Unnamed: 0
int64
0
15.9k
cleaned_code
stringlengths
67
124k
cleaned_prompt
stringlengths
168
30.3k
14,400
<ASSISTANT_TASK:> Python Code: import iris import iris.quickplot as qplt temperature = iris.load_cube('air.sig995.2012.nc') qplt.contourf(temperature[0,:,:]) gca().coastlines() print temperature zonal_mean = temperature.collapsed('latitude', iris.analysis.MEAN) qplt.contourf(zonal_mean) #Code is a bit more complicated in order to fix issue with dates formating fig = figure() qplt.plot(temperature[:,10,10]) fig.autofmt_xdate() qplt.plot(temperature[0,:,10]) import cartopy.crs as ccrs ax = plt.axes(projection=ccrs.PlateCarree()) qplt.contourf(temperature[0,:,:]) gca().coastlines() ax = plt.axes(projection=ccrs.Mollweide()) qplt.contourf(temperature[0,:,:]) gca().coastlines() ax = plt.axes(projection=ccrs.Robinson()) qplt.contourf(temperature[0,:,:]) gca().coastlines() fig = figure(figsize=(7,7)) ax = plt.axes(projection=ccrs.NorthPolarStereo()) ax.set_extent([0, 360, 50, 90], crs=ccrs.PlateCarree()) qplt.contourf(temperature[0,:,:]) gca().coastlines() !wget https://raw.github.com/ocefpaf/ocefpaf.github.io/master/downloads/notebooks/data/challenger_path.csv kw = dict(color='#FF9900', linestyle='-', linewidth=1.5) lon, lat = np.loadtxt('./challenger_path.csv', delimiter=',', unpack=True) from mpl_toolkits.basemap import Basemap def make_basemap(projection='robin', figsize=(10, 5), resolution='c'): fig, ax = plt.subplots(figsize=figsize) m = Basemap(projection=projection, resolution=resolution, lon_0=0, ax=ax) m.drawcoastlines() m.fillcontinents(color='0.85') parallels = np.arange(-60, 90, 30.) meridians = np.arange(-360, 360, 60.) m.drawparallels(parallels, labels=[1, 0, 0, 0]) m.drawmeridians(meridians, labels=[0, 0, 1, 0]) return fig, m fig, m = make_basemap() _ = m.plot(*m(lon, lat), **kw) import cartopy.crs as ccrs import cartopy.feature as cfeature def make_cartopy(projection=ccrs.Robinson(), figsize=(10, 5), resolution='110m'): fig, ax = plt.subplots(figsize=figsize, subplot_kw=dict(projection=projection)) ax.set_global() ax.coastlines(resolution=resolution, color='k') gl = ax.gridlines(draw_labels=False) # Only PlateCarree and Mercator plots are currently supported. ax.add_feature(cfeature.LAND, facecolor='0.75') return fig, ax fig, ax = make_cartopy(projection=ccrs.Robinson(), resolution='110m') _ = ax.plot(lon, lat, transform=ccrs.Geodetic(), **kw) from pydap.client import open_url dataset = open_url("http://icdc.zmaw.de/thredds/dodsC/amsre_asi_nh_2011") print dataset ice = dataset['icecon'] ice.shape ice.attributes imshow(squeeze(ice[0,:,:])*0.10000000149011612) colorbar() %%writefile FIB1.F C FILE: FIB1.F SUBROUTINE FIB(A,N) C C CALCULATE FIRST N FIBONACCI NUMBERS C INTEGER N REAL*8 A(N) DO I=1,N IF (I.EQ.1) THEN A(I) = 0.0D0 ELSEIF (I.EQ.2) THEN A(I) = 1.0D0 ELSE A(I) = A(I-1) + A(I-2) ENDIF ENDDO END C END FILE FIB1.F !f2py -c -m --fcompiler=gnu95 fib1 FIB1.F import fib1 print fib1.__doc__ print fib1.fib.__doc__ import numpy as np a=np.zeros(15,'d') fib1.fib(a) print a !wget ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis/surface/air.sig995.2011.nc from netCDF4 import MFDataset f = MFDataset('air.sig995.????.nc') f.variables air = f.variables['air'] time = f.variables['time'] lat = f.variables['lat'] air.shape from netCDF4 import num2date time.units time_conv = num2date(time, time.units) time_conv fig = figure() plot(time_conv, air[:,10,10]) fig.autofmt_xdate() contourf(lat[:],time_conv,air[:,:,10]) colorbar() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This is how iris cube look like Step2: We can perform different operations on cubes. For example create zonal mean Step3: Here we plot timesiries from one point Step4: Section along longitude Step5: Cartopy Step6: We only change projection Step7: One of the things it was originally created for is to handle datelines properly. Below is an example form the post by Filipe Fernandes, that demonstrate this feature. He show how to plot Challenger Expedition track in Basemap and Cartopy. Step8: Basemap version Step9: Cartopy version Step10: Pydap Step11: We are going to access sea ice data from CliSAP-Integrated Climate Data Center (ICDC) Step12: F2PY Step13: Compile it with f2py Step14: Import resulting fib1.so as python library Step15: Read some auto generated documentation Step16: Use fib function Step17: netCDF4-python Step18: The air variable now have 2 years of data Step19: It also have very nice functions for dates processing Step20: We can convert our time values to the datetime format, that python can work with Step21: Note that we don't have to apply scale factor and add offset, it's done automatically.
14,401
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import os import re import shutil import string import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense, Embedding, GlobalAveragePooling1D from tensorflow.keras.layers import TextVectorization url = "https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz" dataset = tf.keras.utils.get_file("aclImdb_v1.tar.gz", url, untar=True, cache_dir='.', cache_subdir='') dataset_dir = os.path.join(os.path.dirname(dataset), 'aclImdb') os.listdir(dataset_dir) train_dir = os.path.join(dataset_dir, 'train') os.listdir(train_dir) remove_dir = os.path.join(train_dir, 'unsup') shutil.rmtree(remove_dir) batch_size = 1024 seed = 123 train_ds = tf.keras.preprocessing.text_dataset_from_directory( 'aclImdb/train', batch_size=batch_size, validation_split=0.2, subset='training', seed=seed) val_ds = tf.keras.preprocessing.text_dataset_from_directory( 'aclImdb/train', batch_size=batch_size, validation_split=0.2, subset='validation', seed=seed) for text_batch, label_batch in train_ds.take(1): for i in range(5): print(label_batch[i].numpy(), text_batch.numpy()[i]) AUTOTUNE = tf.data.AUTOTUNE train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) # Embed a 1,000 word vocabulary into 5 dimensions. embedding_layer = tf.keras.layers.Embedding(1000, 5) result = embedding_layer(tf.constant([1, 2, 3])) result.numpy() result = embedding_layer(tf.constant([[0, 1, 2], [3, 4, 5]])) result.shape # Create a custom standardization function to strip HTML break tags '<br />'. def custom_standardization(input_data): lowercase = tf.strings.lower(input_data) stripped_html = tf.strings.regex_replace(lowercase, '<br />', ' ') return tf.strings.regex_replace(stripped_html, '[%s]' % re.escape(string.punctuation), '') # Vocabulary size and number of words in a sequence. vocab_size = 10000 sequence_length = 100 # Use the text vectorization layer to normalize, split, and map strings to # integers. Note that the layer uses the custom standardization defined above. # Set maximum_sequence length as all samples are not of the same length. vectorize_layer = TextVectorization( standardize=custom_standardization, max_tokens=vocab_size, output_mode='int', output_sequence_length=sequence_length) # Make a text-only dataset (no labels) and call adapt to build the vocabulary. text_ds = train_ds.map(lambda x, y: x) vectorize_layer.adapt(text_ds) embedding_dim=16 model = Sequential([ vectorize_layer, Embedding(vocab_size, embedding_dim, name="embedding"), GlobalAveragePooling1D(), Dense(16, activation='relu'), Dense(1) ]) tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir="logs") model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy']) model.fit( train_ds, validation_data=val_ds, epochs=15, callbacks=[tensorboard_callback]) model.summary() #docs_infra: no_execute %load_ext tensorboard %tensorboard --logdir logs weights = model.get_layer('embedding').get_weights()[0] vocab = vectorize_layer.get_vocabulary() out_v = io.open('vectors.tsv', 'w', encoding='utf-8') out_m = io.open('metadata.tsv', 'w', encoding='utf-8') for index, word in enumerate(vocab): if index == 0: continue # skip 0, it's padding. vec = weights[index] out_v.write('\t'.join([str(x) for x in vec]) + "\n") out_m.write(word + "\n") out_v.close() out_m.close() try: from google.colab import files files.download('vectors.tsv') files.download('metadata.tsv') except Exception: pass <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Word embeddings Step2: Download the IMDb Dataset Step3: Take a look at the train/ directory. It has pos and neg folders with movie reviews labelled as positive and negative respectively. You will use reviews from pos and neg folders to train a binary classification model. Step4: The train directory also has additional folders which should be removed before creating training dataset. Step5: Next, create a tf.data.Dataset using tf.keras.preprocessing.text_dataset_from_directory. You can read more about using this utility in this text classification tutorial. Step6: Take a look at a few movie reviews and their labels (1 Step7: Configure the dataset for performance Step8: Using the Embedding layer Step9: When you create an Embedding layer, the weights for the embedding are randomly initialized (just like any other layer). During training, they are gradually adjusted via backpropagation. Once trained, the learned word embeddings will roughly encode similarities between words (as they were learned for the specific problem your model is trained on). Step10: For text or sequence problems, the Embedding layer takes a 2D tensor of integers, of shape (samples, sequence_length), where each entry is a sequence of integers. It can embed sequences of variable lengths. You could feed into the embedding layer above batches with shapes (32, 10) (batch of 32 sequences of length 10) or (64, 15) (batch of 64 sequences of length 15). Step11: When given a batch of sequences as input, an embedding layer returns a 3D floating point tensor, of shape (samples, sequence_length, embedding_dimensionality). To convert from this sequence of variable length to a fixed representation there are a variety of standard approaches. You could use an RNN, Attention, or pooling layer before passing it to a Dense layer. This tutorial uses pooling because it's the simplest. The Text Classification with an RNN tutorial is a good next step. Step12: Create a classification model Step13: Compile and train the model Step14: Compile and train the model using the Adam optimizer and BinaryCrossentropy loss. Step15: With this approach the model reaches a validation accuracy of around 78% (note that the model is overfitting since training accuracy is higher). Step16: Visualize the model metrics in TensorBoard. Step17: Retrieve the trained word embeddings and save them to disk Step18: Write the weights to disk. To use the Embedding Projector, you will upload two files in tab separated format Step19: If you are running this tutorial in Colaboratory, you can use the following snippet to download these files to your local machine (or use the file browser, View -> Table of contents -> File browser).
14,402
<ASSISTANT_TASK:> Python Code: import numpy as np import tensorflow as tf import tensorflow_datasets as tfds from activation_clustering import ac_model, utils # The same dataset preprocessing as used in the baseline cifar10 model training. def input_fn(batch_size, ds, label_key='label'): dataset = ds.batch(batch_size, drop_remainder=True).prefetch(tf.data.experimental.AUTOTUNE) def interface(batch): features = tf.cast(batch['image'], tf.float32) / 255 labels = batch[label_key] return features, labels return dataset.map(interface) model = tf.keras.models.load_model('model.h5') clustering_config = [ ('activation', {'n_clusters': 15}), ('activation_18', {'n_clusters': 15}), ('activation_36', {'n_clusters': 15}), ('activation_54', {'n_clusters': 15}) ] # Uncomment this for shorter training time for debugging/test runs. # clustering_config = [ # ('activation', {'n_clusters': 10}), # ('activation_54', {'n_clusters': 10, 'filters': [16, 16, 16, 8]}) # ] work_dir = 'new_work_dir' new_acm = ac_model.ACModel(model, clustering_config, work_dir=work_dir) new_acm.build_clustering_models() new_acm.clustering_models train_ds = tfds.load( 'cifar10:3.*.*', shuffle_files=False, split='train' ) test_ds = tfds.load( 'cifar10:3.*.*', shuffle_files=False, split='test' ) # # Uncommend this to use just a portion of data in this example for shorter training time. # train_ds = tfds.load( # 'cifar10:3.*.*', # shuffle_files=False, # split='train[:10%]' # ) # test_ds = tfds.load( # 'cifar10:3.*.*', # shuffle_files=False, # split='test[:10%]' # ) # Cache the activations to make it easier to iterate. batch_size = 500 ds = input_fn(batch_size, train_ds) new_acm.cache_activations(ds, tag='train') del ds ds = input_fn(batch_size, test_ds) new_acm.cache_activations(ds, tag='test') del ds activations_dict = new_acm.load_activations_dict( activations_filename=work_dir+'/activations/activations_train.npz') test_activations_dict = new_acm.load_activations_dict( activations_filename=work_dir+'/activations/activations_test.npz') for k, v in activations_dict.items(): print(k, v.shape) # Here we use a small number of epochs/iterations for shorter training time. # The activation clustering training loop handles model saving in its `work_dir`. epochs = 15 maxiter = 980 # # Uncomment this for shorter training time # epochs = 2 # maxiter = 280 new_acm.fit(activations_dict=activations_dict, epochs=epochs, maxiter=maxiter) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Train an activation clustering model from a baseline model Step2: Activation clustering model's configurations. The first entry in each pair is a layer name of the baseline model, whose output activations will be clustered. The second entry is a dict with key n_clusters specifying the number of clusters. Step3: Calling build_clustering_models creates clustering models, one for each specified activation.
14,403
<ASSISTANT_TASK:> Python Code: # See Anaconda installed packages !conda list # List environments !conda info -e # Create Python 3 environment !conda create -n py3k python=3 anaconda # Activate Python 3 environment !source activate py3k # Deactivate Python 3 environment !source deactivate # Update Anaconda !conda update conda # Update a package with Anaconda !conda update ipython # Update a package !conda update scipy # Update all packages !conda update all # Install specific version of a package !conda install scipy=0.12.0 # Cleanup: Conda can accumulate a lot of disk space # because it doesn’t remove old unused packages !conda clean -p # Cleanup tarballs which are kept for caching purposes !conda clean -t # Start IPython Notebook ipython notebook # Start IPython Notebook with built-in mode to work cleanly # with matplotlib figures ipython notebook --pylab inline # Start IPython Notebook with a profile ipython notebook --profile=dark-bg # Load the contents of a file %load dir/file.py # Time execution of a Python statement or expression %timeit %%time # Activate the interactive debugger %debug # Write the contents of the cell to a file %writefile # Run a cell via a shell command %%script # Run cells with bash in a subprocess # This is a shortcut for %%script bash %%bash # Run cells with python2 in a subprocess %%python2 # Run cells with python3 in a subprocess %%python3 # Convert a notebook to a basic HTML file !ipython nbconvert --to html --template basic file.ipynb from IPython.core.display import HTML def css_styling(): styles = open("styles/custom.css", "r").read() return HTML(styles) css_styling() # Configure git !git config --global user.name 'First Last' !git config --global user.email 'name@domain.com' !git init # View status and log !git status !git log # Add or remove from staging area !git add [target] !git reset [target file or commit] !git reset --hard origin/master # Automatically stage tracked files, # including deleting the previously tracked files # Does not add untracked files !git add -u # Delete files and stage them !git rm [target] # Commit !git commit -m “Add commit message here” # Add new origin !git remote add origin https://github.com/donnemartin/ipython-data-notebooks.git # Set to new origin !git remote set-url origin https://github.com/donnemartin/pydatasnippets.git # Push to master, -u saves config so you can just do "git push" afterwards !git push -u origin master !git push # Diff files !git diff HEAD !git diff --staged !git diff --cached # Show log message of commit and diff !git show $COMMIT # Undo a file that has not been added !git checkout — [target] # Revert a commit !git revert # Undo a push and leave local repo intact !git push -f origin HEAD^:master # Undo commit but leave files and index !git reset --soft HEAD~1 # Amend commit message of most recent change !git commit --amend !git push --force [branch] # Take the dirty state of your working directory # and save it on a stack of unfinished changes !git stash # Get list of stashes !git stash list # Apply the top stash, re-modifying the # uncommitted files when the stash was saved !git stash apply # Apply a stash at the specified index !git stash apply stash@{1} # Create a branch !git branch [branch] # Check branches !git branch # Switch branches !git checkout [branch] # Merge branch to master !git merge [branch] # Delete branch !git branch -d [branch] # Clone !git clone git@github.com:repo folder-name !git clone https://donnemartin@bitbucket.org/donnemartin/tutorial.git # Update a local repository with changes from a remote repository # (pull down from master) !git pull origin master # Configuring a remote for a fork !git remote add upstream [target] # Set remote upstream git branch --set-upstream-to origin/branch # Check remotes !git remote -v # Syncing a fork !git fetch upstream !git checkout master !git merge upstream/master # Create a file containing a patch # git format-patch are like normal patch files, but they also carry information # about the git commit that created the patch: the author, the date, and the # commit log message are all there at the top of the patch. !git format-patch origin/master # Clean up .git folder: !git repack -a -d --depth=250 --window=250 # GitHub tutorial: http://try.github.io/levels/1/challenges/9 # BitBucket Setup !cd /path/to/my/repo !git init !git remote add origin https://donnemartin@bitbucket.org/donnemartin/repo.git !git push -u origin --all # pushes up the repo and its refs for the first time !git push -u origin --tags # pushes up any tags # Open Hatch missions !git clone https://openhatch.org/git-mission-data/git/dmartin git_missions # Update Ruby !rvm get stable # Reload Ruby (or open a new terminal) !rvm reload # List all known RVM installable rubies !rvm list known # List all installed Ruby versions !rvm list # Install a specific Ruby version !rvm install 2.1.5 # Set Ruby version !rvm --default ruby-1.8.7 !rvm --default ruby-2.1.5 # Check Ruby version !ruby -v !rvm --default ruby-2.1.5 # => The current folder will be generated into ./_site !bundle exec jekyll build # => A development server will run at http://localhost:4000/ # Auto-regeneration: enabled. Use `--no-watch` to disable. !bundle exec jekyll serve # Install !pip install pelican !pip install markdown !pip install ghp-import # Quick retup !pelican-quickstart # Run server !make devserver # Stop server !make stopserver # Run ghp-import on output folder # Review https://pypi.python.org/pypi/ghp-import # There's a "Big Fat Warning" section !ghp-import output # Update gh-pages (if using a project page) !git push origin gh-pages # Update gh-pages (if using a user or org page) !git merge gh-pages master # Check version of Django !python -c "import django; print(django.get_version())" # Create and setup a project !django-admin startproject mysite # Sync db !python manage.py syncdb # The migrate command looks at the INSTALLED_APPS setting and # creates any necessary database tables according to the database # settings in your mysite/settings.py file and the database # migrations shipped with the app !python manage.py migrate # Run the dev server !python manage.py runserver 1python manage.py runserver 8080 !python manage.py runserver 0.0.0.0:8000 # Create app !python manage.py startapp [app_label] # Run tests python manage.py test [app_label] # Tell Django that you’ve made some changes to your models # and that you’d like the changes to be stored as a migration. !python manage.py makemigrations [app_label] # Take migration names and returns their SQL !python manage.py sqlmigrate [app_label] [migration_number] # Checks for any problems in your project without making # migrations or touching the database. !python manage.py check # Create a user who can login to the admin site !python manage.py createsuperuser # Locate Django source files !python -c " import sys sys.path = sys.path[1:] import django print(django.__path__)" <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <h2 id="ipython-notebook">IPython Notebook</h2> Step2: | Command | Description | Step3: <h2 id="git">Git</h2> Step4: <h2 id="ruby">Ruby</h2> Step5: <h2 id="jekyll">Jekyll</h2> Step6: Build and run the localy Jekyll server Step7: <h2 id="pelican">Pelican</h2> Step8: Django
14,404
<ASSISTANT_TASK:> Python Code: DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE from urllib.request import urlretrieve from os.path import isfile, isdir from tqdm import tqdm import problem_unittests as tests import tarfile cifar10_dataset_folder_path = 'cifar-10-batches-py' # Use Floyd's cifar-10 dataset if present floyd_cifar10_location = '/input/cifar-10/python.tar.gz' if isfile(floyd_cifar10_location): tar_gz_path = floyd_cifar10_location else: tar_gz_path = 'cifar-10-python.tar.gz' class DLProgress(tqdm): last_block = 0 def hook(self, block_num=1, block_size=1, total_size=None): self.total = total_size self.update((block_num - self.last_block) * block_size) self.last_block = block_num if not isfile(tar_gz_path): with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar: urlretrieve( 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz', tar_gz_path, pbar.hook) if not isdir(cifar10_dataset_folder_path): with tarfile.open(tar_gz_path) as tar: tar.extractall() tar.close() tests.test_folder_path(cifar10_dataset_folder_path) %matplotlib inline %config InlineBackend.figure_format = 'retina' import helper import numpy as np # Explore the dataset batch_id = 1 sample_id = 5 helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id) def normalize(x): Normalize a list of sample image data in the range of 0 to 1 : x: List of image data. The image shape is (32, 32, 3) : return: Numpy array of normalize data # TODO: Implement Function return x/255 DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_normalize(normalize) from sklearn import preprocessing lb = preprocessing.LabelBinarizer() lb.fit(np.array([i for i in range(10)])) print(lb.classes_) def one_hot_encode(x): One hot encode a list of sample labels. Return a one-hot encoded vector for each label. : x: List of sample Labels : return: Numpy array of one-hot encoded labels return lb.transform(x) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_one_hot_encode(one_hot_encode) DON'T MODIFY ANYTHING IN THIS CELL # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode) DON'T MODIFY ANYTHING IN THIS CELL import pickle import problem_unittests as tests import helper # Load the Preprocessed Validation data valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb')) import tensorflow as tf def neural_net_image_input(image_shape): Return a Tensor for a batch of image input : image_shape: Shape of the images : return: Tensor for image input. return tf.placeholder(tf.float32, shape=(None, image_shape[0], image_shape[1], image_shape[2]), name="x") def neural_net_label_input(n_classes): Return a Tensor for a batch of label input : n_classes: Number of classes : return: Tensor for label input. return tf.placeholder(tf.float32, shape=(None, n_classes), name="y") def neural_net_keep_prob_input(): Return a Tensor for keep probability : return: Tensor for keep probability. return tf.placeholder(tf.float32, name="keep_prob") DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tf.reset_default_graph() tests.test_nn_image_inputs(neural_net_image_input) tests.test_nn_label_inputs(neural_net_label_input) tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input) def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides): Apply convolution then max pooling to x_tensor :param x_tensor: TensorFlow Tensor :param conv_num_outputs: Number of outputs for the convolutional layer :param conv_ksize: kernal size 2-D Tuple for the convolutional layer :param conv_strides: Stride 2-D Tuple for convolution :param pool_ksize: kernal size 2-D Tuple for pool :param pool_strides: Stride 2-D Tuple for pool : return: A tensor that represents convolution and max pooling of x_tensor filter_weights = tf.Variable(tf.truncated_normal((conv_ksize[0], conv_ksize[0], x_tensor.get_shape().as_list()[3], conv_num_outputs), mean=0.0, stddev=0.05)) filter_bias = tf.Variable(tf.zeros(conv_num_outputs)) strides = [1, conv_strides[0], conv_strides[1], 1] padding = 'SAME' conv = tf.nn.conv2d(x_tensor, filter_weights, strides, padding) conv = tf.nn.bias_add(conv, filter_bias) conv = tf.nn.relu(conv) max_pool_ksize = [1, pool_ksize[0], pool_ksize[1], 1] max_pool_strides = [1, pool_strides[0], pool_strides[1], 1] conv = tf.nn.max_pool(conv, max_pool_ksize, max_pool_strides, padding) return conv DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_con_pool(conv2d_maxpool) def flatten(x_tensor): Flatten x_tensor to (Batch Size, Flattened Image Size) : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions. : return: A tensor of size (Batch Size, Flattened Image Size). num_features = x_tensor.get_shape()[1:4].num_elements() flattened = tf.reshape(x_tensor, [-1, num_features]) return flattened DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_flatten(flatten) def fully_conn(x_tensor, num_outputs): Apply a fully connected layer to x_tensor using weight and bias : x_tensor: A 2-D tensor where the first dimension is batch size. : num_outputs: The number of output that the new tensor should be. : return: A 2-D tensor where the second dimension is num_outputs. shape_list = x_tensor.get_shape().as_list() weights = tf.Variable(tf.truncated_normal((shape_list[1], num_outputs), mean=0.0, stddev=0.05)) bias = tf.Variable(tf.zeros(num_outputs)) fully_connected = tf.matmul(x_tensor, weights) + bias # should I be applying an activation function here or no? it passes either way... return tf.nn.relu(fully_connected) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_fully_conn(fully_conn) def output(x_tensor, num_outputs): Apply a output layer to x_tensor using weight and bias : x_tensor: A 2-D tensor where the first dimension is batch size. : num_outputs: The number of output that the new tensor should be. : return: A 2-D tensor where the second dimension is num_outputs. shape_list = x_tensor.get_shape().as_list() weights = tf.Variable(tf.truncated_normal((shape_list[1], num_outputs), mean=0.0, stddev=0.05)) bias = tf.Variable(tf.zeros(num_outputs)) fully_connected = tf.matmul(x_tensor, weights) + bias # return without the activation here return fully_connected DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_output(output) def conv_net(x, keep_prob): Create a convolutional neural network model : x: Placeholder tensor that holds image data. : keep_prob: Placeholder tensor that hold dropout keep probability. : return: Tensor that represents logits # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers # Play around with different number of outputs, kernel size and stride # Function Definition from Above: # conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides) x = conv2d_maxpool(x, 16, (4, 4), (1, 1), (2, 2), (2, 2)) x = tf.nn.dropout(x, 0.8) x = conv2d_maxpool(x, 24, (4, 4), (1, 1), (2, 2), (2, 2)) x = tf.nn.dropout(x, 0.8) x = conv2d_maxpool(x, 32, (4, 4), (1, 1), (2, 2), (2, 2)) x = tf.nn.dropout(x, 0.8) # TODO: Apply a Flatten Layer # Function Definition from Above: # flatten(x_tensor) x = flatten(x) # TODO: Apply 1, 2, or 3 Fully Connected Layers # Play around with different number of outputs # Function Definition from Above: # fully_conn(x_tensor, num_outputs) x = fully_conn(x, 128) x = tf.nn.dropout(x, 0.8) x = fully_conn(x, 64) x = tf.nn.dropout(x, 0.8) # TODO: Apply an Output Layer # Set this to the number of classes # Function Definition from Above: # output(x_tensor, num_outputs) return output(x, 10) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE ############################## ## Build the Neural Network ## ############################## # Remove previous weights, bias, inputs, etc.. tf.reset_default_graph() # Inputs x = neural_net_image_input((32, 32, 3)) y = neural_net_label_input(10) keep_prob = neural_net_keep_prob_input() # Model logits = conv_net(x, keep_prob) # Name logits Tensor, so that is can be loaded from disk after training logits = tf.identity(logits, name='logits') # Loss and Optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y)) optimizer = tf.train.AdamOptimizer().minimize(cost) # Accuracy correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy') tests.test_conv_net(conv_net) def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch): Optimize the session on a batch of images and labels : session: Current TensorFlow session : optimizer: TensorFlow optimizer function : keep_probability: keep probability : feature_batch: Batch of Numpy image data : label_batch: Batch of Numpy label data session.run(optimizer, feed_dict={x:feature_batch, y:label_batch, keep_prob: keep_probability}) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_train_nn(train_neural_network) def print_stats(session, feature_batch, label_batch, cost, accuracy): Print information about loss and validation accuracy : session: Current TensorFlow session : feature_batch: Batch of Numpy image data : label_batch: Batch of Numpy label data : cost: TensorFlow cost function : accuracy: TensorFlow accuracy function cost_stat = session.run(cost, {x:valid_features, y:valid_labels, keep_prob: 1.0}) accuracy_stat = session.run(accuracy, {x:valid_features, y:valid_labels, keep_prob: 1.0}) print("Loss: {0:>6}, Accuracy: {1:>6.1%}".format(cost_stat, accuracy_stat)) # TODO: Tune Parameters epochs = 50 batch_size = 256 keep_probability = 0.6 DON'T MODIFY ANYTHING IN THIS CELL print('Checking the Training on a Single Batch...') with tf.Session() as sess: # Initializing the variables sess.run(tf.global_variables_initializer()) # Training cycle for epoch in range(epochs): batch_i = 1 for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size): train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels) print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1, batch_i), end='') print_stats(sess, batch_features, batch_labels, cost, accuracy) DON'T MODIFY ANYTHING IN THIS CELL save_model_path = './image_classification' print('Training...') with tf.Session() as sess: # Initializing the variables sess.run(tf.global_variables_initializer()) # Training cycle for epoch in range(epochs): # Loop over all batches n_batches = 5 for batch_i in range(1, n_batches + 1): for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size): train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels) print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1, batch_i), end='') print_stats(sess, batch_features, batch_labels, cost, accuracy) # Save Model saver = tf.train.Saver() save_path = saver.save(sess, save_model_path) DON'T MODIFY ANYTHING IN THIS CELL %matplotlib inline %config InlineBackend.figure_format = 'retina' import tensorflow as tf import pickle import helper import random # Set batch size if not already set try: if batch_size: pass except NameError: batch_size = 64 save_model_path = './image_classification' n_samples = 4 top_n_predictions = 3 def test_model(): Test the saved model against the test dataset test_features, test_labels = pickle.load(open('preprocess_training.p', mode='rb')) loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load model loader = tf.train.import_meta_graph(save_model_path + '.meta') loader.restore(sess, save_model_path) # Get Tensors from loaded model loaded_x = loaded_graph.get_tensor_by_name('x:0') loaded_y = loaded_graph.get_tensor_by_name('y:0') loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0') loaded_logits = loaded_graph.get_tensor_by_name('logits:0') loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0') # Get accuracy in batches for memory limitations test_batch_acc_total = 0 test_batch_count = 0 for test_feature_batch, test_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size): test_batch_acc_total += sess.run( loaded_acc, feed_dict={loaded_x: test_feature_batch, loaded_y: test_label_batch, loaded_keep_prob: 1.0}) test_batch_count += 1 print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count)) # Print Random Samples random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples))) random_test_predictions = sess.run( tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions), feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0}) helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions) test_model() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Image Classification Step2: Explore the Data Step5: Implement Preprocess Functions Step8: One-hot encode Step10: Randomize Data Step12: Check Point Step17: Build the network Step20: Convolution and Max Pooling Layer Step23: Flatten Layer Step26: Fully-Connected Layer Step29: Output Layer Step32: Create Convolutional Model Step35: Train the Neural Network Step37: Show Stats Step38: Hyperparameters Step40: Train on a Single CIFAR-10 Batch Step42: Fully Train the Model Step45: Checkpoint
14,405
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np def well2d(x, y, nx, ny, L=1.0): Compute the 2d quantum well wave function. scalarfield=(2/L*np.sin(nx*np.pi*x/L)*np.sin(ny*np.pi*y/L)) well=scalarfield return well psi = well2d(np.linspace(0,1,10), np.linspace(0,1,10), 1, 1) assert len(psi)==10 assert psi.shape==(10,) x=np.linspace(0,1,100) y=np.linspace(0,1,100) psi1=well2d(x,y,3,2,1.0) psi2=well2d(x,y,3,2,1.0) X,Y=np.meshgrid(psi1,psi2) #help from Making Contour Plots wiht Python on http://bulldog2.redlands.edu/facultyfolder/deweerd/tutorials/Tutorial-ContourPlot.pdf plt.contour(Y) assert True # use this cell for grading the contour plot # YOUR CODE HERE plt.pcolor(Y) #worked with Jack Porter assert True # use this cell for grading the pcolor plot <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Contour plots of 2d wavefunctions Step3: The contour, contourf, pcolor and pcolormesh functions of Matplotlib can be used for effective visualizations of 2d scalar fields. Use the Matplotlib documentation to learn how to use these functions along with the numpy.meshgrid function to visualize the above wavefunction Step4: Next make a visualization using one of the pcolor functions
14,406
<ASSISTANT_TASK:> Python Code: # install Pint if necessary try: import pint except ImportError: !pip install pint # download modsim.py if necessary from os.path import exists filename = 'modsim.py' if not exists(filename): from urllib.request import urlretrieve url = 'https://raw.githubusercontent.com/AllenDowney/ModSim/main/' local, _ = urlretrieve(url+filename, filename) print('Downloaded ' + local) # import functions from modsim from modsim import * from modsim import System def make_system(T_init, volume, r, t_end): return System(T_init=T_init, T_final=T_init, volume=volume, r=r, t_end=t_end, T_env=22, t_0=0, dt=1) coffee = make_system(T_init=90, volume=300, r=0.01, t_end=30) def change_func(T, t, system): r, T_env, dt = system.r, system.T_env, system.dt return -r * (T - T_env) * dt change_func(coffee.T_init, 0, coffee) from modsim import linrange from modsim import TimeSeries def run_simulation(system, change_func): t_array = linrange(system.t_0, system.t_end, system.dt) n = len(t_array) series = TimeSeries(index=t_array) series.iloc[0] = system.T_init for i in range(n-1): t = t_array[i] T = series.iloc[i] series.iloc[i+1] = T + change_func(T, t, system) system.t_end = t_array[-1] system.T_final = series.iloc[-1] return series results = run_simulation(coffee, change_func) results.head() from modsim import decorate results.plot(label='coffee') decorate(xlabel='Time (minute)', ylabel='Temperature (C)', title='Coffee Cooling') coffee.T_final def func(x): return (x-1) * (x-2) * (x-3) from scipy.optimize import root_scalar res = root_scalar(func, bracket=[1.5, 2.5]) res res.root res = root_scalar(func, bracket=[2.5, 3.5]) res.root def error_func(r, system): system.r = r results = run_simulation(system, change_func) return system.T_final - 70 coffee = make_system(T_init=90, volume=300, r=0.01, t_end=30) error_func(0.01, coffee) error_func(0.02, coffee) res = root_scalar(error_func, coffee, bracket=[0.01, 0.02]) res r_coffee = res.root r_coffee coffee.r = res.root run_simulation(coffee, change_func) coffee.T_final # Solution milk = make_system(T_init=5, t_end=15, r=0.1, volume=50) results_milk = run_simulation(milk, change_func) milk.T_final # Solution results_milk.plot(color='C1', label='milk') decorate(xlabel='Time (minutes)', ylabel='Temperature (C)') # Solution def error_func2(r, system): system.r = r results = run_simulation(system, change_func) return system.T_final - 20 # Solution root_scalar(error_func2, milk, bracket=[0.1, 0.2]) # Solution run_simulation(milk, change_func) milk.T_final <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: So far the systems we have studied have been physical in the sense that they exist in the world, but they have not been physics, in the sense of what physics classes are usually about. In the next few chapters, we'll do some physics, starting with thermal systems, that is, systems where the temperature of objects changes as heat transfers from one to another. Step2: The values of T_init, volume, and t_end come from the statement of the problem Step3: I chose the value of r arbitrarily for now; we will figure out how to estimate it soon. Step4: We can test it with the initial temperature of the coffee, like this Step5: With dt=1 minute, the temperature drops by about 0.7 °C/min, at least for this value of r. Step6: This function is similar to previous versions of run_simulation. Step7: The result is a TimeSeries with one row per time step. Step8: Here's what the results look like. Step9: The temperature after 30 minutes is 72.3 °C, which is a little higher than what's stated in the problem, 70 °C. Step10: By trial and error, we could find the value of r where the final temperature is precisely 70 °C. Step11: Now we call root_scalar like this Step12: The first argument is the function whose roots we want. The second Step13: If we provide a different interval, we find a different root. Step14: If the interval doesn't contain a root, you'll get a ValueError Step15: This is called an "error function" because it returns the Step16: The result is an error of 2.3 °C, because the final temperature with Step17: With r=0.02, the error is  about -11°C, which means that the final temperature is too low. So we know that the correct value must be in between. Step18: The first argument is the error function. Step19: In this example, r_coffee turns out to be about 0.0115, in units of min$^{-1}$ (inverse minutes). Step20: The final temperature is very close to 70 °C. Step21: Exercise
14,407
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np #Review the documentation for NumPy's random module: np.random? #print 5 uniformly distributed numbers between 0 and 1 print(np.random.random(5)) #print another 5 - should be different print(np.random.random(5)) #print 5 uniformly distributed integers between 1 and 10 print(np.random.randint(1,11,5)) #print another 5 - should be different print(np.random.randint(1,11,5)) #If you want to save a random number for future use: z=np.random.random() print("The number is ",z) #Rerun random print(np.random.random()) print("The number is still",z) np.random.seed(42) for i in range(4): print(np.random.random()) np.random.seed(42) for i in range(4): print(np.random.random()) np.random.seed(39) for i in range(4): print(np.random.random()) for i in range(10): if np.random.random()<0.2: print("Heads") else: print("Tails") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Random Processes in Physics Step2: Some basic functions to point out (we'll get to others in a bit) Step3: Notice you have to use 1-11 for the range. Why? Step4: In Class Exercise - Rolling Dice Step5: You might want to do this for
14,408
<ASSISTANT_TASK:> Python Code: number_list = [1, 2, 4, 8, 16, 32] the_pythons = ["Graham", "Terry", "Michael", "Eric", "Terry", "John"] mixed = [1, "Terry", 4] print (mixed) monty = ("Graham", "Terry", "Michael", "Eric", "Terry", "John") # the entire tuple print (monty) # one element at a time for name in monty: print(name) # indexing print(the_pythons[2]) print(monty[2]) # monty is the tuple, and the_pythons is a list print (monty) print (list(monty)) print (the_pythons) print (tuple(the_pythons)) # Safer than constants, because it is enforced by interpreter CONVERSION_CONSTANT = 5/9 my_dict = {} my_dict[3.14] = "pi" my_dict["pi"] = 3.14159 my_dict[(1,2)] = "x,y coordinates" my_dict[(2,3)] = "x,y coordinates" print my_dict my_dict[(1,2)] = [4, 5, 6, 7] print my_dict len(my_dict) phone_book = {"Graham":"555-111", "Terry": "555-2222", "Michael": "555-3333"} phone_book phone_book['Michael'] my_dict[(1,2)] phone_book['Wanda'] # Using 'in' if "Michael" in phone_book: print phone_book["Michael"] # Using 'not in' if "Wanda" not in phone_book: print("Fish don't need phone numbers") print(phone_book) # Eric, Terry, John phone_book["Eric"] = "555-4444" phone_book["Terry"] = "555-5555" phone_book["John"] = "555-6666" del phone_book["John"] print(phone_book) if 'Michael' in phone_book: del phone_book['Michael'] print(phone_book) if '555-4444' in phone_book: print ("Can match values too!") for name in phone_book: print (name, phone_book[name]) phone_book.items() phone_book.keys() phone_book.values() if '555-4444' in phone_book.values(): print("We can match values too") even = False if even = True: print("It is even!") 154 >= 300 != False def is_equal(t1, t2): # return t1 == t2 return t1.sort() == t2.sort() list1 = ["name", "age", "temp"] list2 = ["name", "temp", "age"] if is_equal(list1, list2): print("Same!") else: print ("Different!") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Tuple Step2: [] brackets or square brackets Step3: Why? Step4: Dictionaries Step5: Retrieving a Value from a Dictionary Step6: Testing for Value in a Dictionary Step7: Adding Elements to a Dictionary Step8: Deleting Elements Step9: Putting it together Step10: Iterating over a Dictionary Step11: Dictionary Methods Step12: Midterm Discussion
14,409
<ASSISTANT_TASK:> Python Code: strings = "stressed" print(strings[::-1]) strings1 = u"パタトクカシーー" print(strings1[::2]) strings_p = u"パトカー" strings_t = u"タクシー" strings_sum = '' for p, t in zip(strings_p, strings_t): strings_sum += p + t print(strings_sum) strings3 = "Now I need a drink, alcoholic of course, after the heavy lectures involving quantum mechanics." count_list = [len(i) for i in strings3.split(' ')] count_list strings4 = "Hi He Lied Because Boron Could Not Oxidize Fluorine. New Nations Might Also Sign Peace Security Clause. Arthur King Can." strings4 = strings4.replace('.', '') strings4 = strings4.split(' ') dictionary = {} for i in range(len(strings4)): if i+1 in [1, 5, 6, 7, 8, 9, 15, 16, 19]: dictionary.update({strings4[i][:1]: strings4[i]}) else: dictionary.update({strings4[i][:2]: strings4[i]}) print(dictionary) def ngram(sequence, n, mode='c'): if mode == 'c': return [sequence[i:i+n] for i in range(len(sequence)-1)] elif mode == 'w': sequence = [s.strip(',.') for s in sequence.split(' ')] # スペースや記号を除去した単語リストの生成 return [tuple(sequence[i:i+n]) for i in range(len(sequence)-1)] sequence = "I am an NLPer" print(ngram(sequence, 2)) print(ngram(sequence, 2, 'w')) X = set(ngram('paraparaparadise', 2)) Y = (ngram('paragraph', 2)) print(X.intersection(Y)) print(X.union(Y)) print(X.difference(Y)) print('se' in X) print('se' in Y) #-*- coding:utf-8 -*- def print_template(x, y, z): return u'%s時の%sは%s' % (x, y, z) template = print_template(12, u'気温', 22.4) print(template) def cipher(sequence): return "".join((map(str, [chr(219-ord(i)) if i.islower() else i for i in sequence]))) strings = "I am an NLPer" encryption = cipher(strings) decryption = cipher(encryption) print(encryption) print(decryption) import random sequence = "I couldn't believe that I could actually understand what I was reading : the phenomenal power of the human mind." [s[0]+"".join(map(str, random.sample(s[1:-1], len(s)-2)))+s[-1] if len(s) >= 5 \ else str(s) for s in sequence.split(' ')] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 01 パタトクカシーー Step2: 02「パトカー」+「タクシー」=「パタトクカシーー」 Step3: 03. 円周率 Step4: 04. 元素記号 Step5: 05 n-gram Step6: 06. 集合 Step7: 07. テンプレートによる文生成 Step8: 08. 暗号文 Step9: 09. Typoglycemia
14,410
<ASSISTANT_TASK:> Python Code: import sys sys.path.append('..') sys.path.append('../geostatsmodels') from geostatsmodels import utilities, variograms, model, kriging, geoplot import matplotlib.pyplot as plt import numpy as np import pandas z = utilities.readGeoEAS('../data/ZoneA.dat') P = z[:,[0,1,3]] pt = [2000, 4700] plt.scatter(P[:,0], P[:,1], c=P[:,2], cmap=geoplot.YPcmap) plt.title('Zone A Subset % Porosity') plt.colorbar() xmin, xmax = 0, 4250 ymin, ymax = 3200, 6250 plt.xlim(xmin,xmax) plt.ylim(ymin,ymax) for i in range(len(P[:,2])): x, y, por = P[i] if (x < xmax) & (y > ymin) & (y < ymax): plt.text( x+100, y, '{:4.2f}'.format( por ) ) plt.scatter(pt[0], pt[1], marker='x', c='k') plt.text(pt[0] + 100 , pt[1], '?') plt.xlabel('Easting (m)') plt.ylabel('Northing (m)'); tolerance = 250 lags = np.arange(tolerance, 10000, tolerance*2) sill = np.var(P[:,2]) geoplot.semivariogram(P, lags, tolerance) svm = model.semivariance(model.spherical, (4000, sill)) geoplot.semivariogram(P, lags, tolerance, model=svm) covfct = model.covariance(model.spherical, (4000, sill)) kriging.simple(P, covfct, pt, N=6) kriging.ordinary(P, covfct, pt, N=6) est, kstd = kriging.krige(P, covfct, [[2000,4700],[2100,4700],[2000,4800],[2100,4800]], 'simple', N=6) est kstd <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We'll read the data from ZoneA.dat. Step2: We want the first, second and fourth columns of the data set, representing the x and y spatial coordinates, and the porosity. Step3: We'll be interested in determining the porosity at a point (2000,4700). Step4: We can plot our region of interest as follows Step5: We can determine the parameters for our model by looking at the semivariogram and trying to determine the appropriate range and sill. Step6: The semivariogram plotting function, svplot(), plots sill as a dashed line, and the empirical semivariogram as determined from the data. It optionally plots a semivariance model. Step7: We can pass a model to this function using the optional model argument and see it plotted in red. Step8: The covariance modeling function function will return a spherical covariance model that takes a distance as input, and returns an covariance estimate. We've used the global variance of the porosity in ZoneA.dat as the sill. Step9: We can then krige the data, using the covariance model, the point we are interested in, (2000,47000), and N=6 signifying that we only want to use the six nearest points. The output of the simple and ordinary kriging functions below is the krigin estimate, and the standard deviation of the kriging estimate.
14,411
<ASSISTANT_TASK:> Python Code: import numpy as np import vispy import vispy.gloo as gloo from vispy import app from vispy.util.transforms import perspective, translate, rotate # load the vispy bindings manually for the notebook which enables webGL # %load_ext vispy n = 100 a_position = np.random.uniform(-1, 1, (n, 3)).astype(np.float32) a_id = np.random.randint(0, 30, (n, 1)) a_id = np.sort(a_id, axis=0).astype(np.float32) VERT_SHADER = uniform mat4 u_model; uniform mat4 u_view; uniform mat4 u_projection; attribute vec3 a_position; attribute float a_id; varying float v_id; void main (void) { v_id = a_id; gl_Position = u_projection * u_view * u_model * vec4(a_position,1.0); } FRAG_SHADER = varying float v_id; void main() { float f = fract(v_id); // The second useless test is needed on OSX 10.8 (fuck) if( (f > 0.0001) && (f < .9999) ) discard; else gl_FragColor = vec4(0,0,0,1); } class Canvas(app.Canvas): # --------------------------------- def __init__(self, size=None, show=True): app.Canvas.__init__(self, keys='interactive', size=size) self.program = gloo.Program(VERT_SHADER, FRAG_SHADER) # Set uniform and attribute self.program['a_id'] = gloo.VertexBuffer(a_id) self.program['a_position'] = gloo.VertexBuffer(a_position) self.translate = 5 self.view = translate((0, 0, -self.translate), dtype=np.float32) self.model = np.eye(4, dtype=np.float32) gloo.set_viewport(0, 0, self.physical_size[0], self.physical_size[1]) self.projection = perspective(45.0, self.size[0] / float(self.size[1]), 1.0, 1000.0) self.program['u_projection'] = self.projection self.program['u_model'] = self.model self.program['u_view'] = self.view self.theta = 0 self.phi = 0 self.context.set_clear_color('white') self.context.set_state('translucent') self.timer = app.Timer('auto', connect=self.on_timer, start=True) if show: self.show() # --------------------------------- def on_key_press(self, event): if event.text == ' ': if self.timer.running: self.timer.stop() else: self.timer.start() # --------------------------------- def on_timer(self, event): self.theta += .5 self.phi += .5 self.model = np.dot(rotate(self.theta, (0, 0, 1)), rotate(self.phi, (0, 1, 0))) self.program['u_model'] = self.model self.update() # --------------------------------- def on_resize(self, event): gloo.set_viewport(0, 0, event.physical_size[0], event.physical_size[1]) self.projection = perspective(45.0, event.size[0] / float(event.size[1]), 1.0, 1000.0) self.program['u_projection'] = self.projection # --------------------------------- def on_mouse_wheel(self, event): self.translate += event.delta[1] self.translate = max(2, self.translate) self.view = translate((0, 0, -self.translate)) self.program['u_view'] = self.view self.update() # --------------------------------- def on_draw(self, event): self.context.clear() self.program.draw('line_strip') c = Canvas(size=(300, 300)) # from vispy.app.backends.ipython import VispyWidget # w = VispyWidget() # c2 = Canvas(size=(300, 300), show=False) # w.set_canvas(c2) # w c.timer.stop() c.timer.start() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Jupyter Notebook backend demo Step3: Every cell above was preparing our GL Canvas for operation. Now we will create the Canvas instance and because of the self.show() in our __init__ method our canvas will be shown and its timer started immediately. Step4: We could also manually make a VispyWidget object and attach our canvas to it. Step5: When timers are involved we can run the stop and start methods to turn them on/off and see the result in the widget displayed above.
14,412
<ASSISTANT_TASK:> Python Code: send(IP(dst="1.2.3.4")/TCP(dport=502, options=[("MSS", 0)])) ans = sr([IP(dst="8.8.8.8", ttl=(1, 8), options=IPOption_RR())/ICMP(seq=RandShort()), IP(dst="8.8.8.8", ttl=(1, 8), options=IPOption_Traceroute())/ICMP(seq=RandShort()), IP(dst="8.8.8.8", ttl=(1, 8))/ICMP(seq=RandShort())], verbose=False, timeout=3)[0] ans.make_table(lambda (x, y): (", ".join(z.summary() for z in x[IP].options) or '-', x[IP].ttl, y.sprintf("%IP.src% %ICMP.type%"))) from scapy.all import * packet = IP()/TCP() Ether()/packet >>> ls(IP, verbose=True) version : BitField (4 bits) = (4) ihl : BitField (4 bits) = (None) tos : XByteField = (0) len : ShortField = (None) id : ShortField = (1) flags : FlagsField (3 bits) = (0) MF, DF, evil frag : BitField (13 bits) = (0) ttl : ByteField = (64) proto : ByteEnumField = (0) chksum : XShortField = (None) src : SourceIPField (Emph) = (None) dst : DestIPField (Emph) = (None) options : PacketListField = ([]) p = Ether()/IP(dst="www.secdev.org")/TCP() p.summary() print p.dst # first layer that has an src field, here Ether print p[IP].src # explicitly access the src field of the IP layer # sprintf() is a useful method to display fields print p.sprintf("%Ether.src% > %Ether.dst%\n%IP.src% > %IP.dst%") print p.sprintf("%TCP.flags% %TCP.dport%") [p for p in IP(ttl=(1,5))/ICMP()] sr1(IP(dst="8.8.8.8")/UDP()/DNS(qd=DNSQR())) p[DNS].an r, u = srp(Ether()/IP(dst="8.8.8.8", ttl=(5,10))/UDP()/DNS(rd=1, qd=DNSQR(qname="www.example.com"))) r, u # Access the first tuple print r[0][0].summary() # the packet sent print r[0][1].summary() # the answer received # Access the ICMP layer. Scapy received a time-exceeded error message r[0][1][ICMP] wrpcap("scapy.pcap", r) pcap_p = rdpcap("scapy.pcap") pcap_p[0] s = sniff(count=2) s sniff(count=2, prn=lambda p: p.summary()) import socket sck = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # create an UDP socket sck.connect(("8.8.8.8", 53)) # connect to 8.8.8.8 on 53/UDP # Create the StreamSocket and gives the class used to decode the answer ssck = StreamSocket(sck) ssck.basecls = DNS # Send the DNS query ssck.sr1(DNS(rd=1, qd=DNSQR(qname="www.example.com"))) ans, unans = srloop(IP(dst=["8.8.8.8", "8.8.4.4"])/ICMP(), inter=.1, timeout=.1, count=100, verbose=False) %matplotlib inline ans.multiplot(lambda (x, y): (y[IP].src, (y.time, y[IP].id)), plot_xy=True) pkt = IP() / UDP() / DNS(qd=DNSQR()) print repr(str(pkt)) print pkt.summary() hexdump(pkt) pkt.show() pkt.canvas_dump() ans, unans = traceroute('www.secdev.org', maxttl=15) ans.world_trace() ans = sr(IP(dst=["scanme.nmap.org", "nmap.org"])/TCP(dport=[22, 80, 443, 31337]), timeout=3, verbose=False)[0] ans.extend(sr(IP(dst=["scanme.nmap.org", "nmap.org"])/UDP(dport=53)/DNS(qd=DNSQR()), timeout=3, verbose=False)[0]) ans.make_table(lambda (x, y): (x[IP].dst, x.sprintf('%IP.proto%/{TCP:%r,TCP.dport%}{UDP:%r,UDP.dport%}'), y.sprintf('{TCP:%TCP.flags%}{ICMP:%ICMP.type%}'))) class DNSTCP(Packet): name = "DNS over TCP" fields_desc = [ FieldLenField("len", None, fmt="!H", length_of="dns"), PacketLenField("dns", 0, DNS, length_from=lambda p: p.len)] # This method tells Scapy that the next packet must be decoded with DNSTCP def guess_payload_class(self, payload): return DNSTCP # Build then decode a DNS message over TCP DNSTCP(str(DNSTCP(dns=DNS()))) import socket sck = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # create an TCP socket sck.connect(("8.8.8.8", 53)) # connect to 8.8.8.8 on 53/TCP # Create the StreamSocket and gives the class used to decode the answer ssck = StreamSocket(sck) ssck.basecls = DNSTCP # Send the DNS query ssck.sr1(DNSTCP(dns=DNS(rd=1, qd=DNSQR(qname="www.example.com")))) from scapy.all import * import argparse parser = argparse.ArgumentParser(description="A simple ping6") parser.add_argument("ipv6_address", help="An IPv6 address") args = parser.parse_args() print sr1(IPv6(dst=args.ipv6_address)/ICMPv6EchoRequest(), verbose=0).summary() # Specify the Wi-Fi monitor interface #conf.iface = "mon0" # uncomment to test # Create an answering machine class ProbeRequest_am(AnsweringMachine): function_name = "pram" # The fake mac of the fake access point mac = "00:11:22:33:44:55" def is_request(self, pkt): return Dot11ProbeReq in pkt def make_reply(self, req): rep = RadioTap() # Note: depending on your Wi-Fi card, you might need a different header than RadioTap() rep /= Dot11(addr1=req.addr2, addr2=self.mac, addr3=self.mac, ID=RandShort(), SC=RandShort()) rep /= Dot11ProbeResp(cap="ESS", timestamp=time.time()) rep /= Dot11Elt(ID="SSID",info="Scapy !") rep /= Dot11Elt(ID="Rates",info='\x82\x84\x0b\x16\x96') rep /= Dot11Elt(ID="DSset",info=chr(10)) OK,return rep # Start the answering machine #ProbeRequest_am()() # uncomment to test from scapy.all import * import nfqueue, socket def scapy_cb(i, payload): s = payload.get_data() # get and parse the packet p = IP(s) # Check if the packet is an ICMP Echo Request to 8.8.8.8 if p.dst == "8.8.8.8" and ICMP in p: # Delete checksums to force Scapy to compute them del(p[IP].chksum, p[ICMP].chksum) # Set the ICMP sequence number to 0 p[ICMP].seq = 0 # Let the modified packet go through ret = payload.set_verdict_modified(nfqueue.NF_ACCEPT, str(p), len(p)) else: # Accept all packets payload.set_verdict(nfqueue.NF_ACCEPT) # Get an NFQUEUE handler q = nfqueue.queue() # Set the function that will be call on each received packet q.set_callback(scapy_cb) # Open the queue & start parsing packes q.fast_open(2807, socket.AF_INET) q.try_run() class TCPScanner(Automaton): @ATMT.state(initial=1) def BEGIN(self): pass @ATMT.state() def SYN(self): print "-> SYN" @ATMT.state() def SYN_ACK(self): print "<- SYN/ACK" raise self.END() @ATMT.state() def RST(self): print "<- RST" raise self.END() @ATMT.state() def ERROR(self): print "!! ERROR" raise self.END() @ATMT.state(final=1) def END(self): pass @ATMT.condition(BEGIN) def condition_BEGIN(self): raise self.SYN() @ATMT.condition(SYN) def condition_SYN(self): if random.randint(0, 1): raise self.SYN_ACK() else: raise self.RST() @ATMT.timeout(SYN, 1) def timeout_SYN(self): raise self.ERROR() TCPScanner().run() TCPScanner().run() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2_ Adanced firewalking using IP options is sometimes useful to perform network enumeration. Here is more complicate one-liner Step2: Now that, we've got your attention, let's start the tutorial ! Step3: First steps Step4: This last output displays the packet summary. Here, Scapy automatically filled the Ethernet type as well as the IP protocol field. Step5: Let's create a new packet to a specific IP destination. With Scapy, each protocol field can be specified. As shown in the ls() output, the interesting field is dst. Step6: There are not many differences with the previous example. However, Scapy used the specific destination to perform some magic tricks ! Step7: Scapy uses default values that work most of the time. For example, TCP() is a SYN segment to port 80. Step8: Moreover, Scapy has implicit packets. For example, they are useful to make the TTL field value vary from 1 to 5 to mimic traceroute. Step9: Sending and receiving Step10: Another alternative is the sr() function. Like srp1(), the sr1() function can be used for layer 2 packets. Step11: sr() sent a list of packets, and returns two variables, here r and u, where Step12: With Scapy, list of packets, such as r or u, can be easily written to, or read from PCAP files. Step13: Sniffing the network is a straightforward as sending and receiving packets. The sniff() function returns a list of Scapy packets, that can be manipulated as previously described. Step14: sniff() has many arguments. The prn one accepts a function name that will be called on received packets. Using the lambda keyword, Scapy could be used to mimic the tshark command behavior. Step15: Alternatively, Scapy can use OS sockets to send and receive packets. The following example assigns an UDP socket to a Scapy StreamSocket, which is then used to query www.example.com IPv4 address. Step16: Visualization Step17: Then we can use the results to plot the IP id values. Step18: The str() constructor can be used to "build" the packet's bytes as they would be sent on the wire. Step19: Since some people cannot read this representation, Scapy can Step20: "hexdump" the packet's bytes Step21: dump the packet, layer by layer, with the values for each field Step22: render a pretty and handy dissection of the packet Step23: Scapy has a traceroute() function, which basically runs a sr(IP(ttl=(1..30)) and creates a TracerouteResult object, which is a specific subclass of SndRcvList(). Step24: The result can be plotted with .world_trace() (this requires GeoIP module and data, from MaxMind) Step25: The PacketList.make_table() function can be very helpful. Here is a simple "port scanner" Step26: Implementing a new protocol Step27: This new packet definition can be direcly used to build a DNS message over TCP. Step28: Modifying the previous StreamSocket example to use TCP allows to use the new DNSCTP layer easily. Step29: Scapy as a module Step30: Answering machines Step31: Cheap Man-in-the-middle with NFQUEUE Step32: Automaton
14,413
<ASSISTANT_TASK:> Python Code: %%capture --no-stderr !pip3 install kfp --upgrade import kfp.components as comp dataproc_submit_spark_job_op = comp.load_component_from_url( 'https://raw.githubusercontent.com/kubeflow/pipelines/1.7.0-rc.3/components/gcp/dataproc/submit_spark_job/component.yaml') help(dataproc_submit_spark_job_op) PROJECT_ID = '<Please put your project ID here>' CLUSTER_NAME = '<Please put your existing cluster name here>' REGION = 'us-central1' SPARK_FILE_URI = 'file:///usr/lib/spark/examples/jars/spark-examples.jar' MAIN_CLASS = 'org.apache.spark.examples.SparkPi' ARGS = ['1000'] EXPERIMENT_NAME = 'Dataproc - Submit Spark Job' import kfp.dsl as dsl import json @dsl.pipeline( name='Dataproc submit Spark job pipeline', description='Dataproc submit Spark job pipeline' ) def dataproc_submit_spark_job_pipeline( project_id = PROJECT_ID, region = REGION, cluster_name = CLUSTER_NAME, main_jar_file_uri = '', main_class = MAIN_CLASS, args = json.dumps(ARGS), spark_job=json.dumps({ 'jarFileUris': [ SPARK_FILE_URI ] }), job='{}', wait_interval='30' ): dataproc_submit_spark_job_op( project_id=project_id, region=region, cluster_name=cluster_name, main_jar_file_uri=main_jar_file_uri, main_class=main_class, args=args, spark_job=spark_job, job=job, wait_interval=wait_interval) pipeline_func = dataproc_submit_spark_job_pipeline pipeline_filename = pipeline_func.__name__ + '.zip' import kfp.compiler as compiler compiler.Compiler().compile(pipeline_func, pipeline_filename) #Specify pipeline argument values arguments = {} #Get or create an experiment and submit a pipeline run import kfp client = kfp.Client() experiment = client.create_experiment(EXPERIMENT_NAME) #Submit a pipeline run run_name = pipeline_func.__name__ + ' run' run_result = client.run_pipeline(experiment.id, run_name, pipeline_filename, arguments) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load the component using KFP SDK Step2: Sample Step3: Example pipeline that uses the component Step4: Compile the pipeline Step5: Submit the pipeline for execution
14,414
<ASSISTANT_TASK:> Python Code: li = ["this", "is", "a", "list"] print(li) print(li[1:3]) # Print element 1 (inclusive) to 3 (exclusive) print(li[2:]) # Print element 2 and everything after that print(li[:-1]) # Print everything BEFORE element -1 (the last one) import numpy as np x = np.array([1, 2, 3, 4, 5]) print(x) print(x[1:3]) print(x[2:]) print(x[:-1]) python_matrix = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ] print(python_matrix) numpy_matrix = np.array(python_matrix) print(numpy_matrix) print(python_matrix) # The full list-of-lists print(python_matrix[0]) # The inner-list at the 0th position of the outer-list print(python_matrix[0][0]) # The 0th element of the 0th inner-list print(numpy_matrix) print(numpy_matrix[0]) print(numpy_matrix[0, 0]) # Note the comma-separated format! x = np.array([ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]) print(x) print() print(x[:, 1]) # Take ALL of axis 0, and one index of axis 1. video = np.empty(shape = (1920, 1080, 5000)) print("Axis 0 length: {}".format(video.shape[0])) # How many rows? print("Axis 1 length: {}".format(video.shape[1])) # How many columns? print("Axis 2 length: {}".format(video.shape[2])) # How many frames? print(video.ndim) del video tensor = np.empty(shape = (2, 640, 480, 360, 100)) print(tensor.shape) # Axis 0: color channel--used to differentiate between fluorescent markers # Axis 1: height--same as before # Axis 2: width--same as before # Axis 3: depth--capturing 3D depth at each time interval, like a 3D movie # Axis 4: frame--same as before print(tensor.size) del tensor example = np.empty(shape = (3, 5, 9)) print(example.shape) sliced = example[0] # Indexed the first axis. print(sliced.shape) sliced_again = example[0, 0] # Indexed the first and second axes. print(sliced_again.shape) x = np.array([1, 2, 3, 4, 5]) x += 10 print(x) zeros = np.zeros(shape = (3, 4)) ones = 1 zeros += ones print(zeros) x = np.zeros(shape = (3, 3)) y = np.ones(4) x + y x = np.zeros(shape = (3, 4)) y = np.array([1, 2, 3, 4]) z = x + y print(z) x = np.random.standard_normal(size = (7, 4)) print(x) mask = x < 0 print(mask) x[mask] = 0 print(x) mask = (x < 1) & (x > 0.5) # True for any value less than 1 but greater than 0.5 x[mask] = 99 print(x) matrix = np.empty(shape = (8, 4)) for i in range(8): matrix[i] = i # Broadcasting is happening here! print(matrix) indices = np.array([7, 0, 5, 2]) print(matrix[indices]) matrix = np.arange(32).reshape((8, 4)) print(matrix) # This 8x4 matrix has integer elements that increment by 1 column-wise, then row-wise. indices = ( np.array([1, 7, 4]), np.array([3, 0, 1]) ) # This is a tuple of 2 NumPy arrays! print(matrix[indices]) ( np.array([1, 7, 4]), np.array([3, 0, 1]) ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: With NumPy arrays, all the same functionality you know and love from lists is still there. Step2: These operations all work whether you're using Python lists or NumPy arrays. Step3: To build the NumPy equivalent, you can basically just feed the Python list-matrix into the NumPy array method Step4: The real difference, though, comes with actually indexing these elements. With Python lists, you can index individual elements only in this way Step5: With NumPy arrays, you can use that same notation...or you can use comma-separated indices Step6: It's not earth-shattering, but enough to warrant a heads-up. Step7: Here's a great visual summary of slicing NumPy arrays, assuming you're starting from an array with shape (3, 3) Step8: We know video is 3D because we can also access its ndim attribute. Step9: Another example--to go straight to cutting-edge academic research--is 3D video microscope data of multiple tagged fluorescent markers. This would result in a five-axis NumPy object Step10: We can also ask how many elements there are total, using the size attribute Step11: These are extreme examples, but they're to illustrate how flexible NumPy arrays are. Step12: Part 2 Step13: how does Python know that you want to add the scalar value 10 to each element of the vector x? Because (in a word) broadcasting. Step14: In this example, the scalar value 1 is broadcast to all the elements of zeros, converting the operation to element-wise addition. Step15: But on some intuitive level, this hopefully makes sense Step16: In this example, the shape of x is (3, 4). The shape of y is just 4. Their trailing axes are both 4, therefore the "smaller" array will be broadcast to fit the size of the larger array, and the operation (addition, in this case) is performed element-wise. Step17: This is randomly generated data, yes, but it could easily be 7 data points in 4 dimensions. That is, we have 7 observations of variables with 4 descriptors. Perhaps it's 7 people who are described by their height, weight, age, and 40-yard dash time. Or it's a matrix of data on 7 video games, each described by their PC Gamer rating, Steam downloads count, average number of active players, and total cheating complaints. Step18: Now, we can use our mask to access only the indices we want to set to 0. Step19: voilà! Every negative number has been set to 0, and all the other values were left unchanged. Now we can continue with whatever analysis we may have had in mind. Step20: Fancy Indexing Step21: We have 8 rows and 4 columns, where each row is a vector of the same value repeated across the columns, and that value is the index of the row. Step22: Ta-daaa! Pretty spiffy! Step23: Ok, this will take a little explaining, bear with me
14,415
<ASSISTANT_TASK:> Python Code: import numpy as np x = np.arange(25) x x = da.arange(25, chunks=(5,)) y = x ** 2 y y.visualize() da.sqrt(x)[-1].visualize() x = da.arange(250, chunks=(5,)) x.visualize() x = da.ones((15, 15), chunks=(5,5)) x.sum(axis=1).visualize() import dask.multiprocessing y.compute(get = dask.multiprocessing.get) import dask.dataframe as dd cols = ['square_id', 'timestamp', 'country_code', 'sms_in', 'sms_out','call_in','call_out', 'internet'] dtypes = {'square_id': int, 'timestamp': int, 'countrycode': int, 'sms_in': float,'sms_out': float, 'call_in': float, 'call_out': float, 'internet': float} df = dd.read_csv? df = dd.read_csv df_a = dd.read_csv('data/split/*.csv', header=0, names=cols, dtype=dtypes, sep="\t") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <h1>MISSING SEPERATOR ARGS FOR SPACE DELIMITED FILE!!!</h1>
14,416
<ASSISTANT_TASK:> Python Code: import crpropa class ObserverPlane(crpropa.ObserverFeature): Detects all particles after crossing the plane. Defined by position (any point in the plane) and vectors v1 and v2. def __init__(self, position, v1, v2): crpropa.ObserverFeature.__init__(self) # calculate three points of a plane self.__v1 = v1 self.__v2 = v2 self.__x0 = position def distanceToPlane(self, X): Always positive for one side of plane and negative for the other side. dX = np.asarray([X.x - self.__x0[0], X.y - self.__x0[1], X.z - self.__x0[2]]) V = np.linalg.det([self.__v1, self.__v2, dX]) return V def checkDetection(self, candidate): currentDistance = self.distanceToPlane(candidate.current.getPosition()) previousDistance = self.distanceToPlane(candidate.previous.getPosition()) candidate.limitNextStep(abs(currentDistance)) if np.sign(currentDistance) == np.sign(previousDistance): return crpropa.NOTHING else: return crpropa.DETECTED from crpropa import Mpc, nG, EeV import numpy as np turbSpectrum = crpropa.SimpleTurbulenceSpectrum(Brms=1*nG, lMin = 2*Mpc, lMax=5*Mpc, sIndex=5./3.) gridprops = crpropa.GridProperties(crpropa.Vector3d(0), 128, 1 * Mpc) BField = crpropa.SimpleGridTurbulence(turbSpectrum, gridprops) m = crpropa.ModuleList() m.add(crpropa.PropagationCK(BField, 1e-4, 0.1 * Mpc, 5 * Mpc)) m.add(crpropa.MaximumTrajectoryLength(25 * Mpc)) # Observer out = crpropa.TextOutput("sheet.txt") o = crpropa.Observer() # The Observer feature has to be created outside of the class attribute # o.add(ObserverPlane(...)) will not work for custom python modules plo = ObserverPlane(np.asarray([0., 0, 0]) * Mpc, np.asarray([0., 1., 0.]) * Mpc, np.asarray([0., 0., 1.]) * Mpc) o.add(plo) o.setDeactivateOnDetection(False) o.onDetection(out) m.add(o) # source setup source = crpropa.Source() source.add(crpropa.SourcePosition(crpropa.Vector3d(0, 0, 0) * Mpc)) source.add(crpropa.SourceIsotropicEmission()) source.add(crpropa.SourceParticleType(crpropa.nucleusId(1, 1))) source.add(crpropa.SourceEnergy(1 * EeV)) m.run(source, 1000) out.close() %matplotlib inline from mpl_toolkits.mplot3d import Axes3D import pylab as plt ax = plt.subplot(111, projection='3d') data = plt.loadtxt('sheet.txt') ax.scatter(data[:,5], data[:,6], data[:,7] ) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.set_xlim(20,-20) ax.set_ylim(20,-20) ax.set_zlim(20,-20) ax.view_init(25, 95) bins = np.linspace(-20,20, 50) plt.hist(data[:,5], bins=bins, label='X', histtype='step') plt.hist(data[:,6], bins=bins, label='Y', histtype='step') plt.hist(data[:,7], bins=bins, label='Z', histtype='step') plt.legend() plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Custom Observer Step3: As test, we propagate some particles in a random field with a sheet observer Step4: and plot the final position of the particles in 3D Step5: or as a histogram. Note the width of the X distribution, which is due to the particles being detected after crossing.
14,417
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np !head -n 30 open_exoplanet_catalogue.txt data=np.genfromtxt('open_exoplanet_catalogue.txt',delimiter=",") assert data.shape==(1993,24) plt.hist(data[:,2],range(0,16)); plt.box(False) plt.xlabel("$M sin i (M_JUP)$"); plt.ylabel('Number of Planets'); assert True # leave for grading f=plt.figure(figsize=(9,6)) plt.scatter(data[:,5],data[:,6]) plt.ylim(0,1.0) plt.box(False) plt.grid(True) plt.semilogx(True); plt.xlabel('Semimajor Axis (AU)'); plt.ylabel('Orbital Eccentricity'); assert True # leave for grading <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Exoplanet properties Step2: Use np.genfromtxt with a delimiter of ',' to read the data into a NumPy array called data Step3: Make a histogram of the distribution of planetary masses. This will reproduce Figure 2 in the original paper. Step4: Make a scatter plot of the orbital eccentricity (y) versus the semimajor axis. This will reproduce Figure 4 of the original paper. Use a log scale on the x axis.
14,418
<ASSISTANT_TASK:> Python Code: # disable ssl warnings import urllib3 urllib3.disable_warnings() keycloak_url = 'http://localhost:8080' token_endpoint = '/auth/realms/demo/protocol/openid-connect/token' client_id = 'demo' client_secret = 'c083d72c-a262-40b1-ad51-326f6977d74b' token_url = "{}{}".format(keycloak_url, token_endpoint) token_url import os from oauthlib.oauth2 import BackendApplicationClient from requests_oauthlib import OAuth2Session os.environ['OAUTHLIB_INSECURE_TRANSPORT'] = '1' client = BackendApplicationClient(client_id=client_id) oauth = OAuth2Session(client=client) token = oauth.fetch_token( token_url, scope='compute', client_id=client_id, client_secret=client_secret, include_client_id=True, verify=False) token token['access_token'] base_url = 'http://localhost:8000' url = "{}/ows/proxy/emu?service=WPS&version=1.0.0&request=Execute&identifier=chomsky".format(base_url) url import requests headers = {'Authorization': 'Bearer {}'.format(token['access_token'])} resp = requests.get(url, headers=headers, verify=False) resp.ok 'ProcessSucceeded' in resp.text <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Keycloak client Step2: Get OAuth access token from Keycloak Step3: Execute WPS Process with access token
14,419
<ASSISTANT_TASK:> Python Code: # Hit shift + enter or use the run button to run this cell and see the results print 'hello world11_0_11' print 'hello world' # The last line of every code cell will be displayed by default, # even if you don't print it. Run this cell to see how this works. print 2 + 2 # The result of this line will not be displayed print 3 + 3 # The result of this line will be displayed, because it is the last line of the cell # If you run this cell, you should see the values displayed as a table. # Pandas is a software library for data manipulation and analysis. You'll learn to use it later in this course. import pandas as pd df = pd.DataFrame({'a': [2, 4, 6, 8], 'b': [1, 3, 5, 7]}) df # If you run this cell, you should see a scatter plot of the function y = x^2 %pylab inline import matplotlib.pyplot as plt xs = range(-30, 31) ys = [x ** 2 for x in xs] plt.scatter(xs, ys) class_name = "BRUCE Woodley Intro to Data Analysis" message = class_name + " is awesome!" message import unicodecsv with open("enrollments.csv","rb") as filein : line = unicodecsv.DictReader(filein) print("type(line) \t",type(line)) enrollments = list(line) print enrollments[0] import unicodecsv with open("daily_engagement.csv","rb") as filein : line = unicodecsv.DictReader(filein) #print("type(line) \t",type(line)) daily_engagement = list(line) print daily_engagement[0] import unicodecsv with open("project_submissions.csv","rb") as filein : line = unicodecsv.DictReader(filein) project_submissions_fieldnames = line.fieldnames #print("type(line) \t",type(line)) print("project_submissions_fieldnames = ",str(project_submissions_fieldnames)) project_submissions = list(line) print project_submissions[0] # Fixing Data Types. # Hit shift + enter or use the run button to run this cell and see the results from datetime import datetime as dt # Takes a date as a string, and returns a Python datetime object. # If there is no date given, returns None def parse_date(date): if date == '': return None else: return dt.strptime(date, '%Y-%m-%d') # Takes a string which is either an empty string or represents an integer, # and returns an int or None. def parse_maybe_int(i): if i == '': return None else: return int(i) print(" type(enrollment) " , type(enrollment)) # Clean up the data types in the enrollments table for enrollment in enrollments: enrollment['cancel_date'] = parse_date(enrollment['cancel_date']) enrollment['days_to_cancel'] = parse_maybe_int(enrollment['days_to_cancel']) enrollment['is_canceled'] = enrollment['is_canceled'] == 'True' enrollment['is_udacity'] = enrollment['is_udacity'] == 'True' enrollment['join_date'] = parse_date(enrollment['join_date']) enrollments[0] # enrollments # daily_engagement # project_submission # these are all a "List of Dictionaries" import sys import os import string import time #print(type(enrollments),len(enrollments) ) enrollments_set = set() for line in enrollments : enrollments_set.add(line['account_key'] ) print("enrollments",type(enrollments), " row total: ",len(enrollments), " total students: ", len(enrollments_set) ) #print(type(daily_engagement), len(daily_engagement) ) daily_engagement_set = set() for line in daily_engagement : daily_engagement_set.add(line['acct'] ) print("daily_engagement", type(daily_engagement)," row total: ",len(daily_engagement), " total students: ", len(daily_engagement_set) ) #print(type(project_submissions), len(project_submissions) ) project_submissions_set = set() for line in project_submissions : project_submissions_set.add(line['account_key'] ) print("project_submissions", type(project_submissions)," row total: ",len(project_submissions), " total students: ", len(project_submissions_set) ) print(" ") print('REM: these are all a "List of Dictionaries"...!') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Nicely formatted results Step2: Creating cells Step3: Once you've run all three cells, try modifying the first one to set class_name to your name, rather than "Intro to Data Analysis", so you can print that you are awesome. Then rerun the first and third cells without rerunning the second. Step4: Fixing Data Types.
14,420
<ASSISTANT_TASK:> Python Code: import lasio import datetime import numpy import os import matplotlib.pyplot as plt %matplotlib inline depths = numpy.arange(10, 50, 0.5) fake_curve = numpy.random.random(len(depths)) fake_curve[-10:] = numpy.nan # Add some null values at the bottom plt.plot(depths, fake_curve) l = lasio.LASFile() l.header l.well.DATE = str(datetime.datetime.today()) l.params['ENGI'] = lasio.HeaderItem("ENGI", "", "kinverarity@hotmail.com", "Creator of this file...") l.other = "Example of how to create a LAS file from scratch using lasio" l.add_curve('DEPT', depths, unit='m') l.add_curve('FAKE_CURVE', fake_curve, descr='fake curve') fn = "scratch_example_v2.las" with open(fn, mode="w") as f: # Write LAS file to disk l.write(f) with open(fn, mode="r") as f: # Show the result... print(f.read()) plt.plot(l['DEPT'], l['FAKE_CURVE']) os.remove(fn) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Step 1 Step2: Step 2 Step3: Let's add some information to the header Step4: Next, let's make a new item in the ~Parameters section for the operator. To do this we need to make a new HeaderItem Step5: And finally, add some free text to the ~Other section Step6: Step 3 Step7: Step 4 Step8: and let's see if that worked
14,421
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import matplotlib matplotlib.style.use('ggplot') # set default figure size from pylab import rcParams rcParams['figure.figsize'] = 16, 8 import pandas as pd import urllib2 def load_data(ip_addr): data = pd.read_csv(urllib2.urlopen("http://%s:7645/data.csv" % (ip_addr))) for col in ['Model', 'Scenario', 'Variable']: data[col] = data[col].astype('category') data['Date'] = data['Date'].astype('datetime64') data['Temperature'] = data['Value'] - 273.15 return data def do_graph(df): model = df.loc[1,'Model'] df['Year'] = df['Date'].map(lambda d: "%d-01-01" % (d.year)).astype('datetime64') by_year = df.groupby(['Year', 'Scenario']).max().loc[:,['Temperature']] groups = by_year.reset_index().set_index('Year').groupby('Scenario') for key, grp in groups: plt.plot(grp.index, grp['Temperature'], label=key) plt.legend(loc='best') plt.title("Maximum mean temperature for warmest month using model %s" % (model)) plt.xlabel("Year") plt.ylabel("Temperature [Celsius]") plt.show() # Note: make sure you pass load_data the correct IP address. This is only an example. data = load_data("localhost") data.head() do_graph(data) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Loading Data into a Dataframe Step2: Plotting the Scenarios Step3: Putting it all Together
14,422
<ASSISTANT_TASK:> Python Code: import torch x = torch.Tensor(5, 3) print(x) len(x) x.shape y = torch.rand(5,3) print(y) print(x + y) print(torch.add(x, y)) result = torch.Tensor(5, 3) print(result) torch.add(x, y, out=result) print(result) print('before y:', y) y.add_(x) print('after y:', y) x.t_() # numpy 스럽게 사용 가능 print(x[:, 1]) print(x[:,:]) a = torch.ones(5) print(a) b = a.numpy() print(b) a.add_(1) print(a) print(b) # a와 b가 연결되어 있음 print(b) a.add_(2) print(b) id(a) id(b) import numpy as np a = np.ones(5) b = torch.from_numpy(a) np.add(a, 1, out=a) print(a) print(b) %%time if torch.cuda.is_available(): x = x.cuda() y = y.cuda() x + y torch.cuda.is_available() torch.cuda.current_device() torch.cuda.device_count() import torch from torch.autograd import Variable x = Variable(torch.ones(2, 2), requires_grad=True) print(x) y = x + 2 print(y) print(y.grad_fn) # y는 연산의 결과라서 grad_fn이 잇음 z = y * y * 3 out = z.mean() print(z, out) print(x.grad) out.backward() print(x.grad) x = torch.randn(3) x = Variable(x, requires_grad=True) y = x * 2 while y.data.norm() < 1000: y = y * 2 print(y) gradients = torch.FloatTensor([0.1, 1.0, 0.0001]) y.backward(gradients) print(x.grad) dtype = torch.FloatTensor N, D_in, H, D_out = 64, 1000, 100, 10 import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) # 2x2 windown max pooling x = F.max_pool2d(F.relu(self.conv2(x)), 2) x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def num_flat_features(self, x): size = x.size()[1:] num_features = 1 for s in size: num_features *= s return num_features net = Net() print(net) params = list(net.parameters()) print(len(params)) print(params[0].size()) input = Variable(torch.randn(1, 1, 32, 32)) out = net(input) print(out) net.zero_grad() out.backward(torch.randn(1, 10)) output = net(input) target = Variable(torch.arange(1, 11)) # a dummy target, for example criterion = nn.MSELoss() loss = criterion(output, target) print(loss) print(loss.grad_fn) # MSELoss print(loss.grad_fn.next_functions[0][0]) # Linear print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU net.zero_grad() # zeroes the gradient buffers of all parameters print('conv1.bias.grad before backward') print(net.conv1.bias.grad) loss.backward() print('conv1.bias.grad after backward') print(net.conv1.bias.grad) learning_rate = 0.01 for f in net.parameters(): f.data.sub_(f.grad.data * learning_rate) import torch.optim as optim # create your optimizer optimizer = optim.SGD(net.parameters(), lr=0.01) # in your training loop: optimizer.zero_grad() # zero the gradient buffers output = net(input) loss = criterion(output, target) loss.backward() optimizer.step() # Does the update import torch import torchvision import torchvision.transforms as transforms transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') import matplotlib.pyplot as plt import numpy as np # functions to show an image def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) # get some random training images dataiter = iter(trainloader) images, labels = dataiter.next() # show images imshow(torchvision.utils.make_grid(images)) # print labels print(' '.join('%5s' % classes[labels[j]] for j in range(4))) from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) for epoch in range(2): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(trainloader, 0): # get the inputs inputs, labels = data # wrap them in Variable # inputs, labels = Variable(inputs), Variable(labels) inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda()) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.data[0] if i % 2000 == 1999: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') dataiter = iter(testloader) images, labels = dataiter.next() # print images # imshow(torchvision.utils.make_grid(images)) print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4))) outputs = net(Variable(images)) _, predicted = torch.max(outputs.data, 1) print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4))) correct = 0 total = 0 for data in testloader: images, labels = data outputs = net(Variable(images)) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) class_correct = list(0. for i in range(10)) class_total = list(0. for i in range(10)) for data in testloader: images, labels = data outputs = net(Variable(images)) _, predicted = torch.max(outputs.data, 1) c = (predicted == labels).squeeze() for i in range(4): label = labels[i] class_correct[label] += c[i] class_total[label] += 1 for i in range(10): print('Accuracy of %5s : %2d %%' % ( classes[i], 100 * class_correct[i] / class_total[i])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: x.copy_(y), x.t_()는 x가 변경되는 연산 Step2: 기타 연산 자료 Step3: CharTensor를 제외하고 CPU상의 모든 텐서는 numpy로 변환하는 것을 지원 Step4: tensor들은 .cuda function을 사용해 gpu로 옮길 수 있음 Step5: Autograd Step6: Autograd / Function 문서 Step7: Define the neural network that has some learnable parameters (or weights)
14,423
<ASSISTANT_TASK:> Python Code: import json import requests from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry def requests_retry_session( retries=3, backoff_factor=0.3, status_forcelist=(500, 502, 504), session=None, ): session = session or requests.Session() retry = Retry( total=retries, read=retries, connect=retries, backoff_factor=backoff_factor, status_forcelist=status_forcelist, ) adapter = HTTPAdapter(max_retries=retry) session.mount('http://', adapter) session.mount('https://', adapter) return session api_url = "https://modelmywatershed.org/api/" def get_job_result(api_url, s, jobrequest): url_tmplt = api_url + "jobs/{job}/" get_url = url_tmplt.format result = '' while not result: get_req = requests_retry_session(session=s).get(get_url(job=jobrequest['job'])) result = json.loads(get_req.content)['result'] return result s = requests.Session() APIToken = '<YOUR API TOKEN STRING>' # ENTER YOUR OWN API TOKEN s.headers.update({ 'Authorization': APIToken, 'Content-Type': 'application/json' }) from shapely.geometry import box, MultiPolygon width = 0.0004 # Looks like using a width smaller than 0.0002 causes a problem with the API? # GOOS: (-88.5552, 40.4374) elev 240.93. Agriculture Site—Goose Creek (Corn field) Site (GOOS) at IML CZO # SJER: (-119.7314, 37.1088) elev 403.86. San Joaquin Experimental Reserve Site (SJER) at South Sierra CZO lon, lat = -119.7314, 37.1088 bbox = box(lon-0.5*width, lat-0.5*width, lon+0.5*width, lat+0.5*width) payload = MultiPolygon([bbox]).__geo_interface__ json_payload = json.dumps(payload) payload # convenience function, to simplify the request calls, below def analyze_api_request(api_name, s, api_url, json_payload): post_url = "{}analyze/{}/".format(api_url, api_name) post_req = requests_retry_session(session=s).post(post_url, data=json_payload) jobrequest_json = json.loads(post_req.content) # Fetch and examine job result result = get_job_result(api_url, s, jobrequest_json) return result result = analyze_api_request('land/2011_2011', s, api_url, json_payload) type(result), result.keys() result['survey'].keys() categories = result['survey']['categories'] len(categories), categories[1] land_categories_nonzero = [d for d in categories if d['coverage'] > 0] land_categories_nonzero result = analyze_api_request('terrain', s, api_url, json_payload) categories = result['survey']['categories'] len(categories), categories [d for d in categories if d['type'] == 'average'] result = analyze_api_request('climate', s, api_url, json_payload) categories = result['survey']['categories'] len(categories), categories[:2] ppt = [d['ppt'] for d in categories] tmean = [d['tmean'] for d in categories] # ppt is in cm, right? sum(ppt) import calendar import numpy as np calendar.mdays # Annual tmean needs to be weighted by the number of days per month sum(np.asarray(tmean) * np.asarray(calendar.mdays[1:]))/365 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: MMW production API endpoint base url. Step2: The job is not completed instantly and the results are not returned directly by the API request that initiated the job. The user must first issue an API request to confirm that the job is complete, then fetch the results. The demo presented here performs automated retries (checks) until the server confirms the job is completed, then requests the JSON results and converts (deserializes) them into a Python dictionary. Step3: 2. Construct AOI GeoJSON for job request Step4: 3. Issue job requests, fetch job results when done, then examine results. Repeat for each request type Step5: Issue job request Step6: Everything below is just exploration of the results. Examine the content of the results (as JSON, and Python dictionaries) Step7: result is a dictionary with one item, survey. This item in turn is a dictionary with 3 items Step8: Issue job request Step9: result is a dictionary with one item, survey. This item in turn is a dictionary with 3 items Step10: Issue job request Step11: result is a dictionary with one item, survey. This item in turn is a dictionary with 3 items
14,424
<ASSISTANT_TASK:> Python Code: from dionysus import Simplex, Filtration, StaticPersistence, \ vertex_cmp, data_cmp, data_dim_cmp, \ DynamicPersistenceChains from math import sqrt scx = [Simplex((2,), 0), # C Simplex((0,), 1), # A Simplex((1,), 1), # B Simplex((0,1), 2), # AB Simplex((1,2), 3), # BC Simplex((0,2), 3), # AC Simplex((0,1,2), 4), # ABC ] f = Filtration(scx, data_cmp) p = DynamicPersistenceChains(f) p.pair_simplices() smap = p.make_simplex_map(f) print "{:>10}{:>10}{:>10}{:>10}".format("First", "Second", "Birth", "Death") for i in (i for i in p if i.sign()): b = smap[i] if i.unpaired(): print "{:>10}{:>10}{:>10}{:>10}".format(b, '', b.data, "inf") else: d = smap[i.pair()] print "{:>10}{:>10}{:>10}{:>10}".format(b, d, b.data, d.data) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We will compute persistent homology of a 2-simplex (triangle) ABC. The filtration is as follows Step2: Now the persistent homology is computed. Step3: Now output the computed persistence diagram. For each critical cell that appears in the filtration the time of Birth and Death is given as well as the cell that kills it (its pair). The features that persist forever have Death value set to inf.
14,425
<ASSISTANT_TASK:> Python Code: %pylab inline import subprocess import matplotlib.pyplot as plt import random import numpy as np plt.style.use('ggplot') figsize(10,5) file = "./bwa/input2.sorted.bam" p = subprocess.Popen(["samtools", "view", "-q10", "-F260", file], stdout=subprocess.PIPE) coords = [] for line in p.stdout: flag, ref, start = line.decode('utf-8').split()[1:4] coords.append([flag, ref, start]) coords[:3] len(coords) random.seed(1234) sample = random.sample(coords, 1000000) len(sample) uniqueStarts = {'watson': set(), 'crick': set()} for coord in sample: flag, ref, start = coord if int(flag) & 16: uniqueStarts['crick'].add((ref, start)) else: uniqueStarts['watson'].add((ref, start)) len(uniqueStarts['watson']) len(uniqueStarts['crick']) NRF_input = (len(uniqueStarts['watson']) + len(uniqueStarts['crick']))*1.0/len(sample) print(NRF_input) def calculateNRF(filePath, pickSample=True, sampleSize=10000000, seed=1234): p = subprocess.Popen(['samtools', 'view', '-q10', '-F260', filePath], stdout=subprocess.PIPE) coordType = np.dtype({'names': ['flag', 'ref', 'start'], 'formats': ['uint16', 'U10', 'uint32']}) coordArray = np.empty(10000000, dtype=coordType) i = 0 for line in p.stdout: if i >= len(coordArray): coordArray = np.append(coordArray, np.empty(1000000, dtype=coordType), axis=0) fg, rf, st = line.decode('utf-8').split()[1:4] coordArray[i] = np.array((fg, rf, st), dtype=coordType) i += 1 coordArray = coordArray[:i] sample = coordArray if pickSample and len(coordArray) > sampleSize: np.random.seed(seed) sample = np.random.choice(coordArray, sampleSize, replace=False) uniqueStarts = {'watson': set(), 'crick': set()} for read in sample: flag, ref, start = read if flag & 16: uniqueStarts['crick'].add((ref, start)) else: uniqueStarts['watson'].add((ref, start)) NRF = (len(uniqueStarts['watson']) + len(uniqueStarts['crick']))*1.0/len(sample) return NRF NRF_chip = calculateNRF("./bwa/sox2_chip.sorted.bam", sampleSize=1000000) print(NRF_chip) plt.bar([0,2],[NRF_input, NRF_chip], width=1) plt.xlim([-0.5,3.5]), plt.xticks([0.5, 2.5], ['Input', 'ChIP']) plt.xlabel('Sample') plt.ylabel('NRF') plt.ylim([0, 1.25]), plt.yticks(np.arange(0, 1.2, 0.2)) plt.plot((-0.5,3.5), (0.8,0.8), 'red', linestyle='dashed') plt.show() countList = [] with open('./bedtools/input_coverage.bed', 'r') as covFile: for line in covFile: countList.append(int(line.strip('\n').split('\t')[3])) countList[0:6] countList[-15:] plt.plot(range(len(countList)), countList) plt.xlabel('Bin number') plt.ylabel('Bin coverage') plt.xlim([0, len(countList)]) plt.show() countList.sort() countList[0:6] countSum = sum(countList) countSum countFraction = [] for i, count in enumerate(countList): if i == 0: countFraction.append(count*1.0 / countSum) else: countFraction.append((count*1.0 / countSum) + countFraction[i-1]) countFraction[-5:] winNumber = len(countFraction) winNumber winFraction = [] for i in range(winNumber): winFraction.append(i*1.0 / winNumber) winFraction[-5:] def calculateSES(filePath): countList = [] with open(filePath, 'r') as covFile: for line in covFile: countList.append(int(line.strip('\n').split('\t')[3])) plt.plot(range(len(countList)), countList) plt.xlabel('Bin number') plt.ylabel('Bin coverage') plt.xlim([0, len(countList)]) plt.show() countList.sort() countSum = sum(countList) countFraction = [] for i, count in enumerate(countList): if i == 0: countFraction.append(count*1.0 / countSum) else: countFraction.append((count*1.0 / countSum) + countFraction[i-1]) winNumber = len(countFraction) winFraction = [] for i in range(winNumber): winFraction.append(i*1.0 / winNumber) return [winFraction, countFraction] chipSes = calculateSES("./bedtools/sox2_chip_coverage.bed") plt.plot(winFraction, countFraction, label='input') plt.plot(chipSes[0], chipSes[1], label='Sox2 ChIP') plt.ylim([0,1]) plt.xlabel('Ordered window franction') plt.ylabel('Genome coverage fraction') plt.legend(loc='best') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Calculate the Nonredundant Read Fraction (NRF) Step2: Make figures prettier and biger Step3: Parse the SAM file and extract the unique start coordinates. Step4: Next we read the file using samtools. From each read we need to store the flag, chromosome name and start coordinate. Step5: What is the total number of our unique reads? Step6: Randomly sample the coordinates to get 1M for NRF calculations Step7: How many of those coordinates are unique? (We will use the set python object which only the unique items.) Step8: How many on the Watson strand? Step9: And on the Crick? Step10: Calculate the NRF Step11: Lets create a function from what we did above and apply it to all of our files! Step12: Calculate the NRF for the chip-seq sample Step13: Plot the NRF! Step14: Calculate the Signal Extraction Scaling Step15: Lets see where do our reads align to the genome. Plot the distribution of tags along the genome. Step16: Now sort the list- order the windows based on the tag count Step17: Sum all the aligned tags Step18: Calculate the summaric fraction of tags along the ordered windows. Step19: Look at the last five items of the list Step20: Calculate the number of windows. Step21: Calculate what fraction of a whole is the position of each window. Step22: Look at the last five items of our new list Step23: Now prepare the function! Step24: Use our function to calculate the signal extraction scaling for the Sox2 ChIP sample Step25: Now we can plot the calculated fractions for both the input and ChIP sample
14,426
<ASSISTANT_TASK:> Python Code: # Load pickled data import pickle # TODO: Fill this in based on where you saved the training and testing data DATA_DIR = './traffic-signs-data/' training_file = DATA_DIR + 'train.p' validation_file= DATA_DIR + 'valid.p' testing_file = DATA_DIR + 'test.p' with open(training_file, mode='rb') as f: train = pickle.load(f) with open(validation_file, mode='rb') as f: valid = pickle.load(f) with open(testing_file, mode='rb') as f: test = pickle.load(f) X_train, y_train = train['features'], train['labels'] X_valid, y_valid = valid['features'], valid['labels'] X_test, y_test = test['features'], test['labels'] originals = X_train ### Replace each question mark with the appropriate value. ### Use python, pandas or numpy methods rather than hard coding the results import numpy as np # TODO: Number of training examples n_train = len(X_train) # TODO: Number of validation examples n_validation = len(X_valid) # TODO: Number of testing examples. n_test = len(X_test) # TODO: What's the shape of an traffic sign image? image_shape = X_train[0].shape # TODO: How many unique classes/labels there are in the dataset. n_classes = np.unique(y_train).shape[0] print("Size of training set =", n_train) print("Size of testing set =", n_test) print("Size of validation set =", n_validation) print("Image data shape =", image_shape) print("Number of classes =", n_classes) ### Data exploration visualization code goes here. ### Feel free to use as many code cells as needed. import matplotlib.pyplot as plt import random import pandas as pd sign_names = pd.read_csv('signnames.csv') ### plot random image and corresponding class index = random.randint(0, n_train) image = X_train[index] label = y_train[index] names = list(sign_names.iloc[:,1]) names = [n.strip() for n in names] print (label, names[label]) plt.imshow(image) plt.show() #print ("Normalized image") #norm = normalize_gs(image) #plt.gray() #plt.imshow(norm.reshape((32,32))) #plt.show() unique, counts = np.unique(y_train, return_counts = True) print ('Chart shows label counts') #print (sign_names.iloc[:,1]) fig = plt.figure(figsize=(15,10)) #print (unique, len(names)) plt.bar(unique, counts) plt.xticks(unique, names, rotation = 90) plt.show() # Visualizations will be shown in the notebook. %matplotlib inline ### Preprocess the data here. It is required to normalize the data. Other preprocessing steps could include ### converting to grayscale, etc. ### Feel free to use as many code cells as needed. import cv2 from sklearn.utils import shuffle def normalize_gs(mat): '''perform RGB -> grayscale perform histogram normalization to improve contrast''' mat = cv2.cvtColor(mat, cv2.COLOR_RGB2GRAY) mat = cv2.equalizeHist(mat) # needed to keep tensorflow sane, it wants 32x32x1 images! mat = np.expand_dims(mat, axis=2) return mat ### naive value normalize --> doesnt work very well def normalize(img): return (img - 128) / 128 ## normalize all images in the training / test set ## will not convert to greyscale as I believe that color information is ## a very important and distinct feature for traffic signs X_train = [normalize_gs(x) for x in X_train] X_test = [normalize_gs(x) for x in X_test] X_valid = [normalize_gs(x) for x in X_valid] ### plot random image and corresponding class index = random.randint(0, n_train) image = X_train[index] label = y_train[index] print (label, names[label]) ax = plt.subplot(121) plt.imshow(originals[index]) ax = plt.subplot(122) plt.gray() plt.imshow(np.array(image).reshape((32,32))) plt.show() ### Tensorflow import and setup import tensorflow as tf EPOCHS = 512 BATCH_SIZE = 128 MODEL_FILE = './traffic_sign' DROPOUT_PROB = 0.80 from tensorflow.contrib.layers import flatten def LeNet(x): # Arguments used for tf.truncated_normal, randomly defines variables for the weights and biases for each layer mu = 0 sigma = 0.1 # SOLUTION: Layer 1: Convolutional. Input = 32x32x64. Output = 17x17x64. # changed conv kernel size to 16x16, depth of 64 conv1_W = tf.Variable(tf.truncated_normal(shape=(16, 16, 1, 32), mean = mu, stddev = sigma)) #conv1_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 3, 6), mean = mu, stddev = sigma)) conv1_b = tf.Variable(tf.zeros(32)) # changed padding to same to cover a larger area conv1 = tf.nn.conv2d(x, conv1_W, strides=[1, 1, 1, 1], padding='VALID') + conv1_b # SOLUTION: Activation. conv1 = tf.nn.relu(conv1) # SOLUTION: Pooling. Input = 28x28x6. Output = 8x8x64. conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') # SOLUTION: Layer 2: Convolutional. Output = 10x10x16. conv2_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 32, 64), mean = mu, stddev = sigma)) conv2_b = tf.Variable(tf.zeros(64)) conv2 = tf.nn.conv2d(conv1, conv2_W, strides=[1, 1, 1, 1], padding='VALID') + conv2_b # SOLUTION: Activation. conv2 = tf.nn.relu(conv2) # SOLUTION: Pooling. Input = 10x10x16. Output = 5x5x16. conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') # SOLUTION: Flatten. Input = 2x2x64. Output = 400. fc0 = flatten(conv2) # SOLUTION: Layer 3: Fully Connected. Input = 400. Output = 200. # modified: input shape 576 fc1_W = tf.Variable(tf.truncated_normal(shape=(256, 128), mean = mu, stddev = sigma)) fc1_b = tf.Variable(tf.zeros(128)) fc1 = tf.matmul(fc0, fc1_W) + fc1_b # SOLUTION: Activation. fc1 = tf.nn.relu(fc1) # add a dropout layer fc1 = tf.nn.dropout(fc1, dropout_prob) # SOLUTION: Layer 4: Fully Connected. Input = 120. Output = 100. fc2_W = tf.Variable(tf.truncated_normal(shape=(128, 100), mean = mu, stddev = sigma)) fc2_b = tf.Variable(tf.zeros(100)) fc2 = tf.matmul(fc1, fc2_W) + fc2_b # SOLUTION: Activation. fc2 = tf.nn.relu(fc2) # add a dropout layer fc2 = tf.nn.dropout(fc2, dropout_prob) # SOLUTION: Layer 5: Fully Connected. Input = 84. Output = 10. ## MODIFIED: output dim now 43 (n_classes) fc3_W = tf.Variable(tf.truncated_normal(shape=(100, n_classes), mean = mu, stddev = sigma)) fc3_b = tf.Variable(tf.zeros(n_classes)) logits = tf.matmul(fc2, fc3_W) + fc3_b #print (logits.summary()) return logits #x = tf.placeholder(tf.float32, (None, 32, 32, 3)) x = tf.placeholder(tf.float32, (None, 32, 32,1)) y = tf.placeholder(tf.int32, (None)) dropout_prob = tf.placeholder(tf.float32) one_hot_y = tf.one_hot(y, n_classes) rate = 0.0001 # default is 0.001 logits = LeNet(x) cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=one_hot_y, logits=logits) loss_operation = tf.reduce_mean(cross_entropy) optimizer = tf.train.AdamOptimizer(learning_rate = rate) training_operation = optimizer.minimize(loss_operation) ### Train your model here. ### Calculate and report the accuracy on the training and validation set. ### Once a final model architecture is selected, ### the accuracy on the test set should be calculated and reported as well. ### Feel free to use as many code cells as needed. ## Model Evaluation correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(one_hot_y, 1)) accuracy_operation = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) saver = tf.train.Saver() def evaluate(X_data, y_data): num_examples = len(X_data) total_accuracy = 0 sess = tf.get_default_session() for offset in range(0, num_examples, BATCH_SIZE): batch_x, batch_y = X_data[offset:offset+BATCH_SIZE], y_data[offset:offset+BATCH_SIZE] accuracy = sess.run(accuracy_operation, feed_dict={x: batch_x, y: batch_y, dropout_prob: 1.0}) total_accuracy += (accuracy * len(batch_x)) return total_accuracy / num_examples ### function to get logits def predict(image_data): sess = tf.get_default_session() predictions = sess.run(logits, feed_dict={x:image_data, dropout_prob: 1.0}) ### NOTE: Added SoftMax function here as per the assignment requirements! ### top_k now represents the top 5 softmax probabilities softmax_predictions = sess.run(tf.nn.softmax(predictions)) top_k = sess.run(tf.nn.top_k(softmax_predictions), k=5)) ### also added softmax function to predictions return softmax_predictions.eval(), top_k with tf.Session() as sess: sess.run(tf.global_variables_initializer()) num_examples = len(X_train) print("Training...") print() for i in range(EPOCHS): X_train, y_train = shuffle(X_train, y_train) for offset in range(0, num_examples, BATCH_SIZE): end = offset + BATCH_SIZE batch_x, batch_y = X_train[offset:end], y_train[offset:end] sess.run(training_operation, feed_dict={x: batch_x, y: batch_y, dropout_prob: DROPOUT_PROB}) validation_accuracy = evaluate(X_valid, y_valid ) print("EPOCH {} ...".format(i+1)) print("Validation Accuracy = {:.3f}".format(validation_accuracy)) print() if validation_accuracy > 0.943: print ("High Accuracy Reached. Breaking off!") break saver.save(sess, MODEL_FILE) print("Model saved") saver = tf.train.Saver() MODEL_FILE = './traffic_sign' # Create Graph print ("Evaluating Model on Testing Set") with tf.Session() as sess: saver.restore(sess, MODEL_FILE) validation_accuracy = evaluate(X_test, y_test) #print("EPOCH {} ...".format(i+1)) print("Validation Accuracy (test) = {:.3f}".format(validation_accuracy)) validation_accuracy = evaluate(X_valid, y_valid) #print("EPOCH {} ...".format(i+1)) print("Validation Accuracy (validation) = {:.3f}".format(validation_accuracy)) validation_accuracy = evaluate(X_train, y_train) #print("EPOCH {} ...".format(i+1)) print("Validation Accuracy (training) = {:.3f}".format(validation_accuracy)) saver = tf.train.Saver() MODEL_FILE = './traffic_sign' # Create Graph print ("Evaluating Model on Testing Set") with tf.Session() as sess: saver.restore(sess, MODEL_FILE) ### Load the images and plot them here. ### Feel free to use as many code cells as needed. import os import matplotlib.image as mpimg import matplotlib.pyplot as plt IMAGES_DIR = "./web_images" image_files = os.listdir(IMAGES_DIR) #print (image_files) images = [mpimg.imread(os.path.join(IMAGES_DIR,f)) for f in image_files] ## preprocess images_preprocessed = [normalize_gs(img) for img in images] for i in images_preprocessed: print (i.shape) for idx,i in enumerate(images): print (image_files[idx]) f = plt.subplot(121) plt.imshow(i) f = plt.subplot(122) plt.gray() plt.imshow(images_preprocessed[idx].reshape((32,32))) plt.show() ## evaluate preprocessed images on the model with tf.Session() as sess: saver.restore(sess, MODEL_FILE) predictions, top_k = predict(images_preprocessed) #print (list(predictions)) for i,p in enumerate(predictions.eval()): amax = np.argmax(p) print ("File name", image_files[i], "Logit argmax", amax, "equivalent to class", names[amax] ) ### Calculate the accuracy for these 5 new images. ### For example, if the model predicted 1 out of 5 signs correctly, it's 20% accurate on these new images. N = 5.0 correct = 4 acc = correct / N print("Accuracy is", acc) ### Print out the top five softmax probabilities for the predictions on the German traffic sign images found on the web. ### Feel free to use as many code cells as needed. print(top_k) print(top_k[1][0]) width = 1.5 bar_x = range(5) plt.figure(2, figsize=(12,5)) ax = plt.subplot(151) plt.bar(bar_x, top_k[0][0]) plt.xticks(bar_x, [names[k] for k in top_k[1][0]], rotation = 90) ax.set_title('Limit30') ax = plt.subplot(152) plt.bar(bar_x, top_k[0][1]) plt.xticks(bar_x, [names[k] for k in top_k[1][1]], rotation = 90) ax.set_title('Yield') ax = plt.subplot(153) plt.bar(bar_x, top_k[0][2]) plt.xticks(bar_x, [names[k] for k in top_k[1][2]], rotation = 90) ax.set_title('Lights') ax = plt.subplot(154) plt.bar(bar_x, top_k[0][3]) plt.xticks(bar_x, [names[k] for k in top_k[1][3]], rotation = 90) ax.set_title('STOP') ax = plt.subplot(155) plt.bar(bar_x, top_k[0][4]) plt.xticks(bar_x, [names[k] for k in top_k[1][4]], rotation = 90) ax.set_title('Roundabout') plt.show() ### Visualize your network's feature maps here. ### Feel free to use as many code cells as needed. # image_input: the test image being fed into the network to produce the feature maps # tf_activation: should be a tf variable name used during your training procedure that represents the calculated state of a specific weight layer # activation_min/max: can be used to view the activation contrast in more detail, by default matplot sets min and max to the actual min and max values of the output # plt_num: used to plot out multiple different weight feature map sets on the same block, just extend the plt number for each new feature map entry def outputFeatureMap(image_input, tf_activation, activation_min=-1, activation_max=-1 ,plt_num=1): # Here make sure to preprocess your image_input in a way your network expects # with size, normalization, ect if needed # image_input = # Note: x should be the same name as your network's tensorflow data placeholder variable # If you get an error tf_activation is not defined it may be having trouble accessing the variable from inside a function activation = tf_activation.eval(session=sess,feed_dict={x : image_input}) featuremaps = activation.shape[3] plt.figure(plt_num, figsize=(15,15)) for featuremap in range(featuremaps): plt.subplot(6,8, featuremap+1) # sets the number of feature maps to show on each row and column plt.title('FeatureMap ' + str(featuremap)) # displays the feature map number if activation_min != -1 & activation_max != -1: plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", vmin =activation_min, vmax=activation_max, cmap="gray") elif activation_max != -1: plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", vmax=activation_max, cmap="gray") elif activation_min !=-1: plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", vmin=activation_min, cmap="gray") else: plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", cmap="gray") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Step 1 Step2: Include an exploratory visualization of the dataset Step3: Step 2 Step4: Model Architecture Step5: Features and Labels Step6: Training Pipeline Step7: Train, Validate and Test the Model Step8: Restore Model and Calculate Performance with the Test Set, to check for over or underfitting Step9: Step 3 Step10: Predict the Sign Type for Each Image Step11: Analyze Performance Step12: Output Top 5 Softmax Probabilities For Each Image Found on the Web Step13: Project Writeup
14,427
<ASSISTANT_TASK:> Python Code: # Plots will be show inside the notebook %matplotlib notebook import matplotlib.pyplot as plt # NumPy is a package for manipulating N-dimensional array objects import numpy as np # Pandas is a data analysis package import pandas as pd import problem_unittests as tests # Load data and print the first n = 5 rows # URL: http://www-bcf.usc.edu/~gareth/ISL/Income1.csv DATA_URL = './resources/Income1.csv' data = pd.read_csv(DATA_URL, index_col=0) print(data.head(n=5)) # Put the second (education index) and third (income index) row in a NumPy array X_data = data['Education'].values y_data = data['Income'].values plt.figure() plt.scatter(X_data, y_data, label='Training data') plt.title('Education vs. Income') plt.xlabel('Education index') plt.ylabel('Income index') plt.grid(linestyle='dotted') plt.legend() plt.show() def build_X(x_data): Return design matrix given an array of N samples with d dimensions. # Create matrix Ax1 if d = 1 if x_data.ndim == 1: x_data = np.expand_dims(x_data, axis=1) # Find the number of samples and dimensions nb_samples = x_data.shape[0] nb_dimensions = x_data.shape[1] # Create Nxd+1 matrix filled with ones _X = np.ones((nb_samples, nb_dimensions + 1)) # Paste in the data we have in the new matrix _X[:nb_samples, 1:nb_dimensions + 1] = x_data return _X # Test and see that the design matrix was built correctly tests.test_build_x(build_X) def build_y(y_data): Return a column vector containing the target values y. # Make a copy of the argument that we can work on _y = y_data.copy() # Create y matrix Nx1 # Return result return _y ### Do *not* modify the following line ### # Test and see that the y vector was built correctly tests.test_build_y(build_y) def compute_weights(X, y): Return a vector of weights found by the derived closed-form solution. weights = None # Implement closed-form solution here return weights ### Do *not* modify the following line ### # Test and see that the weights are calculated correctly tests.test_compute_theta(compute_weights) # Build design matrix (TASK) X = None # Build y vector (TASK) y = None # Learn linear model (TASK) W = None # Print weights print('The learned linear model looks like this:') print('Y = {:.3f} x + {:.3f}'.format(W[1, 0], W[0, 0])) # Plot hyperplane and training data xs = np.linspace(X_data.min(), X_data.max(), num=50) ys = np.dot(build_X(xs), W) plt.figure() plt.scatter(X_data, y_data, label='Training data') plt.plot(xs, ys, color='Red', linewidth=1, label='Fit') plt.title('Education vs. Income') plt.xlabel('Education index') plt.ylabel('Income index') plt.grid(linestyle='dotted') plt.legend() plt.show() import time # A library for easily displaying progress meters import tqdm # Contains all built-in optimisation tools in Keras, such as stochastic gradient descent from keras import optimizers # An input "layer" and a densely-connected neural network layer from keras.layers import Input, Dense # Model is an API that wraps our linear regression model from keras.models import Model # There is only a *single* feature input_X = Input(shape=(1,)) # The output of the model is a single value output_y = Dense(units=1, use_bias=True)(input_X) # We give the input and output to our Model API model = Model(inputs=input_X, outputs=output_y) # Print a summary of the model model.summary() # # Start by setting some user options # # Learning rate (set very small so we can clearly see the training progress) lr = 0.0001 # Number of times to apply the update rule nb_iterations = 100 # Number of samples to include each iteration (used to compute gradients) nb_samples = 30 # Create optimiser using Keras sgd = optimizers.SGD(lr=lr) # Add the optimiser to our model, make it optimise mean squared error model.compile(optimizer=sgd, loss='mean_squared_error') fig, ax = plt.subplots(1,1) # Perform `nb_iterations` update rule applications for i in tqdm.tqdm(np.arange(nb_iterations)): # Learn by calling the `fit` method model.fit(X_data, y_data, batch_size=nb_samples, epochs=1, verbose=0) # Make a plot of the data and the current fit xs = np.linspace(X_data.min(), X_data.max(), num=50) ys = model.predict(xs) ax.clear() ax.scatter(X_data, y_data, label='Training data') ax.plot(xs, ys, color='Red', linewidth=1, label='Fit') ax.set_xlabel('Education index') ax.set_ylabel('Income index') ax.grid(linestyle='dotted') ax.legend() fig.canvas.draw() time.sleep(0.05) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: With Pandas we can load the aforementioned CSV data. Step2: With the data loaded we can plot it as a scatter plot using matplotlib. Step4: Modelling Step6: Task I Step8: Task II Step9: Task III Step10: <div class="alert alert-info"> Step11: Critical Analysis Step12: The input to our model is a single scalar value (Education). The output is also a single scalar value (Income). Step13: Notice in the print above how the fully-connected layer Dense() has two trainable parameters. One is the weight (slope), while the second is the bias (intercept). Keras adds bias units by default, but it can be turned off by setting use_bias=False. Step14: Now that both the model definition and the optimiser is set up we can start training. Training using the Keras model API is done by calling the fit() method.
14,428
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'pcmdi', 'sandbox-3', 'atmos') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.model_family') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "AGCM" # "ARCM" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.basic_approximations') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "primitive equations" # "non-hydrostatic" # "anelastic" # "Boussinesq" # "hydrostatic" # "quasi-hydrostatic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.horizontal_resolution_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.range_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.high_top') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_dynamics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_shortwave_radiative_transfer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_longwave_radiative_transfer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.orography.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "present day" # "modified" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.orography.changes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "related to ice sheets" # "related to tectonics" # "modified mean" # "modified variance if taken into account in model (cf gravity waves)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "spectral" # "fixed grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "finite elements" # "finite volumes" # "finite difference" # "centered finite difference" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_order') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "second" # "third" # "fourth" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.horizontal_pole') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "filter" # "pole rotation" # "artificial island" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.grid_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Gaussian" # "Latitude-Longitude" # "Cubed-Sphere" # "Icosahedral" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.vertical.coordinate_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "isobaric" # "sigma" # "hybrid sigma-pressure" # "hybrid pressure" # "vertically lagrangian" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.timestepping_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Adams-Bashforth" # "explicit" # "implicit" # "semi-implicit" # "leap frog" # "multi-step" # "Runge Kutta fifth order" # "Runge Kutta second order" # "Runge Kutta third order" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "surface pressure" # "wind components" # "divergence/curl" # "temperature" # "potential temperature" # "total water" # "water vapour" # "water liquid" # "water ice" # "total water moments" # "clouds" # "radiation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_boundary_condition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "sponge layer" # "radiation boundary condition" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_heat') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_wind') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.lateral_boundary.condition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "sponge layer" # "radiation boundary condition" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.diffusion_horizontal.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.diffusion_horizontal.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "iterated Laplacian" # "bi-harmonic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Heun" # "Roe and VanLeer" # "Roe and Superbee" # "Prather" # "UTOPIA" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.scheme_characteristics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Eulerian" # "modified Euler" # "Lagrangian" # "semi-Lagrangian" # "cubic semi-Lagrangian" # "quintic semi-Lagrangian" # "mass-conserving" # "finite volume" # "flux-corrected" # "linear" # "quadratic" # "quartic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.conserved_quantities') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "dry mass" # "tracer mass" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.conservation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "conservation fixer" # "Priestley algorithm" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "VanLeer" # "Janjic" # "SUPG (Streamline Upwind Petrov-Galerkin)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_characteristics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "2nd order" # "4th order" # "cell-centred" # "staggered grid" # "semi-staggered grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_staggering_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Arakawa B-grid" # "Arakawa C-grid" # "Arakawa D-grid" # "Arakawa E-grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.conserved_quantities') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Angular momentum" # "Horizontal momentum" # "Enstrophy" # "Mass" # "Total energy" # "Vorticity" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.conservation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "conservation fixer" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.aerosols') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "sulphate" # "nitrate" # "sea salt" # "dust" # "ice" # "organic" # "BC (black carbon / soot)" # "SOA (secondary organic aerosols)" # "POM (particulate organic matter)" # "polar stratospheric ice" # "NAT (nitric acid trihydrate)" # "NAD (nitric acid dihydrate)" # "STS (supercooled ternary solution aerosol particle)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.spectral_integration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "wide-band model" # "correlated-k" # "exponential sum fitting" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.transport_calculation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "two-stream" # "layer interaction" # "bulk" # "adaptive" # "multi-stream" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.spectral_intervals') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.greenhouse_gas_complexity') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CO2" # "CH4" # "N2O" # "CFC-11 eq" # "CFC-12 eq" # "HFC-134a eq" # "Explicit ODSs" # "Explicit other fluorinated gases" # "O3" # "H2O" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.ODS') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CFC-12" # "CFC-11" # "CFC-113" # "CFC-114" # "CFC-115" # "HCFC-22" # "HCFC-141b" # "HCFC-142b" # "Halon-1211" # "Halon-1301" # "Halon-2402" # "methyl chloroform" # "carbon tetrachloride" # "methyl chloride" # "methylene chloride" # "chloroform" # "methyl bromide" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.other_flourinated_gases') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "HFC-134a" # "HFC-23" # "HFC-32" # "HFC-125" # "HFC-143a" # "HFC-152a" # "HFC-227ea" # "HFC-236fa" # "HFC-245fa" # "HFC-365mfc" # "HFC-43-10mee" # "CF4" # "C2F6" # "C3F8" # "C4F10" # "C5F12" # "C6F14" # "C7F16" # "C8F18" # "c-C4F8" # "NF3" # "SF6" # "SO2F2" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "bi-modal size distribution" # "ensemble of ice crystals" # "mean projected area" # "ice water path" # "crystal asymmetry" # "crystal aspect ratio" # "effective crystal radius" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud droplet number concentration" # "effective cloud droplet radii" # "droplet size distribution" # "liquid water path" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "geometric optics" # "Mie theory" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_inhomogeneity.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Monte Carlo Independent Column Approximation" # "Triplecloud" # "analytic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "number concentration" # "effective radii" # "size distribution" # "asymmetry" # "aspect ratio" # "mixing state" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_gases.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.spectral_integration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "wide-band model" # "correlated-k" # "exponential sum fitting" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.transport_calculation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "two-stream" # "layer interaction" # "bulk" # "adaptive" # "multi-stream" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.spectral_intervals') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_GHG.greenhouse_gas_complexity') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CO2" # "CH4" # "N2O" # "CFC-11 eq" # "CFC-12 eq" # "HFC-134a eq" # "Explicit ODSs" # "Explicit other fluorinated gases" # "O3" # "H2O" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_GHG.ODS') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CFC-12" # "CFC-11" # "CFC-113" # "CFC-114" # "CFC-115" # "HCFC-22" # "HCFC-141b" # "HCFC-142b" # "Halon-1211" # "Halon-1301" # "Halon-2402" # "methyl chloroform" # "carbon tetrachloride" # "methyl chloride" # "methylene chloride" # "chloroform" # "methyl bromide" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_GHG.other_flourinated_gases') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "HFC-134a" # "HFC-23" # "HFC-32" # "HFC-125" # "HFC-143a" # "HFC-152a" # "HFC-227ea" # "HFC-236fa" # "HFC-245fa" # "HFC-365mfc" # "HFC-43-10mee" # "CF4" # "C2F6" # "C3F8" # "C4F10" # "C5F12" # "C6F14" # "C7F16" # "C8F18" # "c-C4F8" # "NF3" # "SF6" # "SO2F2" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.physical_reprenstation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "bi-modal size distribution" # "ensemble of ice crystals" # "mean projected area" # "ice water path" # "crystal asymmetry" # "crystal aspect ratio" # "effective crystal radius" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud droplet number concentration" # "effective cloud droplet radii" # "droplet size distribution" # "liquid water path" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "geometric optics" # "Mie theory" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_inhomogeneity.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Monte Carlo Independent Column Approximation" # "Triplecloud" # "analytic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "number concentration" # "effective radii" # "size distribution" # "asymmetry" # "aspect ratio" # "mixing state" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_gases.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Mellor-Yamada" # "Holtslag-Boville" # "EDMF" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "TKE prognostic" # "TKE diagnostic" # "TKE coupled with water" # "vertical profile of Kz" # "non-local diffusion" # "Monin-Obukhov similarity" # "Coastal Buddy Scheme" # "Coupled with convection" # "Coupled with gravity waves" # "Depth capped at cloud base" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.closure_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.counter_gradient') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mass-flux" # "adjustment" # "plume ensemble" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CAPE" # "bulk" # "ensemble" # "CAPE/WFN based" # "TKE/CIN based" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "vertical momentum transport" # "convective momentum transport" # "entrainment" # "detrainment" # "penetrative convection" # "updrafts" # "downdrafts" # "radiative effect of anvils" # "re-evaporation of convective precipitation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.microphysics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "tuning parameter based" # "single moment" # "two moment" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mass-flux" # "cumulus-capped boundary layer" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "same as deep (unified)" # "included in boundary layer turbulence" # "separate diagnosis" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "convective momentum transport" # "entrainment" # "detrainment" # "penetrative convection" # "re-evaporation of convective precipitation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.microphysics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "tuning parameter based" # "single moment" # "two moment" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_precipitation.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_precipitation.hydrometeors') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "liquid rain" # "snow" # "hail" # "graupel" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_cloud_microphysics.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_cloud_microphysics.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mixed phase" # "cloud droplets" # "cloud ice" # "ice nucleation" # "water vapour deposition" # "effect of raindrops" # "effect of snow" # "effect of graupel" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.atmos_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "atmosphere_radiation" # "atmosphere_microphysics_precipitation" # "atmosphere_turbulence_convection" # "atmosphere_gravity_waves" # "atmosphere_solar" # "atmosphere_volcano" # "atmosphere_cloud_simulator" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.uses_separate_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "entrainment" # "detrainment" # "bulk cloud" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.prognostic_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.diagnostic_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud amount" # "liquid" # "ice" # "rain" # "snow" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.optical_cloud_properties.cloud_overlap_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "random" # "maximum" # "maximum-random" # "exponential" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.optical_cloud_properties.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.function_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.function_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.convection_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "coupled with deep" # "coupled with shallow" # "not coupled with convection" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.function_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.function_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.convection_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "coupled with deep" # "coupled with shallow" # "not coupled with convection" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.isscp_attributes.top_height_estimation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "no adjustment" # "IR brightness" # "visible optical depth" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.isscp_attributes.top_height_direction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "lowest altitude level" # "highest altitude level" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.run_configuration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Inline" # "Offline" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_grid_points') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_sub_columns') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.frequency') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "surface" # "space borne" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.gas_absorption') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.effective_radius') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.lidar_inputs.ice_types') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "ice spheres" # "ice non-spherical" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.lidar_inputs.overlap') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "max" # "random" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.sponge_layer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Rayleigh friction" # "Diffusive sponge layer" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "continuous spectrum" # "discrete spectrum" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.subgrid_scale_orography') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "effect on drag" # "effect on lifting" # "enhanced topography" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.source_mechanisms') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "linear mountain waves" # "hydraulic jump" # "envelope orography" # "low level flow blocking" # "statistical sub-grid scale variance" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.calculation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "non-linear calculation" # "more than two cardinal directions" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.propagation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "linear theory" # "non-linear theory" # "includes boundary layer ducting" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.dissipation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "total wave" # "single wave" # "spectral" # "linear" # "wave saturation vs Richardson number" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.source_mechanisms') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "convection" # "precipitation" # "background spectrum" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.calculation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "spatially dependent" # "temporally dependent" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.propagation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "linear theory" # "non-linear theory" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.dissipation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "total wave" # "single wave" # "spectral" # "linear" # "wave saturation vs Richardson number" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_pathways.pathways') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "SW radiation" # "precipitating energetic particles" # "cosmic rays" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "transient" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.fixed_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.transient_characteristics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "transient" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.fixed_reference_date') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.transient_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.computation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Berger 1978" # "Laskar 2004" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.insolation_ozone.solar_ozone_impact') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.volcanos.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.volcanos.volcanoes_treatment.volcanoes_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "high frequency solar constant anomaly" # "stratospheric aerosols optical thickness" # "Other: [Please specify]" # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Model Family Step7: 1.4. Basic Approximations Step8: 2. Key Properties --&gt; Resolution Step9: 2.2. Canonical Horizontal Resolution Step10: 2.3. Range Horizontal Resolution Step11: 2.4. Number Of Vertical Levels Step12: 2.5. High Top Step13: 3. Key Properties --&gt; Timestepping Step14: 3.2. Timestep Shortwave Radiative Transfer Step15: 3.3. Timestep Longwave Radiative Transfer Step16: 4. Key Properties --&gt; Orography Step17: 4.2. Changes Step18: 5. Grid --&gt; Discretisation Step19: 6. Grid --&gt; Discretisation --&gt; Horizontal Step20: 6.2. Scheme Method Step21: 6.3. Scheme Order Step22: 6.4. Horizontal Pole Step23: 6.5. Grid Type Step24: 7. Grid --&gt; Discretisation --&gt; Vertical Step25: 8. Dynamical Core Step26: 8.2. Name Step27: 8.3. Timestepping Type Step28: 8.4. Prognostic Variables Step29: 9. Dynamical Core --&gt; Top Boundary Step30: 9.2. Top Heat Step31: 9.3. Top Wind Step32: 10. Dynamical Core --&gt; Lateral Boundary Step33: 11. Dynamical Core --&gt; Diffusion Horizontal Step34: 11.2. Scheme Method Step35: 12. Dynamical Core --&gt; Advection Tracers Step36: 12.2. Scheme Characteristics Step37: 12.3. Conserved Quantities Step38: 12.4. Conservation Method Step39: 13. Dynamical Core --&gt; Advection Momentum Step40: 13.2. Scheme Characteristics Step41: 13.3. Scheme Staggering Type Step42: 13.4. Conserved Quantities Step43: 13.5. Conservation Method Step44: 14. Radiation Step45: 15. Radiation --&gt; Shortwave Radiation Step46: 15.2. Name Step47: 15.3. Spectral Integration Step48: 15.4. Transport Calculation Step49: 15.5. Spectral Intervals Step50: 16. Radiation --&gt; Shortwave GHG Step51: 16.2. ODS Step52: 16.3. Other Flourinated Gases Step53: 17. Radiation --&gt; Shortwave Cloud Ice Step54: 17.2. Physical Representation Step55: 17.3. Optical Methods Step56: 18. Radiation --&gt; Shortwave Cloud Liquid Step57: 18.2. Physical Representation Step58: 18.3. Optical Methods Step59: 19. Radiation --&gt; Shortwave Cloud Inhomogeneity Step60: 20. Radiation --&gt; Shortwave Aerosols Step61: 20.2. Physical Representation Step62: 20.3. Optical Methods Step63: 21. Radiation --&gt; Shortwave Gases Step64: 22. Radiation --&gt; Longwave Radiation Step65: 22.2. Name Step66: 22.3. Spectral Integration Step67: 22.4. Transport Calculation Step68: 22.5. Spectral Intervals Step69: 23. Radiation --&gt; Longwave GHG Step70: 23.2. ODS Step71: 23.3. Other Flourinated Gases Step72: 24. Radiation --&gt; Longwave Cloud Ice Step73: 24.2. Physical Reprenstation Step74: 24.3. Optical Methods Step75: 25. Radiation --&gt; Longwave Cloud Liquid Step76: 25.2. Physical Representation Step77: 25.3. Optical Methods Step78: 26. Radiation --&gt; Longwave Cloud Inhomogeneity Step79: 27. Radiation --&gt; Longwave Aerosols Step80: 27.2. Physical Representation Step81: 27.3. Optical Methods Step82: 28. Radiation --&gt; Longwave Gases Step83: 29. Turbulence Convection Step84: 30. Turbulence Convection --&gt; Boundary Layer Turbulence Step85: 30.2. Scheme Type Step86: 30.3. Closure Order Step87: 30.4. Counter Gradient Step88: 31. Turbulence Convection --&gt; Deep Convection Step89: 31.2. Scheme Type Step90: 31.3. Scheme Method Step91: 31.4. Processes Step92: 31.5. Microphysics Step93: 32. Turbulence Convection --&gt; Shallow Convection Step94: 32.2. Scheme Type Step95: 32.3. Scheme Method Step96: 32.4. Processes Step97: 32.5. Microphysics Step98: 33. Microphysics Precipitation Step99: 34. Microphysics Precipitation --&gt; Large Scale Precipitation Step100: 34.2. Hydrometeors Step101: 35. Microphysics Precipitation --&gt; Large Scale Cloud Microphysics Step102: 35.2. Processes Step103: 36. Cloud Scheme Step104: 36.2. Name Step105: 36.3. Atmos Coupling Step106: 36.4. Uses Separate Treatment Step107: 36.5. Processes Step108: 36.6. Prognostic Scheme Step109: 36.7. Diagnostic Scheme Step110: 36.8. Prognostic Variables Step111: 37. Cloud Scheme --&gt; Optical Cloud Properties Step112: 37.2. Cloud Inhomogeneity Step113: 38. Cloud Scheme --&gt; Sub Grid Scale Water Distribution Step114: 38.2. Function Name Step115: 38.3. Function Order Step116: 38.4. Convection Coupling Step117: 39. Cloud Scheme --&gt; Sub Grid Scale Ice Distribution Step118: 39.2. Function Name Step119: 39.3. Function Order Step120: 39.4. Convection Coupling Step121: 40. Observation Simulation Step122: 41. Observation Simulation --&gt; Isscp Attributes Step123: 41.2. Top Height Direction Step124: 42. Observation Simulation --&gt; Cosp Attributes Step125: 42.2. Number Of Grid Points Step126: 42.3. Number Of Sub Columns Step127: 42.4. Number Of Levels Step128: 43. Observation Simulation --&gt; Radar Inputs Step129: 43.2. Type Step130: 43.3. Gas Absorption Step131: 43.4. Effective Radius Step132: 44. Observation Simulation --&gt; Lidar Inputs Step133: 44.2. Overlap Step134: 45. Gravity Waves Step135: 45.2. Sponge Layer Step136: 45.3. Background Step137: 45.4. Subgrid Scale Orography Step138: 46. Gravity Waves --&gt; Orographic Gravity Waves Step139: 46.2. Source Mechanisms Step140: 46.3. Calculation Method Step141: 46.4. Propagation Scheme Step142: 46.5. Dissipation Scheme Step143: 47. Gravity Waves --&gt; Non Orographic Gravity Waves Step144: 47.2. Source Mechanisms Step145: 47.3. Calculation Method Step146: 47.4. Propagation Scheme Step147: 47.5. Dissipation Scheme Step148: 48. Solar Step149: 49. Solar --&gt; Solar Pathways Step150: 50. Solar --&gt; Solar Constant Step151: 50.2. Fixed Value Step152: 50.3. Transient Characteristics Step153: 51. Solar --&gt; Orbital Parameters Step154: 51.2. Fixed Reference Date Step155: 51.3. Transient Method Step156: 51.4. Computation Method Step157: 52. Solar --&gt; Insolation Ozone Step158: 53. Volcanos Step159: 54. Volcanos --&gt; Volcanoes Treatment
14,429
<ASSISTANT_TASK:> Python Code: import hashlib import os import pickle from urllib.request import urlretrieve import numpy as np from PIL import Image from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer from sklearn.utils import resample from tqdm import tqdm from zipfile import ZipFile print('All modules imported.') def download(url, file): Download file from <url> :param url: URL to file :param file: Local file path if not os.path.isfile(file): print('Downloading ' + file + '...') urlretrieve(url, file) print('Download Finished') # Download the training and test dataset. download('https://s3.amazonaws.com/udacity-sdc/notMNIST_train.zip', 'notMNIST_train.zip') download('https://s3.amazonaws.com/udacity-sdc/notMNIST_test.zip', 'notMNIST_test.zip') # Make sure the files aren't corrupted assert hashlib.md5(open('notMNIST_train.zip', 'rb').read()).hexdigest() == 'c8673b3f28f489e9cdf3a3d74e2ac8fa',\ 'notMNIST_train.zip file is corrupted. Remove the file and try again.' assert hashlib.md5(open('notMNIST_test.zip', 'rb').read()).hexdigest() == '5d3c7e653e63471c88df796156a9dfa9',\ 'notMNIST_test.zip file is corrupted. Remove the file and try again.' # Wait until you see that all files have been downloaded. print('All files downloaded.') def uncompress_features_labels(file): Uncompress features and labels from a zip file :param file: The zip file to extract the data from features = [] labels = [] with ZipFile(file) as zipf: # Progress Bar filenames_pbar = tqdm(zipf.namelist(), unit='files') # Get features and labels from all files for filename in filenames_pbar: # Check if the file is a directory if not filename.endswith('/'): with zipf.open(filename) as image_file: image = Image.open(image_file) image.load() # Load image data as 1 dimensional array # We're using float32 to save on memory space feature = np.array(image, dtype=np.float32).flatten() # Get the the letter from the filename. This is the letter of the image. label = os.path.split(filename)[1][0] features.append(feature) labels.append(label) return np.array(features), np.array(labels) # Get the features and labels from the zip files train_features, train_labels = uncompress_features_labels('notMNIST_train.zip') test_features, test_labels = uncompress_features_labels('notMNIST_test.zip') # Limit the amount of data to work with a docker container docker_size_limit = 150000 train_features, train_labels = resample(train_features, train_labels, n_samples=docker_size_limit) # Set flags for feature engineering. This will prevent you from skipping an important step. is_features_normal = False is_labels_encod = False # Wait until you see that all features and labels have been uncompressed. print('All features and labels uncompressed.') # Problem 1 - Implement Min-Max scaling for grayscale image data def normalize_grayscale(image_data): Normalize the image data with Min-Max scaling to a range of [0.1, 0.9] :param image_data: The image data to be normalized :return: Normalized image data # Setting the equation parameters image_data = image_data.astype(np.float32) a = 0.1 b = 0.9 x_min = np.min(image_data) x_max = np.max(image_data) for idx in range(len(image_data)): x = image_data[idx] image_data[idx] = a + ((x - x_min) * (b - a) / (x_max - x_min)) return image_data ### DON'T MODIFY ANYTHING BELOW ### # Test Cases np.testing.assert_array_almost_equal( normalize_grayscale(np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 255])), [0.1, 0.103137254902, 0.106274509804, 0.109411764706, 0.112549019608, 0.11568627451, 0.118823529412, 0.121960784314, 0.125098039216, 0.128235294118, 0.13137254902, 0.9], decimal=3) np.testing.assert_array_almost_equal( normalize_grayscale(np.array([0, 1, 10, 20, 30, 40, 233, 244, 254,255])), [0.1, 0.103137254902, 0.13137254902, 0.162745098039, 0.194117647059, 0.225490196078, 0.830980392157, 0.865490196078, 0.896862745098, 0.9]) if not is_features_normal: train_features = normalize_grayscale(train_features) test_features = normalize_grayscale(test_features) is_features_normal = True print('Tests Passed!') if not is_labels_encod: # Turn labels into numbers and apply One-Hot Encoding encoder = LabelBinarizer() encoder.fit(train_labels) train_labels = encoder.transform(train_labels) test_labels = encoder.transform(test_labels) # Change to float32, so it can be multiplied against the features in TensorFlow, which are float32 train_labels = train_labels.astype(np.float32) test_labels = test_labels.astype(np.float32) is_labels_encod = True print('Labels One-Hot Encoded') assert is_features_normal, 'You skipped the step to normalize the features' assert is_labels_encod, 'You skipped the step to One-Hot Encode the labels' # Get randomized datasets for training and validation train_features, valid_features, train_labels, valid_labels = train_test_split( train_features, train_labels, test_size=0.05, random_state=832289) print('Training features and labels randomized and split.') # Save the data for easy access pickle_file = 'notMNIST.pickle' if not os.path.isfile(pickle_file): print('Saving data to pickle file...') try: with open('notMNIST.pickle', 'wb') as pfile: pickle.dump( { 'train_dataset': train_features, 'train_labels': train_labels, 'valid_dataset': valid_features, 'valid_labels': valid_labels, 'test_dataset': test_features, 'test_labels': test_labels, }, pfile, pickle.HIGHEST_PROTOCOL) except Exception as e: print('Unable to save data to', pickle_file, ':', e) raise print('Data cached in pickle file.') %matplotlib inline # Load the modules import pickle import math import numpy as np import tensorflow as tf from tqdm import tqdm import matplotlib.pyplot as plt # Reload the data pickle_file = 'notMNIST.pickle' with open(pickle_file, 'rb') as f: pickle_data = pickle.load(f) train_features = pickle_data['train_dataset'] train_labels = pickle_data['train_labels'] valid_features = pickle_data['valid_dataset'] valid_labels = pickle_data['valid_labels'] test_features = pickle_data['test_dataset'] test_labels = pickle_data['test_labels'] del pickle_data # Free up memory print('Data and modules loaded.') # All the pixels in the image (28 * 28 = 784) features_count = 784 # All the labels labels_count = 10 # TODO: Set the features and labels tensors features = tf.placeholder(tf.float32, [None, features_count]) labels = tf.placeholder(tf.float32, [None, labels_count]) # TODO: Set the weights and biases tensors weights = tf.Variable(tf.truncated_normal([features_count, labels_count])) biases = tf.Variable(tf.zeros([labels_count])) ### DON'T MODIFY ANYTHING BELOW ### #Test Cases from tensorflow.python.ops.variables import Variable assert features._op.name.startswith('Placeholder'), 'features must be a placeholder' assert labels._op.name.startswith('Placeholder'), 'labels must be a placeholder' assert isinstance(weights, Variable), 'weights must be a TensorFlow variable' assert isinstance(biases, Variable), 'biases must be a TensorFlow variable' assert features._shape == None or (\ features._shape.dims[0].value is None and\ features._shape.dims[1].value in [None, 784]), 'The shape of features is incorrect' assert labels._shape == None or (\ labels._shape.dims[0].value is None and\ labels._shape.dims[1].value in [None, 10]), 'The shape of labels is incorrect' assert weights._variable._shape == (784, 10), 'The shape of weights is incorrect' assert biases._variable._shape == (10), 'The shape of biases is incorrect' assert features._dtype == tf.float32, 'features must be type float32' assert labels._dtype == tf.float32, 'labels must be type float32' # Feed dicts for training, validation, and test session train_feed_dict = {features: train_features, labels: train_labels} valid_feed_dict = {features: valid_features, labels: valid_labels} test_feed_dict = {features: test_features, labels: test_labels} # Linear Function WX + b logits = tf.matmul(features, weights) + biases prediction = tf.nn.softmax(logits) # Cross entropy cross_entropy = -tf.reduce_sum(labels * tf.log(prediction), reduction_indices=1) # Training loss loss = tf.reduce_mean(cross_entropy) # Create an operation that initializes all variables init = tf.global_variables_initializer() # Test Cases with tf.Session() as session: session.run(init) session.run(loss, feed_dict=train_feed_dict) session.run(loss, feed_dict=valid_feed_dict) session.run(loss, feed_dict=test_feed_dict) biases_data = session.run(biases) assert not np.count_nonzero(biases_data), 'biases must be zeros' print('Tests Passed!') # Determine if the predictions are correct is_correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(labels, 1)) # Calculate the accuracy of the predictions accuracy = tf.reduce_mean(tf.cast(is_correct_prediction, tf.float32)) print('Accuracy function created.') # Change if you have memory restrictions batch_size = 128 # TODO: Find the best parameters for each configuration epochs = 30 learning_rate = 0.05 ### DON'T MODIFY ANYTHING BELOW ### # Gradient Descent optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) # The accuracy measured against the validation set validation_accuracy = 0.0 # Measurements use for graphing loss and accuracy log_batch_step = 50 batches = [] loss_batch = [] train_acc_batch = [] valid_acc_batch = [] with tf.Session() as session: session.run(init) batch_count = int(math.ceil(len(train_features)/batch_size)) for epoch_i in range(epochs): # Progress bar batches_pbar = tqdm(range(batch_count), desc='Epoch {:>2}/{}'.format(epoch_i+1, epochs), unit='batches') # The training cycle for batch_i in batches_pbar: # Get a batch of training features and labels batch_start = batch_i*batch_size batch_features = train_features[batch_start:batch_start + batch_size] batch_labels = train_labels[batch_start:batch_start + batch_size] # Run optimizer and get loss _, l = session.run( [optimizer, loss], feed_dict={features: batch_features, labels: batch_labels}) # Log every 50 batches if not batch_i % log_batch_step: # Calculate Training and Validation accuracy training_accuracy = session.run(accuracy, feed_dict=train_feed_dict) validation_accuracy = session.run(accuracy, feed_dict=valid_feed_dict) # Log batches previous_batch = batches[-1] if batches else 0 batches.append(log_batch_step + previous_batch) loss_batch.append(l) train_acc_batch.append(training_accuracy) valid_acc_batch.append(validation_accuracy) # Check accuracy against Validation data validation_accuracy = session.run(accuracy, feed_dict=valid_feed_dict) loss_plot = plt.subplot(211) loss_plot.set_title('Loss') loss_plot.plot(batches, loss_batch, 'g') loss_plot.set_xlim([batches[0], batches[-1]]) acc_plot = plt.subplot(212) acc_plot.set_title('Accuracy') acc_plot.plot(batches, train_acc_batch, 'r', label='Training Accuracy') acc_plot.plot(batches, valid_acc_batch, 'x', label='Validation Accuracy') acc_plot.set_ylim([0, 1.0]) acc_plot.set_xlim([batches[0], batches[-1]]) acc_plot.legend(loc=4) plt.tight_layout() plt.show() print('Validation accuracy at {}'.format(validation_accuracy)) ### DON'T MODIFY ANYTHING BELOW ### # The accuracy measured against the test set test_accuracy = 0.0 with tf.Session() as session: session.run(init) batch_count = int(math.ceil(len(train_features)/batch_size)) for epoch_i in range(epochs): # Progress bar batches_pbar = tqdm(range(batch_count), desc='Epoch {:>2}/{}'.format(epoch_i+1, epochs), unit='batches') # The training cycle for batch_i in batches_pbar: # Get a batch of training features and labels batch_start = batch_i*batch_size batch_features = train_features[batch_start:batch_start + batch_size] batch_labels = train_labels[batch_start:batch_start + batch_size] # Run optimizer _ = session.run(optimizer, feed_dict={features: batch_features, labels: batch_labels}) # Check accuracy against Test data test_accuracy = session.run(accuracy, feed_dict=test_feed_dict) assert test_accuracy >= 0.80, 'Test accuracy at {}, should be equal to or greater than 0.80'.format(test_accuracy) print('Nice Job! Test Accuracy is {}'.format(test_accuracy)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step3: The notMNIST dataset is too large for many computers to handle. It contains 500,000 images for just training. You'll be using a subset of this data, 15,000 images for each label (A-J). Step5: <img src="image/Mean_Variance_Image.png" style="height Step6: Checkpoint Step7: Problem 2 Step8: <img src="image/Learn_Rate_Tune_Image.png" style="height Step9: Test
14,430
<ASSISTANT_TASK:> Python Code: 2 + 3 2*3 2**3 sin(pi) from math import sin, pi sin(pi) a = 10 a c = from pruebas_1 import prueba_1_1 prueba_1_1(_, c) A = [2, 4, 8, 10] A A*2 f = lambda x: x**2 + 1 f(2) def g(x): y = x**2 + 1 return y g(2) def cel_a_faren(grados_cel): grados_faren = # Escribe el codigo para hacer el calculo aqui return grados_faren cel_a_faren(10) cel_a_faren(50) from pruebas_1 import prueba_1_2 prueba_1_2(cel_a_faren) for dato in A: print dato*2 B = [] for dato in A: B.append(dato*2) B C = [] # Escribe el codigo para declarar el primer arreglo adentro de los corchetes C D = [] # Escribe el codigo de tu ciclo for aqui D from pruebas_1 import prueba_1_3 prueba_1_3(C, D) f = lambda x: x**3 + 2*x**2 + 10*x - 20 f(1.0) f(2.0) x_1, x_2 = 1.0, 2.0 xm1 = (x_1 + x_2)/2.0 f(xm1) x_1, x_2 = x_1, xm1 xm2 = (x_1 + x_2)/2.0 f(xm2) def biseccion(x1, x2): return (x1 + x2)/2.0 x_1, x_2 = x_1, xm1 xm2 = biseccion(x_1, x_2) f(xm2) x_1, x_2 = 1.0, 2.0 xm1 = biseccion(x_1, x_2) f(xm1) if x_2*xm1 > 0: x_2 = xm1 else: x_1 = xm1 xm2 = biseccion(x_1, x_2) f(xm2) if x_2*xm2 > 0: x_2 = xm2 else: x_1 = xm2 xm3 = biseccion(x_1, x_2) f(xm3) n = (log(1) - log(0.001))/(log(2)) n def metodo_biseccion(funcion, x1, x2, n): xs = [] for i in range(n): xs.append(biseccion(x1, x2)) if funcion(x2)*funcion(xs[-1]) > 0: x2 = xs[-1] else: x1 = xs[-1] return xs[-1] metodo_biseccion(f, 1.0, 2.0, 10) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Sin embargo no existen funciones trigonométricas cargadas por default. Para esto tenemos que importarlas de la libreria math Step2: Variables Step3: Ejercicio Step4: Ejecuta la prueba de abajo para saber si has creado el codigo correcto Step5: Listas Step6: Pero si intentamos multiplicar estos datos por un numero, no tendrá el comportamiento esperado. Step7: Funciones Step8: Esta linea de codigo es equivalente a definir una función matemática de la siguiente manera Step9: Esta notación que introducimos es muy util para funciones matemáticas, pero esto nos obliga a pensar en las definiciones de una manera funcional, lo cual no siempre es la solución (sobre todo en un lenguaje con un paradigma de programación orientado a objetos). Step10: Con los mismos resultados Step11: Ejercicio Step12: Y para probar trata de convertir algunos datos Step13: Ciclos de control Step14: ó agregarlo en una lista nueva Step15: y aun muchas cosas mas, pero por ahora es momento de empezar con la práctica. Step16: Ejecuta las pruebas de abajo Step17: Método de bisección Step18: Una vez que tenemos dos puntos de los que sabemos que definen el intervalo donde se encuetra una raiz, podemos empezar a iterar para descubrir el punto medio. Step19: Y de aqui podemos notar que el resultado que nos dio esto es positivo, es decir que la raiz tiene que estar entre $x_1$ y $x_M$. Por lo que para nuestra siguiente iteración usaremos el nuevo intervalo $x_1 = 1$ y $x_2 = 2.875$, es decir que ahora asignaremos el valor de $x_M$ a $x_2$. Step20: Y podriamos seguir haciendo esto hasta que tengamos la exactitud que queremos, pero esa no seria una manera muy inteligente de hacerlo (tenemos una maquina a la que le gusta hacer tareas repetitivas y no la aprovechamos?). Step21: Si volvemos a ejecutar el codigo que teniamos, sustituyendo esta función, obtendremos exactamente el mismo resultado Step22: Y ahora lo que tenemos que hacer es poner una condicion para que $x_M$ se intercambie con $x_1$ ó $x_2$ dependiendo del signo. Step23: Si, yo se que parece raro, pero si lo revisas con calma te daras cuenta que funciona. Step24: Es decir, $n = 10$.
14,431
<ASSISTANT_TASK:> Python Code:: from sklearn.svm import SVC from sklearn.metrics import classification_report # create a linear SVC model with balanced class weights model = SVC(C=1, kernel='linear', class_weight='balanced') # fit model model.fit(X_train, y_train) # make predictions on test data y_pred = model.predict(X_test) # create a dataframe of feature coefficients coef = pd.DataFrame(model.coef_,columns=X_train.columns) print(coef) # print classification report print(classification_report(y_test, y_pred)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
14,432
<ASSISTANT_TASK:> Python Code: !pip install --upgrade pip !pip install -q -U tfx import os import tempfile import urllib import pandas as pd import tensorflow_model_analysis as tfma from tfx.orchestration.experimental.interactive.interactive_context import InteractiveContext from tfx import v1 as tfx print('TFX version: {}'.format(tfx.__version__)) import ml_metadata as mlmd print('MLMD version: {}'.format(mlmd.__version__)) from ml_metadata.proto import metadata_store_pb2 DATA_PATH = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/penguin/data/labelled/penguins_processed.csv' _data_root = tempfile.mkdtemp(prefix='tfx-data') # TODO # Join various path components _data_filepath = os.path.join(_data_root, "penguins_processed.csv") urllib.request.urlretrieve(DATA_PATH, _data_filepath) # TODO interactive_context = InteractiveContext() # TODO example_gen = tfx.components.CsvExampleGen(input_base=_data_root) interactive_context.run(example_gen) # TODO statistics_gen = tfx.components.StatisticsGen( examples=example_gen.outputs['examples']) interactive_context.run(statistics_gen) # TODO infer_schema = tfx.components.SchemaGen( statistics=statistics_gen.outputs['statistics'], infer_feature_shape=True) interactive_context.run(infer_schema) # Define the module file for the Trainer component trainer_module_file = 'penguin_trainer.py' %%writefile {trainer_module_file} # Define the training algorithm for the Trainer module file import os from typing import List, Text import tensorflow as tf from tensorflow import keras from tfx import v1 as tfx from tfx_bsl.public import tfxio from tensorflow_metadata.proto.v0 import schema_pb2 # Features used for classification - culmen length and depth, flipper length, # body mass, and species. _LABEL_KEY = 'species' _FEATURE_KEYS = [ 'culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g' ] def _input_fn(file_pattern: List[Text], data_accessor: tfx.components.DataAccessor, schema: schema_pb2.Schema, batch_size: int) -> tf.data.Dataset: return data_accessor.tf_dataset_factory( file_pattern, tfxio.TensorFlowDatasetOptions( batch_size=batch_size, label_key=_LABEL_KEY), schema).repeat() def _build_keras_model(): inputs = [keras.layers.Input(shape=(1,), name=f) for f in _FEATURE_KEYS] d = keras.layers.concatenate(inputs) d = keras.layers.Dense(8, activation='relu')(d) d = keras.layers.Dense(8, activation='relu')(d) outputs = keras.layers.Dense(3)(d) model = keras.Model(inputs=inputs, outputs=outputs) model.compile( optimizer=keras.optimizers.Adam(1e-2), loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[keras.metrics.SparseCategoricalAccuracy()]) return model def run_fn(fn_args: tfx.components.FnArgs): schema = schema_pb2.Schema() tfx.utils.parse_pbtxt_file(fn_args.schema_path, schema) train_dataset = _input_fn( fn_args.train_files, fn_args.data_accessor, schema, batch_size=10) eval_dataset = _input_fn( fn_args.eval_files, fn_args.data_accessor, schema, batch_size=10) model = _build_keras_model() model.fit( train_dataset, epochs=int(fn_args.train_steps / 20), steps_per_epoch=20, validation_data=eval_dataset, validation_steps=fn_args.eval_steps) model.save(fn_args.serving_model_dir, save_format='tf') trainer = tfx.components.Trainer( module_file=os.path.abspath(trainer_module_file), examples=example_gen.outputs['examples'], schema=infer_schema.outputs['schema'], train_args=tfx.proto.TrainArgs(num_steps=100), eval_args=tfx.proto.EvalArgs(num_steps=50)) interactive_context.run(trainer) _serving_model_dir = os.path.join(tempfile.mkdtemp(), 'serving_model/penguins_classification') eval_config = tfma.EvalConfig( model_specs=[ tfma.ModelSpec(label_key='species', signature_name='serving_default') ], metrics_specs=[ tfma.MetricsSpec(metrics=[ tfma.MetricConfig( class_name='SparseCategoricalAccuracy', threshold=tfma.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={'value': 0.6}))) ]) ], slicing_specs=[tfma.SlicingSpec()]) evaluator = tfx.components.Evaluator( examples=example_gen.outputs['examples'], model=trainer.outputs['model'], schema=infer_schema.outputs['schema'], eval_config=eval_config) interactive_context.run(evaluator) pusher = tfx.components.Pusher( model=trainer.outputs['model'], model_blessing=evaluator.outputs['blessing'], push_destination=tfx.proto.PushDestination( filesystem=tfx.proto.PushDestination.Filesystem( base_directory=_serving_model_dir))) interactive_context.run(pusher) connection_config = interactive_context.metadata_connection_config store = mlmd.MetadataStore(connection_config) # All TFX artifacts are stored in the base directory base_dir = connection_config.sqlite.filename_uri.split('metadata.sqlite')[0] def display_types(types): # Helper function to render dataframes for the artifact and execution types table = {'id': [], 'name': []} for a_type in types: table['id'].append(a_type.id) table['name'].append(a_type.name) return pd.DataFrame(data=table) def display_artifacts(store, artifacts): # Helper function to render dataframes for the input artifacts table = {'artifact id': [], 'type': [], 'uri': []} for a in artifacts: table['artifact id'].append(a.id) artifact_type = store.get_artifact_types_by_id([a.type_id])[0] table['type'].append(artifact_type.name) table['uri'].append(a.uri.replace(base_dir, './')) return pd.DataFrame(data=table) def display_properties(store, node): # Helper function to render dataframes for artifact and execution properties table = {'property': [], 'value': []} for k, v in node.properties.items(): table['property'].append(k) table['value'].append( v.string_value if v.HasField('string_value') else v.int_value) for k, v in node.custom_properties.items(): table['property'].append(k) table['value'].append( v.string_value if v.HasField('string_value') else v.int_value) return pd.DataFrame(data=table) display_types(store.get_artifact_types()) pushed_models = store.get_artifacts_by_type("PushedModel") display_artifacts(store, pushed_models) pushed_model = pushed_models[-1] display_properties(store, pushed_model) def get_one_hop_parent_artifacts(store, artifacts): # Get a list of artifacts within a 1-hop of the artifacts of interest artifact_ids = [artifact.id for artifact in artifacts] executions_ids = set( event.execution_id for event in store.get_events_by_artifact_ids(artifact_ids) if event.type == mlmd.proto.Event.OUTPUT) artifacts_ids = set( event.artifact_id for event in store.get_events_by_execution_ids(executions_ids) if event.type == mlmd.proto.Event.INPUT) return [artifact for artifact in store.get_artifacts_by_id(artifacts_ids)] # TODO parent_artifacts = get_one_hop_parent_artifacts(store, [pushed_model]) display_artifacts(store, parent_artifacts) exported_model = parent_artifacts[0] display_properties(store, exported_model) model_parents = get_one_hop_parent_artifacts(store, [exported_model]) display_artifacts(store, model_parents) used_data = model_parents[0] display_properties(store, used_data) display_types(store.get_execution_types()) def find_producer_execution(store, artifact): executions_ids = set( event.execution_id for event in store.get_events_by_artifact_ids([artifact.id]) if event.type == mlmd.proto.Event.OUTPUT) return store.get_executions_by_id(executions_ids)[0] # TODO trainer = find_producer_execution(store, exported_model) display_properties(store, trainer) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Install and import TFX Step2: Please ignore the incompatibility error and warnings. Make sure to re-run the cell. Step3: Import the MLMD library. Step4: Download the dataset Step5: Create an InteractiveContext Step6: Construct the TFX Pipeline Step7: Instantiate and run the StatisticsGen Component Step8: Instantiate and run the SchemaGen Component Step9: Instantiate and run the Trainer Component Step10: Run the Trainer component. Step11: Evaluate and push the model Step12: Running the TFX pipeline populates the MLMD Database. In the next section, you use the MLMD API to query this database for metadata information. Step13: Create some helper functions to view the data from the MD store. Step14: First, query the MD store for a list of all its stored ArtifactTypes. Step15: Next, query all PushedModel artifacts. Step16: Query the MD store for the latest pushed model. This notebook has only one pushed model. Step17: One of the first steps in debugging a pushed model is to look at which trained model is pushed and to see which training data is used to train that model. Step18: Query the parent artifacts for the pushed model. Step19: Query the properties for the model. Step20: Query the upstream artifacts for the model. Step21: Get the training data the model trained with. Step22: Now that you have the training data that the model trained with, query the database again to find the training step (execution). Query the MD store for a list of the registered execution types. Step23: The training step is the ExecutionType named tfx.components.trainer.component.Trainer. Traverse the MD store to get the trainer run that corresponds to the pushed model.
14,433
<ASSISTANT_TASK:> Python Code: df = pd.read_csv('../data/titanic.csv', index_col='PassengerId') df.head() df_no_missing = df[['Survived', 'Pclass', 'Fare', 'Age', 'Sex']].dropna() X_train_withStrings = df_no_missing[['Pclass', 'Fare', 'Age', 'Sex']] y_train = df_no_missing['Survived'] def strings_to_int(df, target_column): df_mod = df.copy() targets_to_rename = df_mod[target_column].unique() map_to_int = {name: n for n, name in enumerate(targets_to_rename)} df_mod[target_column] = df_mod[target_column].replace(map_to_int) return df_mod X_train = strings_to_int(X_train_withStrings, "Sex") X_train.head() clf = DecisionTreeClassifier(random_state=241) clf.fit(X_train, y_train) importances = pd.Series(clf.feature_importances_, index = list(X_train)) importances print(' '.join(importances.sort_values(ascending=False).head(2).index.values)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2. Оставьте в выборке четыре признака Step2: 6. Обучите решающее дерево с параметром random_state=241 и остальными параметрами по умолчанию. Step3: 7. Вычислите важности признаков и найдите два признака с наибольшей важностью. Их названия будут ответами для данной задачи (в качестве ответа укажите названия признаков через запятую без пробелов).
14,434
<ASSISTANT_TASK:> Python Code: import os import requests import pandas as pd import csv import urllib2 import openpyxl import csv def xls_state(): path_year = os.path.join(os.getcwd()) file_name = path_year + "/" + "MSA_STATE"+ ".xls" url= "https://www.census.gov/2010census/xls/fips_codes_website.xls" f = urllib2.urlopen(url) data = f.read() with open(file_name, "wb") as code: code.write(data) def xls_principal(): path_year = os.path.join(os.getcwd()) file_name = path_year + "/" + "MSA_principal"+ ".xls" url= "http://www.census.gov/population/metro/files/lists/2015/List2.xls" f = urllib2.urlopen(url) data = f.read() with open(file_name, "wb") as code: code.write(data) def main(): Main execution xls_state() xls_principal() ####################### ### Execution ######## ####################### if __name__ == '__main__': main() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: INGESTION Step2: Define function taht downloads census xls file that contains cbsa and the corresponding msa name and principal cities that belong to that msa Step4: MAIN EXECUTION
14,435
<ASSISTANT_TASK:> Python Code: from datetime import datetime import matplotlib.pyplot as plt import metpy.calc as mpcalc from metpy.io import get_upper_air_data from metpy.io.upperair import UseSampleData from metpy.plots import SkewT from metpy.units import concatenate with UseSampleData(): # Only needed to use our local sample data # Download and parse the data dataset = get_upper_air_data(datetime(1999, 5, 4, 0), 'OUN') p = dataset.variables['pressure'][:] T = dataset.variables['temperature'][:] Td = dataset.variables['dewpoint'][:] u = dataset.variables['u_wind'][:] v = dataset.variables['v_wind'][:] fig = plt.figure(figsize=(9, 9)) skew = SkewT(fig, rotation=45) # Plot the data using normal plotting functions, in this case using # log scaling in Y, as dictated by the typical meteorological plot skew.plot(p, T, 'r') skew.plot(p, Td, 'g') skew.plot_barbs(p, u, v) skew.ax.set_ylim(1000, 100) skew.ax.set_xlim(-40, 60) # Calculate LCL height and plot as black dot l = mpcalc.lcl(p[0], T[0], Td[0]) lcl_temp = mpcalc.dry_lapse(concatenate((p[0], l)), T[0])[-1].to('degC') skew.plot(l, lcl_temp, 'ko', markerfacecolor='black') # Calculate full parcel profile and add to plot as black line prof = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC') skew.plot(p, prof, 'k', linewidth=2) # Example of coloring area between profiles greater = T >= prof skew.ax.fill_betweenx(p, T, prof, where=greater, facecolor='blue', alpha=0.4) skew.ax.fill_betweenx(p, T, prof, where=~greater, facecolor='red', alpha=0.4) # An example of a slanted line at constant T -- in this case the 0 # isotherm l = skew.ax.axvline(0, color='c', linestyle='--', linewidth=2) # Add the relevant special lines skew.plot_dry_adiabats() skew.plot_moist_adiabats() skew.plot_mixing_lines() # Show the plot plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create a new figure. The dimensions here give a good aspect ratio
14,436
<ASSISTANT_TASK:> Python Code: %matplotlib inline import pandas as pd import numpy as np import pymc3 as pm import matplotlib.pyplot as plt import seaborn import warnings warnings.filterwarnings('ignore') from collections import OrderedDict from time import time import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.optimize import fmin_powell from scipy import integrate import theano as thno import theano.tensor as T def run_models(df, upper_order=5): ''' Convenience function: Fit a range of pymc3 models of increasing polynomial complexity. Suggest limit to max order 5 since calculation time is exponential. ''' models, traces = OrderedDict(), OrderedDict() for k in range(1,upper_order+1): nm = 'k{}'.format(k) fml = create_poly_modelspec(k) with pm.Model() as models[nm]: print('\nRunning: {}'.format(nm)) pm.glm.GLM.from_formula(fml, df, family=pm.glm.families.Normal()) traces[nm] = pm.sample(2000, init=None) return models, traces def plot_traces(traces, retain=1000): ''' Convenience function: Plot traces with overlaid means and values ''' ax = pm.traceplot(traces[-retain:], figsize=(12,len(traces.varnames)*1.5), lines={k: v['mean'] for k, v in pm.df_summary(traces[-retain:]).iterrows()}) for i, mn in enumerate(pm.df_summary(traces[-retain:])['mean']): ax[i,0].annotate('{:.2f}'.format(mn), xy=(mn,0), xycoords='data' ,xytext=(5,10), textcoords='offset points', rotation=90 ,va='bottom', fontsize='large', color='#AA0022') def create_poly_modelspec(k=1): ''' Convenience function: Create a polynomial modelspec string for patsy ''' return ('income ~ educ + hours + age ' + ' '.join(['+ np.power(age,{})'.format(j) for j in range(2,k+1)])).strip() data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data", header=None, names=['age', 'workclass', 'fnlwgt', 'education-categorical', 'educ', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'captial-gain', 'capital-loss', 'hours', 'native-country', 'income']) data.head(10) data = data[~pd.isnull(data['income'])] data[data['native-country']==" United-States"] income = 1 * (data['income'] == " >50K") age2 = np.square(data['age']) data = data[['age', 'educ', 'hours']] data['age2'] = age2 data['income'] = income income.value_counts() g = seaborn.pairplot(data) # Compute the correlation matrix corr = data.corr() # Generate a mask for the upper triangle mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # Set up the matplotlib figure f, ax = plt.subplots(figsize=(11, 9)) # Generate a custom diverging colormap cmap = seaborn.diverging_palette(220, 10, as_cmap=True) # Draw the heatmap with the mask and correct aspect ratio seaborn.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, linewidths=.5, cbar_kws={"shrink": .5}, ax=ax) with pm.Model() as logistic_model: pm.glm.GLM.from_formula('income ~ age + age2 + educ + hours', data, family=pm.glm.families.Binomial()) trace_logistic_model = pm.sample(4000) plot_traces(trace_logistic_model, retain=1000) plt.figure(figsize=(9,7)) trace = trace_logistic_model[1000:] seaborn.jointplot(trace['age'], trace['educ'], kind="hex", color="#4CB391") plt.xlabel("beta_age") plt.ylabel("beta_educ") plt.show() # Linear model with hours == 50 and educ == 12 lm = lambda x, samples: 1 / (1 + np.exp(-(samples['Intercept'] + samples['age']*x + samples['age2']*np.square(x) + samples['educ']*12 + samples['hours']*50))) # Linear model with hours == 50 and educ == 16 lm2 = lambda x, samples: 1 / (1 + np.exp(-(samples['Intercept'] + samples['age']*x + samples['age2']*np.square(x) + samples['educ']*16 + samples['hours']*50))) # Linear model with hours == 50 and educ == 19 lm3 = lambda x, samples: 1 / (1 + np.exp(-(samples['Intercept'] + samples['age']*x + samples['age2']*np.square(x) + samples['educ']*19 + samples['hours']*50))) # Plot the posterior predictive distributions of P(income > $50K) vs. age pm.plot_posterior_predictive_glm(trace, eval=np.linspace(25, 75, 1000), lm=lm, samples=100, color="blue", alpha=.15) pm.plot_posterior_predictive_glm(trace, eval=np.linspace(25, 75, 1000), lm=lm2, samples=100, color="green", alpha=.15) pm.plot_posterior_predictive_glm(trace, eval=np.linspace(25, 75, 1000), lm=lm3, samples=100, color="red", alpha=.15) import matplotlib.lines as mlines blue_line = mlines.Line2D(['lm'], [], color='b', label='High School Education') green_line = mlines.Line2D(['lm2'], [], color='g', label='Bachelors') red_line = mlines.Line2D(['lm3'], [], color='r', label='Grad School') plt.legend(handles=[blue_line, green_line, red_line], loc='lower right') plt.ylabel("P(Income > $50K)") plt.xlabel("Age") plt.show() b = trace['educ'] plt.hist(np.exp(b), bins=20, normed=True) plt.xlabel("Odds Ratio") plt.show() lb, ub = np.percentile(b, 2.5), np.percentile(b, 97.5) print("P(%.3f < O.R. < %.3f) = 0.95"%(np.exp(3*lb),np.exp(3*ub))) models_lin, traces_lin = run_models(data, 4) dfdic = pd.DataFrame(index=['k1','k2','k3','k4'], columns=['lin']) dfdic.index.name = 'model' for nm in dfdic.index: dfdic.loc[nm, 'lin'] = pm.stats.dic(traces_lin[nm], models_lin[nm]) dfdic = pd.melt(dfdic.reset_index(), id_vars=['model'], var_name='poly', value_name='dic') g = seaborn.factorplot(x='model', y='dic', col='poly', hue='poly', data=dfdic, kind='bar', size=6) dfdic = pd.DataFrame(index=['k1','k2','k3','k4'], columns=['lin']) dfdic.index.name = 'model' for nm in dfdic.index: dfdic.loc[nm, 'lin'] = pm.stats.waic(traces_lin[nm],models_lin[nm])[0] dfdic = pd.melt(dfdic.reset_index(), id_vars=['model'], var_name='poly', value_name='waic') g = seaborn.factorplot(x='model', y='waic', col='poly', hue='poly', data=dfdic, kind='bar', size=6) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The Adult Data Set is commonly used to benchmark machine learning algorithms. The goal is to use demographic features, or variables, to predict whether an individual makes more than \$50,000 per year. The data set is almost 20 years old, and therefore, not perfect for determining the probability that I will make more than \$50K, but it is a nice, simple dataset that can be used to showcase a few benefits of using Bayesian logistic regression over its frequentist counterpart. Step2: Scrubbing and cleaning Step3: Exploring the data Step4: We see here not many strong correlations. The highest is 0.30 according to this plot. We see a weak-correlation between hours and income Step5: Some results Step6: So how do age and education affect the probability of making more than $$50K?$ To answer this question, we can show how the probability of making more than $50K changes with age for a few different education levels. Here, we assume that the number of hours worked per week is fixed at 50. PyMC3 gives us a convenient way to plot the posterior predictive distribution. We need to give the function a linear model and a set of points to evaluate. We will pass in three different linear models Step7: Each curve shows how the probability of earning more than $ 50K$ changes with age. The red curve represents 19 years of education, the green curve represents 16 years of education and the blue curve represents 12 years of education. For all three education levels, the probability of making more than $50K increases with age until approximately age 60, when the probability begins to drop off. Notice that each curve is a little blurry. This is because we are actually plotting 100 different curves for each level of education. Each curve is a draw from our posterior distribution. Because the curves are somewhat translucent, we can interpret dark, narrow portions of a curve as places where we have low uncertainty and light, spread out portions of the curve as places where we have somewhat higher uncertainty about our coefficient values. Step8: Finally, we can find a credible interval (remember kids - credible intervals are Bayesian and confidence intervals are frequentist) for this quantity. This may be the best part about Bayesian statistics Step9: Model selection Step10: There isn't a lot of difference between these models in terms of DIC. So our choice is fine in the model above, and there isn't much to be gained for going up to age^3 for example.
14,437
<ASSISTANT_TASK:> Python Code: import numpy as np import cv2 import sys import os sys.path.insert(0, os.path.abspath('..')) import salientregions as sr import cProfile %pylab inline #Load the image path_to_image = 'images/graffiti.jpg' img = cv2.imread(path_to_image) sr.show_image(img) %%timeit #Time: creation of the detector det = sr.SalientDetector(SE_size_factor=0.20, lam_factor=4) det = sr.SalientDetector(SE_size_factor=0.20, lam_factor=4) %%timeit #Time: detect all regions in color image regions = det.detect(img, find_holes=True, find_islands=True, find_indentations=True, find_protrusions=True, visualize=False) cProfile.run('det.detect(img, find_holes=True, find_islands=True, find_indentations=True, \ find_protrusions=True, visualize=False)') %%timeit #Only holes and islands regions = det.detect(img, find_holes=True, find_islands=True, find_indentations=False, find_protrusions=False, visualize=False) lam_factor = 3 area_factor_large = 0.001 area_factor_verylarge = 0.1 lam = 50 connectivity = 4 weights=(0.33,0.33,0.33) grayscale = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) %%timeit #Creation of the binarizer binarizer = sr.DatadrivenBinarizer(area_factor_large=area_factor_large, area_factor_verylarge=area_factor_verylarge, lam=lam, weights=weights, connectivity=connectivity) binarizer = sr.DatadrivenBinarizer(area_factor_large=area_factor_large, area_factor_verylarge=area_factor_verylarge, lam=lam, weights=weights, connectivity=connectivity) %%timeit #The binarization binarized = binarizer.binarize(grayscale, visualize=False) cProfile.run('binarizer.binarize(grayscale, visualize=False)') binarized = binarizer.binarize(grayscale, visualize=False) regions = det.detect(img, find_holes=True, find_islands=True, find_indentations=True, find_protrusions=True, visualize=False) se = det.SE area_factor=0.05 %%timeit detector = sr.BinaryDetector(se, lam, area_factor, connectivity) regions = detector.detect(binarized, visualize=False) detector = sr.BinaryDetector(se, lam, area_factor, connectivity) cProfile.run('detector.detect(binarized, visualize=False)') #Only holes and islands detector = sr.BinaryDetector(se, lam, area_factor, connectivity) cProfile.run('detector.detect(binarized, find_indentations=False, \ find_protrusions=False, visualize=False)') mser = cv2.MSER_create() %%timeit regions = mser.detectRegions(img, None) cProfile.run('mser.detectRegions(img, None)') %timeit cv2.morphologyEx(binarized, cv2.MORPH_TOPHAT, se) %timeit cv2.morphologyEx(binarized, cv2.MORPH_OPEN, se) %timeit cv2.erode(binarized, se) %timeit cv2.dilate(binarized, se) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Binarization Step2: Binary detection Step3: MSER detection Step4: Conclusion
14,438
<ASSISTANT_TASK:> Python Code: from neon.initializers import Gaussian from neon.optimizers import GradientDescentMomentum, Schedule from neon.layers import Conv, Dropout, Activation, Pooling, GeneralizedCost from neon.transforms import Rectlin, Softmax, CrossEntropyMulti, Misclassification from neon.models import Model from neon.data import CIFAR10 from neon.callbacks.callbacks import Callbacks from neon.backends import gen_backend be = gen_backend(batch_size=128, backend='gpu') # hyperparameters learning_rate = 0.05 weight_decay = 0.001 num_epochs = 25 print "Loading Data" dataset = CIFAR10(path='data/', normalize=False, contrast_normalize=True, whiten=True, pad_classes=True) # CIFAR10 has 10 classes, network has 16 outputs, so we pad some extra classes. train_set = dataset.train_iter valid_set = dataset.valid_iter print "Building Model" init_uni = Gaussian(scale=0.05) opt_gdm = GradientDescentMomentum(learning_rate=float(learning_rate), momentum_coef=0.9, wdecay=float(weight_decay), schedule=Schedule(step_config=[200, 250, 300], change=0.1)) relu = Rectlin() conv = dict(init=init_uni, batch_norm=False, activation=relu) convp1 = dict(init=init_uni, batch_norm=False, activation=relu, padding=1) convp1s2 = dict(init=init_uni, batch_norm=False, activation=relu, padding=1, strides=2) layers = [ Conv((3, 3, 64), **convp1), Conv((3, 3, 64), **convp1s2), Conv((3, 3, 128), **convp1), Conv((3, 3, 128), **convp1s2), Conv((3, 3, 128), **convp1), Conv((1, 1, 128), **conv), Conv((1, 1, 16), **conv), Pooling(8, op="avg"), Activation(Softmax())] cost = GeneralizedCost(costfunc=CrossEntropyMulti()) mlp = Model(layers=layers) # configure callbacks callbacks = Callbacks(mlp, output_file='data.h5', eval_set=valid_set, eval_freq=1) print "Training" mlp.fit(train_set, optimizer=opt_gdm, num_epochs=num_epochs, cost=cost, callbacks=callbacks) print('Misclassification error = %.1f%%' % (mlp.eval(valid_set, metric=Misclassification())*100)) from neon.visualizations.figure import cost_fig, hist_fig, deconv_summary_page from neon.visualizations.data import h5_cost_data, h5_hist_data, h5_deconv_data from bokeh.plotting import output_notebook, show cost_data = h5_cost_data('data.h5', False) output_notebook() show(cost_fig(cost_data, 400, 800, epoch_axis=False)) layers = [ Conv((3, 3, 64), **convp1), Conv((3, 3, 64), **convp1s2), Dropout(keep=.5), # Added Dropout Conv((3, 3, 128), **convp1), Conv((3, 3, 128), **convp1s2), Dropout(keep=.5), # Added Dropout Conv((3, 3, 128), **convp1), Conv((1, 1, 128), **conv), Conv((1, 1, 16), **conv), Pooling(8, op="avg"), Activation(Softmax())] cost = GeneralizedCost(costfunc=CrossEntropyMulti()) mlp = Model(layers=layers) # configure callbacks callbacks = Callbacks(mlp, output_file='data.h5', eval_set=valid_set, eval_freq=1) print "Training" mlp.fit(train_set, optimizer=opt_gdm, num_epochs=num_epochs, cost=cost, callbacks=callbacks) print('Misclassification error = %.1f%%' % (mlp.eval(valid_set, metric=Misclassification())*100)) from neon.visualizations.figure import cost_fig, hist_fig, deconv_summary_page from neon.visualizations.data import h5_cost_data, h5_hist_data, h5_deconv_data from bokeh.plotting import output_notebook, show cost_data = h5_cost_data('data.h5', False) output_notebook() show(cost_fig(cost_data, 400, 800, epoch_axis=False)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Overfitting Step2: This situation illustrates the importance of plotting the validation loss (blue) in addition to the training cost (red). The training cost may mislead the user into thinking that model is continuing to perform well, but we can see from the validation loss that the model has begun to overfit. Step3: We then plot the results of the training run below.
14,439
<ASSISTANT_TASK:> Python Code: # Put your code here! # Put your code here! from IPython.display import HTML HTML( <iframe src="https://goo.gl/forms/NOKKHPQ0oKn1B7e23?embedded=true" width="80%" height="1200px" frameborder="0" marginheight="0" marginwidth="0"> Loading... </iframe> ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Part 2 Step3: Assignment wrapup
14,440
<ASSISTANT_TASK:> Python Code: # Load libraries from sklearn.tree import DecisionTreeClassifier from sklearn import datasets # Load data iris = datasets.load_iris() X = iris.data y = iris.target # Create decision tree classifer object using gini clf = DecisionTreeClassifier(criterion='gini', random_state=0) # Train model model = clf.fit(X, y) # Make new observation observation = [[ 5, 4, 3, 2]] # Predict observation's class model.predict(observation) # View predicted class probabilities for the three classes model.predict_proba(observation) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load Iris Dataset Step2: Create Decision Tree Using Gini Impurity Step3: Train Model Step4: Create Observation To Predict Step5: Predict Observation Step6: View Predicted Probabilities
14,441
<ASSISTANT_TASK:> Python Code: import qspectra as qs import numpy as np import matplotlib.pyplot as plt %matplotlib inline # Parameters of the electronic Hamiltonian ham = qs.ElectronicHamiltonian(np.array([[12881., 120.], [120., 12719.]]), bath=qs.DebyeBath(qs.CM_K * 77., 35., 106.), dipoles=[[1., 0., 0.], [2. * np.cos(.3), 2. * np.sin(.3), 0.]]) # Bath parameters for the Redfield and HEOM models red_dimer = qs.RedfieldModel(ham, hilbert_subspace='gef', discard_imag_corr=True, unit_convert=qs.CM_FS) heom_dimer = qs.HEOMModel(ham, hilbert_subspace='gef', unit_convert=qs.CM_FS, level_cutoff=3, low_temp_corr=False) # Bath parameters for the ZOFE model: # pseudomode bath fit to the Drude spectral density for FMO for 77K of Ishizaki and Fleming # (each PM is represented by a Lorentzian at frequency Omega, with width gamma, and of strength huang # in the bath correlation SPECTRUM, NOT spectral density) Omega = [-500., -200., -90., 1., 21., 60., 80., 130., 200., 300., 400., 500., 600., 800., 1100., 1500.] # frequencies of PMs gamma = [500., 100., 50., 50., 50., 50., 80., 40., 80., 150., 200., 200., 80., 250., 200., 300.] # dampings of the PMs huang = [-2.5133e-03, -7.5398e-03, -2.5133e-02, 5.0265e+01, 2.2619e+00, 4.5239e-02, 2.7646e-01, 9.2991e-03, 2.2619e-02, 1.5080e-02, 3.0159e-03, 3.5186e-03, 2.8274e-04, 1.7593e-03, 4.3982e-04, 4.3982e-04] # Huang-Rhys factors of PMs (couplings to PMs) n_sites = ham.n_sites numb_pm = len(Omega) on = np.ones(n_sites, complex) Omega = np.array([Omega[pm]*on for pm in range(numb_pm)]) huang = np.array([huang[pm]*on for pm in range(numb_pm)]) gamma = np.array([gamma[pm]*on for pm in range(numb_pm)]) zofe_ham = qs.ElectronicHamiltonian(ham.H('e'), bath=qs.PseudomodeBath(numb_pm, Omega, gamma, huang), dipoles=ham.dipoles) zofe_dimer = qs.ZOFEModel(zofe_ham, hilbert_subspace='ge', unit_convert=qs.CM_FS) f, X = qs.absorption_spectra(heom_dimer, time_max=10000) f2, X2 = qs.absorption_spectra(zofe_dimer, time_max=10000) f3, X3 = qs.absorption_spectra(red_dimer, time_max=10000) plt.plot(f, X, label='HEOM') plt.plot(f2, X2, label='ZOFE') plt.plot(f3, X3, label='Redfield') plt.xlabel('Frequency (cm$^{-1}$)') plt.ylabel('Absorption [arb. unit]') plt.xlim(12500, 13200) plt.legend(); %%time (f1, t2, f3), X = qs.two_dimensional_spectra(red_dimer, coherence_time_max=1000, population_times=np.linspace(0, 1000, 50), geometry='-++', polarization='xxxx', include_signal='GSB,ESE,ESA') plt.figure(figsize=(8, 8)) plt.contourf(f1, f3, X[:,5,:].real, 30, cmap='RdBu', vmax=6e5, vmin=-6e5) plt.xlabel('Coherence frequency (cm$^{-1}$)') plt.ylabel('Rephasing frequency (cm$^{-1}$)') plt.xlim(12300, 13300) plt.ylim(12300, 13300); %%time (f1, t2, f3), X = qs.two_dimensional_spectra(heom_dimer, coherence_time_max=1000, population_times=np.linspace(0, 1000, 50), geometry='-++', polarization='xxxx', include_signal='GSB,ESE,ESA') plt.figure(figsize=(8, 8)) plt.contourf(f1, f3, X[:,5,:].real, 30, cmap='RdBu', vmax=6e5, vmin=-6e5) plt.xlabel('Coherence frequency (cm$^{-1}$)') plt.ylabel('Rephasing frequency (cm$^{-1}$)') plt.xlim(12300, 13300) plt.ylim(12300, 13300); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Absorption spectra Step2: 2D spectra
14,442
<ASSISTANT_TASK:> Python Code: from __future__ import division import graphlab products = graphlab.SFrame('amazon_baby_subset.gl/') # The same feature processing (same as the previous assignments) # --------------------------------------------------------------- import json with open('important_words.json', 'r') as f: # Reads the list of most frequent words important_words = json.load(f) important_words = [str(s) for s in important_words] def remove_punctuation(text): import string return text.translate(None, string.punctuation) # Remove punctuation. products['review_clean'] = products['review'].apply(remove_punctuation) # Split out the words into individual columns for word in important_words: products[word] = products['review_clean'].apply(lambda s : s.split().count(word)) products train_data, validation_data = products.random_split(.8, seed=2) print 'Training set : %d data points' % len(train_data) print 'Validation set : %d data points' % len(validation_data) import numpy as np def get_numpy_data(data_sframe, features, label): data_sframe['intercept'] = 1 features = ['intercept'] + features features_sframe = data_sframe[features] feature_matrix = features_sframe.to_numpy() label_sarray = data_sframe[label] label_array = label_sarray.to_numpy() return(feature_matrix, label_array) feature_matrix_train, sentiment_train = get_numpy_data(train_data, important_words, 'sentiment') feature_matrix_valid, sentiment_valid = get_numpy_data(validation_data, important_words, 'sentiment') ''' produces probablistic estimate for P(y_i = +1 | x_i, w). estimate ranges between 0 and 1. ''' def predict_probability(feature_matrix, coefficients): # Take dot product of feature_matrix and coefficients ## YOUR CODE HERE scores = np.dot(feature_matrix, coefficients) # Compute P(y_i = +1 | x_i, w) using the link function ## YOUR CODE HERE predictions = 1. / (1. + np.exp(- scores)) return predictions def feature_derivative_with_L2(errors, feature, coefficient, l2_penalty, feature_is_constant): # Compute the dot product of errors and feature ## YOUR CODE HERE derivative = np.dot(errors, feature) # add L2 penalty term for any feature that isn't the intercept. if not feature_is_constant: ## YOUR CODE HERE derivative -= 2 * l2_penalty * coefficient return derivative def compute_log_likelihood_with_L2(feature_matrix, sentiment, coefficients, l2_penalty): indicator = (sentiment==+1) scores = np.dot(feature_matrix, coefficients) lp = np.sum((indicator-1)*scores - np.log(1. + np.exp(-scores))) - l2_penalty*np.sum(coefficients[1:]**2) return lp def logistic_regression_with_L2(feature_matrix, sentiment, initial_coefficients, step_size, l2_penalty, max_iter): coefficients = np.array(initial_coefficients) # make sure it's a numpy array for itr in xrange(max_iter): # Predict P(y_i = +1|x_i,w) using your predict_probability() function ## YOUR CODE HERE predictions = predict_probability(feature_matrix, coefficients) # Compute indicator value for (y_i = +1) indicator = (sentiment==+1) # Compute the errors as indicator - predictions errors = indicator - predictions for j in xrange(len(coefficients)): # loop over each coefficient is_intercept = (j == 0) # Recall that feature_matrix[:,j] is the feature column associated with coefficients[j]. # Compute the derivative for coefficients[j]. Save it in a variable called derivative ## YOUR CODE HERE derivative = feature_derivative_with_L2(errors, feature_matrix[:,j], coefficients[j], l2_penalty, is_intercept) # add the step size times the derivative to the current coefficient ## YOUR CODE HERE coefficients[j] += step_size * derivative # Checking whether log likelihood is increasing if itr <= 15 or (itr <= 100 and itr % 10 == 0) or (itr <= 1000 and itr % 100 == 0) \ or (itr <= 10000 and itr % 1000 == 0) or itr % 10000 == 0: lp = compute_log_likelihood_with_L2(feature_matrix, sentiment, coefficients, l2_penalty) print 'iteration %*d: log likelihood of observed labels = %.8f' % \ (int(np.ceil(np.log10(max_iter))), itr, lp) return coefficients # run with L2 = 0 coefficients_0_penalty = logistic_regression_with_L2(feature_matrix_train, sentiment_train, initial_coefficients=np.zeros(194), step_size=5e-6, l2_penalty=0, max_iter=501) # run with L2 = 4 coefficients_4_penalty = logistic_regression_with_L2(feature_matrix_train, sentiment_train, initial_coefficients=np.zeros(194), step_size=5e-6, l2_penalty=4, max_iter=501) # run with L2 = 10 coefficients_10_penalty = logistic_regression_with_L2(feature_matrix_train, sentiment_train, initial_coefficients=np.zeros(194), step_size=5e-6, l2_penalty=10, max_iter=501) # run with L2 = 1e2 coefficients_1e2_penalty = logistic_regression_with_L2(feature_matrix_train, sentiment_train, initial_coefficients=np.zeros(194), step_size=5e-6, l2_penalty=1e2, max_iter=501) # run with L2 = 1e3 coefficients_1e3_penalty = logistic_regression_with_L2(feature_matrix_train, sentiment_train, initial_coefficients=np.zeros(194), step_size=5e-6, l2_penalty=1e3, max_iter=501) # run with L2 = 1e5 coefficients_1e5_penalty = logistic_regression_with_L2(feature_matrix_train, sentiment_train, initial_coefficients=np.zeros(194), step_size=5e-6, l2_penalty=1e5, max_iter=501) table = graphlab.SFrame({'word': ['(intercept)'] + important_words}) def add_coefficients_to_table(coefficients, column_name): table[column_name] = coefficients return table add_coefficients_to_table(coefficients_0_penalty, 'coefficients [L2=0]') add_coefficients_to_table(coefficients_4_penalty, 'coefficients [L2=4]') add_coefficients_to_table(coefficients_10_penalty, 'coefficients [L2=10]') add_coefficients_to_table(coefficients_1e2_penalty, 'coefficients [L2=1e2]') add_coefficients_to_table(coefficients_1e3_penalty, 'coefficients [L2=1e3]') add_coefficients_to_table(coefficients_1e5_penalty, 'coefficients [L2=1e5]') subtable = table[['word', 'coefficients [L2=0]']] ptable = sorted(subtable, key=lambda x: x['coefficients [L2=0]'], reverse=True)[:5] ntable = sorted(subtable, key=lambda x: x['coefficients [L2=0]'], reverse=False)[:5] positive_words = [w['word'] for w in ptable] print positive_words negative_words = [w['word'] for w in ntable] print negative_words import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = 10, 6 def make_coefficient_plot(table, positive_words, negative_words, l2_penalty_list): cmap_positive = plt.get_cmap('Reds') cmap_negative = plt.get_cmap('Blues') xx = l2_penalty_list plt.plot(xx, [0.]*len(xx), '--', lw=1, color='k') table_positive_words = table.filter_by(column_name='word', values=positive_words) table_negative_words = table.filter_by(column_name='word', values=negative_words) del table_positive_words['word'] del table_negative_words['word'] for i in xrange(len(positive_words)): color = cmap_positive(0.8*((i+1)/(len(positive_words)*1.2)+0.15)) plt.plot(xx, table_positive_words[i:i+1].to_numpy().flatten(), '-', label=positive_words[i], linewidth=4.0, color=color) for i in xrange(len(negative_words)): color = cmap_negative(0.8*((i+1)/(len(negative_words)*1.2)+0.15)) plt.plot(xx, table_negative_words[i:i+1].to_numpy().flatten(), '-', label=negative_words[i], linewidth=4.0, color=color) plt.legend(loc='best', ncol=3, prop={'size':16}, columnspacing=0.5) plt.axis([1, 1e5, -1, 2]) plt.title('Coefficient path') plt.xlabel('L2 penalty ($\lambda$)') plt.ylabel('Coefficient value') plt.xscale('log') plt.rcParams.update({'font.size': 18}) plt.tight_layout() make_coefficient_plot(table, positive_words, negative_words, l2_penalty_list=[0, 4, 10, 1e2, 1e3, 1e5]) def get_classification_accuracy(feature_matrix, sentiment, coefficients): scores = np.dot(feature_matrix, coefficients) apply_threshold = np.vectorize(lambda x: 1. if x > 0 else -1.) predictions = apply_threshold(scores) num_correct = (predictions == sentiment).sum() accuracy = num_correct / len(feature_matrix) return accuracy train_accuracy = {} train_accuracy[0] = get_classification_accuracy(feature_matrix_train, sentiment_train, coefficients_0_penalty) train_accuracy[4] = get_classification_accuracy(feature_matrix_train, sentiment_train, coefficients_4_penalty) train_accuracy[10] = get_classification_accuracy(feature_matrix_train, sentiment_train, coefficients_10_penalty) train_accuracy[1e2] = get_classification_accuracy(feature_matrix_train, sentiment_train, coefficients_1e2_penalty) train_accuracy[1e3] = get_classification_accuracy(feature_matrix_train, sentiment_train, coefficients_1e3_penalty) train_accuracy[1e5] = get_classification_accuracy(feature_matrix_train, sentiment_train, coefficients_1e5_penalty) validation_accuracy = {} validation_accuracy[0] = get_classification_accuracy(feature_matrix_valid, sentiment_valid, coefficients_0_penalty) validation_accuracy[4] = get_classification_accuracy(feature_matrix_valid, sentiment_valid, coefficients_4_penalty) validation_accuracy[10] = get_classification_accuracy(feature_matrix_valid, sentiment_valid, coefficients_10_penalty) validation_accuracy[1e2] = get_classification_accuracy(feature_matrix_valid, sentiment_valid, coefficients_1e2_penalty) validation_accuracy[1e3] = get_classification_accuracy(feature_matrix_valid, sentiment_valid, coefficients_1e3_penalty) validation_accuracy[1e5] = get_classification_accuracy(feature_matrix_valid, sentiment_valid, coefficients_1e5_penalty) # Build a simple report for key in sorted(validation_accuracy.keys()): print "L2 penalty = %g" % key print "train accuracy = %s, validation_accuracy = %s" % (train_accuracy[key], validation_accuracy[key]) print "--------------------------------------------------------------------------------" <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load and process review dataset Step2: Just like we did previously, we will work with a hand-curated list of important words extracted from the review data. We will also perform 2 simple data transformations Step3: Now, let us take a look at what the dataset looks like (Note Step4: Train-Validation split Step5: Convert SFrame to NumPy array Step6: We convert both the training and validation sets into NumPy arrays. Step7: Building on logistic regression with no L2 penalty assignment Step8: Adding L2 penalty Step9: Quiz question Step10: Quiz question Step11: Explore effects of L2 regularization Step12: Compare coefficients Step13: Now, let's run the function add_coefficients_to_table for each of the L2 penalty strengths. Step14: Using the coefficients trained with L2 penalty 0, find the 5 most positive words (with largest positive coefficients). Save them to positive_words. Similarly, find the 5 most negative words (with largest negative coefficients) and save them to negative_words. Step15: Let us observe the effect of increasing L2 penalty on the 10 words just selected. We provide you with a utility function to plot the coefficient path. Step16: Run the following cell to generate the plot. Use the plot to answer the following quiz question. Step17: Quiz Question Step18: Below, we compare the accuracy on the training data and validation data for all the models that were trained in this assignment. We first calculate the accuracy values and then build a simple report summarizing the performance for the various models.
14,443
<ASSISTANT_TASK:> Python Code: # Author: Ivana Kojcic <ivana.kojcic@gmail.com> # Eric Larson <larson.eric.d@gmail.com> # Kostiantyn Maksymenko <kostiantyn.maksymenko@gmail.com> # Samuel Deslauriers-Gauthier <sam.deslauriers@gmail.com> # License: BSD (3-clause) import os.path as op import numpy as np import mne from mne.datasets import sample print(__doc__) # In this example, raw data will be simulated for the sample subject, so its # information needs to be loaded. This step will download the data if it not # already on your machine. Subjects directory is also set so it doesn't need # to be given to functions. data_path = sample.data_path() subjects_dir = op.join(data_path, 'subjects') subject = 'sample' meg_path = op.join(data_path, 'MEG', subject) # First, we get an info structure from the sample subject. fname_info = op.join(meg_path, 'sample_audvis_raw.fif') info = mne.io.read_info(fname_info) tstep = 1 / info['sfreq'] # To simulate sources, we also need a source space. It can be obtained from the # forward solution of the sample subject. fwd_fname = op.join(meg_path, 'sample_audvis-meg-eeg-oct-6-fwd.fif') fwd = mne.read_forward_solution(fwd_fname) src = fwd['src'] # To simulate raw data, we need to define when the activity occurs using events # matrix and specify the IDs of each event. # Noise covariance matrix also needs to be defined. # Here, both are loaded from the sample dataset, but they can also be specified # by the user. fname_event = op.join(meg_path, 'sample_audvis_raw-eve.fif') fname_cov = op.join(meg_path, 'sample_audvis-cov.fif') events = mne.read_events(fname_event) noise_cov = mne.read_cov(fname_cov) # Standard sample event IDs. These values will correspond to the third column # in the events matrix. event_id = {'auditory/left': 1, 'auditory/right': 2, 'visual/left': 3, 'visual/right': 4, 'smiley': 5, 'button': 32} # Take only a few events for speed events = events[:80] activations = { 'auditory/left': [('G_temp_sup-G_T_transv-lh', 30), # label, activation (nAm) ('G_temp_sup-G_T_transv-rh', 60)], 'auditory/right': [('G_temp_sup-G_T_transv-lh', 60), ('G_temp_sup-G_T_transv-rh', 30)], 'visual/left': [('S_calcarine-lh', 30), ('S_calcarine-rh', 60)], 'visual/right': [('S_calcarine-lh', 60), ('S_calcarine-rh', 30)], } annot = 'aparc.a2009s' # Load the 4 necessary label names. label_names = sorted(set(activation[0] for activation_list in activations.values() for activation in activation_list)) region_names = list(activations.keys()) def data_fun(times, latency, duration): Function to generate source time courses for evoked responses, parametrized by latency and duration. f = 15 # oscillating frequency, beta band [Hz] sigma = 0.375 * duration sinusoid = np.sin(2 * np.pi * f * (times - latency)) gf = np.exp(- (times - latency - (sigma / 4.) * rng.rand(1)) ** 2 / (2 * (sigma ** 2))) return 1e-9 * sinusoid * gf times = np.arange(150, dtype=np.float) / info['sfreq'] duration = 0.03 rng = np.random.RandomState(7) source_simulator = mne.simulation.SourceSimulator(src, tstep=tstep) for region_id, region_name in enumerate(region_names, 1): events_tmp = events[np.where(events[:, 2] == region_id)[0], :] for i in range(2): label_name = activations[region_name][i][0] label_tmp = mne.read_labels_from_annot(subject, annot, subjects_dir=subjects_dir, regexp=label_name, verbose=False) label_tmp = label_tmp[0] amplitude_tmp = activations[region_name][i][1] if region_name.split('/')[1][0] == label_tmp.hemi[0]: latency_tmp = 0.115 else: latency_tmp = 0.1 wf_tmp = data_fun(times, latency_tmp, duration) source_simulator.add_data(label_tmp, amplitude_tmp * wf_tmp, events_tmp) # To obtain a SourceEstimate object, we need to use `get_stc()` method of # SourceSimulator class. stc_data = source_simulator.get_stc() raw_sim = mne.simulation.simulate_raw(info, source_simulator, forward=fwd, cov=None) raw_sim.set_eeg_reference(projection=True) mne.simulation.add_noise(raw_sim, cov=noise_cov, random_state=0) mne.simulation.add_eog(raw_sim, random_state=0) mne.simulation.add_ecg(raw_sim, random_state=0) # Plot original and simulated raw data. raw_sim.plot(title='Simulated raw data') epochs = mne.Epochs(raw_sim, events, event_id, tmin=-0.2, tmax=0.3, baseline=(None, 0)) evoked_aud_left = epochs['auditory/left'].average() evoked_vis_right = epochs['visual/right'].average() # Visualize the evoked data evoked_aud_left.plot(spatial_colors=True) evoked_vis_right.plot(spatial_colors=True) method, lambda2 = 'dSPM', 1. / 9. inv = mne.minimum_norm.make_inverse_operator(epochs.info, fwd, noise_cov) stc_aud = mne.minimum_norm.apply_inverse( evoked_aud_left, inv, lambda2, method) stc_vis = mne.minimum_norm.apply_inverse( evoked_vis_right, inv, lambda2, method) stc_diff = stc_aud - stc_vis brain = stc_diff.plot(subjects_dir=subjects_dir, initial_time=0.1, hemi='split', views=['lat', 'med']) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: In order to simulate source time courses, labels of desired active regions Step3: Create simulated source activity Step4: Here, Step5: Simulate raw data Step6: Extract epochs and compute evoked responsses Step7: Reconstruct simulated source time courses using dSPM inverse operator
14,444
<ASSISTANT_TASK:> Python Code: %load_ext snakeviz %load_ext memory_profiler %load_ext line_profiler %load_ext autoreload %autoreload 2 import re from collections import Counter def words(text): return re.findall(r'\w+', text.lower()) WORDS = Counter(words(open('big.txt').read())) def P(word, N=sum(WORDS.values())): return WORDS[word] / N def candidates(word): return (known([word]) or known(edits1(word)) or known(edits2(word)) or [word]) def known(words): return set(w for w in words if w in WORDS) def edits1(word): letters = 'abcdefghijklmnopqrstuvwxyz' splits = [(word[:i], word[i:]) for i in range(len(word) + 1)] deletes = [L + R[1:] for L, R in splits if R] transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1] replaces = [L + c + R[1:] for L, R in splits if R for c in letters] inserts = [L + c + R for L, R in splits for c in letters] return set(deletes + transposes + replaces + inserts) def edits2(word): return (e2 for e1 in edits1(word) for e2 in edits1(e1)) def word_correction(word): return max(candidates(word), key=P) def sentence_correction(sentence): return " ".join(word_correction(word) for word in sentence.split(" ")) sentence_correction('grofilingg is not rocet Sgience') ! time python script.py 'grofilingg is not rocet Sgience' %time sentence_correction('grofilingg is not rocet Sgience') ! python -m timeit -s "..." %timeit sentence_correction('grofilingg is not rocet Sgience') %memit sentence_correction('grofilingg is not rocet Sgience') ! python -m cProfile script.py 'grofilingg is not rocet Sgience' %prun sentence_correction('grofilingg is not rocet Sgience') ! snakeviz script.prof %snakeviz sentence_correction('grofilingg is not rocet Sgience') ! python -m memory_profiler script.py 'grofilingg is not rocet Sgience' from script import sentence_correction, edits1 %mprun -f edits1 sentence_correction('grofilingg is not rocet Sgience') ! pyinstrument script.py 'grofilingg is not rocet Sgience' <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: amdahl law, focus on one part at a time Step2: Casual Profiling 👕👖 Step3: timeit ⌛⌛⌛ Step4: each run does thousand or millions of repetitions compensating for very fast operations Step5: Casual Profiling Landscape ⛰️ Step6: Snakeviz 🐍 Step7: Memory profiler 💾 Step8: Offline Profiling Landscape ⛰️
14,445
<ASSISTANT_TASK:> Python Code: # Authors: Eric Larson <larson.eric.d@gmail.com> # Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # Mark Wronkiewicz <wronk.mark@gmail.com> # # License: BSD (3-clause) import mne from mne.preprocessing import maxwell_filter print(__doc__) data_path = mne.datasets.sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' ctc_fname = data_path + '/SSS/ct_sparse_mgh.fif' fine_cal_fname = data_path + '/SSS/sss_cal_mgh.dat' # Preprocess with Maxwell filtering raw = mne.io.Raw(raw_fname) raw.info['bads'] = ['MEG 2443', 'EEG 053', 'MEG 1032', 'MEG 2313'] # set bads # Here we don't use tSSS (set st_duration) because MGH data is very clean raw_sss = maxwell_filter(raw, cross_talk=ctc_fname, calibration=fine_cal_fname) # Select events to extract epochs from, pick M/EEG channels, and plot evoked tmin, tmax = -0.2, 0.5 event_id = {'Auditory/Left': 1} events = mne.find_events(raw, 'STI 014') picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=False, eog=True, include=[], exclude='bads') for r, kind in zip((raw, raw_sss), ('Raw data', 'Maxwell filtered data')): epochs = mne.Epochs(r, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=dict(eog=150e-6), preload=False) evoked = epochs.average() evoked.plot(window_title=kind) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Set parameters
14,446
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'inpe', 'besm-2-7', 'seaice') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.model.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.model.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.variables.prognostic') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sea ice temperature" # "Sea ice concentration" # "Sea ice thickness" # "Sea ice volume per grid cell area" # "Sea ice u-velocity" # "Sea ice v-velocity" # "Sea ice enthalpy" # "Internal ice stress" # "Salinity" # "Snow temperature" # "Snow depth" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "TEOS-10" # "Constant" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.target') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.simulations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.metrics_used') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.typical_parameters') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Ice strength (P*) in units of N m{-2}" # "Snow conductivity (ks) in units of W m{-1} K{-1} " # "Minimum thickness of ice created in leads (h0) in units of m" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.additional_parameters') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.description') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.on_diagnostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.missing_processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.properties') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Energy" # "Mass" # "Salt" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.budget') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.was_flux_correction_used') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.corrected_conserved_prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Ocean grid" # "Atmosphere Grid" # "Own Grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Structured grid" # "Unstructured grid" # "Adaptive grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Finite differences" # "Finite elements" # "Finite volumes" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.thermodynamics_time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.dynamics_time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.layering') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Zero-layer" # "Two-layers" # "Multi-layers" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.number_of_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.has_mulitple_categories') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.number_of_categories') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.category_limits') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.ice_thickness_distribution_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.other') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.has_snow_on_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.number_of_snow_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.snow_fraction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.horizontal_transport') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Incremental Re-mapping" # "Prather" # "Eulerian" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.transport_in_thickness_space') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Incremental Re-mapping" # "Prather" # "Eulerian" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.ice_strength_formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Hibler 1979" # "Rothrock 1975" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.redistribution') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Rafting" # "Ridging" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.rheology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Free-drift" # "Mohr-Coloumb" # "Visco-plastic" # "Elastic-visco-plastic" # "Elastic-anisotropic-plastic" # "Granular" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.enthalpy_formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pure ice latent heat (Semtner 0-layer)" # "Pure ice latent and sensible heat" # "Pure ice latent and sensible heat + brine heat reservoir (Semtner 3-layer)" # "Pure ice latent and sensible heat + explicit brine inclusions (Bitz and Lipscomb)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.thermal_conductivity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pure ice" # "Saline ice" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Conduction fluxes" # "Conduction and radiation heat fluxes" # "Conduction, radiation and latent heat transport" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.basal_heat_flux') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Heat Reservoir" # "Thermal Fixed Salinity" # "Thermal Varying Salinity" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.fixed_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_content_of_precipitation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.precipitation_effects_on_salinity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.new_ice_formation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_vertical_growth_and_melt') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_lateral_melting') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Floe-size dependent (Bitz et al 2001)" # "Virtual thin ice melting (for single-category)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_surface_sublimation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.frazil_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.has_multiple_sea_ice_salinities') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.sea_ice_salinity_thermal_impacts') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.salinity_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Prescribed salinity profile" # "Prognostic salinity profile" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.constant_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.salinity_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Prescribed salinity profile" # "Prognostic salinity profile" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.constant_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_thickness_distribution.representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Virtual (enhancement of thermal conductivity, thin ice melting)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Parameterised" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.are_included') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Flocco and Feltham (2010)" # "Level-ice melt ponds" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.impacts') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Albedo" # "Freshwater" # "Heat" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_aging') # PROPERTY VALUE(S): # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_aging_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_ice_formation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_ice_formation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.redistribution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.heat_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Single-layered heat diffusion" # "Multi-layered heat diffusion" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.radiative_processes.surface_albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Delta-Eddington" # "Parameterized" # "Multi-band albedo" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.radiative_processes.ice_radiation_transmission') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Delta-Eddington" # "Exponential attenuation" # "Ice radiation transmission per category" # "Other: [Please specify]" # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 2. Key Properties --&gt; Variables Step7: 3. Key Properties --&gt; Seawater Properties Step8: 3.2. Ocean Freezing Point Value Step9: 4. Key Properties --&gt; Resolution Step10: 4.2. Canonical Horizontal Resolution Step11: 4.3. Number Of Horizontal Gridpoints Step12: 5. Key Properties --&gt; Tuning Applied Step13: 5.2. Target Step14: 5.3. Simulations Step15: 5.4. Metrics Used Step16: 5.5. Variables Step17: 6. Key Properties --&gt; Key Parameter Values Step18: 6.2. Additional Parameters Step19: 7. Key Properties --&gt; Assumptions Step20: 7.2. On Diagnostic Variables Step21: 7.3. Missing Processes Step22: 8. Key Properties --&gt; Conservation Step23: 8.2. Properties Step24: 8.3. Budget Step25: 8.4. Was Flux Correction Used Step26: 8.5. Corrected Conserved Prognostic Variables Step27: 9. Grid --&gt; Discretisation --&gt; Horizontal Step28: 9.2. Grid Type Step29: 9.3. Scheme Step30: 9.4. Thermodynamics Time Step Step31: 9.5. Dynamics Time Step Step32: 9.6. Additional Details Step33: 10. Grid --&gt; Discretisation --&gt; Vertical Step34: 10.2. Number Of Layers Step35: 10.3. Additional Details Step36: 11. Grid --&gt; Seaice Categories Step37: 11.2. Number Of Categories Step38: 11.3. Category Limits Step39: 11.4. Ice Thickness Distribution Scheme Step40: 11.5. Other Step41: 12. Grid --&gt; Snow On Seaice Step42: 12.2. Number Of Snow Levels Step43: 12.3. Snow Fraction Step44: 12.4. Additional Details Step45: 13. Dynamics Step46: 13.2. Transport In Thickness Space Step47: 13.3. Ice Strength Formulation Step48: 13.4. Redistribution Step49: 13.5. Rheology Step50: 14. Thermodynamics --&gt; Energy Step51: 14.2. Thermal Conductivity Step52: 14.3. Heat Diffusion Step53: 14.4. Basal Heat Flux Step54: 14.5. Fixed Salinity Value Step55: 14.6. Heat Content Of Precipitation Step56: 14.7. Precipitation Effects On Salinity Step57: 15. Thermodynamics --&gt; Mass Step58: 15.2. Ice Vertical Growth And Melt Step59: 15.3. Ice Lateral Melting Step60: 15.4. Ice Surface Sublimation Step61: 15.5. Frazil Ice Step62: 16. Thermodynamics --&gt; Salt Step63: 16.2. Sea Ice Salinity Thermal Impacts Step64: 17. Thermodynamics --&gt; Salt --&gt; Mass Transport Step65: 17.2. Constant Salinity Value Step66: 17.3. Additional Details Step67: 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics Step68: 18.2. Constant Salinity Value Step69: 18.3. Additional Details Step70: 19. Thermodynamics --&gt; Ice Thickness Distribution Step71: 20. Thermodynamics --&gt; Ice Floe Size Distribution Step72: 20.2. Additional Details Step73: 21. Thermodynamics --&gt; Melt Ponds Step74: 21.2. Formulation Step75: 21.3. Impacts Step76: 22. Thermodynamics --&gt; Snow Processes Step77: 22.2. Snow Aging Scheme Step78: 22.3. Has Snow Ice Formation Step79: 22.4. Snow Ice Formation Scheme Step80: 22.5. Redistribution Step81: 22.6. Heat Diffusion Step82: 23. Radiative Processes Step83: 23.2. Ice Radiation Transmission
14,447
<ASSISTANT_TASK:> Python Code: import recordlinkage from recordlinkage.datasets import load_febrl1 dfA = load_febrl1() dfA indexer = recordlinkage.Index() indexer.full() candidate_links = indexer.index(dfA) print (len(dfA), len(candidate_links)) # (1000*1000-1000)/2 = 499500 indexer = recordlinkage.Index() indexer.block("given_name") candidate_links = indexer.index(dfA) len(candidate_links) compare_cl = recordlinkage.Compare() compare_cl.exact("given_name", "given_name", label="given_name") compare_cl.string("surname", "surname", method="jarowinkler", threshold=0.85, label="surname") compare_cl.exact("date_of_birth", "date_of_birth", label="date_of_birth") compare_cl.exact("suburb", "suburb", label="suburb") compare_cl.exact("state", "state", label="state") compare_cl.string("address_1", "address_1", threshold=0.85, label="address_1") features = compare_cl.compute(candidate_links, dfA) features.head(10) features.describe() features.sum(axis=1).value_counts().sort_index(ascending=False) matches = features[features.sum(axis=1) > 3] matches import recordlinkage from recordlinkage.datasets import load_febrl1 dfA = load_febrl1() # Indexation step indexer = recordlinkage.Index() indexer.block(left_on="given_name") candidate_links = indexer.index(dfA) # Comparison step compare_cl = recordlinkage.Compare() compare_cl.exact("given_name", "given_name", label="given_name") compare_cl.string("surname", "surname", method="jarowinkler", threshold=0.85, label="surname") compare_cl.exact("date_of_birth", "date_of_birth", label="date_of_birth") compare_cl.exact("suburb", "suburb", label="suburb") compare_cl.exact("state", "state", label="state") compare_cl.string("address_1", "address_1", threshold=0.85, label="address_1") features = compare_cl.compute(candidate_links, dfA) # Classification step matches = features[features.sum(axis=1) > 3] print(len(matches)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The dataset is loaded with the following code. The returned datasets are Step2: Make record pairs Step3: With the method index, all possible (and unique) record pairs are Step4: Many of these record pairs do not belong to the same person. The Step5: The argument "given_name" is the blocking variable. This variable has Step6: The comparing of record pairs starts when the compute method is Step7: The last step is to decide which records belong to the same person. In Step8: Full code
14,448
<ASSISTANT_TASK:> Python Code: # import common packages import numpy as np from collections import OrderedDict # lib from Qiskit Aqua Chemistry from qiskit_aqua_chemistry import FermionicOperator # lib from Qiskit Aqua from qiskit_aqua import Operator from qiskit_aqua import (get_algorithm_instance, get_optimizer_instance, get_variational_form_instance, get_initial_state_instance) # lib for driver from qiskit_aqua_chemistry.drivers import ConfigurationManager # using driver to get fermionic Hamiltonian # PySCF example cfg_mgr = ConfigurationManager() pyscf_cfg = OrderedDict([('atom', 'Li .0 .0 .0; H .0 .0 1.6'), ('unit', 'Angstrom'), ('charge', 0), ('spin', 0), ('basis', 'sto3g')]) section = {} section['properties'] = pyscf_cfg driver = cfg_mgr.get_driver_instance('PYSCF') molecule = driver.run(section) # please be aware that the idx here with respective to original idx freeze_list = [0] remove_list = [-3, -2] # negative number denotes the reverse order map_type = 'parity' h1 = molecule._one_body_integrals h2 = molecule._two_body_integrals nuclear_repulsion_energy = molecule._nuclear_repulsion_energy num_particles = molecule._num_alpha + molecule._num_beta num_spin_orbitals = molecule._num_orbitals * 2 print("HF energy: {}".format(molecule._hf_energy - molecule._nuclear_repulsion_energy)) print("# of electrons: {}".format(num_particles)) print("# of spin orbitals: {}".format(num_spin_orbitals)) # prepare full idx of freeze_list and remove_list # convert all negative idx to positive remove_list = [x % molecule._num_orbitals for x in remove_list] freeze_list = [x % molecule._num_orbitals for x in freeze_list] # update the idx in remove_list of the idx after frozen, since the idx of orbitals are changed after freezing remove_list = [x - len(freeze_list) for x in remove_list] remove_list += [x + molecule._num_orbitals - len(freeze_list) for x in remove_list] freeze_list += [x + molecule._num_orbitals for x in freeze_list] # prepare fermionic hamiltonian with orbital freezing and eliminating, and then map to qubit hamiltonian # and if PARITY mapping is selected, reduction qubits energy_shift = 0.0 qubit_reduction = True if map_type == 'parity' else False ferOp = FermionicOperator(h1=h1, h2=h2) if len(freeze_list) > 0: ferOp, energy_shift = ferOp.fermion_mode_freezing(freeze_list) num_spin_orbitals -= len(freeze_list) num_particles -= len(freeze_list) if len(remove_list) > 0: ferOp = ferOp.fermion_mode_elimination(remove_list) num_spin_orbitals -= len(remove_list) qubitOp = ferOp.mapping(map_type=map_type, threshold=0.00000001) qubitOp = qubitOp.two_qubit_reduced_operator(num_particles) if qubit_reduction else qubitOp qubitOp.chop(10**-10) # Using exact eigensolver to get the smallest eigenvalue exact_eigensolver = get_algorithm_instance('ExactEigensolver') exact_eigensolver.init_args(qubitOp, k=1) ret = exact_eigensolver.run() print('The computed energy is: {:.12f}'.format(ret['eigvals'][0].real)) print('The total ground state energy is: {:.12f}'.format(ret['eigvals'][0].real + energy_shift + nuclear_repulsion_energy)) from qiskit import IBMQ IBMQ.load_accounts() # setup COBYLA optimizer max_eval = 200 cobyla = get_optimizer_instance('COBYLA') cobyla.set_options(maxiter=max_eval) # setup HartreeFock state HF_state = get_initial_state_instance('HartreeFock') HF_state.init_args(qubitOp.num_qubits, num_spin_orbitals, map_type, qubit_reduction, num_particles) # setup UCCSD variational form var_form = get_variational_form_instance('UCCSD') var_form.init_args(qubitOp.num_qubits, depth=1, num_orbitals=num_spin_orbitals, num_particles=num_particles, active_occupied=[0], active_unoccupied=[0, 1], initial_state=HF_state, qubit_mapping=map_type, two_qubit_reduction=qubit_reduction, num_time_slices=1) # setup VQE vqe_algorithm = get_algorithm_instance('VQE') vqe_algorithm.setup_quantum_backend(backend='statevector_simulator') vqe_algorithm.init_args(qubitOp, 'matrix', var_form, cobyla) results = vqe_algorithm.run() print('The computed ground state energy is: {:.12f}'.format(results['eigvals'][0])) print('The total ground state energy is: {:.12f}'.format(results['eigvals'][0] + energy_shift + nuclear_repulsion_energy)) print("Parameters: {}".format(results['opt_params'])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Step 1 Step2: Step 2 Step3: We use the classical eigen decomposition to get the smallest eigenvalue as a reference. Step4: Step 3 Step5: Step 4
14,449
<ASSISTANT_TASK:> Python Code: import numpy as np import time import helper source_path = 'data/letters_source.txt' target_path = 'data/letters_target.txt' source_sentences = helper.load_data(source_path) target_sentences = helper.load_data(target_path) source_sentences[:50].split('\n') target_sentences[:50].split('\n') def extract_character_vocab(data): special_words = ['<PAD>', '<UNK>', '<GO>', '<EOS>'] set_words = set([character for line in data.split('\n') for character in line]) int_to_vocab = {word_i: word for word_i, word in enumerate(special_words + list(set_words))} vocab_to_int = {word: word_i for word_i, word in int_to_vocab.items()} return int_to_vocab, vocab_to_int # Build int2letter and letter2int dicts source_int_to_letter, source_letter_to_int = extract_character_vocab(source_sentences) target_int_to_letter, target_letter_to_int = extract_character_vocab(target_sentences) # Convert characters to ids source_letter_ids = [[source_letter_to_int.get(letter, source_letter_to_int['<UNK>']) for letter in line] for line in source_sentences.split('\n')] target_letter_ids = [[target_letter_to_int.get(letter, target_letter_to_int['<UNK>']) for letter in line] + [target_letter_to_int['<EOS>']] for line in target_sentences.split('\n')] print("Example source sequence") print(source_letter_ids[:3]) print("\n") print("Example target sequence") print(target_letter_ids[:3]) from distutils.version import LooseVersion import tensorflow as tf from tensorflow.python.layers.core import Dense # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.1'), 'Please use TensorFlow version 1.1 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Number of Epochs epochs = 60 # Batch Size batch_size = 128 # RNN Size rnn_size = 50 # Number of Layers num_layers = 2 # Embedding Size encoding_embedding_size = 15 decoding_embedding_size = 15 # Learning Rate learning_rate = 0.001 def get_model_inputs(): input_data = tf.placeholder(tf.int32, [None, None], name='input') targets = tf.placeholder(tf.int32, [None, None], name='targets') lr = tf.placeholder(tf.float32, name='learning_rate') target_sequence_length = tf.placeholder(tf.int32, (None,), name='target_sequence_length') max_target_sequence_length = tf.reduce_max(target_sequence_length, name='max_target_len') source_sequence_length = tf.placeholder(tf.int32, (None,), name='source_sequence_length') return input_data, targets, lr, target_sequence_length, max_target_sequence_length, source_sequence_length def encoding_layer(input_data, rnn_size, num_layers, source_sequence_length, source_vocab_size, encoding_embedding_size): # Encoder embedding enc_embed_input = tf.contrib.layers.embed_sequence(input_data, source_vocab_size, encoding_embedding_size) # RNN cell def make_cell(rnn_size): enc_cell = tf.contrib.rnn.LSTMCell(rnn_size, initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=2)) return enc_cell enc_cell = tf.contrib.rnn.MultiRNNCell([make_cell(rnn_size) for _ in range(num_layers)]) enc_output, enc_state = tf.nn.dynamic_rnn(enc_cell, enc_embed_input, sequence_length=source_sequence_length, dtype=tf.float32) return enc_output, enc_state # Process the input we'll feed to the decoder def process_decoder_input(target_data, vocab_to_int, batch_size): '''Remove the last word id from each batch and concat the <GO> to the begining of each batch''' ending = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1]) dec_input = tf.concat([tf.fill([batch_size, 1], vocab_to_int['<GO>']), ending], 1) return dec_input def decoding_layer(target_letter_to_int, decoding_embedding_size, num_layers, rnn_size, target_sequence_length, max_target_sequence_length, enc_state, dec_input): # 1. Decoder Embedding target_vocab_size = len(target_letter_to_int) dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size])) dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input) # 2. Construct the decoder cell def make_cell(rnn_size): dec_cell = tf.contrib.rnn.LSTMCell(rnn_size, initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=2)) return dec_cell dec_cell = tf.contrib.rnn.MultiRNNCell([make_cell(rnn_size) for _ in range(num_layers)]) # 3. Dense layer to translate the decoder's output at each time # step into a choice from the target vocabulary output_layer = Dense(target_vocab_size, kernel_initializer = tf.truncated_normal_initializer(mean = 0.0, stddev=0.1)) # 4. Set up a training decoder and an inference decoder # Training Decoder with tf.variable_scope("decode"): # Helper for the training process. Used by BasicDecoder to read inputs. training_helper = tf.contrib.seq2seq.TrainingHelper(inputs=dec_embed_input, sequence_length=target_sequence_length, time_major=False) # Basic decoder training_decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, training_helper, enc_state, output_layer) # Perform dynamic decoding using the decoder training_decoder_output, _ = tf.contrib.seq2seq.dynamic_decode(training_decoder, impute_finished=True, maximum_iterations=max_target_sequence_length) # 5. Inference Decoder # Reuses the same parameters trained by the training process with tf.variable_scope("decode", reuse=True): start_tokens = tf.tile(tf.constant([target_letter_to_int['<GO>']], dtype=tf.int32), [batch_size], name='start_tokens') # Helper for the inference process. inference_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(dec_embeddings, start_tokens, target_letter_to_int['<EOS>']) # Basic decoder inference_decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, inference_helper, enc_state, output_layer) # Perform dynamic decoding using the decoder inference_decoder_output, _ = tf.contrib.seq2seq.dynamic_decode(inference_decoder, impute_finished=True, maximum_iterations=max_target_sequence_length) return training_decoder_output, inference_decoder_output def seq2seq_model(input_data, targets, lr, target_sequence_length, max_target_sequence_length, source_sequence_length, source_vocab_size, target_vocab_size, enc_embedding_size, dec_embedding_size, rnn_size, num_layers): # Pass the input data through the encoder. We'll ignore the encoder output, but use the state _, enc_state = encoding_layer(input_data, rnn_size, num_layers, source_sequence_length, source_vocab_size, encoding_embedding_size) # Prepare the target sequences we'll feed to the decoder in training mode dec_input = process_decoder_input(targets, target_letter_to_int, batch_size) # Pass encoder state and decoder inputs to the decoders training_decoder_output, inference_decoder_output = decoding_layer(target_letter_to_int, decoding_embedding_size, num_layers, rnn_size, target_sequence_length, max_target_sequence_length, enc_state, dec_input) return training_decoder_output, inference_decoder_output # Build the graph train_graph = tf.Graph() # Set the graph to default to ensure that it is ready for training with train_graph.as_default(): # Load the model inputs input_data, targets, lr, target_sequence_length, max_target_sequence_length, source_sequence_length = get_model_inputs() # Create the training and inference logits training_decoder_output, inference_decoder_output = seq2seq_model(input_data, targets, lr, target_sequence_length, max_target_sequence_length, source_sequence_length, len(source_letter_to_int), len(target_letter_to_int), encoding_embedding_size, decoding_embedding_size, rnn_size, num_layers) # Create tensors for the training logits and inference logits training_logits = tf.identity(training_decoder_output.rnn_output, 'logits') inference_logits = tf.identity(inference_decoder_output.sample_id, name='predictions') # Create the weights for sequence_loss masks = tf.sequence_mask(target_sequence_length, max_target_sequence_length, dtype=tf.float32, name='masks') with tf.name_scope("optimization"): # Loss function cost = tf.contrib.seq2seq.sequence_loss( training_logits, targets, masks) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -5., 5.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) def pad_sentence_batch(sentence_batch, pad_int): Pad sentences with <PAD> so that each sentence of a batch has the same length max_sentence = max([len(sentence) for sentence in sentence_batch]) return [sentence + [pad_int] * (max_sentence - len(sentence)) for sentence in sentence_batch] def get_batches(targets, sources, batch_size, source_pad_int, target_pad_int): Batch targets, sources, and the lengths of their sentences together for batch_i in range(0, len(sources)//batch_size): start_i = batch_i * batch_size sources_batch = sources[start_i:start_i + batch_size] targets_batch = targets[start_i:start_i + batch_size] pad_sources_batch = np.array(pad_sentence_batch(sources_batch, source_pad_int)) pad_targets_batch = np.array(pad_sentence_batch(targets_batch, target_pad_int)) # Need the lengths for the _lengths parameters pad_targets_lengths = [] for target in pad_targets_batch: pad_targets_lengths.append(len(target)) pad_source_lengths = [] for source in pad_sources_batch: pad_source_lengths.append(len(source)) yield pad_targets_batch, pad_sources_batch, pad_targets_lengths, pad_source_lengths # Split data to training and validation sets train_source = source_letter_ids[batch_size:] train_target = target_letter_ids[batch_size:] valid_source = source_letter_ids[:batch_size] valid_target = target_letter_ids[:batch_size] (valid_targets_batch, valid_sources_batch, valid_targets_lengths, valid_sources_lengths) = next(get_batches(valid_target, valid_source, batch_size, source_letter_to_int['<PAD>'], target_letter_to_int['<PAD>'])) display_step = 20 # Check training loss after every 20 batches checkpoint = "best_model.ckpt" with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(1, epochs+1): for batch_i, (targets_batch, sources_batch, targets_lengths, sources_lengths) in enumerate( get_batches(train_target, train_source, batch_size, source_letter_to_int['<PAD>'], target_letter_to_int['<PAD>'])): # Training step _, loss = sess.run( [train_op, cost], {input_data: sources_batch, targets: targets_batch, lr: learning_rate, target_sequence_length: targets_lengths, source_sequence_length: sources_lengths}) # Debug message updating us on the status of the training if batch_i % display_step == 0 and batch_i > 0: # Calculate validation cost validation_loss = sess.run( [cost], {input_data: valid_sources_batch, targets: valid_targets_batch, lr: learning_rate, target_sequence_length: valid_targets_lengths, source_sequence_length: valid_sources_lengths}) print('Epoch {:>3}/{} Batch {:>4}/{} - Loss: {:>6.3f} - Validation loss: {:>6.3f}' .format(epoch_i, epochs, batch_i, len(train_source) // batch_size, loss, validation_loss[0])) # Save Model saver = tf.train.Saver() saver.save(sess, checkpoint) print('Model Trained and Saved') def source_to_seq(text): '''Prepare the text for the model''' sequence_length = 7 return [source_letter_to_int.get(word, source_letter_to_int['<UNK>']) for word in text]+ [source_letter_to_int['<PAD>']]*(sequence_length-len(text)) input_sentence = 'hello' text = source_to_seq(input_sentence) checkpoint = "./best_model.ckpt" loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(checkpoint + '.meta') loader.restore(sess, checkpoint) input_data = loaded_graph.get_tensor_by_name('input:0') logits = loaded_graph.get_tensor_by_name('predictions:0') source_sequence_length = loaded_graph.get_tensor_by_name('source_sequence_length:0') target_sequence_length = loaded_graph.get_tensor_by_name('target_sequence_length:0') #Multiply by batch_size to match the model's input parameters answer_logits = sess.run(logits, {input_data: [text]*batch_size, target_sequence_length: [len(text)]*batch_size, source_sequence_length: [len(text)]*batch_size})[0] pad = source_letter_to_int["<PAD>"] print('Original Text:', input_sentence) print('\nSource') print(' Word Ids: {}'.format([i for i in text])) print(' Input Words: {}'.format(" ".join([source_int_to_letter[i] for i in text]))) print('\nTarget') print(' Word Ids: {}'.format([i for i in answer_logits if i != pad])) print(' Response Words: {}'.format(" ".join([target_int_to_letter[i] for i in answer_logits if i != pad]))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's start by examining the current state of the dataset. source_sentences contains the entire input sequence file as text delimited by newline symbols. Step2: source_sentences contains the entire output sequence file as text delimited by newline symbols. Each line corresponds to the line from source_sentences. source_sentences contains a sorted characters of the line. Step3: Preprocess Step4: This is the final shape we need them to be in. We can now proceed to building the model. Step5: Hyperparameters Step6: Input Step7: Sequence to Sequence Model Step8: 2.2 Decoder Step9: Set up the decoder components Step10: 2.3 Seq2seq model Step11: Model outputs training_decoder_output and inference_decoder_output both contain a 'rnn_output' logits tensor that looks like this Step14: Get Batches Step15: Train Step16: Prediction
14,450
<ASSISTANT_TASK:> Python Code: import GPy, safeopt from SafeRLBench.algo import SafeOptSwarm from SafeRLBench.envs import Quadrocopter, LinearCar from SafeRLBench.policy import NonLinearQuadrocopterController, LinearPolicy from SafeRLBench.measure import BestPerformance, SafetyMeasure from SafeRLBench import Bench # set up logging from SafeRLBench import config config.logger_set_level(config.INFO) config.logger_add_stream_handler() config.monitor_set_verbosity(2) noise_var = 0.05 ** 2 bounds = [(-1., 0.), (-1., 0.), (0., 1.)] algos = [(SafeOptSwarm, [{ 'policy': LinearPolicy(2, 1, par=[-1, 0, 1]), 'kernel': GPy.kern.RBF(input_dim=len(bounds), variance=std**2, lengthscale=.4, ARD=True), 'likelihood': GPy.likelihoods.gaussian.Gaussian(variance=noise_var), 'max_it': 20, 'avg_reward': -20, 'window': 3, 'fmin': -100, 'bounds': bounds, 'info': std } for std in [30, 35, 40, 45, 50]])] envs = [(LinearCar, {})] bench = Bench.make_bench(algos, envs, [BestPerformance(), SafetyMeasure(-100)]) bench() print([(t[0].alg_conf['info'], t[1], t[2]) for t in bench.measures[1].result]) noise_var = 0.05 ** 2 # Set fixed Gaussian measurement noise likelihood = GPy.likelihoods.gaussian.Gaussian(variance=noise_var) # Bounds on the inputs variable bounds = [(0., 1.), (0., 1.), (0., 1.), (0., 1.), (0., 1.)] # Define Kernel kernel = GPy.kern.RBF(input_dim=len(bounds), variance=1000.*2, lengthscale=1.0, ARD=True) noise_var = 0.05 ** 2 fmin = -2400 # Bounds on the inputs variable # bounds = [(1e-2, .9), (1e-2, .9), (1e-1, .9), (.2, .7), (1e-2, .9)] bounds = [(1e-2, 1.), (1e-2, 1.), (1e-2, 1.), (1e-2, 1.), (1e-2, 1.)] algos = [(SafeOptSwarm, [{ 'policy': NonLinearQuadrocopterController(), 'kernel': GPy.kern.RBF(input_dim=len(bounds), variance=std**2, lengthscale=0.2, ARD=True), 'likelihood': GPy.likelihoods.gaussian.Gaussian(variance=noise_var), 'max_it': 20, 'avg_reward': -1500, 'window': 3, 'fmin': fmin, 'bounds': bounds, 'swarm_size': 1000, 'info': std } for std in [1000, 1250, 1500, 1750, 2000]])] envs = [(Quadrocopter, {})] bench = Bench.make_bench(algos, envs, [BestPerformance(), SafetyMeasure(fmin)]) bench() print([(t[0].alg_conf['info'], t[1], t[2]) for t in bench.measures[1].result]) print([(t[0].alg_conf['info'], int(t[1])) for t in bench.measures[0].result]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Linear Car Step2: Below we output the results of the safety measure. List comprehension is used to get a more readable format for the Step3: Quadrocopter Step4: Below we output the results of the safety measure and performance. List comprehension is used to get a more readable format for the tuples.
14,451
<ASSISTANT_TASK:> Python Code: import numpy import numpy as np import sys import math import matplotlib.pyplot as plt def periodic(i,limit,add): Choose correct matrix index with periodic boundary conditions Input: - i: Base index - limit: Highest \"legal\" index - add: Number to add or subtract from i return (i + limit + add) % limit size = 256 # L_x temp = 10. # temperature T spin_matrix = np.zeros( (size,size), np.int8) + 1 spin_matrix E = M = 0 E_av = E2_av = M_av = M2_av = Mabs_av = 0 w = np.zeros(17, np.float64) for de in xrange(-8,9,4): print de w[de+8] = math.exp(-de/temp) print w M = spin_matrix.sum() print M # for i in xrange(16): print i r # range creates a list, so if you do range(1, 10000000) it creates a list in memory with 9999999 elements. # xrange is a sequence object that evaluates lazily. for j in xrange(size): for i in xrange(size): E -= spin_matrix.item(i,j) * (spin_matrix.item(periodic(i,size,-1),j) + spin_matrix.item(i,periodic(j,size,1))) x = int(np.random.random()*size) print(x) y = int(np.random.random()*size) print(y) deltaE = 2*spin_matrix.item(i,j) * \ (spin_matrix.item(periodic(x,size,-1),y) + spin_matrix.item(periodic(x,size,1),y) + \ spin_matrix.item(x,periodic(y,size,-1))+spin_matrix.item(x,periodic(y,size,1))) print(deltaE) print( w[deltaE + 8] ) np.random.random() print( np.random.random() <= w[deltaE+8]) print( spin_matrix[x,y] ) print( spin_matrix.item(x,y) ) spin_matrix[x,y] *= -1 M += 2*spin_matrix[x,y] E += deltaE print(spin_matrix.item(x,y)) print(M) print(E) import pygame Lx=256; Ly=256 spin_matrix = np.zeros((Lx,Ly),np.int8) print(spin_matrix.shape) spin_matrix.fill(1) spin_matrix def initialize_allup( spin_matrix, J=1.0 ): Lx,Ly = spin_matrix.shape spin_matrix.fill(1) M = spin_matrix.sum() # Calculate initial energy E=0 for j in xrange(Ly): for i in xrange(Lx): E += (-J)*spin_matrix.item(i,j) * \ (spin_matrix.item(periodic(i,Lx,+1),j) + spin_matrix.item(i,periodic(j,Ly,1)) ) print "M: ",M," E: ", E return E,M E,M = initialize_allup( spin_matrix) def initialize_allup1( spin_matrix, J=1.0 ): Lx,Ly = spin_matrix.shape spin_matrix.fill(1) M = spin_matrix.sum() # Calculate initial energy E=0 for j in xrange(Ly): for i in xrange(Lx): E -= J*spin_matrix.item(i,j) * \ (spin_matrix.item(periodic(i,Lx,-1),j) + spin_matrix.item(i,periodic(j,Ly,1)) ) print "M: ",M," E: ", E return E,M E,M = initialize_allup( spin_matrix) Lx=512; Ly=512 spin_matrix = np.zeros((Lx,Ly),np.int8) E,M = initialize_allup1( spin_matrix) E,M = initialize_allup( spin_matrix) Lx=1024; Ly=1024 print(Lx*Ly) spin_matrix = np.zeros((Lx,Ly),np.int8) E,M = initialize_allup1( spin_matrix) E,M = initialize_allup( spin_matrix) math.pow(2,31) temp = 1.0 w = np.zeros(17,np.float32) for de in xrange(-8,9,4): # include +8 w[de+8] = math.exp(-de/temp) print(w) import os print(os.getcwd()) print(os.listdir( os.getcwd() )) sys.path.append('./') avgsresults_GPU = np.fromfile("./IsingGPU/data/IsingMetroGPU.bin",dtype=np.float32) print(avgsresults_GPU.shape) print(avgsresults_GPU.size) avgsresults_GPU = avgsresults_GPU.reshape(201,7) # 7 different averages print(avgsresults_GPU.shape) print(avgsresults_GPU.size) avgsresults_GPU import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(1,1,1) T = avgsresults_GPU[:,0] E_avg = avgsresults_GPU[:,1] ax.scatter( T, E_avg) plt.show() Evar_avg = avgsresults_GPU[:,2] plt.scatter( T, Evar_avg) plt.show() M_avg = avgsresults_GPU[:,3] Mvar_avg = avgsresults_GPU[:,4] absM_avg = avgsresults_GPU[:,5] M4_avg = avgsresults_GPU[:,6] #fig = plt.figure() #ax = fig.add_subplot(4,1,1) plt.scatter( T, M_avg) #fig.add_subplot(4,1,2) #plt.scatter(T,Mvar_avg) #fig.add_subplot(4,1,3) #plt.scatter(T,absM_avg) #fig.add_subplot(4,1,4) #plt.scatter(T,M4_avg) plt.show() plt.scatter(T,Mvar_avg) plt.show() plt.scatter(T,absM_avg) plt.show() plt.scatter(T,M4_avg) plt.show() avgsresults_GPU = np.fromfile("./IsingGPU/data/IsingMetroGPU.bin",dtype=np.float32) print(avgsresults_GPU.shape) print(avgsresults_GPU.size) avgsresults_GPU = avgsresults_GPU.reshape( avgsresults_GPU.size/7 ,7) # 7 different averages print(avgsresults_GPU.shape) print(avgsresults_GPU.size) fig = plt.figure() ax = fig.add_subplot(1,1,1) T = avgsresults_GPU[:,0] E_avg = avgsresults_GPU[:,1] Evar_avg = avgsresults_GPU[:,2] M_avg = avgsresults_GPU[:,3] Mvar_avg = avgsresults_GPU[:,4] absM_avg = avgsresults_GPU[:,5] M4_avg = avgsresults_GPU[:,6] ax.scatter( T, E_avg) plt.show() plt.scatter( T, Evar_avg) plt.show() plt.scatter( T, M_avg) plt.show() plt.scatter(T,Mvar_avg) plt.show() plt.scatter(T,absM_avg) plt.show() plt.scatter(T,M4_avg) plt.show() avgsresults_GPU = np.fromfile("./IsingGPU/drafts/data/IsingMetroGPU.bin",dtype=np.float32) print(avgsresults_GPU.shape) print(avgsresults_GPU.size) avgsresults_GPU = avgsresults_GPU.reshape( avgsresults_GPU.size/7 ,7) # 7 different averages print(avgsresults_GPU.shape) print(avgsresults_GPU.size) fig = plt.figure() ax = fig.add_subplot(1,1,1) T = avgsresults_GPU[:,0] E_avg = avgsresults_GPU[:,1] Evar_avg = avgsresults_GPU[:,2] M_avg = avgsresults_GPU[:,3] Mvar_avg = avgsresults_GPU[:,4] absM_avg = avgsresults_GPU[:,5] M4_avg = avgsresults_GPU[:,6] ax.scatter( T, E_avg) plt.show() avgsresults_GPU = np.fromfile("./IsingGPU/drafts/IsingGPU/data/IsingMetroGPU_runs10.bin",dtype=np.float32) print(avgsresults_GPU.shape) print(avgsresults_GPU.size) avgsresults_GPU = avgsresults_GPU.reshape( avgsresults_GPU.size/7 ,7) # 7 different averages print(avgsresults_GPU.shape) print(avgsresults_GPU.size) fig = plt.figure() ax = fig.add_subplot(1,1,1) T = avgsresults_GPU[:,0] E_avg = avgsresults_GPU[:,1] Evar_avg = avgsresults_GPU[:,2] M_avg = avgsresults_GPU[:,3] Mvar_avg = avgsresults_GPU[:,4] absM_avg = avgsresults_GPU[:,5] M4_avg = avgsresults_GPU[:,6] ax.scatter( T, E_avg) plt.show() plt.scatter( T, Evar_avg) plt.show() plt.scatter( T, M_avg) plt.show() plt.scatter(T,Mvar_avg) plt.show() plt.scatter(T,absM_avg) plt.show() plt.scatter(T,M4_avg) plt.show() avgsresults_GPU = np.fromfile("./IsingGPU/drafts/IsingGPU/data/IsingMetroGPU.bin",dtype=np.float32) print(avgsresults_GPU.shape) print(avgsresults_GPU.size) avgsresults_GPU = avgsresults_GPU.reshape( avgsresults_GPU.size/7 ,7) # 7 different averages print(avgsresults_GPU.shape) print(avgsresults_GPU.size) fig = plt.figure() ax = fig.add_subplot(1,1,1) T = avgsresults_GPU[:,0] E_avg = avgsresults_GPU[:,1] Evar_avg = avgsresults_GPU[:,2] M_avg = avgsresults_GPU[:,3] Mvar_avg = avgsresults_GPU[:,4] absM_avg = avgsresults_GPU[:,5] M4_avg = avgsresults_GPU[:,6] ax.scatter( T, E_avg) plt.show() plt.scatter( T, Evar_avg) plt.show() plt.scatter( T, M_avg) plt.show() plt.scatter(T,Mvar_avg) plt.show() plt.scatter(T,absM_avg) plt.show() plt.scatter(T,M4_avg) plt.show() avgsresults_GPU = [] for temp in range(10,31,2): avgsresults_GPU.append( np.fromfile("./data/ising2d_CLaigit" + str(temp) + ".bin",dtype=np.float64) ) avgsresults_GPU = np.array( avgsresults_GPU) print( avgsresults_GPU.shape, avgsresults_GPU.size) fig = plt.figure() ax = fig.add_subplot(1,1,1) T = avgsresults_GPU[:,0] E_avg = avgsresults_GPU[:,1] M_avg = avgsresults_GPU[:,2] heat_cap_avg = avgsresults_GPU[:,3] mag_sus_avg = avgsresults_GPU[:,4] ax.scatter( T, E_avg) plt.show() plt.scatter( T, M_avg) plt.show() plt.scatter( T, heat_cap_avg) plt.show() plt.scatter( T, mag_sus_avg) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Periodic boundary conditions Step3: Set up spin matrix, initialize to ground state Step4: Create and initialize variables Step5: Setup array for possible energy changes Step6: Calculate initial magnetization Step7: Calculate initial energy Step8: Metropolis MonteCarlo computation, 1 single step or iteration, done explicitly Step9: Accept (if True)! Step10: Initialize (all spins up), explicitly shown Step11: Setup array for possible energy changes Step12: Importing from the script ising2dim.py Step13: Reading out data from ./IsingGPU/FileIO/output.h Step14: For Step15: From drafts Step16: From CLaigit
14,452
<ASSISTANT_TASK:> Python Code: class Character(object): def __init__(self): self.life = 1000 def attacked(self): self.life -= 10 print(u"공격받음! 생명력 =", self.life) a = Character() b = Character() c = Character() a.life, b.life, c.life a.attacked() b.attacked() a.attacked() a.attacked() a.attacked() a.attacked() a.attacked() a.life, b.life, c.life class Warrior(Character): def __init__(self): super(Warrior, self).__init__() self.strength = 15 self.intelligence = 5 class Wizard(Character): def __init__(self): super(Wizard, self).__init__() self.strength = 5 self.intelligence = 15 a = Warrior() b = Wizard() a.life, b.life a.strength, b.strength a.intelligence, b.intelligence a.attacked() b.attacked() class Character(object): def __init__(self): self.life = 1000 self.strength = 10 self.intelligence = 10 def attacked(self): self.life -= 10 print(u"공격받음! 생명력 =", self.life) def attack(self): print(u"공격!") class Warrior(Character): def __init__(self): super(Warrior, self).__init__() self.strength = 15 self.intelligence = 5 def attack(self): print(u"육탄 공격!") class Wizard(Character): def __init__(self): super(Wizard, self).__init__() self.strength = 5 self.intelligence = 15 def attack(self): print(u"마법 공격!") a = Character() b = Warrior() c = Wizard() a.attack() b.attack() c.attack() a.attacked() b.attacked() def Dummy(): pass d = Dummy() class Complex(object): def __init__(self, realpart, imagpart): self.r = realpart self.i = imagpart c = Complex(1, 2) c str(c) class Complex2(Complex): def __repr__(self): return "Complex: real = %f imag = %f" % (self.r, self.i) def __str__(self): return "[for str] " + self.__repr__() c2 = Complex2(1, 1) c2 str(c2) class Complex3(Complex2): def __getitem__(self, key): if key == "r": return self.r if key == "i": return self.i c3 = Complex3(1, 2) c3 c3["i"] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 이 클래스로 a, b, c 세 개의 캐릭터 객체를 생성한다. Step2: 모든 객체의 초기 life 속성값은 모두 1000이다. Step3: 하지만 공격을 받은 캐릭터의 생명력은 감소된다. Step4: 클래스 상속 Step5: 이 클래스의 객체를 만들어 보면 명시적으로 만들지 않았지만 life라는 속성과 attacked 라는 메서드를 가진다. Step6: 메소드 오버라이딩 Step7: 참조 Step8: 특수 메서드 Step9: __repr__ 메서드를 정의하지 않으면 object 클래스가 가진 기본 __repr__ 메서드를 사용한다. 이 함수는 클래스 이름과 변수가 위치하고 있는 메모리 주소를 &lt;&gt;안에 써서 반환한다. 기본 __str__ 메서드도 마찬가지이다. Step10: 이번에는 __repr__ 메서드와 __repr__ 메서드를 다음과 같이 새로 정의하여 오버라이딩한다. Step11: __getitem__ 메서드를 정의하면 마치 리스트나 사전처럼 [] 기호를 사용한 인덱싱을 할 수 있다.
14,453
<ASSISTANT_TASK:> Python Code: poetry_output = !htid2rsync --f data/poetry.txt | rsync -azv --files-from=- data.sharc.hathitrust.org::features/ data/poetry/ scifi_output = !htid2rsync --f data/scifi.txt | rsync -azv --files-from=- data.sharc.hathitrust.org::features/ data/scifi/ outputs = list([poetry_output, scifi_output]) subjects = ['poetry', 'scifi'] paths = {} suffix = '.json.bz2' for subject, output in zip(subjects, outputs): folder = subject filePaths = [path for path in output if path.endswith(suffix)] paths[subject] = [os.path.join(folder, path) for path in filePaths] fn = 'data/' + subject + '_paths.txt' with open(fn, 'w') as f: for path in paths[subject]: p = str(path) + '\n' f.write(p) paths = {} subjects = ['poetry', 'scifi'] for subject in subjects: with open('data/' + subject + '_paths.txt', 'r') as f: paths[subject] = ['data/' + line[:len(line)-1] for line in f.readlines()] poetry = FeatureReader(paths['poetry']) scifi = FeatureReader(paths['scifi']) def createWordDict(HTRC_FeatureReader_List): wordDict = {} i = 0 volumes = [] for f in HTRC_FeatureReader_List: for vol in f.volumes(): volumes.append(vol) tok_list = vol.tokenlist(pages=False) tokens = tok_list.index.get_level_values('token') for token in tokens: if token not in wordDict.keys(): wordDict[token] = i i += 1 return wordDict, volumes wordDict, volumes = createWordDict([scifi, poetry]) dtm = np.zeros((200, len(wordDict.keys()))) for i, vol in enumerate(volumes): tok_list = vol.tokenlist(pages=False) counts = list(tok_list['count']) tokens = tok_list.index.get_level_values('token') for token, count in zip(tokens, counts): try: index = wordDict[token] dtm[i, index] = count except: pass X = dtm y = np.zeros((200)) y[100:200] = 1 from sklearn.feature_extraction.text import TfidfTransformer from sklearn.svm import LinearSVC from sklearn import cross_validation tfidf = TfidfTransformer() out = tfidf.fit_transform(X, y) model = LinearSVC() score = cross_validation.cross_val_score(model, X, y, cv=10) print(np.mean(score)) model.fit(X, y) feats = np.argsort(model.coef_[0])[:50] top_scifi = [(list(feats).index(wordDict[w]) + 1, w) for w in wordDict.keys() if wordDict[w] in feats] sorted(top_scifi) feats = np.argsort(model.coef_[0])[-50:] top_poetry = [(list(feats).index(wordDict[w]) + 1, w) for w in wordDict.keys() if wordDict[w] in feats] sorted(top_poetry, key=lambda tup: tup[0]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As in the previous notebooks, we'll construct FeatureReader objects for each corpus. The line below reads in path files we created to the downloaded data Step2: To create our bag of words matrix, we need to keep a global dictionary of all words seen in each of our texts. We initialize "wordDict", which tracks all the words seen and records its index in the bag of words matrix. We also keep a list of volumes so that we can parse them later. Step3: Once we construct the global dictionary, we can fill the bag of words matrix with the word counts for each volume. Once we have this, we will use it to format the training data for our model. Step4: We can then use the TfidfTransformer to format the bag of words matrix, so that we can fit it to our LinearSVC model. Let's see how our model does. Step5: We can also get the most helpful features, or words, for each class. First we'll fit the model
14,454
<ASSISTANT_TASK:> Python Code: %matplotlib inline import pandas as pd import numpy as np import random as rnd import seaborn as sns import matplotlib.pyplot as plt train_df = pd.read_csv('train.csv') test_df = pd.read_csv('test.csv') print(train_df.columns.values) train_df.isnull().sum() print (train_df.info()) train_df.describe() train_df, test_df = train_df.drop(['Cabin', 'Ticket'], axis=1), test_df.drop(['Cabin', 'Ticket'], axis=1) # Sacamos la descripcion de los valores que son Strings (object) train_df.describe(include=['O']) plt.title('Survival count between sex', size=20, y=1.1) sns.countplot(x = 'Survived', hue='Sex', data=train_df) #Hay una gran correlacion entre el sexo y la supervivencia # Pasamos el sexo de string a un int, 1 para hombre y 0 para mujer for df in [train_df, test_df]: df['Sex'] = df['Sex'].apply(lambda x : 1 if x == 'male' else 0) # Hay relacion directa entre la clase y la supervivencia plt.figure(figsize=(12, 12)) plt.subplot(2,2,1) plt.title('Survival rate / Pclass', size=15, y=1.1) sns.barplot(x='Pclass', y = 'Survived', data=train_df, palette='muted') sns.countplot(x = 'Survived', hue='Embarked', data=train_df) # Tambien hay una ligera correlacion con el lugar de embarque train_df['Embarked'] = train_df['Embarked'].fillna('S') for dt in [train_df, test_df]: dt['Embarked'] = dt['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} ).astype(int) #Rellenamos el unico valor que falta de fare test_df['Fare'] = test_df['Fare'].fillna(test_df['Fare'].median()) # Transformamos los valores continuos de fare en valores discretos, agrupando los rangos en 4 grupos, del 0 al 3 for df in [train_df, test_df]: df['Fare'] = pd.qcut(df['Fare'], 4, labels=[0, 1, 2, 3]) train_df.head(5) for df in [train_df, test_df]: df['FamilySize'] = df['Parch'] + df['SibSp'] + 1 sns.barplot(x='FamilySize', y='Survived' , data=train_df) def filter_family_size(x): if x == 1: return 0 elif x < 5: return 1 else: return 0 for df in [train_df, test_df]: df['FamilySize'] = df['FamilySize'].apply(filter_family_size) train_df = train_df.drop(['Parch', 'SibSp'], axis=1) test_df = test_df.drop(['Parch', 'SibSp'], axis=1) corrmat = train_df.corr() sns.heatmap(corrmat, square=True) print ("El numero de datos Age sin rellenar: ",train_df['Age'].isnull().sum()) plt.title('Distribucion de la edad original', size=20, y=1.1) sns.distplot(train_df['Age'].dropna()) #Rellenamos los campos edad vacios guess_ages = np.zeros((2,3)) for dataset in [train_df, test_df]: for i in range(0, 2): for j in range(0, 3): guess_df = dataset[(dataset['Sex'] == i) & \ (dataset['Pclass'] == j+1)]['Age'].dropna() # age_mean = guess_df.mean() # age_std = guess_df.std() # age_guess = rnd.uniform(age_mean - age_std, age_mean + age_std) age_guess = guess_df.median() # Convert random age float to nearest .5 age guess_ages[i,j] = int( age_guess/0.5 + 0.5 ) * 0.5 for i in range(0, 2): for j in range(0, 3): dataset.loc[ (dataset.Age.isnull()) & (dataset.Sex == i) & (dataset.Pclass == j+1),\ 'Age'] = guess_ages[i,j] dataset['Age'] = dataset['Age'].astype(int) print ("El numero de datos Age sin rellenar: ",train_df['Age'].isnull().sum()) plt.title('Distribucion de la edad rellena', size=20, y=1.1) sns.distplot(train_df['Age']) #Creamos la nueva feature y la mostramos train_df['AgeBand'] = pd.cut(train_df['Age'], 8) train_df[['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=False).mean().sort_values(by='AgeBand', ascending=True) sns.countplot(x='Survived', hue='AgeBand' , data=train_df) for dataset in [train_df, test_df]: dataset.loc[ dataset['Age'] <= 10, 'Age'] = 0 dataset.loc[(dataset['Age'] > 10) & (dataset['Age'] <= 20), 'Age'] = 1 dataset.loc[(dataset['Age'] > 20) & (dataset['Age'] <= 30), 'Age'] = 2 dataset.loc[(dataset['Age'] > 30) & (dataset['Age'] <= 40), 'Age'] = 3 dataset.loc[(dataset['Age'] > 40) & (dataset['Age'] <= 50), 'Age'] = 4 dataset.loc[(dataset['Age'] > 50) & (dataset['Age'] <= 60), 'Age'] = 5 dataset.loc[(dataset['Age'] > 60) & (dataset['Age'] <= 70), 'Age'] = 6 dataset.loc[ dataset['Age'] > 70, 'Age'] = 7 train_df.head() train_df = train_df.drop(['AgeBand'], axis=1) # Filter the name def get_title(x): y = x[x.find(',')+1:].replace('.', '').replace(',', '').strip().split(' ') if y[0] == 'the': # Search for the countess title = y[1] else: title = y[0] return title def filter_title(title, sex): if title in ['Countess', 'Dona', 'Lady', 'Jonkheer', 'Mme', 'Mlle', 'Ms', 'Capt', 'Col', 'Don', 'Sir', 'Major', 'Rev', 'Dr']: if sex: return 'Rare_male' else: return 'Rare_female' else: return title for df in [train_df, test_df]: df['NameLength'] = df['Name'].apply(lambda x : len(x)) df['Title'] = df['Name'].apply(get_title) title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5} for dataset in [train_df, test_df]: dataset['Title'] = dataset['Title'].map(title_mapping) dataset['Title'] = dataset['Title'].fillna(0) for df in [train_df, test_df]: df['Title'] = df.apply(lambda x: filter_title(x['Title'], x['Sex']), axis=1) sns.countplot(y=train_df['Title']) train_df.groupby('Title')['PassengerId'].count().sort_values(ascending=False) # Borramos la columna Name train_df = train_df.drop(['Name', 'PassengerId'], axis=1) test_df = test_df.drop(['Name'], axis=1) train_df.head() X_train = train_df.drop(["Survived"], axis=1).copy() Y_train = train_df["Survived"] X_test = test_df.drop("PassengerId", axis=1).copy() X_train.shape, Y_train.shape, X_test.shape from sklearn.ensemble import RandomForestClassifier random_forest = RandomForestClassifier(n_estimators=101) random_forest.fit(X_train, Y_train) Y_pred = random_forest.predict(X_test) random_forest.score(X_train, Y_train) #acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2) #acc_random_forest from sklearn import tree clf = tree.DecisionTreeClassifier() clf.fit(X_train, Y_train) Y_pred = clf.predict(X_test) clf.score(X_train, Y_train) from sklearn.svm import SVC svc = SVC(C=10000.0) svc.fit(X_train, Y_train) Y_pred = svc.predict(X_test) svc.score(X_train, Y_train) from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors = 3) knn.fit(X_train, Y_train) Y_pred = knn.predict(X_test) knn.score(X_train, Y_train) submission = pd.DataFrame({ "PassengerId": test_df["PassengerId"], "Survived": Y_pred }) submission.to_csv('submission.csv', index=False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Importamos los datos para entrenar y testear Step2: Miramos los datos, para ver que si hay nulos o datos que rellenar, como la edad y la cabina en este caso Step3: Faltan muchos datos de edad y cabina por rellenar, ademas de 2 embarcos Step4: Como faltan mas de la mitad de los datos de la cabina y no contienen informacion util, se puede descartar esta feature. Step5: Analisis a primera vista de los datos Step6: Como faltan 2 datos de embarque de 2 personas y usaremos la feature, rellenamos con S porque Step7: Como Parch es la abreviacion de 'parent/children', sumado y SibSp es la abreviacion de 'sibling/spouse' sumados, se pueden juntar estas 2 features en una sola que representen el tamaño de la familia que tiene esa persona, incluyendola. Step8: De esta grafica podemos ver que las personas con 2,3 o 4 de tamaño familiar, tenian mas posibilidades de supervivencia Step9: Rellenar la edad Step10: Al haber introducido los nuevos datos sobre la media, la distribucion sigue siendo igual a antes de introducirlos, pero con un repunte de datos en la zona de la mediana Step11: Convertimos el campo edad en valores de 0 al 7 siguiendo la feature banda de edades que hemos creado antes, con este cambio, banda de edades es una feature que no necesitamos ya Step12: Clasificamos el nombre segun el titulo de una persona Step13: Quitamos los titulos especiales y los agrupamos en categorias mas concretas Step14: Eleccion del Modelo Step15: Random Forest Step16: Decision Tree Step17: Support Vector Machines Step18: KNN Step19: Creamos el archivo submission para subir a kaggle Step20: Lo guardamos en formato csv
14,455
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt import xarray as xr import climlab # Get the water vapor data #datapath = "http://ramadda.atmos.albany.edu:8080/repository/opendap/latest/Top/Users/BrianRose/CESM_runs/" datapath = "http://thredds.atmos.albany.edu:8080/thredds/dodsC/cesm/" #endstr = "/entry.das" atm_control = xr.open_dataset( datapath + 'som_1850_f19/som_1850_f19.cam.h0.clim.nc', decode_times=False) Qglobal = ((atm_control.Q * atm_control.gw)/atm_control.gw.mean(dim='lat')).mean(dim=('lat','lon','time')) # Make a model on same vertical domain as the GCM state = climlab.column_state(lev=Qglobal.lev, water_depth=2.5) steps_per_year = 90 deltat = climlab.constants.seconds_per_year/steps_per_year rad = climlab.radiation.RRTMG(name='Radiation', state=state, specific_humidity=Qglobal.values, timestep = deltat, albedo = 0.25, # tuned to give reasonable ASR for reference cloud-free model ) conv = climlab.convection.ConvectiveAdjustment(name='Convection', state=state, adj_lapse_rate=6.5, timestep=rad.timestep,) rcm_control = rad + conv rcm_control.name = 'Radiative-Convective Model' rcm_control.integrate_years(5) rcm_control.ASR - rcm_control.OLR slab_control = [] slab_control.append(rcm_control) slab_control.append(climlab.process_like(rcm_control)) slab_2x = [] for n in range(len(slab_control)): rcm_2xCO2 = climlab.process_like(rcm_control) rcm_2xCO2.subprocess['Radiation'].absorber_vmr['CO2'] *= 2. if n == 0: rcm_2xCO2.name = 'High-sensitivity RCM' elif n == 1: rcm_2xCO2.name = 'Low-sensitivity RCM' slab_2x.append(rcm_2xCO2) # actual specific humidity q = rcm_control.subprocess['Radiation'].specific_humidity # saturation specific humidity (a function of temperature and pressure) qsat = climlab.utils.thermo.qsat(rcm_control.Tatm, rcm_control.lev) # Relative humidity rh = q/qsat lapse_change_factor = [+0.3, -0.3] for n in range(len(slab_2x)): rcm_2xCO2 = slab_2x[n] print('Integrating ' + rcm_2xCO2.name) for m in range(5 * steps_per_year): # At every timestep # we calculate the new saturation specific humidity for the new temperature # and change the water vapor in the radiation model # so that relative humidity is always the same qsat = climlab.utils.thermo.qsat(rcm_2xCO2.Tatm, rcm_2xCO2.lev) rcm_2xCO2.subprocess['Radiation'].specific_humidity[:] = rh * qsat # We also adjust the critical lapse rate in our convection model DeltaTs = rcm_2xCO2.Ts - rcm_control.Ts rcm_2xCO2.subprocess['Convection'].adj_lapse_rate = 6.5 + lapse_change_factor[n]*DeltaTs rcm_2xCO2.step_forward() print('The TOA imbalance is %0.5f W/m2' %(rcm_2xCO2.ASR-rcm_2xCO2.OLR)) print('The ECS is %0.3f K' %(rcm_2xCO2.Ts - rcm_control.Ts)) print('') slab_control[0].depth_bounds # Create the domains ocean_bounds = np.arange(0., 2010., 100.) depthax = climlab.Axis(axis_type='depth', bounds=ocean_bounds) ocean = climlab.domain.domain.Ocean(axes=depthax) atm = slab_control[0].Tatm.domain # Model 0 has a higher ocean heat diffusion coefficient -- # a more efficent deep ocean heat sink ocean_diff = [5.E-4, 3.5E-4] # List of deep ocean models deep = [] for n in range(len(slab_control)): rcm_control = slab_control[n] # Create the state variables Tinitial_ocean = rcm_control.Ts * np.ones(ocean.shape) Tocean = climlab.Field(Tinitial_ocean.copy(), domain=ocean) Tatm = climlab.Field(rcm_control.Tatm.copy(), domain=atm) # Surface temperature Ts is the upper-most grid box of the ocean Ts = Tocean[0:1] atm_state = {'Tatm': Tatm, 'Ts': Ts} rad = climlab.radiation.RRTMG(name='Radiation', state=atm_state, specific_humidity=Qglobal.values, timestep = deltat, albedo = 0.25, ) conv = climlab.convection.ConvectiveAdjustment(name='Convection', state=atm_state, adj_lapse_rate=6.5, timestep=rad.timestep,) model = rad + conv if n == 0: model.name = 'RCM with high sensitivity and efficient heat uptake' elif n == 1: model.name = 'RCM with low sensitivity and inefficient heat uptake' model.set_state('Tocean', Tocean) diff = climlab.dynamics.Diffusion(state={'Tocean': model.Tocean}, K=ocean_diff[n], diffusion_axis='depth', timestep=deltat * 10,) model.add_subprocess('Ocean Heat Uptake', diff) print('') print(model) print('') deep.append(model) num_years = 400 years = np.arange(num_years+1) Tsarray = [] Tocean = [] netrad = [] for n in range(len(deep)): thisTs = np.nan * np.zeros(num_years+1) thisnetrad = np.nan * np.zeros(num_years+1) thisTocean = np.nan * np.zeros((deep[n].Tocean.size, num_years+1)) thisTs[0] = deep[n].Ts thisnetrad[0] = deep[n].ASR - deep[n].OLR thisTocean[:, 0] = deep[n].Tocean Tsarray.append(thisTs) Tocean.append(thisTocean) netrad.append(thisnetrad) CO2initial = deep[0].subprocess['Radiation'].absorber_vmr['CO2'] CO2array = np.nan * np.zeros(num_years+1) CO2array[0] = CO2initial * 1E6 # Increase CO2 by 1% / year for 70 years (until doubled), and then hold constant for y in range(num_years): if deep[0].subprocess['Radiation'].absorber_vmr['CO2'] < 2 * CO2initial: for model in deep: model.subprocess['Radiation'].absorber_vmr['CO2'] *= 1.01 CO2array[y+1] = deep[0].subprocess['Radiation'].absorber_vmr['CO2'] * 1E6 print('Year ', y+1, ', CO2 mixing ratio is ', CO2array[y+1],' ppm.') for n, model in enumerate(deep): for m in range(steps_per_year): qsat = climlab.utils.thermo.qsat(model.Tatm, model.lev) model.subprocess['Radiation'].specific_humidity[:] = rh * qsat DeltaTs = model.Ts - slab_control[n].Ts model.subprocess['Convection'].adj_lapse_rate = 6.5 + lapse_change_factor[n]*DeltaTs model.step_forward() Tsarray[n][y+1] = model.Ts Tocean[n][:, y+1] = model.Tocean netrad[n][y+1] = model.ASR - model.OLR colorlist = ['b', 'r'] co2color = 'k' num_axes = len(deep) + 1 fig, ax = plt.subplots(num_axes, figsize=(12,14)) # Twin the x-axis twice to make independent y-axes. topaxes = [ax[0], ax[0].twinx(), ax[0].twinx()] # Make some space on the right side for the extra y-axis. fig.subplots_adjust(right=0.85) # Move the last y-axis spine over to the right by 10% of the width of the axes topaxes[-1].spines['right'].set_position(('axes', 1.1)) # To make the border of the right-most axis visible, we need to turn the frame # on. This hides the other plots, however, so we need to turn its fill off. topaxes[-1].set_frame_on(True) topaxes[-1].patch.set_visible(False) for n, model in enumerate(slab_2x): topaxes[0].plot(model.Ts*np.ones_like(Tsarray[n]), '--', color=colorlist[n]) topaxes[0].set_ylabel('Surface temperature (K)') topaxes[0].set_xlabel('Years') topaxes[0].set_title('Transient warming scenario: 1%/year CO2 increase to doubling, followed by CO2 stabilization', fontsize=14) topaxes[0].legend(['Model 0', 'Model 1'], loc='lower right') topaxes[1].plot(CO2array, color=co2color) topaxes[1].set_ylabel('CO2 (ppm)', color=co2color) for tl in topaxes[1].get_yticklabels(): tl.set_color(co2color) topaxes[1].set_ylim(300., 1000.) topaxes[2].set_ylabel('TOA imbalance (W/m2)', color='b') for tl in topaxes[2].get_yticklabels(): tl.set_color('b') topaxes[2].set_ylim(0, 3) contour_levels = np.arange(-0.25, 3.25, 0.25) for n in range(len(deep)): cax = ax[n+1].contourf(years, deep[n].depth, Tocean[n] - Tsarray[n][0], levels=contour_levels) ax[n+1].invert_yaxis() ax[n+1].set_ylabel('Depth (m)') ax[n+1].set_xlabel('Years') for n, model in enumerate(deep): topaxes[0].plot(Tsarray[n], color=colorlist[n]) topaxes[2].plot(netrad[n], ':', color=colorlist[n]) for n in range(len(deep)): cax = ax[n+1].contourf(years, deep[n].depth, Tocean[n] - Tsarray[n][0], levels=contour_levels) topaxes[1].plot(CO2array, color=co2color) fig.subplots_adjust(bottom=0.12) cbar_ax = fig.add_axes([0.25, 0.02, 0.5, 0.03]) fig.colorbar(cax, cax=cbar_ax, orientation='horizontal'); %load_ext version_information %version_information numpy, matplotlib, xarray, climlab <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Integrate the control model out to equilibrium. Step2: Now let's make two copies of this model and keep them in a list Step3: We are going to double CO2 in both models and label them as high and low sensitivity. We will build in different feedbacks into our two columns. Step4: We will implement a water vapor feedback as we have done before Step5: Now here is where our two models will differ Step6: So Model 0 (in which the lapse rates have gotten larger) is more sensitive than Model 1 (smaller lapse rates). It has a larger system gain, or a more positive overall climate feedback. Step7: The "ocean" in these models is just a "slab" of water 2.5 meter deep. Step8: An idealized transient global warming scenario Step9: Transient vs. equilibrium warming
14,456
<ASSISTANT_TASK:> Python Code: import datetime import os import time import numpy as np import pandas as pd import tensorflow as tf from google.cloud import aiplatform, storage from google.cloud.aiplatform import gapic as aip from sklearn.preprocessing import StandardScaler # Check the TensorFlow version installed tf.__version__ # Enter your project, region, and a bucket name. Then run the cell to make sure the # Cloud SDK uses the right project for all the commands in this notebook. PROJECT = 'your-project-name' # REPLACE WITH YOUR PROJECT ID BUCKET = 'your-regional-bucket' # REPLACE WITH A UNIQUE REGIONAL BUCKET NAME e.g. your PROJECT NAME REGION = 'us-central1' # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 BUCKET_URI = 'gs://' + BUCKET #Don't change the following command - this is to check if you have changed the project name above. assert PROJECT != 'your-project-name', 'Don''t forget to change the project variables!' # Initialize the Vertex SDK for Python aiplatform.init(project=PROJECT, location=REGION, staging_bucket=BUCKET) # Dataset parameters target_col = 'total_rides' # The variable you are predicting ts_col = 'service_date' # The name of the column with the date field # Model parameters freq = 'D' # Daily frequency n_input_steps = 30 # Lookback window n_output_steps = 7 # How many steps to predict forward n_seasons = 7 # Monthly periodicity train_split = 0.8 # % Split between train/test data epochs = 1000 # How many passes through the data (early-stopping will cause training to stop before this) patience = 5 # Terminate training after the validation loss does not decrease after this many epochs lstm_units = 64 input_layer_name = 'lstm_input' # Training parameters MODEL_NAME = 'cta_ridership' storage_client = storage.Client() try: bucket = storage_client.get_bucket(BUCKET) print('Bucket exists, let''s not recreate it.') except: bucket = storage_client.create_bucket(BUCKET) print('Created bucket: ' + BUCKET) processed_file = 'cta_ridership.csv' # Which file to save the results to if os.path.exists(processed_file): input_file = processed_file # File created in previous lab else: input_file = f'data/{processed_file}' df = pd.read_csv(input_file, index_col=ts_col, parse_dates=True) # Plot 30 days of ridership _ = df[target_col][:30].plot() # Define some characteristics of the data that will be used later n_features = len(df.columns) # Index of target column. Used later when creating dataframes. target_col_num = df.columns.get_loc(target_col) # Split data size = int(len(df) * train_split) df_train, df_test = df[0:size].copy(deep=True), df[size:len(df)].copy(deep=True) df_train.head() _ = df_train.plot() # Review original values df_train.head() # For neural networks to converge quicker, it is helpful to scale the values. # For example, each feature might be transformed to have a mean of 0 and std. dev. of 1. # # You are working with a mix of features, input timesteps, output horizon, etc. # which don't work out-of-the-box with common scaling utilities. # So, here are a couple wrappers to handle scaling and inverting the scaling. feature_scaler = StandardScaler() target_scaler = StandardScaler() def scale(df, fit=True, target_col=target_col, feature_scaler=feature_scaler, target_scaler=target_scaler): Scale the input features, using a separate scaler for the target. Parameters: df (pd.DataFrame): Input dataframe fit (bool): Whether to fit the scaler to the data (only apply to training data) target_col (pd.Series): The column that is being predicted feature_scaler (StandardScaler): Scaler used for features target_scaler (StandardScaler): Scaler used for target Returns: df_scaled (pd.DataFrame): Scaled dataframe target = df[target_col].values.reshape(-1, 1) if fit: target_scaler.fit(target) target_scaled = target_scaler.transform(target) # Select all columns other than target to be features features = df.loc[:, df.columns != target_col].values if features.shape[1]: # If there are any features if fit: feature_scaler.fit(features) features_scaled = feature_scaler.transform(features) # Combine target and features into one data frame df_scaled = pd.DataFrame(features_scaled) target_col_num = df.columns.get_loc(target_col) df_scaled.insert(target_col_num, target_col, target_scaled) df_scaled.columns = df.columns else: # If only target column (no additional features) df_scaled = pd.DataFrame(target_scaled, columns=df.columns) return df_scaled def inverse_scale(data, target_scaler=target_scaler): Transform the scaled values of the target back into their original form. The features are left alone, as we're assuming that the output of the model only includes the target. Parameters: data (np.array): Input array target_scaler (StandardScaler): Scaler used for target Returns: data_scaled (np.array): Scaled array df = pd.DataFrame() data_scaled = np.empty([data.shape[1], data.shape[0]]) for i in range(data.shape[1]): data_scaled[i] = target_scaler.inverse_transform([data[:,i]]) return data_scaled.transpose() df_train_scaled=scale(df_train) df_test_scaled=scale(df_test, False) # Review scaled values df_train_scaled.head() def reframe(data, n_input_steps = n_input_steps, n_output_steps = n_output_steps, target_col = target_col): target_col_num = data.columns.get_loc(target_col) # Iterate through data and create sequences of features and outputs df = pd.DataFrame(data) cols=list() for i in range(n_input_steps, 0, -1): cols.append(df.shift(i)) for i in range(0, n_output_steps): cols.append(df.shift(-i)) # Concatenate values and remove any missing values df = pd.concat(cols, axis=1) df.dropna(inplace=True) # Split the data into feature and target variables n_feature_cols = n_input_steps * n_features features = df.iloc[:,0:n_feature_cols] target_cols = [i for i in range(n_feature_cols + target_col_num, n_feature_cols + n_output_steps * n_features, n_features)] targets = df.iloc[:,target_cols] return (features, targets) X_train_reframed, y_train_reframed = reframe(df_train_scaled) X_test_reframed, y_test_reframed = reframe(df_test_scaled) # Reshape test data to match model inputs and outputs X_train = X_train_reframed.values.reshape(-1, n_input_steps, n_features) X_test = X_test_reframed.values.reshape(-1, n_input_steps, n_features) y_train = y_train_reframed.values.reshape(-1, n_output_steps) y_test = y_test_reframed.values.reshape(-1, n_output_steps) # Specify directories to be used later TRAINER_DIR = 'trainer' EXPORT_DIR = 'tf_export' # Create trainer directory if it doesn't already exist !mkdir $TRAINER_DIR # Copy numpy arrays to npy files np.save(TRAINER_DIR + '/x_train.npy', X_train) np.save(TRAINER_DIR + '/x_test.npy', X_test) np.save(TRAINER_DIR + '/y_train.npy', y_train) np.save(TRAINER_DIR + '/y_test.npy', y_test) # Write training code out to a file that will be submitted to the training job # Note: f-strings are supported in Python 3.6 and above model_template = fimport argparse import numpy as np import os import tempfile from google.cloud import storage from tensorflow import keras from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense, LSTM from tensorflow.keras.callbacks import EarlyStopping n_features = {n_features} # Two features: y (previous values) and whether the date is a holiday n_input_steps = {n_input_steps} # Lookback window n_output_steps = {n_output_steps} # How many steps to predict forward epochs = {epochs} # How many passes through the data (early-stopping will cause training to stop before this) patience = {patience} # Terminate training after the validation loss does not decrease after this many epochs def download_blob(bucket_name, source_blob_name, destination_file_name): '''Downloads a blob from the bucket.''' # bucket_name = "your-bucket-name" # source_blob_name = "storage-object-name" # destination_file_name = "local/path/to/file" storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) # Construct a client side representation of a blob. # Note `Bucket.blob` differs from `Bucket.get_blob` as it doesn't retrieve # any content from Google Cloud Storage. As we don't need additional data, # using `Bucket.blob` is preferred here. blob = bucket.blob(source_blob_name) blob.download_to_filename(destination_file_name) print("Blob " + source_blob_name + " downloaded to " + destination_file_name + ".") def extract_bucket_and_prefix_from_gcs_path(gcs_path: str): '''Given a complete GCS path, return the bucket name and prefix as a tuple. Example Usage: bucket, prefix = extract_bucket_and_prefix_from_gcs_path( "gs://example-bucket/path/to/folder" ) # bucket = "example-bucket" # prefix = "path/to/folder" Args: gcs_path (str): Required. A full path to a Google Cloud Storage folder or resource. Can optionally include "gs://" prefix or end in a trailing slash "/". Returns: Tuple[str, Optional[str]] A (bucket, prefix) pair from provided GCS path. If a prefix is not present, a None will be returned in its place. ''' if gcs_path.startswith("gs://"): gcs_path = gcs_path[5:] if gcs_path.endswith("/"): gcs_path = gcs_path[:-1] gcs_parts = gcs_path.split("/", 1) gcs_bucket = gcs_parts[0] gcs_blob_prefix = None if len(gcs_parts) == 1 else gcs_parts[1] return (gcs_bucket, gcs_blob_prefix) def get_args(): parser = argparse.ArgumentParser() parser.add_argument( '--data-uri', default=None, help='URL where the training files are located') args = parser.parse_args() print(args) return args def main(): args = get_args() bucket_name, blob_prefix = extract_bucket_and_prefix_from_gcs_path(args.data_uri) # Get the training data and convert back to np arrays local_data_dir = os.path.join(os.getcwd(), tempfile.gettempdir()) files = ['x_train.npy', 'y_train.npy', 'x_test.npy', 'y_test.npy'] for file in files: download_blob(bucket_name, os.path.join(blob_prefix,file), os.path.join(local_data_dir,file)) X_train = np.load(local_data_dir + '/x_train.npy') y_train = np.load(local_data_dir + '/y_train.npy') X_test = np.load(local_data_dir + '/x_test.npy') y_test = np.load(local_data_dir + '/y_test.npy') # Build and train the model model = Sequential([ LSTM({lstm_units}, input_shape=[n_input_steps, n_features], recurrent_activation=None), Dense(n_output_steps)]) model.compile(optimizer='adam', loss='mae') early_stopping = EarlyStopping(monitor='val_loss', patience=patience) _ = model.fit(x=X_train, y=y_train, validation_data=(X_test, y_test), epochs=epochs, callbacks=[early_stopping]) # Export the model model.save(os.environ["AIP_MODEL_DIR"]) if __name__ == '__main__': main() with open(os.path.join(TRAINER_DIR, 'task.py'), 'w') as f: f.write(model_template.format(**globals())) # Copy the data files to a GCS bucket !gsutil -m cp -r trainer/*.npy $BUCKET_URI/$TRAINER_DIR # List the contents of the bucket to ensure they were copied properly !gsutil ls $BUCKET_URI/$TRAINER_DIR # Set training job parameters CMDARGS = [ f"--data-uri={BUCKET_URI}/{TRAINER_DIR}" ] TRAIN_VERSION = "tf-cpu.2-6" DEPLOY_VERSION = "tf2-cpu.2-6" TRAIN_IMAGE = "us-docker.pkg.dev/vertex-ai/training/{}:latest".format(TRAIN_VERSION) DEPLOY_IMAGE = "us-docker.pkg.dev/vertex-ai/prediction/{}:latest".format(DEPLOY_VERSION) # Re-run these additional parameters if you need to create a new training job TIMESTAMP = str(datetime.datetime.now().time()) JOB_NAME = 'vertex_ai_training_' + TIMESTAMP MODEL_DISPLAY_NAME = MODEL_NAME + TIMESTAMP # Create and run the training job job = aiplatform.CustomTrainingJob( display_name=JOB_NAME, script_path=f"{TRAINER_DIR}/task.py", container_uri=TRAIN_IMAGE, model_serving_container_image_uri=DEPLOY_IMAGE, ) model = job.run( model_display_name=MODEL_DISPLAY_NAME, args=CMDARGS, ) DEPLOYED_NAME = f"{MODEL_NAME}_deployed-" + TIMESTAMP endpoint = model.deploy( deployed_model_display_name=DEPLOYED_NAME, machine_type="n1-standard-4", min_replica_count=1, max_replica_count=1, traffic_split={"0": 100}, ) # Get predictions for the first test instance raw_predictions = endpoint.predict(instances=X_test.tolist()).predictions[0] predicted_values = inverse_scale(np.array([raw_predictions])).round() actual_values = inverse_scale(np.array([y_test[0]])) # Print prediction and compare to actual value print('Predicted riders:', predicted_values) print('Actual riders: ', actual_values) delete_training_job = True delete_model = True delete_endpoint = True # Warning: Setting this to true will delete everything in your bucket delete_bucket = False # Delete the training job job.delete() # Delete the endpoint endpoint.delete(force=True) # Delete the model model.delete() # Warning: uncomment this section only if you want to delete the entire bucket # if delete_bucket and "BUCKET" in globals(): # ! gsutil -m rm -r $BUCKET <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create a Cloud Storage bucket Step2: Load and preview the data Step3: Process data Step6: Scale values Step7: Create sequences of time series data Step8: Build a model and submit your training job to AI Platform Step10: Prepare model code Step11: Submit training job Step12: Deploy the model Step13: Get predictions on deployed model Step14: Cleanup
14,457
<ASSISTANT_TASK:> Python Code: import numpy import toyplot y = numpy.linspace(0, 1, 20) ** 2 toyplot.scatterplot(y, width=300); canvas = toyplot.Canvas(600, 300) canvas.axes(grid=(1, 2, 0)).plot(y) canvas.axes(grid=(1, 2, 1)).plot(y, marker="o"); canvas = toyplot.Canvas(600, 300) canvas.axes(grid=(1, 2, 0)).plot(y, marker="o", size=40) canvas.axes(grid=(1, 2, 1)).plot(y, marker="o", size=100); canvas = toyplot.Canvas(600, 300) canvas.axes(grid=(1, 2, 0)).scatterplot(y, marker="x", size=100) canvas.axes(grid=(1, 2, 1)).scatterplot(y, marker="^", size=100, mstyle={"stroke":toyplot.color.near_black}); canvas = toyplot.Canvas(600, 300) canvas.axes(grid=(1, 2, 0)).plot(y, marker="o", size=50, style={"stroke":"darkgreen"}) canvas.axes(grid=(1, 2, 1)).plot(y, marker="o", size=50, mstyle={"stroke":"darkgreen"}); markers = [None, "","|","-","+","x","*","^",">","v","<","s","d","o","oo","o|","o-","o+","ox","o*"] labels = [repr(marker) for marker in markers] mstyle = {"stroke":toyplot.color.near_black, "fill":"#feb"} canvas = toyplot.Canvas(800, 150) axes = canvas.axes(xmin=-1, show=False) axes.scatterplot(numpy.repeat(0, len(markers)), marker=markers, mstyle=mstyle, size=200) axes.text(numpy.arange(len(markers)), numpy.repeat(-0.5, len(markers)), text=labels, fill=toyplot.color.near_black, style={"font-size":"16px"}); canvas = toyplot.Canvas(600, 300) canvas.axes(grid=(1, 2, 0)).scatterplot(y, marker={"shape":"|", "angle":45}, size=100) canvas.axes(grid=(1, 2, 1)).scatterplot(y, marker={"shape":"o", "label":"A"}, size=200, mlstyle={"fill":"white"}); custom_marker = {"shape":"path", "path":"m -165 45 c 8.483 6.576 17.276 11.581 26.38 15.013 c 9.101 3.431 18.562 5.146 28.381 5.146 c 9.723 0 17.801 -1.595 24.235 -4.789 c 6.434 -3.192 11.271 -7.887 14.513 -14.084 c 3.239 -6.194 4.861 -13.868 4.861 -23.02 h 6.72 c 0.19 2.384 0.286 5.054 0.286 8.007 c 0 15.92 -6.244 27.405 -18.73 34.458 c 12.01 -2.002 22.852 -4.74 32.528 -8.222 c 9.673 -3.478 20.231 -8.458 31.669 -14.94 l 4.003 7.148 c -13.346 8.389 -28.359 15.109 -45.038 20.16 c -16.682 5.054 -32.123 7.578 -46.325 7.578 c -13.44 0 -26.451 -2.12 -39.033 -6.363 c -12.583 -4.24 -22.877 -9.937 -30.884 -17.086 c -2.766 -2.667 -4.146 -5.098 -4.146 -7.291 c 0 -1.238 0.476 -2.335 1.43 -3.289 c 0.952 -0.951 2.048 -1.43 3.289 -1.43 c 1.236 0.000995874 3.191 1.002 5.861 3.004 Z m 140.262 -81.355 c 8.579 0 12.868 4.195 12.868 12.582 c 0 7.055 -2.288 13.654 -6.863 19.802 c -4.575 6.148 -10.701 11.059 -18.373 14.727 c -7.674 3.671 -15.942 5.505 -24.807 5.505 c -9.343 0 -17.943 -1.881 -25.808 -5.647 c -7.864 -3.765 -14.083 -8.815 -18.659 -15.156 c -4.575 -6.338 -6.863 -13.176 -6.863 -20.517 c 0 -3.908 1.048 -6.767 3.146 -8.579 c 2.096 -1.81 5.48 -2.716 10.151 -2.716 h 75.208 Z m -30.741 -8.00601 c -2.766 0 -4.839 -0.451 -6.219 -1.358 c -1.383 -0.905 -2.359 -2.549 -2.931 -4.933 c -0.572 -2.381 -0.858 -5.623 -0.858 -9.723 c 0 -6.863 1.477 -14.963 4.432 -24.306 c 0.19 -1.238 0.286 -2.049 0.286 -2.431 c 0 -0.952 -0.382 -1.43 -1.144 -1.43 c -0.857 0 -1.955 0.954 -3.288 2.859 c -5.815 8.579 -9.629 19.351 -11.438 32.313 c -0.478 3.528 -1.383 5.911 -2.717 7.149 c -1.336 1.24 -3.624 1.859 -6.863 1.859 h -11.724 c -4.29 0 -7.27 -0.69 -8.936 -2.073 c -1.669 -1.381 -2.502 -3.979 -2.502 -7.792 c 0 -5.147 1.573 -9.959 4.718 -14.441 c 2.096 -3.239 4.455 -6.005 7.078 -8.292 c 2.621 -2.288 7.696 -5.956 15.227 -11.009 c 4.669 -3.146 8.172 -5.885 10.509 -8.221 c 2.335 -2.335 4.169 -5.076 5.505 -8.221 c 0.858 -2.288 2.145 -3.432 3.86 -3.432 c 1.43 0 2.764 1.336 4.003 4.003 c 1.62 3.242 3.192 5.647 4.718 7.22 c 1.524 1.573 4.669 4.075 9.437 7.506 c 18.301 12.393 27.452 23.402 27.452 33.028 c 0 7.817 -4.576 11.724 -13.726 11.724 h -24.879 Z m 156.705 -2.57399 c 5.812 -8.007 12.152 -12.01 19.016 -12.01 c 2.953 0 5.719 0.764 8.293 2.288 c 2.574 1.526 4.598 3.503 6.076 5.934 c 1.477 2.431 2.217 4.933 2.217 7.506 c 0 4.576 1.381 6.863 4.146 6.863 c 1.43 0 3.479 -0.809 6.146 -2.431 c 3.336 -1.716 6.482 -2.574 9.438 -2.574 c 4.766 0 8.625 1.669 11.582 5.004 c 2.953 3.337 4.432 7.435 4.432 12.296 c 0 5.147 -1.383 8.985 -4.146 11.51 c -2.766 2.527 -7.148 4.028 -13.154 4.504 c -2.859 0.192 -4.695 0.525 -5.504 1.001 c -0.811 0.478 -1.215 1.526 -1.215 3.146 c 0 0.286 0.547 2.194 1.643 5.719 c 1.096 3.527 1.645 6.387 1.645 8.578 c 0 4.004 -1.5 7.245 -4.504 9.723 c -3.002 2.48 -6.887 3.718 -11.652 3.718 c -3.051 0 -8.006 -1.048 -14.869 -3.146 c -2.289 -0.762 -3.861 -1.144 -4.719 -1.144 c -1.43 0 -2.574 0.429 -3.432 1.286 c -0.857 0.858 -1.287 2.051 -1.287 3.575 c 0 1.336 0.715 3.527 2.145 6.576 c 1.145 2.288 1.717 4.433 1.717 6.435 c 0 3.623 -1.525 6.673 -4.576 9.15 c -3.051 2.479 -6.816 3.718 -11.295 3.718 c -3.051 0 -6.959 -1.001 -11.725 -3.003 c -3.812 -1.523 -6.244 -2.287 -7.291 -2.287 c -3.719 0 -5.576 2.812 -5.576 8.436 c 0 14.107 -9.057 21.16 -27.166 21.16 c -10.105 0 -19.588 -2.381 -28.453 -7.148 c -8.865 -4.766 -16.062 -11.39 -21.589 -19.874 c 10.867 -4.955 25.783 -13.916 44.751 -26.88 c 13.248 -8.673 24.043 -15.084 32.385 -19.23 c 8.34 -4.146 17.562 -7.601 27.666 -10.366 c 8.102 -2.381 19.396 -4.526 33.887 -6.434 c 1.047 0 1.572 -0.286 1.572 -0.858 c 0 -1.144 -3.527 -1.716 -10.58 -1.716 c -12.393 0 -25.164 1.908 -38.318 5.719 c -14.68 4.481 -30.883 12.203 -48.613 23.163 c -14.488 8.579 -24.258 14.347 -29.311 17.301 c -5.053 2.955 -8.244 4.789 -9.578 5.504 c -1.335 0.715 -4.099 2.026 -8.293 3.933 c -3.146 -7.625 -4.718 -15.632 -4.718 -24.021 c 0 -6.099 0.809 -11.914 2.431 -17.443 c 1.62 -5.527 3.812 -10.317 6.577 -14.37 c 2.763 -4.05 5.955 -7.196 9.58 -9.437 c 3.621 -2.238 7.48 -3.36 11.58 -3.36 c 4.098 0 8.008 1.669 11.725 5.004 c 2.953 2.766 5.193 4.146 6.721 4.146 c 3.621 0 5.67 -2.953 6.146 -8.864 c 1.811 -16.394 8.959 -24.592 21.447 -24.592 c 3.812 0 7.006 0.979 9.58 2.931 c 2.574 1.955 5.004 5.219 7.291 9.794 c 2.002 3.431 4.291 5.147 6.863 5.147 c 3.61802 -0.00100613 7.909 -3.19301 12.866 -9.58 Z"} canvas, axes, mark = toyplot.scatterplot(0, 0, size=0.1, marker=custom_marker, color="#004712", width=400); axes.hlines(0, style={"stroke-width":0.1}) axes.vlines(0, style={"stroke-width":0.1}); x = numpy.linspace(0, 100, 10) y = (0.1 * x) ** 2 canvas, axes, mark = toyplot.scatterplot(x, y, size=.015, color="#004712", marker=custom_marker, xlabel="Years", ylabel="Oak Tree Population", padding=25, width=600); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Markers can also be added to regular plots to highlight the datums (they are turned-off by default) Step2: You can use the size argument to control the size of the markers (note that the size argument is treated as an approximation of the area of the marker) Step3: By default, the markers are small circles, but there are many alternatives Step4: Note the use of the mstyle argument to override the appearance of the marker in the second example. For line plots, this allows you to style the lines and the markers separately Step5: So far, we've been using string codes to specify different marker shapes. Here is every builtin marker shape in Toyplot, with their string codes Step6: There are several items worth noting - first, you can pass a sequence of marker codes to the marker argument, to specify markers on a per-series or per-datum basis. Second, you can pass an empty string or None to produce an invisible marker, if you need to hide a datum or declutter the display. Third, note that several of the marker shapes contain internal details that require a contrasting stroke and fill to be visible. Step7: Using the full marker specification allows you to control additional parameters such as the marker angle and label. Also note the mlstyle argument which controls the style of the marker label, independently of the marker itself. Step8: Note that the SVG path must contain only relative coordinates, or the marker will not render correctly. In this example the marker was exported as SVG from a drawing application, the path was run through an online conversion process to convert absolute coordinates to relative coordinates, and the initial "move" (m) command was adjusted to center the graphic. For custom markers, the size argument currently acts as a simple scaling factor on the marker (this may change in the future). Here is an (admittedly silly) example of a custom marker at work
14,458
<ASSISTANT_TASK:> Python Code: # Panda will be usefull for quick data parsing import pandas as pd import numpy as np # Small trick to get a larger display from IPython.core.display import display, HTML display(HTML("<style>.container { width:90% !important; }</style>")) import matplotlib.pyplot as pl %matplotlib inline import pylab as pl %pylab inline pylab.rcParams['figure.figsize'] = (20,7) pl.rcParams['figure.figsize'] = 20, 7 pl.rcParams['font.family'] = 'sans-serif' pl.rcParams['font.sans-serif'] = ['DejaVu Sans'] pl.style.available pl.style.use('ggplot') # Create random datasets with numpy random module x = np.arange(50) y = np.random.rand(50) #Plot y using default line style and color x is automatically inferred pl.plot(y) # Plot x and y without line and purple diamon markers pl.plot(x, y+1, marker ='d', linewidth=0, color="purple") # Plot x and y using dotted line and pl.plot(x, y+2, color = 'dodgerblue', linestyle='--') # Plot x and y using blue circle markers pl.plot(x, y+3, color='green', linewidth=2, marker='>', linestyle="-.") # Plot x and y using blue circle markers pl.plot(x, y+4, color='green', linewidth=4, marker='o', linestyle="-") pl.scatter (np.random.randn(200),np.random.randn(200), color="coral") pl.scatter (np.random.randn(100)+2,np.random.randn(100)+3, color="lightgreen") pl.scatter (np.random.randn(100)-2,np.random.randn(100)*4, color="dodgerblue") # Create random datasets with numpy random module x = np.arange(10) # If the x coordinates are similar the bar are merged at the same position h1 = np.random.rand(10) pl.bar(left=x, height=h1, width=0.2, color="dodgerblue") # To create a stacked graph, the bottom position of the series need to correspond to the previous series h2 = np.random.rand(10) pl.bar(left=x, height=h2, bottom= h1, width=0.2, color="lightblue") # Offset the x coordinate to add a new series and customize color and aspect h3 = np.random.rand(10) pl.bar(left=x+0.2, height=h3, width=0.2, color ='salmon', linewidth=2, edgecolor="red") # Add yerr bars h4 = np.random.rand(10) pl.bar(left=x+0.4, height=h4, width=0.2, color ='green', yerr=np.random.randn(10)/10, ecolor="black") # Generate a list of 2* 1000 values following a normal distibution n, bins, patches = pl.hist(x=x, bins=30, histtype='bar') print (n) print (bins) # Generate a list of 2* 1000 values following a normal distibution # Contrary to the first plot, this time, series are stacked x = np.random.randn(1000, 2) n, bins, patches = pl.hist(x=x, bins=30, histtype='barstacked') # Generate a list of 1000 values following a normal distibution # The plot is cummulative and step style x = np.random.randn(1000) n, bins, patches = pl.hist(x=x, bins=30, histtype='step', cumulative=True) # Generate a list of 2* 1000 values following a normal distibution # The plot is rotated to horizontal orientation and represented in stepfilled style x = np.random.randn(1000) n, bins, patches = pl.hist(x=x, bins=30, histtype='stepfilled', orientation="horizontal") # Size of the ploting area pl.figure(figsize=(15,10)) # Customize X and Y limits pl.xlim(-1,10) pl.ylim(-0.5,1.5) # Add X label, y label and a title pl.xlabel("this is my x label", fontsize=15) pl.ylabel("this is my Y label", fontsize=15) pl.title("this is my title", fontsize=20) # Add a grid pl.grid(True, color="grey", linewidth=0.5, linestyle="--") # finally plot the graphs pl.plot(np.arange(10), np.random.rand(10), color="coral", marker=">", label = "series1") pl.plot(np.arange(10), np.random.rand(10), color="dodgerblue", marker="<", label = "series2") #Add the legend outside of the plotting area pl.legend(bbox_to_anchor=(1, 1), loc=2, frameon=False, fontsize=15) pl.figure() # First plot in the left half pl.subplot(121) pl.plot(np.arange(10), np.random.rand(10), label="1") pl.plot(np.arange(10), np.random.rand(10), label="2") pl.title("Series1") pl.legend() # First plot in the right half pl.subplot(122) pl.plot(np.arange(10), np.random.rand(10), label="3") pl.plot(np.arange(10), np.random.rand(10), label="4") pl.title("Series2") pl.legend() pl.figure(figsize=(15,15)) # First plot in the top left corner pl.subplot(221) pl.plot(np.arange(10), np.random.rand(10)) # First plot in the top right corner #pl.subplot(222) #pl.plot(np.arange(10), np.random.rand(10)) # First plot in the bottom left corner plt.subplot(223) pl.plot(np.arange(10), np.random.rand(10)) # First plot in the bottom right corner plt.subplot(224) pl.plot(np.arange(10), np.random.rand(10)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Pyplot is the Matplotlib plotting backend and the inline magic to see the graph directly in the notebook Step2: Or you can use pylab, which simplifies all the calling to matplotlib and numpy a little Step3: We can define a default size for all plots that will be generated by matplotlib Step4: Introduction to plotting with matplotlib Step5: the stylesheet can also be defined by default Step6: Let's use ggplot style (R style) for this notebook Step7: Line plot Step8: Scatter plot Step9: Bar plot Step10: Histogram Step11: Customize the plotting area Step12: The figure area can also be divided to plot several graphs side by side with the subplot command
14,459
<ASSISTANT_TASK:> Python Code: #load packages import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline pleiades = pd.read_csv('pleiades.csv') pleiades pleiades.columns pleiades.dtypes pleiades_L = pleiades["Lbol"] pleiades_T = pleiades["Teff"] pleiades_L = pleiades_L - 2 pleiades_L_new = pd.to_numeric(pleiades_L, errors='coerce') pleiades_T_new = pd.to_numeric(pleiades_T, errors='coerce') # With "coerce", we are telling the to_numeric function to change any invalid entries to NaNs. pleiades_L[0:10], pleiades_L_new[0:10], pleiades_T[0:10], pleiades_T_new[0:10] fig,ax = plt.subplots(figsize=(7,7)) ax.plot(pleiades_T_new, pleiades_L_new) fig,ax = plt.subplots(figsize=(7,7)) ax.plot(pleiades_T_new, pleiades_L_new, 'o') fig,ax = plt.subplots(figsize=(7,7)) ax.plot(pleiades_T_new, pleiades_L_new, 'go') fig,ax = plt.subplots(figsize=(7,7)) ax.plot(pleiades_T_new, pleiades_L_new, 'go') ax.set_yscale('log') fig,ax = plt.subplots(figsize=(7,7)) ax.plot(pleiades_T_new, pleiades_L_new, 'go') ax.set_yscale('log') ax.set_xlim(11000,1000) fig,ax = plt.subplots(figsize=(7,7)) ax.plot(pleiades_T_new, pleiades_L_new, 'go') ax.set_yscale('log') ax.set_xlim(11000,1000) plt.title('H-R Diagram for the Pleiades') plt.xlabel('Temperature (in K)') plt.ylabel('log(Luminosity (in L$_{\odot}$))') ## Add code here to read in the other three files in the Lab 1 directory, and give them descriptive variable names. ## Add code here to identify the column labels for luminosity and temperature. Be careful - columns may not have ## the same names, and be sure to check the units of the quantities. ## Convert to pandas series and data types, if necessary. ## Plot the data in this cell and the following cells for each sample. #some fake data data_x = np.arange(0,100) data_y = 3*data_x data_y2 = data_x**2 data_y3 = data_x + 20 data_y4 = np.sqrt(data_x) # multipanel plot example fig,((ax1,ax2),(ax3,ax4)) = plt.subplots(2, 2, figsize=(10,10)) fig.suptitle('This is a title for my multipanel plot') ax1.plot(data_x, data_y, 'go') ax1.set_title('Figure 1 Title') ax1.set_xlabel('x label') ax1.set_ylabel('y label') ax2.plot(data_x, data_y2, 'bo') ax2.set_title('Figure 2 Title') ax2.set_xlabel('x label') ax2.set_ylabel('y label') ax3.plot(data_x, data_y3, 'ro') ax3.set_title('Figure 3 Title') ax3.set_xlabel('x label') ax3.set_ylabel('y label') ax4.plot(data_x, data_y4, 'mo') ax4.set_title('Figure 4 Title') ax4.set_xlabel('x label') ax4.set_ylabel('y label') #overlay plot example fig,ax = plt.subplots(figsize=(10,10)) plt.title('This is a title for my multipanel plot') ax.plot(data_x, data_y, 'go', label='legend entry 1', alpha=0.5) ax.plot(data_x, data_y2, 'bo', label='legend entry 2', alpha=0.5) ax.plot(data_x, data_y3, 'ro', label='legend entry 2', alpha=0.5) ax.plot(data_x, data_y4, 'mo', label='legend entry 2', alpha=0.5) ax.set_title('Figure Title') ax.set_xlabel('x label') ax.set_ylabel('y label') plt.legend(numpoints=1) #TRY EXECUTING WITH AND WITHOUT THE FOLLOWING LINE. HERE AND IN THE DATA YOU'LL BE PLOTTING, #A SUBJECTIVE DECISION MUST BE MADE ABOUT AXIS RANGES ax.set_ylim(0,200) ## In this cell, create your own overlay plot showing the different populations. Hint: You may want to plot the ## sample with the most data points first. ## In this cell, create a multi-panel plot for the different populations. ## Your answers to each of the four questions here. <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: First off, we'll need to read in the data with the pandas function read_csv. A basic example is given below Step2: "pleiades" is now a pandas dataframe object, which is essentially a form of python table. To see what's stored in pleiades, execute the cell below. Anywhere you see ..., that means that there are a number of additional columns or rows that have been hidden. Step3: Perhaps more useful are the pandas .columns and .dtypes methods. Execute the cells below and then edit the descriptions of what each does in the cell below (double click on this text to get into the markdown cell, where you can type regular text) Step4: The two columns that we care about for this lab are the Temperature (Teff) and the Luminosity (Lbol). The units for these two columns are Kelvin and Solar luminosities, respectively. As you will label these later in your plots, I'll note here that there's a special trick for getting the sun symbol in a Markdown cell using the typesetting system LaTeX. Step5: Note though from your .dtypes output above that both of these columns have dtype "object", which is not a data type that will allow us to manipulate them. For example, try executing the cell below, where we attempt to subtract the value 2 from each entry in the "pleiades_L" column. You should get an error... Step6: So we want to convert the type of these pandas series to be numeric, which we do with pandas.to_numeric, as below Step7: Now let's print the first ten elements of each array to verify that nothing weird happened during this conversion. Step8: Now let's plot these two quantities against one another. There are many ways to plot in pyplot, but I'll use the one that I find to work most consistently and intuitively below. Step9: Yikes, that's ugly, right? That's because the default plot symbol is a line connecting all the points. In this case what we really want is a so-called scatterplot, which we can do easily by specifying the plotting marker right after the y variable, as below. Below I use 'o', which stands for the circle symbol. For the full list of matplotlib symbols, see this link. Step10: Note the default plotting color is blue, but you can change this easily by adding a color shorthand before the marker shorthand. Below I use 'g' for green, but here again, there are lots of options, as outlined at this link. Step11: Colors notwithstanding, this plot is still very ugly and should not look much like an H-R diagram to you. For one thing, H-R diagrams usually have log(Luminosity) on the y-axis, which you do as follows Step12: OK that's much nicer, but should still look backwards to you, because we always draw H-R Diagrams with the Temperature axis running from high to low temperature. This is a pretty easy fix too. Step13: OK! This is starting to look like a good H-R diagram, but without a plot title or axis labels, it's still not very good, so let's add those. Step14: Exercise 1 Step15: Exercise 2 (Multi-Panel Plots) Step16: Exercise 3 (Comprehension Questions)
14,460
<ASSISTANT_TASK:> Python Code: def topo_sort(T, D): Parents = { t: set() for t in T } # dictionary of parents Children = { t: set() for t in T } # dictionary of children for s, t in D: Children[s].add(t) Parents [t].add(s) Orphans = { t for (t, P) in Parents.items() if len(P) == 0 } Sorted = [] count = 0 Order = {} while len(T) > 0: assert Orphans != set(), 'The graph is cyclic!' t = Orphans.pop() Order[t] = count count += 1 Orphans -= { t } T -= { t } Sorted.append(t) for s in Children[t]: Parents[s] -= { t } if Parents[s] == set(): Orphans.add(s) return Sorted def topo_sort(T, D): print('_' * 100) display(toDot(D)) Parents = { t: set() for t in T } # dictionary of parents Children = { t: set() for t in T } # dictionary of children for s, t in D: Children[s].add(t) Parents [t].add(s) Orphans = { t for (t, P) in Parents.items() if len(P) == 0 } Sorted = [] count = 0 Order = {} while len(T) > 0: assert Orphans != set(), 'The graph is cyclic!' t = Orphans.pop() Order[t] = count count += 1 Orphans -= { t } T -= { t } Sorted.append(t) for s in Children[t]: Parents[s] -= { t } if Parents[s] == set(): Orphans.add(s) print('_' * 80) display(toDot(D, Order)) return Sorted import graphviz as gv def toDot(Edges, Order={}): V = set() for x, y in Edges: V.add(x) V.add(y) dot = gv.Digraph(node_attr={'shape': 'record', 'style': 'rounded'}) dot.attr(rankdir='LR', size='8,5') for x in V: o = Order.get(x, None) if o != None: dot.node(str(x), label='{' + str(x) + '|' + str(o) + '}') else: dot.node(str(x)) for u, v in Edges: dot.edge(str(u), str(v)) return dot def demo(): T = { 5, 7, 3, 11, 8, 2, 9, 10 } D = { (5, 11), (7, 11), (7, 8), (3, 8), (3, 10), (11, 2), (11, 9), (11, 10), (8, 9) } S = topo_sort(T, D) print(S) demo() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Graphical Representation Step2: The function toDot(Edges, Order) takes two arguments Step3: Testing
14,461
<ASSISTANT_TASK:> Python Code: import tensorflow as tf import tensorflow_data_validation as tfdv import tensorflow_transform as tft print('TF version: {}'.format(tf.__version__)) print('TFT version: {}'.format(tft.__version__)) print('TFDV version: {}'.format(tfdv.__version__)) PROJECT = 'cloud-training-demos' # Replace with your PROJECT BUCKET = 'cloud-training-demos-ml' # Replace with your BUCKET REGION = 'us-central1' # Choose an available region for Cloud MLE import os os.environ['PROJECT'] = PROJECT os.environ['BUCKET'] = BUCKET os.environ['REGION'] = REGION %%bash gcloud config set project $PROJECT gcloud config set compute/region $REGION ## ensure we predict locally with our current Python environment gcloud config set ml_engine/local_python `which python` DATA_DIR='gs://cloud-samples-data/ml-engine/census/data' import os TRAIN_DATA_FILE = os.path.join(DATA_DIR, 'adult.data.csv') EVAL_DATA_FILE = os.path.join(DATA_DIR, 'adult.test.csv') !gsutil ls -l $TRAIN_DATA_FILE !gsutil ls -l $EVAL_DATA_FILE HEADER = ['age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'gender', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income_bracket'] TARGET_FEATURE_NAME = 'income_bracket' TARGET_LABELS = [' <=50K', ' >50K'] WEIGHT_COLUMN_NAME = 'fnlwgt_scaled' # note that you changes the column name in tft RAW_SCHEMA_LOCATION = 'raw_schema.pbtxt' PREPROC_OUTPUT_DIR = 'gs://{}/census/tfx'.format(BUCKET) # from 02_transform.ipynb TRANSFORM_ARTIFACTS_DIR = os.path.join(PREPROC_OUTPUT_DIR,'transform') TRANSFORMED_DATA_DIR = os.path.join(PREPROC_OUTPUT_DIR,'transformed') !gsutil ls $TRANSFORM_ARTIFACTS_DIR !gsutil ls $TRANSFORMED_DATA_DIR transform_output = tft.TFTransformOutput(TRANSFORM_ARTIFACTS_DIR) def make_input_fn(tfrecords_files, batch_size, num_epochs=1, shuffle=False): def input_fn(): dataset = tf.data.experimental.make_batched_features_dataset( file_pattern=tfrecords_files, batch_size=batch_size, features=transform_output.transformed_feature_spec(), label_key=TARGET_FEATURE_NAME, reader=tf.data.TFRecordDataset, num_epochs=num_epochs, shuffle=shuffle ) return dataset return input_fn make_input_fn(TRANSFORMED_DATA_DIR+'/train*.tfrecords', 2, shuffle=False)() import math def create_feature_columns(): feature_columns = [] transformed_features = transform_output.transformed_metadata.schema._schema_proto.feature for feature in transformed_features: if feature.name in [TARGET_FEATURE_NAME, WEIGHT_COLUMN_NAME]: continue if hasattr(feature, 'int_domain') and feature.int_domain.is_categorical: vocab_size = feature.int_domain.max + 1 feature_columns.append( tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_identity( feature.name, num_buckets=vocab_size), dimension = int(math.sqrt(vocab_size)))) else: feature_columns.append( tf.feature_column.numeric_column(feature.name)) return feature_columns create_feature_columns() def create_estimator(params, run_config): feature_columns = create_feature_columns() estimator = tf.estimator.DNNClassifier( weight_column=WEIGHT_COLUMN_NAME, label_vocabulary=TARGET_LABELS, feature_columns=feature_columns, hidden_units=params.hidden_units, config=run_config ) return estimator from datetime import datetime def run_experiment(estimator, params, run_config, resume=False): tf.logging.set_verbosity(tf.logging.INFO) if not resume: if tf.gfile.Exists(run_config.model_dir): print("Removing previous artifacts...") tf.gfile.DeleteRecursively(run_config.model_dir) else: print("Resuming training...") train_spec = tf.estimator.TrainSpec( input_fn = make_input_fn( TRANSFORMED_DATA_DIR+'/train*.tfrecords', batch_size=params.batch_size, num_epochs=None, shuffle=True ), max_steps=params.max_steps ) eval_spec = tf.estimator.EvalSpec( input_fn = make_input_fn( TRANSFORMED_DATA_DIR+'/eval*.tfrecords', batch_size=params.batch_size, ), start_delay_secs=0, throttle_secs=0, steps=None ) time_start = datetime.utcnow() print("Experiment started at {}".format(time_start.strftime("%H:%M:%S"))) print(".......................................") tf.estimator.train_and_evaluate( estimator=estimator, train_spec=train_spec, eval_spec=eval_spec) time_end = datetime.utcnow() print(".......................................") print("Experiment finished at {}".format(time_end.strftime("%H:%M:%S"))) print("") time_elapsed = time_end - time_start print("Experiment elapsed time: {} seconds".format(time_elapsed.total_seconds())) MODELS_LOCATION = 'models/census' MODEL_NAME = 'dnn_classifier' model_dir = os.path.join(MODELS_LOCATION, MODEL_NAME) os.environ['MODEL_DIR'] = model_dir params = tf.contrib.training.HParams() params.hidden_units = [128, 64] params.dropout = 0.15 params.batch_size = 128 params.max_steps = 1000 run_config = tf.estimator.RunConfig( tf_random_seed=19831006, save_checkpoints_steps=200, keep_checkpoint_max=3, model_dir=model_dir, log_step_count_steps=10 ) estimator = create_estimator(params, run_config) run_experiment(estimator, params, run_config) tf.logging.set_verbosity(tf.logging.ERROR) def make_serving_input_receiver_fn(): from tensorflow_transform.tf_metadata import schema_utils source_raw_schema = tfdv.load_schema_text(RAW_SCHEMA_LOCATION) raw_feature_spec = schema_utils.schema_as_feature_spec(source_raw_schema).feature_spec raw_feature_spec.pop(TARGET_FEATURE_NAME) if WEIGHT_COLUMN_NAME in raw_feature_spec: raw_feature_spec.pop(WEIGHT_COLUMN_NAME) # Create the interface for the serving function with the raw features raw_features = tf.estimator.export.build_parsing_serving_input_receiver_fn(raw_feature_spec)().features receiver_tensors = {feature: tf.placeholder(shape=[None], dtype=raw_features[feature].dtype) for feature in raw_features } receiver_tensors_expanded = {tensor: tf.reshape(receiver_tensors[tensor], (-1, 1)) for tensor in receiver_tensors } # Apply the transform function transformed_features = transform_output.transform_raw_features(receiver_tensors_expanded) return tf.estimator.export.ServingInputReceiver( transformed_features, receiver_tensors) export_dir = os.path.join(model_dir, 'export') if tf.gfile.Exists(export_dir): tf.gfile.DeleteRecursively(export_dir) estimator.export_savedmodel( export_dir_base=export_dir, serving_input_receiver_fn=make_serving_input_receiver_fn ) %%bash saved_models_base=${MODEL_DIR}/export/ saved_model_dir=${MODEL_DIR}/export/$(ls ${saved_models_base} | tail -n 1) echo ${saved_model_dir} saved_model_cli show --dir=${saved_model_dir} --all export_dir = os.path.join(model_dir, 'export') tf.gfile.ListDirectory(export_dir)[-1] saved_model_dir = os.path.join(export_dir, tf.gfile.ListDirectory(export_dir)[-1]) print(saved_model_dir) print() predictor_fn = tf.contrib.predictor.from_saved_model( export_dir = saved_model_dir, signature_def_key="predict" ) input = { 'age': [34.0], 'workclass': ['Private'], 'education': ['Doctorate'], 'education_num': [10.0], 'marital_status': ['Married-civ-spouse'], 'occupation': ['Prof-specialty'], 'relationship': ['Husband'], 'race': ['White'], 'gender': ['Male'], 'capital_gain': [0.0], 'capital_loss': [0.0], 'hours_per_week': [40.0], 'native_country':['Mexico'] } print(input) print() output = predictor_fn(input) print(output) #%%bash #MODEL_NAME="census" #MODEL_VERSION="v1" #MODEL_LOCATION=$(gsutil ls gs://${BUCKET}/census/dnn_classifier/export/exporter | tail -1) #gcloud ml-engine models create ${MODEL_NAME} --regions $REGION #gcloud ml-engine versions create ${MODEL_VERSION} --model ${MODEL_NAME} --origin ${MODEL_LOCATION} --runtime-version 1.13 HEADER_DEFAULTS = [[0], [''], [0], [''], [0], [''], [''], [''], [''], [''], [0], [0], [0], [''], ['']] def make_eval_input_receiver_fn(): receiver_tensors = {'examples': tf.placeholder(dtype=tf.string, shape=[None])} columns = tf.decode_csv(receiver_tensors['examples'], record_defaults=HEADER_DEFAULTS) features = dict(zip(HEADER, columns)) print(features) for feature_name in features: if features[feature_name].dtype == tf.int32: features[feature_name] = tf.cast(features[feature_name], tf.int64) features[feature_name] = tf.reshape(features[feature_name], (-1, 1)) transformed_features = transform_output.transform_raw_features(features) features.update(transformed_features) return tfma.export.EvalInputReceiver( features=features, receiver_tensors=receiver_tensors, labels=features[TARGET_FEATURE_NAME] ) import tensorflow_model_analysis as tfma eval_model_dir = os.path.join(model_dir, "export/evaluate") if tf.gfile.Exists(eval_model_dir): tf.gfile.DeleteRecursively(eval_model_dir) tfma.export.export_eval_savedmodel( estimator=estimator, export_dir_base=eval_model_dir, eval_input_receiver_fn=make_eval_input_receiver_fn ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <img valign="middle" src="images/tfx.jpeg"> Step2: 3. Model Training Step3: 3.2 TFRecords Input Function Step4: 3.3 Create feature columns Step5: 3.4 Instantiate and Estimator Step6: 3.5 Implement train and evaluate experiment Step7: 3.5 Run experiment Step8: 3.6 Export the model for serving Step9: 3.7 Try out saved model Step10: 3.8 Deploy model to Cloud ML Engine Step11: 3.9 Export evaluation saved model
14,462
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: import colab !pip install --upgrade pip except: pass !pip install -U tfx import tensorflow as tf print('TensorFlow version: {}'.format(tf.__version__)) from tfx import v1 as tfx print('TFX version: {}'.format(tfx.__version__)) import os # We will create two pipelines. One for schema generation and one for training. SCHEMA_PIPELINE_NAME = "penguin-tfdv-schema" PIPELINE_NAME = "penguin-tfdv" # Output directory to store artifacts generated from the pipeline. SCHEMA_PIPELINE_ROOT = os.path.join('pipelines', SCHEMA_PIPELINE_NAME) PIPELINE_ROOT = os.path.join('pipelines', PIPELINE_NAME) # Path to a SQLite DB file to use as an MLMD storage. SCHEMA_METADATA_PATH = os.path.join('metadata', SCHEMA_PIPELINE_NAME, 'metadata.db') METADATA_PATH = os.path.join('metadata', PIPELINE_NAME, 'metadata.db') # Output directory where created models from the pipeline will be exported. SERVING_MODEL_DIR = os.path.join('serving_model', PIPELINE_NAME) from absl import logging logging.set_verbosity(logging.INFO) # Set default logging level. import urllib.request import tempfile DATA_ROOT = tempfile.mkdtemp(prefix='tfx-data') # Create a temporary directory. _data_url = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/penguin/data/labelled/penguins_processed.csv' _data_filepath = os.path.join(DATA_ROOT, "data.csv") urllib.request.urlretrieve(_data_url, _data_filepath) !head {_data_filepath} def _create_schema_pipeline(pipeline_name: str, pipeline_root: str, data_root: str, metadata_path: str) -> tfx.dsl.Pipeline: Creates a pipeline for schema generation. # Brings data into the pipeline. example_gen = tfx.components.CsvExampleGen(input_base=data_root) # NEW: Computes statistics over data for visualization and schema generation. statistics_gen = tfx.components.StatisticsGen( examples=example_gen.outputs['examples']) # NEW: Generates schema based on the generated statistics. schema_gen = tfx.components.SchemaGen( statistics=statistics_gen.outputs['statistics'], infer_feature_shape=True) components = [ example_gen, statistics_gen, schema_gen, ] return tfx.dsl.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, metadata_connection_config=tfx.orchestration.metadata .sqlite_metadata_connection_config(metadata_path), components=components) tfx.orchestration.LocalDagRunner().run( _create_schema_pipeline( pipeline_name=SCHEMA_PIPELINE_NAME, pipeline_root=SCHEMA_PIPELINE_ROOT, data_root=DATA_ROOT, metadata_path=SCHEMA_METADATA_PATH)) from ml_metadata.proto import metadata_store_pb2 # Non-public APIs, just for showcase. from tfx.orchestration.portable.mlmd import execution_lib # TODO(b/171447278): Move these functions into the TFX library. def get_latest_artifacts(metadata, pipeline_name, component_id): Output artifacts of the latest run of the component. context = metadata.store.get_context_by_type_and_name( 'node', f'{pipeline_name}.{component_id}') executions = metadata.store.get_executions_by_context(context.id) latest_execution = max(executions, key=lambda e:e.last_update_time_since_epoch) return execution_lib.get_artifacts_dict(metadata, latest_execution.id, [metadata_store_pb2.Event.OUTPUT]) # Non-public APIs, just for showcase. from tfx.orchestration.experimental.interactive import visualizations def visualize_artifacts(artifacts): Visualizes artifacts using standard visualization modules. for artifact in artifacts: visualization = visualizations.get_registry().get_visualization( artifact.type_name) if visualization: visualization.display(artifact) from tfx.orchestration.experimental.interactive import standard_visualizations standard_visualizations.register_standard_visualizations() # Non-public APIs, just for showcase. from tfx.orchestration.metadata import Metadata from tfx.types import standard_component_specs metadata_connection_config = tfx.orchestration.metadata.sqlite_metadata_connection_config( SCHEMA_METADATA_PATH) with Metadata(metadata_connection_config) as metadata_handler: # Find output artifacts from MLMD. stat_gen_output = get_latest_artifacts(metadata_handler, SCHEMA_PIPELINE_NAME, 'StatisticsGen') stats_artifacts = stat_gen_output[standard_component_specs.STATISTICS_KEY] schema_gen_output = get_latest_artifacts(metadata_handler, SCHEMA_PIPELINE_NAME, 'SchemaGen') schema_artifacts = schema_gen_output[standard_component_specs.SCHEMA_KEY] # docs-infra: no-execute visualize_artifacts(stats_artifacts) visualize_artifacts(schema_artifacts) import shutil _schema_filename = 'schema.pbtxt' SCHEMA_PATH = 'schema' os.makedirs(SCHEMA_PATH, exist_ok=True) _generated_path = os.path.join(schema_artifacts[0].uri, _schema_filename) # Copy the 'schema.pbtxt' file from the artifact uri to a predefined path. shutil.copy(_generated_path, SCHEMA_PATH) print(f'Schema at {SCHEMA_PATH}-----') !cat {SCHEMA_PATH}/* _trainer_module_file = 'penguin_trainer.py' %%writefile {_trainer_module_file} from typing import List from absl import logging import tensorflow as tf from tensorflow import keras from tensorflow_transform.tf_metadata import schema_utils from tfx import v1 as tfx from tfx_bsl.public import tfxio from tensorflow_metadata.proto.v0 import schema_pb2 # We don't need to specify _FEATURE_KEYS and _FEATURE_SPEC any more. # Those information can be read from the given schema file. _LABEL_KEY = 'species' _TRAIN_BATCH_SIZE = 20 _EVAL_BATCH_SIZE = 10 def _input_fn(file_pattern: List[str], data_accessor: tfx.components.DataAccessor, schema: schema_pb2.Schema, batch_size: int = 200) -> tf.data.Dataset: Generates features and label for training. Args: file_pattern: List of paths or patterns of input tfrecord files. data_accessor: DataAccessor for converting input to RecordBatch. schema: schema of the input data. batch_size: representing the number of consecutive elements of returned dataset to combine in a single batch Returns: A dataset that contains (features, indices) tuple where features is a dictionary of Tensors, and indices is a single Tensor of label indices. return data_accessor.tf_dataset_factory( file_pattern, tfxio.TensorFlowDatasetOptions( batch_size=batch_size, label_key=_LABEL_KEY), schema=schema).repeat() def _build_keras_model(schema: schema_pb2.Schema) -> tf.keras.Model: Creates a DNN Keras model for classifying penguin data. Returns: A Keras Model. # The model below is built with Functional API, please refer to # https://www.tensorflow.org/guide/keras/overview for all API options. # ++ Changed code: Uses all features in the schema except the label. feature_keys = [f.name for f in schema.feature if f.name != _LABEL_KEY] inputs = [keras.layers.Input(shape=(1,), name=f) for f in feature_keys] # ++ End of the changed code. d = keras.layers.concatenate(inputs) for _ in range(2): d = keras.layers.Dense(8, activation='relu')(d) outputs = keras.layers.Dense(3)(d) model = keras.Model(inputs=inputs, outputs=outputs) model.compile( optimizer=keras.optimizers.Adam(1e-2), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[keras.metrics.SparseCategoricalAccuracy()]) model.summary(print_fn=logging.info) return model # TFX Trainer will call this function. def run_fn(fn_args: tfx.components.FnArgs): Train the model based on given args. Args: fn_args: Holds args used to train the model as name/value pairs. # ++ Changed code: Reads in schema file passed to the Trainer component. schema = tfx.utils.parse_pbtxt_file(fn_args.schema_path, schema_pb2.Schema()) # ++ End of the changed code. train_dataset = _input_fn( fn_args.train_files, fn_args.data_accessor, schema, batch_size=_TRAIN_BATCH_SIZE) eval_dataset = _input_fn( fn_args.eval_files, fn_args.data_accessor, schema, batch_size=_EVAL_BATCH_SIZE) model = _build_keras_model(schema) model.fit( train_dataset, steps_per_epoch=fn_args.train_steps, validation_data=eval_dataset, validation_steps=fn_args.eval_steps) # The result of the training should be saved in `fn_args.serving_model_dir` # directory. model.save(fn_args.serving_model_dir, save_format='tf') def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str, schema_path: str, module_file: str, serving_model_dir: str, metadata_path: str) -> tfx.dsl.Pipeline: Creates a pipeline using predefined schema with TFX. # Brings data into the pipeline. example_gen = tfx.components.CsvExampleGen(input_base=data_root) # Computes statistics over data for visualization and example validation. statistics_gen = tfx.components.StatisticsGen( examples=example_gen.outputs['examples']) # NEW: Import the schema. schema_importer = tfx.dsl.Importer( source_uri=schema_path, artifact_type=tfx.types.standard_artifacts.Schema).with_id( 'schema_importer') # NEW: Performs anomaly detection based on statistics and data schema. example_validator = tfx.components.ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=schema_importer.outputs['result']) # Uses user-provided Python function that trains a model. trainer = tfx.components.Trainer( module_file=module_file, examples=example_gen.outputs['examples'], schema=schema_importer.outputs['result'], # Pass the imported schema. train_args=tfx.proto.TrainArgs(num_steps=100), eval_args=tfx.proto.EvalArgs(num_steps=5)) # Pushes the model to a filesystem destination. pusher = tfx.components.Pusher( model=trainer.outputs['model'], push_destination=tfx.proto.PushDestination( filesystem=tfx.proto.PushDestination.Filesystem( base_directory=serving_model_dir))) components = [ example_gen, # NEW: Following three components were added to the pipeline. statistics_gen, schema_importer, example_validator, trainer, pusher, ] return tfx.dsl.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, metadata_connection_config=tfx.orchestration.metadata .sqlite_metadata_connection_config(metadata_path), components=components) tfx.orchestration.LocalDagRunner().run( _create_pipeline( pipeline_name=PIPELINE_NAME, pipeline_root=PIPELINE_ROOT, data_root=DATA_ROOT, schema_path=SCHEMA_PATH, module_file=_trainer_module_file, serving_model_dir=SERVING_MODEL_DIR, metadata_path=METADATA_PATH)) metadata_connection_config = tfx.orchestration.metadata.sqlite_metadata_connection_config( METADATA_PATH) with Metadata(metadata_connection_config) as metadata_handler: ev_output = get_latest_artifacts(metadata_handler, PIPELINE_NAME, 'ExampleValidator') anomalies_artifacts = ev_output[standard_component_specs.ANOMALIES_KEY] visualize_artifacts(anomalies_artifacts) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Data validation using TFX Pipeline and TensorFlow Data Validation Step2: Install TFX Step3: Did you restart the runtime? Step4: Set up variables Step5: Prepare example data Step6: Take a quick look at the CSV file. Step8: You should be able to see five feature columns. species is one of 0, 1 or 2, Step9: Run the pipeline Step12: You should see "INFO Step13: Now we can examine the outputs from the pipeline execution. Step14: It is time to examine the outputs from each component. As described above, Step15: <!-- <img class="tfo-display-only-on-site" Step16: This schema is automatically inferred from the output of StatisticsGen. You Step17: The schema file uses Step21: You should be sure to review and possibly edit the schema definition as Step23: Now you have completed all preparation steps to build a TFX pipeline for Step24: Run the pipeline Step25: You should see "INFO Step26: ExampleAnomalies from the ExampleValidator can be visualized as well.
14,463
<ASSISTANT_TASK:> Python Code: # Useful starting lines %matplotlib inline import numpy as np import matplotlib.pyplot as plt %load_ext autoreload %autoreload 2 1 x = [2,3,4] def my_function(l): l.append(12) my_function(x) x # Matplotlib is used for plotting, plots are directly embedded in the # notebook thanks to the '%matplolib inline' command at the beginning plt.hist(np.random.randn(10000), bins=40) plt.xlabel('X label') plt.ylabel('Y label') np.multiply np.zeros(4) np.eye(3) np.array([[1,3,4],[2,5,6]]) np.arange(10) # NB : np.array(range(10)) is a slightly more complicated equivalent np.random.randn(3, 4) # normal distributed values # 3-D tensor tensor_3 = np.ones((2, 4, 2)) tensor_3 tensor_3.shape, tensor_3.dtype a = np.array([[1.0, 2.0], [5.0, 4.0]]) b = np.array([[4, 3], [2, 1]]) (b.dtype, a.dtype) # each array has a data type (casting rules apply for int -> float) np.array(["Mickey", "Mouse"]) # can hold more than just numbers a = np.array([[1.0, 2.0], [5.0, 4.0]]) b = a # Copying the reference only b[0,0] = 3 a a = np.array([[1.0, 2.0], [5.0, 4.0]]) b = a.copy() # Deep-copy of the data b[0,0] = 3 a np.ones((2, 4)) * np.random.randn(2, 4) np.eye(3) - np.ones((3,3)) print(a) print(a.shape) # Get shape print(a.shape[0]) # Get size of first dimension print(a[0]) # Get first line (slice for the first dimension) print(a[:, 1]) # Get second column (slice for the second dimension) print(a[0, 1]) # Get first line second column element a = np.array([[1.0, 2.0], [5.0, 4.0]]) b = np.array([[4, 3], [2, 1]]) v = np.array([0.5, 2.0]) print(a) print(a.T) # Equivalent : a.tranpose(), np.transpose(a) print(a.ravel()) c = np.random.randn(4,5) print(c.shape) print(c[np.newaxis].shape) # Adding a dimension print(c.T.shape) print(c.reshape([10,2]).shape) print(c) print(c.reshape([10,2])) a.reshape((-1, 1)) # a[-1] means 'whatever needs to go there' np.sum(a), np.sum(a, axis=0), np.sum(a, axis=1) # reduce-operations reduce the whole array if no axis is specified np.dot(a, b) # matrix multiplication # Other ways of writing matrix multiplication, the '@' operator for matrix multiplication # was introduced in Python 3.5 np.allclose(a.dot(b), a @ b) # For other linear algebra operations, use the np.linalg module np.linalg.eig(a) # Eigen-decomposition print(np.linalg.inv(a)) # Inverse np.allclose(np.linalg.inv(a) @ a, np.identity(a.shape[1])) # a^-1 * a = Id np.linalg.solve(a, v) # solves ax = v np.hstack([a, b]) np.vstack([a, b]) np.vstack([a, b]) + v # broadcasting np.hstack([a, b]) + v # does not work np.hstack([a, b]) + v.T # transposing a 1-D array achieves nothing np.hstack([a, b]) + v.reshape((-1, 1)) # reshaping to convert v from a (2,) vector to a (2,1) matrix np.hstack([a, b]) + v[:, np.newaxis] # equivalently, we can add an axis r = np.random.random_integers(0, 9, size=(3, 4)) r r[0], r[1] r[0:2] r[1][2] # regular python r[1, 2] # numpy r[:, 1:3] r > 5 # Binary element-wise result r[r > 5] # Use the binary mask as filter r[r > 5] = 999 # Modify the corresponding values with a constant r # Get the indices where the condition is true, gives a tuple whose length # is the number of dimensions of the input array np.where(r == 999) print(np.where(np.arange(10) < 5)) # Is a 1-tuple np.where(np.arange(10) < 5)[0] # Accessing the first element gives the indices array np.where(r == 999, -10, r+1000) # Ternary condition, if True take element from first array, otherwise from second r[(np.array([1,2]), np.array([2,2]))] # Gets the view corresponding to the indices. NB : iterable of arrays as indexing numbers = np.random.randn(1000, 1000) %%timeit # Naive version my_sum = 0 for n in numbers.ravel(): if n>0: my_sum += n %timeit np.sum(numbers > 0) X = np.random.randn(10000) %%timeit # Naive version my_result = np.zeros(len(X)) for i, x in enumerate(X.ravel()): my_result[i] = 1 + x + x**2 + x**3 + x**4 %timeit 1 + X + X**2 + X**3 + X**4 X = np.random.randn(1000) from scipy.fftpack import fft plt.plot(fft(X).real) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Notebook Basics Step2: Numpy Basics Step3: Creation of arrays Step4: ndarray basics Step5: Basic operators are working element-wise (+, -, *, /) Step6: Accessing elements and slicing Step7: Changing the shape of arrays Step8: Reduction operations Step9: Linear-algebra operations Step10: Grouping operations Step11: Working on subset of the elements Step12: Binary masks Step13: Working with indices Step14: Working with arrays, examples Step15: Compute polynomial for a lot of values Step16: Scipy
14,464
<ASSISTANT_TASK:> Python Code: # Authors: Eric Larson <larson.eric.d@gmail.com> # License: BSD (3-clause) import numpy as np from scipy import stats from functools import partial import matplotlib.pyplot as plt # this changes hidden MPL vars: from mpl_toolkits.mplot3d import Axes3D # noqa from mne.stats import (spatio_temporal_cluster_1samp_test, bonferroni_correction, ttest_1samp_no_p) try: from sklearn.feature_extraction.image import grid_to_graph except ImportError: from scikits.learn.feature_extraction.image import grid_to_graph print(__doc__) width = 40 n_subjects = 10 signal_mean = 100 signal_sd = 100 noise_sd = 0.01 gaussian_sd = 5 sigma = 1e-3 # sigma for the "hat" method threshold = -stats.distributions.t.ppf(0.05, n_subjects - 1) threshold_tfce = dict(start=0, step=0.2) n_permutations = 1024 # number of clustering permutations (1024 for exact) n_src = width * width connectivity = grid_to_graph(width, width) # For each "subject", make a smoothed noisy signal with a centered peak rng = np.random.RandomState(42) X = noise_sd * rng.randn(n_subjects, width, width) # Add a signal at the dead center X[:, width // 2, width // 2] = signal_mean + rng.randn(n_subjects) * signal_sd # Spatially smooth with a 2D Gaussian kernel size = width // 2 - 1 gaussian = np.exp(-(np.arange(-size, size + 1) ** 2 / float(gaussian_sd ** 2))) for si in range(X.shape[0]): for ri in range(X.shape[1]): X[si, ri, :] = np.convolve(X[si, ri, :], gaussian, 'same') for ci in range(X.shape[2]): X[si, :, ci] = np.convolve(X[si, :, ci], gaussian, 'same') X = X.reshape((n_subjects, 1, n_src)) T_obs, clusters, p_values, H0 = \ spatio_temporal_cluster_1samp_test(X, n_jobs=1, threshold=threshold, connectivity=connectivity, tail=1, n_permutations=n_permutations) # Let's put the cluster data in a readable format ps = np.zeros(width * width) for cl, p in zip(clusters, p_values): ps[cl[1]] = -np.log10(p) ps = ps.reshape((width, width)) T_obs = T_obs.reshape((width, width)) # To do a Bonferroni correction on these data is simple: p = stats.distributions.t.sf(T_obs, n_subjects - 1) p_bon = -np.log10(bonferroni_correction(p)[1]) # Now let's do some clustering using the standard method with "hat": stat_fun = partial(ttest_1samp_no_p, sigma=sigma) T_obs_hat, clusters, p_values, H0 = \ spatio_temporal_cluster_1samp_test(X, n_jobs=1, threshold=threshold, connectivity=connectivity, tail=1, n_permutations=n_permutations, stat_fun=stat_fun, buffer_size=None) # Let's put the cluster data in a readable format ps_hat = np.zeros(width * width) for cl, p in zip(clusters, p_values): ps_hat[cl[1]] = -np.log10(p) ps_hat = ps_hat.reshape((width, width)) T_obs_hat = T_obs_hat.reshape((width, width)) # Now the threshold-free cluster enhancement method (TFCE): T_obs_tfce, clusters, p_values, H0 = \ spatio_temporal_cluster_1samp_test(X, n_jobs=1, threshold=threshold_tfce, connectivity=connectivity, tail=1, n_permutations=n_permutations) T_obs_tfce = T_obs_tfce.reshape((width, width)) ps_tfce = -np.log10(p_values.reshape((width, width))) # Now the TFCE with "hat" variance correction: T_obs_tfce_hat, clusters, p_values, H0 = \ spatio_temporal_cluster_1samp_test(X, n_jobs=1, threshold=threshold_tfce, connectivity=connectivity, tail=1, n_permutations=n_permutations, stat_fun=stat_fun, buffer_size=None) T_obs_tfce_hat = T_obs_tfce_hat.reshape((width, width)) ps_tfce_hat = -np.log10(p_values.reshape((width, width))) fig = plt.figure(facecolor='w') x, y = np.mgrid[0:width, 0:width] kwargs = dict(rstride=1, cstride=1, linewidth=0, cmap='Greens') Ts = [T_obs, T_obs_hat, T_obs_tfce, T_obs_tfce_hat] titles = ['T statistic', 'T with "hat"', 'TFCE statistic', 'TFCE w/"hat" stat'] for ii, (t, title) in enumerate(zip(Ts, titles)): ax = fig.add_subplot(2, 4, ii + 1, projection='3d') ax.plot_surface(x, y, t, **kwargs) ax.set_xticks([]) ax.set_yticks([]) ax.set_title(title) p_lims = [1.3, -np.log10(1.0 / n_permutations)] pvals = [ps, ps_hat, ps_tfce, ps_tfce_hat] titles = ['Standard clustering', 'Clust. w/"hat"', 'Clust. w/TFCE', 'Clust. w/TFCE+"hat"'] axs = [] for ii, (p, title) in enumerate(zip(pvals, titles)): ax = fig.add_subplot(2, 4, 5 + ii) plt.imshow(p, cmap='Purples', vmin=p_lims[0], vmax=p_lims[1]) ax.set_xticks([]) ax.set_yticks([]) ax.set_title(title) axs.append(ax) plt.tight_layout() for ax in axs: cbar = plt.colorbar(ax=ax, shrink=0.75, orientation='horizontal', fraction=0.1, pad=0.025) cbar.set_label('-log10(p)') cbar.set_ticks(p_lims) cbar.set_ticklabels(['%0.1f' % p for p in p_lims]) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Set parameters Step2: Construct simulated data Step3: Do some statistics Step4: Now let's do some clustering using the standard method. Step5: Visualize results
14,465
<ASSISTANT_TASK:> Python Code: help('learning_lab.03_management_interface') from importlib import import_module script = import_module('learning_lab.03_management_interface') from inspect import getsource print(getsource(script.main)) print(getsource(script.demonstrate)) run ../learning_lab/03_management_interface.py from basics.odl_http import http_history from basics.http import http_history_to_html from IPython.core.display import HTML HTML(http_history_to_html(http_history())) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Implementation Step2: Execution Step3: HTTP
14,466
<ASSISTANT_TASK:> Python Code: # For using the same code in either Python 2 or 3 from __future__ import print_function ## Note: Python 2 users, use raw_input() to get player input. Python 3 users, use input() from IPython.display import clear_output def display_board(board): clear_output() print(' | |') print(' ' + board[7] + ' | ' + board[8] + ' | ' + board[9]) print(' | |') print('-----------') print(' | |') print(' ' + board[4] + ' | ' + board[5] + ' | ' + board[6]) print(' | |') print('-----------') print(' | |') print(' ' + board[1] + ' | ' + board[2] + ' | ' + board[3]) print(' | |') def player_input(): marker = '' while not (marker == 'X' or marker == 'O'): marker = raw_input('Player 1: Do you want to be X or O?').upper() if marker == 'X': return ('X', 'O') else: return ('O', 'X') def place_marker(board, marker, position): board[position] = marker def win_check(board,mark): return ((board[7] == mark and board[8] == mark and board[9] == mark) or # across the top (board[4] == mark and board[5] == mark and board[6] == mark) or # across the middle (board[1] == mark and board[2] == mark and board[3] == mark) or # across the bottom (board[7] == mark and board[4] == mark and board[1] == mark) or # down themarkft side (board[8] == mark and board[5] == mark and board[2] == mark) or # down the middle (board[9] == mark and board[6] == mark and board[3] == mark) or # down the right side (board[7] == mark and board[5] == mark and board[3] == mark) or # diagonal (board[9] == mark and board[5] == mark and board[1] == mark)) # diagonal import random def choose_first(): if random.randint(0, 1) == 0: return 'Player 2' else: return 'Player 1' def space_check(board, position): return board[position] == ' ' def full_board_check(board): for i in range(1,10): if space_check(board, i): return False return True def player_choice(board): # Using strings because of raw_input position = ' ' while position not in '1 2 3 4 5 6 7 8 9'.split() or not space_check(board, int(position)): position = raw_input('Choose your next position: (1-9) ') return int(position) def replay(): return raw_input('Do you want to play again? Enter Yes or No: ').lower().startswith('y') print('Welcome to Tic Tac Toe!') while True: # Reset the board theBoard = [' '] * 10 player1_marker, player2_marker = player_input() turn = choose_first() print(turn + ' will go first.') game_on = True while game_on: if turn == 'Player 1': # Player1's turn. display_board(theBoard) position = player_choice(theBoard) place_marker(theBoard, player1_marker, position) if win_check(theBoard, player1_marker): display_board(theBoard) print('Congratualtions! You have won the game!') game_on = False else: if full_board_check(theBoard): display_board(theBoard) print('The game is a draw!') break else: turn = 'Player 2' else: # Player2's turn. display_board(theBoard) position = player_choice(theBoard) place_marker(theBoard, player2_marker, position) if win_check(theBoard, player2_marker): display_board(theBoard) print('Player 2 has won!') game_on = False else: if full_board_check(theBoard): display_board(theBoard) print('The game is a tie!') break else: turn = 'Player 1' if not replay(): break <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Step 1 Step2: Step 2 Step3: Step 3 Step4: Step 4 Step5: Step 5 Step6: Step 6 Step7: Step 7 Step8: Step 8 Step9: Step 9 Step10: Step 10
14,467
<ASSISTANT_TASK:> Python Code: import sys python_version = sys.version_info[0] print("Python Version: ", python_version) !pip3 install witwidget import numpy as np import pandas as pd import witwidget from witwidget.notebook.visualization import WitConfigBuilder, WitWidget # Download our Pandas dataframe and our test features and labels !gsutil cp gs://mortgage_dataset_files/data.pkl . !gsutil cp gs://mortgage_dataset_files/x_test.npy . !gsutil cp gs://mortgage_dataset_files/y_test.npy . features = pd.read_pickle("data.pkl") features.head() features.info() x_test = np.load("x_test.npy") y_test = np.load("y_test.npy") print(x_test) test_examples = np.hstack((x_test, y_test.reshape(-1, 1))) # ******** DO NOT RUN THIS CELL ******** # TODO 1 PROJECT_ID = "YOUR_PROJECT_ID" MODEL_NAME = "YOUR_MODEL_NAME" VERSION_NAME = "YOUR_VERSION_NAME" TARGET_FEATURE = "mortgage_status" LABEL_VOCAB = ["denied", "approved"] # TODO 1a config_builder = ( WitConfigBuilder( test_examples.tolist(), features.columns.tolist() + ["mortgage_status"] ) .set_ai_platform_model( PROJECT_ID, MODEL_NAME, VERSION_NAME, adjust_prediction=adjust_prediction, ) .set_target_feature(TARGET_FEATURE) .set_label_vocab(LABEL_VOCAB) ) # TODO 1b def adjust_prediction(pred): return [1 - pred, pred] config_builder = ( WitConfigBuilder( test_examples.tolist(), features.columns.tolist() + ["mortgage_status"] ) .set_ai_platform_model( "wit-caip-demos", "xgb_mortgage", "v1", adjust_prediction=adjust_prediction, ) .set_target_feature("mortgage_status") .set_label_vocab(["denied", "approved"]) ) WitWidget(config_builder, height=800) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Loading the mortgage test dataset Step2: Preview the Features Step3: Load the test features and labels into numpy arrays Step4: Let's take a look at the contents of the 'x_test.npy' file. You can see the "array" structure. Step5: Combine the features and labels into one array for the What-if Tool Step6: Using the What-if Tool to interpret our model Step7: Run this cell to load the WIT config builder. NOTE
14,468
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'nasa-giss', 'giss-e2-1g', 'atmos') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.model_family') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "AGCM" # "ARCM" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.overview.basic_approximations') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "primitive equations" # "non-hydrostatic" # "anelastic" # "Boussinesq" # "hydrostatic" # "quasi-hydrostatic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.horizontal_resolution_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.range_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.resolution.high_top') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_dynamics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_shortwave_radiative_transfer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.timestepping.timestep_longwave_radiative_transfer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.orography.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "present day" # "modified" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.key_properties.orography.changes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "related to ice sheets" # "related to tectonics" # "modified mean" # "modified variance if taken into account in model (cf gravity waves)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "spectral" # "fixed grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "finite elements" # "finite volumes" # "finite difference" # "centered finite difference" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.scheme_order') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "second" # "third" # "fourth" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.horizontal_pole') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "filter" # "pole rotation" # "artificial island" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.horizontal.grid_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Gaussian" # "Latitude-Longitude" # "Cubed-Sphere" # "Icosahedral" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.grid.discretisation.vertical.coordinate_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "isobaric" # "sigma" # "hybrid sigma-pressure" # "hybrid pressure" # "vertically lagrangian" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.timestepping_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Adams-Bashforth" # "explicit" # "implicit" # "semi-implicit" # "leap frog" # "multi-step" # "Runge Kutta fifth order" # "Runge Kutta second order" # "Runge Kutta third order" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "surface pressure" # "wind components" # "divergence/curl" # "temperature" # "potential temperature" # "total water" # "water vapour" # "water liquid" # "water ice" # "total water moments" # "clouds" # "radiation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_boundary_condition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "sponge layer" # "radiation boundary condition" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_heat') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.top_boundary.top_wind') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.lateral_boundary.condition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "sponge layer" # "radiation boundary condition" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.diffusion_horizontal.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.diffusion_horizontal.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "iterated Laplacian" # "bi-harmonic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Heun" # "Roe and VanLeer" # "Roe and Superbee" # "Prather" # "UTOPIA" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.scheme_characteristics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Eulerian" # "modified Euler" # "Lagrangian" # "semi-Lagrangian" # "cubic semi-Lagrangian" # "quintic semi-Lagrangian" # "mass-conserving" # "finite volume" # "flux-corrected" # "linear" # "quadratic" # "quartic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.conserved_quantities') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "dry mass" # "tracer mass" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_tracers.conservation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "conservation fixer" # "Priestley algorithm" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "VanLeer" # "Janjic" # "SUPG (Streamline Upwind Petrov-Galerkin)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_characteristics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "2nd order" # "4th order" # "cell-centred" # "staggered grid" # "semi-staggered grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.scheme_staggering_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Arakawa B-grid" # "Arakawa C-grid" # "Arakawa D-grid" # "Arakawa E-grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.conserved_quantities') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Angular momentum" # "Horizontal momentum" # "Enstrophy" # "Mass" # "Total energy" # "Vorticity" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.dynamical_core.advection_momentum.conservation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "conservation fixer" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.aerosols') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "sulphate" # "nitrate" # "sea salt" # "dust" # "ice" # "organic" # "BC (black carbon / soot)" # "SOA (secondary organic aerosols)" # "POM (particulate organic matter)" # "polar stratospheric ice" # "NAT (nitric acid trihydrate)" # "NAD (nitric acid dihydrate)" # "STS (supercooled ternary solution aerosol particle)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.spectral_integration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "wide-band model" # "correlated-k" # "exponential sum fitting" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.transport_calculation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "two-stream" # "layer interaction" # "bulk" # "adaptive" # "multi-stream" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_radiation.spectral_intervals') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.greenhouse_gas_complexity') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CO2" # "CH4" # "N2O" # "CFC-11 eq" # "CFC-12 eq" # "HFC-134a eq" # "Explicit ODSs" # "Explicit other fluorinated gases" # "O3" # "H2O" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.ODS') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CFC-12" # "CFC-11" # "CFC-113" # "CFC-114" # "CFC-115" # "HCFC-22" # "HCFC-141b" # "HCFC-142b" # "Halon-1211" # "Halon-1301" # "Halon-2402" # "methyl chloroform" # "carbon tetrachloride" # "methyl chloride" # "methylene chloride" # "chloroform" # "methyl bromide" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_GHG.other_flourinated_gases') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "HFC-134a" # "HFC-23" # "HFC-32" # "HFC-125" # "HFC-143a" # "HFC-152a" # "HFC-227ea" # "HFC-236fa" # "HFC-245fa" # "HFC-365mfc" # "HFC-43-10mee" # "CF4" # "C2F6" # "C3F8" # "C4F10" # "C5F12" # "C6F14" # "C7F16" # "C8F18" # "c-C4F8" # "NF3" # "SF6" # "SO2F2" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "bi-modal size distribution" # "ensemble of ice crystals" # "mean projected area" # "ice water path" # "crystal asymmetry" # "crystal aspect ratio" # "effective crystal radius" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_ice.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud droplet number concentration" # "effective cloud droplet radii" # "droplet size distribution" # "liquid water path" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_liquid.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "geometric optics" # "Mie theory" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_cloud_inhomogeneity.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Monte Carlo Independent Column Approximation" # "Triplecloud" # "analytic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "number concentration" # "effective radii" # "size distribution" # "asymmetry" # "aspect ratio" # "mixing state" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_aerosols.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.shortwave_gases.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.spectral_integration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "wide-band model" # "correlated-k" # "exponential sum fitting" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.transport_calculation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "two-stream" # "layer interaction" # "bulk" # "adaptive" # "multi-stream" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_radiation.spectral_intervals') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_GHG.greenhouse_gas_complexity') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CO2" # "CH4" # "N2O" # "CFC-11 eq" # "CFC-12 eq" # "HFC-134a eq" # "Explicit ODSs" # "Explicit other fluorinated gases" # "O3" # "H2O" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_GHG.ODS') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CFC-12" # "CFC-11" # "CFC-113" # "CFC-114" # "CFC-115" # "HCFC-22" # "HCFC-141b" # "HCFC-142b" # "Halon-1211" # "Halon-1301" # "Halon-2402" # "methyl chloroform" # "carbon tetrachloride" # "methyl chloride" # "methylene chloride" # "chloroform" # "methyl bromide" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_GHG.other_flourinated_gases') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "HFC-134a" # "HFC-23" # "HFC-32" # "HFC-125" # "HFC-143a" # "HFC-152a" # "HFC-227ea" # "HFC-236fa" # "HFC-245fa" # "HFC-365mfc" # "HFC-43-10mee" # "CF4" # "C2F6" # "C3F8" # "C4F10" # "C5F12" # "C6F14" # "C7F16" # "C8F18" # "c-C4F8" # "NF3" # "SF6" # "SO2F2" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.physical_reprenstation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "bi-modal size distribution" # "ensemble of ice crystals" # "mean projected area" # "ice water path" # "crystal asymmetry" # "crystal aspect ratio" # "effective crystal radius" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_ice.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud droplet number concentration" # "effective cloud droplet radii" # "droplet size distribution" # "liquid water path" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_liquid.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "geometric optics" # "Mie theory" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_cloud_inhomogeneity.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Monte Carlo Independent Column Approximation" # "Triplecloud" # "analytic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.physical_representation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "number concentration" # "effective radii" # "size distribution" # "asymmetry" # "aspect ratio" # "mixing state" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_aerosols.optical_methods') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "T-matrix" # "geometric optics" # "finite difference time domain (FDTD)" # "Mie theory" # "anomalous diffraction approximation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.radiation.longwave_gases.general_interactions') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "scattering" # "emission/absorption" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Mellor-Yamada" # "Holtslag-Boville" # "EDMF" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "TKE prognostic" # "TKE diagnostic" # "TKE coupled with water" # "vertical profile of Kz" # "non-local diffusion" # "Monin-Obukhov similarity" # "Coastal Buddy Scheme" # "Coupled with convection" # "Coupled with gravity waves" # "Depth capped at cloud base" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.closure_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.boundary_layer_turbulence.counter_gradient') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mass-flux" # "adjustment" # "plume ensemble" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.scheme_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "CAPE" # "bulk" # "ensemble" # "CAPE/WFN based" # "TKE/CIN based" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "vertical momentum transport" # "convective momentum transport" # "entrainment" # "detrainment" # "penetrative convection" # "updrafts" # "downdrafts" # "radiative effect of anvils" # "re-evaporation of convective precipitation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.deep_convection.microphysics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "tuning parameter based" # "single moment" # "two moment" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mass-flux" # "cumulus-capped boundary layer" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.scheme_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "same as deep (unified)" # "included in boundary layer turbulence" # "separate diagnosis" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "convective momentum transport" # "entrainment" # "detrainment" # "penetrative convection" # "re-evaporation of convective precipitation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.turbulence_convection.shallow_convection.microphysics') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "tuning parameter based" # "single moment" # "two moment" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_precipitation.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_precipitation.hydrometeors') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "liquid rain" # "snow" # "hail" # "graupel" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_cloud_microphysics.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.microphysics_precipitation.large_scale_cloud_microphysics.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "mixed phase" # "cloud droplets" # "cloud ice" # "ice nucleation" # "water vapour deposition" # "effect of raindrops" # "effect of snow" # "effect of graupel" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.atmos_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "atmosphere_radiation" # "atmosphere_microphysics_precipitation" # "atmosphere_turbulence_convection" # "atmosphere_gravity_waves" # "atmosphere_solar" # "atmosphere_volcano" # "atmosphere_cloud_simulator" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.uses_separate_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "entrainment" # "detrainment" # "bulk cloud" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.prognostic_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.diagnostic_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "cloud amount" # "liquid" # "ice" # "rain" # "snow" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.optical_cloud_properties.cloud_overlap_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "random" # "maximum" # "maximum-random" # "exponential" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.optical_cloud_properties.cloud_inhomogeneity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.function_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.function_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_water_distribution.convection_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "coupled with deep" # "coupled with shallow" # "not coupled with convection" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "prognostic" # "diagnostic" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.function_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.function_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.cloud_scheme.sub_grid_scale_ice_distribution.convection_coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "coupled with deep" # "coupled with shallow" # "not coupled with convection" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.isscp_attributes.top_height_estimation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "no adjustment" # "IR brightness" # "visible optical depth" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.isscp_attributes.top_height_direction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "lowest altitude level" # "highest altitude level" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.run_configuration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Inline" # "Offline" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_grid_points') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_sub_columns') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.cosp_attributes.number_of_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.frequency') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "surface" # "space borne" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.gas_absorption') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.radar_inputs.effective_radius') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.lidar_inputs.ice_types') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "ice spheres" # "ice non-spherical" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.observation_simulation.lidar_inputs.overlap') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "max" # "random" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.sponge_layer') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Rayleigh friction" # "Diffusive sponge layer" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "continuous spectrum" # "discrete spectrum" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.subgrid_scale_orography') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "effect on drag" # "effect on lifting" # "enhanced topography" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.source_mechanisms') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "linear mountain waves" # "hydraulic jump" # "envelope orography" # "low level flow blocking" # "statistical sub-grid scale variance" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.calculation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "non-linear calculation" # "more than two cardinal directions" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.propagation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "linear theory" # "non-linear theory" # "includes boundary layer ducting" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.orographic_gravity_waves.dissipation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "total wave" # "single wave" # "spectral" # "linear" # "wave saturation vs Richardson number" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.source_mechanisms') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "convection" # "precipitation" # "background spectrum" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.calculation_method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "spatially dependent" # "temporally dependent" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.propagation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "linear theory" # "non-linear theory" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.gravity_waves.non_orographic_gravity_waves.dissipation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "total wave" # "single wave" # "spectral" # "linear" # "wave saturation vs Richardson number" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_pathways.pathways') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "SW radiation" # "precipitating energetic particles" # "cosmic rays" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "transient" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.fixed_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.solar_constant.transient_characteristics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "fixed" # "transient" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.fixed_reference_date') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.transient_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.orbital_parameters.computation_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Berger 1978" # "Laskar 2004" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.solar.insolation_ozone.solar_ozone_impact') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.volcanos.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmos.volcanos.volcanoes_treatment.volcanoes_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "high frequency solar constant anomaly" # "stratospheric aerosols optical thickness" # "Other: [Please specify]" # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Model Family Step7: 1.4. Basic Approximations Step8: 2. Key Properties --&gt; Resolution Step9: 2.2. Canonical Horizontal Resolution Step10: 2.3. Range Horizontal Resolution Step11: 2.4. Number Of Vertical Levels Step12: 2.5. High Top Step13: 3. Key Properties --&gt; Timestepping Step14: 3.2. Timestep Shortwave Radiative Transfer Step15: 3.3. Timestep Longwave Radiative Transfer Step16: 4. Key Properties --&gt; Orography Step17: 4.2. Changes Step18: 5. Grid --&gt; Discretisation Step19: 6. Grid --&gt; Discretisation --&gt; Horizontal Step20: 6.2. Scheme Method Step21: 6.3. Scheme Order Step22: 6.4. Horizontal Pole Step23: 6.5. Grid Type Step24: 7. Grid --&gt; Discretisation --&gt; Vertical Step25: 8. Dynamical Core Step26: 8.2. Name Step27: 8.3. Timestepping Type Step28: 8.4. Prognostic Variables Step29: 9. Dynamical Core --&gt; Top Boundary Step30: 9.2. Top Heat Step31: 9.3. Top Wind Step32: 10. Dynamical Core --&gt; Lateral Boundary Step33: 11. Dynamical Core --&gt; Diffusion Horizontal Step34: 11.2. Scheme Method Step35: 12. Dynamical Core --&gt; Advection Tracers Step36: 12.2. Scheme Characteristics Step37: 12.3. Conserved Quantities Step38: 12.4. Conservation Method Step39: 13. Dynamical Core --&gt; Advection Momentum Step40: 13.2. Scheme Characteristics Step41: 13.3. Scheme Staggering Type Step42: 13.4. Conserved Quantities Step43: 13.5. Conservation Method Step44: 14. Radiation Step45: 15. Radiation --&gt; Shortwave Radiation Step46: 15.2. Name Step47: 15.3. Spectral Integration Step48: 15.4. Transport Calculation Step49: 15.5. Spectral Intervals Step50: 16. Radiation --&gt; Shortwave GHG Step51: 16.2. ODS Step52: 16.3. Other Flourinated Gases Step53: 17. Radiation --&gt; Shortwave Cloud Ice Step54: 17.2. Physical Representation Step55: 17.3. Optical Methods Step56: 18. Radiation --&gt; Shortwave Cloud Liquid Step57: 18.2. Physical Representation Step58: 18.3. Optical Methods Step59: 19. Radiation --&gt; Shortwave Cloud Inhomogeneity Step60: 20. Radiation --&gt; Shortwave Aerosols Step61: 20.2. Physical Representation Step62: 20.3. Optical Methods Step63: 21. Radiation --&gt; Shortwave Gases Step64: 22. Radiation --&gt; Longwave Radiation Step65: 22.2. Name Step66: 22.3. Spectral Integration Step67: 22.4. Transport Calculation Step68: 22.5. Spectral Intervals Step69: 23. Radiation --&gt; Longwave GHG Step70: 23.2. ODS Step71: 23.3. Other Flourinated Gases Step72: 24. Radiation --&gt; Longwave Cloud Ice Step73: 24.2. Physical Reprenstation Step74: 24.3. Optical Methods Step75: 25. Radiation --&gt; Longwave Cloud Liquid Step76: 25.2. Physical Representation Step77: 25.3. Optical Methods Step78: 26. Radiation --&gt; Longwave Cloud Inhomogeneity Step79: 27. Radiation --&gt; Longwave Aerosols Step80: 27.2. Physical Representation Step81: 27.3. Optical Methods Step82: 28. Radiation --&gt; Longwave Gases Step83: 29. Turbulence Convection Step84: 30. Turbulence Convection --&gt; Boundary Layer Turbulence Step85: 30.2. Scheme Type Step86: 30.3. Closure Order Step87: 30.4. Counter Gradient Step88: 31. Turbulence Convection --&gt; Deep Convection Step89: 31.2. Scheme Type Step90: 31.3. Scheme Method Step91: 31.4. Processes Step92: 31.5. Microphysics Step93: 32. Turbulence Convection --&gt; Shallow Convection Step94: 32.2. Scheme Type Step95: 32.3. Scheme Method Step96: 32.4. Processes Step97: 32.5. Microphysics Step98: 33. Microphysics Precipitation Step99: 34. Microphysics Precipitation --&gt; Large Scale Precipitation Step100: 34.2. Hydrometeors Step101: 35. Microphysics Precipitation --&gt; Large Scale Cloud Microphysics Step102: 35.2. Processes Step103: 36. Cloud Scheme Step104: 36.2. Name Step105: 36.3. Atmos Coupling Step106: 36.4. Uses Separate Treatment Step107: 36.5. Processes Step108: 36.6. Prognostic Scheme Step109: 36.7. Diagnostic Scheme Step110: 36.8. Prognostic Variables Step111: 37. Cloud Scheme --&gt; Optical Cloud Properties Step112: 37.2. Cloud Inhomogeneity Step113: 38. Cloud Scheme --&gt; Sub Grid Scale Water Distribution Step114: 38.2. Function Name Step115: 38.3. Function Order Step116: 38.4. Convection Coupling Step117: 39. Cloud Scheme --&gt; Sub Grid Scale Ice Distribution Step118: 39.2. Function Name Step119: 39.3. Function Order Step120: 39.4. Convection Coupling Step121: 40. Observation Simulation Step122: 41. Observation Simulation --&gt; Isscp Attributes Step123: 41.2. Top Height Direction Step124: 42. Observation Simulation --&gt; Cosp Attributes Step125: 42.2. Number Of Grid Points Step126: 42.3. Number Of Sub Columns Step127: 42.4. Number Of Levels Step128: 43. Observation Simulation --&gt; Radar Inputs Step129: 43.2. Type Step130: 43.3. Gas Absorption Step131: 43.4. Effective Radius Step132: 44. Observation Simulation --&gt; Lidar Inputs Step133: 44.2. Overlap Step134: 45. Gravity Waves Step135: 45.2. Sponge Layer Step136: 45.3. Background Step137: 45.4. Subgrid Scale Orography Step138: 46. Gravity Waves --&gt; Orographic Gravity Waves Step139: 46.2. Source Mechanisms Step140: 46.3. Calculation Method Step141: 46.4. Propagation Scheme Step142: 46.5. Dissipation Scheme Step143: 47. Gravity Waves --&gt; Non Orographic Gravity Waves Step144: 47.2. Source Mechanisms Step145: 47.3. Calculation Method Step146: 47.4. Propagation Scheme Step147: 47.5. Dissipation Scheme Step148: 48. Solar Step149: 49. Solar --&gt; Solar Pathways Step150: 50. Solar --&gt; Solar Constant Step151: 50.2. Fixed Value Step152: 50.3. Transient Characteristics Step153: 51. Solar --&gt; Orbital Parameters Step154: 51.2. Fixed Reference Date Step155: 51.3. Transient Method Step156: 51.4. Computation Method Step157: 52. Solar --&gt; Insolation Ozone Step158: 53. Volcanos Step159: 54. Volcanos --&gt; Volcanoes Treatment
14,469
<ASSISTANT_TASK:> Python Code: from theano.sandbox import cuda %matplotlib inline from imp import reload import utils; reload(utils) from utils import * from __future__ import division, print_function #path = "data/dogscats/sample/" path = "data/dogscats/" model_path = path + 'models/' if not os.path.exists(model_path): os.mkdir(model_path) import keras.backend as K K.set_image_dim_ordering('th') batch_size=64 model = vgg_ft(2) model.load_weights(model_path+'finetune3.h5') layers = model.layers last_conv_idx = [index for index,layer in enumerate(layers) if type(layer) is Convolution2D][-1] last_conv_idx layers[last_conv_idx] conv_layers = layers[:last_conv_idx+1] conv_model = Sequential(conv_layers) # Dense layers - also known as fully connected or 'FC' layers fc_layers = layers[last_conv_idx+1:] batches = get_batches(path+'train', shuffle=False, batch_size=batch_size) val_batches = get_batches(path+'valid', shuffle=False, batch_size=batch_size) val_classes = val_batches.classes trn_classes = batches.classes val_labels = onehot(val_classes) trn_labels = onehot(trn_classes) val_features = conv_model.predict_generator(val_batches, val_batches.nb_sample) trn_features = conv_model.predict_generator(batches, batches.nb_sample) save_array(model_path + 'train_convlayer_features.bc', trn_features) save_array(model_path + 'valid_convlayer_features.bc', val_features) trn_features = load_array(model_path+'train_convlayer_features.bc') val_features = load_array(model_path+'valid_convlayer_features.bc') trn_features.shape # Copy the weights from the pre-trained model. # NB: Since we're removing dropout, we want to half the weights def proc_wgts(layer): return [o/2 for o in layer.get_weights()] # Such a finely tuned model needs to be updated very slowly! opt = RMSprop(lr=0.00001, rho=0.7) def get_fc_model(): model = Sequential([ MaxPooling2D(input_shape=conv_layers[-1].output_shape[1:]), Flatten(), Dense(4096, activation='relu'), Dropout(0.), Dense(4096, activation='relu'), Dropout(0.), Dense(2, activation='softmax') ]) for l1,l2 in zip(model.layers, fc_layers): l1.set_weights(proc_wgts(l2)) model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy']) return model fc_model = get_fc_model() fc_model.fit(trn_features, trn_labels, nb_epoch=8, batch_size=batch_size, validation_data=(val_features, val_labels)) fc_model.save_weights(model_path+'no_dropout.h5') fc_model.load_weights(model_path+'no_dropout.h5') # dim_ordering='tf' uses tensorflow dimension ordering, # which is the same order as matplotlib uses for display. # Therefore when just using for display purposes, this is more convenient gen = image.ImageDataGenerator(rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, width_zoom_range=0.2, shear_range=0.15, zoom_range=0.1, channel_shift_range=10., horizontal_flip=True, dim_ordering='tf') # Create a 'batch' of a single image img = np.expand_dims(ndimage.imread('cat.jpg'),0) # Request the generator to create batches from this image aug_iter = gen.flow(img) # Get eight examples of these augmented images aug_imgs = [next(aug_iter)[0].astype(np.uint8) for i in range(8)] # The original plt.imshow(img[0]) # Augmented data plots(aug_imgs, (20,7), 2) # Ensure that we return to theano dimension ordering K.set_image_dim_ordering('th') gen = image.ImageDataGenerator(rotation_range=15, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.1, horizontal_flip=True) batches = get_batches(path+'train', gen, batch_size=batch_size) # NB: We don't want to augment or shuffle the validation set val_batches = get_batches(path+'valid', shuffle=False, batch_size=batch_size) fc_model = get_fc_model() for layer in conv_model.layers: layer.trainable = False # Look how easy it is to connect two models together! conv_model.add(fc_model) conv_model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy']) conv_model.fit_generator(batches, samples_per_epoch=batches.nb_sample, nb_epoch=8, validation_data=val_batches, nb_val_samples=val_batches.nb_sample) conv_model.fit_generator(batches, samples_per_epoch=batches.nb_sample, nb_epoch=3, validation_data=val_batches, nb_val_samples=val_batches.nb_sample) conv_model.save_weights(model_path + 'aug1.h5') conv_model.load_weights(model_path + 'aug1.h5') conv_layers[-1].output_shape[1:] def get_bn_layers(p): return [ MaxPooling2D(input_shape=conv_layers[-1].output_shape[1:]), Flatten(), Dense(4096, activation='relu'), Dropout(p), BatchNormalization(), Dense(4096, activation='relu'), Dropout(p), BatchNormalization(), Dense(1000, activation='softmax') ] p=0.6 bn_model = Sequential(get_bn_layers(0.6)) bn_model.load_weights('/data/jhoward/ILSVRC2012_img/bn_do3_1.h5') def proc_wgts(layer, prev_p, new_p): scal = (1-prev_p)/(1-new_p) return [o*scal for o in layer.get_weights()] for l in bn_model.layers: if type(l)==Dense: l.set_weights(proc_wgts(l, 0.3, 0.6)) bn_model.pop() for layer in bn_model.layers: layer.trainable=False bn_model.add(Dense(2,activation='softmax')) bn_model.compile(Adam(), 'categorical_crossentropy', metrics=['accuracy']) bn_model.fit(trn_features, trn_labels, nb_epoch=8, validation_data=(val_features, val_labels)) bn_model.save_weights(model_path+'bn.h5') bn_model.load_weights(model_path+'bn.h5') bn_layers = get_bn_layers(0.6) bn_layers.pop() bn_layers.append(Dense(2,activation='softmax')) final_model = Sequential(conv_layers) for layer in final_model.layers: layer.trainable = False for layer in bn_layers: final_model.add(layer) for l1,l2 in zip(bn_model.layers, bn_layers): l2.set_weights(l1.get_weights()) final_model.compile(optimizer=Adam(), loss='categorical_crossentropy', metrics=['accuracy']) final_model.fit_generator(batches, samples_per_epoch=batches.nb_sample, nb_epoch=1, validation_data=val_batches, nb_val_samples=val_batches.nb_sample) final_model.save_weights(model_path + 'final1.h5') final_model.fit_generator(batches, samples_per_epoch=batches.nb_sample, nb_epoch=4, validation_data=val_batches, nb_val_samples=val_batches.nb_sample) final_model.save_weights(model_path + 'final2.h5') final_model.optimizer.lr=0.001 final_model.fit_generator(batches, samples_per_epoch=batches.nb_sample, nb_epoch=4, validation_data=val_batches, nb_val_samples=val_batches.nb_sample) bn_model.save_weights(model_path + 'final3.h5') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Are we underfitting? Step2: ...and load our fine-tuned weights. Step3: We're going to be training a number of iterations without dropout, so it would be best for us to pre-calculate the input to the fully connected layers - i.e. the Flatten() layer. We'll start by finding this layer in our model, and creating a new model that contains just the layers up to and including this layer Step4: Now we can use the exact same approach to creating features as we used when we created the linear model from the imagenet predictions in the last lesson - it's only the model that has changed. As you're seeing, there's a fairly small number of "recipes" that can get us a long way! Step5: For our new fully connected model, we'll create it using the exact same architecture as the last layers of VGG 16, so that we can conveniently copy pre-trained weights over from that model. However, we'll set the dropout layer's p values to zero, so as to effectively remove dropout. Step6: And fit the model in the usual way Step7: Reducing overfitting Step8: Let's take a look at how this generator changes a single image (the details of this code don't matter much, but feel free to read the comments and keras docs to understand the details if you're interested). Step9: As you can see below, there's no magic to data augmentation - it's a very intuitive approach to generating richer input data. Generally speaking, your intuition should be a good guide to appropriate data augmentation, although it's a good idea to test your intuition by checking the results of different augmentation approaches. Step10: Adding data augmentation Step11: When using data augmentation, we can't pre-compute our convolutional layer features, since randomized changes are being made to every input image. That is, even if the training process sees the same image multiple times, each time it will have undergone different data augmentation, so the results of the convolutional layers will be different. Step12: Now we can compile, train, and save our model as usual - note that we use fit_generator() since we want to pull random images from the directories on every batch. Step13: Batch normalization
14,470
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import oandapy import configparser %matplotlib inline import seaborn as sns import matplotlib.pyplot as plt config = configparser.ConfigParser() config.read('../config/config_v1.ini') account_id = config['oanda']['account_id'] api_key = config['oanda']['api_key'] oanda = oandapy.API(environment="practice", access_token=api_key) response = oanda.get_history(instrument="EUR_USD", granularity="H1", count = 5000) res = pd.DataFrame(response['candles']) res.columns = ['Close_Ask', 'Close_Bid', 'Complete', 'High_Ask', 'High_Bid', 'Low_Ask', 'Low_Bid', 'Open_Ask', 'Open_Bid', 'Time', 'Volume'] res = res.reindex_axis(['Time', 'Open_Bid', 'Open_Ask', 'High_Bid', 'High_Ask', 'Low_Bid', 'Low_Ask', 'Close_Bid', 'Close_Ask', 'Complete', 'Volume'], axis=1) df = res[['Time', 'Close_Bid', 'Close_Ask']].copy() df['rtns'] = res['Close_Bid'].pct_change() dtrain = df[0:4500].copy() dtest = df[4500:].copy() k = range(1,13) h = 1 for oo in k: dtrain['signal'] = np.sign(dtrain['rtns'].rolling(oo).sum()) dtrain['strategy_rtn'] = dtrain['signal'].shift(1) * dtrain['rtns'] res = dtrain['strategy_rtn'].dropna().sum() print('{0:3} {1:>8.4f}'.format(oo, res)) dtest['signal'] = np.sign(dtest['rtns'].rolling(11).sum()) dtest['result'] = dtest['signal'].shift(1) * dtest['rtns'] dtest['result'].dropna().cumsum().plot(figsize=(10,6)); dtest['signal'] = - np.sign(dtest['rtns'].rolling(3).sum()) dtest['result'] = dtest['signal'].shift(1) * dtest['rtns'] dtest['result'].dropna().cumsum().plot(figsize=(10,6)); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Experiment With the Training Data Set Step2: Vectorized Backtesting With the Test Set - Momentum Step3: Vectorized Backtesting With the Test Set - Reversion
14,471
<ASSISTANT_TASK:> Python Code: import pandas as pd def bayes_table(hypos, prior, likelihood): Make a table showing a Bayesian update. table = pd.DataFrame(dict(prior=prior, likelihood=likelihood), index=hypos) table['unnorm'] = table['prior'] * table['likelihood'] prob_data = table['unnorm'].sum() table['posterior'] = table['unnorm'] / prob_data return table import numpy as np def expo_sf(t, lam): Survival function of the exponential distribution. return np.exp(-lam * t) t = 0.9 mu = 1.1 lam = 1/mu expo_sf(t, lam) hypos = ['Right way', 'Wrong way'] prior = [1/2, 1/2] likelihood = [expo_sf(t, lam), 1] bayes_table(hypos, prior, likelihood) from sympy import symbols, exp t, lam, p, q, r = symbols('t lam p q r') likelihood = [exp(-lam * t), 1] likelihood prior = [p, q] table = bayes_table(hypos, prior, likelihood) table expr = table.loc['Right way', 'posterior'] expr.simplify() def logistic(p, lam, t): q = 1-p return p / (p + q * np.exp(lam * t)) import matplotlib.pyplot as plt ts = np.linspace(0, 4) ps = logistic(p=0.5, lam=1/mu, t=ts) plt.plot(ts, ps) plt.xlabel("How long you've been trying (seconds)") plt.ylabel("Probability the orientation is right"); from sympy import Eq, solve eqn = Eq(expr, r) eqn solve(eqn, t)[0] def wait_time(p, lam, r): q = 1-p prior_odds = p / q posterior_odds = r / (1-r) return np.log(prior_odds / posterior_odds) / lam rs = np.linspace(0.05, 0.5) ts = wait_time(p=0.5, lam=1/mu, r=rs) plt.plot(rs, ts, color='C2') plt.xlabel("Probability the orientation is right") plt.ylabel("How long to keep trying (seconds)"); def simulate(correct, p, lam, r, flip, trace): # figure out the maximum time we should try before flipping wait = wait_time(p, lam, r) # if we're on the correct side, see if we succeed before time's up if correct: t = np.random.exponential(1/lam) if t < wait: # if so, update and return the trace return trace + [t] # if time expired, add the wait time and flip time to the trace # and make a recursive call to continue the simulation return simulate(not correct, 1-r, lam, r, flip, trace + [wait, flip]) simulate(correct=True, p=0.5, lam=1/mu, r=0.2, flip=0.1, trace=[]) simulate(correct=False, p=0.5, lam=1/mu, r=0.2, flip=0.1, trace=[]) def run_simulations(lam, r, flip, iters=20000, flag=None): res = [] for i in range(iters): correct = i%2 if flag is None else flag trace = simulate(correct, 0.5, lam, r, flip, []) res.append((len(trace), sum(trace))) return np.transpose(res) lengths, totals = run_simulations(lam=1/mu, r=0.25, flip=0.1) totals.mean() rs = np.linspace(0.15, 0.4, 21) rs np.random.seed(17) res = [] for r in rs: lengths, totals = run_simulations(lam=1/mu, r=r, flip=0.1) res.append((r, totals.mean())) from statsmodels.nonparametric.smoothers_lowess import lowess def make_lowess(series): Use LOWESS to compute a smooth line. series: pd.Series returns: pd.Series endog = series.values exog = series.index.values smooth = lowess(endog, exog) index, data = np.transpose(smooth) return pd.Series(data, index=index) def plot_series_lowess(series, color): Plots a series of data points and a smooth line. series: pd.Series color: string or tuple series.plot(lw=0, marker='o', color=color, alpha=0.5) smooth = make_lowess(series) smooth.plot(label='_', color=color) rs, ts = np.transpose(res) series = pd.Series(ts, rs) plot_series_lowess(series, 'C1') plt.xlabel("Threshold probability where you flip (r)") plt.ylabel("Average total duration (seconds)"); r_opt = 0.3 wait_time(p=0.5, lam=1/mu, r=r_opt) wait_time(p=1-r_opt, lam=1/mu, r=r_opt) lengths1, totals1 = run_simulations(lam=1/mu, r=r_opt, flip=0.1, flag=True) lengths2, totals2 = run_simulations(lam=1/mu, r=r_opt, flip=0.1, flag=False) try: import empiricaldist except ImportError: !pip install empiricaldist from empiricaldist import Cdf Cdf.from_seq(totals1).plot(lw=2, label='Right the first time') Cdf.from_seq(totals2).plot(lw=2, label='Wrong the first time') plt.xlabel('Total time to connect (seconds)') plt.ylabel('CDF') plt.title('Distribution of total time to connect') plt.legend(); totals1.mean(), totals2.mean() np.append(totals1, totals2).mean() from empiricaldist import Pmf flips1 = (lengths1-1) // 2 pmf1 = Pmf.from_seq(flips1) / 2 pmf1.bar(alpha=0.7, label='Right the first time') flips2 = (lengths2-1) // 2 pmf2 = Pmf.from_seq(flips2) / 2 pmf2.bar(alpha=0.7, label='Right the second time') plt.xlabel('How many times you have to flip') plt.ylabel('PMF') plt.title('Distribution of number of flips') plt.legend(); lengths = np.append(lengths1, lengths2) flips = (lengths-1) // 2 Pmf.from_seq(flips).head(5) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Flipping USB Connectors Step3: Now suppose that the prior probability is 0.5 that the orientation of the connector is correct, and you have been trying for 0.9 seconds. Step4: We can use this function to compute the likelihood of trying for 0.9 seconds or more, given an exponential distribution with mean 1.1. Step5: The result is the likelihood of the data, given that the orientation of the connector is correct. Step6: And here is the likelihood of the data for each hypothesis Step7: Putting it together, here's the Bayes table. Step8: After 0.9 seconds, the probability is about 69% that the orientation of the connector is wrong, so you might want to think about trying the other side. Step9: Here's the likelihood again, using the symbols. Step10: And here's the Bayes table, using $p$ and $q$ for the prior probabilities of the hypotheses. Step11: From the table I'll select the posterior probability that the orientation is correct. Step12: You might recognize this as a form of the logistic function; we can compute it like this Step13: Let's see what that looks like for a range of values of t, assuming that the prior probability is p=0.5. Step14: After a few seconds of fiddling, you should be reasonably convinced that the orientation is wrong. Step15: And here's the solution for t in terms of p, q, r, and lam. Step16: And here's how we can express this solution in terms of the prior and posterior odds. Step17: Let's see what that looks like for a range of values of r, assuming that the prior probability is p=0.5. Step18: When the threshold is low, we have to wait a few seconds to reach it. As the threshold increases, the time to reach it decreases. Step19: Here's a test run, starting on the correct side. Step20: And here's a run where we start on the wrong side. Step21: The following function runs the simulation many times with initial probability p=0.5, starting in the right orientation half the time. Step22: Here's the average total duration with threshold probability r=0.25. Step25: With this threshold, it takes about 2 seconds to connect, on average. Step26: Here's what the results look like. Step27: The optimal value of r is close to 0.3. With that threshold we can see how long we should try on the first side, starting with prior probability p=0.5. Step28: With the given values of lam and flip, it turns out the optimal time to wait is about 0.9 seconds. Step29: How many flips? Step30: Here's the distribution of total time, represented as a CDF. Step31: The average is about 2.4 seconds, but occasionally it takes much longer!
14,472
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'nims-kma', 'sandbox-1', 'ocean') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.model_family') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "OGCM" # "slab ocean" # "mixed layer ocean" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.basic_approximations') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Primitive equations" # "Non-hydrostatic" # "Boussinesq" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Potential temperature" # "Conservative temperature" # "Salinity" # "U-velocity" # "V-velocity" # "W-velocity" # "SSH" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Linear" # "Wright, 1997" # "Mc Dougall et al." # "Jackett et al. 2006" # "TEOS 2010" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_temp') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Potential temperature" # "Conservative temperature" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_salt') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Practical salinity Sp" # "Absolute salinity Sa" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pressure (dbars)" # "Depth (meters)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_freezing_point') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "TEOS 2010" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_specific_heat') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_reference_density') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.reference_dates') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Present day" # "21000 years BP" # "6000 years BP" # "LGM" # "Pliocene" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.type') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.ocean_smoothing') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.bathymetry.source') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.nonoceanic_waters.isolated_seas') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.nonoceanic_waters.river_mouth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.range_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.is_adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.resolution.thickness_level_1') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.scheme') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Energy" # "Enstrophy" # "Salt" # "Volume of ocean" # "Momentum" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.consistency_properties') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.corrected_conserved_prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.key_properties.conservation.was_flux_correction_used') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.vertical.coordinates') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Z-coordinate" # "Z*-coordinate" # "S-coordinate" # "Isopycnic - sigma 0" # "Isopycnic - sigma 2" # "Isopycnic - sigma 4" # "Isopycnic - other" # "Hybrid / Z+S" # "Hybrid / Z+isopycnic" # "Hybrid / other" # "Pressure referenced (P)" # "P*" # "Z**" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.vertical.partial_steps') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Lat-lon" # "Rotated north pole" # "Two north poles (ORCA-style)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.staggering') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Arakawa B-grid" # "Arakawa C-grid" # "Arakawa E-grid" # "N/a" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Finite difference" # "Finite volumes" # "Finite elements" # "Unstructured grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.diurnal_cycle') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Via coupling" # "Specific treatment" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.tracers.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Leap-frog + Asselin filter" # "Leap-frog + Periodic Euler" # "Predictor-corrector" # "Runge-Kutta 2" # "AM3-LF" # "Forward-backward" # "Forward operator" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.tracers.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Preconditioned conjugate gradient" # "Sub cyling" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Leap-frog + Asselin filter" # "Leap-frog + Periodic Euler" # "Predictor-corrector" # "Runge-Kutta 2" # "AM3-LF" # "Forward-backward" # "Forward operator" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.barotropic.splitting') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "split explicit" # "implicit" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.barotropic.time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.timestepping_framework.vertical_physics.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.momentum.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Flux form" # "Vector form" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.momentum.scheme_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.momentum.ALE') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.flux_limiter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.effective_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.passive_tracers') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Ideal age" # "CFC 11" # "CFC 12" # "SF6" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.lateral_tracers.passive_tracers_advection') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.vertical_tracers.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.advection.vertical_tracers.flux_limiter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Eddy active" # "Eddy admitting" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.direction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Horizontal" # "Isopycnal" # "Isoneutral" # "Geopotential" # "Iso-level" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.order') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Harmonic" # "Bi-harmonic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Second order" # "Higher order" # "Flux limiter" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Space varying" # "Time + space varying (Smagorinsky)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.constant_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.variable_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.coeff_background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.coeff_backscatter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.mesoscale_closure') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.submesoscale_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.direction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Horizontal" # "Isopycnal" # "Isoneutral" # "Geopotential" # "Iso-level" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.order') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Harmonic" # "Bi-harmonic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.discretisation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Second order" # "Higher order" # "Flux limiter" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Space varying" # "Time + space varying (Smagorinsky)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.constant_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.variable_coefficient') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.coeff_background') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.coeff_backscatter') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "GM" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.constant_val') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.flux_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.added_diffusivity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.details.langmuir_cells_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure - TKE" # "Turbulent closure - KPP" # "Turbulent closure - Mellor-Yamada" # "Turbulent closure - Bulk Mixed Layer" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.closure_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure - TKE" # "Turbulent closure - KPP" # "Turbulent closure - Mellor-Yamada" # "Turbulent closure - Bulk Mixed Layer" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.closure_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.convection_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Non-penetrative convective adjustment" # "Enhanced vertical diffusion" # "Included in turbulence closure" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.tide_induced_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.double_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.shear_mixing') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure / TKE" # "Turbulent closure - Mellor-Yamada" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.profile') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant value" # "Turbulent closure / TKE" # "Turbulent closure - Mellor-Yamada" # "Richardson number dependent - PP" # "Richardson number dependent - KT" # "Imbeded as isopycnic vertical coordinate" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.constant') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.profile') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.background') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Linear implicit" # "Linear filtered" # "Linear semi-explicit" # "Non-linear implicit" # "Non-linear filtered" # "Non-linear semi-explicit" # "Fully explicit" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.embeded_seaice') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.type_of_bbl') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Diffusive" # "Acvective" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.lateral_mixing_coef') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.sill_overflow') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.surface_pressure') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.momentum_flux_correction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers_flux_correction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.wave_effects') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.river_runoff_budget') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.geothermal_heating') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.momentum.bottom_friction.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Linear" # "Non-linear" # "Non-linear (drag function of speed of tides)" # "Constant drag coefficient" # "None" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.momentum.lateral_friction.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Free-slip" # "No-slip" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "1 extinction depth" # "2 extinction depth" # "3 extinction depth" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.ocean_colour') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.extinction_depth') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.from_atmopshere') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Freshwater flux" # "Virtual salt flux" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.from_sea_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Freshwater flux" # "Virtual salt flux" # "Real salt flux" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.forced_mode_restoring') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Model Family Step7: 1.4. Basic Approximations Step8: 1.5. Prognostic Variables Step9: 2. Key Properties --&gt; Seawater Properties Step10: 2.2. Eos Functional Temp Step11: 2.3. Eos Functional Salt Step12: 2.4. Eos Functional Depth Step13: 2.5. Ocean Freezing Point Step14: 2.6. Ocean Specific Heat Step15: 2.7. Ocean Reference Density Step16: 3. Key Properties --&gt; Bathymetry Step17: 3.2. Type Step18: 3.3. Ocean Smoothing Step19: 3.4. Source Step20: 4. Key Properties --&gt; Nonoceanic Waters Step21: 4.2. River Mouth Step22: 5. Key Properties --&gt; Software Properties Step23: 5.2. Code Version Step24: 5.3. Code Languages Step25: 6. Key Properties --&gt; Resolution Step26: 6.2. Canonical Horizontal Resolution Step27: 6.3. Range Horizontal Resolution Step28: 6.4. Number Of Horizontal Gridpoints Step29: 6.5. Number Of Vertical Levels Step30: 6.6. Is Adaptive Grid Step31: 6.7. Thickness Level 1 Step32: 7. Key Properties --&gt; Tuning Applied Step33: 7.2. Global Mean Metrics Used Step34: 7.3. Regional Metrics Used Step35: 7.4. Trend Metrics Used Step36: 8. Key Properties --&gt; Conservation Step37: 8.2. Scheme Step38: 8.3. Consistency Properties Step39: 8.4. Corrected Conserved Prognostic Variables Step40: 8.5. Was Flux Correction Used Step41: 9. Grid Step42: 10. Grid --&gt; Discretisation --&gt; Vertical Step43: 10.2. Partial Steps Step44: 11. Grid --&gt; Discretisation --&gt; Horizontal Step45: 11.2. Staggering Step46: 11.3. Scheme Step47: 12. Timestepping Framework Step48: 12.2. Diurnal Cycle Step49: 13. Timestepping Framework --&gt; Tracers Step50: 13.2. Time Step Step51: 14. Timestepping Framework --&gt; Baroclinic Dynamics Step52: 14.2. Scheme Step53: 14.3. Time Step Step54: 15. Timestepping Framework --&gt; Barotropic Step55: 15.2. Time Step Step56: 16. Timestepping Framework --&gt; Vertical Physics Step57: 17. Advection Step58: 18. Advection --&gt; Momentum Step59: 18.2. Scheme Name Step60: 18.3. ALE Step61: 19. Advection --&gt; Lateral Tracers Step62: 19.2. Flux Limiter Step63: 19.3. Effective Order Step64: 19.4. Name Step65: 19.5. Passive Tracers Step66: 19.6. Passive Tracers Advection Step67: 20. Advection --&gt; Vertical Tracers Step68: 20.2. Flux Limiter Step69: 21. Lateral Physics Step70: 21.2. Scheme Step71: 22. Lateral Physics --&gt; Momentum --&gt; Operator Step72: 22.2. Order Step73: 22.3. Discretisation Step74: 23. Lateral Physics --&gt; Momentum --&gt; Eddy Viscosity Coeff Step75: 23.2. Constant Coefficient Step76: 23.3. Variable Coefficient Step77: 23.4. Coeff Background Step78: 23.5. Coeff Backscatter Step79: 24. Lateral Physics --&gt; Tracers Step80: 24.2. Submesoscale Mixing Step81: 25. Lateral Physics --&gt; Tracers --&gt; Operator Step82: 25.2. Order Step83: 25.3. Discretisation Step84: 26. Lateral Physics --&gt; Tracers --&gt; Eddy Diffusity Coeff Step85: 26.2. Constant Coefficient Step86: 26.3. Variable Coefficient Step87: 26.4. Coeff Background Step88: 26.5. Coeff Backscatter Step89: 27. Lateral Physics --&gt; Tracers --&gt; Eddy Induced Velocity Step90: 27.2. Constant Val Step91: 27.3. Flux Type Step92: 27.4. Added Diffusivity Step93: 28. Vertical Physics Step94: 29. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Details Step95: 30. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Tracers Step96: 30.2. Closure Order Step97: 30.3. Constant Step98: 30.4. Background Step99: 31. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Momentum Step100: 31.2. Closure Order Step101: 31.3. Constant Step102: 31.4. Background Step103: 32. Vertical Physics --&gt; Interior Mixing --&gt; Details Step104: 32.2. Tide Induced Mixing Step105: 32.3. Double Diffusion Step106: 32.4. Shear Mixing Step107: 33. Vertical Physics --&gt; Interior Mixing --&gt; Tracers Step108: 33.2. Constant Step109: 33.3. Profile Step110: 33.4. Background Step111: 34. Vertical Physics --&gt; Interior Mixing --&gt; Momentum Step112: 34.2. Constant Step113: 34.3. Profile Step114: 34.4. Background Step115: 35. Uplow Boundaries --&gt; Free Surface Step116: 35.2. Scheme Step117: 35.3. Embeded Seaice Step118: 36. Uplow Boundaries --&gt; Bottom Boundary Layer Step119: 36.2. Type Of Bbl Step120: 36.3. Lateral Mixing Coef Step121: 36.4. Sill Overflow Step122: 37. Boundary Forcing Step123: 37.2. Surface Pressure Step124: 37.3. Momentum Flux Correction Step125: 37.4. Tracers Flux Correction Step126: 37.5. Wave Effects Step127: 37.6. River Runoff Budget Step128: 37.7. Geothermal Heating Step129: 38. Boundary Forcing --&gt; Momentum --&gt; Bottom Friction Step130: 39. Boundary Forcing --&gt; Momentum --&gt; Lateral Friction Step131: 40. Boundary Forcing --&gt; Tracers --&gt; Sunlight Penetration Step132: 40.2. Ocean Colour Step133: 40.3. Extinction Depth Step134: 41. Boundary Forcing --&gt; Tracers --&gt; Fresh Water Forcing Step135: 41.2. From Sea Ice Step136: 41.3. Forced Mode Restoring
14,473
<ASSISTANT_TASK:> Python Code: mu = [2, 3] cov = [[1, 0], [0, 1]] rv = sp.stats.multivariate_normal(mu, cov) xx = np.linspace(0, 4, 120) yy = np.linspace(1, 5, 150) XX, YY = np.meshgrid(xx, yy) plt.grid(False) plt.contourf(XX, YY, rv.pdf(np.dstack([XX, YY]))) plt.axis("equal") plt.show() mu = [2, 3] cov = [[2, -1],[2, 4]] rv = sp.stats.multivariate_normal(mu, cov) xx = np.linspace(0, 4, 120) yy = np.linspace(1, 5, 150) XX, YY = np.meshgrid(xx, yy) plt.grid(False) plt.contourf(XX, YY, rv.pdf(np.dstack([XX, YY]))) plt.axis("equal") plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 경우 2
14,474
<ASSISTANT_TASK:> Python Code: %matplotlib inline from ecell4.prelude import * D = 1 radius = 0.005 N_A = 60 U = 0.5 ka_factor = 0.1 # 0.1 is for reaction-limited N = 20 # a number of samples import numpy kD = 4 * numpy.pi * (radius * 2) * (D * 2) ka = kD * ka_factor kd = ka * N_A * U * U / (1 - U) kon = ka * kD / (ka + kD) koff = kd * kon / ka y0 = {'A': N_A, 'B': N_A} duration = 3 opt_kwargs = {'legend': True} with species_attributes(): A | B | C | {'radius': radius, 'D': D} with reaction_rules(): A + B == C | (kon, koff) m = get_model() ret1 = run_simulation(duration, y0=y0, model=m) ret1.plot(**opt_kwargs) ret2 = ensemble_simulations(duration, ndiv=20, y0=y0, model=m, solver='gillespie', repeat=N) ret2.plot('o', ret1, '-', **opt_kwargs) ret2 = ensemble_simulations(duration, ndiv=20, y0=y0, model=m, solver=('meso', Integer3(4, 4, 4)), repeat=N) ret2.plot('o', ret1, '-', **opt_kwargs) with species_attributes(): A | B | C | {'radius': radius, 'D': D} with reaction_rules(): A + B == C | (ka, kd) m = get_model() ret2 = ensemble_simulations(duration, ndiv=20, y0=y0, model=m, solver=('spatiocyte', radius), repeat=N) ret2.plot('o', ret1, '-', **opt_kwargs) ret2 = ensemble_simulations(duration, ndiv=20, y0=y0, model=m, solver=('egfrd', Integer3(4, 4, 4)), repeat=N) ret2.plot('o', ret1, '-', **opt_kwargs) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Parameters are given as follows. D, radius, N_A, U, and ka_factor mean a diffusion constant, a radius of molecules, an initial number of molecules of A and B, a ratio of dissociated form of A at the steady state, and a ratio between an intrinsic association rate and collision rate defined as ka andkD below, respectively. Dimensions of length and time are assumed to be micro-meter and second. Step2: Calculating optimal reaction rates. ka and kd are intrinsic, kon and koff are effective reaction rates. Step3: Start with no C molecules, and simulate 3 seconds. Step4: Make a model with effective rates. This model is for macroscopic simulation algorithms. Step5: Save a result with ode as obs, and plot it Step6: Simulating with gillespie (Bars represent standard error of the mean) Step7: Simulating with meso Step8: Make a model with intrinsic rates. This model is for microscopic (particle) simulation algorithms. Step9: Simulating with spatiocyte. voxel_radius is given as radius Step10: Simulating with egfrd
14,475
<ASSISTANT_TASK:> Python Code: %matplotlib inline from __future__ import print_function import os import pandas as pd import matplotlib.pyplot as plt import seaborn as sns PROJ_ROOT = os.path.join(os.pardir, os.pardir) ## Try adding parameter index=0 pump_data_path = os.path.join(PROJ_ROOT, "data", "raw", "pumps_train_values.csv") df = pd.read_csv(pump_data_path, index=0) df.head(1) pd.read_csv? # Tab completion for parsing dates in the date_recoreded column # Shift tab for documentation df = pd.read_csv("../data/water-pumps.csv", index_col=0) df.head(1) df.describe() ## Paste for 'construction_year' and plot ## Paste for 'gps_height' and plot plot_data = df['amount_tsh'] sns.kdeplot(plot_data, bw=1000) plt.show() def kde_plot(dataframe, variable, upper=None, lower=None, bw=0.1): Plots a density plot for a variable with optional upper and lower bounds on the data (inclusive). plot_data = dataframe[variable] if upper is not None: plot_data = plot_data[plot_data <= upper] if lower is not None: plot_data = plot_data[plot_data >= lower] sns.kdeplot(plot_data, bw=bw) plt.show() kde_plot(df, 'amount_tsh', bw=1000, lower=0) kde_plot(df, 'construction_year', bw=1, lower=1000, upper=2016) kde_plot(df, 'gps_height', bw=100) # add local python functions import sys # add the 'src' directory as one where we can import modules src_dir = os.path.join(PROJ_ROOT, "src") sys.path.append(src_dir) # import my method from the source code from features.build_features import remove_invalid_data df = remove_invalid_data(pump_data_path) df.shape # TRY ADDING print("lalalala") to the method df = remove_invalid_data(pump_data_path) # Load the "autoreload" extension %load_ext autoreload # always reload modules marked with "%aimport" %autoreload 1 import os import sys # add the 'src' directory as one where we can import modules src_dir = os.path.join(os.getcwd(), os.pardir, 'src') sys.path.append(src_dir) # import my method from the source code %aimport features.build_features from features.build_features import remove_invalid_data df = remove_invalid_data(pump_data_path) df.head() kde_plot(df, 'date_recorded', upper=pd.to_datetime('2017-01-01'), lower=pd.to_datetime('1900-01-01')) %debug # "1" turns pdb on, "0" turns pdb off %pdb 1 kde_plot(df, 'date_recorded') # turn off debugger %pdb 0 import numpy as np from mcmc.hamiltonian import hamiltonian, run_diagnostics f = lambda X: np.exp(-100*(np.sqrt(X[:,1]**2 + X[:,0]**2)- 1)**2 + (X[:,0]-1)**3 - X[:,1] - 5) # potential and kinetic energies U = lambda q: -np.log(f(q)) K = lambda p: p.dot(p.T) / 2 # gradient of the potential energy def grad_U(X): x, y = X[0,:] xy_sqrt = np.sqrt(y**2 + x**2) mid_term = 100*2*(xy_sqrt - 1) grad_x = 3*((x-1)**2) - mid_term * ((x) / (xy_sqrt)) grad_y = -1 - mid_term * ((y) / (xy_sqrt)) return -1*np.array([grad_x, grad_y]).reshape(-1, 2) ham_samples, H = hamiltonian(2500, U, K, grad_U) run_diagnostics(ham_samples) %prun ham_samples, H = hamiltonian(2500, U, K, grad_U) run_diagnostics(ham_samples) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 3.1 No more docs-guessing Step3: 3.2 No more copy-pasta Step4: 3.3 No more copy-pasta between notebooks Step5: Restart the kernel, let's try this again.... Step6: 3.4 I'm too good! Now this code is useful to other projects! Step7: #lifehack
14,476
<ASSISTANT_TASK:> Python Code: from IPython.display import display, HTML display(HTML('''<img src="image1.png",width=800,height=600>''')) import numpy as np # numerical libraries import pandas as pd # for data analysis import matplotlib as mpl # a big library with plotting functionality import matplotlib.pyplot as plt # a subset of matplotlib with most of the useful tools import IPython as IP %matplotlib inline import pdb from sklearn import linear_model as lm odds= pd.read_pickle('../data/pickle_files/odds.pkl') matches= pd.read_pickle('../data/pickle_files/matches.pkl') data = pd.merge(matches,odds[['PSW','PSL','key_o']].dropna(axis=0,subset=["PSW"]),how='inner',on='key_o') data = data[~data.winner_rank_points.isnull() & ~data.loser_rank_points.isnull()] IP.display.display(data[0:3]) data['year'] = data['tourney_date'].map(lambda x: x.year) training = data[data.year.isin([2010,2011,2012])] validation = data[data.year.isin([2013,2014])] test = data[data.year.isin([2015,2016])] # consider rank difference to be positive if winner higher ranked, otherwise negative rank_diff = (training['winner_rank_points'] - training['loser_rank_points']).values # if higher ranked player won, raw rank was a successful predictor y = (rank_diff > 0)*1 # predictions done *before* the match, so algorithm operates on absolute value of rank difference X = np.abs(rank_diff) # for numerical well-behavedness, we need to scale and center the data X=(X/np.std(X,axis=0)) lr = lm.LogisticRegression(C=1., solver='lbfgs') lr.fit(X.reshape(len(X),-1),y*1) cofs = lr.coef_[0] # define figure and axes fig = plt.figure(figsize=(15,5)) ax0 = fig.add_subplot(131) ax1 = fig.add_subplot(132) ax2 = fig.add_subplot(133) # figure A: predicted probabilities vs. empirical probs hist, bin_edges = np.histogram(X,bins=100) p = [np.sum(y[np.where((X>=bin_edges[i]) & (X<bin_edges[i+1]))[0]])/np.max([hist[i],1]) for i in np.arange(len(bin_edges)-1)] bar_pos = np.arange(len(p)) bar_width = np.diff(bin_edges) ax0.bar(bin_edges[0:-1], p, width=bar_width, align='edge', alpha=0.5) r = np.arange(X.min(),X.max(),.1) s = 1/(1+np.exp(-cofs[0]*r)) ax0.plot(r,s,'r') ax0.set_xlabel('Scaled rank difference',fontsize=12) ax0.set_ylabel('Probability that higher ranked wins',fontsize=12) ax0.set_title('Logistic fit to empirical probabilities',fontsize=12) ax0.legend(['Logistic probability curve','Empirical probability hist.']) # figure B: probabilities predicted by odds market ProbW = 1/training.PSW ProbL = 1/training.PSL idx = (training.winner_rank_points>training.loser_rank_points) odds_prob=np.where(idx,ProbW,ProbL) t = pd.DataFrame({'X':X,'odds_prob':odds_prob}) ts = t.sort_values('X') ax1.plot(ts['X'],ts['odds_prob'],'.b') ax1.plot(r,s,'r') ax1.set_xlabel('Scaled rank difference',fontsize=12) ax1.set_ylabel('Probability higher ranked wins',fontsize=12) ax1.set_title('Probabilities implied by odds market.',fontsize=12) ax1.legend(['Odds market probabilities','Logistic probability curve']) # Fig C: variance in odds probabilities as a function of rank difference x_odds = ts['X'].values.reshape(len(ts),-1) y_odds = ts['odds_prob'].values hist, bin_edges = np.histogram(x_odds,bins=10) stds = [np.std(y_odds[np.where((X>=bin_edges[i]) & (X<bin_edges[i+1]))]) for i in np.arange(len(bin_edges)-1)] reg = lm.LinearRegression() reg.fit (bin_edges[0:-1].reshape(10,1),stds) yv=reg.predict(bin_edges[0:-1].reshape(10,1)) ax2.plot(bin_edges[0:-1],stds,'*b') ax2.plot(bin_edges[0:-1],yv,'r') ax2.set_xlabel('Scaled rank difference',fontsize=12) ax2.set_ylabel('Stdev of market prob.',fontsize=12) ax2.set_title('Trends in stdev of implied probabilities',fontsize=12) ax2.legend(['Stdev of binned market-probs.','Regression line']) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Description Step2: Load data and take a peak at it. Step3: Separate data into training, validation, and test sets. (This division is not used for the plot above, but will be critical in assessing the performance of our learning algorithms.) Step4: Define each match as a 1 or a 0, depending on whether the higher ranked player won. Step5: Perform 1-D logistic regression on training data. Step6: Produce the plots
14,477
<ASSISTANT_TASK:> Python Code: import psycopg2 from configparser import ConfigParser from pandas import DataFrame from collections import Counter cfg = ConfigParser() cfg.read("db.cfg") knst = psycopg2.connect(host=cfg['db']['host'], port=cfg['db']['port'], database=cfg['db']['db'], user=cfg['db']['user'], password=cfg['db']['pwd']) knst.set_client_encoding('UTF-8') cur = knst.cursor() sql = SELECT pr.id, f.name_nl, pe.full_name FROM production.productions pr JOIN production.seasons s ON pr.season_id = s.id JOIN production.relationships r ON pr.id = r.production_id JOIN production.people pe ON r.person_id = pe.id JOIN production.functions f ON r.function_id = f.id WHERE s.start_year >= 2010 cur.execute(sql) os = cur.fetchall() df = DataFrame([o for o in os], columns=["productie_id", "functie", "persoon"]) def get_counted_functions_for_person(persoon): functies = Counter(df[df["persoon"] == persoon]["functie"]).most_common() totaal_aantal_functies = sum([f[1] for f in functies]) functies_percentage = [(f[0], f[1] / float(totaal_aantal_functies)) for f in functies] return functies_percentage, totaal_aantal_functies lines = [] for persoon in set(df["persoon"].values): functies, totaal = get_counted_functions_for_person(persoon) for f in functies: lijn = [persoon, totaal, f[0], f[1]] lines.append(lijn) df_functies = DataFrame(lines, columns=["persoon", "totaal aantal functies", "functie", "percentage"]) df_functies.head() df_functies[df_functies["totaal aantal functies"] == max(df_functies["totaal aantal functies"])] df_functies.to_excel("functies.xlsx") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We moeten verbinding maken met de databank. Step3: De SQL om de gegevens op te halen is niet zo moeilijk Step4: Even de gegevens binnenhalen en in een pandas dataframe stoppen. Step5: Een kleine functie om de functies van een persoon op te halen en het totaal. Step6: Loopen doorheen alle personen. Step7: Het resultaat ziet er als volgt uit Step8: Als voorbeeld even de persoon met het meeste aantal functies. Step9: Zelf verder analyseren? Download de excel file
14,478
<ASSISTANT_TASK:> Python Code: # Initialization import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Ellipse %matplotlib inline plt.style.use('fivethirtyeight') def logprofile(z,ust): ''' Return u as function of z(array) and u_star Uses Charnock relation for wind-wave interactions''' z0 = 0.011/9.81*ust # Charnock return ust/0.4*np.log(z/z0) # Create artifical wind profile ust = 0.25 z = np.arange(0,305,5)+5 u = logprofile(z,ust)+np.random.normal(0,.1,len(z)) # Create an ellipse that visualizes the rotor disk in the figure rotor = Ellipse(xy=(6.5,100), width=.5, height=150, angle=0,alpha=.3) # Create the figure fig,ax = plt.subplots() ax.plot(u,z) ax.add_artist(rotor) ax.annotate('Rotor plane',(6.5,100),(6.7,200),arrowprops=dict(facecolor='black',width=2,headwidth=8),fontsize=16) ax.fill_between(ax.get_xlim(),175,25,color='g',alpha=.2) ax.set_xlabel('Wind speed (m/s)') ax.set_ylabel('Altitude (m)') plt.show() def power(rho,r,u): '''Return total wind power in MW as function of air density, rotor radius and wind speed at hub height''' return .5 * rho * np.pi * r**2 * u**3 / 1e6 r = 75. u = 8. rho = 1.2 print 'Power estimate: %.2f MW'%power(rho,r,u) for u in [7,8,9]: print 'Wind speed: %.1f m/s, wind power: %.2f MW'%(u,power(rho,r,u)) for ust in [.2,.25,.3]: u = logprofile(100,ust) p = power(rho,r,u) print 'u*: %.2f, wind speed: %.2f m/s, wind power: %.2f MW'%(ust,u,p) # Vertical levels dz = 1 z = np.arange(0,300+dz,dz)+dz # Turbine characteristics r = 75 # rotor radius h = 100 # hub height x = np.where(np.abs(z-h)<r,np.sqrt(r**2-(z-h)**2),0) # the error is only due to the construction of `np.where` # Logprofile ust = 0.25 u = logprofile(z,ust)+np.random.normal(0,.1,len(z)) # Energy rho = 1.2 es = sum(u**3*x)*rho*dz*1e-6 #sophisticated method eb = .5 * rho * np.pi * r**2 * u[h]**3 / 1e6 #basic method print 'Wind power with basic formula: %.2f MW'%eb print 'Wind power with sophicsticated formula: %.2f MW'%es print 'Difference: %.2f MW'%(es-eb) # Vertical levels dz = 1 z = np.arange(0,300+dz,dz)+dz # Turbine characteristics r = 75 # rotor radius h = 100 # hub height x = np.where(np.abs(z-h)<r,np.sqrt(r**2-(z-h)**2),0) # the error is only due to the construction of `np.where` # Store the output in these lists: output_basic = [] output_sophisticated = [] # Perform 10000 load calculations for i in range(10000): # Logprofile ust = 0.25 u = logprofile(z,ust)+np.random.normal(0,.1,len(z)) # Energy rho = 1.2 es = sum(u**3*x)*rho*dz*1e-6 output_sophisticated.append(es) eb = .5 * rho * np.pi * r**2 * u[h]**3 / 1e6 output_basic.append(eb) # Some statistics output_sophisticated = np.asarray(output_sophisticated) print 'Sophisticated method:' print 'Mean power: %.2f MW'%output_sophisticated.mean() print 'Standard deviation: %.4f MW'%output_sophisticated.std() output_basic = np.asarray(output_basic) print '\nBasic method:' print 'Mean power: %.2f MW'%output_basic.mean() print 'Standard deviation: %.4f MW'%output_basic.std() errors = output_basic-output_sophisticated print '\nError statistics:' print 'Mean absolute error: %.2f MW'%(np.mean(np.abs(errors))) print 'Root mean squar error: %.2f MW' %(np.sqrt(np.mean(errors*errors))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Basic power estimate Step2: With this simple set-up it is easy to see that a small difference in wind speed translates to a large difference in wind energy Step3: and that an accurate estimate of $u_*$ is essential Step4: A more sophisticated approach Step5: A simple uncertainty analysis
14,479
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import openpathsampling as paths import openpathsampling.engines.openmm as peng_omm from simtk.openmm import app import simtk.openmm as mm import simtk.unit as unit from openmmtools.integrators import VVVRIntegrator import mdtraj as md import numpy as np # this cell is all OpenMM specific forcefield = app.ForceField('amber96.xml', 'tip3p.xml') pdb = app.PDBFile("../resources/AD_initial_frame.pdb") system = forcefield.createSystem( pdb.topology, nonbondedMethod=app.PME, nonbondedCutoff=1.0*unit.nanometers, constraints=app.HBonds, rigidWater=True, ewaldErrorTolerance=0.0005 ) hi_T_integrator = VVVRIntegrator( 500*unit.kelvin, 1.0/unit.picoseconds, 2.0*unit.femtoseconds) hi_T_integrator.setConstraintTolerance(0.00001) template = peng_omm.snapshot_from_pdb("../resources/AD_initial_frame.pdb") openmm_properties = {'OpenCLPrecision': 'mixed'} engine_options = { 'n_frames_max': 2000, 'nsteps_per_frame': 10 } hi_T_engine = peng_omm.Engine( template.topology, system, hi_T_integrator, openmm_properties=openmm_properties, options=engine_options ) hi_T_engine.name = '500K' hi_T_engine.current_snapshot = template hi_T_engine.minimize() # define the CVs psi = paths.MDTrajFunctionCV("psi", md.compute_dihedrals, template.topology, indices=[[6,8,14,16]]) phi = paths.MDTrajFunctionCV("phi", md.compute_dihedrals, template.topology, indices=[[4,6,8,14]]) # define the states deg = 180.0/np.pi C_7eq = (paths.PeriodicCVDefinedVolume(phi, lambda_min=-180/deg, lambda_max=0/deg, period_min=-np.pi, period_max=np.pi) & paths.PeriodicCVDefinedVolume(psi, lambda_min=100/deg, lambda_max=200/deg, period_min=-np.pi, period_max=np.pi) ).named("C_7eq") # similarly, without bothering with the labels: alpha_R = (paths.PeriodicCVDefinedVolume(phi, -180/deg, 0/deg, -np.pi, np.pi) & paths.PeriodicCVDefinedVolume(psi, -100/deg, 0/deg, -np.pi, np.pi)).named("alpha_R") init_traj_ensemble = paths.AllOutXEnsemble(C_7eq) | paths.AllOutXEnsemble(alpha_R) # generate trajectory that includes frame in both states trajectory = hi_T_engine.generate(hi_T_engine.current_snapshot, [init_traj_ensemble]) # create a network so we can use its ensemble to obtain an initial trajectory # use all-to-all because we don't care if initial traj is A->B or B->A: it can be reversed tmp_network = paths.TPSNetwork.from_states_all_to_all([C_7eq, alpha_R]) # take the subtrajectory matching the ensemble (only one ensemble, only one subtraj) subtrajectories = [] for ens in tmp_network.analysis_ensembles: subtrajectories += ens.split(trajectory) print subtrajectories plt.plot(phi(trajectory), psi(trajectory), 'k.-') plt.plot(phi(subtrajectories[0]), psi(subtrajectories[0]), 'r') integrator = VVVRIntegrator( 300*unit.kelvin, 1.0/unit.picoseconds, 2.0*unit.femtoseconds ) integrator.setConstraintTolerance(0.00001) engine = peng_omm.Engine( template.topology, system, integrator, openmm_properties=openmm_properties, options=engine_options ) engine.name = '300K' network = paths.TPSNetwork(initial_states=C_7eq, final_states=alpha_R) scheme = paths.OneWayShootingMoveScheme(network, selector=paths.UniformSelector(), engine=engine) # make subtrajectories into initial conditions (trajectories become a sampleset) initial_conditions = scheme.initial_conditions_from_trajectories(subtrajectories) # check that initial conditions are valid and complete (raise AssertionError otherwise) scheme.assert_initial_conditions(initial_conditions) sampler = paths.PathSampling(storage=paths.Storage("tps_nc_files/alanine_dipeptide_tps_equil.nc", "w", template), move_scheme=scheme, sample_set=initial_conditions) sampler.live_visualizer = paths.StepVisualizer2D(network, phi, psi, [-3.14, 3.14], [-3.14, 3.14]) # initially, these trajectories are correlated (actually, identical) # once decorrelated, we have a (somewhat) reasonable 300K trajectory initial_conditions[0].trajectory.is_correlated(sampler.sample_set[0].trajectory) # this is a trick to take the first decorrelated trajectory while (initial_conditions[0].trajectory.is_correlated(sampler.sample_set[0].trajectory)): sampler.run(1) # run an extra 10 to decorrelate a little futher sampler.run(10) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Setting up the engine Step2: The storage file will need a template snapshot. In addition, the OPS OpenMM-based Engine has a few properties and options that are set by these dictionaries. Step3: Defining states Step4: Getting a first trajectory Step5: Plotting the trajectory Step6: Setting up another engine Step7: Equilibrate TPS
14,480
<ASSISTANT_TASK:> Python Code: Image('./res/fig3_1.png') # Transition Graph Image('./res/ex3_3.png') # Example 3.5 from scipy.signal import convolve2d reward_matrix = np.zeros((5, 5)) # kernel kernel = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) iteration_nums = 100 for _ in range(iteration_nums): reward = convolve2d(reward_matrix, kernel, mode='same', boundary='fill', fillvalue=-1) reward /= 4.0 # A -> A' reward[0, 1] = 10 + reward[-1, 1] # B -> B' reward[0, -2] = 5 + reward[2, -2] reward_matrix = reward pd.DataFrame(reward_matrix) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: finite MDP Step2: Exercise 3.4
14,481
<ASSISTANT_TASK:> Python Code: %matplotlib inline # You can ignore the pink warning that appears import itertools import math import nltk import string import matplotlib.pyplot as plt from sklearn.feature_extraction.text import TfidfVectorizer import numpy as np from scipy.spatial.distance import pdist, squareform from scipy.cluster.hierarchy import linkage, dendrogram # code example from Building Machine Learning Systems with Python (Richert & Coelho) # - modified slightly by Lynn import math def tfidf(t, d, D): tf = float(d.count(t)) / sum(d.count(w) for w in set(d)) # normalized # Note his version doesn't use +1 in denominator. idf = math.log( float(len(D)) / (len([doc for doc in D if t in doc]))) return tf * idf a, abb, abc = ["a"], ["a", "b", "b"], ["a", "b", "c"] # try adding another c to the last doc! D = [a, abb, abc] print(tfidf("a", a, D)) # a is in all of them print(tfidf("a", abc, D)) # a is in all of them print(tfidf("b", abc, D)) # b occurs only once here, but in 2 docs print(tfidf("b", abb, D)) # b occurs more frequently in this doc print(tfidf("c", abc, D)) # c is unique in the doc set filelist = !ls ../data/movie_reviews/positive/* filelist from nltk.corpus import stopwords import collections def clean_tokens(tokens, stopwords): import string Lowercases, takes out punct and stopwords and short strings return [token.lower() for token in tokens if (token not in string.punctuation)and (token.lower() not in stopwords) and len(token) > 2] def makeText(filename, stopwords): from nltk import Text with open(filename) as handle: text = handle.read() return Text(clean_tokens(nltk.word_tokenize(text.decode('ascii', 'ignore')), stopwords)) def makeTextCollection(files, stopwords=stopwords.words('english')): from nltk import TextCollection texts= [makeText(filename, stopwords) for filename in files] collection = TextCollection(texts) return collection, texts # use the data for the vocab in a single doc for a wordcloud, for instance def compute_tfidf_by_doc(coll, texts, filenames): tfidf_by_doc = collections.defaultdict(list) for i, text in enumerate(texts): for word in set(text.tokens): # just use the words in this text tfidfscore = coll.tf_idf(word, text) tf = coll.tf(word, text) # is actually count / len(text) count = text.count(word) if tfidfscore: tfidf_by_doc[filenames[i]].append({ "word": word, "tfidf": tfidfscore, "tf": tf, "count": count }) return tfidf_by_doc # We need to make the text collection, then use it to compute the tf-idf for the words in the docs. res = makeTextCollection(filelist) coll = res[0] texts = res[1] coll.tf_idf("woman", texts[0]) tfidfs = compute_tfidf_by_doc(coll, texts, filelist) tfidfs[tfidfs.keys()[0]] # the first filename is the first key... it contains a list of words and scores import json jsonified = json.dumps(tfidfs) with open('../outputdata/pos_movies_tfidf.json', 'w') as handle: handle.write(jsonified) !ls -al ../outputdata/pos_movies_tfidf.json # Load in the docs... again. We're going to make TF-IDF vectors with sklearn (scikit-learn) because it's faster. def load_texts(filenames, dirpath): filenames are the leaves, dirpath is the path to them with the / loaded_text = {} for filen in filenames: with open(dirpath + filen) as handle: loaded_text[filen] = handle.read() return loaded_text texts = load_texts(filelist, "") from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer().fit_transform([text.decode('ascii', 'ignore') for text in texts.values()]) vectors = tfidf.toarray() import numpy as np from scipy.spatial.distance import pdist, squareform from scipy.cluster.hierarchy import linkage, dendrogram vectors dist = pdist(vectors, metric='cosine') # look at the manpage and pick a different measure to try linkage(dist) # this is a base diagram, using defaults... dendrogram(linkage(dist)) # this plotting function has a ton of things you can manipulate if you look at the docs. texts[texts.keys()[14]] def make_dend(data, labels=None, height=6): from pylab import rcParams dist = pdist(data, metric='cosine') link = linkage(dist, method='complete') rcParams['figure.figsize'] = 6, height rcParams['axes.labelsize'] = 5 if not labels: dend = dendrogram(link, orientation='right') #labels=names) else: dend = dendrogram(link, orientation='right', labels=[str(i) + label for i, label in enumerate(labels)]) return dist dist = make_dend(vectors, height=15, labels=texts.keys()) texts.keys()[23] texts[texts.keys()[23]] texts[texts.keys()[4]] # Code borrowed from: http://nbviewer.ipython.org/github/OxanaSachenkova/hclust-python/blob/master/hclust.ipynb def make_heatmap_matrix(dist, method='complete'): Pass in the distance matrix; method options are complete or single # Compute and plot first dendrogram. fig = plt.figure(figsize=(10,10)) # x ywidth height ax1 = fig.add_axes([0.05,0.1,0.2,0.6]) Y = linkage(dist, method=method) Z1 = dendrogram(Y, orientation='right') # adding/removing the axes ax1.set_xticks([]) # Compute and plot second dendrogram. ax2 = fig.add_axes([0.3,0.71,0.6,0.2]) Z2 = dendrogram(Y) ax2.set_xticks([]) ax2.set_yticks([]) #Compute and plot the heatmap axmatrix = fig.add_axes([0.3,0.1,0.6,0.6]) idx1 = Z1['leaves'] idx2 = Z2['leaves'] D = squareform(dist) D = D[idx1,:] D = D[:,idx2] im = axmatrix.matshow(D, aspect='auto', origin='lower', cmap=plt.cm.YlGnBu) axmatrix.set_xticks([]) axmatrix.set_yticks([]) # Plot colorbar. axcolor = fig.add_axes([0.91,0.1,0.02,0.6]) plt.colorbar(im, cax=axcolor) make_heatmap_matrix(dist, method='complete') ## clustering in NLTK: import numpy from nltk.cluster import KMeansClusterer, GAAClusterer, euclidean_distance import nltk.corpus import nltk.stem stemmer_func = nltk.stem.snowball.SnowballStemmer("english").stem stopwords = set(nltk.corpus.stopwords.words('english')) cluster = KMeansClusterer(4, euclidean_distance) cluster.cluster(vectors) classified_examples = [cluster.classify(vec) for vec in vectors] for i,val in enumerate(classified_examples): print val, texts.keys()[i] texts['../data/movie_reviews/positive/cv677_tok-11867.txt'] texts['../data/movie_reviews/positive/cv684_tok-10367.txt'] texts['../data/movie_reviews/positive/cv683_tok-12295.txt'] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: TF-IDF (Term Frequency, Inverse Document Frequency) Step2: What if you change some of those docs, or add another one? Add another c in the last doc, e.g. Step4: Some Utilities to Make a File We Can Save Step6: Now we can look at these reviews as little wordclouds, using different measures to size our words. Let's work with word_clouds_tfidf.html and we can compare how our clouds look using regular word counts, term frequencies (which is count / length of the document), and tfidf across all the documents. Step7: This gets us the input we need for clustering and making dendrograms. Step8: Scipy's pdist is pairwise distance - see http Step9: Let's do this with a nicer layout now... Step10: Let's inspect a pair that are grouped closely in the cosine-similarity tree -- 23, 4 Step12: What do you notice about them both? Step13: Relevant links Step14: Let's look at the items in cluster 0
14,482
<ASSISTANT_TASK:> Python Code: from myhdl import * from myhdlpeek import Peeker import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from sympy import * init_printing() import random #https://github.com/jrjohansson/version_information %load_ext version_information %version_information myhdl, myhdlpeek, numpy, pandas, matplotlib, sympy, random #helper functions to read in the .v and .vhd generated files into python def VerilogTextReader(loc, printresult=True): with open(f'{loc}.v', 'r') as vText: VerilogText=vText.read() if printresult: print(f'***Verilog modual from {loc}.v***\n\n', VerilogText) return VerilogText def VHDLTextReader(loc, printresult=True): with open(f'{loc}.vhd', 'r') as vText: VerilogText=vText.read() if printresult: print(f'***VHDL modual from {loc}.vhd***\n\n', VerilogText) return VerilogText #use type casting on list genrator to store 0-9 in 8bit binary TupleROM=tuple([bin(i, 8) for i in range(10)]) TupleROM f'accesss location 6: {TupleROM[6]}, read contents of location 6 to dec:{int(TupleROM[6], 2)}' #TupleROM[6]=bin(16,2) @block def ROMLoaded(addr, dout): A ROM laoded with data already incoded in the structer insted of using myHDL inchanced parmter loading I/O: addr(Signal>4): addres; range is from 0-3 dout(Signal>4): data at each address @always_comb def readAction(): if addr==0: dout.next=3 elif addr==1: dout.next=2 elif addr==2: dout.next=1 elif addr==3: dout.next=0 return instances() Peeker.clear() addr=Signal(intbv(0)[4:]); Peeker(addr, 'addr') dout=Signal(intbv(0)[4:]); Peeker(dout, 'dout') DUT=ROMLoaded(addr, dout) def ROMLoaded_TB(): Python Only Testbench for `ROMLoaded` @instance def stimules(): for i in range(3+1): addr.next=i yield delay(1) raise StopSimulation() return instances() sim = Simulation(DUT, ROMLoaded_TB(), *Peeker.instances()).run() Peeker.to_wavedrom() Peeker.to_dataframe() DUT.convert() VerilogTextReader('ROMLoaded'); @block def ROMLoaded_TBV(): Verilog Only Testbench for `ROMLoaded` clk = Signal(bool(0)) addr=Signal(intbv(0)[4:]) dout=Signal(intbv(0)[4:]) DUT=ROMLoaded(addr, dout) @instance def clk_signal(): while True: clk.next = not clk yield delay(10) @instance def stimules(): for i in range(3+1): addr.next=i #yield delay(1) yield clk.posedge raise StopSimulation @always(clk.posedge) def print_data(): print(addr, dout) return instances() #create instaince of TB TB=ROMLoaded_TBV() #convert to verilog with reintilzed values TB.convert(hdl="Verilog", initial_values=True) #readback the testbench results VerilogTextReader('ROMLoaded_TBV'); @block def ROMParmLoad(addr, dout, CONTENT): A ROM laoded with data from CONTENT input tuple I/O: addr(Signal>4): addres; range is from 0-3 dout(Signal>4): data at each address Parm: CONTENT: tuple size 4 with contende must be no larger then 4bit @always_comb def readAction(): dout.next=CONTENT[int(addr)] return instances() Peeker.clear() addr=Signal(intbv(0)[4:]); Peeker(addr, 'addr') dout=Signal(intbv(0)[4:]); Peeker(dout, 'dout') CONTENT=tuple([i for i in range(4)][::-1]) DUT=ROMParmLoad(addr, dout, CONTENT) def ROMParmLoad_TB(): Python Only Testbench for `ROMParmLoad` @instance def stimules(): for i in range(3+1): addr.next=i yield delay(1) raise StopSimulation() return instances() sim = Simulation(DUT, ROMParmLoad_TB(), *Peeker.instances()).run() Peeker.to_wavedrom() Peeker.to_dataframe() DUT.convert() VerilogTextReader('ROMParmLoad'); @block def ROMParmLoad_TBV(): Verilog Only Testbench for `ROMParmLoad` clk=Signal(bool(0)) addr=Signal(intbv(0)[4:]) dout=Signal(intbv(0)[4:]) CONTENT=tuple([i for i in range(4)][::-1]) DUT=ROMParmLoad(addr, dout, CONTENT) @instance def clk_signal(): while True: clk.next = not clk yield delay(1) @instance def stimules(): for i in range(3+1): addr.next=i yield clk.posedge raise StopSimulation @always(clk.posedge) def print_data(): print(addr, dout) return instances() #create instaince of TB TB=ROMParmLoad_TBV() #convert to verilog with reintilzed values TB.convert(hdl="Verilog", initial_values=True) #readback the testbench results VerilogTextReader('ROMParmLoad_TBV'); @block def ROMParmLoadSync(addr, dout, clk, rst, CONTENT): A ROM laoded with data from CONTENT input tuple I/O: addr(Signal>4): addres; range is from 0-3 dout(Signal>4): data at each address clk (bool): clock feed rst (bool): reset Parm: CONTENT: tuple size 4 with contende must be no larger then 4bit @always(clk.posedge) def readAction(): if rst: dout.next=0 else: dout.next=CONTENT[int(addr)] return instances() Peeker.clear() addr=Signal(intbv(0)[4:]); Peeker(addr, 'addr') dout=Signal(intbv(0)[4:]); Peeker(dout, 'dout') clk=Signal(bool(0)); Peeker(clk, 'clk') rst=Signal(bool(0)); Peeker(rst, 'rst') CONTENT=tuple([i for i in range(4)][::-1]) DUT=ROMParmLoadSync(addr, dout, clk, rst, CONTENT) def ROMParmLoadSync_TB(): Python Only Testbench for `ROMParmLoadSync` @always(delay(1)) def ClkGen(): clk.next=not clk @instance def stimules(): for i in range(3+1): yield clk.posedge addr.next=i for i in range(4): yield clk.posedge rst.next=1 addr.next=i raise StopSimulation() return instances() sim = Simulation(DUT, ROMParmLoadSync_TB(), *Peeker.instances()).run() Peeker.to_wavedrom() ROMData=Peeker.to_dataframe() #keep only clock high ROMData=ROMData[ROMData['clk']==1] ROMData.drop(columns='clk', inplace=True) ROMData.reset_index(drop=True, inplace=True) ROMData DUT.convert() VerilogTextReader('ROMParmLoadSync'); @block def ROMParmLoadSync_TBV(): Python Only Testbench for `ROMParmLoadSync` addr=Signal(intbv(0)[4:]) dout=Signal(intbv(0)[4:]) clk=Signal(bool(0)) rst=Signal(bool(0)) CONTENT=tuple([i for i in range(4)][::-1]) DUT=ROMParmLoadSync(addr, dout, clk, rst, CONTENT) @instance def clk_signal(): while True: clk.next = not clk yield delay(1) @instance def stimules(): for i in range(3+1): yield clk.posedge addr.next=i for i in range(4): yield clk.posedge rst.next=1 addr.next=i raise StopSimulation @always(clk.posedge) def print_data(): print(addr, dout, rst) return instances() #create instaince of TB TB=ROMParmLoadSync_TBV() #convert to verilog with reintilzed values TB.convert(hdl="Verilog", initial_values=True) #readback the testbench results VerilogTextReader('ROMParmLoadSync_TBV'); @block def SeqROMEx(clk, rst, dout): Seq Read Only Memory Ex I/O: clk (bool): clock rst (bool): rst on counter dout (signal >4): data out Count=Signal(intbv(0)[3:]) @always(clk.posedge) def counter(): if rst: Count.next=0 elif Count==3: Count.next=0 else: Count.next=Count+1 @always(clk.posedge) def Memory(): if Count==0: dout.next=3 elif Count==1: dout.next=2 elif Count==2: dout.next=1 elif Count==3: dout.next=0 return instances() Peeker.clear() dout=Signal(intbv(0)[4:]); Peeker(dout, 'dout') clk=Signal(bool(0)); Peeker(clk, 'clk') rst=Signal(bool(0)); Peeker(rst, 'rst') DUT=SeqROMEx(clk, rst, dout) def SeqROMEx_TB(): Python Only Testbench for `SeqROMEx` @always(delay(1)) def ClkGen(): clk.next=not clk @instance def stimules(): for i in range(5+1): yield clk.posedge for i in range(4): yield clk.posedge rst.next=1 raise StopSimulation() return instances() sim = Simulation(DUT, SeqROMEx_TB(), *Peeker.instances()).run() Peeker.to_wavedrom() SROMData=Peeker.to_dataframe() #keep only clock high SROMData=SROMData[SROMData['clk']==1] SROMData.drop(columns='clk', inplace=True) SROMData.reset_index(drop=True, inplace=True) SROMData DUT.convert() VerilogTextReader('SeqROMEx'); @block def SeqROMEx_TBV(): Verilog Only Testbench for `SeqROMEx` dout=Signal(intbv(0)[4:]) clk=Signal(bool(0)) rst=Signal(bool(0)) DUT=SeqROMEx(clk, rst, dout) @instance def clk_signal(): while True: clk.next = not clk yield delay(1) @instance def stimules(): for i in range(5+1): yield clk.posedge for i in range(4): yield clk.posedge rst.next=1 raise StopSimulation() @always(clk.posedge) def print_data(): print(clk, rst, dout) return instances() #create instaince of TB TB=SeqROMEx_TBV() #convert to verilog with reintilzed values TB.convert(hdl="Verilog", initial_values=True) #readback the testbench results VerilogTextReader('SeqROMEx_TBV'); @block def RAMConcur(addr, din, writeE, dout, clk): Random access read write memeory I/O: addr(signal>4): the memory cell arrdress din (signal>4): data to write into memeory writeE (bool): write enable contorl; false is read only dout (signal>4): the data out clk (bool): clock Note: this is only a 4 byte memory #create the memeory list (1D array) memory=[Signal(intbv(0)[4:]) for i in range(4)] @always(clk.posedge) def writeAction(): if writeE: memory[addr].next=din @always_comb def readAction(): dout.next=memory[addr] return instances() Peeker.clear() addr=Signal(intbv(0)[4:]); Peeker(addr, 'addr') din=Signal(intbv(0)[4:]); Peeker(din, 'din') writeE=Signal(bool(0)); Peeker(writeE, 'writeE') dout=Signal(intbv(0)[4:]); Peeker(dout, 'dout') clk=Signal(bool(0)); Peeker(clk, 'clk') CONTENT=tuple([i for i in range(4)][::-1]) DUT=RAMConcur(addr, din, writeE, dout, clk) def RAMConcur_TB(): Python Only Testbench for `RAMConcur` @always(delay(1)) def ClkGen(): clk.next=not clk @instance def stimules(): # do nothing for i in range(1): yield clk.posedge #write memory for i in range(4): yield clk.posedge writeE.next=True addr.next=i din.next=CONTENT[i] #do nothing for i in range(1): yield clk.posedge writeE.next=False #read memory for i in range(4): yield clk.posedge addr.next=i # rewrite memory for i in range(4): yield clk.posedge writeE.next=True addr.next=i din.next=CONTENT[-i] #do nothing for i in range(1): yield clk.posedge writeE.next=False #read memory for i in range(4): yield clk.posedge addr.next=i raise StopSimulation() return instances() sim = Simulation(DUT, RAMConcur_TB(), *Peeker.instances()).run() Peeker.to_wavedrom() RAMData=Peeker.to_dataframe() RAMData=RAMData[RAMData['clk']==1] RAMData.drop(columns='clk', inplace=True) RAMData.reset_index(drop=True, inplace=True) RAMData RAMData[RAMData['writeE']==1] RAMData[RAMData['writeE']==0] DUT.convert() VerilogTextReader('RAMConcur'); @block def RAMConcur_TBV(): Verilog Only Testbench for `RAMConcur` addr=Signal(intbv(0)[4:]) din=Signal(intbv(0)[4:]) writeE=Signal(bool(0)) dout=Signal(intbv(0)[4:]) clk=Signal(bool(0)) CONTENT=tuple([i for i in range(4)][::-1]) DUT=RAMConcur(addr, din, writeE, dout, clk) @instance def clk_signal(): while True: clk.next = not clk yield delay(1) @instance def stimules(): # do nothing for i in range(1): yield clk.posedge #write memory for i in range(4): yield clk.posedge writeE.next=True addr.next=i din.next=CONTENT[i] #do nothing for i in range(1): yield clk.posedge writeE.next=False #read memory for i in range(4): yield clk.posedge addr.next=i # rewrite memory for i in range(4): yield clk.posedge writeE.next=True addr.next=i din.next=CONTENT[-i] #do nothing for i in range(1): yield clk.posedge writeE.next=False #read memory for i in range(4): yield clk.posedge addr.next=i raise StopSimulation() @always(clk.posedge) def print_data(): print(addr, din, writeE, dout, clk) return instances() #create instaince of TB TB=RAMConcur_TBV() #convert to verilog with reintilzed values TB.convert(hdl="Verilog", initial_values=True) #readback the testbench results VerilogTextReader('RAMConcur_TBV'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: RTL and Implimentation Schamatics are from Xilinx Vivado 2016.1 Step2: And if we try writing to the tuple we will get an error Step5: Random and Sequntial Access Memory Step7: ROMLoaded RTL Step10: With myHDL we can dynamicaly load the contents that will be hard coded in the convertion to verilog/VHDL wich is an ammazing benfict for devlopment as is sean here Step12: ROMParmLoad RTL Step15: we can also create rom that insted of being asynchronous is synchronous Step19: ROMParmLoadSync RTL Step21: SeqROMEx RTL Step24: read and write memory Step26: RAMConcur RTL
14,483
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt %matplotlib inline from Schelling import SchellingModel model = SchellingModel(20, 20, 0.85, 0.2, 3) while model.running and model.schedule.steps < 100: model.step() print(model.schedule.steps) # Show how many steps have actually run model_out = model.datacollector.get_model_vars_dataframe() model_out.head() model_out.unhappy.plot() x_positions = model.datacollector.get_agent_vars_dataframe() from mesa.batchrunner import BatchRunner def get_segregation(model): ''' Find the % of agents that only have neighbors of their same type. ''' segregated_agents = 0 for agent in model.schedule.agents: segregated = True for neighbor in model.grid.neighbor_iter(agent.pos): if neighbor.type != agent.type: segregated = False break if segregated: segregated_agents += 1 return segregated_agents / model.schedule.get_agent_count() parameters = {"height": 10, "width": 10, "density": 0.8, "minority_pc": 0.2, "homophily": range(1,9)} model_reporters = {"Segregated_Agents": get_segregation} param_sweep = BatchRunner(SchellingModel, parameters, iterations=10, max_steps=200, model_reporters=model_reporters) param_sweep.run_all() df = param_sweep.get_model_vars_dataframe() plt.scatter(df.homophily, df.Segregated_Agents) plt.grid(True) import numpy as np import holoviews as hv %load_ext holoviews.ipython def get_color(agent): if agent is None: return 0 elif agent.type == 0: return 1 elif agent.type == 1: return 2 def get_grid(model): width = model.grid.width height = model.grid.height data = np.zeros((width, height)) for x in range(width): for y in range(height): data[x][y] = get_color(model.grid[y][x]) return data hmap = hv.HoloMap() model = SchellingModel(20, 20, 0.80, 0.2, 3) for i in range(100): data = get_grid(model) hmap[i] = hv.Image(data) model.step() %%opts Image plot[figure_inches=(7,7)] hmap <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now we instantiate a model instance Step2: Effect of Homophily on segregation Step3: Now, we set up the batch run, with a dictionary of fixed and changing parameters. Let's hold everything fixed except for Homophily. Step4: Other Packages
14,484
<ASSISTANT_TASK:> Python Code: import pandas as pd import nltk import string import matplotlib.pyplot as plt #read in our data df = pd.read_csv("../Data/childrens_lit.csv.bz2", sep = '\t', encoding = 'utf-8', compression = 'bz2', index_col=0) df = df.dropna(subset=["text"]) df import numpy as np np.random.seed(1) df = df.sample(5) df # Your code here df['text_lc'] = df['text'].str.lower() df['text_split'] = df['text_lc'].apply(nltk.word_tokenize) df['text_split_clean'] = df['text_split'].apply(lambda x : [word for word in x if word not in string.punctuation]) df df['text_length'] = df['text_split_clean'].apply(len) df # Your code here pos_sent = open("../Data/positive_words.txt", encoding='utf-8').read() neg_sent = open("../Data/negative_words.txt", encoding='utf-8').read() positive_words = pos_sent.split('\n') negative_words = neg_sent.split('\n') df['num_pos_words'] = df['text_split_clean'].apply(lambda x: len([word for word in x if word in positive_words])) df['num_neg_words'] = df['text_split_clean'].apply(lambda x: len([word for word in x if word in negative_words])) df df['prop_pos_words'] = df['num_pos_words']/df['text_length'] df['prop_neg_words'] = df['num_neg_words']/df['text_length'] df <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Since the number of children literaturs is a lot to analyze, we'll just randomly select 5 books to do a sentiment analysis using the dictionary method. Step2: Question 2
14,485
<ASSISTANT_TASK:> Python Code: class AlarmSensor: def run(self): print ("Alarm Ring...") class WaterSprinker: def run(self): print ("Spray Water...") class EmergencyDialer: def run(self): print ("Dial 119...") alarm_sensor = AlarmSensor() water_sprinker = WaterSprinker() emergency_dialer = EmergencyDialer() alarm_sensor.run() water_sprinker.run() emergency_dialer.run() class EmergencyFacade(object): def __init__(self): self.alarm_sensor=AlarmSensor() self.water_sprinker=WaterSprinker() self.emergency_dialer=EmergencyDialer() def runAll(self): self.alarm_sensor.run() self.water_sprinker.run() self.emergency_dialer.run() emergency_facade=EmergencyFacade() emergency_facade.runAll() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 在业务中如果需要将三个部件启动,例如,如果有一个烟雾传感器,检测到了烟雾。在业务环境中需要做如下操作: Step2: 但如果在多个业务场景中需要启动三个部件,怎么办?Ctrl+C加上Ctrl+V么?当然可以这样,但作为码农的基本修养之一,减少重复代码是应该会被很轻易想到的方法。这样,需要将其进行封装,在设计模式中,被封装成的新对象,叫做门面。门面构建如下
14,486
<ASSISTANT_TASK:> Python Code: %matplotlib inline %precision 2 vocabulary = ['see', 'spot', 'run'] num_terms = len(vocabulary) num_topics = 2 # K num_documents = 5 # M mean_document_length = 5 # xi term_dirichlet_parameter = 1 # beta topic_dirichlet_parameter = 1 # alpha from scipy.stats import dirichlet, poisson from numpy import round from collections import defaultdict from random import choice as stl_choice term_dirichlet_vector = num_terms * [term_dirichlet_parameter] term_distributions = dirichlet(term_dirichlet_vector, 2).rvs(size=num_topics) print term_distributions base_distribution = lambda: stl_choice(term_distributions) # A sample from base_distribution is a distribution over terms # Each of our two topics has equal probability from collections import Counter for topic, count in Counter([tuple(base_distribution()) for _ in range(10000)]).most_common(): print "count:", count, "topic:", [round(prob, 2) for prob in topic] from scipy.stats import beta from numpy.random import choice class DirichletProcessSample(): def __init__(self, base_measure, alpha): self.base_measure = base_measure self.alpha = alpha self.cache = [] self.weights = [] self.total_stick_used = 0. def __call__(self): remaining = 1.0 - self.total_stick_used i = DirichletProcessSample.roll_die(self.weights + [remaining]) if i is not None and i < len(self.weights) : return self.cache[i] else: stick_piece = beta(1, self.alpha).rvs() * remaining self.total_stick_used += stick_piece self.weights.append(stick_piece) new_value = self.base_measure() self.cache.append(new_value) return new_value @staticmethod def roll_die(weights): if weights: return choice(range(len(weights)), p=weights) else: return None topic_distribution = DirichletProcessSample(base_measure=base_distribution, alpha=topic_dirichlet_parameter) for topic, count in Counter([tuple(topic_distribution()) for _ in range(10000)]).most_common(): print "count:", count, "topic:", [round(prob, 2) for prob in topic] topic_index = defaultdict(list) documents = defaultdict(list) for doc in range(num_documents): topic_distribution_rvs = DirichletProcessSample(base_measure=base_distribution, alpha=topic_dirichlet_parameter) document_length = poisson(mean_document_length).rvs() for word in range(document_length): topic_distribution = topic_distribution_rvs() topic_index[doc].append(tuple(topic_distribution)) documents[doc].append(choice(vocabulary, p=topic_distribution)) for doc in documents.values(): print doc for i, doc in enumerate(Counter(term_dist).most_common() for term_dist in topic_index.values()): print "Doc:", i for topic, count in doc: print 5*" ", "count:", count, "topic:", [round(prob, 2) for prob in topic] term_dirichlet_vector = num_terms * [term_dirichlet_parameter] base_distribution = lambda: dirichlet(term_dirichlet_vector).rvs(size=1)[0] base_dp_parameter = 10 base_dp = DirichletProcessSample(base_distribution, alpha=base_dp_parameter) nested_dp_parameter = 10 topic_index = defaultdict(list) documents = defaultdict(list) for doc in range(num_documents): topic_distribution_rvs = DirichletProcessSample(base_measure=base_dp, alpha=nested_dp_parameter) document_length = poisson(mean_document_length).rvs() for word in range(document_length): topic_distribution = topic_distribution_rvs() topic_index[doc].append(tuple(topic_distribution)) documents[doc].append(choice(vocabulary, p=topic_distribution)) for doc in documents.values(): print doc for i, doc in enumerate(Counter(term_dist).most_common() for term_dist in topic_index.values()): print "Doc:", i for topic, count in doc: print 5*" ", "count:", count, "topic:", [round(prob, 2) for prob in topic] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Latent Dirichlet Allocation is a generative model for topic modeling. Given a collection of documents, an LDA inference algorithm attempts to determined (in an unsupervised manner) the topics discussed in the documents. It makes the assumption that each document is generated by a probability model, and, when doing inference, we try to find the parameters that best fit the model (as well as unseen/latent variables generated by the model). If you are unfamiliar with LDA, Edwin Chen has a friendly introduction you should read. Step2: The term distribution vector $\underline\Phi$ is a collection of samples from a Dirichlet distribution. This describes how our 3 terms are distributed across each of the two topics. Step3: Each document corresponds to a categorical distribution across this distribution of topics (in this case, a 2-dimensional categorical distribution). This categorical distribution is a distribution of distributions; we could look at it as a Dirichlet process! Step4: Recall that a sample from a Dirichlet process is a distribution that approximates (but varies from) the base distribution. In this case, a sample from the Dirichlet process will be a distribution over topics that varies from the uniform distribution we provided as a base. If we use the stick-breaking metaphor, we are effectively breaking a stick one time and the size of each portion corresponds to the proportion of a topic in the document. Step5: For each document, we will draw a topic distribution from the Dirichlet process Step6: A sample from this topic distribution is a distribution over terms. However, unlike our base distribution which returns each term distribution with equal probability, the topics will be unevenly weighted. Step7: To generate each word in the document, we draw a sample topic from the topic distribution, and then a term from the term distribution (topic). Step8: Here are the documents we generated Step9: We can see how each topic (term-distribution) is distributed across the documents Step10: To recap Step11: This sample from the base Dirichlet process is our infinite sided die. It is a probability distribution over a countable infinite number of topics. Step12: Here are the documents we generated Step13: And here are the latent topics used
14,487
<ASSISTANT_TASK:> Python Code: # Set up feedback system from learntools.core import binder binder.bind(globals()) from learntools.ethics.ex4 import * import pandas as pd from sklearn.model_selection import train_test_split # Load the data, separate features from target data = pd.read_csv("../input/synthetic-credit-card-approval/synthetic_credit_card_approval.csv") X = data.drop(["Target"], axis=1) y = data["Target"] # Break into training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0) # Preview the data print("Data successfully loaded!\n") X_train.head() from sklearn import tree from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay import matplotlib.pyplot as plt # Train a model and make predictions model_baseline = tree.DecisionTreeClassifier(random_state=0, max_depth=3) model_baseline.fit(X_train, y_train) preds_baseline = model_baseline.predict(X_test) # Function to plot confusion matrix def plot_confusion_matrix(estimator, X, y_true, y_pred, display_labels=["Deny", "Approve"], include_values=True, xticks_rotation='horizontal', values_format='', normalize=None, cmap=plt.cm.Blues): cm = confusion_matrix(y_true, y_pred, normalize=normalize) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=display_labels) return cm, disp.plot(include_values=include_values, cmap=cmap, xticks_rotation=xticks_rotation, values_format=values_format) # Function to evaluate the fairness of the model def get_stats(X, y, model, group_one, preds): y_zero, preds_zero, X_zero = y[group_one==False], preds[group_one==False], X[group_one==False] y_one, preds_one, X_one = y[group_one], preds[group_one], X[group_one] print("Total approvals:", preds.sum()) print("Group A:", preds_zero.sum(), "({}% of approvals)".format(round(preds_zero.sum()/sum(preds)*100, 2))) print("Group B:", preds_one.sum(), "({}% of approvals)".format(round(preds_one.sum()/sum(preds)*100, 2))) print("\nOverall accuracy: {}%".format(round((preds==y).sum()/len(y)*100, 2))) print("Group A: {}%".format(round((preds_zero==y_zero).sum()/len(y_zero)*100, 2))) print("Group B: {}%".format(round((preds_one==y_one).sum()/len(y_one)*100, 2))) cm_zero, disp_zero = plot_confusion_matrix(model, X_zero, y_zero, preds_zero) disp_zero.ax_.set_title("Group A") cm_one, disp_one = plot_confusion_matrix(model, X_one, y_one, preds_one) disp_one.ax_.set_title("Group B") print("\nSensitivity / True positive rate:") print("Group A: {}%".format(round(cm_zero[1,1] / cm_zero[1].sum()*100, 2))) print("Group B: {}%".format(round(cm_one[1,1] / cm_one[1].sum()*100, 2))) # Evaluate the model get_stats(X_test, y_test, model_baseline, X_test["Group"]==1, preds_baseline) # Check your answer (Run this code cell to get credit!) q_1.check() def visualize_model(model, feature_names, class_names=["Deny", "Approve"], impurity=False): plot_list = tree.plot_tree(model, feature_names=feature_names, class_names=class_names, impurity=impurity) [process_plot_item(item) for item in plot_list] def process_plot_item(item): split_string = item.get_text().split("\n") if split_string[0].startswith("samples"): item.set_text(split_string[-1]) else: item.set_text(split_string[0]) plt.figure(figsize=(20, 6)) plot_list = visualize_model(model_baseline, feature_names=X_train.columns) # Check your answer (Run this code cell to get credit!) q_2.check() # Create new dataset with gender removed X_train_unaware = X_train.drop(["Group"],axis=1) X_test_unaware = X_test.drop(["Group"],axis=1) # Train new model on new dataset model_unaware = tree.DecisionTreeClassifier(random_state=0, max_depth=3) model_unaware.fit(X_train_unaware, y_train) # Evaluate the model preds_unaware = model_unaware.predict(X_test_unaware) get_stats(X_test_unaware, y_test, model_unaware, X_test["Group"]==1, preds_unaware) # Check your answer (Run this code cell to get credit!) q_3.check() # Change the value of zero_threshold to hit the objective zero_threshold = 0.11 one_threshold = 0.99 # Evaluate the model test_probs = model_unaware.predict_proba(X_test_unaware)[:,1] preds_approval = (((test_probs>zero_threshold)*1)*[X_test["Group"]==0] + ((test_probs>one_threshold)*1)*[X_test["Group"]==1])[0] get_stats(X_test, y_test, model_unaware, X_test["Group"]==1, preds_approval) # Check your answer (Run this code cell to get credit!) q_4.check() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The dataset contains, for each applicant Step2: The confusion matrices above show how the model performs on some test data. We also print additional information (calculated from the confusion matrices) to assess fairness of the model. For instance, Step3: Run the next code cell without changes to visualize the model. Step4: The flowchart shows how the model makes decisions Step5: Next, you decide to remove group membership from the training data and train a new model. Do you think this will make the model treat the groups more equally? Step6: 3) Varieties of fairness, part 2 Step7: You decide to train a third potential model, this time with the goal of having each group have even representation in the group of approved applicants. (This is an implementation of group thresholds, which you can optionally read more about here.) Step8: 4) Varieties of fairness, part 3
14,488
<ASSISTANT_TASK:> Python Code: import wasmfun instructions = [('f64.const', 42), ('call', 'print_ln'), ('call', 'make_background_blue')] m = wasmfun.Module( wasmfun.Function('$main', params=[], returns=[], locals=[], instructions=instructions), wasmfun.ImportedFuncion('print_ln', ['f64'], [], 'js', 'print_ln'), wasmfun.ImportedFuncion('make_background_blue', [], [], 'js', 'make_background_blue'), ) m.show() print(m.to_bytes()) print(len(m.to_bytes())) JS = function print_ln(x) { var el = document.getElementById('wasm_output'); el.innerHTML += String(x).replace('\\n', '<br>') + '<br>'; } function make_background_blue () { document.body.style = 'background:#48f;' } function compile_my_wasm(wasm_data) { var m = new WebAssembly.Module(wasm_data); var i = new WebAssembly.Instance(m, {js: {print_ln, make_background_blue}}); } from IPython.display import display, HTML, Javascript import uuid def run_wasm(m): id = uuid.uuid1().hex js = JS.replace('wasm_output', 'wasm_output_' + id) js += "compile_my_wasm(new Uint8Array(%s));" % str(list(m.to_bytes())) display(HTML("<div style='border: 2px solid blue;' id='wasm_output_%s'>WASM output goes here<br></div>" % id)) display(Javascript(js)) run_wasm(m) instructions = [ ('loop', 'emptyblock'), # write iter ('get_local', 0), ('call', 'print_ln'), # Increase iter ('f64.const', 1), ('get_local', 0), ('f64.add'), ('tee_local', 0), ('f64.const', 10), ('f64.lt'), ('br_if', 0), ('end'), ] m = wasmfun.Module( wasmfun.Function('$main', params=[], returns=[], locals=['f64'], instructions=instructions), wasmfun.ImportedFuncion('print_ln', ['f64'], [], 'js', 'print_ln'), ) m.to_bytes() wasmfun.run_wasm_in_notebook(m) wasmfun.run_wasm_in_node(m) def bf2instructions(commands): Compile brainfuck commands to WASM instructions (as tuples). instructions = [] while commands: c = commands.pop(0) if c == '>': instructions += [('get_local', 0), ('i32.const', 1), ('i32.add'), ('set_local', 0)] elif c == '<': instructions += [('get_local', 0), ('i32.const', 1), ('i32.sub'), ('set_local', 0)] elif c == '+': instructions += [('get_local', 0), ('get_local', 0), # once for the read, once for the write ('i32.load8_u', 0, 0), ('i32.const', 1), ('i32.add'), ('i32.store8', 0, 0)] elif c == '-': instructions += [('get_local', 0), ('get_local', 0), # once for the read, once for the write ('i32.load8_u', 0, 0), ('i32.const', 1), ('i32.sub'), ('i32.store8', 0, 0)] elif c == '.': instructions += [('get_local', 0), ('i32.load8_u', 0, 0), ('call', 0)] elif c == ',': # We don't support input, just set to zero instructions += [('get_local', 0), ('i32.const', 0), ('i32.store8', 0, 0)] elif c == '[': instructions += [('block', 'emptyblock'), # if current data point == 0 goto end of block ('get_local', 0), ('i32.load8_u', 0, 0), ('i32.const', 0), ('i32.eq'), ('br_if', 0), ('loop', 'emptyblock'), ] + bf2instructions(commands ) + [ # if current data point > 0 goto start of block ('get_local', 0), ('i32.load8_u', 0, 0), ('i32.const', 0), ('i32.ne'), ('br_if', 0), ('end'), ('end')] elif c == ']': break else: pass # ignore return instructions BF_HELLO = [This program prints "Hello World!" and a newline to the screen] ++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>. >---.+++++++..+++.>>.<-.<.+++.------.--------.>>+.>++. instructions = bf2instructions(list(BF_HELLO)) m = wasmfun.Module( wasmfun.ImportedFuncion('print_charcode', ['i32'], [], 'js', 'print_charcode'), wasmfun.Function('$main', [], [], ['i32'], instructions), wasmfun.MemorySection((1, 1)), wasmfun.DataSection(), ) wasmfun.run_wasm_in_notebook(m) BF_FIBONACCI = [Generate the fibonacci number sequence, (for numbers under 100). Taken from http://esoteric.sange.fi/brainfuck/bf-source/prog/fibonacci.txt ] +++++++++++>+>>>>++++++++++++++++++++++++++++++++++++++++++++> ++++++++++++++++++++++++++++++++<<<<<<[>[>>>>>>+>+<<<<<<<-]>>>>>>> [<<<<<<<+>>>>>>>-]<[>++++++++++[-<-[>>+>+<<<-]>>>[<<<+>>>-]+<[>[-] <[-]]>[<<[>>>+<<<-]>>[-]]<<]>>>[>>+>+<<<-]>>>[<<<+>>>-]+<[>[-]<[-]]> [<<+>>[-]]<<<<<<<]>>>>>[++++++++++++++++++++++++++++++++++++++++++++++++. [-]]++++++++++<[->-<]>++++++++++++++++++++++++++++++++++++++++++++++++.[-] <<<<<<<<<<<<[>>>+>+<<<<-]>>>>[<<<<+>>>>-]<-[>>.>.<<<[-]]<<[>>+>+<<<-]>>> [<<<+>>>-]<<[<+>-]>[<+>-]<<<-] m = wasmfun.Module( wasmfun.ImportedFuncion('print_charcode', ['i32'], [], 'js', 'print_charcode'), wasmfun.Function('$main', [], [], ['i32'], bf2instructions(list(BF_FIBONACCI))), wasmfun.MemorySection((1, 1)), wasmfun.DataSection(), ) wasmfun.run_wasm_in_notebook(m) FIB_CODE = a = 0 b = 1 for i in range(10): print(a) c = b b = a + b a = c exec(FIB_CODE) import ast tree = ast.parse(FIB_CODE) tree.body def _compile_expr(node, ctx, push_stack): if isinstance(node, ast.Expr): _compile_expr(node.value, ctx, push_stack) elif isinstance(node, ast.Assign): if not (len(node.targets) == 1 and isinstance(node.targets[0], ast.Name)): raise SyntaxError('Unsupported assignment at line', node.lineno) idx = ctx.name_idx(node.targets[0].id) _compile_expr(node.value, ctx, True) ctx.instructions.append(('set_local', idx)) assert not push_stack elif isinstance(node, ast.Name): assert push_stack ctx.instructions.append(('get_local', ctx.name_idx(node.id))) elif isinstance(node, ast.Num): ctx.instructions.append(('f64.const', node.n)) elif isinstance(node, ast.UnaryOp): _compile_expr(node.operand, ctx, True) if isinstance(node.op, ast.USub): ctx.instructions.append(('f64.neg')) else: raise SyntaxError('Unsupported unary operator: %s' % node.op.__class__.__name__) elif isinstance(node, ast.BinOp): _compile_expr(node.left, ctx, True) _compile_expr(node.right, ctx, True) if isinstance(node.op, ast.Add): ctx.instructions.append(('f64.add')) elif isinstance(node.op, ast.Sub): ctx.instructions.append(('f64.sub')) elif isinstance(node.op, ast.Mult): ctx.instructions.append(('f64.mul')) elif isinstance(node.op, ast.Div): ctx.instructions.append(('f64.div')) elif isinstance(node.op, ast.Mod): # todo: this is fragile. E.g. for negative numbers _compile_expr(node.left, ctx, True) # push again _compile_expr(node.right, ctx, True) ctx.instructions.append(('f64.div')) ctx.instructions.append(('f64.floor')) ctx.instructions.append(('f64.mul')) # consumes last right ctx.instructions.append(('f64.sub')) # consumes last left elif isinstance(node.op, ast.FloorDiv): ctx.instructions.append(('f64.div')) ctx.instructions.append(('f64.floor')) # not trunc else: raise SyntaxError('Unsuppored binary op: %s' % node.op.__class__.__name__) if not push_stack: ctx.instructions.append(('drop')) elif isinstance(node, ast.Compare): if len(node.ops) != 1: raise SyntaxError('Only supports binary comparators (one operand).') _compile_expr(node.left, ctx, True) _compile_expr(node.comparators[0], ctx, True) op = node.ops[0] if isinstance(op, ast.Eq): ctx.instructions.append(('f64.eq')) elif isinstance(op, ast.NotEq): ctx.instructions.append(('f64.ne')) elif isinstance(op, ast.Gt): ctx.instructions.append(('f64.qt')) elif isinstance(op, ast.Lt): ctx.instructions.append(('f64.lt')) elif isinstance(op, ast.GtE): ctx.instructions.append(('f64.qe')) elif isinstance(op, ast.LtE): ctx.instructions.append(('f64.le')) else: raise SyntaxError('Unsupported operand: %s' % op) elif isinstance(node, ast.If): _compile_expr(node.test, ctx, True) assert not push_stack # Python is not an expression lang ctx.push_block('if') ctx.instructions.append(('if', 'emptyblock')) for e in node.body: _compile_expr(e, ctx, False) if node.orelse: ctx.instructions.append(('else', )) for e in node.orelse: _compile_expr(e, ctx, False) ctx.instructions.append(('end', )) ctx.pop_block('if') elif isinstance(node, ast.For): # Check whether this is the kind of simple for-loop that we support if not (isinstance(node.iter, ast.Call) and node.iter.func.id == 'range'): raise SyntaxError('For-loops are limited to range().') if node.orelse: raise SyntaxError('For-loops do not support orelse.') if not isinstance(node.target, ast.Name): raise SyntaxError('For-loops support just one iterable.') # Prepare start, stop, step start_stub = ctx.new_stub() end_stub = ctx.new_stub() step_stub = ctx.new_stub() if len(node.iter.args) == 1: ctx.instructions.append(('f64.const', 0)) _compile_expr(node.iter.args[0], ctx, True) ctx.instructions.append(('f64.const', 1)) elif len(node.iter.args) == 2: _compile_expr(node.iter.args[0], ctx, True) _compile_expr(node.iter.args[1], ctx, True) ctx.instructions.append(('f64.const', 1)) elif len(node.iter.args) == 3: _compile_expr(node.iter.args[0], ctx, True) _compile_expr(node.iter.args[1], ctx, True) _compile_expr(node.iter.args[2], ctx, True) else: raise SyntaxError('range() should have 1, 2, or 3 args') ctx.instructions.append(('set_local', step_stub)) # reversed order, pop from stack ctx.instructions.append(('set_local', end_stub)) ctx.instructions.append(('set_local', start_stub)) # Body target = ctx.name_idx(node.target.id) ctx.push_block('for') for i in [('get_local', start_stub), ('set_local', target), # Init target ('block', 'emptyblock'), ('loop', 'emptyblock'), # enter loop ('get_local', target), ('get_local', end_stub), ('f64.ge'), ('br_if', 1), # break (level 2) ]: ctx.instructions.append(i) for subnode in node.body: _compile_expr(subnode, ctx, False) for i in [('get_local', target), ('get_local', step_stub), ('f64.add'), ('set_local', target), # next iter ('br', 0), # loop ('end'), ('end'), # end of loop and outer block ]: ctx.instructions.append(i) ctx.pop_block('for') elif isinstance(node, ast.While): # Check whether this is the kind of simple for-loop that we support if node.orelse: raise SyntaxError('While-loops do not support orelse.') # Body ctx.push_block('while') for i in [('block', 'emptyblock'), ('loop', 'emptyblock'), # enter loop (outer block for break) ]: ctx.instructions.append(i) for subnode in node.body: _compile_expr(subnode, ctx, False) _compile_expr(node.test, ctx, True) for i in [('br_if', 0), # loop ('end'), ('end'), # end of loop ]: ctx.instructions.append(i) ctx.pop_block('while') elif isinstance(node, ast.Continue): ctx.instructions.append(('br', ctx.get_block_level())) elif isinstance(node, ast.Break): ctx.instructions.append(('br', ctx.get_block_level() + 1)) elif isinstance(node, ast.Call): if not isinstance(node.func, ast.Name): raise SyntaxError('Only support simple function names') if node.keywords: raise SyntaxError('No support for keyword args') name = node.func.id if name == 'print': assert len(node.args) == 1, 'print() accepts exactly one argument' _compile_expr(node.args[0], ctx, True) ctx.instructions.append(('call', 0)) elif name == 'perf_counter': assert len(node.args) == 0, 'perf_counter() accepts exactly zero arguments' ctx.instructions.append(('call', 1)) else: raise SyntaxError('Not a supported function: %s' % name) else: raise SyntaxError('Unsupported syntax: %s' % node.__class__.__name__) class Context: def __init__(self): self.instructions = [] self.names = {} self._name_counter = 0 self._block_stack = [] def name_idx(self, name): if name not in self.names: self.names[name] = self._name_counter self._name_counter += 1 return self.names[name] def new_stub(self): name = 'stub' + str(self._name_counter) return self.name_idx(name) def push_block(self, kind): assert kind in ('if', 'for', 'while') self._block_stack.append(kind) def pop_block(self, kind): assert self._block_stack.pop(-1) == kind def get_block_level(self): for i, kind in enumerate(reversed(self._block_stack)): if kind in ('for', 'while'): return i def py2wasm(python_code): # Convert to AST tree = ast.parse(python_code) # Compile to instructions ctx = Context() for node in tree.body: _compile_expr(node, ctx, False) # Produce wasm module return wasmfun.Module( wasmfun.Function('$main', [], [], ['f64' for i in ctx.names], ctx.instructions), wasmfun.ImportedFuncion('print_ln', ['f64'], [], 'js', 'print_ln'), wasmfun.ImportedFuncion('perf_counter', [], ['f64'], 'js', 'perf_counter'), ) m = py2wasm( a = 0 b = 1 for i in range(10): print(a) c = b b = a + b a = c ) len(m.to_bytes()) wasmfun.run_wasm_in_notebook(m) PRIMES_CODE = max = 4000 n = 0 i = -1 t0 = perf_counter() while n < max: i = i + 1 if i <= 1: continue # nope elif i == 2: n = n + 1 else: gotit = 1 for j in range(2, i//2 + 1): if i % j == 0: gotit = 0 break if gotit == 1: n = n + 1 print(perf_counter() - t0) print(i) from time import perf_counter exec(PRIMES_CODE) wasmfun.run_wasm_in_notebook(py2wasm(PRIMES_CODE)) wasmfun.run_wasm_in_node(py2wasm(PRIMES_CODE)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: What is Web Assembly? Step2: Instructions are packed into functions ... Step3: Web Assembly modules have a compact binary format Step5: Web Assembly is safe Step6: Let's run our module in the browser! Step7: Again, now with a for-loop Step8: Web Assembly will run anywhere! Step12: Before moving on ... Step14: Python Step15: From code to AST Step17: From AST to WASM Step19: Prime numbers example Step20: Find primes in Python Step21: Find primes is the browser Step22: Find primes on desktop
14,489
<ASSISTANT_TASK:> Python Code: import pandas as pd from scipy.spatial.distance import cosine # Data was already dlownloaded. data = pd.read_csv('data/lastfm/lastfm-matrix-germany.csv') # check out the data set you can do so using data.head(): data.head(6).ix[:,2:10] #In item based collaborative filtering we do not care about the user column. data_germany = data.drop('user', 1) #Create a placeholder dataframe listing item vs. item data_ibs = pd.DataFrame(index=data_germany.columns, columns=data_germany.columns) # Lets fill in those empty spaces with cosine similarities # Loop through the columns for i in range(0, len(data_ibs.columns)) : # Loop through the columns for each column for j in range(0,len(data_ibs.columns)) : # Fill in placeholder with cosine similarities data_ibs.ix[i,j] = 1 - cosine(data_germany.ix[:,i], data_germany.ix[:,j]) # Create a placeholder items for closes neighbours to an item data_neighbours = pd.DataFrame(index=data_ibs.columns,columns=range(1,11)) # Loop through our similarity dataframe and fill in neighbouring item names for i in range(0,len(data_ibs.columns)): data_neighbours.ix[i,:10] = data_ibs.ix[0:,i].order(ascending=False)[:10].index # --- End Item Based Recommendations --- # # Create a placeholder items for closes neighbours to an item data_neighbours = pd.DataFrame(index=data_ibs.columns, columns=range(1,11)) # Loop through our similarity dataframe and fill in neighbouring item names for i in range(0,len(data_ibs.columns)): data_neighbours.ix[i,:10] = data_ibs.ix[0:,i].order(ascending=False)[:10].index Show the results! data_neighbours.ix[:10, :5] # Helper function to get similarity scores def getScore(history, similarities): return sum(history * similarities) / sum(similarities) # Create a place holder matrix for similarities, and fill in the user name column data_sims = pd.DataFrame(index=data.index,columns=data.columns) data_sims.ix[:,:1] = data.ix[:,:1] data_sims.head(3).ix[:, :10] #Loop through all rows, skip the user column, and fill with similarity scores for i in range(0, len(data_sims.index)): for j in range(1,len(data_sims.columns)): user = data_sims.index[i] product = data_sims.columns[j] if data.ix[i][j] == 1: data_sims.ix[i][j] = 0 else: product_top_names = data_neighbours.ix[product][1:10] product_top_sims = data_ibs.ix[product].order(ascending=False)[1:10] user_purchases = data_germany.ix[user, product_top_names] data_sims.ix[i][j] = getScore(user_purchases, product_top_sims) # Get the top songs data_recommend = pd.DataFrame(index=data_sims.index, columns=['user','1','2','3','4','5','6']) data_recommend.ix[0:,0] = data_sims.ix[:,0] # Instead of top song scores, we want to see names for i in range(0,len(data_sims.index)): data_recommend.ix[i,1:] = data_sims.ix[i,:].order(ascending=False).ix[1:7,].index.transpose() # Print a sample print data_recommend.ix[:4,:5] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Item Based Collaborative Filtering Step2: Now we can start to look at filling in similarities. We will use Cosin Similarities. In Python, the Scipy library has a function that allows us to do this without customization. Step3: With our similarity matrix filled out we can look for each items “neighbour” by looping through ‘data_ibs’, sorting each column in descending order, and grabbing the name of each of the top 10 songs. Step4: User Based collaborative Filtering Step5: The rest is a matter of applying this function to the data frames in the right way. Step6: We now loop through the rows and columns filling in empty spaces with similarity scores. Step7: We can now produc a matrix of User Based recommendations as follows Step8: Instead of having the matrix filled with similarity scores, however, it would be nice to see the song names.
14,490
<ASSISTANT_TASK:> Python Code: # Author: Alexandre Barachant <alexandre.barachant@gmail.com> # Jean-Remi King <jeanremi.king@gmail.com> # # License: BSD (3-clause) import matplotlib.pyplot as plt import mne from mne import Epochs from mne.decoding import SPoC from mne.datasets.fieldtrip_cmc import data_path from sklearn.pipeline import make_pipeline from sklearn.linear_model import Ridge from sklearn.model_selection import KFold, cross_val_predict # Define parameters fname = data_path() + '/SubjectCMC.ds' raw = mne.io.read_raw_ctf(fname) raw.crop(50., 250.) # crop for memory purposes # Filter muscular activity to only keep high frequencies emg = raw.copy().pick_channels(['EMGlft']).load_data() emg.filter(20., None, fir_design='firwin') # Filter MEG data to focus on beta band raw.pick_types(meg=True, ref_meg=True, eeg=False, eog=False).load_data() raw.filter(15., 30., fir_design='firwin') # Build epochs as sliding windows over the continuous raw file events = mne.make_fixed_length_events(raw, id=1, duration=.250) # Epoch length is 1.5 second meg_epochs = Epochs(raw, events, tmin=0., tmax=1.500, baseline=None, detrend=1, decim=8) emg_epochs = Epochs(emg, events, tmin=0., tmax=1.500, baseline=None) # Prepare classification X = meg_epochs.get_data() y = emg_epochs.get_data().var(axis=2)[:, 0] # target is EMG power # Classification pipeline with SPoC spatial filtering and Ridge Regression spoc = SPoC(n_components=2, log=True, reg='oas', rank='full') clf = make_pipeline(spoc, Ridge()) # Define a two fold cross-validation cv = KFold(n_splits=2, shuffle=False) # Run cross validaton y_preds = cross_val_predict(clf, X, y, cv=cv) # Plot the True EMG power and the EMG power predicted from MEG data fig, ax = plt.subplots(1, 1, figsize=[10, 4]) times = raw.times[meg_epochs.events[:, 0] - raw.first_samp] ax.plot(times, y_preds, color='b', label='Predicted EMG') ax.plot(times, y, color='r', label='True EMG') ax.set_xlabel('Time (s)') ax.set_ylabel('EMG Power') ax.set_title('SPoC MEG Predictions') plt.legend() mne.viz.tight_layout() plt.show() spoc.fit(X, y) spoc.plot_patterns(meg_epochs.info) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Plot the contributions to the detected components (i.e., the forward model)
14,491
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'cams', 'sandbox-1', 'seaice') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.model.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.model.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.variables.prognostic') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sea ice temperature" # "Sea ice concentration" # "Sea ice thickness" # "Sea ice volume per grid cell area" # "Sea ice u-velocity" # "Sea ice v-velocity" # "Sea ice enthalpy" # "Internal ice stress" # "Salinity" # "Snow temperature" # "Snow depth" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "TEOS-10" # "Constant" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.target') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.simulations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.metrics_used') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.typical_parameters') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Ice strength (P*) in units of N m{-2}" # "Snow conductivity (ks) in units of W m{-1} K{-1} " # "Minimum thickness of ice created in leads (h0) in units of m" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.additional_parameters') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.description') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.on_diagnostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.missing_processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.properties') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Energy" # "Mass" # "Salt" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.budget') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.was_flux_correction_used') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.corrected_conserved_prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Ocean grid" # "Atmosphere Grid" # "Own Grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Structured grid" # "Unstructured grid" # "Adaptive grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Finite differences" # "Finite elements" # "Finite volumes" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.thermodynamics_time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.dynamics_time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.layering') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Zero-layer" # "Two-layers" # "Multi-layers" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.number_of_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.has_mulitple_categories') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.number_of_categories') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.category_limits') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.ice_thickness_distribution_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.other') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.has_snow_on_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.number_of_snow_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.snow_fraction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.horizontal_transport') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Incremental Re-mapping" # "Prather" # "Eulerian" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.transport_in_thickness_space') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Incremental Re-mapping" # "Prather" # "Eulerian" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.ice_strength_formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Hibler 1979" # "Rothrock 1975" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.redistribution') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Rafting" # "Ridging" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.rheology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Free-drift" # "Mohr-Coloumb" # "Visco-plastic" # "Elastic-visco-plastic" # "Elastic-anisotropic-plastic" # "Granular" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.enthalpy_formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pure ice latent heat (Semtner 0-layer)" # "Pure ice latent and sensible heat" # "Pure ice latent and sensible heat + brine heat reservoir (Semtner 3-layer)" # "Pure ice latent and sensible heat + explicit brine inclusions (Bitz and Lipscomb)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.thermal_conductivity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pure ice" # "Saline ice" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Conduction fluxes" # "Conduction and radiation heat fluxes" # "Conduction, radiation and latent heat transport" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.basal_heat_flux') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Heat Reservoir" # "Thermal Fixed Salinity" # "Thermal Varying Salinity" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.fixed_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_content_of_precipitation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.precipitation_effects_on_salinity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.new_ice_formation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_vertical_growth_and_melt') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_lateral_melting') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Floe-size dependent (Bitz et al 2001)" # "Virtual thin ice melting (for single-category)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_surface_sublimation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.frazil_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.has_multiple_sea_ice_salinities') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.sea_ice_salinity_thermal_impacts') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.salinity_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Prescribed salinity profile" # "Prognostic salinity profile" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.constant_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.salinity_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Prescribed salinity profile" # "Prognostic salinity profile" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.constant_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_thickness_distribution.representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Virtual (enhancement of thermal conductivity, thin ice melting)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Parameterised" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.are_included') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Flocco and Feltham (2010)" # "Level-ice melt ponds" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.impacts') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Albedo" # "Freshwater" # "Heat" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_aging') # PROPERTY VALUE(S): # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_aging_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_ice_formation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_ice_formation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.redistribution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.heat_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Single-layered heat diffusion" # "Multi-layered heat diffusion" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.radiative_processes.surface_albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Delta-Eddington" # "Parameterized" # "Multi-band albedo" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.radiative_processes.ice_radiation_transmission') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Delta-Eddington" # "Exponential attenuation" # "Ice radiation transmission per category" # "Other: [Please specify]" # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 2. Key Properties --&gt; Variables Step7: 3. Key Properties --&gt; Seawater Properties Step8: 3.2. Ocean Freezing Point Value Step9: 4. Key Properties --&gt; Resolution Step10: 4.2. Canonical Horizontal Resolution Step11: 4.3. Number Of Horizontal Gridpoints Step12: 5. Key Properties --&gt; Tuning Applied Step13: 5.2. Target Step14: 5.3. Simulations Step15: 5.4. Metrics Used Step16: 5.5. Variables Step17: 6. Key Properties --&gt; Key Parameter Values Step18: 6.2. Additional Parameters Step19: 7. Key Properties --&gt; Assumptions Step20: 7.2. On Diagnostic Variables Step21: 7.3. Missing Processes Step22: 8. Key Properties --&gt; Conservation Step23: 8.2. Properties Step24: 8.3. Budget Step25: 8.4. Was Flux Correction Used Step26: 8.5. Corrected Conserved Prognostic Variables Step27: 9. Grid --&gt; Discretisation --&gt; Horizontal Step28: 9.2. Grid Type Step29: 9.3. Scheme Step30: 9.4. Thermodynamics Time Step Step31: 9.5. Dynamics Time Step Step32: 9.6. Additional Details Step33: 10. Grid --&gt; Discretisation --&gt; Vertical Step34: 10.2. Number Of Layers Step35: 10.3. Additional Details Step36: 11. Grid --&gt; Seaice Categories Step37: 11.2. Number Of Categories Step38: 11.3. Category Limits Step39: 11.4. Ice Thickness Distribution Scheme Step40: 11.5. Other Step41: 12. Grid --&gt; Snow On Seaice Step42: 12.2. Number Of Snow Levels Step43: 12.3. Snow Fraction Step44: 12.4. Additional Details Step45: 13. Dynamics Step46: 13.2. Transport In Thickness Space Step47: 13.3. Ice Strength Formulation Step48: 13.4. Redistribution Step49: 13.5. Rheology Step50: 14. Thermodynamics --&gt; Energy Step51: 14.2. Thermal Conductivity Step52: 14.3. Heat Diffusion Step53: 14.4. Basal Heat Flux Step54: 14.5. Fixed Salinity Value Step55: 14.6. Heat Content Of Precipitation Step56: 14.7. Precipitation Effects On Salinity Step57: 15. Thermodynamics --&gt; Mass Step58: 15.2. Ice Vertical Growth And Melt Step59: 15.3. Ice Lateral Melting Step60: 15.4. Ice Surface Sublimation Step61: 15.5. Frazil Ice Step62: 16. Thermodynamics --&gt; Salt Step63: 16.2. Sea Ice Salinity Thermal Impacts Step64: 17. Thermodynamics --&gt; Salt --&gt; Mass Transport Step65: 17.2. Constant Salinity Value Step66: 17.3. Additional Details Step67: 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics Step68: 18.2. Constant Salinity Value Step69: 18.3. Additional Details Step70: 19. Thermodynamics --&gt; Ice Thickness Distribution Step71: 20. Thermodynamics --&gt; Ice Floe Size Distribution Step72: 20.2. Additional Details Step73: 21. Thermodynamics --&gt; Melt Ponds Step74: 21.2. Formulation Step75: 21.3. Impacts Step76: 22. Thermodynamics --&gt; Snow Processes Step77: 22.2. Snow Aging Scheme Step78: 22.3. Has Snow Ice Formation Step79: 22.4. Snow Ice Formation Scheme Step80: 22.5. Redistribution Step81: 22.6. Heat Diffusion Step82: 23. Radiative Processes Step83: 23.2. Ice Radiation Transmission
14,492
<ASSISTANT_TASK:> Python Code: def number_to_words(n): Given a number n between 1-1000 inclusive return a list of words for the number. x = [] a = {1:'one',2:'two',3:'three',4:'four',5:'five',6:'six',7:'seven',8:'eight',9:'nine',10:'ten', 11:'eleven',12:'twelve',13:'thirteen',14:'fourteen',15:'fifteen',16:'sixteen',17:'seventeen',18:'eighteen' ,19:'nineteen',20:'twenty',30:'thirty',40:'forty',50:'fifty',60:'sixty',70:'seventy',80:'eighty',90:'ninety'} b = 'hundred' c = 'thousand' d = 'and' if n <= 20 and n >= 1: x.append(a[n]) return x elif n > 20 and n < 100: if n % 10 == 0: x.append(a[n]) return x else: y = str(n) x.append(a[int(y[0] + '0')]) x.append(a[int(y[1])]) return x elif n >= 100 and n < 1000: if n % 100 == 0: y = str(n) x.append(a[int(y[0])]) x.append(b) return x elif n % 10 == 0: y = str(n) x.append(a[int(y[0])]) x.append(b) x.append(d) x.append(a[int(y[1]+'0')]) return x elif str(n)[1] == '0': y = str(n) x.append(a[int(y[0])]) x.append(b) x.append(d) x.append(a[int(y[2])]) return x elif str(n)[1] == '1': y = str(n) x.append(a[int(y[0])]) x.append(b) x.append(d) x.append(a[int(y[1]+y[2])]) return x else: y = str(n) x.append(a[int(y[0])]) x.append(b) x.append(d) x.append(a[int(y[1]+'0')]) x.append(a[int(y[2])]) return x else: x.append(a[1]) x.append(c) return x assert number_to_words(16) == ['sixteen'] assert number_to_words(507) == ['five','hundred','and','seven'] assert number_to_words(735) == ['seven', 'hundred', 'and', 'thirty', 'five'] assert len(''.join(number_to_words(342))) == 23 assert True # use this for grading the number_to_words tests. def count_letters(n): Count the number of letters used to write out the words for 1-n inclusive. z = 0 x = range(1,n+1) for m in x: j = number_to_words(m) k = len(''.join(j)) z += k return z assert count_letters(6) == 22 assert True # use this for grading the count_letters tests. count_letters(1000) assert True # use this for gradig the answer to the original question. <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Project Euler Step2: Now write a set of assert tests for your number_to_words function that verifies that it is working as expected. Step4: Now define a count_letters(n) that returns the number of letters used to write out the words for all of the the numbers 1 to n inclusive. Step5: Now write a set of assert tests for your count_letters function that verifies that it is working as expected. Step6: Finally used your count_letters function to solve the original question.
14,493
<ASSISTANT_TASK:> Python Code: #@title ### Install the Graph Nets library on this Colaboratory runtime { form-width: "60%", run: "auto"} #@markdown <br>1. Connect to a local or hosted Colaboratory runtime by clicking the **Connect** button at the top-right.<br>2. Choose "Yes" below to install the Graph Nets library on the runtime machine with the correct dependencies. Note, this works both with local and hosted Colaboratory runtimes. install_graph_nets_library = "No" #@param ["Yes", "No"] if install_graph_nets_library.lower() == "yes": print("Installing Graph Nets library and dependencies:") print("Output message from command:\n") !pip install graph_nets "dm-sonnet<2" "tensorflow_probability<0.9" else: print("Skipping installation of Graph Nets library") #@title #### (Imports) %tensorflow_version 1.x # For Google Colab only. from __future__ import absolute_import from __future__ import division from __future__ import print_function from graph_nets import blocks from graph_nets import graphs from graph_nets import modules from graph_nets import utils_np from graph_nets import utils_tf import matplotlib.pyplot as plt import networkx as nx import numpy as np import sonnet as snt import tensorflow as tf # Global features for graph 0. globals_0 = [1., 2., 3.] # Node features for graph 0. nodes_0 = [[10., 20., 30.], # Node 0 [11., 21., 31.], # Node 1 [12., 22., 32.], # Node 2 [13., 23., 33.], # Node 3 [14., 24., 34.]] # Node 4 # Edge features for graph 0. edges_0 = [[100., 200.], # Edge 0 [101., 201.], # Edge 1 [102., 202.], # Edge 2 [103., 203.], # Edge 3 [104., 204.], # Edge 4 [105., 205.]] # Edge 5 # The sender and receiver nodes associated with each edge for graph 0. senders_0 = [0, # Index of the sender node for edge 0 1, # Index of the sender node for edge 1 1, # Index of the sender node for edge 2 2, # Index of the sender node for edge 3 2, # Index of the sender node for edge 4 3] # Index of the sender node for edge 5 receivers_0 = [1, # Index of the receiver node for edge 0 2, # Index of the receiver node for edge 1 3, # Index of the receiver node for edge 2 0, # Index of the receiver node for edge 3 3, # Index of the receiver node for edge 4 4] # Index of the receiver node for edge 5 # Global features for graph 1. globals_1 = [1001., 1002., 1003.] # Node features for graph 1. nodes_1 = [[1010., 1020., 1030.], # Node 0 [1011., 1021., 1031.]] # Node 1 # Edge features for graph 1. edges_1 = [[1100., 1200.], # Edge 0 [1101., 1201.], # Edge 1 [1102., 1202.], # Edge 2 [1103., 1203.]] # Edge 3 # The sender and receiver nodes associated with each edge for graph 1. senders_1 = [0, # Index of the sender node for edge 0 0, # Index of the sender node for edge 1 1, # Index of the sender node for edge 2 1] # Index of the sender node for edge 3 receivers_1 = [0, # Index of the receiver node for edge 0 1, # Index of the receiver node for edge 1 0, # Index of the receiver node for edge 2 0] # Index of the receiver node for edge 3 data_dict_0 = { "globals": globals_0, "nodes": nodes_0, "edges": edges_0, "senders": senders_0, "receivers": receivers_0 } data_dict_1 = { "globals": globals_1, "nodes": nodes_1, "edges": edges_1, "senders": senders_1, "receivers": receivers_1 } data_dict_list = [data_dict_0, data_dict_1] graphs_tuple = utils_np.data_dicts_to_graphs_tuple(data_dict_list) graphs_nx = utils_np.graphs_tuple_to_networkxs(graphs_tuple) _, axs = plt.subplots(ncols=2, figsize=(6, 3)) for iax, (graph_nx, ax) in enumerate(zip(graphs_nx, axs)): nx.draw(graph_nx, ax=ax) ax.set_title("Graph {}".format(iax)) def print_graphs_tuple(graphs_tuple): print("Shapes of `GraphsTuple`'s fields:") print(graphs_tuple.map(lambda x: x if x is None else x.shape, fields=graphs.ALL_FIELDS)) print("\nData contained in `GraphsTuple`'s fields:") print("globals:\n{}".format(graphs_tuple.globals)) print("nodes:\n{}".format(graphs_tuple.nodes)) print("edges:\n{}".format(graphs_tuple.edges)) print("senders:\n{}".format(graphs_tuple.senders)) print("receivers:\n{}".format(graphs_tuple.receivers)) print("n_node:\n{}".format(graphs_tuple.n_node)) print("n_edge:\n{}".format(graphs_tuple.n_edge)) print_graphs_tuple(graphs_tuple) recovered_data_dict_list = utils_np.graphs_tuple_to_data_dicts(graphs_tuple) # Number of nodes n_node = 3 # Three edges connecting the nodes in a cycle senders = [0, 1, 2] # Indices of nodes sending the edges receivers = [1, 2, 0] # Indices of nodes receiving the edges data_dict = { "n_node": n_node, "senders": senders, "receivers": receivers, } graphs_tuple = utils_np.data_dicts_to_graphs_tuple([data_dict]) # Node features. nodes = [[10.], # Node 0 [11.], # Node 1 [12.]] # Node 2 data_dict = { "nodes": nodes, } graphs_tuple = utils_np.data_dicts_to_graphs_tuple([data_dict]) # We can visualize the graph using networkx. graphs_nx = utils_np.graphs_tuple_to_networkxs(graphs_tuple) ax = plt.figure(figsize=(3, 3)).gca() nx.draw(graphs_nx[0], ax=ax) _ = ax.set_title("Graph without edges") graph_nx = nx.OrderedMultiDiGraph() # Globals. graph_nx.graph["features"] = np.array([0.6, 0.7, 0.8]) # Nodes. graph_nx.add_node(0, features=np.array([0.3, 1.3])) graph_nx.add_node(1, features=np.array([0.4, 1.4])) graph_nx.add_node(2, features=np.array([0.5, 1.5])) graph_nx.add_node(3, features=np.array([0.6, 1.6])) # Edges. graph_nx.add_edge(0, 1, features=np.array([3.6, 3.7])) graph_nx.add_edge(2, 0, features=np.array([5.6, 5.7])) graph_nx.add_edge(3, 0, features=np.array([6.6, 6.7])) ax = plt.figure(figsize=(3, 3)).gca() nx.draw(graph_nx, ax=ax) ax.set_title("Graph") graphs_tuple = utils_np.networkxs_to_graphs_tuple([graph_nx]) print_graphs_tuple(graphs_tuple) #@title #### (Define functions for generating and plotting graphs) GLOBAL_SIZE = 4 NODE_SIZE = 5 EDGE_SIZE = 6 def get_graph_data_dict(num_nodes, num_edges): return { "globals": np.random.rand(GLOBAL_SIZE).astype(np.float32), "nodes": np.random.rand(num_nodes, NODE_SIZE).astype(np.float32), "edges": np.random.rand(num_edges, EDGE_SIZE).astype(np.float32), "senders": np.random.randint(num_nodes, size=num_edges, dtype=np.int32), "receivers": np.random.randint(num_nodes, size=num_edges, dtype=np.int32), } graph_3_nodes_4_edges = get_graph_data_dict(num_nodes=3, num_edges=4) graph_5_nodes_8_edges = get_graph_data_dict(num_nodes=5, num_edges=8) graph_7_nodes_13_edges = get_graph_data_dict(num_nodes=7, num_edges=13) graph_9_nodes_25_edges = get_graph_data_dict(num_nodes=9, num_edges=25) graph_dicts = [graph_3_nodes_4_edges, graph_5_nodes_8_edges, graph_7_nodes_13_edges, graph_9_nodes_25_edges] def plot_graphs_tuple_np(graphs_tuple): networkx_graphs = utils_np.graphs_tuple_to_networkxs(graphs_tuple) num_graphs = len(networkx_graphs) _, axes = plt.subplots(1, num_graphs, figsize=(5*num_graphs, 5)) if num_graphs == 1: axes = axes, for graph, ax in zip(networkx_graphs, axes): plot_graph_networkx(graph, ax) def plot_graph_networkx(graph, ax, pos=None): node_labels = {node: "{:.3g}".format(data["features"][0]) for node, data in graph.nodes(data=True) if data["features"] is not None} edge_labels = {(sender, receiver): "{:.3g}".format(data["features"][0]) for sender, receiver, data in graph.edges(data=True) if data["features"] is not None} global_label = ("{:.3g}".format(graph.graph["features"][0]) if graph.graph["features"] is not None else None) if pos is None: pos = nx.spring_layout(graph) nx.draw_networkx(graph, pos, ax=ax, labels=node_labels) if edge_labels: nx.draw_networkx_edge_labels(graph, pos, edge_labels, ax=ax) if global_label: plt.text(0.05, 0.95, global_label, transform=ax.transAxes) ax.yaxis.set_visible(False) ax.xaxis.set_visible(False) return pos def plot_compare_graphs(graphs_tuples, labels): pos = None num_graphs = len(graphs_tuples) _, axes = plt.subplots(1, num_graphs, figsize=(5*num_graphs, 5)) if num_graphs == 1: axes = axes, pos = None for name, graphs_tuple, ax in zip(labels, graphs_tuples, axes): graph = utils_np.graphs_tuple_to_networkxs(graphs_tuple)[0] pos = plot_graph_networkx(graph, ax, pos=pos) ax.set_title(name) tf.reset_default_graph() graphs_tuple_tf = utils_tf.data_dicts_to_graphs_tuple(graph_dicts) with tf.Session() as sess: graphs_tuple_np = sess.run(graphs_tuple_tf) plot_graphs_tuple_np(graphs_tuple_np) # If the GraphsTuple has None's we need to make use of `utils_tf.make_runnable_in_session`. tf.reset_default_graph() graphs_tuple_tf = utils_tf.data_dicts_to_graphs_tuple(graph_dicts) # Removing the edges from a graph. graph_with_nones = graphs_tuple_tf.replace( edges=None, senders=None, receivers=None, n_edge=graphs_tuple_tf.n_edge*0) runnable_in_session_graph = utils_tf.make_runnable_in_session(graph_with_nones) with tf.Session() as sess: graphs_tuple_np = sess.run(runnable_in_session_graph) plot_graphs_tuple_np(graphs_tuple_np) tf.reset_default_graph() # Create a placeholder using the first graph in the list as template. graphs_tuple_ph = utils_tf.placeholders_from_data_dicts(graph_dicts[0:1]) with tf.Session() as sess: # Feeding a batch of graphs with different sizes, and different # numbers of nodes and edges through the placeholder. feed_dict = utils_tf.get_feed_dict( graphs_tuple_ph, utils_np.data_dicts_to_graphs_tuple(graph_dicts[1:])) graphs_tuple_np = sess.run(graphs_tuple_ph, feed_dict) plot_graphs_tuple_np(graphs_tuple_np) # If the GraphsTuple has None's we need to make use of `utils_tf.make_runnable_in_session`. tf.reset_default_graph() graphs_tuple_tf = utils_tf.data_dicts_to_graphs_tuple(graph_dicts) first_graph_tf = utils_tf.get_graph(graphs_tuple_tf, 0) three_graphs_tf = utils_tf.get_graph(graphs_tuple_tf, slice(1, 4)) with tf.Session() as sess: first_graph_np = sess.run(first_graph_tf) three_graphs_np = sess.run(three_graphs_tf) plot_graphs_tuple_np(first_graph_np) plot_graphs_tuple_np(three_graphs_np) # Concatenating along the batch dimension tf.reset_default_graph() graphs_tuple_1_tf = utils_tf.data_dicts_to_graphs_tuple(graph_dicts[0:1]) graphs_tuple_2_tf = utils_tf.data_dicts_to_graphs_tuple(graph_dicts[1:]) graphs_tuple_tf = utils_tf.concat([graphs_tuple_1_tf, graphs_tuple_2_tf], axis=0) with tf.Session() as sess: graphs_tuple_np = sess.run(graphs_tuple_tf) plot_graphs_tuple_np(graphs_tuple_np) tf.reset_default_graph() OUTPUT_EDGE_SIZE = 10 OUTPUT_NODE_SIZE = 11 OUTPUT_GLOBAL_SIZE = 12 graph_network = modules.GraphNetwork( edge_model_fn=lambda: snt.Linear(output_size=OUTPUT_EDGE_SIZE), node_model_fn=lambda: snt.Linear(output_size=OUTPUT_NODE_SIZE), global_model_fn=lambda: snt.Linear(output_size=OUTPUT_GLOBAL_SIZE)) input_graphs = utils_tf.data_dicts_to_graphs_tuple(graph_dicts) output_graphs = graph_network(input_graphs) print("Output edges size: {}".format(output_graphs.edges.shape[-1])) # Equal to OUTPUT_EDGE_SIZE print("Output nodes size: {}".format(output_graphs.nodes.shape[-1])) # Equal to OUTPUT_NODE_SIZE print("Output globals size: {}".format(output_graphs.globals.shape[-1])) # Equal to OUTPUT_GLOBAL_SIZE tf.reset_default_graph() input_graphs = utils_tf.data_dicts_to_graphs_tuple(graph_dicts) graph_network = modules.GraphNetwork( edge_model_fn=lambda: snt.Linear(output_size=EDGE_SIZE), node_model_fn=lambda: snt.Linear(output_size=NODE_SIZE), global_model_fn=lambda: snt.Linear(output_size=GLOBAL_SIZE)) num_recurrent_passes = 3 previous_graphs = input_graphs for unused_pass in range(num_recurrent_passes): previous_graphs = graph_network(previous_graphs) output_graphs = previous_graphs def zeros_graph(sample_graph, edge_size, node_size, global_size): zeros_graphs = sample_graph.replace(nodes=None, edges=None, globals=None) zeros_graphs = utils_tf.set_zero_edge_features(zeros_graphs, edge_size) zeros_graphs = utils_tf.set_zero_node_features(zeros_graphs, node_size) zeros_graphs = utils_tf.set_zero_global_features(zeros_graphs, global_size) return zeros_graphs tf.reset_default_graph() graph_network = modules.GraphNetwork( edge_model_fn=lambda: snt.Linear(output_size=OUTPUT_EDGE_SIZE), node_model_fn=lambda: snt.Linear(output_size=OUTPUT_NODE_SIZE), global_model_fn=lambda: snt.Linear(output_size=OUTPUT_GLOBAL_SIZE)) input_graphs = utils_tf.data_dicts_to_graphs_tuple(graph_dicts) initial_state = zeros_graph( input_graphs, OUTPUT_EDGE_SIZE, OUTPUT_NODE_SIZE, OUTPUT_GLOBAL_SIZE) num_recurrent_passes = 3 current_state = initial_state for unused_pass in range(num_recurrent_passes): input_and_state_graphs = utils_tf.concat( [input_graphs, current_state], axis=1) current_state = graph_network(input_and_state_graphs) output_graphs = current_state tf.reset_default_graph() graphs_tuple = utils_tf.data_dicts_to_graphs_tuple([data_dict_0]) updated_broadcast_globals_to_nodes = graphs_tuple.replace( nodes=blocks.broadcast_globals_to_nodes(graphs_tuple)) updated_broadcast_globals_to_edges = graphs_tuple.replace( edges=blocks.broadcast_globals_to_edges(graphs_tuple)) updated_broadcast_sender_nodes_to_edges = graphs_tuple.replace( edges=blocks.broadcast_sender_nodes_to_edges(graphs_tuple)) updated_broadcast_receiver_nodes_to_edges = graphs_tuple.replace( edges=blocks.broadcast_receiver_nodes_to_edges(graphs_tuple)) with tf.Session() as sess: output_graphs = sess.run([ graphs_tuple, updated_broadcast_globals_to_nodes, updated_broadcast_globals_to_edges, updated_broadcast_sender_nodes_to_edges, updated_broadcast_receiver_nodes_to_edges]) plot_compare_graphs(output_graphs, labels=[ "Input graph", "blocks.broadcast_globals_to_nodes", "blocks.broadcast_globals_to_edges", "blocks.broadcast_sender_nodes_to_edges", "blocks.broadcast_receiver_nodes_to_edges"]) tf.reset_default_graph() graphs_tuple = utils_tf.data_dicts_to_graphs_tuple([data_dict_0]) updated_graphs_tuple = graphs_tuple.replace( edges=(graphs_tuple.edges[:, :1] + blocks.broadcast_receiver_nodes_to_edges(graphs_tuple)[:, :1] + blocks.broadcast_sender_nodes_to_edges(graphs_tuple)[:, :1] + blocks.broadcast_globals_to_edges(graphs_tuple)[:, :1])) with tf.Session() as sess: output_graphs = sess.run([ graphs_tuple, updated_graphs_tuple]) plot_compare_graphs(output_graphs, labels=[ "Input graph", "Updated graph"]) tf.reset_default_graph() graphs_tuple = utils_tf.data_dicts_to_graphs_tuple([data_dict_0]) reducer = tf.unsorted_segment_sum updated_edges_to_globals = graphs_tuple.replace( globals=blocks.EdgesToGlobalsAggregator(reducer=reducer)(graphs_tuple)) updated_nodes_to_globals = graphs_tuple.replace( globals=blocks.NodesToGlobalsAggregator(reducer=reducer)(graphs_tuple)) updated_sent_edges_to_nodes = graphs_tuple.replace( nodes=blocks.SentEdgesToNodesAggregator(reducer=reducer)(graphs_tuple)) updated_received_edges_to_nodes = graphs_tuple.replace( nodes=blocks.ReceivedEdgesToNodesAggregator(reducer=reducer)(graphs_tuple)) with tf.Session() as sess: output_graphs = sess.run([ graphs_tuple, updated_edges_to_globals, updated_nodes_to_globals, updated_sent_edges_to_nodes, updated_received_edges_to_nodes]) plot_compare_graphs(output_graphs, labels=[ "Input graph", "blocks.EdgesToGlobalsAggregator", "blocks.NodesToGlobalsAggregator", "blocks.SentEdgesToNodesAggregator", "blocks.ReceivedEdgesToNodesAggregator"]) tf.reset_default_graph() edge_block = blocks.EdgeBlock( edge_model_fn=lambda: snt.Linear(output_size=10)) input_graphs = utils_tf.data_dicts_to_graphs_tuple(graph_dicts) output_graphs = edge_block(input_graphs) print(("Output edges size: {}".format(output_graphs.edges.shape[-1]))) tf.reset_default_graph() node_block = blocks.NodeBlock( node_model_fn=lambda: snt.Linear(output_size=15)) input_graphs = utils_tf.data_dicts_to_graphs_tuple(graph_dicts) output_graphs = node_block(input_graphs) print(("Output nodes size: {}".format(output_graphs.nodes.shape[-1]))) tf.reset_default_graph() global_block = blocks.GlobalBlock( global_model_fn=lambda: snt.Linear(output_size=20)) input_graphs = utils_tf.data_dicts_to_graphs_tuple(graph_dicts) output_graphs = global_block(input_graphs) print(("Output globals size: {}".format(output_graphs.globals.shape[-1]))) tf.reset_default_graph() graph_network = modules.GraphNetwork( edge_model_fn=lambda: snt.Linear(output_size=10), node_model_fn=lambda: snt.Linear(output_size=15), global_model_fn=lambda: snt.Linear(output_size=20)) input_graphs = utils_tf.data_dicts_to_graphs_tuple(graph_dicts) output_graphs = graph_network(input_graphs) for var in graph_network.variables: print(var) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Install dependencies locally Step2: Tutorial of the Graph Nets library Step3: How to represent graphs as a graphs.GraphsTuple Step4: Visualize the graphs using networkx Step5: Print the GraphsTuple fields Step6: Back to data dicts Step7: Ways to represent different data sources with a graph Step8: Set (ie. graph without edges) Step9: Creating a GraphsTuple from a networkx graph Step10: Working with tensor GraphsTuple's Step11: Creating a constant tensor GraphsTuple from data dicts Step12: GraphsTuple placeholders Step13: A similar utility is provided to work with networkx graphs Step14: Concatenating multiple GraphsTuple instances Step15: Similarly, we can concatenate along feature dimensions, assuming all of the batches to be concatenates have the same graph structure/connectivity. Step16: Feeding a GraphsTuple to a Graph Net Step17: Connecting a GraphNetwork recurrently Step18: Alternatively, we can process the input graph multiple times with a graph state that gets updated recurrently. Step19: Similarly, recurrent modules with gating, such as an LSTM or GRU, can be applied on the edges, nodes, and globals of the state and input graphs separately. Step20: We can easily use broadcasters to, for example, set the value of each edge to be the sum of the first feature element of Step21: Aggregators Step22: blocks.EdgeBlock Step23: blocks.NodeBlock Step24: blocks.GlobalBlock Step25: Block compositionality
14,494
<ASSISTANT_TASK:> Python Code: from halomod import AngularCF import halomod halomod.__version__ %matplotlib inline import matplotlib.pyplot as plt import numpy as np acf = AngularCF(z=0.475, zmin=0.45, zmax=0.5) plt.plot(acf.theta * 180/np.pi, acf.angular_corr_gal) plt.xscale('log') plt.yscale('log') plt.xlabel(r"$\theta$ / deg") plt.ylabel('Angular CF') acf.mean_tracer_den * 1e4 acf.hod_model = 'Zheng05' acf.hod_params = {'M_min': 12.98, 'M_0':-10, 'M_1':14.09, 'sig_logm':0.21, 'alpha':1.57} acf.mean_tracer_den * 1e4, acf.bias_effective_tracer, acf.mass_effective plt.plot(acf.theta * 180/np.pi, acf.angular_corr_gal) plt.xscale('log') plt.yscale('log') plt.xlabel(r"$\theta$ / deg") plt.ylabel('Angular CF') r = np.logspace(-3, 2.1, 500) plt.plot(r, acf.corr_auto_tracer_fnc(r)) plt.xscale('log') plt.yscale('log') from halomod.integrate_corr import angular_corr_gal angular_corr_gal( theta=np.array([1e-3]), xi = acf.corr_auto_tracer_fnc, p1=lambda x : 0.7*np.ones_like(x)/(Planck15.comoving_distance(0.5).value - Planck15.comoving_distance(0.45).value), p_of_z=False, zmin=0.45, zmax=0.5, logu_min=-6, logu_max=2.1, unum=1000, znum=500 ) from astropy.cosmology import Planck15 Planck15.comoving_distance(0.45) Planck15.comoving_distance(0.5) np.linspace(0,1,2) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The problem illustrated Step2: Note that this is pretty much 1000x times what Blake+ got, but does have a similar shape. Step3: OK, this is awful. Let's try specify the HOD more accurately Step4: This is much closer. Now let's try the ACF Step5: It's even worse than before! Step6: This is of a similar magnitude to that found in Blake.
14,495
<ASSISTANT_TASK:> Python Code: import numpy as np %matplotlib inline from sherpa import data from sherpa.astro import data as astrodata from sherpa import plot from sherpa.astro import plot as astroplot x1 = np.asarray([100, 200, 600, 1200]) y1 = np.asarray([2000, 2100, 1400, 3050]) d1 = data.Data1D('oned', x1, y1) plot1 = plot.DataPlot() plot1.prepare(d1) plot1.plot() plot1.plot(xlog=True, linestyle='dotted', marker='*', markerfacecolor='orange', markersize=20, color='black') plot.DataPlot.plot_prefs dy1 = np.asarray([100, 50, 200, 300]) d2 = data.Data1D('errors', x1, y1, dy1) plot2 = plot.DataPlot() plot2.prepare(d2) plot2.plot() plot2.plot(capsize=4) xlo2 = np.asarray([0.1, 0.2, 0.4, 0.8, 1.5]) xhi2 = np.asarray([0.2, 0.4, 0.6, 1.1, 2.0]) y2 = np.asarray([10, 12, 3, 0, 4]) data3 = data.Data1DInt('int1', xlo2, xhi2, y2) plot3 = plot.DataHistogramPlot() plot3.prepare(data3) plot3.plot(xlog=True) plot3.plot(xlog=True, linestyle='solid') plot.DataHistogramPlot.histo_prefs from sherpa.stats import Chi2DataVar plot4 = plot.DataHistogramPlot() plot4.prepare(data3, stat=Chi2DataVar()) plot4.plot(linestyle='dashed', marker=None, ecolor='orange', capsize=4) energies = np.arange(0.1, 11, 0.01) elo = energies[:-1] ehi = energies[1:] arf = 100 * np.ones_like(elo) arf[elo < 4] = 200 darf = astrodata.DataARF('arf', elo, ehi, arf) aplot = astroplot.ARFPlot() aplot.prepare(darf) splot = plot.SplitPlot() splot.addplot(aplot) splot.addplot(aplot, xlog=True) splot.plot_prefs splot.reset() splot.plot_prefs['hspace'] = 0.6 splot.addplot(aplot) splot.addplot(aplot, xlog=True) chans = np.arange(1, len(elo) + 1, dtype=np.int16) counts = 5 + 5 * np.sin(elo * 4) counts = counts.astype(np.int) dpha = astrodata.DataPHA('pha', chans, counts) pplot = astroplot.DataPHAPlot() pplot.prepare(dpha) pplot.plot() dpha.set_arf(darf) dpha.set_analysis('energy') pplot.prepare(dpha) pplot.plot(linestyle='solid', marker=None) dpha.group_bins(20) pplot.prepare(dpha, stat=Chi2DataVar()) pplot.plot(xerrorbars=True, yerrorbars=True) pplot.overplot(linestyle='solid', alpha=0.5, marker=None) from sherpa.models.basic import Sin from sherpa.astro.instrument import Response1D mdl = Sin() mdl.period = 4 # Note that the response information - in this case the ARF and channel-to-energy mapping - needs # to be applied to the model, which is done by the Response1D class in this example. # rsp = Response1D(dpha) full_model = rsp(mdl) print(full_model) mplot = astroplot.ModelHistogram() mplot.prepare(dpha, full_model) mplot.plot() mplot2 = astroplot.ModelPHAHistogram() mplot2.prepare(dpha, full_model) mplot.plot() mplot2.overplot() np.random.seed(1273) # I've never used the Wald distribution before, so let's see how it looks... # z1 = np.random.wald(1000, 20, size=1000) z2 = np.random.wald(1000, 2000, size=1000) splot = plot.ScatterPlot() splot.prepare(z1, z2, xlabel='z$_1$', ylabel='z$_2$', name='(z$_1$, z$_2$)') splot.plot(xlog=True) cplot = plot.CDFPlot() cplot.prepare(z1, xlabel='z', name='z') cplot.plot(xlog=True) cplot.prepare(z2) cplot.overplot() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: One dimensional data plots Step2: We can have some fun with the plot options (these are a mixture of generic options, such as xlog, and ones specific to the plotting backend - which here is matplotlib - such as marker). Step3: The plot object contains the preferences - here we look at the default plot settings. Note that some plot types have different - and even multiple - preference settings. Step4: Error bars - here on the dependent axis - can be displayed too Step5: Histogram-style data (with low and high edges) are handled similarly Step6: If we want to see the data drawn "like a histogram" then we need to set the linestyle attribute Step7: The histogram-style plots are an example of a plot using a different name for the preference settings, in this case histo_prefs Step8: Previously we explicitly set the error values, but we can also use one of the chi-square statistics to come up with error values. In this case it's just the square-root of the data value (so, for $x \sim 1$ bin, we have an error of 0) Step9: PHA-related plots Step10: The preferences for the split plot has a different "flavor" to the other types Step11: It does allow us to tweak the plot layout Step12: A PHA, which matches the ARF, can be created (with a sinusoidal pattern just to show something different) Step13: Adding the ARF to the data allows us to change to energy units Step14: Grouping the data - in this case in 20-channel groups - allows us to check the "x errorbar" handling (the 'errors' here just indicate the bin width, and so match the overplotted orange line) Step15: We can see how a model looks for this dataset - in this case a simple sinusoidal model which is multiplied by the ARF (shown earlier), and so is not going to match the data. Step16: Note that the ModelHistogram class does not use the grouping of the PHA dataset, so it shows the model evaluated per channel Step17: The discontinuity at 4 keV is because of the step function in the ARF (200 cm$^2$ below this energy and 100 cm$^2$ above it). Step18: Object-less plots Step19: and cumulative plots
14,496
<ASSISTANT_TASK:> Python Code: #$HIDE_INPUT$ import geopandas as gpd import pandas as pd # Load a GeoDataFrame containing regions in Ghana regions = gpd.read_file("../input/geospatial-learn-course-data/ghana/ghana/Regions/Map_of_Regions_in_Ghana.shp") print(regions.crs) # Create a DataFrame with health facilities in Ghana facilities_df = pd.read_csv("../input/geospatial-learn-course-data/ghana/ghana/health_facilities.csv") # Convert the DataFrame to a GeoDataFrame facilities = gpd.GeoDataFrame(facilities_df, geometry=gpd.points_from_xy(facilities_df.Longitude, facilities_df.Latitude)) # Set the coordinate reference system (CRS) to EPSG 4326 facilities.crs = {'init': 'epsg:4326'} # View the first five rows of the GeoDataFrame facilities.head() # Create a map ax = regions.plot(figsize=(8,8), color='whitesmoke', linestyle=':', edgecolor='black') facilities.to_crs(epsg=32630).plot(markersize=1, ax=ax) # The "Latitude" and "Longitude" columns are unchanged facilities.to_crs(epsg=32630).head() # Change the CRS to EPSG 4326 regions.to_crs("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs").head() # Get the x-coordinate of each point facilities.geometry.head().x # Calculate the area (in square meters) of each polygon in the GeoDataFrame regions.loc[:, "AREA"] = regions.geometry.area / 10**6 print("Area of Ghana: {} square kilometers".format(regions.AREA.sum())) print("CRS:", regions.crs) regions.head() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Setting the CRS Step2: How do you interpret that? Step3: In the code cell above, to create a GeoDataFrame from a CSV file, we needed to use both Pandas and GeoPandas Step4: The to_crs() method modifies only the "geometry" column Step5: In case the EPSG code is not available in GeoPandas, we can change the CRS with what's known as the "proj4 string" of the CRS. For instance, the proj4 string to convert to latitude/longitude coordinates is as follows Step6: Attributes of geometric objects Step7: And, you can get the length of a LineString from the length attribute.
14,497
<ASSISTANT_TASK:> Python Code: from edward.models import Bernoulli, Beta, Empirical, Uniform N = 100 def build_fair_dataset(N): pheads = tf.constant(0.5) c = Bernoulli(probs=pheads, sample_shape = N) return sess.run([pheads, c]) def build_unfair_dataset(N): pheads = tf.constant(0.05) c = Bernoulli(probs=pheads, sample_shape = N) return sess.run([pheads, c]) def build_dataset(N): pheads = Uniform(low=0.0,high=1.0) c = Bernoulli(probs=pheads, sample_shape = N) return sess.run([pheads, c]) x = tf.range(-0.2, 1.2, 0.001) plt.plot(*sess.run([x, Uniform(low=0.0,high=1.0).prob(x)])); plt.ylim((-0.2,1.2)) plt.title('Uniform distribution') pheads_true,c_train = build_fair_dataset(N) pheads_true c_train sum(c_train == 0) sum(c_train == 1) # declaring priors pheads_fair = Beta(concentration1=1000.0, concentration0=1000.0) # blue pheads_unfair = Beta(concentration1=0.1, concentration0=0.1) # green pheads_unknown = Beta(concentration1 = 1.0, concentration0=1.0) x = tf.range(0.0,1.0,0.001) plt.plot(*sess.run([x, pheads_fair.prob(x)])); plt.plot(*sess.run([x, pheads_unfair.prob(x)])); plt.plot(*sess.run([x, pheads_unknown.prob(x)])); plt.axvline(x=pheads_true); # Forward model pheads = pheads_unknown c = Bernoulli(probs=pheads, sample_shape=N) # inference pheads_cond = ed.complete_conditional(pheads) pheads_post = ed.copy(pheads_cond, {c: c_train}) sess.run({key:val for key, val in six.iteritems(pheads_post.parameters) if isinstance(val,tf.Tensor)}) # criticism mean, stddev = sess.run([pheads_post.mean(),pheads_post.stddev()]) print(" exact posterior mean: " + str(mean)) print("exact posterior std" + str(stddev)) x = tf.range(0.0,1.0,0.001) plt.plot(*sess.run([x,pheads.prob(x)])); plt.plot(*sess.run([x,pheads_post.prob(x)])); plt.axvline(x=pheads_true); pheads_true,c_train = build_fair_dataset(100) fig = plt.figure() ax = plt.axes(xlim=(-0.05,1.05), ylim=(-1.0,11.0)) def go(pheads_prior, sample_shape, c_train, recursion=1): # model c = Bernoulli(probs=pheads_prior, sample_shape=sample_shape) # INFERENCE pheads_cond = ed.complete_conditional(pheads_prior) pheads_post = ed.copy(pheads_cond,{c:c_train[:sample_shape]}) # CRITICISM ax.plot(*sess.run([x,pheads_post.prob(x)])); print("finished recursion "+str(recursion)) recursion += 1 # RECURSION if len(c_train[sample_shape:]) >= sample_shape: go(pheads_post, sample_shape, c_train[sample_shape:],recursion) pheads_prior = Beta(concentration1=0.1, concentration0=0.1) ax.plot(*sess.run([x, pheads_prior.prob(x)])); plt.axvline(x=pheads_true); go(pheads_prior,33,c_train) # BACKWARD MODEL T = 10000 q_pheads = Empirical(params=tf.Variable(tf.ones([T])*0.5)) # INFERENCE proposal_pheads = Beta(concentration1=1.0, concentration0=1.0) inference = ed.MetropolisHastings(latent_vars = {pheads: q_pheads}, proposal_vars={pheads: proposal_pheads}, data={c:c_train}) inference.run() # criticism mean, stddev = sess.run([q_pheads.mean(),q_pheads.stddev()]) print("inferred posterior mean:") print(mean) print("inferred posterior std:") print(stddev) plt.plot(q_pheads.params.eval()); plt.axhline(y=pheads_true) def lags(x): mean = tf.reduce_mean(x) var = tf.cast(tf.size(x) - 1, tf.float32) *tf.reduce_mean(tf.square(x-mean)) ret = tf.map_fn(lambda k:tf.cond(tf.equal(k,0), lambda:var, lambda:tf.reduce_sum((x[:-k] - mean) * (x[k:]-mean))), tf.range(0,tf.size(x)), dtype=tf.float32) return ret / var plt.plot(lags(q_pheads.params).eval()); x = tf.range(0.0,1.0,0.001) plt.plot(*sess.run([x,pheads.prob(x)])); plt.plot(*sess.run([x,pheads_cond.prob(x)], {c:c_train})); plt.hist(q_pheads.params.eval(), bins=100,range=(0.0,1.0), normed = True); plt.axvline(x=pheads_true); # BACKWARD MODEL T = 10000 q_pheads = Empirical(params=tf.Variable(tf.ones([T])*0.5)) # INFERENCE inference = ed.Gibbs(latent_vars={pheads: q_pheads}, data={c: c_train}) inference.run() # CRITICISM mean, stddev = sess.run([q_pheads.mean(),q_pheads.stddev()]) print('Inferred posterior mean:') print(mean) print('Inferred posterior std:') print(stddev) plt.plot(q_pheads.params.eval()); plt.axhline(y=pheads_true) x = tf.range(0.0,1.0,0.001) plt.plot(*sess.run([x,pheads.prob(x)])); plt.plot(*sess.run([x,pheads_cond.prob(x)], {c:c_train})); plt.hist(q_pheads.params.eval(), bins=100,range=(0.0,1.0), normed = True); plt.axvline(x=pheads_true); plt.plot(lags(q_pheads.params).eval()); # BACKWARD MODEL T = 10000 # number of empirical samples q_pheads = Empirical(params=tf.Variable(tf.ones([T])*.5)) # INFERENCE inference = ed.HMC(latent_vars={pheads: q_pheads}, data = {c: c_train}) inference.run(step_size=1.0 / N, n_steps=20) # criticism mean, stddev = sess.run([q_pheads.mean(), q_pheads.stddev()]) print("Inferred posterior mean:") print(mean) print("Inferred posterior stddev") print(stddev) plt.plot(q_pheads.params.eval()) plt.axhline(y=pheads_true) plt.plot(lags(q_pheads.params).eval()) x = tf.range(0.0, 1.0, 0.001) plt.plot(*sess.run([x, pheads.prob(x)])) plt.plot(*sess.run([x, pheads_cond.prob(x)], {c:c_train})) plt.hist(q_pheads.params.eval(), bins=100, range=(0.0, 1.0), normed=True) plt.axvline(x=pheads_true) # BACKWARD MODEL q_pheads_concentration1 = tf.nn.softplus(tf.Variable(51+ tf.random_normal([]))) q_pheads_concentration0 = tf.nn.softplus(tf.Variable(51+ tf.random_normal([]))) q_pheads = Beta(concentration1=q_pheads_concentration1, concentration0=q_pheads_concentration0) x = tf.range(-5.0, 5.0, 0.001) plt.plot(*sess.run([x,tf.nn.softplus(x)])) # inference inference = ed.KLqp(latent_vars={pheads: q_pheads}, data={c:c_train}) inference.run(n_samples=20, n_iter=1000) sess.run({key: val for key, val in six.iteritems(q_pheads.parameters) if isinstance(val,tf.Tensor)}) plt.plot(*sess.run([x,pheads.prob(x)])) plt.plot(*sess.run([x, pheads_cond.prob(x)], {c:c_train})) plt.plot(*sess.run([x, q_pheads.prob(x)])) plt.axvline(x=pheads_true) # criticism mean, stddev = sess.run([q_pheads.mean(),q_pheads.stddev()]) print("Inferred posterior mean:") print(mean) print("Inferred posterior stddev") print(stddev) ## A/B/... Testing <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: inference Step2: exact solution Step3: RECURSIVE INFERENCE Step4: approximate inference Step5: MCMC Step6: MCMC Step7: variational inference (VI)
14,498
<ASSISTANT_TASK:> Python Code: %matplotlib inline from scipy.stats import logistic import numpy as np import matplotlib.pyplot as plt from IPython.display import Image # Esto es para desplegar imágenes en la libreta def logistica(z): Calcula la función logística para cada elemento de z @param z: un ndarray @return: un ndarray de las mismas dimensiones que z # Introduce código aqui (una linea de código) #--------------------------------------------------- return logistic.cdf(z) #--------------------------------------------------- # prueba que efectivamente funciona la función implementada # si el assert es falso regresa un error de aserción (el testunit de los pobres) assert (np.abs(logistica(np.array([-1, 0, 1])) - np.array([ 0.26894142, 0.5, 0.73105858]))).sum() < 1e-6 z = np.linspace(-5, 5, 100) print z with plt.xkcd(): plt.plot( z, logistica(z)) plt.title(u'Función logística', fontsize=20) plt.xlabel(r'$z$', fontsize=20) plt.ylabel(r'$\frac{1}{1 + \exp(-z)}$', fontsize=26) def costo(theta, x, y): Calcula el costo de una theta dada para el conjunto dee entrenamiento dado por y y x @param theta: un ndarray de dimensión (n + 1, 1) @param x: un ndarray de dimensión (T, n + 1) donde la primer columna son puros unos @param y: un ndarray de dimensión (T, 1) donde cada entrada es 1.0 o 0.0 @return: un flotante con el costo T = x.shape[0] z = logistica(x.dot(theta)) #------------------------------------------------------------------------ # Agregua aqui tu código return -np.sum( y*np.log(z) + (1 - y)*np.log(1 - z ))/T #------------------------------------------------------------------------ # Otra vez el testunit del pobre (ya lo calcule yo, pero puedes hacerlo a mano para estar seguro) theta = np.ones((2,1)) x = np.array([[1, 10], [1, -5]]) y1 = np.array([[1], [0]]) y2 = np.array([[0], [1]]) y3 = np.array([[0], [0]]) y4 = np.array([[1], [1]]) assert abs(costo(theta, x, y1) - 0.01) < 1e-2 assert abs(costo(theta, x, y2) - 7.5) < 1e-2 assert abs(costo(theta, x, y3) - 5.5) < 1e-2 assert abs(costo(theta, x, y4) - 2.0) < 1e-2 def gradiente(theta, x, y): Calcula el gradiente del costo de la regrasión logística, para una theta, conociendo un conjunto de aprendizaje. @param theta: un ndarray de dimensión (n + 1, 1) @param x: un ndarray de dimensión (T, n + 1) donde la primer columna son puros unos @param y: un ndarray de dimensión (T, 1) donde cada entrada es 1.0 o 0.0 @return: un ndarray de mismas dimensiones que theta T = x.shape[0] #------------------------------------------------------------------------ # Agregua aqui tu código G = logistica(x.dot(theta)) result = (1./T)*(x.T.dot(G - y)) return result #------------------------------------------------------------------------ # Otra vez el testunit del pobre (ya lo calcule yo, pero puedes hacerlo a mano para estar seguro) theta = np.ones((2, 1)) x = np.array([[1, 10], [1, -5]]) y1 = np.array([[1], [0]]) y2 = np.array([[0], [1]]) y3 = np.array([[0], [0]]) y4 = np.array([[1], [1]]) assert abs(0.00898475 - gradiente(theta, x, y1)[0]) < 1e-4 assert abs(7.45495097 - gradiente(theta, x, y2)[1]) < 1e-4 assert abs(4.95495097 - gradiente(theta, x, y3)[1]) < 1e-4 assert abs(-0.49101525 - gradiente(theta, x, y4)[0]) < 1e-4 datos = np.loadtxt('admision.txt', comments='%', delimiter=',') x, y = datos[:,0:-1], datos[:,-1:] x = np.c_[np.ones((x.shape[0], 1)), x] plt.plot(x[y.ravel() == 1, 1], x[y.ravel() == 1, 2], 'sr', label='aceptados') plt.plot(x[y.ravel() == 0, 1], x[y.ravel() == 0, 2], 'ob', label='rechazados') plt.title(u'Ejemplo sintético para regresión logística') plt.xlabel(u'Calificación del primer examen') plt.ylabel(u'Calificación del segundo examen') plt.axis([20, 100, 20, 100]) plt.legend(loc=0) def descenso_rl_lotes(x, y, alpha, epsilon=1e-4, max_iter=int(1e4), costos=False): Descenso de gradiente por lotes para resolver el problema de regresión logística con un conjunto de aprendizaje @param x: un ndarray de dimensión (T, n + 1) donde la primer columna son puros unos @param y: un ndarray de dimensión (T, 1) donde cada entrada es 1.0 o 0.0 @param alpha: Un flotante (típicamente pequeño) con la tasa de aprendizaje @param epsilon: Un flotante pequeño como criterio de paro. Por default 1e-4 @param max_iter: Máximo numero de iteraciones. Por default 1e4 @param costos: Un booleano para saber si calculamos el historial de costos o no @return: theta, costo_hist donde costo es ndarray de dimensión (n + 1, 1) y costo_hist es un ndarray de dimensión (max_iter,) con el costo en cada iteración si costos == True, si no regresa None T, n = x.shape[0], x.shape[1] - 1 theta = np.zeros((n + 1, 1)) costo_hist = np.zeros(max_iter) if costos else None if costos: for iter in xrange(max_iter): theta += -alpha*gradiente(theta,x, y) if np.linalg.norm(theta) <= epsilon: return theta, costo_hist costo_hist[iter] = costo(theta, x, y) else: for iter in xrange(max_iter): theta += -alpha*gradiente(theta,x, y) if np.linalg.norm(theta) <= epsilon: return theta, costo_hist #-------------------------------------------------------------- # Agregar aqui tu código # # Recuerda utilizar las funciones que ya has desarrollado #-------------------------------------------------------------- return theta, costo_hist alpha = 1e-4 mi = 500 _, costo_hist = descenso_rl_lotes(x, y, alpha, epsilon=1e-4, max_iter=mi, costos=True) plt.plot(np.arange(mi), costo_hist) plt.title(r'Evolucion del costo en las primeras iteraciones con $\alpha$ = ' + str(alpha)) plt.xlabel('iteraciones') plt.ylabel('costo') theta_lotes, _ = descenso_rl_lotes(x, y, alpha, max_iter = int(1e6)) print theta_lotes print costo(theta_lotes, x, y) def predictor(theta, x): Predice los valores de y_hat (que solo pueden ser 0 o 1), utilizando el criterio MAP. @param theta: un ndarray de dimensión (n + 1, 1) @param x: un ndarray de dimensión (T, n + 1) donde la primer columna son puros unos @return: y_hat un ndarray de dimensión (T, 1) donde cada entrada es 1.0 o 0.0 #------------------------------------------------------------------------------------- # Agrega aqui tu código sin utilizar la función logística return np.where(x.dot(theta) > 0, 1, 0) #-------------------------------------------------------------------------------------- x1_frontera = np.array([20, 100]) #Los valores mínimo y máximo que tenemos en la gráfica de puntos x2_frontera = -(theta_lotes[0] / theta_lotes[2]) - (theta_lotes[1] / theta_lotes[2]) * x1_frontera plt.plot(x[y.ravel() == 1, 1], x[y.ravel() == 1, 2], 'sr', label='aceptados') plt.plot(x[y.ravel() == 0, 1], x[y.ravel() == 0, 2], 'ob', label='rechazados') plt.plot(x1_frontera, x2_frontera, 'm') plt.title(u'Ejemplo sintético para regresión logística') plt.xlabel(u'Calificación del primer examen') plt.ylabel(u'Calificación del segundo examen') plt.axis([20, 100, 20, 100]) plt.legend(loc=0) Image(filename='ejemplo_logistica_1.png') from scipy.optimize import minimize minimize? theta0 = 1e-2 * np.random.rand(x.shape[1]) print theta0 funcion = lambda theta, x, y: costo(theta.reshape(-1,1), x, y) jacobiano = lambda theta, x, y: gradiente(theta.reshape(-1,1), x, y).ravel() res = minimize(x0=theta0, fun=funcion, jac=jacobiano, args = (x, y), method='BFGS', options= {'maxiter': 400, 'disp': True}) print res theta0 = np.zeros(x.shape[1]) print theta0 funcion = lambda theta, x, y: costo(theta.reshape(-1,1), x, y) jacobiano = lambda theta, x, y: gradiente(theta.reshape(-1,1), x, y).ravel() res = minimize(x0=theta0, fun=funcion, args = (x, y), method='Nelder-Mead', options= {'maxiter': 400, 'disp': True}) print res theta_NM = res.x.reshape(-1,1) x1_frontera = np.array([20, 100]) #Los valores mínimo y máximo que tenemos en la gráfica de puntos x2_frontera = -(theta_NM[0] / theta_NM[2]) - (theta_NM[1] / theta_NM[2]) * x1_frontera plt.plot(x[y.ravel() == 1, 1], x[y.ravel() == 1, 2], 'sr', label='aceptados') plt.plot(x[y.ravel() == 0, 1], x[y.ravel() == 0, 2], 'ob', label='rechazados') plt.plot(x1_frontera, x2_frontera, 'm') plt.title(u'Ejemplo sintético para regresión logística') plt.xlabel(u'Calificación del primer examen') plt.ylabel(u'Calificación del segundo examen') plt.axis([20, 100, 20, 100]) plt.legend(loc=0) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: 1. Función logística, función de costo y gradiente de la función de costo Step3: Para probar la función vamos a graficar la función logística en el intervalo [-5, 5] Step5: Una vez establecida la función logística, vamos a implementar la función de costo sin regularizar para la regresión logística, la cual está dada por Step7: De la misma manera, para poder implementar las funciones de aprendizaje, vamos a implementar el gradiente de la función de costo. El gradiente de la función de costo respecto a $\theta$ es (como lo vimos en clase) el siguiente Step8: 2. Descenso de gradiente y el método BGFS para regresión logística Step10: Vistos los datos un clasificador lineal podría ser una buena solución. Step11: Para probar la función de aprendizaje, vamos a aplicarla a nuestro problema de admisión. Primero recuerda que tienes que hacer una exploración para encontrar el mejor valor de alpha. Así que utiliza el código de abajo para ajustar alpha Step12: Una vez encontrada la mejor $\alpha$, entonces podemos calcular $\theta$ (esto va a tardar bastante), recuerda que el costo final debe de ser lo más cercano a 0 posible, así que agrega cuantas iteraciones sean necesarias Step14: Es interesante ver como el descenso de gradiente no es eficiente en este tipo de problemas, a pesar de ser problemas de optimización convexos. Step15: ¿Que tan bueno es este clasificador? ¿Es que implementamos bien el método? Step16: Y para que tengas una idea de lo que debería de salir, anexo una figura obtenida con el código que yo hice Step17: Bueno, ya vimos que el método del descenso de gradiente, si bien es correcto y fácil de implementar, es bastante ineficiente en cuanto a tiempo (inclusive para un problema bastante simple, por lo que vamos a utilizar la función minimizeque provee scipy la que vamos a utilizar con el algoritmo BFGS (explicado en clase en forma somera). Ejecuta la celda de abajo para revisar la documentación de minimize Step18: Como puedes ver, el método BFGS es el método por default. Los parámetros que hay que agregar son Step19: Otra forma de obtener el resltado es utilizando un método tipo simplex que no necesita calcular ni el jacobiano, ni la inversión del hessiano. Que si bien requiere sensiblemente de más iteraciones, para un problema relativamente simple como este es suficiente (sin embargo para problemas de regresión lineal con muchos atributos, o redes neuronales, ya no será suficiente). Step20: Y ahora veamos la partición del espacio con este método, la cual es ligeramente diferente a la obtenida con el descenso de gradiente
14,499
<ASSISTANT_TASK:> Python Code: % matplotlib inline from __future__ import print_function import nibabel as nib from nilearn.image import resample_img import matplotlib.pyplot as plt import numpy as np import pandas as pd import os import os.path # The following are a progress bar, these are not strictly necessary: from ipywidgets import FloatProgress from IPython.display import display percentiles = range(10) # unthresholded z-maps from neurosynth: zmaps = [os.path.join(os.getcwd(), 'ROIs_Mask', fname) for fname in os.listdir(os.path.join(os.getcwd(), 'ROIs_Mask')) if 'z.nii' in fname] # individual, binned gradient maps, in a list of lists: gradmaps = [[os.path.join(os.getcwd(), 'data', 'Outputs', 'Bins', str(percentile), fname) for fname in os.listdir(os.path.join(os.getcwd(), 'data', 'Outputs', 'Bins', str(percentile)))] for percentile in percentiles] # a brain mask file: brainmaskfile = os.path.join(os.getcwd(), 'ROIs_Mask', 'rbgmask.nii') def zinsidemask(zmap, mask): # zaverage = zmap.dataobj[ np.logical_and(np.not_equal(mask.dataobj, 0), brainmask.dataobj>0) ].mean() return zaverage zaverages = np.zeros([len(zmaps), len(gradmaps), len(gradmaps[0])]) # load first gradmap just for resampling gradmap = nib.load(gradmaps[0][0]) # Load a brainmask brainmask = nib.load(brainmaskfile) brainmask = resample_img(brainmask, target_affine=gradmap.affine, target_shape=gradmap.shape) # Initialise a progress bar: progbar = FloatProgress(min=0, max=zaverages.size) display(progbar) # loop through the network files: for i1, zmapfile in enumerate(zmaps): # load the neurosynth activation file: zmap = nib.load(zmapfile) # make sure the images are in the same space: zmap = resample_img(zmap, target_affine=gradmap.affine, target_shape=gradmap.shape) # loop through the bins: for i2, percentile in enumerate(percentiles): # loop through the subjects: for i3, gradmapfile in enumerate(gradmaps[percentile]): gradmap = nib.load(gradmapfile) # load image zaverages[i1, i2, i3] = zinsidemask(zmap, gradmap) # calculate av. z-score progbar.value += 1 # update progressbar (only works in jupyter notebooks) # np.save(os.path.join(os.getcwd(), 'data', 'average-abs-z-scores'), zaverages) zaverages = np.load(os.path.join(os.getcwd(), 'data', 'average-z-scores.npy')) df_phen = pd.read_csv('data' + os.sep + 'SelectedSubjects.csv') diagnosis = df_phen.loc[:, 'DX_GROUP'] fileids = df_phen.loc[:, 'FILE_ID'] groupvec = np.zeros(len(gradmaps[0])) for filenum, filename in enumerate(gradmaps[0]): fileid = os.path.split(filename)[-1][5:-22] groupvec[filenum] = (diagnosis[fileids.str.contains(fileid)]) print(groupvec.shape) fig = plt.figure(figsize=(15, 8)) grouplabels = ['Control group', 'Autism group'] for group in np.unique(groupvec): ylabels = [os.path.split(fname)[-1][0:-23].replace('_', ' ') for fname in zmaps] # remove duplicates! includenetworks = [] seen = set() for string in ylabels: includenetworks.append(string not in seen) seen.add(string) ylabels = [string for index, string in enumerate(ylabels) if includenetworks[index]] tmp_zaverages = zaverages[includenetworks, :, :] tmp_zaverages = tmp_zaverages[:, :, groupvec==group] tmp_zaverages = tmp_zaverages[np.argsort(np.argmax(tmp_zaverages.mean(axis=2), axis=1)), :, :] # make the figure plt.subplot(1, 2, group) cax = plt.imshow(tmp_zaverages.mean(axis=2), cmap='bwr', interpolation='nearest', vmin=zaverages.mean(axis=2).min(), vmax=zaverages.mean(axis=2).max()) ax = plt.gca() plt.title(grouplabels[int(group-1)]) plt.xlabel('Percentile of principle gradient') ax.set_xticks(np.arange(0, len(percentiles), 3)) ax.set_xticklabels(['100-90', '70-60', '40-30', '10-0']) ax.set_yticks(np.arange(0, len(seen), 1)) ax.set_yticklabels(ylabels) ax.set_yticks(np.arange(-0.5, len(seen), 1), minor=True) ax.set_xticks(np.arange(-0.5, 10, 1), minor=True) ax.grid(which='minor', color='w', linewidth=2) fig.subplots_adjust(right=0.8) cbar_ax = fig.add_axes([0.85, 0.15, 0.01, 0.7]) fig.colorbar(cax, cax=cbar_ax, label='Average Z-Score') #fig.colorbar(cax, cmap='bwr', orientation='horizontal') plt.savefig('./figures/z-scores-inside-gradient-bins.png') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Define the variables for this analysis. Step2: Next define a function to take the average of an image inside a mask and return it Step3: This next cell will step through each combination of gradient, subject and network file to calculate the average z-score inside the mask defined by the gradient percentile. This will take a long time to run! Step4: To save time next time, we'll save the result of this to file Step5: Extract a list of which group contains which participants. Step6: Make a plot of the z-scores inside each parcel for each gradient, split by group!