LambComputeDirection( cudaStream_t stream, const T1* weights, const T2* grads, const T3* moment_1, const T3* moment_2, const T1* loss_scale, const T_GRAD_NORM* grad_norm, float alpha, float beta, float lambda, float epsilon, float max_norm, float alpha_correction, float beta_correction, T2* update_direction, T3* moment_1_out, T3* moment_2_out, size_t count); template <typename T1, typename T2, typename T3, typename T_MIXED_PRECISION_FP> void LambUpdate( cudaStream_t stream, const T1* eta, const float ratio_min, const float ratio_max, const T2* r_norm, const T2* w_norm, const T2* weights, const T3* update_direction, T2* weights_out, T3* gradients_out, T_MIXED_PRECISION_FP* mixed_precision_weights_out, size_t count); template <typename T1, typename T2, typename T3, typename T_GRAD_NORM> struct LambMultiTensorComputeDirectionFunctor { void operator()( cudaStream_t stream, ChunkGroup<6> chunk_group, const T1* loss_scale, const T_GRAD_NORM* grad_norm, const float lambda, const float alpha, const float beta, const float epsilon, const float max_norm, const float alpha_correction, const float beta_correction); }; template <typename TIn1, typename TIn2, typename TOut1, typename TOut2, typename TBuf> struct LambMultiTensorReductionFunctor { void operator()( cudaStream_t stream, ChunkGroup<4> chunk_group, const CudaKernel& kernel, void* reduction_buffer, size_t reduction_buffer_size, onnxruntime::Stream* ort_stream); }; struct LambMultiTensorSyncRangeAndLock { int leading_block; int number_blocks; int completed_blocks; }; template <typename T1, typename T2, typename T3, typename T_MIXED_PRECISION_FP> struct LambMultiTensorUpdateFunctor { void operator()( cudaStream_t stream, ChunkGroup<7> chunk_group, const T1* eta, const float ratio_min, const float ratio_max); }; } } ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "sg.h" #include "sg_impl.h" #include "core/providers/rocm/reduction/reduction_functions.h" #include "core/providers/rocm/math/binary_elementwise_ops.h" namespace onnxruntime { namespace rocm { ONNX_OPERATOR_KERNEL_EX( SGDOptimizer, kMSDomain, 1, kRocmExecutionProvider, (*KernelDefBuilder::Create()) .Alias(1, 0) // Update weights in-place .Alias(2, 1) // Update gradients in-place .TypeConstraint("T", DataTypeImpl::GetTensorType<float>()), SGDOptimizer); Status SGDOptimizer::ComputeInternal(OpKernelContext* ctx) const { const Tensor& ETA = *ctx->Input<Tensor>(0); const Tensor& W = *ctx->Input<Tensor>(1); const Tensor& G = *ctx->Input<Tensor>(2); Tensor* NW = ctx->Output(0, W.Shape()); Tensor* NG = ctx->Output(1, G.Shape()); ORT_ENFORCE(W.Shape() == G.Shape()); SGDOptimizerImpl( Stream(ctx), ETA.template Data<float>(), W.template Data<float>(), G.template Data<float>(), NW != nullptr ? NW->template MutableData<float>() : nullptr, NG != nullptr ? NG->template MutableData<float>() : nullptr, W.Shape().Size()); return Status::OK(); } } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "sg.h" #include "sg_impl.h" #include "core/providers/cuda/reduction/reduction_functions.h" #include "core/providers/cuda/math/binary_elementwise_ops.h" namespace onnxruntime { namespace cuda { ONNX_OPERATOR_KERNEL_EX( SGDOptimizer, kMSDomain, 1, kCudaExecutionProvider, (*KernelDefBuilder::Create()) .Alias(1, 0) // Update weights in-place .Alias(2, 1) // Update gradients in-place .TypeConstraint("T", DataTypeImpl::GetTensorType<float>()), SGDOptimizer); Status SGDOptimizer::ComputeInternal(OpKernelContext* ctx) const { const Tensor& ETA = *ctx->Input<Tensor>(0); const Tensor& W = *ctx->Input<Tensor>(1); const Tensor& G = *ctx->Input<Tensor>(2); Tensor* NW = ctx->Output(0, W.Shape()); Tensor* NG = ctx->Output(1, G.Shape()); ORT_ENFORCE(W.Shape() == G.Shape()); SGDOptimizerImpl( Stream(ctx), ETA.template Data<float>(), W.template Data<float>(), G.template Data<float>(), NW != nullptr ? NW->template MutableData<float>() : nullptr, NG != nullptr ? NG->template MutableData<float>() : nullptr, W.Shape().Size()); return Status::OK(); } } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { class SGDOptimizer final : public RocmKernel { public: SGDOptimizer(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { class SGDOptimizer final : public CudaKernel { public: SGDOptimizer(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace cuda } // namespace onnxruntime ###
#include "hip/hip_runtime.h" // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "sg_impl.h" #include "core/providers/rocm/rocm_common.h" #include "core/providers/rocm/cu_inc/common.cuh" #include "core/providers/rocm/atomic/common.cuh" namespace onnxruntime { namespace rocm { template <typename T> __global__ void _SGDOptimizer( const T* eta, const T* weights, const T* gradients, T* weights_out, T* gradients_out, HIP_LONG N) { CALCULATE_ELEMENTWISE_INDEX_OR_EXIT(id, N); const T delta = -(*eta) * gradients[id]; if (gradients_out) { gradients_out[id] = delta; } if (weights_out) { weights_out[id] = weights[id] + delta; } } template <typename T> void SGDOptimizerImpl( hipStream_t stream, const T* eta, const T* weights, const T* gradients, T* weights_out, T* gradients_out, size_t count) { int blocksPerGrid = (int)(ceil(static_cast<float>(count) / GridDim::maxThreadsPerBlock)); HIP_LONG N = static_cast<HIP_LONG>(count); _SGDOptimizer<T><<<blocksPerGrid, GridDim::maxThreadsPerBlock, 0, stream>>>( eta, weights, gradients, weights_out, gradients_out, N); } #define SPECIALIZED_IMPL__SGDOptimizerImpl(T) \ template void SGDOptimizerImpl( \ hipStream_t stream, \ const T* eta, \ const T* weights, \ const T* gradients, \ T* weights_out, \ T* gradients_out, \ size_t count); SPECIALIZED_IMPL__SGDOptimizerImpl(float) } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "sg_impl.h" #include "core/providers/cuda/cuda_common.h" #include "core/providers/cuda/cu_inc/common.cuh" #include "core/providers/cuda/atomic/common.cuh" namespace onnxruntime { namespace cuda { template <typename T> __global__ void _SGDOptimizer( const T* eta, const T* weights, const T* gradients, T* weights_out, T* gradients_out, CUDA_LONG N) { CALCULATE_ELEMENTWISE_INDEX_OR_EXIT(id, N); const T delta = -(*eta) * gradients[id]; if (gradients_out) { gradients_out[id] = delta; } if (weights_out) { weights_out[id] = weights[id] + delta; } } template <typename T> void SGDOptimizerImpl( cudaStream_t stream, const T* eta, const T* weights, const T* gradients, T* weights_out, T* gradients_out, size_t count) { int blocksPerGrid = (int)(ceil(static_cast<float>(count) / GridDim::maxThreadsPerBlock)); CUDA_LONG N = static_cast<CUDA_LONG>(count); _SGDOptimizer<T><<<blocksPerGrid, GridDim::maxThreadsPerBlock, 0, stream>>>( eta, weights, gradients, weights_out, gradients_out, N); } #define SPECIALIZED_IMPL__SGDOptimizerImpl(T) \ template void SGDOptimizerImpl( \ cudaStream_t stream, \ const T* eta, \ const T* weights, \ const T* gradients, \ T* weights_out, \ T* gradients_out, \ size_t count); SPECIALIZED_IMPL__SGDOptimizerImpl(float) } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <hip/hip_runtime.h> namespace onnxruntime { namespace rocm { template <typename T> void SGDOptimizerImpl( hipStream_t stream, const T* eta, const T* weights, const T* gradients, T* weight_out, T* gradients_out, size_t count); } } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <cuda_runtime.h> namespace onnxruntime { namespace cuda { template <typename T> void SGDOptimizerImpl( cudaStream_t stream, const T* eta, const T* weights, const T* gradients, T* weight_out, T* gradients_out, size_t count); } } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "orttraining/training_ops/rocm/optimizer/common.h" #include "orttraining/training_ops/rocm/optimizer/sgd/sgd.h" #include "orttraining/training_ops/rocm/optimizer/sgd/sgd_impl.h" namespace onnxruntime { namespace rocm { ONNX_OPERATOR_KERNEL_EX( SGDOptimizerV2, kMSDomain, 1, kRocmExecutionProvider, (*KernelDefBuilder::Create()) .InputMemoryType(OrtMemTypeCPUInput, 0) .InputMemoryType(OrtMemTypeCPUInput, 3) .OutputMemoryType(OrtMemTypeCPUOutput, 0) .Alias(1, 1) // Update weights in-place .TypeConstraint("T1", DataTypeImpl::GetTensorType<float>()) .TypeConstraint("T_BOOL", DataTypeImpl::GetTensorType<bool>()) .TypeConstraint("S_WEIGHT", DataTypeImpl::AllFixedSizeSequenceTensorTypes()) .TypeConstraint("S_GRAD", DataTypeImpl::AllFixedSizeSequenceTensorTypes()), SGDOptimizerV2); Status SGDOptimizerV2::ComputeInternal(OpKernelContext* ctx) const { SGDOptimizerV2Base::Prepare p; ORT_RETURN_IF_ERROR(PrepareForCompute(ctx, p)); bool* updated_flag_ptr = p.update_completed->template MutableData<bool>(); // Currently placed on CPU, need revisit when we had mixed precision training requirement. const Tensor* update_signal = ctx->Input<Tensor>(3); if (update_signal == nullptr || *update_signal->template Data<bool>()) { typedef typename ToHipType<float>::MappedType HipT_FLOAT; typedef SGDMTAFunctor<HipT_FLOAT, HipT_FLOAT> TFunctor; TFunctor functor; const float* lr_ptr = p.learning_rate->template Data<float>(); ORT_ENFORCE(lr_ptr); launch_multi_tensor_functor<MTA_SGD_GROUP_SIZE, TFunctor>( Stream(ctx), MTA_SGD_CHUNK_SIZE, p.grouped_tensor_sizes, p.grouped_tensor_pointers, functor, *lr_ptr); *updated_flag_ptr = true; } else { *updated_flag_ptr = false; } if (p.updated_weights != nullptr) { ORT_RETURN_IF_ERROR(CopyIfNotSameROCMBuffer(ctx, p.num_of_weights, p.weights, p.updated_weights)); } return Status::OK(); } } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "orttraining/training_ops/cuda/optimizer/common.h" #include "orttraining/training_ops/cuda/optimizer/sgd/sgd.h" #include "orttraining/training_ops/cuda/optimizer/sgd/sgd_impl.h" namespace onnxruntime { namespace cuda { ONNX_OPERATOR_KERNEL_EX( SGDOptimizerV2, kMSDomain, 1, kCudaExecutionProvider, (*KernelDefBuilder::Create()) .InputMemoryType(OrtMemTypeCPUInput, 0) .InputMemoryType(OrtMemTypeCPUInput, 3) .OutputMemoryType(OrtMemTypeCPUOutput, 0) .Alias(1, 1) // Update weights in-place .TypeConstraint("T1", DataTypeImpl::GetTensorType<float>()) .TypeConstraint("T_BOOL", DataTypeImpl::GetTensorType<bool>()) .TypeConstraint("S_WEIGHT", DataTypeImpl::AllFixedSizeSequenceTensorTypes()) .TypeConstraint("S_GRAD", DataTypeImpl::AllFixedSizeSequenceTensorTypes()), SGDOptimizerV2); Status SGDOptimizerV2::ComputeInternal(OpKernelContext* ctx) const { SGDOptimizerV2Base::Prepare p; ORT_RETURN_IF_ERROR(PrepareForCompute(ctx, p)); bool* updated_flag_ptr = p.update_completed->template MutableData<bool>(); // Currently placed on CPU, need revisit when we had mixed precision training requirement. const Tensor* update_signal = ctx->Input<Tensor>(3); if (update_signal == nullptr || *update_signal->template Data<bool>()) { typedef typename ToCudaType<float>::MappedType CudaT_FLOAT; typedef SGDMTAFunctor<CudaT_FLOAT, CudaT_FLOAT> TFunctor; TFunctor functor; const float* lr_ptr = p.learning_rate->template Data<float>(); ORT_ENFORCE(lr_ptr); launch_multi_tensor_functor<MTA_SGD_GROUP_SIZE, TFunctor>( Stream(ctx), MTA_SGD_CHUNK_SIZE, p.grouped_tensor_sizes, p.grouped_tensor_pointers, functor, *lr_ptr); *updated_flag_ptr = true; } else { *updated_flag_ptr = false; } if (p.updated_weights != nullptr) { ORT_RETURN_IF_ERROR(CopyIfNotSameCUDABuffer(ctx, p.num_of_weights, p.weights, p.updated_weights)); } return Status::OK(); } } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/rocm/rocm_kernel.h" #include "orttraining/training_ops/cpu/optimizer/sgd/sgdbase.h" namespace onnxruntime { namespace rocm { class SGDOptimizerV2 final : public RocmKernel, public contrib::SGDOptimizerV2Base { public: SGDOptimizerV2(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/common/common.h" #include "core/providers/cuda/cuda_kernel.h" #include "orttraining/training_ops/cpu/optimizer/sgd/sgdbase.h" namespace onnxruntime { namespace cuda { class SGDOptimizerV2 final : public CudaKernel, public contrib::SGDOptimizerV2Base { public: SGDOptimizerV2(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace cuda } // namespace onnxruntime ###
#include "hip/hip_runtime.h" // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "orttraining/training_ops/rocm/optimizer/sgd/sgd_impl.h" #include "core/providers/rocm/rocm_common.h" #include "core/providers/rocm/cu_inc/common.cuh" namespace onnxruntime { namespace rocm { template <typename T_WEIGHT, typename T_GRAD> __global__ void SGDCompute(ChunkGroup<MTA_SGD_GROUP_SIZE> chunks, const float lr) { const int block_idx = blockIdx.x; T_WEIGHT* weight_chunk_ptr; T_GRAD* grad_chunk_ptr; int chunk_size; const int tensor_idx = chunks.block_index_to_tensor_group_index[block_idx]; const int tensor_size = chunks.tensor_sizes[tensor_idx]; T_WEIGHT* weight_tensor_ptr = static_cast<T_WEIGHT*>(chunks.tensor_ptrs[0][tensor_idx]); T_GRAD* grad_tensor_ptr = static_cast<T_GRAD*>(chunks.tensor_ptrs[1][tensor_idx]); const int chunk_start_idx = chunks.block_index_to_chunk_start_index[block_idx]; // chunk_size is chunks.chunk_size if the loaded chunk is full. Otherwise (this // chunk is the last one in the source tensor), the actual size is determined // by the bound of the source tensor. chunk_size = min(tensor_size, chunk_start_idx + chunks.chunk_size) - chunk_start_idx; weight_chunk_ptr = weight_tensor_ptr + chunk_start_idx; grad_chunk_ptr = grad_tensor_ptr + chunk_start_idx; #pragma unroll 4 for (int i = threadIdx.x; i < chunk_size; i += blockDim.x) { float w = static_cast<float>(weight_chunk_ptr[i]); float g = static_cast<float>(grad_chunk_ptr[i]); w = w + -lr * g; // Update the new weight. weight_chunk_ptr[i] = static_cast<T_WEIGHT>(w); } } template <typename T_WEIGHT, typename T_GRAD> void SGDMTAFunctor<T_WEIGHT, T_GRAD>::operator()(hipStream_t stream, ChunkGroup<MTA_SGD_GROUP_SIZE> chunks, const float lr) { const int block_count = chunks.chunk_count; const int thread_count = ChunkGroup<MTA_SGD_GROUP_SIZE>::thread_count_per_block; SGDCompute<T_WEIGHT, T_GRAD><<<block_count, thread_count, 0, stream>>>(chunks, lr); } #define INSTANTIATE_SGD_FUNCTOR(T_WEIGHT, T_GRAD) \ template void SGDMTAFunctor<T_WEIGHT, T_GRAD>::operator()(hipStream_t stream, \ ChunkGroup<MTA_SGD_GROUP_SIZE> chunks, \ const float lr); \ template __global__ void SGDCompute<T_WEIGHT, T_GRAD>(ChunkGroup<MTA_SGD_GROUP_SIZE> chunks, \ const float lr); INSTANTIATE_SGD_FUNCTOR(float, float) #undef INSTANTIATE_SGD_FUNCTOR } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "orttraining/training_ops/cuda/optimizer/sgd/sgd_impl.h" #include "core/providers/cuda/cuda_common.h" #include "core/providers/cuda/cu_inc/common.cuh" namespace onnxruntime { namespace cuda { template <typename T_WEIGHT, typename T_GRAD> __global__ void SGDCompute(ChunkGroup<MTA_SGD_GROUP_SIZE> chunks, const float lr) { const int block_idx = blockIdx.x; T_WEIGHT* weight_chunk_ptr; T_GRAD* grad_chunk_ptr; int chunk_size; const int tensor_idx = chunks.block_index_to_tensor_group_index[block_idx]; const int tensor_size = chunks.tensor_sizes[tensor_idx]; T_WEIGHT* weight_tensor_ptr = static_cast<T_WEIGHT*>(chunks.tensor_ptrs[0][tensor_idx]); T_GRAD* grad_tensor_ptr = static_cast<T_GRAD*>(chunks.tensor_ptrs[1][tensor_idx]); const int chunk_start_idx = chunks.block_index_to_chunk_start_index[block_idx]; // chunk_size is chunks.chunk_size if the loaded chunk is full. Otherwise (this // chunk is the last one in the source tensor), the actual size is determined // by the bound of the source tensor. chunk_size = min(tensor_size, chunk_start_idx + chunks.chunk_size) - chunk_start_idx; weight_chunk_ptr = weight_tensor_ptr + chunk_start_idx; grad_chunk_ptr = grad_tensor_ptr + chunk_start_idx; #pragma unroll 4 for (int i = threadIdx.x; i < chunk_size; i += blockDim.x) { float w = static_cast<float>(weight_chunk_ptr[i]); float g = static_cast<float>(grad_chunk_ptr[i]); w = w + -lr * g; // Update the new weight. weight_chunk_ptr[i] = static_cast<T_WEIGHT>(w); } } template <typename T_WEIGHT, typename T_GRAD> void SGDMTAFunctor<T_WEIGHT, T_GRAD>::operator()(cudaStream_t stream, ChunkGroup<MTA_SGD_GROUP_SIZE> chunks, const float lr) { const int block_count = chunks.chunk_count; const int thread_count = ChunkGroup<MTA_SGD_GROUP_SIZE>::thread_count_per_block; SGDCompute<T_WEIGHT, T_GRAD><<<block_count, thread_count, 0, stream>>>(chunks, lr); } #define INSTANTIATE_SGD_FUNCTOR(T_WEIGHT, T_GRAD) \ template void SGDMTAFunctor<T_WEIGHT, T_GRAD>::operator()(cudaStream_t stream, \ ChunkGroup<MTA_SGD_GROUP_SIZE> chunks, \ const float lr); \ template __global__ void SGDCompute<T_WEIGHT, T_GRAD>(ChunkGroup<MTA_SGD_GROUP_SIZE> chunks, \ const float lr); INSTANTIATE_SGD_FUNCTOR(float, float) #undef INSTANTIATE_SGD_FUNCTOR } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/multi_tensor/common.cuh" namespace onnxruntime { namespace rocm { #define MTA_SGD_GROUP_SIZE 2 #define MTA_SGD_CHUNK_SIZE 2048 * 32 template <typename T_WEIGHT, typename T_GRAD> struct SGDMTAFunctor { void operator()(hipStream_t stream, ChunkGroup<MTA_SGD_GROUP_SIZE> chunks, const float lr); }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/multi_tensor/common.cuh" namespace onnxruntime { namespace cuda { #define MTA_SGD_GROUP_SIZE 2 #define MTA_SGD_CHUNK_SIZE 2048 * 32 template <typename T_WEIGHT, typename T_GRAD> struct SGDMTAFunctor { void operator()(cudaStream_t stream, ChunkGroup<MTA_SGD_GROUP_SIZE> chunks, const float lr); }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { template <typename T1, typename T2> class MatMulInteger final : public RocmKernel { using Base = RocmKernel; public: MatMulInteger(const OpKernelInfo& info) : RocmKernel(info) { has_a_zero_point_ = false; has_b_zero_point_ = false; if (info.GetInputCount() > 2) { has_a_zero_point_ = true; } if (info.GetInputCount() > 3) { has_b_zero_point_ = true; } } Status ComputeInternal(OpKernelContext* context) const override; private: bool has_a_zero_point_; bool has_b_zero_point_; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { template <typename T1, typename T2> class MatMulInteger final : public CudaKernel { using Base = CudaKernel; public: MatMulInteger(const OpKernelInfo& info) : CudaKernel(info) { has_a_zero_point_ = false; has_b_zero_point_ = false; if (info.GetInputCount() > 2) { has_a_zero_point_ = true; } if (info.GetInputCount() > 3) { has_b_zero_point_ = true; } } Status ComputeInternal(OpKernelContext* context) const override; private: bool has_a_zero_point_; bool has_b_zero_point_; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <string> #include "core/common/common.h" #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { template <typename T> class FakeQuant final : public RocmKernel { public: FakeQuant(const OpKernelInfo& info) : RocmKernel(info) { info.GetAttrOrDefault("quant_min", &quant_min_, static_cast<decltype(quant_min_)>(0)); info.GetAttrOrDefault("quant_max", &quant_max_, static_cast<decltype(quant_max_)>(255)); } Status ComputeInternal(OpKernelContext* context) const override; private: int64_t quant_min_; int64_t quant_max_; }; template <typename T> class FakeQuantGrad final : public RocmKernel { public: FakeQuantGrad(const OpKernelInfo& info) : RocmKernel(info) { } Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <string> #include "core/common/common.h" #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { template <typename T> class FakeQuant final : public CudaKernel { public: FakeQuant(const OpKernelInfo& info) : CudaKernel(info) { info.GetAttrOrDefault("quant_min", &quant_min_, static_cast<decltype(quant_min_)>(0)); info.GetAttrOrDefault("quant_max", &quant_max_, static_cast<decltype(quant_max_)>(255)); } Status ComputeInternal(OpKernelContext* context) const override; private: int64_t quant_min_; int64_t quant_max_; }; template <typename T> class FakeQuantGrad final : public CudaKernel { public: FakeQuantGrad(const OpKernelInfo& info) : CudaKernel(info) { } Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <stdint.h> namespace onnxruntime { namespace rocm { template <typename T> void FakeQuantPerTensor(hipStream_t stream, const int64_t num_elements, const T* input_data, const T quant_scale, const T quant_zero_point, const int64_t quant_min, const int64_t quant_max, T* fake_quantized_data, bool* quantization_mask_data); template <typename T> void FakeQuantGradImpl(hipStream_t stream, const int64_t num_elements, const T* dY_data, const bool* gradient_mask_data, T* dX_data); } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include <stdint.h> namespace onnxruntime { namespace cuda { template <typename T> void FakeQuantPerTensor(cudaStream_t stream, const int64_t num_elements, const T* input_data, const T quant_scale, const T quant_zero_point, const int64_t quant_min, const int64_t quant_max, T* fake_quantized_data, bool* quantization_mask_data); template <typename T> void FakeQuantGradImpl(cudaStream_t stream, const int64_t num_elements, const T* dY_data, const bool* gradient_mask_data, T* dX_data); } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "orttraining/training_ops/rocm/reduction/all.h" #include "orttraining/training_ops/rocm/reduction/all_impl.h" namespace onnxruntime { namespace rocm { #define REGISTER_ALL_KERNEL_TYPED(T) \ ONNX_OPERATOR_TYPED_KERNEL_EX( \ All, \ kMSDomain, \ 1, \ T, \ kRocmExecutionProvider, \ (*KernelDefBuilder::Create()).TypeConstraint("T", DataTypeImpl::GetTensorType<T>()), \ All<T>); template <typename T> Status All<T>::ComputeInternal(OpKernelContext* ctx) const { const Tensor& input = *ctx->Input<Tensor>(0); Tensor& output = *ctx->Output(0, {1}); const auto size = input.Shape().Size(); ORT_ENFORCE(size <= std::numeric_limits<int>::max(), "Number of reduced elements (", size, ") exceeds the max allowed value (", std::numeric_limits<int>::max(), ")."); LaunchAllKernel( Stream(ctx), input.Data<T>(), static_cast<int>(size), output.MutableData<bool>()); return Status::OK(); } REGISTER_ALL_KERNEL_TYPED(bool) } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #include "orttraining/training_ops/cuda/reduction/all.h" #include "orttraining/training_ops/cuda/reduction/all_impl.h" namespace onnxruntime { namespace cuda { #define REGISTER_ALL_KERNEL_TYPED(T) \ ONNX_OPERATOR_TYPED_KERNEL_EX( \ All, \ kMSDomain, \ 1, \ T, \ kCudaExecutionProvider, \ (*KernelDefBuilder::Create()).TypeConstraint("T", DataTypeImpl::GetTensorType<T>()), \ All<T>); template <typename T> Status All<T>::ComputeInternal(OpKernelContext* ctx) const { const Tensor& input = *ctx->Input<Tensor>(0); Tensor& output = *ctx->Output(0, {1}); const auto size = input.Shape().Size(); ORT_ENFORCE(size <= std::numeric_limits<int>::max(), "Number of reduced elements (", size, ") exceeds the max allowed value (", std::numeric_limits<int>::max(), ")."); LaunchAllKernel( Stream(ctx), input.Data<T>(), static_cast<int>(size), output.MutableData<bool>()); return Status::OK(); } REGISTER_ALL_KERNEL_TYPED(bool) } // namespace cuda } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/rocm/rocm_kernel.h" namespace onnxruntime { namespace rocm { template <typename T> class All final : public RocmKernel { public: All(const OpKernelInfo& info) : RocmKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace rocm } // namespace onnxruntime ###
// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. #pragma once #include "core/providers/cuda/cuda_kernel.h" namespace onnxruntime { namespace cuda { template <typename T> class All final : public CudaKernel { public: All(const OpKernelInfo& info) : CudaKernel(info) {} Status ComputeInternal(OpKernelContext* context) const override; }; } // namespace cuda } // namespace onnxruntime ###