Unnamed: 0
int64
cleaned_code
string
cleaned_prompt
string
14,800
<ASSISTANT_TASK:> Python Code: factors(689) max_seq_len = 682 #full_train_size = 55820 #train_size = 55800 #small_train_size = 6000 #just because of performance reasons, no statistics behind this decision #test_size = 6200 data_path = '../../../../Dropbox/data' phae_path = data_path + '/price_hist_autoencoder' csv_in = '../price_history_03_seq_start_suddens_trimmed.csv' assert path.isfile(csv_in) npz_unprocessed = phae_path + '/price_history_full_seqs.npz' assert path.isfile(npz_unprocessed) npz_dates = phae_path + '/price_history_full_seqs_dates.npz' assert path.isfile(npz_dates) npz_train = phae_path + '/price_history_seqs_dates_normed_train.npz' assert path.isfile(npz_train) npz_test = phae_path + '/price_history_seqs_dates_normed_test.npz' assert path.isfile(npz_test) npz_path = npz_train[:-len('_train.npz')] for key, val in np.load(npz_train).iteritems(): print key, ",", val.shape dp = PriceHistoryAutoEncDataProvider(npz_path=npz_path, batch_size=53, with_EOS=False) for data in dp.datalist: print data.shape # for item in dp.next(): # print item.shape # model = PriceHistoryAutoencoder(rng=random_state, dtype=dtype, config=config) # graph = model.getGraph(batch_size=53, # enc_num_units = 10, # dec_num_units = 10, # ts_len=max_seq_len) #show_graph(graph) def experiment(): return model.run(npz_path=npz_path, epochs=2, batch_size = 53, enc_num_units = 400, dec_num_units = 400, ts_len=max_seq_len, learning_rate = 1e-4, preds_gather_enabled = False, ) dyn_stats_dic = experiment() dyn_stats_dic['dyn_stats'].plotStats() plt.show() dyn_stats_dic['dyn_stats_diff'].plotStats() plt.show() model = PriceHistoryAutoencoder(rng=random_state, dtype=dtype, config=config) npz_test = npz_path + '_test.npz' assert path.isfile(npz_test) path.abspath(npz_test) def experiment(): return model.run(npz_path=npz_path, epochs=50, batch_size = 53, enc_num_units = 450, dec_num_units = 450, ts_len=max_seq_len, learning_rate = 1e-3, preds_gather_enabled = True, ) #%%time # dyn_stats_dic, preds_dict, targets, twods = experiment() dyn_stats_dic, preds_dict, targets, twods = get_or_run_nn(experiment, filename='035_autoencoder_001', nn_runs_folder = data_path + "/nn_runs") dyn_stats_dic['dyn_stats'].plotStats() plt.show() dyn_stats_dic['dyn_stats_diff'].plotStats() plt.show() r2_scores = [r2_score(y_true=targets[ind], y_pred=preds_dict[ind]) for ind in range(len(targets))] ind = np.argmin(r2_scores) ind reals = targets[ind] preds = preds_dict[ind] r2_score(y_true=reals, y_pred=preds) #sns.tsplot(data=dp.inputs[ind].flatten()) fig = plt.figure(figsize=(15,6)) plt.plot(reals, 'b') plt.plot(preds, 'g') plt.legend(['reals','preds']) plt.show() %%time dtw_scores = [fastdtw(targets[ind], preds_dict[ind])[0] for ind in range(len(targets))] np.mean(dtw_scores) coint(preds, reals) cur_ind = np.random.randint(len(targets)) reals = targets[cur_ind] preds = preds_dict[cur_ind] fig = plt.figure(figsize=(15,6)) plt.plot(reals, 'b', label='reals') plt.plot(preds, 'g') plt.legend(['reals','preds']) plt.show() twod_arr = np.array(twods.values()) twod_arr.shape plt.figure(figsize=(16,7)) plt.plot(twod_arr[:, 0], twod_arr[:, 1], 'r.') plt.title('two dimensional representation of our time series after dimensionality reduction') plt.xlabel('first dimension') plt.ylabel('second dimension') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Step 1 - collect data Step2: Step 2 - Build model Step3: targets Step4: Quick test run Step5: Step 3 training the network Step6: Conclusion
14,801
<ASSISTANT_TASK:> Python Code: %matplotlib inline # All the imports from __future__ import print_function, division import pom3_ga, sys import pickle # TODO 1: Enter your unity ID here __author__ = "pwang13" def normalize(problem, points): Normalize all the objectives in each point and return them meta = problem.objectives all_objs = [] for point in points: objs = [] for i, o in enumerate(problem.evaluate(point)): low, high = meta[i].low, meta[i].high # TODO 3: Normalize 'o' between 'low' and 'high'; Then add the normalized value to 'objs' if high == low: objs.append(0) continue objs.append((o - low) / (high - low)) all_objs.append(objs) return all_objs Performing experiments for [5, 10, 50] generations. problem = pom3_ga.POM3() pop_size = 10 repeats = 10 test_gens = [5, 10, 50] def save_data(file_name, data): Save 'data' to 'file_name.pkl' with open(file_name + ".pkl", 'wb') as f: pickle.dump(data, f, pickle.HIGHEST_PROTOCOL) def load_data(file_name): Retrieve data from 'file_name.pkl' with open(file_name + ".pkl", 'rb') as f: return pickle.load(f) def build(problem, pop_size, repeats, test_gens): Repeat the experiment for 'repeats' number of repeats for each value in 'test_gens' tests = {t: [] for t in test_gens} tests[0] = [] # For Initial Population for _ in range(repeats): init_population = pom3_ga.populate(problem, pop_size) pom3_ga.say(".") for gens in test_gens: tests[gens].append(normalize(problem, pom3_ga.ga(problem, init_population, retain_size=pop_size, gens=gens)[1])) tests[0].append(normalize(problem, init_population)) print("\nCompleted") return tests Repeat Experiments # tests = build(problem, pop_size, repeats, test_gens) Save Experiment Data into a file # save_data("dump", tests) Load the experimented data from dump. tests = load_data("dump") print(tests.keys()) def make_reference(problem, *fronts): Make a reference set comparing all the fronts. Here the comparison we use is bdom. It can be altered to use cdom as well retain_size = len(fronts[0]) reference = [] for front in fronts: reference+=front def bdom(one, two): Return True if 'one' dominates 'two' else return False :param one - [pt1_obj1, pt1_obj2, pt1_obj3, pt1_obj4] :param two - [pt2_obj1, pt2_obj2, pt2_obj3, pt2_obj4] dominates = False for i, obj in enumerate(problem.objectives): gt, lt = pom3_ga.gt, pom3_ga.lt better = lt if obj.do_minimize else gt # TODO 3: Use the varaibles declared above to check if one dominates two if (better(one[i], two[i])): dominates = True elif one[i] != two[i]: return False return dominates def fitness(one, dom): return len([1 for another in reference if dom(one, another)]) fitnesses = [] for point in reference: fitnesses.append((fitness(point, bdom), point)) reference = [tup[1] for tup in sorted(fitnesses, reverse=True)] return reference[:retain_size] assert len(make_reference(problem, tests[5][0], tests[10][0], tests[50][0])) == len(tests[5][0]) def eucledian(one, two): Compute Eucledian Distance between 2 vectors. We assume the input vectors are normalized. :param one: Vector 1 :param two: Vector 2 :return: # TODO 4: Code up the eucledian distance. https://en.wikipedia.org/wiki/Euclidean_distance return (sum([(o - t) ** 2 for o, t in zip(one, two)]) / len(one)) ** 0.5 def sort_solutions(solutions): Sort a list of list before computing spread def sorter(lst): m = len(lst) weights = reversed([10 ** i for i in xrange(m)]) return sum([element * weight for element, weight in zip(lst, weights)]) return sorted(solutions, key=sorter) def closest(one, many): min_dist = sys.maxint closest_point = None for this in many: dist = eucledian(this, one) if dist < min_dist: min_dist = dist closest_point = this return min_dist, closest_point def spread(obtained, ideals): Calculate the spread (a.k.a diversity) for a set of solutions s_obtained = sort_solutions(obtained) s_ideals = sort_solutions(ideals) d_f = closest(s_ideals[0], s_obtained)[0] d_l = closest(s_ideals[-1], s_obtained)[0] n = len(s_ideals) distances = [] for i in range(len(s_obtained)-1): distances.append(eucledian(s_obtained[i], s_obtained[i+1])) d_bar = sum(distances) / len(distances) # TODO 5: Compute the value of spread using the definition defined in the previous cell. d_sum = sum([abs(d_i - d_bar) for d_i in distances]) delta = (d_f + d_l + d_sum) / (d_f + d_l + (n - 1)*d_bar) return delta ref = make_reference(problem, tests[5][0], tests[10][0], tests[50][0]) print(spread(tests[5][0], ref)) print(spread(tests[10][0], ref)) print(spread(tests[50][0], ref)) def igd(obtained, ideals): Compute the IGD for a set of solutions :param obtained: Obtained pareto front :param ideals: Ideal pareto front :return: # TODO 6: Compute the value of IGD using the definition defined in the previous cell. igd_val = sum([closest(ideal, obtained)[0] for ideal in ideals]) / len(ideals) # igd_val = 0 return igd_val ref = make_reference(problem, tests[5][0], tests[10][0], tests[50][0]) print(igd(tests[5][0], ref)) print(igd(tests[10][0], ref)) print(igd(tests[50][0], ref)) import sk sk = reload(sk) def format_for_sk(problem, data, measure): Convert the experiment data into the format required for sk.py and computet the desired 'measure' for all the data. gens = data.keys() reps = len(data[gens[0]]) measured = {gen:["gens_%d"%gen] for gen in gens} for i in range(reps): ref_args = [data[gen][i] for gen in gens] ref = make_reference(problem, *ref_args) for gen in gens: measured[gen].append(measure(data[gen][i], ref)) return measured def report(problem, tests, measure): measured = format_for_sk(problem, tests, measure).values() sk.rdivDemo(measured) print("*** IGD ***") report(problem, tests, igd) print("\n*** Spread ***") report(problem, tests, spread) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: To compute most measures, data(i.e objectives) is normalized. Normalization is scaling the data between 0 and 1. Why do we normalize? Step10: Data Format Step13: Reference Set Step17: Spread Step20: IGD = inter-generational distance; i.e. how good are you compared to the best known?
14,802
<ASSISTANT_TASK:> Python Code: class Stack: def __init__(self): self.items = [] def isEmpty(self): return self.items == [] def push(self, item): self.items.append(item) def pop(self): return self.items.pop() def peek(self): return self.items[len(self.items)-1] def size(self): return len(self.items) s=Stack() print(s.isEmpty()) s.push(4) s.push('dog') print(s.peek()) s.push(True) print(s.size()) print(s.isEmpty()) s.push(8.4) print(s.items) print(s.pop()) print(s.pop()) print(s.size()) class Queue: def __init__(self): self.items = [] def add(self,item): self.items.append( item ) def remove(self): self.items.remove( self.items[0]) def peek(self): return self.items[0] def isEmpty(self): return self.items == [] def parChecker(symbolString): s = Stack() balanced = True index = 0 while index < len(symbolString) and balanced: symbol = symbolString[index] if symbol == "(": s.push(symbol) else: if s.isEmpty(): balanced = False else: s.pop() index = index + 1 if balanced and s.isEmpty(): return True else: return False print(parChecker('((()))')) print(parChecker('(()')) def parChekcer(symbolString): s = Stack() balanced = True index = 0 while index < len(symbolString) and balanced: symbol = symbolString[index] if symbol in "([{": s.push(symbol) else: if s.isEmpty(): balanced = False else: top = s.pop() if not matches(top,symbol): balanced = False index = index + 1 if balanced and s.isEmpty(): return True else: return False def matches(open,close): opens = "([{" closers = ")]}" return opens.index(open) == closers.index(close) print(parChecker('{{([][])}()}') ) print(parChecker('[{()]')) def divideBy2(decNumber): remstack = Stack() while decNumber >0: rem = decNumber % 2 remstack.push(rem) decNumber = decNumber // 2 binString = "" while not remstack.isEmpty(): binString = binString + str(remstack.pop()) return binString print(divideBy2(42)) divideBy2(233) def baseConverter(decNumber,base): digits = "0123456789ABCDEF" remstack=Stack() while decNumber >0: rem = decNumber % base remstack.push(rem) decNumber = decNumber // base newString = "" while not remstack.isEmpty(): newString = newString + digits[remstack.pop()] return newString print(baseConverter(25,2)) print(baseConverter(25,16)) print(baseConverter(25,8)) print(baseConverter(256,16)) print(baseConverter(26,26)) # Node class class Node: # Function to initialize the node object def __init__(self,data): self.data = data # Assign data self.next= None # Initialize # next as null # Linked List class class LinkedList: # Function to initialize the Linked # List object def __init__(self): self.head = None # This function prints contents of linked list # starting from head # traversal of a linked list def printList(self): temp = self.head while (temp): print temp.data temp = temp.next # Start with the empty list llist = LinkedList() llist.head = Node(1) second = Node(2) third = Node(3) llist.head.next = second; # Link 1st node with second second.next = third llist.printList() class Node: def __init__(self,val): self.val = val self.next = None class LinkedList: def __init__(self,val=None): if val is None: self.head = None else: self.head = Node(val) def insertEnd(self,val): temp = self.head while(temp.next): # check if temp has a next temp = temp.next # keep traversing temp.next = Node(val) def printList(self): temp = self.head while (temp): # stop when temp is a None, which could happen with next in Node print temp.val temp = temp.next llist = LinkedList(1) llist.printList() llist.insertEnd(2) llist.printList() llist.insertEnd(4) llist.printList() llist.insertEnd(2) llist.printList() llist.insertEnd(6) llist.printList() llist.insertEnd(7) llist.printList() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: cf. 3 Stacks and Queues, Cracking the Coding Interview, 6th Ed., McDowell, stack uses LIFO - as in a stack of dinner plates, the most recent item added to the stack is the 1st item to be removed. Step2: cf. 3.6. Simple Balanced Parentheses Step3: Linked List
14,803
<ASSISTANT_TASK:> Python Code: import os import sys module_path = os.path.abspath(os.path.join('..')) if module_path not in sys.path: sys.path.append(module_path) sys.path.append(module_path + '/rl_coach') from typing import Union import numpy as np from rl_coach.agents.ddpg_agent import DDPGAgent, DDPGAgentParameters, DDPGAlgorithmParameters from rl_coach.spaces import SpacesDefinition from rl_coach.core_types import RunPhase class HACDDPGAlgorithmParameters(DDPGAlgorithmParameters): def __init__(self): super().__init__() self.sub_goal_testing_rate = 0.5 self.time_limit = 40 class HACDDPGAgentParameters(DDPGAgentParameters): def __init__(self): super().__init__() self.algorithm = DDPGAlgorithmParameters() class HACDDPGAgent(DDPGAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.sub_goal_testing_rate = self.ap.algorithm.sub_goal_testing_rate self.graph_manager = None def choose_action(self, curr_state): # top level decides, for each of his generated sub-goals, for all the layers beneath him if this is a sub-goal # testing phase graph_manager = self.parent_level_manager.parent_graph_manager if self.ap.is_a_highest_level_agent: graph_manager.should_test_current_sub_goal = np.random.rand() < self.sub_goal_testing_rate if self.phase == RunPhase.TRAIN: if graph_manager.should_test_current_sub_goal: self.exploration_policy.change_phase(RunPhase.TEST) else: self.exploration_policy.change_phase(self.phase) action_info = super().choose_action(curr_state) return action_info def update_transition_before_adding_to_replay_buffer(self, transition): graph_manager = self.parent_level_manager.parent_graph_manager # deal with goals given from a higher level agent if not self.ap.is_a_highest_level_agent: transition.state['desired_goal'] = self.current_hrl_goal transition.next_state['desired_goal'] = self.current_hrl_goal self.distance_from_goal.add_sample(self.spaces.goal.distance_from_goal( self.current_hrl_goal, transition.next_state)) goal_reward, sub_goal_reached = self.spaces.goal.get_reward_for_goal_and_state( self.current_hrl_goal, transition.next_state) transition.reward = goal_reward transition.game_over = transition.game_over or sub_goal_reached # each level tests its own generated sub goals if not self.ap.is_a_lowest_level_agent and graph_manager.should_test_current_sub_goal: _, sub_goal_reached = self.spaces.goal.get_reward_for_goal_and_state( transition.action, transition.next_state) sub_goal_is_missed = not sub_goal_reached if sub_goal_is_missed: transition.reward = -self.ap.algorithm.time_limit return transition def set_environment_parameters(self, spaces: SpacesDefinition): super().set_environment_parameters(spaces) if self.ap.is_a_highest_level_agent: # the rest of the levels already have an in_action_space set to be of type GoalsSpace, thus they will have # their GoalsSpace set to the in_action_space in agent.set_environment_parameters() self.spaces.goal = self.spaces.action self.spaces.goal.set_target_space(self.spaces.state[self.spaces.goal.goal_name]) if not self.ap.is_a_highest_level_agent: self.spaces.reward.reward_success_threshold = self.spaces.goal.reward_type.goal_reaching_reward from rl_coach.architectures.tensorflow_components.layers import Dense from rl_coach.base_parameters import VisualizationParameters, EmbeddingMergerType, EmbedderScheme from rl_coach.architectures.embedder_parameters import InputEmbedderParameters from rl_coach.memories.episodic.episodic_hindsight_experience_replay import HindsightGoalSelectionMethod, \ EpisodicHindsightExperienceReplayParameters from rl_coach.memories.episodic.episodic_hrl_hindsight_experience_replay import \ EpisodicHRLHindsightExperienceReplayParameters from rl_coach.memories.memory import MemoryGranularity from rl_coach.spaces import GoalsSpace, ReachingGoal from rl_coach.exploration_policies.ou_process import OUProcessParameters from rl_coach.core_types import EnvironmentEpisodes, EnvironmentSteps, RunPhase, TrainingSteps time_limit = 1000 polar_coordinates = False distance_from_goal_threshold = np.array([0.075, 0.075, 0.75]) goals_space = GoalsSpace('achieved_goal', ReachingGoal(default_reward=-1, goal_reaching_reward=0, distance_from_goal_threshold=distance_from_goal_threshold), lambda goal, state: np.abs(goal - state)) # raw L1 distance top_agent_params = HACDDPGAgentParameters() # memory - Hindsight Experience Replay top_agent_params.memory = EpisodicHRLHindsightExperienceReplayParameters() top_agent_params.memory.max_size = (MemoryGranularity.Transitions, 10000000) top_agent_params.memory.hindsight_transitions_per_regular_transition = 3 top_agent_params.memory.hindsight_goal_selection_method = HindsightGoalSelectionMethod.Future top_agent_params.memory.goals_space = goals_space top_agent_params.algorithm.num_consecutive_playing_steps = EnvironmentEpisodes(32) top_agent_params.algorithm.num_consecutive_training_steps = 40 top_agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps(40) # exploration - OU process top_agent_params.exploration = OUProcessParameters() top_agent_params.exploration.theta = 0.1 # actor - note that the default middleware is overriden with 3 dense layers top_actor = top_agent_params.network_wrappers['actor'] top_actor.input_embedders_parameters = {'observation': InputEmbedderParameters(scheme=EmbedderScheme.Empty), 'desired_goal': InputEmbedderParameters(scheme=EmbedderScheme.Empty)} top_actor.middleware_parameters.scheme = [Dense([64])] * 3 top_actor.learning_rate = 0.001 top_actor.batch_size = 4096 # critic - note that the default middleware is overriden with 3 dense layers top_critic = top_agent_params.network_wrappers['critic'] top_critic.input_embedders_parameters = {'observation': InputEmbedderParameters(scheme=EmbedderScheme.Empty), 'action': InputEmbedderParameters(scheme=EmbedderScheme.Empty), 'desired_goal': InputEmbedderParameters(scheme=EmbedderScheme.Empty)} top_critic.embedding_merger_type = EmbeddingMergerType.Concat top_critic.middleware_parameters.scheme = [Dense([64])] * 3 top_critic.learning_rate = 0.001 top_critic.batch_size = 4096 from rl_coach.schedules import ConstantSchedule from rl_coach.exploration_policies.e_greedy import EGreedyParameters bottom_agent_params = HACDDPGAgentParameters() bottom_agent_params.algorithm.in_action_space = goals_space bottom_agent_params.memory = EpisodicHindsightExperienceReplayParameters() bottom_agent_params.memory.max_size = (MemoryGranularity.Transitions, 12000000) bottom_agent_params.memory.hindsight_transitions_per_regular_transition = 4 bottom_agent_params.memory.hindsight_goal_selection_method = HindsightGoalSelectionMethod.Future bottom_agent_params.memory.goals_space = goals_space bottom_agent_params.algorithm.num_consecutive_playing_steps = EnvironmentEpisodes(16 * 25) # 25 episodes is one true env episode bottom_agent_params.algorithm.num_consecutive_training_steps = 40 bottom_agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps(40) bottom_agent_params.exploration = EGreedyParameters() bottom_agent_params.exploration.epsilon_schedule = ConstantSchedule(0.2) bottom_agent_params.exploration.evaluation_epsilon = 0 bottom_agent_params.exploration.continuous_exploration_policy_parameters = OUProcessParameters() bottom_agent_params.exploration.continuous_exploration_policy_parameters.theta = 0.1 # actor bottom_actor = bottom_agent_params.network_wrappers['actor'] bottom_actor.input_embedders_parameters = {'observation': InputEmbedderParameters(scheme=EmbedderScheme.Empty), 'desired_goal': InputEmbedderParameters(scheme=EmbedderScheme.Empty)} bottom_actor.middleware_parameters.scheme = [Dense([64])] * 3 bottom_actor.learning_rate = 0.001 bottom_actor.batch_size = 4096 # critic bottom_critic = bottom_agent_params.network_wrappers['critic'] bottom_critic.input_embedders_parameters = {'observation': InputEmbedderParameters(scheme=EmbedderScheme.Empty), 'action': InputEmbedderParameters(scheme=EmbedderScheme.Empty), 'desired_goal': InputEmbedderParameters(scheme=EmbedderScheme.Empty)} bottom_critic.embedding_merger_type = EmbeddingMergerType.Concat bottom_critic.middleware_parameters.scheme = [Dense([64])] * 3 bottom_critic.learning_rate = 0.001 bottom_critic.batch_size = 4096 agents_params = [top_agent_params, bottom_agent_params] from rl_coach.environments.gym_environment import Mujoco from rl_coach.environments.environment import SelectedPhaseOnlyDumpMethod from rl_coach.graph_managers.hrl_graph_manager import HRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters env_params = Mujoco() env_params.level = "rl_coach.environments.mujoco.pendulum_with_goals:PendulumWithGoals" env_params.additional_simulator_parameters = {"time_limit": time_limit, "random_goals_instead_of_standing_goal": False, "polar_coordinates": polar_coordinates, "goal_reaching_thresholds": distance_from_goal_threshold} env_params.frame_skip = 10 env_params.custom_reward_threshold = -time_limit + 1 vis_params = VisualizationParameters() vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST)] vis_params.dump_mp4 = False vis_params.native_rendering = False schedule_params = ScheduleParameters() schedule_params.improve_steps = EnvironmentEpisodes(40 * 4 * 64) # 40 epochs schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(4 * 64) # 4 small batches of 64 episodes schedule_params.evaluation_steps = EnvironmentEpisodes(64) schedule_params.heatup_steps = EnvironmentSteps(0) graph_manager = HRLGraphManager(agents_params=agents_params, env_params=env_params, schedule_params=schedule_params, vis_params=vis_params, consecutive_steps_to_run_each_level=EnvironmentSteps(40)) graph_manager.visualization_parameters.render = True from rl_coach.base_parameters import TaskParameters, Frameworks log_path = '../experiments/pendulum_hac' if not os.path.exists(log_path): os.makedirs(log_path) task_parameters = TaskParameters(framework_type=Frameworks.tensorflow, evaluate_only=False, experiment_path=log_path) task_parameters.__dict__['checkpoint_save_secs'] = None task_parameters.__dict__['verbosity'] = 'low' graph_manager.create_graph(task_parameters) graph_manager.improve() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now let's define the HAC algorithm and agent parameters. Step2: Now we'll define the agent itself - HACDDPGAgent - which subclasses the DDPG agent class. The main difference between the DDPG agent and the HACDDPGAgent is the subgoal a higher level agent defines to a lower level agent, hence the overrides of the DDPG Agent functions. Step3: The Preset Step4: The bottom agent Step5: Now we define the parameters of all the agents in the hierarchy from top to bottom Step6: Define the environment, visualization and schedule parameters. The schedule parameters refer to the top level agent. Step7: Lastly, we create a HRLGraphManager that will execute the hierarchical agent we defined according to the parameters. Step8: Running the Preset
14,804
<ASSISTANT_TASK:> Python Code:: from sklearn.model_selection import GridSearchCV import xgboost as xgb # create a dictionary containing the hyperparameters # to tune and the range of values to try PARAMETERS = {"subsample":[0.75, 1], "colsample_bytree":[0.75, 1], "max_depth":[2, 6], "min_child_weight":[1, 5], "learning_rate":[0.1, 0.01]} # create a validation set which will be used for early stopping eval_set = [(X_val, y_val)] # initialise an XGBoost classifier, set the number of estimators, # evaluation metric & early stopping rounds estimator = xgb.XGBClassifier(n_estimators=100, n_jobs=-1, eval_metric='logloss', early_stopping_rounds=10) # initialise GridSearchCV model by passing the XGB classifier we # initialised in the last step along with the dictionary of parameters # and values to try. We also set the number of folds to validate over # along with the scoring metic to use model = GridSearchCV(estimator=estimator, param_grid=PARAMETERS, cv=3, scoring="neg_log_loss") # fit model model.fit(X_train, y_train, eval_set=eval_set, verbose=0) # print out the best hyperparameters print(model.best_params_) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
14,805
<ASSISTANT_TASK:> Python Code: #Import libraries import sys, os import pandas as pd import numpy as np #Get file names; these files are created by the CreateUsageTable.py and CreateSupplyTable.py respectively dataDir = '../../Data' tidyuseFN = dataDir + os.sep + "UsageDataTidy.csv" tidysupplyFN = dataDir + os.sep + "SupplyTableTidy.csv" outCountyFN = dataDir + os.sep + "WaterByCounty.csv" outStateFN = dataDir + os.sep + "WaterByState.csv" outNationFN = dataDir + os.sep + "WaterBalanceData.csv" #Read in the usage table from the csv file dfUse = pd.read_csv(tidyuseFN,dtype={'FIPS':np.str}) #Remove rows with irrigation and thermoelectric sub-classes #dropValues = ['Irrigation_Crop', 'Irrigation_Golf','ThermoElec_OnceThru', 'ThermoElec_Recirc'] dropValues = ['Irrigation','ThermoElec'] dfUse = dfUse[~dfUse['UseClass'].isin(dropValues)] #Convert amounts from MGal/day to MGal/year dfUse['Amount'] = dfUse['Amount'] * 365 #Add STATEFIPS column to dfUse (as left most 2 characters of FIPS values) dfUse['STATEFIPS'] = dfUse['FIPS'].str[:2] #Pivot on YEAR and FIPS listing usage in sector/source categories dfUseFIPS = dfUse.pivot_table(index=['YEAR','STATE','FIPS'], values='Amount', aggfunc='sum', columns=['UseClass','SrcClass']) #Flatten hierarchical column names dfUseFIPS.columns = ['_'.join(col).strip() for col in dfUseFIPS.columns.values] #Remove indices so values are available as columns dfUseFIPS.reset_index(inplace=True) dfUseFIPS.head(2) #Read in the supply table from the csv file dfSupply = pd.read_csv(tidysupplyFN,dtype={'FIPS':np.str,'STATEFIPS':np.str}) #Compute supply as precipitation - evapotranspiration #(See https://www.fs.fed.us/rm/value/docs/spatial_distribution_water_supply.pdf) # * Could also use total_runoff # * Values are in mm/year and need to be adjusted to MGal/year by mulitplying by weighted area dfSupply['Supply'] = dfSupply['pr'] - dfSupply['et'] #Summarize supply on YEAR and FIPS '''We take the mean mm/year across points in a county and then mulitply by county area to get volume (mm * m3). These values then need to by converted to MGal to give MGal/year ''' #Compute mean runoff and supply on year and county dfSupplyFIPS = dfSupply.groupby(('YEAR','STATEFIPS','FIPS','Area'))['total_runoff','Supply'].mean() #Reset the index so Year, StateFIPS, FIPS, and AREA become columns again dfSupplyFIPS.reset_index(inplace=True) #Convert mm/Year * county area (m2) into MGal/year - to match use values ''' m = [mm] / 1000; m * [m2] = m3; [m3] / 3785.41178 = 1 MGal''' for param in ('total_runoff','Supply'): dfSupplyFIPS[param] = (dfSupplyFIPS[param] / 1000.0) * dfSupplyFIPS.Area / 3785.41178 dfSupplyFIPS.head(2) dfSupplyFIPS.columns.values #Merge the two tables on YEAR and FIPS columns dfAll = pd.merge(dfUseFIPS,dfSupplyFIPS, how='outer',on=['YEAR','FIPS'],left_index=True,right_index=True) dfAll.head(2) #Export to csv dfAll.to_csv(outCountyFN, index=False, encoding='utf8') #Group by YEAR dfUS = dfAll.groupby('YEAR').sum() dfUS.head() dfUS.reset_index(inplace=True) dfUSm = pd.melt(dfUS,id_vars='YEAR',var_name='Group',value_name='MGal') dfUSm.to_csv(outNationFN,index=False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Summarize USE table by county Step2: Import and summarize supply table by county Step3: Join Use and Supply Tables on Year and FIPS Step4: Summarize for entire US
14,806
<ASSISTANT_TASK:> Python Code: %matplotlib inline from __future__ import print_function # only necessary if using Python 2.x import numpy as np from pyshtools import SHCoeffs lmax = 30 coeffs = SHCoeffs.from_zeros(lmax) coeffs.set_coeffs(values=[1], ls=[10], ms=[0]) grid = coeffs.expand() fig, ax = grid.plot3d(elevation=20, azimuth=30) ldata = 30 degrees = np.arange(ldata+1, dtype=float) degrees[0] = np.inf power = degrees**(-2) coeffs2 = SHCoeffs.from_random(power) grid2 = coeffs2.expand() fig, ax = grid2.plot3d(elevation=20, azimuth=30) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: To plot the data, we first expand it on a grid, and then use the method plot3d() Step2: Let's try a somewhat more complicated function. Here we will calculate a random realization of a process whose power spectrum follows a power law with exponent -2
14,807
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt import numpy as np # if using a Jupyter notebook, includue: %matplotlib inline mu = 80 sigma = 7 x = np.random.normal(mu, sigma, size=200) plt.hist(x, 20, density=True, histtype='bar', facecolor='b', alpha=0.5) plt.show() import matplotlib.pyplot as plt # if using a Jupyter notebook, include: %matplotlib inline commute_times = [23, 25, 40, 35, 36, 47, 33, 28, 48, 34, 20, 37, 36, 23, 33, 36, 20, 27, 50, 34, 47, 18, 28, 52, 21, 44, 34, 13, 40, 49] plt.hist(commute_times, 5) plt.show() bin_edges = [0,15,30,45,60] plt.hist(commute_times, bins=bin_edges, density=False, histtype='bar', color='b', edgecolor='k', alpha=0.5) plt.xlabel('Commute time (min)') plt.xticks([0,15,30,45,60]) plt.ylabel('Number of commuters') plt.title('Histogram of commute times') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: For our dataset, let's define a mean (average) mu = 80 and a standard deviation (spread) sigma = 7. Then we'll use numpy's np.random.normal() function to produce an array of random numbers with a normal distribution. 200 random numbers is a sufficient quantity to plot. The general format of the np.random.normal() function is below Step2: Matplotlib's plt.hist() function produces histogram plots. The first positional argument passed to plt.hist() is a list or array of values, the second positional argument denotes the number of bins on the histogram. Step3: Our next histogram example involves a list of commute times. Suppose the following commute times were recorded in a survey Step4: Now we'll call plt.hist() and include our commute_times list and specify 5 bins. Step5: If we want our bins to have specific bin ranges, we can specify a list or array of bin edges in the keyword argument bins=. Let's also add some axis labels and a title to the histogram. A table of some keyword arguments used with plt.hist() is below
14,808
<ASSISTANT_TASK:> Python Code: # server = subprocess.Popen(['python', '../go_persistent_server.py']) # time.sleep(3) # web = subprocess.Popen(['python', '../go_web.py']) # time.sleep(3) web_interface = WebInterface() results = web_interface.add_trigger( 'junk', 'insert_ts', None, 'db:one:ts') assert results[0] == 200 print(results) results = web_interface.add_trigger( 'stats', 'insert_ts', ['mean', 'std'], None) assert results[0] == 200 print(results[1]) def tsmaker(m, s, j): ''' Helper function: randomly generates a time series for testing. Parameters ---------- m : float Mean value for generating time series data s : float Standard deviation value for generating time series data j : float Quantifies the "jitter" to add to the time series data Returns ------- A time series and associated meta data. ''' # generate metadata meta = {} meta['order'] = int(np.random.choice( [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5])) meta['blarg'] = int(np.random.choice([1, 2])) # generate time series data t = np.arange(0.0, 1.0, 0.01) v = norm.pdf(t, m, s) + j * np.random.randn(ts_length) # return time series and metadata return meta, TimeSeries(t, v) mus = np.random.uniform(low=0.0, high=1.0, size=50) sigs = np.random.uniform(low=0.05, high=0.4, size=50) jits = np.random.uniform(low=0.05, high=0.2, size=50) ts_length = 100 # initialize dictionaries for time series and their metadata tsdict = {} metadict = {} for i, m, s, j in zip(range(50), mus, sigs, jits): meta, tsrs = tsmaker(m, s, j) # the primary key format is ts-1, ts-2, etc pk = "ts-{}".format(i) tsdict[pk] = tsrs meta['vp'] = False # augment metadata with a boolean asking if this is a VP. metadict[pk] = meta vpkeys = ["ts-{}".format(i) for i in np.random.choice(range(50), size=5, replace=False)] for i in range(5): # add 5 triggers to upsert distances to these vantage points # data = json.dumps({'proc':'corr', 'onwhat':'insert_ts', 'target':["d_vp-{}".format(i)], 'arg':tsdict[vpkeys[i]].to_json()}) # r = requests.post(self.web_url+'/add_trigger', data) r = web_interface.add_trigger('corr', 'insert_ts', ["d_vp-{}".format(i)], tsdict[vpkeys[i]].to_json()) assert(r[0] == 200) # change the metadata for the vantage points to have meta['vp']=True metadict[vpkeys[i]]['vp'] = True for k in tsdict: results = web_interface.insert_ts(k, tsdict[k]) assert results[0] == 200 # upsert meta results = web_interface.upsert_meta(k, metadict[k]) assert results[0] == 200 results = web_interface.add_trigger( 'junk', 'insert_ts', None, 'db:one:ts') results # ========================================== # However if it's not first time to insert these keys, # insert_ts will return TSDBStatus.INVALID_KEY # ========================================== # pick a random pk idx = np.random.choice(list(tsdict.keys())) # check that the time series is there now results = web_interface.select({"primary_key": idx}) assert results[0] == 200 # delete an existing time series results = web_interface.delete_ts(idx) assert results[0] == 200 # check that the time series is no longer there results = web_interface.select({"md":{"order": 1}, "fields":["ts"], "additional":{"sort_by":"-order"}}) assert results[0] == 200 # add the time series back in results = web_interface.insert_ts(idx, tsdict[idx]) assert results[0] == 200 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step8: Having set up the triggers, now insert the time series, and upsert the metadata
14,809
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np dftrain = pd.read_csv('data/bike_sharing_train.csv') dfval = pd.read_csv('data/bike_sharing_val.csv') dftest = pd.read_csv('data/bike_sharing_test.csv') ntrain = len(dftrain) nval = len(dftrain) + len(dfval) df = pd.concat([dftrain,dfval,dftest]) print('\nSummary - dataframe completo:\n') print(df.describe()) df.head() import matplotlib.pyplot as plt for column in ['season','workingday','weather','temp', 'atemp', 'humidity', 'windspeed','casual','registered']: g = df.groupby(column)['count','registered','casual'].mean() if len(g) > 4: g.plot() else: g.plot.bar() plt.show() df['hour'] = pd.to_datetime(df['datetime']).apply(lambda x: x.strftime('%H')) df['hour'] = pd.to_numeric(df['hour']) df['day'] = pd.to_datetime(df['datetime']).apply(lambda x: x.strftime('%d')) df['day'] = pd.to_numeric(df['day']) df['month'] = pd.to_datetime(df['datetime']).apply(lambda x: x.strftime('%m')) df['month'] = pd.to_numeric(df['month']) df['year'] = pd.to_datetime(df['datetime']).apply(lambda x: x.strftime('%Y')) df['year'] = pd.to_numeric(df['year']) for column in ['hour','day','month','year']: g = df.groupby(column)['count'].mean() g.plot('bar') plt.show() Xdf=df.loc[:,['season','holiday','workingday','weather','temp','atemp','humidity','windspeed','hour']] Ydf=df.loc[:,'count'] X_train = Xdf[0:ntrain].values X_val = Xdf[ntrain:nval].values X_test = Xdf[nval:].values Y_train = Ydf[0:ntrain].values Y_val = Ydf[ntrain:nval].values Y_test = Ydf[nval:].values from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt def eval_bikemodel(y_predict,y_true,**kwargs): diff = np.log(y_predict+1.0) - np.log(y_true+1.0) return np.sqrt(np.sum(np.square(diff))/len(y_predict)) model = DecisionTreeRegressor(random_state=0) model.fit(X_train,Y_train) score_test = model.score(X_test,Y_test) print("SCORE TEST=%f"%score_test) Y_pred_train = model.predict(X_train) Y_pred_val = model.predict(X_val) Y_pred_test = model.predict(X_test) kagg_train = eval_bikemodel(Y_pred_train,Y_train) kagg_val = eval_bikemodel(Y_pred_val,Y_val) kagg_test = eval_bikemodel(Y_pred_test,Y_test) print("KAGG EVAL TRAIN =%f"%kagg_train) print("KAGG EVAL TEST =%f"%kagg_test) plt.plot(Y_test,Y_pred_test,'.') plt.show() from sklearn.model_selection import cross_val_score from sklearn.metrics import make_scorer def train_tree(X,Y,crit=["mse","mae"],max_depth=30,min_depth=5): scores = [] count,current = len(crit)*(max_depth-min_depth+1),1 for d in range(min_depth,max_depth+1): for c in crit: model = DecisionTreeRegressor(random_state=0,max_depth=d,criterion=c) score = 0#cross_val_score(model, X,Y).mean() score_bike = cross_val_score(model, X,Y, scoring=make_scorer(eval_bikemodel)).mean() scores.append([model, score, score_bike, c, d]) # print("\t Score:%f \t BikeScore:%f \t Max Depth: %d \t Criterion: %s"%(score,score_bike,d,c)) print ("%d/%d"%(current,count), end="\r") current+=1 return scores scores = train_tree(np.concatenate([X_train,X_val]),np.concatenate([Y_train,Y_val]),max_depth=20,min_depth=5) def top_scores(scores): sorted_scores = sorted(scores, key=(lambda x: -x[2]), reverse=False) print("Top 10 models:") for s in sorted_scores[-10:]: print(" Score:%f \t BikeScore:%f \t Max Depth: %d \t Criterion: %s"%(s[1],s[2],s[4],s[3])) return sorted_scores[-1] t=top_scores(scores) t[0].fit(np.concatenate([X_train,X_val]),np.concatenate([Y_train,Y_val])) print("Top BikeScore Test: %f"%eval_bikemodel(t[0].predict(X_test),Y_test)) df['cday'] = pd.to_datetime(df['datetime']).dt.dayofweek #0:lunes,6:domingo df['cday'] = pd.to_numeric(df['cday']) df['cyear'] = pd.to_datetime(df['datetime']).apply(lambda x: x.strftime('%Y')) df['cyear'] = pd.to_numeric(df['cyear']) df['cmonth'] = pd.to_datetime(df['datetime']).apply(lambda x: x.strftime('%m')) df['cmonth'] = pd.to_numeric(df['cmonth']) df['ghour'] = df['hour'].apply(lambda x: int(x/3)) df['gatemp'] = df['atemp'].apply(lambda x: int(x/3)) df['holiday'] = pd.to_numeric(df['holiday']) df['workingday'] = pd.to_numeric(df['workingday']) df['tday'] = df['holiday'] + 2*df['workingday'] df['humidity'] = pd.to_numeric(df['humidity']) Xdf=df.loc[:,['season','weather','humidity','cday','hour','cyear','tday','gatemp']] Xdf.head() X_train2 = Xdf[0:nval].values Y_train2 = Ydf[0:nval].values X_test2 = Xdf[nval:].values Y_test2 = Ydf[nval:].values scores2 = train_tree(X_train2,Y_train2,crit=["mse","mae"],max_depth=15,min_depth=5) t=top_scores(scores2) t[0].fit(X_train2,Y_train2) print("Top BikeScore Test: %f"%eval_bikemodel(t[0].predict(X_test2),Y_test2)) def eval_bikemodel_log(y_predict,y_true,**kwargs): y_predict = np.exp(y_predict)-1 y_true = np.exp(y_true)-1 diff = np.log(y_predict+1.0) - np.log(y_true+1.0) return np.sqrt(np.sum(np.square(diff))/len(y_predict)) df['day_weekend'] = df['tday'].apply(lambda x: x==0) df['day_holiday'] = df['tday'].apply(lambda x: x==1) df['day_work'] = df['tday'].apply(lambda x: x==2) df['season_spr'] = df['season'].apply(lambda x: x==1) df['season_sum'] = df['season'].apply(lambda x: x==2) df['season_fal'] = df['season'].apply(lambda x: x==3) df['season_win'] = df['season'].apply(lambda x: x==4) df['weather_clear'] = df['weather'].apply(lambda x: x==1) df['weather_mist'] = df['weather'].apply(lambda x: x==2) df['weather_snow'] = df['weather'].apply(lambda x: x==3) df['weather_rain'] = df['weather'].apply(lambda x: x==4) Xdf=pd.get_dummies(df[['humidity','windspeed','hour','atemp','tday','season','weather','cmonth','cyear']], columns=['hour','season','weather','tday','cmonth','cyear']) Ydf=np.log(df.loc[:,'count']+1) X_train = Xdf[0:ntrain].values X_val = Xdf[ntrain:nval].values X_test = Xdf[nval:].values Y_train = Ydf[0:ntrain].values Y_val = Ydf[ntrain:nval].values Y_test = Ydf[nval:].values from sklearn.preprocessing import StandardScaler scalerX = StandardScaler() X_train = scalerX.fit_transform(X_train) X_val = scalerX.fit_transform(X_val) X_test = scalerX.transform(X_test) from sklearn.svm import SVR model = SVR() model.fit(X_train,Y_train) Y_pred_train = model.predict(X_train) Y_pred_val = model.predict(X_val) Y_pred_test = model.predict(X_test) print("Top BikeScore Test: %f"%eval_bikemodel_log(Y_pred_test,Y_test)) def train_svm(X,Y,kernel=['linear','poly','rbf','sigmoid','precomputed'],max_c=20,min_c=1): scores = [] c_range = range(min_c,max_c+1) e_range = [0.01,0.05,0.1,0.5,1,10] count,current = len(kernel)*len(c_range)*len(e_range),1 for c in c_range: for k in kernel: for e in e_range: model = SVR(C=c,epsilon=e,kernel=k) score_bike = cross_val_score(model, X,Y, scoring=make_scorer(eval_bikemodel_log)).mean() scores.append([model, 0, score_bike, c, k, e]) print ("%d/%d"%(current,count), end="\r") current+=1 return scores def top_scores_svm(scores): sorted_scores = sorted(scores, key=(lambda x: -x[2]), reverse=False) print("Top 10 models:") for s in sorted_scores[-10:]: print(" BikeScore:%f \t C: %d \t kernel: %s \t e: %f"%(s[2],s[3],s[4],s[5])) return sorted_scores[-1] scores_svm = train_svm(np.concatenate([X_train,X_val]),np.concatenate([Y_train,Y_val]),kernel=['rbf'],max_c=5) t=top_scores_svm(scores_svm) model = SVR(C=t[3],kernel=t[4],epsilon=t[5]) model.fit(np.concatenate([X_train,X_val]),np.concatenate([Y_train,Y_val])) Y_pred_test_svr = model.predict(X_test) print("Top BikeScore Test: %f"%eval_bikemodel_log(Y_pred_test_svr,Y_test)) # Ydf=df.ix[:,'count'] #demanda total Ydf_r=np.log(df['registered']+1) #demanda registrada Yr_train = Ydf_r[0:ntrain].values Yr_val = Ydf_r[ntrain:nval].values Yr_test = Ydf_r[nval:].values Ydf_c=np.log(df['casual']+1) #demanda casual Yc_train = Ydf_c[0:ntrain].values Yc_val = Ydf_c[ntrain:nval].values Yc_test = Ydf_c[nval:].values model_r = SVR(C=t[3],kernel=t[4],epsilon=t[5]) model_c = SVR(C=t[3],kernel=t[4],epsilon=t[5]) model_r.fit(np.concatenate([X_train,X_val]),np.concatenate([Yr_train,Yr_val])) model_c.fit(np.concatenate([X_train,X_val]),np.concatenate([Yc_train,Yc_val])) Yr_pred_test = model_r.predict(X_test) Yc_pred_test = model_c.predict(X_test) print("Top BikeScore Test registered: %f"%eval_bikemodel_log(Yr_pred_test,Yr_test)) print("Top BikeScore Test casual : %f"%eval_bikemodel_log(Yc_pred_test,Yc_test)) print("Top BikeScore Test count : %f"%eval_bikemodel_log(Yr_pred_test+Yc_pred_test,Y_test)) from sklearn.ensemble import RandomForestRegressor def train_random_forest(Xtrain,Ytrain,Xeval,Yval, estimators, depth): model = RandomForestRegressor(n_estimators=estimators,max_depth=depth, random_state=0) model.fit(Xtrain, Ytrain) Yeval_pred = model.predict(Xeval) return (model,eval_bikemodel_log(Yeval_pred,Yval),estimators,depth) def top_scores_rfr(scores): sorted_scores = sorted(scores, key=(lambda x: -x[1]), reverse=False) print("Top 10 models:") for s in sorted_scores[-10:]: print(" BikeScore:%f \t estimators: %d \t depth: %d"%(s[1],s[2],s[3])) return sorted_scores[-1] scores = [] count,current=20*20,1 for e in range(1,20): for d in range(1,20): scores.append(train_random_forest(X_train,Y_train,X_val,Y_val, e, d)) print ("%d/%d"%(current,count), end="\r") current+=1 t=top_scores_rfr(scores) t[0].fit(X_train,Y_train) Ytest_pred = t[0].predict(X_test) print("Top BikeScore Test: %f"%eval_bikemodel_log(Ytest_pred,Y_test)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: b) Entrene un árbol de regresión para resolver el problema usando parámetros por defecto. Con este fin, construya una matriz $X_{train}$ de forma $n_{train} \times d_1$ que contenga los datos de entrenamiento en sus filas, seleccionando las columnas que desee/pueda utilizar para el entrenamiento. Implemente además, la función de evaluación que hemos definido anteriormente para este problema. Evalúe el árbol de regresión ajustado a los datos de entrenamiento sobre el conjunto de entrenamiento y pruebas. Construya un gráfico que compare las predicciones con los valores reales. En este punto usted debiese tener un modelo con puntaje del orden de 0.59, lo que lo dejará más o menos en la posición 2140 de la competencia. Step2: c) Mejore el árbol de regresión definido en el punto anterior haciendo modificaciones a los hiper-parámetros del modelo. Por ejemplo, como estos modelos tienden a sobre-ajustar, podría intentar limitar la profundidad del árbol (¿Por qué esto debiese ayudar?). Naturalmente, está absolutamente prohibido tomar este tipo de decisiones en función del resultado de pruebas. Debe realizar estas elecciones evaluando sobre el conjunto de validación. Si no desea utilizarlo, y prefiere implementar validación cruzada u otra técnica automática, tiene la ventaja de poder usar el conjunto de validación como parte del entrenamiento. Con estas modificaciones debiese poder mejorar su ranking en unas 300 posiciones. Step3: Se utilizó validación cruzada con la finalidad de no guiarse por una sola evaluación, la que podría ser "buena" por cosa de suerte. Step4: e) Entrene una SVM no lineal para resolver el problema midiendo el efecto de las distintas representaciones que haya descubierto hasta este punto. Un detalle importante es que antes de entrenar la SVM sería aconsejable hacer dos tipos de pre-procesamiento adicional de los datos Step5: f) Mejore la SVM definida en el punto anterior haciendo modificaciones a los hiper-parámetros de la máquina ($C$, $\epsilon$ o la misma función de kernel). Naturalmente, está absolutamente prohibido tomar este tipo de decisiones de diseño mirando el resultado de pruebas. Debe realizar estas elecciones evaluando sobre el conjunto de validación. Si no desea utilizarlo, y prefiere implementar validación cruzada u otra técnica automática, tiene la ventaja de poder usar el conjunto de validación como parte del entrenamiento. Step6: g) Evaúe el efecto de utilizar el dataset de validación para entrenamiento y seleccionar los parámetros estructurales del árbol de clasificación y la SVM usando validación cruzada. El código de ejemplo para esto ha sido proporcionado en las tareas 1 y 2, pero se adjunta de nuevo a continuación Step7: i) Evalúe el efecto de utilizar un algoritmo genérico para ensamblar máquinas de aprendizaje para predecir la demanda total de bicicletas. Puede experimentar con una sola técnica (e.g. Random Forest), discuta la evolución a medida que aumenta el número de máquinas.
14,810
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline train = pd.read_csv('titanic_train.csv') train.head() sns.heatmap(train.isnull(),yticklabels=False,cbar=False,cmap='viridis') sns.set_style('whitegrid') sns.countplot(x='Survived',data=train,palette='RdBu_r') sns.set_style('whitegrid') sns.countplot(x='Survived',hue='Sex',data=train,palette='RdBu_r') sns.set_style('whitegrid') sns.countplot(x='Survived',hue='Pclass',data=train,palette='rainbow') sns.distplot(train['Age'].dropna(),kde=False,color='darkred',bins=30) train['Age'].hist(bins=30,color='darkred',alpha=0.7) sns.countplot(x='SibSp',data=train) train['Fare'].hist(color='green',bins=40,figsize=(8,4)) plt.figure(figsize=(12, 7)) sns.boxplot(x='Pclass',y='Age',data=train,palette='winter') def impute_age(cols): Age = cols[0] Pclass = cols[1] if pd.isnull(Age): if Pclass == 1: return 37 elif Pclass == 2: return 29 else: return 24 else: return Age train['Age'] = train[['Age','Pclass']].apply(impute_age,axis=1) sns.heatmap(train.isnull(),yticklabels=False,cbar=False,cmap='viridis') train.drop('Cabin',axis=1,inplace=True) train.head() train.dropna(inplace=True) train.info() sex = pd.get_dummies(train['Sex'],drop_first=True) embark = pd.get_dummies(train['Embarked'],drop_first=True) train.drop(['Sex','Embarked','Name','Ticket'],axis=1,inplace=True) train = pd.concat([train,sex,embark],axis=1) train.head() from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(train.drop('Survived',axis=1), train['Survived'], test_size=0.30, random_state=101) from sklearn.linear_model import LogisticRegression logmodel = LogisticRegression() logmodel.fit(X_train,y_train) predictions = logmodel.predict(X_test) from sklearn.metrics import classification_report print(classification_report(y_test,predictions)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The Data Step2: Exploratory Data Analysis Step3: Roughly 20 percent of the Age data is missing. The proportion of Age missing is likely small enough for reasonable replacement with some form of imputation. Looking at the Cabin column, it looks like we are just missing too much of that data to do something useful with at a basic level. We'll probably drop this later, or change it to another feature like "Cabin Known Step4: Data Cleaning Step5: We can see the wealthier passengers in the higher classes tend to be older, which makes sense. We'll use these average age values to impute based on Pclass for Age. Step6: Now apply that function! Step7: Now let's check that heat map again! Step8: Great! Let's go ahead and drop the Cabin column and the row in Embarked that is NaN. Step9: Converting Categorical Features Step10: Great! Our data is ready for our model! Step11: Training and Predicting Step12: Let's move on to evaluate our model!
14,811
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. !pip install --quiet neural-structured-learning import matplotlib.pyplot as plt import neural_structured_learning as nsl import numpy as np import tensorflow as tf import tensorflow_datasets as tfds class HParams(object): def __init__(self): self.input_shape = [28, 28, 1] self.num_classes = 10 self.conv_filters = [32, 64, 64] self.kernel_size = (3, 3) self.pool_size = (2, 2) self.num_fc_units = [64] self.batch_size = 32 self.epochs = 5 self.adv_multiplier = 0.2 self.adv_step_size = 0.2 self.adv_grad_norm = 'infinity' HPARAMS = HParams() datasets = tfds.load('mnist') train_dataset = datasets['train'] test_dataset = datasets['test'] IMAGE_INPUT_NAME = 'image' LABEL_INPUT_NAME = 'label' def normalize(features): features[IMAGE_INPUT_NAME] = tf.cast( features[IMAGE_INPUT_NAME], dtype=tf.float32) / 255.0 return features def convert_to_tuples(features): return features[IMAGE_INPUT_NAME], features[LABEL_INPUT_NAME] def convert_to_dictionaries(image, label): return {IMAGE_INPUT_NAME: image, LABEL_INPUT_NAME: label} train_dataset = train_dataset.map(normalize).shuffle(10000).batch(HPARAMS.batch_size).map(convert_to_tuples) test_dataset = test_dataset.map(normalize).batch(HPARAMS.batch_size).map(convert_to_tuples) def build_base_model(hparams): Builds a model according to the architecture defined in `hparams`. inputs = tf.keras.Input( shape=hparams.input_shape, dtype=tf.float32, name=IMAGE_INPUT_NAME) x = inputs for i, num_filters in enumerate(hparams.conv_filters): x = tf.keras.layers.Conv2D( num_filters, hparams.kernel_size, activation='relu')( x) if i < len(hparams.conv_filters) - 1: # max pooling between convolutional layers x = tf.keras.layers.MaxPooling2D(hparams.pool_size)(x) x = tf.keras.layers.Flatten()(x) for num_units in hparams.num_fc_units: x = tf.keras.layers.Dense(num_units, activation='relu')(x) pred = tf.keras.layers.Dense(hparams.num_classes)(x) model = tf.keras.Model(inputs=inputs, outputs=pred) return model base_model = build_base_model(HPARAMS) base_model.summary() base_model.compile( optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['acc']) base_model.fit(train_dataset, epochs=HPARAMS.epochs) results = base_model.evaluate(test_dataset) named_results = dict(zip(base_model.metrics_names, results)) print('\naccuracy:', named_results['acc']) adv_config = nsl.configs.make_adv_reg_config( multiplier=HPARAMS.adv_multiplier, adv_step_size=HPARAMS.adv_step_size, adv_grad_norm=HPARAMS.adv_grad_norm ) base_adv_model = build_base_model(HPARAMS) adv_model = nsl.keras.AdversarialRegularization( base_adv_model, label_keys=[LABEL_INPUT_NAME], adv_config=adv_config ) train_set_for_adv_model = train_dataset.map(convert_to_dictionaries) test_set_for_adv_model = test_dataset.map(convert_to_dictionaries) adv_model.compile( optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['acc']) adv_model.fit(train_set_for_adv_model, epochs=HPARAMS.epochs) results = adv_model.evaluate(test_set_for_adv_model) named_results = dict(zip(adv_model.metrics_names, results)) print('\naccuracy:', named_results['sparse_categorical_accuracy']) reference_model = nsl.keras.AdversarialRegularization( base_model, label_keys=[LABEL_INPUT_NAME], adv_config=adv_config) reference_model.compile( optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['acc']) models_to_eval = { 'base': base_model, 'adv-regularized': adv_model.base_model } metrics = { name: tf.keras.metrics.SparseCategoricalAccuracy() for name in models_to_eval.keys() } perturbed_images, labels, predictions = [], [], [] for batch in test_set_for_adv_model: perturbed_batch = reference_model.perturb_on_batch(batch) # Clipping makes perturbed examples have the same range as regular ones. perturbed_batch[IMAGE_INPUT_NAME] = tf.clip_by_value( perturbed_batch[IMAGE_INPUT_NAME], 0.0, 1.0) y_true = perturbed_batch.pop(LABEL_INPUT_NAME) perturbed_images.append(perturbed_batch[IMAGE_INPUT_NAME].numpy()) labels.append(y_true.numpy()) predictions.append({}) for name, model in models_to_eval.items(): y_pred = model(perturbed_batch) metrics[name](y_true, y_pred) predictions[-1][name] = tf.argmax(y_pred, axis=-1).numpy() for name, metric in metrics.items(): print('%s model accuracy: %f' % (name, metric.result().numpy())) batch_index = 0 batch_image = perturbed_images[batch_index] batch_label = labels[batch_index] batch_pred = predictions[batch_index] batch_size = HPARAMS.batch_size n_col = 4 n_row = (batch_size + n_col - 1) // n_col print('accuracy in batch %d:' % batch_index) for name, pred in batch_pred.items(): print('%s model: %d / %d' % (name, np.sum(batch_label == pred), batch_size)) plt.figure(figsize=(15, 15)) for i, (image, y) in enumerate(zip(batch_image, batch_label)): y_base = batch_pred['base'][i] y_adv = batch_pred['adv-regularized'][i] plt.subplot(n_row, n_col, i+1) plt.title('true: %d, base: %d, adv: %d' % (y, y_base, y_adv)) plt.imshow(tf.keras.utils.array_to_img(image), cmap='gray') plt.axis('off') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Adversarial regularization for image classification Step2: Import libraries. We abbreviate neural_structured_learning to nsl. Step3: Hyperparameters Step4: MNIST dataset Step5: To make the model numerically stable, we normalize the pixel values to [0, 1] Step7: Base model Step8: Next we train and evaluate the base model. Step9: We can see that the base model achieves 99% accuracy on the test set. We will Step10: Now we can wrap a base model with AdversarialRegularization. Here we create a Step11: Next we compile, train, and evaluate the Step12: We can see that the adversarial-regularized model also performs very well (99% Step13: We collect in a dictionary the models to be evaluted, and also create a metric Step14: Here is the loop to generate perturbed examples and to evaluate models with Step15: We can see that the accuracy of the base model drops dramatically (from 99% to
14,812
<ASSISTANT_TASK:> Python Code: PROJECT_ID = "YOUR PROJECT ID" BUCKET_NAME = "gs://YOUR BUCKET NAME" REGION = "YOUR REGION" SERVICE_ACCOUNT = "YOUR SERVICE ACCOUNT" content_name = "pt-img-cls-gpu-cust-cont-torchserve" gcs_output_uri_prefix = f"{BUCKET_NAME}/{content_name}" ! gsutil ls $gcs_output_uri_prefix ! curl -O https://raw.githubusercontent.com/alvarobartt/pytorch-model-serving/master/images/sample.jpg ! ls sample.jpg %run convert_b64.py ! ls sample_b64.json ! gsutil cp -r $gcs_output_uri_prefix/model ./model_server/ ! ls ./model_server/model/ ! cd model_server && torch-model-archiver \ --model-name antandbee \ --version 1.0 \ --serialized-file ./model/antandbee.pth \ --model-file ./model.py \ --handler ./handler.py \ --extra-files ./index_to_name.json \ -f ! ls model_server/antandbee.mar hostname = "gcr.io" tag = "latest" model_name = "antandbee" image_name_serve = content_name + "-" + model_name custom_container_image_uri_serve = f"{hostname}/{PROJECT_ID}/{image_name_serve}:{tag}" ! cd model_server && docker build -t $custom_container_image_uri_serve -f Dockerfile . ! rm -rf ./model_server/model/ ! docker run \ --rm -it \ -d \ --name ts_antandbee \ -p 8080:8080 \ -p 8081:8081 \ $custom_container_image_uri_serve ! curl http://localhost:8080/ping ! curl http://127.0.0.1:8081/models/antandbee ! curl -X POST \ -H "Content-Type: application/json; charset=utf-8" \ -d @sample_b64.json \ localhost:8080/predictions/antandbee ! docker stop ts_antandbee ! docker push $custom_container_image_uri_serve ! gcloud container images list --repository $hostname/$PROJECT_ID ! pip install -r requirements.txt from google.cloud import aiplatform aiplatform.init( project=PROJECT_ID, staging_bucket=BUCKET_NAME, location=REGION, ) model_display_name = image_name_serve model = aiplatform.Model.upload( display_name=model_display_name, serving_container_image_uri=custom_container_image_uri_serve, serving_container_ports=[8080], serving_container_predict_route=f"/predictions/{model_name}", serving_container_health_route="/ping", ) endpoint = model.deploy( machine_type="n1-standard-4", ) endpoint.resource_name import base64 def convert_b64(input_file_name): Open image and convert it to Base64 with open(input_file_name, "rb") as input_file: jpeg_bytes = base64.b64encode(input_file.read()).decode("utf-8") return jpeg_bytes image_file_name = "./sample.jpg" instance = {"data": {"b64": convert_b64(image_file_name)}} prediction = endpoint.predict(instances=[instance]) print(prediction) ! gsutil rm -rf $gcs_output_uri_prefix ! rm sample.jpg ! rm sample_b64.json ! rm model_server/antandbee.mar <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Training Artifact Step2: Vertex Prediction using Custom TorchServe Container Step3: Model Archive for TorchServe Step4: Option Step5: Initialize Vertex SDK Step6: Create a Vertex Model with Custom TorchServe Container Step8: Create a Vertex Endpoint for Online Prediction Step9: Clean Up
14,813
<ASSISTANT_TASK:> Python Code: import numpy as np from scipy import stats import matplotlib.pyplot as plt import itertools import urllib2 import scipy.stats as stats %matplotlib inline np.set_printoptions(precision=3, threshold=1000000, suppress=True) np.random.seed(1) alpha = .025 url = ('https://raw.githubusercontent.com/Upward-Spiral-Science' '/data/master/syn-density/output.csv') data = urllib2.urlopen(url) csv = np.genfromtxt(data, delimiter=",")[1:] # don't want first row (labels) num_samples = 150 # how many different sized samples to draw N = np.sum(csv[:, -1]) # total data set size L = np.unique(csv[:, 2]) # list of labels print L.shape # sample sizes to iterate over sample_sizes = np.logspace(1.0, 5.0, num=num_samples, base=10.0) print sample_sizes # simulated sampling under the null repeats = 100 # how many repitions per sample size pi_null = np.array([1.0/float(len(L))]*len(L)) # pi vector under the null (uniform probs) power_null = [] for s in sample_sizes: power = 0 E_i = pi_null*s # expected per label for r in xrange(repeats): null_data = np.random.multinomial(s, pi_null) chi_sq = stats.chisquare(null_data, E_i) p_value = chi_sq[1] # can we reject the null hypothesis if p_value < alpha: power = power + 1 power_null.append(float(power)/float(repeats)) # simulated sampling under alternate repeats = 100 # how many repitions per sample size power_alt = [] pi_alt = np.random.rand(len(L)) # create a pi vector (random probabilities) pi_alt = pi_alt/np.sum(pi_alt) # normalize for s in sample_sizes: power = 0 E_i = pi_null*s # all labels have equal expectancy for r in xrange(repeats): alt_data = np.random.multinomial(s, pi_alt) # use pi vector to gen data chi_sq = stats.chisquare(alt_data, E_i) p_value = chi_sq[1] # can we reject the null hypothesis if p_value < alpha: power = power + 1 power_alt.append(float(power)/float(repeats)) plt.scatter(sample_sizes, power_null, hold=True, label='null', s=4) plt.scatter(sample_sizes, power_alt, color='green', hold=True, label='alt', s=4) plt.xlabel('sample size') plt.xscale('log') plt.ylabel('power') plt.axhline(alpha, color='red', linestyle='--', label='alpha') plt.legend(loc=5) plt.show() from __future__ import division csv = csv[np.where(csv[:, -2] != 0)] X = csv[:, -1] density = csv[:, -1]/csv[:,-2] # get average density (probability) avg = np.average(density) # expected values are everage probability multipled by unmasked per bin E = csv[:, -2]*avg print X[:50] print E[:50] print stats.chisquare(X, E) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Step 4a Step2: Step 4b Step3: Step 5 Step4: Apply to data
14,814
<ASSISTANT_TASK:> Python Code: # setup from pyrise import products as prod obsid = prod.OBSERVATION_ID('PSP_003072_0985') # test orbit number assert obsid.orbit == '003072' # test setting orbit property obsid.orbit = 4080 assert obsid.orbit == '004080' # test repr assert obsid.__repr__() == 'PSP_004080_0985' # test targetcode assert obsid.targetcode == '0985' # test setting targetcode property obsid.targetcode = '0980' assert obsid.targetcode == '0980' assert obsid.__repr__() == 'PSP_004080_0980' # test phase assert obsid.phase == 'PSP' # test upper orbit folder assert obsid.get_upper_orbit_folder() == 'ORB_004000_004099' # test storage path stem assert obsid.storage_path_stem == 'PSP/ORB_004000_004099/PSP_004080_0980' pid = prod.PRODUCT_ID('PSP_003072_0985') pid pid.kind = 'RED' pid pid.s pid.storage_stem pid.label_fname pid.label_path pid.jp2_fname pid.jp2_path for item in dir(pid): if not item.startswith('__'): print(item,':') print(getattr(pid, item)) print() spid = prod.SOURCE_PRODUCT_ID('PSP_003092_0985_RED4_0') spid spid.channel = 1 spid spid.ccd for i in dir(spid): if not i.startswith('__'): print(i,':') print(getattr(spid, i)) print() spid.pid.storage_stem spid.pid.edr_storage_stem spid.fpath hiurl = prod.HiRISE_URL(spid.fpath) hiurl.url hiurl.path pid.label_path pid.obsid pid prod.RED_PRODUCT_ID(pid.obsid.s, 4, 1).furl prod.RED_PRODUCT_ID(pid.obsid.s, 4,1) from pyrise import downloads obsid = 'PSP_003092_0985' downloads.download_RED_product(obsid, 4, 0) red_pid = prod.RED_PRODUCT_ID(pid.obsid.s, 4,1) red_pid.fname pid name = obsid + '_RED' channels = [4, 5] ccds = [0, 1] for channel in channels: for ccd in ccds: print(f'{name}{channel}_0.cub') sid = prod.RED_PRODUCT_ID(obsid, 4,0) sid.pid.label_url <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: PRODUCT_ID Step2: SOURCE_PRODUCT_ID Step3: http Step4: HiRISE_URL Step5: others
14,815
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf import tensorflow_datasets as tfds import os DIRECTORY_URL = 'https://storage.googleapis.com/download.tensorflow.org/data/illiad/' FILE_NAMES = ['cowper.txt', 'derby.txt', 'butler.txt'] for name in FILE_NAMES: text_dir = tf.keras.utils.get_file(name, origin=DIRECTORY_URL+name) parent_dir = os.path.dirname(text_dir) parent_dir def labeler(example, index): return example, tf.cast(index, tf.int64) labeled_data_sets = [] for i, file_name in enumerate(FILE_NAMES): lines_dataset = tf.data.TextLineDataset(os.path.join(parent_dir, file_name)) labeled_dataset = lines_dataset.map(lambda ex: labeler(ex, i)) labeled_data_sets.append(labeled_dataset) BUFFER_SIZE = 50000 BATCH_SIZE = 64 TAKE_SIZE = 5000 all_labeled_data = labeled_data_sets[0] for labeled_dataset in labeled_data_sets[1:]: all_labeled_data = all_labeled_data.concatenate(labeled_dataset) all_labeled_data = all_labeled_data.shuffle( BUFFER_SIZE, reshuffle_each_iteration=False) for ex in all_labeled_data.take(5): print(ex) tokenizer = tfds.features.text.Tokenizer() vocabulary_set = set() for text_tensor, _ in all_labeled_data: some_tokens = tokenizer.tokenize(text_tensor.numpy()) vocabulary_set.update(some_tokens) vocab_size = len(vocabulary_set) vocab_size encoder = tfds.features.text.TokenTextEncoder(vocabulary_set) example_text = next(iter(all_labeled_data))[0].numpy() print(example_text) encoded_example = encoder.encode(example_text) print(encoded_example) def encode(text_tensor, label): encoded_text = encoder.encode(text_tensor.numpy()) return encoded_text, label def encode_map_fn(text, label): # py_func doesn't set the shape of the returned tensors. encoded_text, label = tf.py_function(encode, inp=[text, label], Tout=(tf.int64, tf.int64)) # `tf.data.Datasets` work best if all components have a shape set # so set the shapes manually: encoded_text.set_shape([None]) label.set_shape([]) return encoded_text, label all_encoded_data = all_labeled_data.map(encode_map_fn) train_data = all_encoded_data.skip(TAKE_SIZE).shuffle(BUFFER_SIZE) train_data = train_data.padded_batch(BATCH_SIZE) test_data = all_encoded_data.take(TAKE_SIZE) test_data = test_data.padded_batch(BATCH_SIZE) sample_text, sample_labels = next(iter(test_data)) sample_text[0], sample_labels[0] vocab_size += 1 model = tf.keras.Sequential() model.add(tf.keras.layers.Embedding(vocab_size, 64)) model.add(tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64))) # 一个或多个紧密连接的层 # 编辑 `for` 行的列表去检测层的大小 for units in [64, 64]: model.add(tf.keras.layers.Dense(units, activation='relu')) # 输出层。第一个参数是标签个数。 model.add(tf.keras.layers.Dense(3, activation='softmax')) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(train_data, epochs=3, validation_data=test_data) eval_loss, eval_acc = model.evaluate(test_data) print('\nEval loss: {}, Eval accuracy: {}'.format(eval_loss, eval_acc)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 使用 tf.data 加载文本数据 Step2: 三个版本的翻译分别来自于 Step3: 将文本加载到数据集中 Step4: 将这些标记的数据集合并到一个数据集中,然后对其进行随机化操作。 Step5: 你可以使用 tf.data.Dataset.take 与 print 来查看 (example, label) 对的外观。numpy 属性显示每个 Tensor 的值。 Step6: 将文本编码成数字 Step7: 样本编码 Step8: 你可以尝试运行这一行代码并查看输出的样式。 Step9: 现在,在数据集上运行编码器(通过将编码器打包到 tf.py_function 并且传参至数据集的 map 方法的方式来运行)。 Step10: 将数据集分割为测试集和训练集且进行分支 Step11: 现在,test_data 和 train_data 不是( example, label )对的集合,而是批次的集合。每个批次都是一对(多样本, 多标签 ),表示为数组。 Step12: 由于我们引入了一个新的 token 来编码(填充零),因此词汇表大小增加了一个。 Step13: 建立模型 Step14: 第一层将整数表示转换为密集矢量嵌入。更多内容请查阅 Word Embeddings 教程。 Step15: 下一层是 LSTM 层,它允许模型利用上下文中理解单词含义。 LSTM 上的双向包装器有助于模型理解当前数据点与其之前和之后的数据点的关系。 Step16: 最后,我们将获得一个或多个紧密连接的层,其中最后一层是输出层。输出层输出样本属于各个标签的概率,最后具有最高概率的分类标签即为最终预测结果。 Step17: 最后,编译这个模型。对于一个 softmax 分类模型来说,通常使用 sparse_categorical_crossentropy 作为其损失函数。你可以尝试其他的优化器,但是 adam 是最常用的。 Step18: 训练模型
14,816
<ASSISTANT_TASK:> Python Code: import numpy as np from SimPEG import Mesh import matplotlib.pyplot as plt %matplotlib inline plt.set_cmap(plt.get_cmap('viridis')) # use a nice colormap! # define a 1D mesh mesh1D = Mesh.TensorMesh([5]) # with 5 cells fig, ax = plt.subplots(1,1, figsize=(12,2)) ax.plot(mesh1D.gridN, np.zeros(mesh1D.nN),'-k',marker='|',markeredgewidth=2, markersize=16) ax.plot(mesh1D.gridCC,np.zeros(mesh1D.nC),'o') ax.plot(mesh1D.gridFx,np.zeros(mesh1D.nFx),'>') ax.set_title('1D Mesh') # and define a vector of fluxes that live on the faces of the 1D mesh face_vec = np.r_[0., 1., 2., 2., 1., 0.] # vector of fluxes that live on the faces of the mesh print("The flux on the faces is {}".format(face_vec)) plt.plot(mesh1D.gridFx, face_vec, '-o') plt.ylim([face_vec.min()-0.5, face_vec.max()+0.5]) plt.grid(which='both') plt.title('face_vec'); # We can take the divergence over the entire mesh by looping over each cell div_face_vec = np.zeros(mesh1D.nC) # allocate for each cell for i in range(mesh1D.nC): # loop over each cell and div_face_vec[i] = 1.0/mesh1D.vol[i] * (-face_vec[i] + face_vec[i+1]) print("The face div of the 1D flux is {}".format(div_face_vec)) faceDiv = np.zeros([mesh1D.nC, mesh1D.nF]) # allocate space for a face div matrix for i in range(mesh1D.nC): # loop over each cell faceDiv[i, [i, i+1]] = 1.0/mesh1D.vol[i] * np.r_[-1,+1] print("The 1D face div matrix for this mesh is \n{}".format(faceDiv)) assert np.all( faceDiv.dot(face_vec) == div_face_vec ) # make sure we get the same result! print("\nThe face div of the 1D flux is still {}!".format(div_face_vec)) "There are {nnz} zeros (too many!) that we are storing".format(nnz = np.sum(faceDiv == 0)) import scipy.sparse as sp from SimPEG.Utils import sdiag # we are often building sparse diagonal matrices, so we made a functio in SimPEG! # construct differencing matrix with diagonals -1, +1 sparse_diff = sp.spdiags((np.ones((mesh1D.nC+1, 1))*[-1, 1]).T, [0, 1], mesh1D.nC, mesh1D.nC+1, format="csr") print("the sparse differencing matrix is \n{}".format(sparse_diff.todense())) # account for the volume faceDiv_sparse = sdiag(1./mesh1D.vol) * sparse_diff # account for volume print("\n and the face divergence is \n{}".format(faceDiv_sparse.todense())) print("\n but now we are only storing {nnz} nonzeros".format(nnz=faceDiv_sparse.nnz)) assert np.all(faceDiv_sparse.dot(face_vec) == div_face_vec) print("\n and we get the same answer! {}".format(faceDiv_sparse * face_vec)) print(mesh1D.faceDiv * face_vec) # and still gives us the same answer! mesh2D = Mesh.TensorMesh([100,80]) mesh2D.plotGrid() plt.axis('tight'); jx_fct = lambda x, y: -np.sin(2.*np.pi*x) jy_fct = lambda x, y: -np.sin(2.*np.pi*y) jx_vec = jx_fct(mesh2D.gridFx[:,0], mesh2D.gridFx[:,1]) jy_vec = jy_fct(mesh2D.gridFy[:,0], mesh2D.gridFy[:,1]) j_vec = np.r_[jx_vec, jy_vec] print("There are {nFx} x-faces and {nFy} y-faces, so the length of the " "face function, j, is {lenj}".format( nFx=mesh2D.nFx, nFy=mesh2D.nFy, lenj=len(j_vec) )) plt.colorbar(mesh2D.plotImage(j_vec, 'F', view='vec')[0]) small_mesh2D = Mesh.TensorMesh([3,4]) print("Each y-face is {} entries apart".format(small_mesh2D.nCx)) print("and the total number of x-faces is {}".format(small_mesh2D.nFx)) print("So in the first row of the faceDiv, we have non-zero entries at \n{}".format( small_mesh2D.faceDiv[0,:])) fig, ax = plt.subplots(1,2, figsize=(12,4)) # plot the non-zero entries in the faceDiv ax[0].spy(small_mesh2D.faceDiv, ms=2) ax[0].set_xlabel('2D faceDiv') small_mesh2D.plotGrid(ax=ax[1]) # Number the faces and plot. (We should really add this to SimPEG... pull request anyone!?) xys = zip( small_mesh2D.gridFx[:,0], small_mesh2D.gridFx[:,1], range(small_mesh2D.nFx) ) for x,y,ii in xys: ax[1].plot(x, y, 'r>') ax[1].text(x+0.01, y-0.02, ii, color='r') xys = zip( small_mesh2D.gridFy[:,0], small_mesh2D.gridFy[:,1], range(small_mesh2D.nFy) ) for x,y,ii in xys: ax[1].plot(x, y, 'g^') ax[1].text(x-0.02, y+0.02, ii+small_mesh2D.nFx, color='g') ax[1].set_xlim((-0.1,1.1)); ax[1].set_ylim((-0.1,1.1)); # small_mesh2D.faceDiv?? # check out the code! Div_j = mesh2D.faceDiv * j_vec fig, ax = plt.subplots(1,2, figsize=(8,4)) plt.colorbar(mesh2D.plotImage(j_vec, 'F', view='vec', ax=ax[0])[0],ax=ax[0]) plt.colorbar(mesh2D.plotImage(Div_j, ax=ax[1])[0],ax=ax[1]) ax[0].set_title('j') ax[1].set_title('Div j') plt.tight_layout() # from earlier # jx_fct = lambda x, y: -np.sin(2*np.pi*x) # jy_fct = lambda x, y: -np.sin(2*np.pi*y) sol = lambda x, y: -2*np.pi*(np.cos(2*np.pi*x)+np.cos(2*np.pi*y)) cont_div_j = sol(mesh2D.gridCC[:,0], mesh2D.gridCC[:,1]) Div_j = mesh2D.faceDiv * j_vec fig, ax = plt.subplots(1,2, figsize=(8,4)) plt.colorbar(mesh2D.plotImage(Div_j, ax=ax[0])[0],ax=ax[0]) plt.colorbar(mesh2D.plotImage(cont_div_j, ax=ax[1])[0],ax=ax[1]) ax[0].set_title('Discrete Div j') ax[1].set_title('Continuous Div j') plt.tight_layout() import unittest from SimPEG.Tests import OrderTest jx = lambda x, y: -np.sin(2*np.pi*x) jy = lambda x, y: -np.sin(2*np.pi*y) sol = lambda x, y: -2*np.pi*(np.cos(2*np.pi*x)+np.cos(2*np.pi*y)) class Testify(OrderTest): meshDimension = 2 def getError(self): j = np.r_[jx(self.M.gridFx[:,0], self.M.gridFx[:,1]), jy(self.M.gridFy[:,0], self.M.gridFy[:,1])] num = self.M.faceDiv * j # numeric answer ans = sol(self.M.gridCC[:,0], self.M.gridCC[:,1]) # note M is a 2D mesh return np.linalg.norm((num - ans), np.inf) # look at the infinity norm # (as we refine the mesh, the number of cells # changes, so need to be careful if using a 2-norm) def test_order(self): self.orderTest() # This just runs the unittest: suite = unittest.TestLoader().loadTestsFromTestCase( Testify ) unittest.TextTestRunner().run( suite ); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Over a single cell, the divergence is Step2: Doing it as a for loop is easy to program for the first time, Step3: the above is still a loop... (and python is not a fan of loops). Step4: Working in Sparse Step5: In SimPEG, this is stored as the faceDiv property on the mesh Step6: Moving to 2D Step7: We define 2 face functions, one in the x-direction and one in the y-direction. Here, we choose to work with sine functions as the continuous divergence is easy to compute, meaning we can test it! Step8: But first... what does the matrix look like? Step9: Now, lets look at the matrix structure Step10: How did we construct the matrix? - Kronecker products. Step11: Now that we have a discrete divergence, lets check out the divergence of the face function we defined earlier. Step12: Are we right?? Step13: Those look similar
14,817
<ASSISTANT_TASK:> Python Code: from beakerx import * import pandas as pd tableRows = pd.read_csv('../resources/data/interest-rates.csv') Plot(title="Title", xLabel="Horizontal", yLabel="Vertical", initWidth=500, initHeight=200) x = [1, 4, 6, 8, 10] y = [3, 6, 4, 5, 9] pp = Plot(title='Bars, Lines, Points and 2nd yAxis', xLabel="xLabel", yLabel="yLabel", legendLayout=LegendLayout.HORIZONTAL, legendPosition=LegendPosition.RIGHT, omitCheckboxes=True) pp.add(YAxis(label="Right yAxis")) pp.add(Bars(displayName="Bar", x=[1,3,5,7,10], y=[100, 120,90,100,80], width=1)) pp.add(Line(displayName="Line", x=x, y=y, width=6, yAxis="Right yAxis")) pp.add(Points(x=x, y=y, size=10, shape=ShapeType.DIAMOND, yAxis="Right yAxis")) plot = Plot(title= "Setting line properties") ys = [0, 1, 6, 5, 2, 8] ys2 = [0, 2, 7, 6, 3, 8] plot.add(Line(y= ys, width= 10, color= Color.red)) plot.add(Line(y= ys, width= 3, color= Color.yellow)) plot.add(Line(y= ys, width= 4, color= Color(33, 87, 141), style= StrokeType.DASH, interpolation= 0)) plot.add(Line(y= ys2, width= 2, color= Color(212, 57, 59), style= StrokeType.DOT)) plot.add(Line(y= [5, 0], x= [0, 5], style= StrokeType.LONGDASH)) plot.add(Line(y= [4, 0], x= [0, 5], style= StrokeType.DASHDOT)) plot = Plot(title= "Changing Point Size, Color, Shape") y1 = [6, 7, 12, 11, 8, 14] y2 = [4, 5, 10, 9, 6, 12] y3 = [2, 3, 8, 7, 4, 10] y4 = [0, 1, 6, 5, 2, 8] plot.add(Points(y= y1)) plot.add(Points(y= y2, shape= ShapeType.CIRCLE)) plot.add(Points(y= y3, size= 8.0, shape= ShapeType.DIAMOND)) plot.add(Points(y= y4, size= 12.0, color= Color.orange, outlineColor= Color.red)) plot = Plot(title= "Changing point properties with list") cs = [Color.black, Color.red, Color.orange, Color.green, Color.blue, Color.pink] ss = [6.0, 9.0, 12.0, 15.0, 18.0, 21.0] fs = [False, False, False, True, False, False] plot.add(Points(y= [5] * 6, size= 12.0, color= cs)) plot.add(Points(y= [4] * 6, size= 12.0, color= Color.gray, outlineColor= cs)) plot.add(Points(y= [3] * 6, size= ss, color= Color.red)) plot.add(Points(y= [2] * 6, size= 12.0, color= Color.black, fill= fs, outlineColor= Color.black)) plot = Plot() y1 = [1.5, 1, 6, 5, 2, 8] cs = [Color.black, Color.red, Color.gray, Color.green, Color.blue, Color.pink] ss = [StrokeType.SOLID, StrokeType.SOLID, StrokeType.DASH, StrokeType.DOT, StrokeType.DASHDOT, StrokeType.LONGDASH] plot.add(Stems(y= y1, color= cs, style= ss, width= 5)) plot = Plot(title= "Setting the base of Stems") ys = [3, 5, 2, 3, 7] y2s = [2.5, -1.0, 3.5, 2.0, 3.0] plot.add(Stems(y= ys, width= 2, base= y2s)) plot.add(Points(y= ys)) plot = Plot(title= "Bars") cs = [Color(255, 0, 0, 128)] * 5 # transparent bars cs[3] = Color.red # set color of a single bar, solid colored bar plot.add(Bars(x= [1, 2, 3, 4, 5], y= [3, 5, 2, 3, 7], color= cs, outlineColor= Color.black, width= 0.3)) plot = Plot(title= "Pandas line") plot.add(Line(y= tableRows.y1, width= 2, color= Color(216, 154, 54))) plot.add(Line(y= tableRows.y10, width= 2, color= Color.lightGray)) plot plot = Plot(title= "Pandas Series") plot.add(Line(y= pd.Series([0, 6, 1, 5, 2, 4, 3]), width=2)) plot = Plot(title= "Bars") cs = [Color(255, 0, 0, 128)] * 7 # transparent bars cs[3] = Color.red # set color of a single bar, solid colored bar plot.add(Bars(pd.Series([0, 6, 1, 5, 2, 4, 3]), color= cs, outlineColor= Color.black, width= 0.3)) ch = Crosshair(color=Color.black, width=2, style=StrokeType.DOT) plot = Plot(crosshair=ch) y1 = [4, 8, 16, 20, 32] base = [2, 4, 8, 10, 16] cs = [Color.black, Color.orange, Color.gray, Color.yellow, Color.pink] ss = [StrokeType.SOLID, StrokeType.SOLID, StrokeType.DASH, StrokeType.DOT, StrokeType.DASHDOT, StrokeType.LONGDASH] plot.add(Area(y=y1, base=base, color=Color(255, 0, 0, 50))) plot.add(Stems(y=y1, base=base, color=cs, style=ss, width=5)) plot = Plot() y = [3, 5, 2, 3] x0 = [0, 1, 2, 3] x1 = [3, 4, 5, 8] plot.add(Area(x= x0, y= y)) plot.add(Area(x= x1, y= y, color= Color(128, 128, 128, 50), interpolation= 0)) p = Plot() p.add(Line(y= [3, 6, 12, 24], displayName= "Median")) p.add(Area(y= [4, 8, 16, 32], base= [2, 4, 8, 16], color= Color(255, 0, 0, 50), displayName= "Q1 to Q3")) ch = Crosshair(color= Color(255, 128, 5), width= 2, style= StrokeType.DOT) pp = Plot(crosshair= ch, omitCheckboxes= True, legendLayout= LegendLayout.HORIZONTAL, legendPosition= LegendPosition.TOP) x = [1, 4, 6, 8, 10] y = [3, 6, 4, 5, 9] pp.add(Line(displayName= "Line", x= x, y= y, width= 3)) pp.add(Bars(displayName= "Bar", x= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], y= [2, 2, 4, 4, 2, 2, 0, 2, 2, 4], width= 0.5)) pp.add(Points(x= x, y= y, size= 10)) p = Plot () p.add(Line(y=[-1, 1])) p.add(ConstantLine(x=0.65, style=StrokeType.DOT, color=Color.blue)) p.add(ConstantLine(y=0.1, style=StrokeType.DASHDOT, color=Color.blue)) p.add(ConstantLine(x=0.3, y=0.4, color=Color.gray, width=5, showLabel=True)) Plot().add(Line(y=[-3, 1, 3, 4, 5])).add(ConstantBand(x=[1, 2], y=[1, 3])) p = Plot() p.add(Line(x= [-3, 1, 2, 4, 5], y= [4, 2, 6, 1, 5])) p.add(ConstantBand(x= ['-Infinity', 1], color= Color(128, 128, 128, 50))) p.add(ConstantBand(x= [1, 2])) p.add(ConstantBand(x= [4, 'Infinity'])) from decimal import Decimal pos_inf = Decimal('Infinity') neg_inf = Decimal('-Infinity') print (pos_inf) print (neg_inf) from beakerx.plot import Text as BeakerxText plot = Plot() xs = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] ys = [8.6, 6.1, 7.4, 2.5, 0.4, 0.0, 0.5, 1.7, 8.4, 1] def label(i): if ys[i] > ys[i+1] and ys[i] > ys[i-1]: return "max" if ys[i] < ys[i+1] and ys[i] < ys[i-1]: return "min" if ys[i] > ys[i-1]: return "rising" if ys[i] < ys[i-1]: return "falling" return "" for i in xs: i = i - 1 if i > 0 and i < len(xs)-1: plot.add(BeakerxText(x= xs[i], y= ys[i], text= label(i), pointerAngle= -i/3.0)) plot.add(Line(x= xs, y= ys)) plot.add(Points(x= xs, y= ys)) plot = Plot(title= "Setting 2nd Axis bounds") ys = [0, 2, 4, 6, 15, 10] ys2 = [-40, 50, 6, 4, 2, 0] ys3 = [3, 6, 3, 6, 70, 6] plot.add(YAxis(label="Spread")) plot.add(Line(y= ys)) plot.add(Line(y= ys2, yAxis="Spread")) plot.setXBound([-2, 10]) #plot.setYBound(1, 5) plot.getYAxes()[0].setBound(1,5) plot.getYAxes()[1].setBound(3,6) plot plot = Plot(title= "Setting 2nd Axis bounds") ys = [0, 2, 4, 6, 15, 10] ys2 = [-40, 50, 6, 4, 2, 0] ys3 = [3, 6, 3, 6, 70, 6] plot.add(YAxis(label="Spread")) plot.add(Line(y= ys)) plot.add(Line(y= ys2, yAxis="Spread")) plot.setXBound([-2, 10]) plot.setYBound(1, 5) plot import time millis = current_milli_time() hour = round(1000 * 60 * 60) xs = [] ys = [] for i in range(11): xs.append(millis + hour * i) ys.append(i) plot = TimePlot(timeZone="America/New_York") # list of milliseconds plot.add(Points(x=xs, y=ys, size=10, displayName="milliseconds")) plot = TimePlot() plot.add(Line(x=tableRows['time'], y=tableRows['m3'])) y = pd.Series([7.5, 7.9, 7, 8.7, 8, 8.5]) dates = [np.datetime64('2015-02-01'), np.datetime64('2015-02-02'), np.datetime64('2015-02-03'), np.datetime64('2015-02-04'), np.datetime64('2015-02-05'), np.datetime64('2015-02-06')] plot = TimePlot() plot.add(Line(x=dates, y=y)) y = pd.Series([7.5, 7.9, 7, 8.7, 8, 8.5]) dates = pd.Series(['2015-02-01', '2015-02-02', '2015-02-03', '2015-02-04', '2015-02-05', '2015-02-06'] , dtype='datetime64[ns]') plot = TimePlot() plot.add(Line(x=dates, y=y)) import datetime y = pd.Series([7.5, 7.9, 7, 8.7, 8, 8.5]) dates = [datetime.date(2015, 2, 1), datetime.date(2015, 2, 2), datetime.date(2015, 2, 3), datetime.date(2015, 2, 4), datetime.date(2015, 2, 5), datetime.date(2015, 2, 6)] plot = TimePlot() plot.add(Line(x=dates, y=y)) import datetime y = pd.Series([7.5, 7.9, 7, 8.7, 8, 8.5]) dates = [datetime.datetime(2015, 2, 1), datetime.datetime(2015, 2, 2), datetime.datetime(2015, 2, 3), datetime.datetime(2015, 2, 4), datetime.datetime(2015, 2, 5), datetime.datetime(2015, 2, 6)] plot = TimePlot() plot.add(Line(x=dates, y=y)) millis = current_milli_time() nanos = millis * 1000 * 1000 xs = [] ys = [] for i in range(11): xs.append(nanos + 7 * i) ys.append(i) nanoplot = NanoPlot() nanoplot.add(Points(x=xs, y=ys)) y1 = [1,5,3,2,3] y2 = [7,2,4,1,3] p = Plot(title='Plot with XYStacker', initHeight=200) a1 = Area(y=y1, displayName='y1') a2 = Area(y=y2, displayName='y2') stacker = XYStacker() p.add(stacker.stack([a1, a2])) SimpleTimePlot(tableRows, ["y1", "y10"], # column names timeColumn="time", # time is default value for a timeColumn yLabel="Price", displayNames=["1 Year", "10 Year"], colors = [[216, 154, 54], Color.lightGray], displayLines=True, # no lines (true by default) displayPoints=False) # show points (false by default)) #time column base on DataFrame index tableRows.index = tableRows['time'] SimpleTimePlot(tableRows, ['m3']) rng = pd.date_range('1/1/2011', periods=72, freq='H') ts = pd.Series(np.random.randn(len(rng)), index=rng) df = pd.DataFrame(ts, columns=['y']) SimpleTimePlot(df, ['y']) p = TimePlot(xLabel= "Time", yLabel= "Interest Rates") p.add(YAxis(label= "Spread", upperMargin= 4)) p.add(Area(x= tableRows.time, y= tableRows.spread, displayName= "Spread", yAxis= "Spread", color= Color(180, 50, 50, 128))) p.add(Line(x= tableRows.time, y= tableRows.m3, displayName= "3 Month")) p.add(Line(x= tableRows.time, y= tableRows.y10, displayName= "10 Year")) import math points = 100 logBase = 10 expys = [] xs = [] for i in range(0, points): xs.append(i / 15.0) expys.append(math.exp(xs[i])) cplot = CombinedPlot(xLabel= "Linear") logYPlot = Plot(title= "Linear x, Log y", yLabel= "Log", logY= True, yLogBase= logBase) logYPlot.add(Line(x= xs, y= expys, displayName= "f(x) = exp(x)")) logYPlot.add(Line(x= xs, y= xs, displayName= "g(x) = x")) cplot.add(logYPlot, 4) linearYPlot = Plot(title= "Linear x, Linear y", yLabel= "Linear") linearYPlot.add(Line(x= xs, y= expys, displayName= "f(x) = exp(x)")) linearYPlot.add(Line(x= xs, y= xs, displayName= "g(x) = x")) cplot.add(linearYPlot,4) cplot plot = Plot(title= "Log x, Log y", xLabel= "Log", yLabel= "Log", logX= True, xLogBase= logBase, logY= True, yLogBase= logBase) plot.add(Line(x= xs, y= expys, displayName= "f(x) = exp(x)")) plot.add(Line(x= xs, y= xs, displayName= "f(x) = x")) plot <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Plot items Step2: Lines, Points with Pandas Step3: Areas, Stems and Crosshair Step4: Constant Lines, Constant Bands Step5: TimePlot Step6: numpy datatime64 Step7: Timestamp Step8: Datetime and date Step9: NanoPlot Step10: Stacking Step11: SimpleTime Plot Step12: Second Y Axis Step13: Combined Plot
14,818
<ASSISTANT_TASK:> Python Code: # Run some setup code for this notebook. import sys import os sys.path.append('..') import graphlab products = graphlab.SFrame('datasets/') products['sentiment'] products.head(10)['name'] print '# of positive reviews =', len(products[products['sentiment']==1]) print '# of negative reviews =', len(products[products['sentiment']==-1]) import json with open('important_words.json', 'r') as f: # Reads the list of most frequent words important_words = json.load(f) important_words = [str(s) for s in important_words] print important_words def remove_punctuation(text): import string return text.translate(None, string.punctuation) products['review_clean'] = products['review'].apply(remove_punctuation) for word in important_words: products[word] = products['review_clean'].apply(lambda s : s.split().count(word)) products['perfect'] products['contains_perfect'] = products['perfect'].apply(lambda i: 1 if i>=1 else 0) print(products['contains_perfect']) print(products['perfect']) print(products['contains_perfect'].sum()) import numpy as np from algorithms.sframe_get_numpy_data import get_numpy_data def get_numpy_data(data_sframe, features, label): data_sframe['intercept'] = 1 features = ['intercept'] + features features_sframe = data_sframe[features] feature_matrix = features_sframe.to_numpy() label_sarray = data_sframe[label] label_array = label_sarray.to_numpy() return(feature_matrix, label_array) # Warning: This may take a few minutes... feature_matrix, sentiment = get_numpy_data(products, important_words, 'sentiment') feature_matrix.shape sentiment ''' produces probablistic estimate for P(y_i = +1 | x_i, w). estimate ranges between 0 and 1. ''' def predict_probability(feature_matrix, coefficients): score = np.dot(feature_matrix, coefficients) predictions = 1.0 / (1 + np.exp(-score)) return predictions dummy_feature_matrix = np.array([[1.,2.,3.], [1.,-1.,-1]]) dummy_coefficients = np.array([1., 3., -1.]) correct_scores = np.array( [ 1.*1. + 2.*3. + 3.*(-1.), 1.*1. + (-1.)*3. + (-1.)*(-1.) ] ) correct_predictions = np.array( [ 1./(1+np.exp(-correct_scores[0])), 1./(1+np.exp(-correct_scores[1])) ] ) print 'The following outputs must match ' print '------------------------------------------------' print 'correct_predictions =', correct_predictions print 'output of predict_probability =', predict_probability(dummy_feature_matrix, dummy_coefficients) def feature_derivative(errors, feature): derivative = np.dot(errors, feature) return derivative def compute_log_likelihood(feature_matrix, sentiment, coefficients): indicator = (sentiment==+1) scores = np.dot(feature_matrix, coefficients) logexp = np.log(1. + np.exp(-scores)) # Simple check to prevent overflow mask = np.isinf(logexp) logexp[mask] = -scores[mask] lp = np.sum((indicator-1)*scores - logexp) return lp dummy_feature_matrix = np.array([[1.,2.,3.], [1.,-1.,-1]]) dummy_coefficients = np.array([1., 3., -1.]) dummy_sentiment = np.array([-1, 1]) correct_indicators = np.array( [ -1==+1, 1==+1 ] ) correct_scores = np.array( [ 1.*1. + 2.*3. + 3.*(-1.), 1.*1. + (-1.)*3. + (-1.)*(-1.) ] ) correct_first_term = np.array( [ (correct_indicators[0]-1)*correct_scores[0], (correct_indicators[1]-1)*correct_scores[1] ] ) correct_second_term = np.array( [ np.log(1. + np.exp(-correct_scores[0])), np.log(1. + np.exp(-correct_scores[1])) ] ) correct_ll = sum( [ correct_first_term[0]-correct_second_term[0], correct_first_term[1]-correct_second_term[1] ] ) print 'The following outputs must match ' print '------------------------------------------------' print 'correct_log_likelihood =', correct_ll print 'output of compute_log_likelihood =', compute_log_likelihood(dummy_feature_matrix, dummy_sentiment, dummy_coefficients) from math import sqrt def logistic_regression(feature_matrix, sentiment, initial_coefficients, step_size, max_iter): coefficients = np.array(initial_coefficients) # make sure it's a numpy array for itr in xrange(max_iter): predictions = predict_probability(feature_matrix, coefficients) # Compute indicator value for (y_i = +1) indicator = (sentiment==+1) # Compute the errors as indicator - predictions errors = indicator - predictions for j in xrange(len(coefficients)): # loop over each coefficient # feature_matrix[:,j] is the feature column associated with coefficients[j]. # Compute the derivative for coefficients[j]. derivative = feature_derivative(errors, feature_matrix[:,j]) coefficients[j] = coefficients[j] + step_size*derivative # Checking whether log likelihood is increasing if itr <= 15 or (itr <= 100 and itr % 10 == 0) or (itr <= 1000 and itr % 100 == 0) \ or (itr <= 10000 and itr % 1000 == 0) or itr % 10000 == 0: lp = compute_log_likelihood(feature_matrix, sentiment, coefficients) print 'iteration %*d: log likelihood of observed labels = %.8f' % \ (int(np.ceil(np.log10(max_iter))), itr, lp) return coefficients coefficients = logistic_regression(feature_matrix, sentiment, initial_coefficients=np.zeros(194), step_size=1e-7, max_iter=301) scores = np.dot(feature_matrix, coefficients) class_probabilities = 1.0 / (1 + np.exp(-scores) ) print(class_probabilities) print( 'Number of positive sentiment predicted is {}'.format( (class_probabilities >= 0.5).sum()) ) class_predictions = np.copy(class_probabilities) class_predictions[class_predictions >=0.5] = 1 class_predictions[class_predictions < 0.5] = 0 print(class_predictions) print(len(sentiment)) print(len(class_predictions)) num_mistakes = (sentiment == class_predictions).sum() # YOUR CODE HERE accuracy = 1 -( 1.0*num_mistakes / len(sentiment)) # YOUR CODE HERE print "-----------------------------------------------------" print '# Reviews correctly classified =', len(products) - num_mistakes print '# Reviews incorrectly classified =', num_mistakes print '# Reviews total =', len(products) print "-----------------------------------------------------" print 'Accuracy = %.2f' % accuracy coefficients = list(coefficients[1:]) # exclude intercept word_coefficient_tuples = [(word, coefficient) for word, coefficient in zip(important_words, coefficients)] word_coefficient_tuples = sorted(word_coefficient_tuples, key=lambda x:x[1], reverse=True) word_coefficient_tuples[:10] word_coefficient_tuples[-10:] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load review dataset Step2: One column of this dataset is 'sentiment', corresponding to the class label with +1 indicating a review with positive sentiment and -1 indicating one with negative sentiment. Step3: Let us quickly explore more of this dataset. The 'name' column indicates the name of the product. Here we list the first 10 products in the dataset. We then count the number of positive and negative reviews. Step4: Note Step5: Now, we will perform 2 simple data transformations Step6: Now we proceed with Step 2. For each word in important_words, we compute a count for the number of times the word occurs in the review. We will store this count in a separate column (one for each word). The result of this feature processing is a single column for each word in important_words which keeps a count of the number of times the respective word occurs in the review text. Step7: The SFrame products now contains one column for each of the 193 important_words. As an example, the column perfect contains a count of the number of times the word perfect occurs in each of the reviews. Step8: Now, write some code to compute the number of product reviews that contain the word perfect. Step9: Quiz Question. How many reviews contain the word perfect? Step10: Convert SFrame to NumPy array Step11: We now provide you with a function that extracts columns from an SFrame and converts them into a NumPy array. Two arrays are returned Step12: Let us convert the data into NumPy arrays. Step13: Now, let us see what the sentiment column looks like Step14: Estimating conditional probability with link function Step15: Aside. How the link function works with matrix algebra Step16: Compute derivative of log likelihood with respect to a single coefficient Step17: In the main lecture, our focus was on the likelihood. In the advanced optional video, however, we introduced a transformation of this likelihood---called the log likelihood---that simplifies the derivation of the gradient and is more numerically stable. Due to its numerical stability, we will use the log likelihood instead of the likelihood to assess the algorithm. Step18: Checkpoint Step19: Taking gradient steps Step20: Now, let us run the logistic regression solver. Step21: Predicting sentiments Step22: Now, complete the following code block for Step 2 to compute the class predictions using the scores obtained above Step23: Measuring accuracy Step24: Which words contribute most to positive & negative sentiments? Step25: Now, word_coefficient_tuples contains a sorted list of (word, coefficient_value) tuples. The first 10 elements in this list correspond to the words that are most positive. Step26: Ten "most negative" words
14,819
<ASSISTANT_TASK:> Python Code: %matplotlib inline from matplotlib import pyplot as plt import seaborn as sns import numpy as np def find_peaks(x): a = np.array(x) l = [] for i in range(len(a)): if i == 0 and a[i] > a[i+1]: l.append(i) elif i == len(a)-1 and a[i]> a[i-1]: l.append(i) elif i > 0 and i < len(a)-1: if a[i]>a[i-1] and a[i] > a[i+1]: l.append(i) return l p1 = find_peaks([2,0,1,0,2,0,1]) assert np.allclose(p1, np.array([0,2,4,6])) p2 = find_peaks(np.array([0,1,2,3])) assert np.allclose(p2, np.array([3])) p3 = find_peaks([3,2,1,0]) assert np.allclose(p3, np.array([0])) from sympy import pi, N pi_digits_str = str(N(pi, 10001))[2:] a = [i for i in pi_digits_str] b = find_peaks(a) plt.hist(np.diff(b),10, align = 'left') plt.title("Local Max"); plt.xlabel("Difference"); plt.ylabel("Freq"); assert True # use this for grading the pi digits histogram <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Peak finding Step2: Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following
14,820
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt import numpy as np import pandas as pd from mpl_toolkits.basemap import Basemap from shapely.geometry import Point, Polygon, MultiPoint, MultiPolygon from shapely.prepared import prep import fiona from matplotlib.collections import PatchCollection from descartes import PolygonPatch import json import datetime from IPython.display import Image with open('LocationHistory.json', 'r') as fh: raw = json.loads(fh.read()) # use ld as an abbreviation for location data ld = pd.DataFrame(raw['locations']) del raw #free up some memory # convert to typical units ld['latitudeE7'] = ld['latitudeE7']/float(1e7) ld['longitudeE7'] = ld['longitudeE7']/float(1e7) ld['timestampMs'] = ld['timestampMs'].map(lambda x: float(x)/1000) #to seconds ld['datetime'] = ld.timestampMs.map(datetime.datetime.fromtimestamp) # Rename fields based on the conversions we just did ld.rename(columns={'latitudeE7':'latitude', 'longitudeE7':'longitude', 'timestampMs':'timestamp'}, inplace=True) ld = ld[ld.accuracy < 1000] #Ignore locations with accuracy estimates over 1000m ld.reset_index(drop=True, inplace=True) degrees_to_radians = np.pi/180.0 ld['phi'] = (90.0 - ld.latitude) * degrees_to_radians ld['theta'] = ld.longitude * degrees_to_radians # Compute distance between two GPS points on a unit sphere ld['distance'] = np.arccos( np.sin(ld.phi)*np.sin(ld.phi.shift(-1)) * np.cos(ld.theta - ld.theta.shift(-1)) + np.cos(ld.phi)*np.cos(ld.phi.shift(-1)) ) * 6378.100 # radius of earth in km ld['speed'] = ld.distance/(ld.timestamp - ld.timestamp.shift(-1))*3600 #km/hr flightdata = pd.DataFrame(data={'endlat':ld.latitude, 'endlon':ld.longitude, 'enddatetime':ld.datetime, 'distance':ld.distance, 'speed':ld.speed, 'startlat':ld.shift(-1).latitude, 'startlon':ld.shift(-1).longitude, 'startdatetime':ld.shift(-1).datetime, }).reset_index(drop=True) def distance_on_unit_sphere(lat1, long1, lat2, long2): # http://www.johndcook.com/python_longitude_latitude.html # Convert latitude and longitude to spherical coordinates in radians. degrees_to_radians = np.pi/180.0 # phi = 90 - latitude phi1 = (90.0 - lat1)*degrees_to_radians phi2 = (90.0 - lat2)*degrees_to_radians # theta = longitude theta1 = long1*degrees_to_radians theta2 = long2*degrees_to_radians cos = (np.sin(phi1)*np.sin(phi2)*np.cos(theta1 - theta2) + np.cos(phi1)*np.cos(phi2)) arc = np.arccos( cos ) # Remember to multiply arc by the radius of the earth # in your favorite set of units to get length. return arc flights = flightdata[(flightdata.speed > 40) & (flightdata.distance > 80)].reset_index() # Combine instances of flight that are directly adjacent # Find the indices of flights that are directly adjacent _f = flights[flights['index'].diff() == 1] adjacent_flight_groups = np.split(_f, (_f['index'].diff() > 1).nonzero()[0]) # Now iterate through the groups of adjacent flights and merge their data into # one flight entry for flight_group in adjacent_flight_groups: idx = flight_group.index[0] - 1 #the index of flight termination flights.ix[idx, ['startlat', 'startlon', 'startdatetime']] = [flight_group.iloc[-1].startlat, flight_group.iloc[-1].startlon, flight_group.iloc[-1].startdatetime] # Recompute total distance of flight flights.ix[idx, 'distance'] = distance_on_unit_sphere(flights.ix[idx].startlat, flights.ix[idx].startlon, flights.ix[idx].endlat, flights.ix[idx].endlon)*6378.1 # Now remove the "flight" entries we don't need anymore. flights = flights.drop(_f.index).reset_index(drop=True) # Finally, we can be confident that we've removed instances of flights broken up by # GPS data points during flight. We can now be more liberal in our constraints for what # constitutes flight. Let's remove any instances below 200km as a final measure. flights = flights[flights.distance > 200].reset_index(drop=True) import matplotlib.pyplot as plt import numpy as np import pandas as pd from mpl_toolkits.basemap import Basemap fig = plt.figure(figsize=(18,12)) # Plotting across the international dateline is tough. One option is to break up flights # by hemisphere. Otherwise, you'd need to plot using a different projection like 'robin' # and potentially center on the Int'l Dateline (lon_0=-180) # flights = flights[(flights.startlon < 0) & (flights.endlon < 0)]# Western Hemisphere Flights # flights = flights[(flights.startlon > 0) & (flights.endlon > 0)] # Eastern Hemisphere Flights xbuf = 0.2 ybuf = 0.35 minlat = np.min([flights.endlat.min(), flights.startlat.min()]) minlon = np.min([flights.endlon.min(), flights.startlon.min()]) maxlat = np.max([flights.endlat.max(), flights.startlat.max()]) maxlon = np.max([flights.endlon.max(), flights.startlon.max()]) width = maxlon - minlon height = maxlat - minlat m = Basemap(llcrnrlon=minlon - width* xbuf, llcrnrlat=minlat - height*ybuf, urcrnrlon=maxlon + width* xbuf, urcrnrlat=maxlat + height*ybuf, projection='merc', resolution='l', lat_0=minlat + height/2, lon_0=minlon + width/2,) m.drawmapboundary(fill_color='#EBF4FA') m.drawcoastlines() m.drawstates() m.drawcountries() m.fillcontinents() for idx, f in flights.iterrows(): m.drawgreatcircle(f.startlon, f.startlat, f.endlon, f.endlat, linewidth=3, alpha=0.4, color='b' ) m.plot(*m(f.startlon, f.startlat), color='g', alpha=0.8, marker='o') m.plot(*m(f.endlon, f.endlat), color='r', alpha=0.5, marker='o' ) fig.text(0.125, 0.18, "Data collected from 2013-2016 on Android \nPlotted using Python, Basemap", ha='left', color='#555555', style='italic') fig.text(0.125, 0.15, "kivanpolimis.com", color='#555555', fontsize=16, ha='left') plt.savefig('flights.png', dpi=150, frameon=False, transparent=False, bbox_inches='tight', pad_inches=0.2) Image(filename='flights.png') flights.distance.sum()*.621371 # distance column is in km, convert to miles <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Data Wrangling Step2: data manipulation Step3: calculate speed during trips (in km/hr) Step4: Make a new dataframe containing the difference in location between each pair of points. Step5: Now flightdata contains a comparison of each adjacent GPS location. Step6: Flight algorithm Step7: This algorithm worked 100% of the time for me - no false positives or negatives. But the adjacency-criteria of the algorithm is fairly brittle. The core of it centers around the assumption that inter-flight GPS data will be directly adjacent to one another. That's why the initial screening on line 1 of the previous cell had to be so liberal. Step8: You can draw entertaining conclusions from the flight visualization. For instance, you can see some popular layover locations, all those lines in/out of Seattle, plus a recent trip to Germany. And Basemap has made it so simple for us - no Shapefiles to import because all map information is included in the Basemap module.
14,821
<ASSISTANT_TASK:> Python Code: # RUN THIS CELL FIRST!!! import time from pydrill.client import PyDrill import psycopg2 import pandas as pd drill = PyDrill(host='128.206.116.250', port=8048) if not drill.is_active(): raise ImproperlyConfigured('Please run Drill first') # Start the Timer start = time.perf_counter() rows = drill.query("SELECT * FROM dfs.datasets.`twitter/tweet.json` WHERE text LIKE 'RT%' LIMIT 100000") end = time.perf_counter() # How long did this look up take? print("Time to for PyDrill:") print(end - start) print('------------------') # pandas dataframe df = rows.to_dataframe() df.head() statement = SELECT * FROM twitter.tweet WHERE text LIKE 'RT%' LIMIT 100000; start = time.perf_counter() try: connect_str = "dbname='twitter' user='dsa_ro_user' host='dbase.dsa.missouri.edu'password='readonly'" # use our connection values to establish a connection conn = psycopg2.connect(connect_str) cursor = conn.cursor() cursor.execute(statement) column_names = [desc[0] for desc in cursor.description] rows = cursor.fetchall() except Exception as e: print("Uh oh, can't connect. Invalid dbname, user or password?") print(e) end = time.perf_counter() # How long did this look up take? print("Time to for Postgres:") print(end - start) print('------------------') # create dictionary from the rows and column names job = {} for i in list(range(len(column_names))): job['{}'.format(column_names[i])] = [x[i] for x in rows] # turn dictionary into a data frame df = pd.DataFrame(job) df.head() statement = SELECT COUNT(*) FROM (SELECT DISTINCT text FROM (SELECT text FROM dfs.datasets.`twitter/tweet.json` WHERE text LIKE 'RT%' LIMIT 10000) AS retweets) AS retweet_count drill = PyDrill(host='128.206.116.250', port=8048) if not drill.is_active(): raise ImproperlyConfigured('Please run Drill first') # Start the Timer start = time.perf_counter() rows = drill.query(statement) end = time.perf_counter() # How long did this look up take? print("Time to for PyDrill:") print(end - start) print('------------------') # pandas dataframe df = rows.to_dataframe() df.head() statement = SELECT COUNT(*) FROM (SELECT DISTINCT text FROM (SELECT text FROM twitter.tweet WHERE text LIKE 'RT%' LIMIT 10000) AS retweets) AS retweet_count start = time.perf_counter() try: connect_str = "dbname='twitter' user='dsa_ro_user' host='dbase.dsa.missouri.edu'password='readonly'" # use our connection values to establish a connection conn = psycopg2.connect(connect_str) cursor = conn.cursor() cursor.execute(statement) column_names = [desc[0] for desc in cursor.description] rows = cursor.fetchall() except Exception as e: print("Uh oh, can't connect. Invalid dbname, user or password?") print(e) end = time.perf_counter() # How long did this look up take? print("Time to for Postgres:") print(end - start) print('------------------') # create dictionary from the rows and column names job = {} for i in list(range(len(column_names))): job['{}'.format(column_names[i])] = [x[i] for x in rows] # turn dictionary into a data frame df = pd.DataFrame(job) df.head() statement = SELECT DISTINCT text, COUNT(*) FROM (SELECT text FROM twitter.tweet WHERE text LIKE 'RT%' LIMIT 10000) AS retweets GROUP BY text ORDER BY count DESC; start = time.perf_counter() try: connect_str = "dbname='twitter' user='dsa_ro_user' host='dbase.dsa.missouri.edu'password='readonly'" # use our connection values to establish a connection conn = psycopg2.connect(connect_str) cursor = conn.cursor() cursor.execute(statement) column_names = [desc[0] for desc in cursor.description] rows = cursor.fetchall() except Exception as e: print("Uh oh, can't connect. Invalid dbname, user or password?") print(e) end = time.perf_counter() # How long did this look up take? print("Time to for Postgres:") print(end - start) print('------------------') # create dictionary from the rows and column names job = {} for i in list(range(len(column_names))): job['{}'.format(column_names[i])] = [x[i] for x in rows] # turn dictionary into a data frame df = pd.DataFrame(job) df statement = SELECT DISTINCT text, iso_language, COUNT(*) FROM (SELECT text, iso_language FROM twitter.tweet WHERE text LIKE 'RT%' LIMIT 10000) AS retweets GROUP BY text, iso_language ORDER BY count DESC; start = time.perf_counter() try: connect_str = "dbname='twitter' user='dsa_ro_user' host='dbase.dsa.missouri.edu'password='readonly'" # use our connection values to establish a connection conn = psycopg2.connect(connect_str) cursor = conn.cursor() cursor.execute(statement) column_names = [desc[0] for desc in cursor.description] rows = cursor.fetchall() except Exception as e: print("Uh oh, can't connect. Invalid dbname, user or password?") print(e) end = time.perf_counter() # How long did this look up take? print("Time to for Postgres:") print(end - start) print('------------------') # create dictionary from the rows and column names job = {} for i in list(range(len(column_names))): job['{}'.format(column_names[i])] = [x[i] for x in rows] # turn dictionary into a data frame df = pd.DataFrame(job) df statement = SELECT DISTINCT job_id, text, iso_language, COUNT(*) FROM (SELECT job_id, text, iso_language FROM twitter.tweet WHERE text LIKE 'RT%' AND job_id >= 255 LIMIT 10000) AS retweets GROUP BY job_id, text, iso_language ORDER BY count DESC; start = time.perf_counter() try: connect_str = "dbname='twitter' user='dsa_ro_user' host='dbase.dsa.missouri.edu'password='readonly'" # use our connection values to establish a connection conn = psycopg2.connect(connect_str) cursor = conn.cursor() cursor.execute(statement) column_names = [desc[0] for desc in cursor.description] rows = cursor.fetchall() except Exception as e: print("Uh oh, can't connect. Invalid dbname, user or password?") print(e) end = time.perf_counter() # How long did this look up take? print("Time to for Postgres:") print(end - start) print('------------------') # create dictionary from the rows and column names job = {} for i in list(range(len(column_names))): job['{}'.format(column_names[i])] = [x[i] for x in rows] # turn dictionary into a data frame df = pd.DataFrame(job) df statement = SELECT DISTINCT job_id, text, iso_language, COUNT(*) FROM (SELECT job_id, text, iso_language FROM twitter.tweet WHERE lower(text) LIKE 'rt%#royals%' AND job_id >= 255 LIMIT 100) AS retweets GROUP BY job_id, text, iso_language ORDER BY count DESC; start = time.perf_counter() try: connect_str = "dbname='twitter' user='dsa_ro_user' host='dbase.dsa.missouri.edu'password='readonly'" # use our connection values to establish a connection conn = psycopg2.connect(connect_str) cursor = conn.cursor() cursor.execute(statement) column_names = [desc[0] for desc in cursor.description] rows = cursor.fetchall() except Exception as e: print("Uh oh, can't connect. Invalid dbname, user or password?") print(e) end = time.perf_counter() # How long did this look up take? print("Time to for Postgres:") print(end - start) print('------------------') # create dictionary from the rows and column names job = {} for i in list(range(len(column_names))): job['{}'.format(column_names[i])] = [x[i] for x in rows] # turn dictionary into a data frame df = pd.DataFrame(job) df statement = SELECT DISTINCT description, iso_language, COUNT(*) FROM (SELECT h.description, t.job_id, t.text, t.iso_language FROM twitter.tweet t, twitter.job h WHERE lower(t.text) LIKE 'rt%#royals%' AND h.job_id >= 255 and h.job_id = t.job_id LIMIT 100) AS retweets GROUP BY description, iso_language ORDER BY count DESC; start = time.perf_counter() try: connect_str = "dbname='twitter' user='dsa_ro_user' host='dbase.dsa.missouri.edu'password='readonly'" # use our connection values to establish a connection conn = psycopg2.connect(connect_str) cursor = conn.cursor() cursor.execute(statement) column_names = [desc[0] for desc in cursor.description] rows = cursor.fetchall() except Exception as e: print("Uh oh, can't connect. Invalid dbname, user or password?") print(e) end = time.perf_counter() # How long did this look up take? print("Time to for Postgres:") print(end - start) print('------------------') # create dictionary from the rows and column names job = {} for i in list(range(len(column_names))): job['{}'.format(column_names[i])] = [x[i] for x in rows] # turn dictionary into a data frame df = pd.DataFrame(job) df <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Pydrill Step3: Postgres Step5: Simple enough. Just as a reminder, the % operator in SQL matches any or no characters. Step7: Postgres Step9: Keep in mind that LIMIT works independently of ORDER BY so the results of the queries may be slightly different each time you run it since we aren't taking into account all rows in the database. Step12: We can take this even further and circle back to the linguistic component. We can add another feature to the group by to find the count of the most popular retweets per language. Step14: We can further limit our query by a certain hashtag. It may be of interest to find the most common retweet by a certain topic where a topic is defined by a tweet hashtag. We have been collecting data for the duration of the 2017 MLB season, so if you are a baseball fan, we can extract the most retweeted tweets for a particular baseball team. Step16: You will notice that there were use lower(text) in the query. This turns all characters to lowercase as we don't want to mess with cases when looking for a simple hashtag.
14,822
<ASSISTANT_TASK:> Python Code: %load_ext autoreload %autoreload 2 %matplotlib inline #export from exp.nb_00 import * import operator def test(a,b,cmp,cname=None): if cname is None: cname=cmp.__name__ assert cmp(a,b),f"{cname}:\n{a}\n{b}" def test_eq(a,b): test(a,b,operator.eq,'==') test_eq(TEST,'test') # To run tests in console: # ! python run_notebook.py 01_matmul.ipynb #export from pathlib import Path from IPython.core.debugger import set_trace from fastai import datasets import pickle, gzip, math, torch, matplotlib as mpl import matplotlib.pyplot as plt from torch import tensor MNIST_URL='http://deeplearning.net/data/mnist/mnist.pkl' path = datasets.download_data(MNIST_URL, ext='.gz'); path with gzip.open(path, 'rb') as f: ((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding='latin-1') x_train,y_train,x_valid,y_valid = map(tensor, (x_train,y_train,x_valid,y_valid)) n,c = x_train.shape x_train, x_train.shape, y_train, y_train.shape, y_train.min(), y_train.max() assert n==y_train.shape[0]==50000 test_eq(c,28*28) test_eq(y_train.min(),0) test_eq(y_train.max(),9) mpl.rcParams['image.cmap'] = 'gray' img = x_train[0] img.view(28,28).type() plt.imshow(img.view((28,28))); weights = torch.randn(784,10) bias = torch.zeros(10) def matmul(a,b): ar,ac = a.shape # n_rows * n_cols br,bc = b.shape assert ac==br c = torch.zeros(ar, bc) for i in range(ar): for j in range(bc): for k in range(ac): # or br c[i,j] += a[i,k] * b[k,j] return c m1 = x_valid[:5] m2 = weights m1.shape,m2.shape %time t1=matmul(m1, m2) t1.shape len(x_train) a = tensor([10., 6, -4]) b = tensor([2., 8, 7]) a,b a + b (a < b).float().mean() m = tensor([[1., 2, 3], [4,5,6], [7,8,9]]); m (m*m).sum().sqrt() def matmul(a,b): ar,ac = a.shape br,bc = b.shape assert ac==br c = torch.zeros(ar, bc) for i in range(ar): for j in range(bc): # Any trailing ",:" can be removed c[i,j] = (a[i,:] * b[:,j]).sum() return c %timeit -n 10 _=matmul(m1, m2) 890.1/5 #export def near(a,b): return torch.allclose(a, b, rtol=1e-3, atol=1e-5) def test_near(a,b): test(a,b,near) test_near(t1,matmul(m1, m2)) a a > 0 a + 1 m 2*m c = tensor([10.,20,30]); c m m.shape,c.shape m + c c + m t = c.expand_as(m) t m + t t.storage() t.stride(), t.shape c.unsqueeze(0) c.unsqueeze(1) m c.shape, c.unsqueeze(0).shape,c.unsqueeze(1).shape c.shape, c[None].shape,c[:,None].shape c[None].shape,c[...,None].shape c[:,None].expand_as(m) m + c[:,None] c[:,None] def matmul(a,b): ar,ac = a.shape br,bc = b.shape assert ac==br c = torch.zeros(ar, bc) for i in range(ar): # c[i,j] = (a[i,:] * b[:,j]).sum() # previous c[i] = (a[i ].unsqueeze(-1) * b).sum(dim=0) return c %timeit -n 10 _=matmul(m1, m2) 885000/277 test_near(t1, matmul(m1, m2)) c[None,:] c[None,:].shape c[:,None] c[:,None].shape c[None,:] * c[:,None] c[None] > c[:,None] # c[i,j] += a[i,k] * b[k,j] # c[i,j] = (a[i,:] * b[:,j]).sum() def matmul(a,b): return torch.einsum('ik,kj->ij', a, b) %timeit -n 10 _=matmul(m1, m2) 885000/55 test_near(t1, matmul(m1, m2)) %timeit -n 10 t2 = m1.matmul(m2) # time comparison vs pure python: 885000/18 t2 = m1@m2 test_near(t1, t2) m1.shape,m2.shape !python notebook2script.py 01_matmul.ipynb <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Jump_to lesson 8 video Step2: Get data Step3: Initial python model Step4: Matrix multiplication Step5: This is kinda slow - what if we could speed it up by 50,000 times? Let's try! Step6: Elementwise ops Step7: Frobenius norm Step8: Elementwise matmul Step9: Broadcasting Step10: How are we able to do a > 0? 0 is being broadcast to have the same dimensions as a. Step11: Broadcasting a vector to a matrix Step12: We don't really copy the rows, but it looks as if we did. In fact, the rows are given a stride of 0. Step13: You can index with the special value [None] or use unsqueeze() to convert a 1-dimensional array into a 2-dimensional array (although one of those dimensions has value 1). Step14: You can always skip trailling ' Step15: Matmul with broadcasting Step16: Broadcasting Rules Step17: When operating on two arrays/tensors, Numpy/PyTorch compares their shapes element-wise. It starts with the trailing dimensions, and works its way forward. Two dimensions are compatible when Step18: pytorch op Step19: Export
14,823
<ASSISTANT_TASK:> Python Code: # enable plotting in notebook %matplotlib notebook from simulation_results import example_simulations import physical_validation simulation_nvt_vrescale_low = example_simulations.get( "900 water molecules, NVT at 298K with v-rescale thermostat" ) num_molecules = 900 simulation_data_nvt_low = physical_validation.data.SimulationData( # Example simulations were performed using GROMACS units=physical_validation.data.UnitData.units("GROMACS"), ensemble=physical_validation.data.EnsembleData( ensemble="NVT", natoms=num_molecules * 3, volume=3.01125 ** 3, temperature=298.15, ), observables=physical_validation.data.ObservableData( # This test requires only the potential energy potential_energy=simulation_nvt_vrescale_low["potential energy"] ), ) physical_validation.ensemble.estimate_interval( data=simulation_data_nvt_low, ) simulation_nvt_vrescale_high = example_simulations.get( "900 water molecules, NVT at 308K with v-rescale thermostat" ) simulation_data_nvt_high = physical_validation.data.SimulationData( # Example simulations were performed using GROMACS units=physical_validation.data.UnitData.units("GROMACS"), ensemble=physical_validation.data.EnsembleData( ensemble="NVT", natoms=num_molecules * 3, volume=3.01125 ** 3, temperature=308.15, ), observables=physical_validation.data.ObservableData( # This test requires only the potential energy potential_energy=simulation_nvt_vrescale_high["potential energy"] ), ) physical_validation.ensemble.check( data_sim_one=simulation_data_nvt_low, data_sim_two=simulation_data_nvt_high, screen=True, ) simulation_nvt_berendsen_low = example_simulations.get( "900 water molecules, NVT at 298K with Berendsen thermostat" ) simulation_data_nvt_low.observables = physical_validation.data.ObservableData( potential_energy=simulation_nvt_berendsen_low["potential energy"] ) simulation_nvt_berendsen_high = example_simulations.get( "900 water molecules, NVT at 308K with Berendsen thermostat" ) simulation_data_nvt_high.observables = physical_validation.data.ObservableData( potential_energy=simulation_nvt_berendsen_high["potential energy"] ) physical_validation.ensemble.check( data_sim_one=simulation_data_nvt_low, data_sim_two=simulation_data_nvt_high, screen=True, ) simulation_npt_low = example_simulations.get( "900 water molecules, NPT at 298K and 1bar, using v-rescale and Parrinello-Rahman" ) num_molecules = 900 simulation_data_npt_low = physical_validation.data.SimulationData( # Example simulations were performed using GROMACS units=physical_validation.data.UnitData.units("GROMACS"), ensemble=physical_validation.data.EnsembleData( ensemble="NPT", natoms=num_molecules * 3, pressure=1.0, temperature=298.15, ), observables=physical_validation.data.ObservableData( # This test requires the potential energy and the volume potential_energy=simulation_npt_low["potential energy"], volume=simulation_npt_low["volume"], ), ) physical_validation.ensemble.estimate_interval(data=simulation_data_npt_low) simulation_npt_high = example_simulations.get( "900 water molecules, NPT at 308K and 101bar, using v-rescale and Parrinello-Rahman" ) num_molecules = 900 simulation_data_npt_high = physical_validation.data.SimulationData( # Example simulations were performed using GROMACS units=physical_validation.data.UnitData.units("GROMACS"), ensemble=physical_validation.data.EnsembleData( ensemble="NPT", natoms=num_molecules * 3, pressure=101.0, temperature=308.15, ), observables=physical_validation.data.ObservableData( # This test requires the potential energy and the volume potential_energy=simulation_npt_high["potential energy"], volume=simulation_npt_high["volume"], ), ) physical_validation.ensemble.check( data_sim_one=simulation_data_npt_low, data_sim_two=simulation_data_npt_high, ) simulation_muvt_low = example_simulations.get( "GCMC Difluoromethane vapor, muVT at 300K and -37.5kJ/mol" ) simulation_data_muvt_low = physical_validation.data.SimulationData( # Example simulations were performed in units compatible with GROMACS units units=physical_validation.data.UnitData.units("GROMACS"), ensemble=physical_validation.data.EnsembleData( ensemble="muVT", mu=-37.5, volume=512, temperature=300, ), observables=physical_validation.data.ObservableData( # This test requires the potential energy and the volume potential_energy=simulation_muvt_low["potential energy"], number_of_species=simulation_muvt_low["number of species"], ), ) physical_validation.ensemble.estimate_interval(data=simulation_data_muvt_low) simulation_muvt_high = example_simulations.get( "GCMC Difluoromethane vapor, muVT at 300K and -37.0kJ/mol" ) simulation_data_muvt_high = physical_validation.data.SimulationData( # Example simulations were performed in units compatible with GROMACS units units=physical_validation.data.UnitData.units("GROMACS"), ensemble=physical_validation.data.EnsembleData( ensemble="muVT", mu=-37.0, volume=512, temperature=300, ), observables=physical_validation.data.ObservableData( # This test requires the potential energy and the volume potential_energy=simulation_muvt_high["potential energy"], number_of_species=simulation_muvt_high["number of species"], ), ) physical_validation.ensemble.check( data_sim_one=simulation_data_muvt_low, data_sim_two=simulation_data_muvt_high, screen=True ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The results imported here are the time series of kinetic and potential energy from example simulations, which are Step2: Check NVT simulations Step3: It is not trivial to decide at which temperature to perform a second simulation. Step4: The second simulation available in our example set was performed at 308.15K, which Step5: Using both simulation data objects, we can now check the ensemble sampled Step6: By default, the ensemble check is estimating the distance in temperature between the two sampled ensembles using a maximum likelihood approach. This distance estimate is expected to be close to the true value. As a rule of thumb, if the true interval is not within about 2-3 standard deviations of the estimated interval, the trajectory is unlikely to have been sampled from the expected ensemble. The quantiles (number of standard deviations) of difference between the true value and the estimate is returned from the test as a machine-readable test result. Step7: The check is confirming that the sampled ensemble using the Berendsen thermostat is not behaving as expected when changing the temperature. The reported estimated temperature interval is around 15 standard deviations from the true value, which makes it easy to reject the hypothesis that the potential energy was sampled from the correct ensemble. Step8: As in the NVT case, we can use this simulation to have physical_validation suggesting a state point to perform the second simulation in. Step9: The rule of thumb suggests that a second state point with a temperature difference of about 7.8 K and a pressure difference of about 315 bar would be optimal. The second simulation which is available in our example set was performed at 308.15 K and 101 bar, so at a distance of 10 K and 100 bar. According to the physical_validation estimate, the pressure distance should be a bit further to have optimal error recognition. The check will, however, not be invalid with this choice of state points. Step10: Using both simulation data objects, we can now check the ensemble sampled by our simulations. Note that plotting is not available for NPT simulations which differ in both temperature and pressure, since the 2-dimensional plot would be very hard to interpret. Step11: The ensemble check now prints both the estimated temperature and pressure intervals. We note that in both cases, the true value is within less than a standard deviation, which means that the null hypothesis of sampling the expected ensemble stands. Step12: As for the other ensembles, we can use this simulation to have physical_validation suggesting a state point to perform the second simulation in. Step13: The rule of thumb suggests that a second state point with chemical potential difference of about 0.6 kJ/mol would be optimal. For the temperature, the suggestion of a second state point varies depending on whether a 1D fit (simulations varying only in their target temperature) or a 2D fit (simulations varying in both their target temperature and the chemical potential) is to be performed. Step14: Using both simulation data objects, we can now check the ensemble sampled by our simulations. We are using screen=True to display a result plot on screen. See argument filename to print that same plot to file.
14,824
<ASSISTANT_TASK:> Python Code: # -- inputs X_test[0] # -- predicted output (using Keras) yhat[0] from tensorflow.core.framework import graph_pb2 # -- read in the graph f = open("models/graph.pb", "rb") graph_def = graph_pb2.GraphDef() graph_def.ParseFromString(f.read()) import tensorflow as tf # -- actually import the graph described by graph_def tf.import_graph_def(graph_def, name = '') for node in graph_def.node: print node.name <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Inspect the protobuf containing the model's architecture and logic
14,825
<ASSISTANT_TASK:> Python Code: DON'T MODIFY ANYTHING IN THIS CELL import helper import problem_unittests as tests source_path = 'data/small_vocab_en' target_path = 'data/small_vocab_fr' source_text = helper.load_data(source_path) target_text = helper.load_data(target_path) view_sentence_range = (0, 10) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in source_text.split()}))) sentences = source_text.split('\n') word_counts = [len(sentence.split()) for sentence in sentences] print('Number of sentences: {}'.format(len(sentences))) print('Average number of words in a sentence: {}'.format(np.average(word_counts))) print() print('English sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(source_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) print() print('French sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(target_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) def text_to_ids(source_text, target_text, source_vocab_to_int, target_vocab_to_int): Convert source and target text to proper word ids :param source_text: String that contains all the source text. :param target_text: String that contains all the target text. :param source_vocab_to_int: Dictionary to go from the source words to an id :param target_vocab_to_int: Dictionary to go from the target words to an id :return: A tuple of lists (source_id_text, target_id_text) with_eos = source_vocab_to_int["<EOS>"] source2id = [[source_vocab_to_int[word] for word in sentence.split()] for sentence in source_text.split('\n')] target2id = [[target_vocab_to_int[word] for word in sentence.split()] + [with_eos] for sentence in target_text.split('\n')] return source2id, target2id DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_text_to_ids(text_to_ids) DON'T MODIFY ANYTHING IN THIS CELL helper.preprocess_and_save_data(source_path, target_path, text_to_ids) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np import helper (source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess() DON'T MODIFY ANYTHING IN THIS CELL from distutils.version import LooseVersion import warnings import tensorflow as tf from tensorflow.python.layers.core import Dense # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.1'), 'Please use TensorFlow version 1.1 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) def model_inputs(): Create TF Placeholders for input, targets, learning rate, and lengths of source and target sequences. :return: Tuple (input, targets, learning rate, keep probability, target sequence length, max target sequence length, source sequence length) # TODO: Implement Function _input = tf.placeholder(tf.int32, [None, None], name="input") targets = tf.placeholder(tf.int32, [None, None]) lr = tf.placeholder(tf.float32, None, name="learning_rate") keep_prob = tf.placeholder(tf.float32, None, name="keep_prob") ts_length = tf.placeholder(tf.int32, [None], name="target_sequence_length") max_ts_length = tf.reduce_max(ts_length, name="max_target_len") ss_length = tf.placeholder(tf.int32, [None], name="source_sequence_length") return _input, targets, lr, keep_prob, ts_length, max_ts_length, ss_length DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_model_inputs(model_inputs) def process_decoder_input(target_data, target_vocab_to_int, batch_size): Preprocess target data for encoding :param target_data: Target Placehoder :param target_vocab_to_int: Dictionary to go from the target words to an id :param batch_size: Batch Size :return: Preprocessed target data ending = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1]) return tf.concat([tf.fill([batch_size, 1], target_vocab_to_int.get("<GO>")), ending], 1) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_process_encoding_input(process_decoder_input) from imp import reload reload(tests) def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, source_sequence_length, source_vocab_size, encoding_embedding_size): Create encoding layer :param rnn_inputs: Inputs for the RNN :param rnn_size: RNN Size :param num_layers: Number of layers :param keep_prob: Dropout keep probability :param source_sequence_length: a list of the lengths of each sequence in the batch :param source_vocab_size: vocabulary size of source data :param encoding_embedding_size: embedding size of source data :return: tuple (RNN output, RNN state) embedding = tf.contrib.layers.embed_sequence( ids=rnn_inputs, vocab_size=source_vocab_size, embed_dim=encoding_embedding_size ) def enc_cell(rnn_size): return tf.contrib.rnn.LSTMCell( num_units=rnn_size, initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=2) ) # increased accuracy, see Sutskever et al., 2014 stacked_cell = tf.contrib.rnn.MultiRNNCell([enc_cell(rnn_size) for _ in range(num_layers)]) stacked_cell_with_drop = tf.contrib.rnn.DropoutWrapper(stacked_cell, output_keep_prob=keep_prob) output, state = tf.nn.dynamic_rnn(stacked_cell_with_drop, embedding, sequence_length=source_sequence_length, dtype=tf.float32) return output, state DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_encoding_layer(encoding_layer) def decoding_layer_train(encoder_state, dec_cell, dec_embed_input, target_sequence_length, max_summary_length, output_layer, keep_prob): Create a decoding layer for training :param encoder_state: Encoder State :param dec_cell: Decoder RNN Cell :param dec_embed_input: Decoder embedded input :param target_sequence_length: The lengths of each sequence in the target batch :param max_summary_length: The length of the longest sequence in the batch :param output_layer: Function to apply the output layer :param keep_prob: Dropout keep probability :return: BasicDecoderOutput containing training logits and sample_id training_helper = tf.contrib.seq2seq.TrainingHelper(inputs=dec_embed_input, sequence_length=target_sequence_length, time_major=False) dec_cell_with_drop = tf.contrib.rnn.DropoutWrapper(dec_cell, output_keep_prob=keep_prob) training_decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell_with_drop, training_helper, encoder_state, output_layer) training_decoder_output, _ = tf.contrib.seq2seq.dynamic_decode(training_decoder, impute_finished=True, maximum_iterations=max_summary_length) return training_decoder_output DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer_train(decoding_layer_train) def decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, max_target_sequence_length, vocab_size, output_layer, batch_size, keep_prob): Create a decoding layer for inference :param encoder_state: Encoder state :param dec_cell: Decoder RNN Cell :param dec_embeddings: Decoder embeddings :param start_of_sequence_id: GO ID :param end_of_sequence_id: EOS Id :param max_target_sequence_length: Maximum length of target sequences :param vocab_size: Size of decoder/target vocabulary :param decoding_scope: TenorFlow Variable Scope for decoding :param output_layer: Function to apply the output layer :param batch_size: Batch size :param keep_prob: Dropout keep probability :return: BasicDecoderOutput containing inference logits and sample_id start_tokens = tf.tile(tf.constant([start_of_sequence_id], dtype=tf.int32), [batch_size], name='start_tokens') inference_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(dec_embeddings, start_tokens, end_of_sequence_id) dec_cell_with_drop = tf.contrib.rnn.DropoutWrapper(dec_cell, output_keep_prob=keep_prob) inference_decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell_with_drop, inference_helper, encoder_state, output_layer) inference_decoder_output, _ = tf.contrib.seq2seq.dynamic_decode(inference_decoder, impute_finished=True, maximum_iterations=max_target_sequence_length) return inference_decoder_output DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer_infer(decoding_layer_infer) def decoding_layer(dec_input, encoder_state, target_sequence_length, max_target_sequence_length, rnn_size, num_layers, target_vocab_to_int, target_vocab_size, batch_size, keep_prob, decoding_embedding_size): Create decoding layer :param dec_input: Decoder input :param encoder_state: Encoder state :param target_sequence_length: The lengths of each sequence in the target batch :param max_target_sequence_length: Maximum length of target sequences :param rnn_size: RNN Size :param num_layers: Number of layers :param target_vocab_to_int: Dictionary to go from the target words to an id :param target_vocab_size: Size of target vocabulary :param batch_size: The size of the batch :param keep_prob: Dropout keep probability :param decoding_embedding_size: Decoding embedding size :return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput) def make_cell(rnn_size): dec_cell = tf.contrib.rnn.LSTMCell(rnn_size, initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=2)) return dec_cell # Decoder Embedding dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size])) dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input) # Layer for mapping outputs to targets output_layer = Dense(target_vocab_size, kernel_initializer = tf.truncated_normal_initializer(mean = 0.0, stddev=0.1)) # Tokens as int start_token_id = target_vocab_to_int.get("<GO>") end_token_id = target_vocab_to_int.get("<EOS>") with tf.variable_scope("decode"): #2. Creating the LSTM Cell dec_cell = tf.contrib.rnn.MultiRNNCell([make_cell(rnn_size) for _ in range(num_layers)]) train_decoder_output = decoding_layer_train( encoder_state, dec_cell, dec_embed_input, target_sequence_length, max_target_sequence_length, output_layer, keep_prob) with tf.variable_scope("decode", reuse=True): infer_decoder_ouput = decoding_layer_infer( encoder_state, dec_cell, dec_embeddings, start_token_id, end_token_id, max_target_sequence_length, target_vocab_size, output_layer, batch_size, keep_prob) return train_decoder_output, infer_decoder_ouput DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer(decoding_layer) def seq2seq_model(input_data, target_data, keep_prob, batch_size, source_sequence_length, target_sequence_length, max_target_sentence_length, source_vocab_size, target_vocab_size, enc_embedding_size, dec_embedding_size, rnn_size, num_layers, target_vocab_to_int): Build the Sequence-to-Sequence part of the neural network :param input_data: Input placeholder :param target_data: Target placeholder :param keep_prob: Dropout keep probability placeholder :param batch_size: Batch Size :param source_sequence_length: Sequence Lengths of source sequences in the batch :param target_sequence_length: Sequence Lengths of target sequences in the batch :param source_vocab_size: Source vocabulary size :param target_vocab_size: Target vocabulary size :param enc_embedding_size: Decoder embedding size :param dec_embedding_size: Encoder embedding size :param rnn_size: RNN Size :param num_layers: Number of layers :param target_vocab_to_int: Dictionary to go from the target words to an id :return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput) # encoder does its own embed_sequence _, enc_state = encoding_layer(input_data, rnn_size, num_layers, keep_prob, source_sequence_length, source_vocab_size, enc_embedding_size) # Process target data for encoders decoder_input = process_decoder_input(target_data, target_vocab_to_int, batch_size) # Passing encoder state and decoder_inputs as is, since embedding is done inside decoding_layer training_decoder_output, inference_decoder_output = decoding_layer( dec_input=decoder_input, encoder_state=enc_state, target_sequence_length=target_sequence_length, max_target_sequence_length=tf.reduce_max(target_sequence_length), rnn_size=rnn_size, num_layers=num_layers, target_vocab_to_int=target_vocab_to_int, target_vocab_size=target_vocab_size, batch_size=batch_size, keep_prob=keep_prob, decoding_embedding_size=dec_embedding_size) return training_decoder_output, inference_decoder_output DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_seq2seq_model(seq2seq_model) # Number of Epochs epochs = 3 # Batch Size batch_size = 256 # RNN Size rnn_size = 512 # Number of Layers num_layers = 2 # Embedding Size encoding_embedding_size = 256 decoding_embedding_size = 256 # Learning Rate learning_rate = 0.001 # Dropout Keep Probability keep_probability = 0.5 display_step = 100 DON'T MODIFY ANYTHING IN THIS CELL save_path = 'checkpoints/dev' (source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess() max_target_sentence_length = max([len(sentence) for sentence in source_int_text]) train_graph = tf.Graph() with train_graph.as_default(): input_data, targets, lr, keep_prob, target_sequence_length, max_target_sequence_length, source_sequence_length = model_inputs() #sequence_length = tf.placeholder_with_default(max_target_sentence_length, None, name='sequence_length') input_shape = tf.shape(input_data) train_logits, inference_logits = seq2seq_model(tf.reverse(input_data, [-1]), targets, keep_prob, batch_size, source_sequence_length, target_sequence_length, max_target_sequence_length, len(source_vocab_to_int), len(target_vocab_to_int), encoding_embedding_size, decoding_embedding_size, rnn_size, num_layers, target_vocab_to_int) training_logits = tf.identity(train_logits.rnn_output, name='logits') inference_logits = tf.identity(inference_logits.sample_id, name='predictions') masks = tf.sequence_mask(target_sequence_length, max_target_sequence_length, dtype=tf.float32, name='masks') with tf.name_scope("optimization"): # Loss function cost = tf.contrib.seq2seq.sequence_loss( training_logits, targets, masks) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) DON'T MODIFY ANYTHING IN THIS CELL def pad_sentence_batch(sentence_batch, pad_int): Pad sentences with <PAD> so that each sentence of a batch has the same length max_sentence = max([len(sentence) for sentence in sentence_batch]) return [sentence + [pad_int] * (max_sentence - len(sentence)) for sentence in sentence_batch] def get_batches(sources, targets, batch_size, source_pad_int, target_pad_int): Batch targets, sources, and the lengths of their sentences together for batch_i in range(0, len(sources)//batch_size): start_i = batch_i * batch_size # Slice the right amount for the batch sources_batch = sources[start_i:start_i + batch_size] targets_batch = targets[start_i:start_i + batch_size] # Pad pad_sources_batch = np.array(pad_sentence_batch(sources_batch, source_pad_int)) pad_targets_batch = np.array(pad_sentence_batch(targets_batch, target_pad_int)) # Need the lengths for the _lengths parameters pad_targets_lengths = [] for target in pad_targets_batch: pad_targets_lengths.append(len(target)) pad_source_lengths = [] for source in pad_sources_batch: pad_source_lengths.append(len(source)) yield pad_sources_batch, pad_targets_batch, pad_source_lengths, pad_targets_lengths DON'T MODIFY ANYTHING IN THIS CELL def get_accuracy(target, logits): Calculate accuracy max_seq = max(target.shape[1], logits.shape[1]) if max_seq - target.shape[1]: target = np.pad( target, [(0,0),(0,max_seq - target.shape[1])], 'constant') if max_seq - logits.shape[1]: logits = np.pad( logits, [(0,0),(0,max_seq - logits.shape[1])], 'constant') return np.mean(np.equal(target, logits)) # Split data to training and validation sets train_source = source_int_text[batch_size:] train_target = target_int_text[batch_size:] valid_source = source_int_text[:batch_size] valid_target = target_int_text[:batch_size] (valid_sources_batch, valid_targets_batch, valid_sources_lengths, valid_targets_lengths ) = next(get_batches(valid_source, valid_target, batch_size, source_vocab_to_int['<PAD>'], target_vocab_to_int['<PAD>'])) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(epochs): for batch_i, (source_batch, target_batch, sources_lengths, targets_lengths) in enumerate( get_batches(train_source, train_target, batch_size, source_vocab_to_int['<PAD>'], target_vocab_to_int['<PAD>'])): _, loss = sess.run( [train_op, cost], {input_data: source_batch, targets: target_batch, lr: learning_rate, target_sequence_length: targets_lengths, source_sequence_length: sources_lengths, keep_prob: keep_probability}) if batch_i % display_step == 0 and batch_i > 0: batch_train_logits = sess.run( inference_logits, {input_data: source_batch, source_sequence_length: sources_lengths, target_sequence_length: targets_lengths, keep_prob: 1.0}) batch_valid_logits = sess.run( inference_logits, {input_data: valid_sources_batch, source_sequence_length: valid_sources_lengths, target_sequence_length: valid_targets_lengths, keep_prob: 1.0}) train_acc = get_accuracy(target_batch, batch_train_logits) valid_acc = get_accuracy(valid_targets_batch, batch_valid_logits) print('Epoch {:>3} Batch {:>4}/{} - Train Accuracy: {:>6.4f}, Validation Accuracy: {:>6.4f}, Loss: {:>6.4f}' .format(epoch_i, batch_i, len(source_int_text) // batch_size, train_acc, valid_acc, loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_path) print('Model Trained and Saved') DON'T MODIFY ANYTHING IN THIS CELL # Save parameters for checkpoint helper.save_params(save_path) DON'T MODIFY ANYTHING IN THIS CELL import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, (source_vocab_to_int, target_vocab_to_int), (source_int_to_vocab, target_int_to_vocab) = helper.load_preprocess() load_path = helper.load_params() def sentence_to_seq(sentence, vocab_to_int): Convert a sentence to a sequence of ids :param sentence: String :param vocab_to_int: Dictionary to go from the words to an id :return: List of word ids unk_id = 2 return [vocab_to_int.get(word, unk_id) for word in sentence.split(" ")] DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_sentence_to_seq(sentence_to_seq) translate_sentence = 'i like to work with robots .' DON'T MODIFY ANYTHING IN THIS CELL translate_sentence = sentence_to_seq(translate_sentence, source_vocab_to_int) loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_path + '.meta') loader.restore(sess, load_path) input_data = loaded_graph.get_tensor_by_name('input:0') logits = loaded_graph.get_tensor_by_name('predictions:0') target_sequence_length = loaded_graph.get_tensor_by_name('target_sequence_length:0') source_sequence_length = loaded_graph.get_tensor_by_name('source_sequence_length:0') keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0') translate_logits = sess.run(logits, {input_data: [translate_sentence]*batch_size, target_sequence_length: [len(translate_sentence)*2]*batch_size, source_sequence_length: [len(translate_sentence)]*batch_size, keep_prob: 1.0})[0] print('Input') print(' Word Ids: {}'.format([i for i in translate_sentence])) print(' English Words: {}'.format([source_int_to_vocab[i] for i in translate_sentence])) print('\nPrediction') print(' Word Ids: {}'.format([i for i in translate_logits])) print(' French Words: {}'.format(" ".join([target_int_to_vocab[i] for i in translate_logits]))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Language Translation Step3: Explore the Data Step6: Implement Preprocessing Function Step8: Preprocess all the data and save it Step10: Check Point Step12: Check the Version of TensorFlow and Access to GPU Step15: Build the Neural Network Step18: Process Decoder Input Step21: Encoding Step24: Decoding - Training Step27: Decoding - Inference Step30: Build the Decoding Layer Step33: Build the Neural Network Step34: Neural Network Training Step36: Build the Graph Step40: Batch and pad the source and target sequences Step43: Train Step45: Save Parameters Step47: Checkpoint Step50: Sentence to Sequence Step52: Translate
14,826
<ASSISTANT_TASK:> Python Code: import numpy as np from pylab import * %matplotlib inline import warnings warnings.filterwarnings('ignore') # Now moving on to the SFR-M*-Size analysis %run ~/Dropbox/pythonCode/LCSanalyzeblue.py # using John Moustakas's stellar mass estimates figure() plot(s.s.ABSMAG[:,4][s.blueflag2],s.logstellarmass[s.blueflag2],'bo') xlabel('$M_r$') ylabel('$ log_{10}(M_*) $') # r-band limit rlim=17.7 # distance modulus to Hercules, the furthest cluster mM=35.97 # absolute mag limit corresponding to r=17.7 Mr=rlim-mM axvline(x=Mr,ls='--',color='r') axis([-20,-16,8.5,10.5]) axhline(y=minmass) s.plotsalimcolormag() # For blue galaxies only s.plotSFRStellarmassSizeBlue(blueflag=True,plotbadfits=False) # to compare size distributions print 'comparing size ratios for field vs cluster' f1=s.bluesampleflag & ~s.membflag & ~s.agnflag m1=s.bluesampleflag & s.membflag & ~s.agnflag t=ks(s.s.SIZE_RATIO[f1],s.s.SIZE_RATIO[m1]) print 'mean of field = %5.2f +/- %5.2f'%(mean(s.s.SIZE_RATIO[f1]),std(s.s.SIZE_RATIO[f1])/sqrt(1.*sum(f1))) print 'mean of clust = %5.2f +/- %5.2f'%(mean(s.s.SIZE_RATIO[m1]),std(s.s.SIZE_RATIO[m1])/sqrt(1.*sum(m1))) s.printsizeblue() s.calc_size_starburst() # comparing sizes for sample with Coma removed nc.plotSFRStellarmassSizeBlue(blueflag=True,plotbadfits=False) nc.printsize() ncf1=nc.bluesampleflag & ~nc.membflag & ~nc.agnflag ncm1=nc.bluesampleflag & nc.membflag & ~nc.agnflag t=ks(nc.s.SIZE_RATIO[ncf1],nc.s.SIZE_RATIO[ncm1]) # stellar mass print 'comparing stellar mass for field vs cluster' f1=s.bluesampleflag & ~s.membflag & ~s.agnflag m1=s.bluesampleflag & s.membflag & ~s.agnflag t=ks(s.logstellarmass[f1],s.logstellarmass[m1]) # B/T print '' print 'comparing B/T for field vs cluster' f1=s.bluesampleflag & ~s.membflag & ~s.agnflag & s.gim2dflag m1=s.bluesampleflag & s.membflag & ~s.agnflag & s.gim2dflag t=ks(s.s.B_T_r[f1],s.s.B_T_r[m1]) # ssfr print '' print 'comparing sSFR for field vs cluster' f1=s.bluesampleflag & ~s.membflag & ~s.agnflag m1=s.bluesampleflag & s.membflag & ~s.agnflag t=ks(log10(s.ssfr[f1]),log10(s.ssfr[m1])) # B/A print '' print 'comparing B/A for field vs cluster' f1=s.bluesampleflag & ~s.membflag & ~s.agnflag m1=s.bluesampleflag & s.membflag & ~s.agnflag t=ks((s.s.SERSIC_BA[f1]),(s.s.SERSIC_BA[m1])) # ir surface brightness print '' print 'comparing $L{IR}/R_e(24)^2$ for field vs cluster' f1=s.bluesampleflag & ~s.membflag & ~s.agnflag m1=s.bluesampleflag & s.membflag & ~s.agnflag t=ks(log10(s.sigma_ir[f1]),log10(s.sigma_ir[m1])) # size print '' print 'comparing Re(24)/Re(r) for field vs cluster' f1=s.bluesampleflag & ~s.membflag & ~s.agnflag m1=s.bluesampleflag & s.membflag & ~s.agnflag t=ks((s.s.SIZE_RATIO[f1]),(s.s.SIZE_RATIO[m1])) figure(figsize=(12,5)) subplot(1,2,1) subplots_adjust(wspace=.5) pcolor=s.s.CLUSTER_LX pcolorlabel='$log_{10}(L_X)$' #pcolor=s.s.SIGMA_5 #pcolor=sqrt(s.s.DR_R200**2 + s.s.DELTA_V**2) #pcolor=10.**s.logstellarmass #pcolor=s.massdensity #pcolor=s.s.B_T_r #pcolorlabel='$log_{10}(B/T)$' f=s.bluesampleflag & ~s.agnflag & s.membflag scatter(log10(s.sigma_ir[f]),log10(s.ssfr[f]*1.e9),c=log10(pcolor[f]),s=60) f=s.bluesampleflag & ~s.agnflag & ~s.membflag scatter(log10(s.sigma_ir[f]),log10(s.ssfr[f]*1.e9),c=log10(pcolor[f]),s=60,marker='^') #f=s.bluesampleflag & ~s.agnflag & s.fieldflag #plot(log10(s.sigma_ir[f]),log10(s.ssfr[f]*1.e9),'ks',mfc='None',label='Field') colorbar(fraction=.08,label=pcolorlabel) xlabel('$log_{10}(\Sigma_{ir}) $') ylabel('$sSFR/Gyr$') subplot(1,2,2) #pcolor=s.s.CLUSTER_LX #pcolorlabel='$log_{10}(L_X)$' #pcolor=s.s.SIGMA_5 #pcolor=sqrt(s.s.DR_R200**2 + s.s.DELTA_V**2) #pcolor=10.**s.logstellarmass #pcolor=s.massdensity pcolor=s.s.B_T_r pcolorlabel='$log_{10}(B/T)$' f=s.bluesampleflag & ~s.agnflag & s.membflag & s.gim2dflag scatter(log10(s.sigma_ir[f]),log10(s.ssfr[f]*1.e9),c=log10(pcolor[f]),s=60) f=s.bluesampleflag & ~s.agnflag & ~s.membflag & s.gim2dflag scatter(log10(s.sigma_ir[f]),log10(s.ssfr[f]*1.e9),c=log10(pcolor[f]),s=60,marker='^') #f=s.bluesampleflag & ~s.agnflag & s.fieldflag #plot(log10(s.sigma_ir[f]),log10(s.ssfr[f]*1.e9),'ks',mfc='None',label='Field') colorbar(fraction=.08,label=pcolorlabel) xlabel('$log_{10}(\Sigma_{ir}) $') #ylabel('$sSFR/Gyr$') figure() #pcolor=s.s.CLUSTER_LX #pcolorlabel='$log_{10}(L_X)$' #pcolor=s.s.SIGMA_5 #pcolor=sqrt(s.s.DR_R200**2 + s.s.DELTA_V**2) #pcolor=10.**s.logstellarmass #pcolor=s.massdensity pcolor=s.s.B_T_r pcolorlabel='$log_{10}(B/T)$' f=s.bluesampleflag & ~s.agnflag & s.membflag & s.gim2dflag scatter(log10(s.sigma_ir[f]),log10(s.ssfr[f]*1.e9),c=log10(pcolor[f]),s=60,label='Cluster') f=s.bluesampleflag & ~s.agnflag & ~s.membflag & s.gim2dflag scatter(log10(s.sigma_ir[f]),log10(s.ssfr[f]*1.e9),c=log10(pcolor[f]),s=60,marker='^',label='Field') #f=s.bluesampleflag & ~s.agnflag & s.fieldflag #plot(log10(s.sigma_ir[f]),log10(s.ssfr[f]*1.e9),'ks',mfc='None',label='Field') colorbar(fraction=.08,label=pcolorlabel) xlabel('$log_{10}(\Sigma_{ir}) $') ylabel('$log_{10}(sSFR/Gyr)$') legend(scatterpoints=1,loc='upper left') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As of 1/6/16, need to make one more pass through the sample and remove galaxies that are blended with nearby companion. Not sure if people think the numbers in each panel are useful. Step2: RESULT Step3: SFR-Mass-Size for Blue Galaxies only Step4: RESULT Step5: The Impact of Coma Step6: RESULT Step7: RESULT
14,827
<ASSISTANT_TASK:> Python Code: # Import py_entitymatching package import py_entitymatching as em import os import pandas as pd # Get the datasets directory datasets_dir = em.get_install_path() + os.sep + 'datasets' # Get the paths of the input tables path_A = datasets_dir + os.sep + 'person_table_A.csv' path_B = datasets_dir + os.sep + 'person_table_B.csv' # Read the CSV files and set 'ID' as the key attribute A = em.read_csv_metadata(path_A, key='ID') B = em.read_csv_metadata(path_B, key='ID') # Get features (for blocking) feature_table = em.get_features_for_blocking(A, B, validate_inferred_attr_types=False) # Get features (for matching) # feature_table = em.get_features_for_matching(A, B) type(feature_table) feature_table.head() # Drop first row feature_table = feature_table.drop(0) feature_table.head() #Remove all the features except involving name (Include only the features where the left attribute is name) feature_table = feature_table[feature_table.left_attribute=='name'] feature_table #Remove all the features except involving jaccard (Include only the features where the sim function is jaccard) feature_table = feature_table[feature_table.simfunction=='jaccard'] feature_table <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Then, read the (sample) input tables for blocking purposes Step2: Removing Features from Feature Table
14,828
<ASSISTANT_TASK:> Python Code: # Import the needed packages, SymPy import sympy as sp from sympy import init_printing init_printing() # Define the variables # Complex variable s = sp.symbols('s') # FOTD Coeffficients T1,T2,T3,T4 = sp.symbols('T_1 T_2 T_3 T_4') K1,K2,K3,K4 = sp.symbols('K_1 K_2 K_3 K_4') # Time Delay Coefficients L1,L2,L3,L4 = sp.symbols('L_1 L_2 L_3 L_4') # Vectorize TV = [T1,T2,T3,T4] KV = [K1,K2,K3,K4] LV = [L1,L2,L3,L4] # Define a FOTD def FOTD(K,T,L): return K/(T*s+1) * sp.exp(-L*s) #Define a Matrix of FOTD G = sp.zeros(2) for i in range(0,4): G[i]= FOTD(KV[i],TV[i],LV[i]) #Get the DC Gain and invert it for Static Decoupling G0 = G.subs(s,0) D = sp.simplify(G0**-1) #Get the Q Matrix -> the static decoupled system Q = sp.simplify(G*D) Q # Get the Taylor series Expansion for the Interaction of Q approx I + O(s) k12 = sp.simplify(Q[1].series(s,0,2).removeO())/s k21 = sp.simplify(Q[2].series(s,0,2).removeO())/s # Print the Interaction of Input 2 on Output 1 in small frequencies k12 # Print the Interaction of Input 1 on Output 2 in small frequencies k21 # Define the symbols for interaction k1,k2 = sp.symbols('k_1 k_2', real = True) c1,c2 = sp.symbols('c_1 c_2',real = True) # Define symbols for the decoupling controller --> SMALL LETTER ki1,ki2 = sp.symbols('k_{i1} k_{i2}',real = True) kp1,kp2 = sp.symbols('k_{p1} k_{p2}',real = True) b = sp.symbols('b',real = True) # Define the symbols for the regular controller KI1,KI2,KI3,KI4 = sp.symbols('K_{I1} K_{I2} K_{I3} K_{I4}',real = True) KP1,KP2,KP3,KP4 = sp.symbols('K_{P1} K_{P2} K_{P3} K_{P4}',real = True) B = sp.symbols('B',real = True) # Vectorize kV = [k1,k2] cV = [c1,c2] kiV = [ki1,ki2] kpV = [kp1,kp2] solvar =[ki1,ki2,kp1,kp2] KIV = [KI1,KI2,KI3,KI4] KPV = [KP1,KP2,KP3,KP4] # Create a symbolic Controller def PI(I,P,S): # Here S is setpointweight return P*S+I/s # Create an decoupling controller -> Design Space Q C_D = sp.diag(PI(ki1,kp1,1),PI(ki2,kp2,1)) # Create the regular controller -> Design Space G C_R = sp.zeros(2) for i in range(0,4): C_R[i]= PI(KIV[i],KPV[i],1) C_RD = G.subs(s,0) * C_R # Get substituion Rules -> make a list of equations EQ = [] for i in range(0,4): EQ.append(C_D[i]- C_RD[i]) # Block one # Solve for the decoupling controllers kiEQ = [EQ[0],EQ[3]] kisol = sp.solve(kiEQ,[C_D[0],C_D[3]],dict=True) #Block two # Solve for the ratio of the regular controllers KEQ = [EQ[1],EQ[2]] # Choose to substitute the minor diagonals -> solve for the other controllers Ksol = sp.solve(KEQ,[C_R[1],C_R[2]], dict=True) # Substitute the minor diagonals in the solution for ki # We have a system of polynomials in s; Hence, we can get the right ratio by using coefficient comparision # Regular controller # First minor diagonal a = C_R[1] # Chose controller from input 2 to output 1 expr = sp.simplify(Ksol[0][a]).expand() # Get the coefficients corresponding to 1/s I12 = expr.coeff('1/s'); # Get the coefficients corresponding to Proportional Gain P12 = sp.simplify(expr-I12/s) # Next controller a = C_R[2] expr = sp.simplify(Ksol[0][a]).expand() # Get the coefficients corresponding to 1/s I21= expr.coeff('1/s') # Get the coefficients corresponding to Proportional Gain P21 = sp.simplify(expr-I21/s) Ksol[0] # Decoupling Controller 1 # Set the key of the dictionary of solutions a = C_D[0] # Substitute the regular controllers in the current solutions sub1 = kisol[0][a].subs(KPV[1],P12).subs(KPV[2],P21).subs(KIV[1],I12).subs(KIV[2],I21) # Simplify the equation sub1 = sp.simplify(sub1) # Decoupling Controller 2 # Set the key of the dictionary of solutions a = C_D[3] # Substitute the regular controllers in the current solutions sub2 = kisol[0][a].subs(KPV[1],P12).subs(KPV[2],P21).subs(KIV[1],I12).subs(KIV[2],I21) # Simplify the equation sub2 = sp.simplify(sub2) # First Controller sub1 # Second Controller sub2 # Decoupling controller 1 -> We can directly see the proportional and integral coeffcients sp.simplify(sub1-sub1.coeff('1/s')/s),sp.simplify(sub1.coeff('1/s')) # Decoupling controller 2 -> We can directly see the proportional and integral coeffcients sp.simplify(sub2-sub2.coeff('1/s')/s),sp.simplify(sub2.coeff('1/s')) # Get the upper limit of the interaction in terms of the original coeffients gamma1 = sp.Abs(k12*s*sp.simplify(sub2.coeff('1/s')/s)+s*k12*b*(sp.simplify(sub2-sub2.coeff('1/s')/s))) gamma1 = sp.simplify(gamma1) gamma2 = sp.Abs(k21*s*sp.simplify(sub1.coeff('1/s')/s)+s*k21*b*sp.simplify(sub1-sub1.coeff('1/s')/s)) gamma2 = sp.simplify(sp.simplify(gamma2)) gamma1 gamma2 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Interpretation Step2: We now have a system of 4 Equations we can set to zero. We have to solve for four variables, the parameter of the decoupling controller, to get the desired connection from the heueristic rules for FOTD Systems to the more complex system. Step3: We now have a relation between the choosen (main loop) controller and the other (coupling loop) controller, given by the following relationships Step4: We use this relationship to substitute the controller in the relationship for the decoupling controller. Step5: We get the decoupled controller - original designed by using Q - as a function of the choosen (main loop) controller Step6: Use that knowledge to derive the proportional and integral gains of the controller by comparison of the coefficients Step7: Deriving the maximal coupling
14,829
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np from IPython.html.widgets import interact, interactive, fixed from IPython.display import display from IPython.display import SVG s = <svg width="100" height="100"> <circle cx="50" cy="50" r="20" fill="aquamarine" /> </svg> SVG(s) def draw_circle(width=100, height=100, cx=25, cy=25, r=5, fill='red'): Draw an SVG circle. Parameters ---------- width : int The width of the svg drawing area in px. height : int The height of the svg drawing area in px. cx : int The x position of the center of the circle in px. cy : int The y position of the center of the circle in px. r : int The radius of the circle in px. fill : str The fill color of the circle. circle= <svg width="%d" height="%d"> <circle cx="%d" cy="%d" r="%d" fill="%s"/> </svg> %(width, height,cx,cy,r,fill) #used %s to include variables into the svg drawing of circle display(SVG(circle)) draw_circle(cx=10, cy=10, r=10, fill='blue') assert True # leave this to grade the draw_circle function w=interactive(draw_circle,width=fixed(300),height=fixed(300), cx=(0,300,10),cy=(0,300,10), r=(0,50,5), fill='red') c = w.children assert c[0].min==0 and c[0].max==300 assert c[1].min==0 and c[1].max==300 assert c[2].min==0 and c[2].max==50 assert c[3].value=='red' display(w) assert True # leave this to grade the display of the widget <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Interact with SVG display Step5: Write a function named draw_circle that draws a circle using SVG. Your function should take the parameters of the circle as function arguments and have defaults as shown. You will have to write the raw SVG code as a Python string and then use the IPython.display.SVG object and IPython.display.display function. Step6: Use interactive to build a user interface for exploing the draw_circle function Step7: Use the display function to show the widgets created by interactive
14,830
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np from scipy.interpolate import interp1d with np.load('trajectory.npz') as data: t = data['t'] x = data['x'] y = data['y'] print(t,x,y) assert isinstance(x, np.ndarray) and len(x)==40 assert isinstance(y, np.ndarray) and len(y)==40 assert isinstance(t, np.ndarray) and len(t)==40 x_interp = interp1d(t,x, kind='cubic') y_interp = interp1d(t,y, kind='cubic') newt = np.linspace(np.min(t), np.max(t), 200) newx = x_interp(newt) newy = y_interp(newt) assert newt[0]==t.min() assert newt[-1]==t.max() assert len(newt)==200 assert len(newx)==200 assert len(newy)==200 f = plt.figure(figsize=(12,12)) ax = plt.subplot(111) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') plt.plot(x, y, 'bo') plt.plot(newx, newy, 'r-') plt.title("Trajectory of a Particle") plt.xlabel("X") plt.ylabel("Y"); assert True # leave this to grade the trajectory plot <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2D trajectory interpolation Step2: Use these arrays to create interpolated functions $x(t)$ and $y(t)$. Then use those functions to create the following arrays Step3: Make a parametric plot of ${x(t),y(t)}$ that shows the interpolated values and the original points
14,831
<ASSISTANT_TASK:> Python Code: %run "../src/start_session.py" %run "../src/recurrences.py" %run "../src/sums.py" from oeis import oeis_search, ListData import knowledge sys.setrecursionlimit(10000000) s = oeis_search(id=45) s(data_only=True, data_representation=ListData(upper_limit=20)) with bind(IndexedBase('f'), single=True) as f: fibonacci_rec_spec = recurrence_spec(recurrence_eq=Eq(f[n+2],f[n+1]+f[n]), recurrence_symbol=f, variables=[n]) fibonacci_rec_spec unfolded = fibonacci_rec_spec.unfold(depth=5) unfolded unfolded.involute(depth=1) unfolded.involute() subsumed=unfolded.subsume() subsumed im=knowledge.fibonacci_numbers_inverted_mapping(start=2, limit=20) im subsumed.subs(im) unfolded.instantiate(strategy=raw(substitutions={n:20})) instantiated = unfolded.instantiate(strategy=based(arity=unary_indexed())) instantiated almost_valued = instantiated.subsume(additional_terms={f[0]:Integer(0), f[1]:Integer(1)}) almost_valued almost_valued.involute() ipython_latex_description(fibonacci_rec_spec, depths=range(13), arity=unary_indexed()) m, v, r, eqs = fibonacci_rec_spec.matrix_vector_product(depth=10, arity=unary_indexed(), segment=[n-k for k in range(-2, 19)]) latex_array_src(eqs) m, v, r example={n:30} to_check = Eq(m*v.subs(example), r.subs(example)) to_check to_check.subs(knowledge.fibonacci_numbers(), simultaneous=True) m, v, r, eqs = fibonacci_rec_spec.matrix_vector_product(depth=10, arity=unary_indexed(), segment=[Integer(k) for k in range(0, 11)], based_instantiation=True) latex_array_src(eqs) m,v,r m = symbols('m') thm = Eq(f[n], Sum(binomial(m,k)*f[n-2*m+k], (k,0,m))) thm benjamin_quinn_thm = thm.subs({n:n+m}) benjamin_quinn_thm benjamin_quinn_thm.subs({m:n}) def expand_sum_in_eq(eq_term, in_lhs=False, in_rhs=True): lhs, rhs = eq_term.lhs, eq_term.rhs return Eq(expand_Sum(lhs) if in_lhs else lhs, expand_Sum(rhs) if in_rhs else rhs) expanded_eq = expand_sum_in_eq(thm.subs({m:20})) expanded_eq subsed = expanded_eq.subs(n, 40) subsed subsed.subs(knowledge.fibonacci_numbers()) fibs = knowledge.fibonacci_numbers() f2_diag = f[0] f4_diag = f[0]+f[1] f6_diag = f[0]+2*f[1] f8_diag = f[0]+3*f[1]+f[2] f10_diag = f[0]+4*f[1]+3*f[2] f12_diag = f[0]+5*f[1]+6*f[2]+f[3] f14_diag = f[0]+6*f[1]+10*f[2]+4*f[3] f16_diag = f[0]+7*f[1]+15*f[2]+10*f[3]+f[4] f18_diag = f[0]+8*f[1]+21*f[2]+20*f[3]+5*f[4] f20_diag = f[0]+9*f[1]+28*f[2]+35*f[3]+15*f[4]+f[5] f22_diag = f[0]+10*f[1]+36*f[2]+56*f[3]+35*f[4]+6*f[5] f24_diag = f[0]+11*f[1]+45*f[2]+84*f[3]+70*f[4]+21*f[5]+f[6] f26_diag = f[0]+12*f[1]+55*f[2]+120*f[3]+126*f[4]+56*f[5]+7*f[6] diagonals = [Eq(f2_diag, f2_diag.subs(fibs)), Eq(f4_diag, f4_diag.subs(fibs)), Eq(f6_diag, f6_diag.subs(fibs)), Eq(f8_diag, f8_diag.subs(fibs)), Eq(f10_diag, f10_diag.subs(fibs)), Eq(f12_diag, f12_diag.subs(fibs)), Eq(f14_diag, f14_diag.subs(fibs)), Eq(f16_diag, f16_diag.subs(fibs)), Eq(f18_diag, f18_diag.subs(fibs)), Eq(f20_diag, f20_diag.subs(fibs)), Eq(f22_diag, f22_diag.subs(fibs)), Eq(f24_diag, f24_diag.subs(fibs)), Eq(f26_diag, f26_diag.subs(fibs))] latex_array_src(diagonals) def A059633_gf(x): return 1/(1-2*x+x**3-x**4) A059633_gf(t).series(t,n=14) def do_memberwise_on_eqs(an_eq, another_eq, operator=lambda x, y: Add(x,y,evaluate=True)): return Eq(operator(an_eq.lhs, another_eq.lhs), operator(an_eq.rhs, another_eq.rhs)) def swap_eq(eq_term): return Eq(eq_term.rhs, eq_term.lhs) reduce(do_memberwise_on_eqs, eqs) even_subscript_fibonacci_eq = Eq(f[2*n+1]-1, Sum(f[2*k],(k,0,n))) even_subscript_fibonacci_eq example = even_subscript_fibonacci_eq.subs(n,21) example_expanded = expand_sum_in_eq(example) example_expanded, example_expanded.subs(fibs) from itertools import accumulate enum_range = range(0,50,2) def worker(accumulated_pair, current_pair): index, current = current_pair _, accumulated = accumulated_pair summed_eq = do_memberwise_on_eqs(accumulated, current) return index, summed_eq def subs_fib_thm(pair): index, current_eq = pair expanded_thm = expand_sum_in_eq(even_subscript_fibonacci_eq.subs({n:Integer(index)/2})) return index, current_eq, expanded_thm #def eq_to_subs_dict(eq_term): return {eq_term.lhs:eq_term.rhs} def apply_subs_on_lhs(triple): index, current_eq, thm = triple return current_eq.subs({thm.rhs:thm.lhs}) def latex_array_env_of_eqs(mapped): from string import Template template = Template(r\begin{array}{c}$content\end{array}) return template.substitute(content="\n".join(mapped)) triangle = accumulate(zip(enum_range, eqs), worker) triangle = map(subs_fib_thm, triangle) triangle = list(map(apply_subs_on_lhs, triangle)) triangle[0] = Eq(f[1]-1,f[0]) latex_array_src(triangle) all(map(lambda eq: eq.subs(fibs), triangle)) to_matrix_notation(triangle, f , range(0, 11)) triangle = [eq.subs({f[0]:fibs[f[0]]}, simultaneous=True) for eq in triangle[1:]] latex_array_src(triangle) to_matrix_notation(triangle, f, range(1,11)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: OEIS Step2: Recurrence Step3: Unfolding Step4: Involution Step5: Subsuming Step6: We can abstract the following conjecture Step7: Instantiation Step8: Based Step9: Computing Step10: Collecting Step11: Spec as symbolic matrix-vector product Step12: Spec as based matrix-vector product Step13: Identities and conjectures Step14: which is known but left as an exercise by Benjamin and Quinn, in the following form Step15: instantiating $m=n$ we get a closed representation of the matrix-vector product seen before Step16: A little application of the previous identity is in the following cells Step17: symbolic expansion of the Sum object Step18: instantiate to let $f_{0}$ appears in the identity (our concept of based instantiation) Step19: finally, check the consistency using the sequence of Fibonacci numbers Step20: Looking at bottom left to top right diagonal sums Step21: we build the sum for each diagonal, manually Step22: looking at the sequence composed by coeffients in the rhs of each equation we recognize A059633. According to the reference, the sequence is built by the following recurrence Step24: therefore we can conjecture the following identity
14,832
<ASSISTANT_TASK:> Python Code: crisisInfo = { "boston": { "name": "Boston Marathon Bombing", "time": 1366051740, # Timestamp in seconds since 1/1/1970, UTC # 15 April 2013, 14:49 EDT -> 18:49 UTC "directory": "boston", "keywords": ["boston", "exploision", "bomb", "marathon"], "box": { # Bounding box for geographic limits "lowerLeftLon": -124.848974, "lowerLeftLat": 24.396308, "upperRightLon": -66.885444, "upperRightLat": 49.384358, } }, "paris_hebdo": { "name": "Charlie Hebdo Attack", "time": 1420626600, # Timestamp in seconds since 1/1/1970, UTC # 7 January 2015, 11:30 CET -> 10:30 UTC "directory": "paris_hebdo", "keywords": ["paris", "hebdo"], "box": { "lowerLeftLon": -5.1406, "lowerLeftLat": 41.33374, "upperRightLon": 9.55932, "upperRightLat": 51.089062, } }, "nepal": { "name": "Nepal Earthquake", "time": 1429942286, # Timestamp in seconds since 1/1/1970, UTC # 25 April 2015, 6:11:26 UTC "directory": "nepal", "keywords": ["nepal", "earthquake", "quake", "nsgs"], "box": { "lowerLeftLon": 80.0562, "lowerLeftLat": 26.3565, "upperRightLon": 88.1993, "upperRightLat": 30.4330, } }, "paris_nov": { "name": "Paris November Attacks", "time": 1447446000, # Timestamp in seconds since 1/1/1970, UTC # 13 November 2015, 20:20 UTC to 23:58 UTC "directory": "paris_nov", "keywords": ["paris", "shots", "explosion"], "box": { "lowerLeftLon": -5.1406, "lowerLeftLat": 41.33374, "upperRightLon": 9.55932, "upperRightLat": 51.089062, } }, "brussels": { "name": "Brussels Transit Attacks", "time": 1458629880, # Timestamp in seconds since 1/1/1970, UTC # 22 March 2016, 6:58 UTC to 08:11 UTC "directory": "brussels", "keywords": ["brussels", "bomb", "belgium", "explosion"], "box": { "lowerLeftLon": 2.54563, "lowerLeftLat": 49.496899, "upperRightLon": 6.40791, "upperRightLat": 51.5050810, } }, } print ("Available Crisis Names:") for k in sorted(crisisInfo.keys()): print ("\t", k) # Replace the name below with your selected crisis selectedCrisis = "nepal" # Determine host-specific location of data tweetDirectory = crisisInfo[selectedCrisis]["directory"] tweetGlobPath = os.path.join("..", "00_data", tweetDirectory, "statuses.log.*.gz") print ("Reading files from:", tweetGlobPath) # Dictionary for mapping dates to data frequencyMap = {} # For counting tweets globalTweetCounter = 0 # Twitter's time format, for parsing the created_at date timeFormat = "%a %b %d %H:%M:%S +0000 %Y" reader = codecs.getreader("utf-8") for tweetFilePath in glob.glob(tweetGlobPath): print ("Reading File:", tweetFilePath) for line in gzip.open(tweetFilePath, 'rb'): # Try to read tweet JSON into object tweetObj = None try: tweetObj = json.loads(reader.decode(line)[0]) except Exception as e: continue # Deleted status messages and protected status must be skipped if ( "delete" in tweetObj.keys() or "status_withheld" in tweetObj.keys() ): continue # Try to extract the time of the tweet try: currentTime = datetime.datetime.strptime(tweetObj['created_at'], timeFormat) except: print (line) raise currentTime = currentTime.replace(second=0) # Increment tweet count globalTweetCounter += 1 # If our frequency map already has this time, use it, otherwise add if ( currentTime in frequencyMap.keys() ): timeMap = frequencyMap[currentTime] timeMap["count"] += 1 timeMap["list"].append(tweetObj) else: frequencyMap[currentTime] = {"count":1, "list":[tweetObj]} # Fill in any gaps times = sorted(frequencyMap.keys()) firstTime = times[0] lastTime = times[-1] thisTime = firstTime # We want to look at per-minute data, so we fill in any missing minutes timeIntervalStep = datetime.timedelta(0, 60) # Time step in seconds while ( thisTime <= lastTime ): if ( thisTime not in frequencyMap.keys() ): frequencyMap[thisTime] = {"count":0, "list":[]} thisTime = thisTime + timeIntervalStep print ("Processed Tweet Count:", globalTweetCounter) import matplotlib.pyplot as plt crisisMoment = crisisInfo[selectedCrisis]["time"] crisisTime = datetime.datetime.utcfromtimestamp(crisisMoment) crisisTime = crisisTime.replace(second=0) print ("Crisis Time:", crisisTime) fig, ax = plt.subplots() fig.set_size_inches(11, 8.5) plt.title("Tweet Frequency") # Sort the times into an array for future use sortedTimes = sorted(frequencyMap.keys()) # What time span do these tweets cover? print ("Time Frame:", sortedTimes[0], sortedTimes[-1]) # Get a count of tweets per minute postFreqList = [frequencyMap[x]["count"] for x in sortedTimes] # We'll have ticks every few minutes (more clutters the graph) smallerXTicks = range(0, len(sortedTimes), 10) plt.xticks(smallerXTicks, [sortedTimes[x] for x in smallerXTicks], rotation=90) # Plot the post frequency yData = [x if x > 0 else 0 for x in postFreqList] ax.plot(range(len(frequencyMap)), yData, color="blue", label="Posts") crisisXCoord = sortedTimes.index(crisisTime) ax.scatter([crisisXCoord], [np.mean(yData)], c="r", marker="x", s=100, label="Crisis") ax.grid(b=True, which=u'major') ax.legend() plt.show() # Create maps for holding counts and tweets for each user globalUserCounter = {} globalUserMap = {} # Iterate through the time stamps for t in sortedTimes: timeObj = frequencyMap[t] # For each tweet, pull the screen name and add it to the list for tweet in timeObj["list"]: user = tweet["user"]["screen_name"] if ( user not in globalUserCounter ): globalUserCounter[user] = 1 globalUserMap[user] = [tweet] else: globalUserCounter[user] += 1 globalUserMap[user].append(tweet) print ("Unique Users:", len(globalUserCounter.keys())) sortedUsers = sorted(globalUserCounter, key=globalUserCounter.get, reverse=True) print ("Top Ten Most Prolific Users:") for u in sortedUsers[:10]: print (u, globalUserCounter[u], "\n\t", "Random Tweet:", globalUserMap[u][0]["text"], "\n----------") # A map for hashtag counts hashtagCounter = {} # For each minute, pull the list of hashtags and add to the counter for t in sortedTimes: timeObj = frequencyMap[t] for tweet in timeObj["list"]: hashtagList = tweet["entities"]["hashtags"] for hashtagObj in hashtagList: # We lowercase the hashtag to avoid duplicates (e.g., #MikeBrown vs. #mikebrown) hashtagString = hashtagObj["text"].lower() if ( hashtagString not in hashtagCounter ): hashtagCounter[hashtagString] = 1 else: hashtagCounter[hashtagString] += 1 print ("Unique Hashtags:", len(hashtagCounter.keys())) sortedHashtags = sorted(hashtagCounter, key=hashtagCounter.get, reverse=True) print ("Top Twenty Hashtags:") for ht in sortedHashtags[:20]: print ("\t", "#" + ht, hashtagCounter[ht]) # A map for hashtag counts urlCounter = {} # For each minute, pull the list of hashtags and add to the counter for t in sortedTimes: timeObj = frequencyMap[t] for tweet in timeObj["list"]: urlList = tweet["entities"]["urls"] for url in urlList: urlStr = url["url"] if ( urlStr not in urlCounter ): urlCounter[urlStr] = 1 else: urlCounter[urlStr] += 1 print ("Unique URLs:", len(urlCounter.keys())) sortedUrls = sorted(urlCounter, key=urlCounter.get, reverse=True) print ("Top Twenty URLs:") for url in sortedUrls[:20]: print ("\t", url, urlCounter[url]) print ("Top Expanded URLs:") for url in sortedUrls[:10]: try: r = requests.get(url) realUrl = r.url print ("\t", url, urlCounter[url], "->", realUrl) except: print ("\t", url, urlCounter[url], "->", "UNKNOWN Failure") # A map for mention counts mentionCounter = {} # For each minute, pull the list of mentions and add to the counter for t in sortedTimes: timeObj = frequencyMap[t] for tweet in timeObj["list"]: mentions = tweet["entities"]["user_mentions"] for mention in mentions: mentionStr = mention["screen_name"] if ( mentionStr not in mentionCounter ): mentionCounter[mentionStr] = 1 else: mentionCounter[mentionStr] += 1 print ("Unique Mentions:", len(mentionCounter.keys())) sortedMentions = sorted(mentionCounter, key=mentionCounter.get, reverse=True) print ("Top Twenty Mentions:") for mention in sortedMentions[:20]: print ("\t", mention, mentionCounter[mention]) # A map for media counts mediaCounter = {} # For each minute, pull the list of media and add to the counter for t in sortedTimes: timeObj = frequencyMap[t] for tweet in timeObj["list"]: if ( "media" not in tweet["entities"] ): continue mediaList = tweet["entities"]["media"] for media in mediaList: mediaStr = media["media_url"] if ( mediaStr not in mediaCounter ): mediaCounter[mediaStr] = 1 else: mediaCounter[mediaStr] += 1 print ("Unique Media:", len(mediaCounter.keys())) sortedMedia = sorted(mediaCounter, key=mediaCounter.get, reverse=True) print ("Top Twenty Media:") for media in sortedMedia[:20]: print ("\t", media, mediaCounter[media]) # A map for media counts tweetRetweetCountMap = {} rtList = [] # For each minute, pull the list of hashtags and add to the counter for t in sortedTimes: timeObj = frequencyMap[t] for tweet in timeObj["list"]: tweetId = tweet["id_str"] rtCount = tweet["retweet_count"] if ( "retweeted_status" in tweet ): tweetId = tweet["retweeted_status"]["id_str"] rtCount = tweet["retweeted_status"]["retweet_count"] tweetRetweetCountMap[tweetId] = rtCount rtList.append(rtCount) sortedRetweets = sorted(tweetRetweetCountMap, key=tweetRetweetCountMap.get, reverse=True) print ("Top Ten Retweets:") for tweetId in sortedRetweets[:10]: thisTweet = None for t in reversed(sortedTimes): for tweet in frequencyMap[t]["list"]: if ( tweet["id_str"] == tweetId ): thisTweet = tweet break if ( "retweeted_status" in tweet and tweet["retweeted_status"]["id_str"] == tweetId ): thisTweet = tweet["retweeted_status"] break if ( thisTweet is not None ): break print ("\t", tweetId, tweetRetweetCountMap[tweetId], thisTweet["text"]) print ("Top Ten RECENT Retweets:") foundTweets = 0 for tweetId in sortedRetweets: thisTweet = None # Find the most recent copy of the tweet for t in reversed(sortedTimes): for tweet in frequencyMap[t]["list"]: if ( tweet["id_str"] == tweetId ): thisTweet = tweet break if ( "retweeted_status" in tweet and tweet["retweeted_status"]["id_str"] == tweetId ): thisTweet = tweet["retweeted_status"] break if ( thisTweet is not None ): break createdTime = datetime.datetime.strptime(thisTweet['created_at'], timeFormat) # If tweet creation time is before the crisis, assume irrelevant if ( createdTime < crisisTime ): continue print ("\t", tweetId, tweetRetweetCountMap[tweetId], thisTweet["text"]) foundTweets += 1 if ( foundTweets > 10 ): break # What keywords are we interested in? targetKeywords = crisisInfo[selectedCrisis]["keywords"] # Build an empty map for each keyword we are seaching for targetCounts = {x:[] for x in targetKeywords} totalCount = [] # For each minute, pull the tweet text and search for the keywords we want for t in sortedTimes: timeObj = frequencyMap[t] # Temporary counter for this minute localTargetCounts = {x:0 for x in targetKeywords} localTotalCount = 0 for tweetObj in timeObj["list"]: tweetString = tweetObj["text"].lower() localTotalCount += 1 # Add to the counter if the target keyword is in this tweet for keyword in targetKeywords: if ( keyword in tweetString ): localTargetCounts[keyword] += 1 # Add the counts for this minute to the main counter totalCount.append(localTotalCount) for keyword in targetKeywords: targetCounts[keyword].append(localTargetCounts[keyword]) # Now plot the total frequency and frequency of each keyword fig, ax = plt.subplots() fig.set_size_inches(11, 8.5) plt.title("Tweet Frequency") plt.xticks(smallerXTicks, [sortedTimes[x] for x in smallerXTicks], rotation=90) ax.semilogy(range(len(frequencyMap)), totalCount, label="Total") ax.scatter([crisisXCoord], [100], c="r", marker="x", s=100, label="Crisis") for keyword in targetKeywords: ax.semilogy(range(len(frequencyMap)), targetCounts[keyword], label=keyword) ax.legend() ax.grid(b=True, which=u'major') plt.show() # A frequency map for timestamps to geo-coded tweets geoFrequencyMap = {} geoCount = 0 # Save only those tweets with tweet['coordinate']['coordinate'] entity for t in sortedTimes: geos = list(filter(lambda tweet: tweet["coordinates"] != None and "coordinates" in tweet["coordinates"], frequencyMap[t]["list"])) geoCount += len(geos) # Add to the timestamp map geoFrequencyMap[t] = {"count": len(geos), "list": geos} print ("Number of Geo Tweets:", geoCount) fig, ax = plt.subplots() fig.set_size_inches(11, 8.5) plt.title("Geo Tweet Frequency") gpsFreqList = [geoFrequencyMap[x]["count"] for x in sortedTimes] postFreqList = [frequencyMap[x]["count"] for x in sortedTimes] plt.xticks(smallerXTicks, [sortedTimes[x] for x in smallerXTicks], rotation=90) xData = range(len(geoFrequencyMap)) gpsYData = [x if x > 0 else 0 for x in gpsFreqList] freqYData = [x if x > 0 else 0 for x in postFreqList] ax.semilogy(xData, freqYData, color="blue", label="Posts") ax.semilogy(xData, gpsYData, color="green", label="GPS Posts") ax.scatter([crisisXCoord], [100], c="r", marker="x", s=100, label="Crisis") ax.grid(b=True, which=u'major') ax.legend() plt.show() import matplotlib import functools from mpl_toolkits.basemap import Basemap # Create a list of all geo-coded tweets tmpGeoList = [geoFrequencyMap[t]["list"] for t in sortedTimes] geoTweets = functools.reduce(lambda x, y: x + y, tmpGeoList) # For each geo-coded tweet, extract its GPS coordinates geoCoord = [x["coordinates"]["coordinates"] for x in geoTweets] # Now we build a map of the world using Basemap land_color = 'lightgray' water_color = 'lightblue' fig, ax = plt.subplots(figsize=(24,24)) worldMap = Basemap(projection='merc', llcrnrlat=-80, urcrnrlat=80, llcrnrlon=-180, urcrnrlon=180, resolution='l') worldMap.fillcontinents(color=land_color, lake_color=water_color, zorder=1) worldMap.drawcoastlines() worldMap.drawparallels(np.arange(-90.,120.,30.)) worldMap.drawmeridians(np.arange(0.,420.,60.)) worldMap.drawmapboundary(fill_color=water_color, zorder=0) ax.set_title('World Tweets') # Convert points from GPS coordinates to (x,y) coordinates convPoints = [worldMap(p[0], p[1]) for p in geoCoord] x = [p[0] for p in convPoints] y = [p[1] for p in convPoints] worldMap.scatter(x, y, s=100, marker='x', color="red", zorder=2) plt.show() # Get the bounding box for our crisis bBox = crisisInfo[selectedCrisis]["box"] fig, ax = plt.subplots(figsize=(11,8.5)) # Create a new map to hold the shape file data targetMap = Basemap(llcrnrlon=bBox["lowerLeftLon"], llcrnrlat=bBox["lowerLeftLat"], urcrnrlon=bBox["upperRightLon"], urcrnrlat=bBox["upperRightLat"], projection='merc', resolution='i', area_thresh=10000) targetMap.fillcontinents(color=land_color, lake_color=water_color, zorder=1) targetMap.drawcoastlines() targetMap.drawparallels(np.arange(-90.,120.,30.)) targetMap.drawmeridians(np.arange(0.,420.,60.)) targetMap.drawmapboundary(fill_color=water_color, zorder=0) targetMap.drawcountries() # Now we build the polygon for filtering # Convert from lon, lat of lower-left to x,y coordinates llcCoord = targetMap(bBox["lowerLeftLon"], bBox["lowerLeftLat"]) # Same for upper-right corner urcCoord = targetMap(bBox["upperRightLon"], bBox["upperRightLat"]) # Now make the polygon we'll us for filtering boxPoints = np.array([[llcCoord[0], llcCoord[1]], [llcCoord[0], urcCoord[1]], [urcCoord[0], urcCoord[1]], [urcCoord[0], llcCoord[1]]]) boundingBox = matplotlib.patches.Polygon(boxPoints) # Maps of timestamps to tweets for inside/outside Ferguson inTargetFreqMap = {} plottablePointsX = [] plottablePointsY = [] # For each geo-coded tweet, extract coordinates and convert # them to the Basemap space for t in sortedTimes: geos = geoFrequencyMap[t]["list"] convPoints = [(targetMap(tw["coordinates"]["coordinates"][0], tw["coordinates"]["coordinates"][1]), tw) for tw in geos] # Local counters for this time inTargetFreqMap[t] = {"count": 0, "list": []} # For each point, check if it is within the bounding box or not for point in convPoints: x = point[0][0] y = point[0][1] if ( boundingBox.contains_point((x, y))): inTargetFreqMap[t]["list"].append(point[1]) plottablePointsX.append(x) plottablePointsY.append(y) # Plot points in our target targetMap.scatter(plottablePointsX, plottablePointsY, s=100, marker='x', color="red", zorder=2) # Count the number of tweets that fall in the area targetTweetCount = np.sum([len(inTargetFreqMap[t]["list"]) for t in sortedTimes]) print ("Tweets in Target Area:", targetTweetCount) print ("Tweets outside:", (geoCount - targetTweetCount)) plt.show() # Merge our list of relevant tweets geoRelevantTweets = [tw for x in sortedTimes for tw in inTargetFreqMap[x]["list"]] print("Time of Crisis:", crisisTime) # Print the first few tweets for tweet in geoRelevantTweets[:10]: print("Tweet By:", tweet["user"]["screen_name"]) print("\t", "Tweet Text:", tweet["text"]) print("\t", "Tweet Time:", tweet["created_at"]) print("\t", "Source:", tweet["source"]) print("\t", "Retweets:", tweet["retweet_count"]) print("\t", "Favorited:", tweet["favorite_count"]) print("\t", "Twitter's Guessed Language:", tweet["lang"]) if ( "place" in tweet ): print("\t", "Tweet Location:", tweet["place"]["full_name"]) print("-----") from IPython.display import display from IPython.display import Image geoTweetsWithMedia = list(filter(lambda tweet: "media" in tweet["entities"], geoRelevantTweets)) print ("Tweets with Media:", len(geoTweetsWithMedia)) if ( len(geoTweetsWithMedia) == 0 ): print ("Sorry, not tweets with media...") for tweet in geoTweetsWithMedia: imgUrl = tweet["entities"]["media"][0]["media_url"] print (tweet["text"]) display(Image(url=imgUrl)) # What keywords are we interested in? targetKeywords = crisisInfo[selectedCrisis]["keywords"] # Map for storing topically relevant data topicRelevantMap = {} # For each minute, pull the tweet text and search for the keywords we want for t in sortedTimes: timeObj = frequencyMap[t] topicRelevantMap[t] = {"count": 0, "list": []} for tweetObj in timeObj["list"]: tweetString = tweetObj["text"].lower() # Add to the counter if the target keyword is in this tweet for keyword in targetKeywords: if ( keyword.lower() in tweetString ): topicRelevantMap[t]["list"].append(tweetObj) topicRelevantMap[t]["count"] += 1 break # Now plot the total frequency and frequency of each keyword fig, ax = plt.subplots() fig.set_size_inches(11, 8.5) plt.title("Tweet Frequency") plt.xticks(smallerXTicks, [sortedTimes[x] for x in smallerXTicks], rotation=90) ax.semilogy(range(len(frequencyMap)), totalCount, label="Total") ax.scatter([crisisXCoord], [100], c="r", marker="x", s=100, label="Crisis") relYData = [topicRelevantMap[t]["count"] for t in sortedTimes] ax.semilogy(range(len(relYData)), relYData, label="Relevant") ax.legend() ax.grid(b=True, which=u'major') plt.show() allTweets = [x for t in sortedTimes for x in topicRelevantMap[t]["list"]] # get the top retweeted tweets onlyRetweets = filter(lambda x: "retweeted_status" in x, allTweets) topTweets = sorted(onlyRetweets, key=lambda x: x["retweeted_status"]["retweet_count"], reverse=True)[:10] print("Top Retweets:") for x in topTweets: print(x["id"], x["user"]["screen_name"], x["retweeted_status"]["retweet_count"], x["text"]) # get tweets from users with the msot followers topTweets = sorted(allTweets, key=lambda x: x["user"]["followers_count"], reverse=True)[:10] print() print("Top Accounts:") for x in topTweets: print(x["id"], x["user"]["screen_name"], x["user"]["followers_count"], x["text"]) # get the top retweeted tweets but only from verified accounts verifiedTweets = filter(lambda x: x["retweeted_status"]["user"]["verified"], onlyRetweets) topTweets = sorted(verifiedTweets, key=lambda x: x["retweeted_status"]["retweet_count"], reverse=True)[:10] print() print("Top Retweets from Verified Accounts:") for x in verifiedTweets: print(x["id"], x["user"]["screen_name"], x["retweet_count"], x["text"]) # A frequency map for timestamps to geo-coded tweets relGeoFreqMap = {} relGeoCount = 0 # Save only those tweets with tweet['coordinate']['coordinate'] entity for t in sortedTimes: geos = list(filter(lambda tweet: tweet["coordinates"] != None and "coordinates" in tweet["coordinates"], topicRelevantMap[t]["list"])) relGeoCount += len(geos) # Add to the timestamp map relGeoFreqMap[t] = {"count": len(geos), "list": geos} print ("Number of Relevant Geo Tweets:", relGeoCount) # Create a list of all geo-coded tweets tmpGeoList = [relGeoFreqMap[t]["list"] for t in sortedTimes] relGeoTweets = functools.reduce(lambda x, y: x + y, tmpGeoList) # For each geo-coded tweet, extract its GPS coordinates relGeoCoord = [x["coordinates"]["coordinates"] for x in relGeoTweets] fig, ax = plt.subplots(figsize=(24,24)) worldMap = Basemap(projection='merc', llcrnrlat=-80, urcrnrlat=80, llcrnrlon=-180, urcrnrlon=180, resolution='l') worldMap.fillcontinents(color=land_color, lake_color=water_color, zorder=1) worldMap.drawcoastlines() worldMap.drawparallels(np.arange(-90.,120.,30.)) worldMap.drawmeridians(np.arange(0.,420.,60.)) worldMap.drawmapboundary(fill_color=water_color, zorder=0) worldMap.drawcountries() ax.set_title('Global Relevant Tweets') # Convert points from GPS coordinates to (x,y) coordinates allConvPoints = [worldMap(p[0], p[1]) for p in geoCoord] x = [p[0] for p in allConvPoints] y = [p[1] for p in allConvPoints] worldMap.scatter(x, y, s=100, marker='x', color="blue", zorder=2) # Convert points from GPS coordinates to (x,y) coordinates relConvPoints = [worldMap(p[0], p[1]) for p in relGeoCoord] x = [p[0] for p in relConvPoints] y = [p[1] for p in relConvPoints] worldMap.scatter(x, y, s=100, marker='x', color="red", zorder=2) plt.show() from textblob import TextBlob # Sentiment values polarVals = [] objVals = [] # For each minute, pull the tweet text and search for the keywords we want for t in sortedTimes: timeObj = topicRelevantMap[t] # For calculating averages localPolarVals = [] localObjVals = [] for tweetObj in timeObj["list"]: tweetString = tweetObj["text"].lower() blob = TextBlob(tweetString) polarity = blob.sentiment.polarity objectivity = blob.sentiment.subjectivity localPolarVals.append(polarity) localObjVals.append(objectivity) # Add data to the polarity and objectivity measure arrays if ( len(timeObj["list"]) > 10 ): polarVals.append(np.mean(localPolarVals)) objVals.append(np.mean(localObjVals)) else: polarVals.append(0.0) objVals.append(0.0) # Now plot this sentiment data fig, ax = plt.subplots() fig.set_size_inches(11, 8.5) plt.title("Sentiment") plt.xticks(smallerXTicks, [sortedTimes[x] for x in smallerXTicks], rotation=90) xData = range(len(sortedTimes)) ax.scatter([crisisXCoord], [0], c="r", marker="x", s=100, label="Crisis") # Polarity is scaled [-1, 1], for negative and positive polarity ax.plot(xData, polarVals, label="Polarity") # Subjetivity is scaled [0, 1], with 0 = objective, 1 = subjective ax.plot(xData, objVals, label="Subjectivity") ax.legend() ax.grid(b=True, which=u'major') plt.show() import nltk nltk.download("vader_lexicon") import nltk.sentiment.util import nltk.sentiment.vader vader = nltk.sentiment.vader.SentimentIntensityAnalyzer() # Sentiment values polarVals = [] # For each minute, pull the tweet text and search for the keywords we want for t in sortedTimes: timeObj = topicRelevantMap[t] # For calculating averages localPolarVals = [] for tweetObj in timeObj["list"]: tweetString = tweetObj["text"].lower() polarity = vader.polarity_scores(tweetString)["compound"] localPolarVals.append(polarity) # Add data to the polarity and objectivity measure arrays if ( len(timeObj["list"]) > 10 ): polarVals.append(np.mean(localPolarVals)) else: polarVals.append(0.0) # Now plot this sentiment data fig, ax = plt.subplots() fig.set_size_inches(11, 8.5) plt.title("Sentiment") plt.xticks(smallerXTicks, [sortedTimes[x] for x in smallerXTicks], rotation=90) xData = range(len(sortedTimes)) ax.scatter([crisisXCoord], [0], c="r", marker="x", s=100, label="Crisis") # Polarity is scaled [-1, 1], for negative and positive polarity ax.plot(xData, polarVals, label="Polarity") ax.legend() ax.grid(b=True, which=u'major') plt.ylim((-0.3, 0.55)) plt.show() # Gotta pull in a bunch of packages for this import gensim.models.ldamulticore import gensim.matutils import sklearn.cluster import sklearn.feature_extraction import sklearn.feature_extraction.text import sklearn.metrics import sklearn.preprocessing nltk.download("stopwords") from nltk.corpus import stopwords # Get all tweets and conver to lowercase allTweetText = [x["text"].lower() for t in sortedTimes for x in topicRelevantMap[t]["list"]] print ("All Tweet Count:", len(allTweetText)) enStop = stopwords.words('english') esStop = stopwords.words('spanish') # Skip stop words, retweet signs, @ symbols, and URL headers stopList = enStop + esStop + ["http", "https", "rt", "@", ":", "co"] vectorizer = sklearn.feature_extraction.text.CountVectorizer(strip_accents='unicode', tokenizer=None, token_pattern='(?u)#?\\b\\w+[\'-]?\\w+\\b', stop_words=stopList) # Analyzer analyze = vectorizer.build_analyzer() # Create a vectorizer for all our content vectorizer.fit(allTweetText) # Get all the words in our text names = vectorizer.get_feature_names() # Create a map for vectorizer IDs to words id2WordDict = dict(zip(range(len(vectorizer.get_feature_names())), names)) # Create a corpus for corpus = vectorizer.transform(allTweetText) gsCorpus = gensim.matutils.Sparse2Corpus(corpus, documents_columns=False) lda = gensim.models.LdaMulticore(gsCorpus, id2word=id2WordDict, num_topics=20, passes=2) # ++ passes for better results ldaTopics = lda.show_topics(num_topics=10, num_words=10, formatted=False) for (i, tokenList) in ldaTopics: print ("Topic %d:" % i, ' '.join([pair[0] for pair in tokenList])) docArrays = filter(lambda x: len(x) > 4, [y for x in allTweetText for y in analyze(x)]) fd = nltk.FreqDist(docArrays) print ("Most common from analyzer:") for x in fd.most_common(20): print (x[0], x[1]) import networkx as nx # We'll use a directed graph since mentions/retweets are directional graph = nx.DiGraph() for tweet in [x for t in sortedTimes for x in topicRelevantMap[t]["list"]]: userName = tweet["user"]["screen_name"] graph.add_node(userName) mentionList = tweet["entities"]["user_mentions"] for otherUser in mentionList: otherUserName = otherUser["screen_name"] if ( graph.has_node(otherUserName) == False ): graph.add_node(otherUserName) graph.add_edge(userName, otherUserName) print ("Number of Users:", len(graph.node)) # Now we prune for performance reasons # remove all nodes with few edges nodeList = [n for n,d in graph.degree_iter() if d<2] graph.remove_nodes_from(nodeList) print ("Number of Remaining Users:", len(graph.node)) # THis may take a while pageRankList = nx.pagerank_numpy(graph) highRankNodes = sorted(pageRankList.keys(), key=pageRankList.get, reverse=True) for x in highRankNodes[:20]: print (x, pageRankList[x]) plt.figure(figsize=(8,8)) pos = nx.spring_layout(graph, scale=100, iterations=100, k=0.2) nx.draw(graph, pos, node_color='#A0CBE2', width=1, with_labels=False, node_size=50) hrNames = highRankNodes[:20] hrDict = dict(zip(hrNames, hrNames)) hrValues = [pageRankList[x] for x in hrNames] nx.draw_networkx_nodes(graph,pos,nodelist=hrNames, node_size=200, node_color=hrValues, cmap=plt.cm.Reds_r) nx.draw_networkx_labels(graph, pos, labels=hrDict, fontsize=36, font_color="g") plt.axis('off') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Choose Your Crisis Step2: <hr> Step3: <hr> Step4: Top Twitter Users Step5: Many of these tweets are not relevant to the event at hand. Step6: We can do the same with URLs to find the most shared URL. Step7: Note how each URL is shortened using Twitter's shortener. Step8: Since URLs and Hashtags are both entities, we can do the same for other entities, like mentions and media. Step9: We can some data is relevant, both in pictures and in hashtags and URLs. Step10: Retweets seem to be dominated by recent elements. Step11: Event Detection w/ Keyword Frequency Step12: <hr> Step13: GPS Frequency Step14: Plotting GPS Data Step15: Filtering By Location Step16: Geographically Relevant Tweet Content Step17: Media from Within Target Step18: Topic 6 Step19: Highly Important Relevant Tweets Step20: Quick Geo-data Comparison Step21: Observation Step22: Sentiment Analysis with Vader Step23: Topic 7 Step24: We first extract all relevant tweets' text for building our models. Step25: Now we build a list of stop words (words we don't care about) and build a feature generator (the vectorizer) that assigns integer keys to tokens and counts the number of each token. Step26: We then use the vectorizer to transform our tweet text into a feature set, which essentially is a table with rows of tweets, columns for each keyword, and each cell is the number of times that keyword appears in that tweet. Step27: We can also be a little more strict and get rid of some noise by looking only at words with more than X characters. Step28: Topic 8 Step29: Central Users
14,833
<ASSISTANT_TASK:> Python Code: b = phoebe.default_binary() # set parameter values b.set_value('q', value = 0.6) b.set_value('incl', component='binary', value = 84.5) b.set_value('ecc', 0.2) b.set_value('per0', 63.7) b.set_value('sma', component='binary', value= 7.3) b.set_value('vgamma', value= -32.84) # add an rv dataset b.add_dataset('rv', compute_phases=phoebe.linspace(0,1,101)) #compute the model b.run_compute() # extract the arrays from the model that we'll use as observables in the next step and add noise to the rvs times = b.get_value('times', context='model', component='primary', dataset='rv01') np.random.seed(0) # to ensure reproducibility with added noise rvs1 = b.get_value('rvs', component='primary', context='model', dataset='rv01') + np.random.normal(size=times.shape) rvs2 = b.get_value('rvs', component='secondary', context='model', dataset='rv01') + np.random.normal(size=times.shape) sigmas_rv = np.ones_like(times) * 2 b = phoebe.default_binary() b.add_dataset('rv') b.set_value_all('times', dataset='rv01', value = times) b.set_value('rvs', component='primary', dataset='rv01', value = rvs1) b.set_value('rvs', component='secondary', dataset='rv01', value = rvs2) b.set_value_all('sigmas', dataset='rv01', value = sigmas_rv) b.run_compute() b.plot(legend=True, show=True) b.add_solver('estimator.rv_geometry', solver='rvgeom') print(b['rvgeom']) b.run_solver('rvgeom', solution='rvgeom_solution') print(b['rvgeom_solution']) print(b['value@fitted_twigs@rvgeom_solution']) print(b['value@fitted_values@rvgeom_solution']) b.flip_constraint('asini@binary', solve_for='sma@binary') b.adopt_solution('rvgeom_solution') b.run_compute() b.plot(x='phase', show=True) b = phoebe.default_binary() b.add_dataset('rv', component='primary', times=times, rvs = rvs1, sigmas=sigmas_rv) b.run_compute() b.plot(legend=True, show=True) b.add_solver('estimator.rv_geometry', solver='rvgeom') b.run_solver('rvgeom', solution='rvgeom_solution') print(b['value@fitted_twigs@rvgeom_solution']) print(b['value@fitted_values@rvgeom_solution']) b.flip_constraint('asini@primary', solve_for='sma@binary') b.adopt_solution('rvgeom_solution') b.run_compute() b.plot(x='phase', show=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Initialize the bundle Step2: rv_geometry Step3: The rv_geometry estimator is meant to provide an efficient starting point for q, vgamma, asini, esinw and ecosw. Similar to the light curve estimators, it will by default bin the input data if the number of data points is larger than phase_nbins and will expose the analytical (in this case, Keplerian orbit) models that were fit to the data. Step4: The solution, as expected returns the fitted values and the analytic models we fit to get them, which can be turned off by setting expose_model to False. Let's inspect the fitted twigs and values before adopting the solution Step5: As we can see all values look okay, and we have asini@binary in the twigs, which means we'll need to flip the asini constraint to be able to set it with adopt_solution() Step6: * one RV Step7: If we compare the fitted_twigs from this solution with our two-RV solution, we'll notice two things
14,834
<ASSISTANT_TASK:> Python Code: !ls | grep "mo" !wc -l anonymous-msweb-preprocessed.data && echo !head anonymous-msweb-preprocessed.data !cp anonymous-msweb-preprocessed.data log.txt !cat mostFrequentVisitors.txt | cut -f 1,2 -d',' > urls.txt !wc -l urls.txt && echo !head urls.txt %%writefile join.py from mrjob.job import MRJob from mrjob.step import MRStep # Avoid broken pipe error from signal import signal, SIGPIPE, SIG_DFL signal(SIGPIPE,SIG_DFL) class Join(MRJob): def configure_options(self): super(Join, self).configure_options() self.add_passthrough_option( '--join', default="left", help="Options: left, inner, right") def mapper_init(self): self.join = self.options.join self.urls_used = set() self.urls = {} try: open("urls.txt") filename = "urls.txt" except FileNotFoundError: filename = "limited_urls.txt" with open(filename) as urls: for line in urls: url, key = line.strip().replace('"',"").split(",") self.urls[key] = url def mapper(self, _, lines): try: url = lines[2:6] if self.join in ["inner", "left"]: yield (lines, self.urls[url]) elif self.join in ["right"]: yield (self.urls[url], lines) self.urls_used.add(url) except KeyError: if self.join in ["inner", "right"]: pass else: yield (lines, "None") def mapper_final(self): for key, value in self.urls.items(): if key not in self.urls_used: yield (self.urls[key], "*") def reducer(self, url, values): quick_stash = 0 for val in values: if val != "*": quick_stash += 1 yield (val, url) if quick_stash == 0: yield ("None", url) def steps(self): join = self.options.join if join in ["inner", "left"]: mrsteps = [MRStep(mapper_init=self.mapper_init, mapper=self.mapper)] if join == "right": mrsteps = [MRStep(mapper_init=self.mapper_init, mapper=self.mapper, mapper_final=self.mapper_final, reducer=self.reducer)] return mrsteps if __name__ == "__main__": Join.run() !head -n 5 urls.txt > limited_urls.txt !head log.txt | python join.py --file limited_urls.txt --join left -q !head log.txt | python join.py --file limited_urls.txt --join inner -q !head -n 100 log.txt | python join.py --file urls.txt --join right -r local -q | head -n 15 !head -n 50 log.txt | python join.py --file limited_urls.txt --join right -r local -q %%writefile mini_5gram.txt A BILL FOR ESTABLISHING RELIGIOUS 59 59 54 A Biography of General George 92 90 74 A Case Study in Government 102 102 78 A Case Study of Female 447 447 327 A Case Study of Limited 55 55 43 A Child's Christmas in Wales 1099 1061 866 A Circumstantial Narrative of the 62 62 50 A City by the Sea 62 60 49 A Collection of Fairy Tales 123 117 80 A Collection of Forms of 116 103 82 %%writefile atlas.txt atlas boon 50 50 50 boon cava dipped 10 10 10 atlas dipped 15 15 15 with open("mini_stripes.txt", "w") as f: f.writelines([ '"DocA"\t{"X":20, "Y":30, "Z":5}\n', '"DocB"\t{"X":100, "Y":20}\n', '"DocC"\t{"M":5, "N":20, "Z":5, "Y":1}\n' ]) !cat mini_stripes.txt %%writefile MakeStripes.py from mrjob.job import MRJob from collections import Counter class MakeStripes(MRJob): def mapper(self, _, lines): terms, term_count, page_count, book_count = lines.split("\t") terms = terms.split() term_count = int(term_count) for item in terms: yield (item, {term:term_count for term in terms if term != item}) def combiner(self, keys, values): values_sum = Counter() for val in values: values_sum += Counter(val) yield keys, dict(values_sum) def reducer(self, keys, values): values_sum = Counter() for val in values: values_sum += Counter(val) yield keys, dict(values_sum) if __name__ == "__main__": MakeStripes.run() %%writefile atlas_desired_results.txt "atlas" {"dipped": 15, "boon": 50} "boon" {"atlas": 50, "dipped": 10, "cava": 10} "cava" {"dipped": 10, "boon": 10} "dipped" {"atlas": 15, "boon": 10, "cava": 10} !cat atlas.txt | python MakeStripes.py -q > atlas_stripes.txt !cat atlas_stripes.txt %%writefile InvertIndex.py from mrjob.job import MRJob from mrjob.protocol import JSONProtocol from collections import Counter class InvertIndex(MRJob): MRJob.input_protocol = JSONProtocol def mapper(self, key, words): n_words = len(words) for word in words: yield (word, {key:n_words}) def combiner(self, keys, values): values_sum = Counter() for val in values: values_sum += Counter(val) yield keys, dict(values_sum) def reducer(self, keys, values): values_sum = Counter() for val in values: values_sum += Counter(val) yield keys, dict(values_sum) if __name__ == "__main__": InvertIndex.run() !cat mini_stripes.txt | python InvertIndex.py -q > mini_stripes_inverted.txt !cat mini_stripes_inverted.txt !cat atlas_stripes.txt | python InvertIndex.py -q > atlas_inverted.txt !cat atlas_inverted.txt %%writefile Similarity.py from mrjob.job import MRJob from mrjob.protocol import JSONProtocol from itertools import combinations from statistics import mean class Similarity(MRJob): MRJob.input_protocol = JSONProtocol def mapper(self, key_term, docs): doc_names = docs.keys() for doc_pairs in combinations(sorted(list(doc_names)), 2): yield (doc_pairs, 1) for name in doc_names: yield (name, 1) def combiner(self, key, value): yield (key, sum(value)) def reducer_init(self): self.words = {} self.results = [] def reducer(self, doc_or_docs, count): if isinstance(doc_or_docs, str): self.words[doc_or_docs] = sum(count) else: d1, d2 = doc_or_docs d1_n_words, d2_n_words = self.words[d1], self.words[d2] intersection = sum(count) jaccard = round(intersection/(d1_n_words + d2_n_words - intersection), 3) cosine = round(intersection/(d1_n_words**.5 * d2_n_words**.5), 3) dice = round(2*intersection/(d1_n_words + d2_n_words), 3) overlap = round(intersection/min(d1_n_words, d2_n_words), 3) average = round(mean([jaccard, cosine, dice, overlap]), 3) self.results.append([doc_or_docs, {"jacc":jaccard, "cos":cosine, "dice":dice, "ol":overlap, "ave":average}]) def reducer_final(self): for doc, result in sorted(self.results, key=lambda x: x[1]["ave"], reverse=True): yield (doc, result) if __name__ == "__main__": Similarity.run() !cat mini_stripes_inverted.txt | python Similarity.py -q --jobconf mapred.reduce.tasks=1 !cat atlas_inverted.txt | python Similarity.py -q --jobconf mapred.reduce.tasks=1 !cat atlas-boon-systems-test.txt | python MakeStripes.py -q | python InvertIndex.py -q | python Similarity.py -q --jobconf mapred.reduce.tasks=1 %%writefile GetIndexandOtherWords.py import heapq from re import findall from mrjob.job import MRJob from mrjob.step import MRStep class TopList(list): def __init__(self, max_size, num_position=0): Just like a list, except the append method adds the new value to the list only if it is larger than the smallest value (or if the size of the list is less than max_size). If each element of the list is an int or float, uses that value for comparison. If the elements in the list are lists or tuples, uses the list_position element of the list or tuple for the comparison. self.max_size = max_size self.pos = num_position def _get_key(self, x): return x[self.pos] if isinstance(x, (list, tuple)) else x def append(self, val): if len(self) < self.max_size: heapq.heappush(self, val) elif self._get_key(self[0]) < self._get_key(val): heapq.heapreplace(self, val) def final_sort(self): return sorted(self, key=self._get_key, reverse=True) class GetIndexandOtherWords(MRJob): Usage: python GetIndexandOtherWords.py --index-range 9000-10000 --top-n-words 10000 --use-term-counts True Given n-gram formatted data, outputs a file of the form: index term index term ... word term word term ... Where there would be 1001 index words and 10000 total words. Each word would be ranked based on either the term count listed in the Google n-gram data (i.e. the counts found in the underlying books) or the ranks would be based on the word count of the n-grams in the actual dataset (i.e. ignore the numbers/counts associated with each n-gram and count each n-gram exactly once). def configure_options(self): super(GetIndexandOtherWords, self).configure_options() self.add_passthrough_option( '--index-range', default="9-10", help="Specify the range of the index words. ex. 9-10 means the ninth and " + "tenth most popular words will serve as the index") self.add_passthrough_option( '--top-n-words', default="10", help="Specify the number of words to output in all") self.add_passthrough_option( '--use-term-counts', default="True", choices=["True","False"], help="When calculating the most frequent words, choose whether to count " + "each word based on the term counts reported by Google or just based on " + "the number of times the word appears in an n-gram") self.add_passthrough_option( '--return-counts', default="False", choices=["True","False"], help="The final output includes the counts of each word") def mapper_init(self): # Ensure command line options are sane top_n_words = int(self.options.top_n_words) last_index_word = int(self.options.index_range.split("-")[1]) if top_n_words < last_index_word: raise ValueError(--top-n-words value (currently %d) must be equal to or greater than --index-range value (currently %d). % (top_n_words, last_index_word)) self.stop_words = set(['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 'hers', 'herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', 'should', 'now']) def mapper(self, _, lines): terms, term_count, page_count, book_count = lines.split("\t") # Either use the ngram term count for the count or count each word just once if self.options.use_term_counts == "True": term_count = int(term_count) else: term_count = 1 # Iterate through each term. Skip stop words for term in findall(r'[a-z]+', terms.lower()): if term in self.stop_words: pass else: yield (term, term_count) def combiner(self, term, counts): yield (term, sum(counts)) def reducer_init(self): Accumulates the top X words and yields them. Note: should only use if you want to emit a reasonable amount of top words (i.e. an amount that could fit on a single computer.) self.top_n_words = int(self.options.top_n_words) self.TopTerms = TopList(self.top_n_words, num_position=1) def reducer(self, term, counts): self.TopTerms.append((term, sum(counts))) def reducer_final(self): for pair in self.TopTerms: yield pair def mapper_single_key(self, term, count): Send all the data to a single reducer yield (1, (term, count)) def reducer_init_top_vals(self): # Collect top words self.top_n_words = int(self.options.top_n_words) self.TopTerms = TopList(self.top_n_words, num_position=1) # Collect index words self.index_range = [int(num) for num in self.options.index_range.split("-")] self.index_low, self.index_high = self.index_range # Control if output shows counts or just words self.return_counts = self.options.return_counts == "True" def reducer_top_vals(self, _, terms): for term in terms: self.TopTerms.append(term) def reducer_final_top_vals(self): TopTerms = self.TopTerms.final_sort() if self.return_counts: # Yield index words for term in TopTerms[self.index_low-1:self.index_high]: yield ("index", term) # Yield all words for term in TopTerms: yield ("words", term) else: # Yield index words for term in TopTerms[self.index_low-1:self.index_high]: yield ("index", term[0]) # Yield all words for term in TopTerms: yield ("words", term[0]) def steps(self): Step one: Yield top n-words from each reducer. Means dataset size is n-words * num_reducers. Guarantees overall top n-words are sent to the next step. mr_steps = [MRStep(mapper_init=self.mapper_init, mapper=self.mapper, combiner=self.combiner, reducer_init=self.reducer_init, reducer_final=self.reducer_final, reducer=self.reducer), MRStep(mapper=self.mapper_single_key, reducer_init=self.reducer_init_top_vals, reducer=self.reducer_top_vals, reducer_final=self.reducer_final_top_vals)] return mr_steps if __name__ == "__main__": GetIndexandOtherWords.run() !cat mini_5gram.txt | python GetIndexandOtherWords.py --index-range 16-20 \ --top-n-words 20 \ --return-counts False \ --use-term-counts True \ -q > vocabs !cat vocabs !cat mini_5gram.txt | python GetIndexandOtherWords.py --index-range 16-20 \ --top-n-words 20 \ --return-counts True \ --use-term-counts True \ -q %%writefile MakeStripes.py from mrjob.job import MRJob from collections import Counter from sys import stderr from re import findall class MakeStripes(MRJob): def mapper_init(self): Read in index words and word list. self.stripes = {} self.indexlist, self.wordslist = [],[] with open('vocabs', 'r') as vocabFile: for line in vocabFile: word_type, word = line.replace('"', '').split() if word_type == 'index': self.indexlist.append(word) else: self.wordslist.append(word) # Convert to sets to make lookups faster self.indexlist = set(self.indexlist) self.wordslist = set(self.wordslist) def mapper(self, _, lines): Make stripes using index and words list terms, term_count, page_count, book_count = lines.split("\t") term_count = int(term_count) terms = findall(r'[a-z]+', terms.lower()) for item in terms: if item in self.indexlist: for val in terms: if val != item and val in self.wordslist: yield item, {val:term_count} def combiner(self, keys, values): values_sum = Counter() for val in values: values_sum += Counter(val) yield keys, dict(values_sum) def reducer(self, keys, values): values_sum = Counter() for val in values: values_sum += Counter(val) yield keys, dict(values_sum) if __name__ == "__main__": MakeStripes.run() !python MakeStripes.py --file vocabs mini_5gram.txt -q %%writefile InvertIndex.py from mrjob.job import MRJob from mrjob.protocol import JSONProtocol from collections import Counter class InvertIndex(MRJob): MRJob.input_protocol = JSONProtocol def mapper(self, key, words): Convert each stripe to inverted index n_words = len(words) for word in words: yield (word, {key:n_words}) def combiner(self, keys, values): values_sum = Counter() for val in values: values_sum += Counter(val) yield keys, dict(values_sum) def reducer(self, keys, values): values_sum = Counter() for val in values: values_sum += Counter(val) yield keys, dict(values_sum) if __name__ == "__main__": InvertIndex.run() !python MakeStripes.py --file vocabs mini_5gram.txt -q | python InvertIndex.py -q %%writefile Similarity.py from mrjob.job import MRJob from mrjob.protocol import JSONProtocol from itertools import combinations class Similarity(MRJob): MRJob.input_protocol = JSONProtocol def mapper(self, key_term, docs): Make co-occurrence keys for each pair of documents in the inverted index and make keys representing each document. doc_names = docs.keys() for doc_pairs in combinations(sorted(list(doc_names)), 2): yield (doc_pairs, 1) for name in doc_names: yield (name, 1) def combiner(self, key, value): yield (key, sum(value)) ### Custom partitioner code goes here def reducer_init(self): self.words = {} self.results = [] def reducer(self, doc_or_docs, count): if isinstance(doc_or_docs, str): self.words[doc_or_docs] = sum(count) else: d1, d2 = doc_or_docs d1_n_words, d2_n_words = self.words[d1], self.words[d2] intersection = float(sum(count)) jaccard = round(intersection/(d1_n_words + d2_n_words - intersection), 3) cosine = round(intersection/(d1_n_words**.5 * d2_n_words**.5), 3) dice = round(2*intersection/(d1_n_words + d2_n_words), 3) overlap = round(intersection/min(d1_n_words, d2_n_words), 3) average = round(sum([jaccard, cosine, dice, overlap])/4.0, 3) self.results.append([doc_or_docs, {"jacc":jaccard, "cos":cosine, "dice":dice, "ol":overlap, "ave":average}]) def reducer_final(self): for doc, result in sorted(self.results, key=lambda x: x[1]["ave"], reverse=True): yield (doc, result) if __name__ == "__main__": Similarity.run() !python MakeStripes.py --file vocabs mini_5gram.txt -q | python InvertIndex.py -q | python Similarity.py -q --jobconf mapred.reduce.tasks=1 %%time !cat Temp_data/googlebooks-eng-all-5gram-20090715-* | wc int(57432975*(200/185)) %%time !cat Temp_data/googlebooks-eng-all-5gram-20090715-9* | wc 3435179/62089702 %%time !cat Temp_data/googlebooks-eng-all-5gram-20090715-9* | python GetIndexandOtherWords.py --index-range 9001-10000 \ --top-n-words 10000 \ --return-counts True \ --use-term-counts False \ -q > vocabs !head vocabs %%time !cat Temp_data/googlebooks-eng-all-5gram-20090715-9* | python GetIndexandOtherWords.py --index-range 9001-10000 \ --top-n-words 10000 \ --return-counts True \ --use-term-counts True \ -q > vocabs !head vocabs %%time !cat Temp_data/googlebooks-eng-all-5gram-20090715-9* | python GetIndexandOtherWords.py --index-range 9001-10000 \ --top-n-words 10000 \ --return-counts False \ --use-term-counts True \ -q > vocabs !head vocabs %%time !cat Temp_data/googlebooks-eng-all-5gram-20090715-9* | python MakeStripes.py --file vocabs -q | python InvertIndex.py -q | python Similarity.py -q --jobconf mapred.reduce.tasks=1 > similarities.txt !head similarities.txt minutes_for_small_job = 3 n_small_jobs_in_big_job = 200/11 total_minutes_one_computer = minutes_for_small_job*n_small_jobs_in_big_job computers_in_cluster = 50 total_minutes_for_cluster = total_minutes_one_computer/computers_in_cluster total_minutes_for_cluster %%writefile CustomPartitioner.py from mrjob.job import MRJob from sys import stderr import numpy as np from operator import itemgetter from random import random class CustomPartitioner(MRJob): def __init__(self, *args, **kwargs): super(CustomPartitioner, self).__init__(*args, **kwargs) self.N = 30 self.NUM_REDUCERS = 4 def mapper_init(self): def makeKeyHash(key, num_reducers): byteof = lambda char: int(format(ord(char), 'b'), 2) current_hash = 0 for c in key: current_hash = (current_hash * 31 + byteof(c)) return current_hash % num_reducers # printable ascii characters, starting with 'A' keys = [str(chr(i)) for i in range(65,65+self.NUM_REDUCERS)] partitions = [] for key in keys: partitions.append([key, makeKeyHash(key, self.NUM_REDUCERS)]) parts = sorted(partitions,key=itemgetter(1)) self.partition_keys = list(np.array(parts)[:,0]) self.partition_file = np.arange(0,self.N,self.N/(self.NUM_REDUCERS))[::-1] print((keys, partitions, parts, self.partition_keys, self.partition_file), file=stderr) def mapper(self, _, lines): terms, term_count, page_count, book_count = lines.split("\t") terms = terms.split() term_count = int(term_count) for item in terms: yield (item, term_count) for item in ["A", "B", "H", "I"]: yield (item, 0) def reducer_init(self): self.reducer_unique_key = int(random()*900000+100000) def reducer(self, keys, values): yield (self.reducer_unique_key, (keys, sum(values))) if __name__ == "__main__": CustomPartitioner.run() !cat atlas.txt | python CustomPartitioner.py -r local -q %%writefile ngram.py from mrjob.job import MRJob from collections import Counter import operator class NGram(MRJob): def mapper_init(self): self.length = 0 self.longest = 0 self.distribution = Counter() def mapper(self, _, lines): # extract word/count sets ngram, count, pages, _ = lines.split("\t") count, pages = int(count), int(pages) # loop to count word length words = ngram.lower().split() for w in words: yield (w, {'count':count, 'pages':pages}) # Count of ngram length n_gram_character_count = len(ngram) yield n_gram_character_count, count # determine if longest word on mapper if n_gram_character_count > self.length: self.length = n_gram_character_count self.longest = [words, n_gram_character_count] yield (self.longest) def combiner(self, word, counts): if isinstance(word,str): count = 0 pages = 0 for x in counts: count += x['count'] pages += x['pages'] yield word, {'count':count,'pages':pages} #aggregate counts elif isinstance(word,int): yield word, sum(counts) #yield long ngrams else: for x in counts: yield word, x def reducer_init(self): self.longest = [] self.length = 0 self.counts = Counter() self.pages = Counter() self.distribution = Counter() def reducer(self, key, values): # use Counter word totals for val in values: if isinstance(key,str): self.counts += Counter({key:val['count']}) self.pages += Counter({key:val['pages']}) # aggregate distribution numbers elif isinstance(key,int): self.distribution += Counter({key:val}) else: # Determine if longest ngram on reducer if val > self.length: self.longest = [key, val] self.length = val def reducer_final(self): # yield density calculation for x in sorted(self.counts): yield ('mrj_dens',{x:(1.*self.counts[x]/self.pages[x])}) # Use most_common counter function for x in self.counts.most_common(10): yield x # return longest item if self.longest: yield self.longest # yield distribution values for x in self.distribution: yield ('mrj_dist', {x:self.distribution[x]}) if __name__ == "__main__": NGram.run() !python ngram.py --jobconf mapred.reduce.tasks=1 < googlebooks-eng-all-5gram-20090715-0-filtered-first-10-lines.txt -q > dataout.txt !cat dataout.txt %matplotlib inline import json import operator import numpy as np import matplotlib.pyplot as plt # sorted density list def density(data): x = data sorted_x = sorted(x.items(), key=operator.itemgetter(1), reverse=True) print sorted_x[:20] # distribution plot def distribution(data): plt.scatter(data.keys(), data.values(), alpha=0.5) plt.show() # loader def driver(): datain = open('dataout.txt','r') densdata = {} distdata = {} # clean the mess I made for line in datain: parts = line.split('\t') temp = parts[1][1:-2].replace('"', '').split(':') mrj_val = parts[0].replace('"', '') if mrj_val == "mrj_dens": densdata[temp[0]]=float(temp[1]) elif mrj_val == "mrj_dist": distdata[int(temp[0])]=int(temp[1]) #Execute density sort density(densdata) #Execute distribution plot distribution(distdata) driver() %%writefile NLTKBenchMark.py import nltk import json import numpy as np from nltk.corpus import wordnet as wn from mrjob.job import MRJob from mrjob.step import MRStep class NLTKBenchMark(MRJob): def mapper(self, _, lines): #parse the output file and identify the pair of words pair, avg = lines.split("\t") pair = json.loads(pair) word1, word2 = pair[0], pair[1] hit = 0 #for each word, extract the list of synonyms from nltk corpus, convert to set to remove duplicates syn1 = set([l.name() for s in wn.synsets(word1) for l in s.lemmas()]) syn2 = set([l.name() for s in wn.synsets(word2) for l in s.lemmas()]) #keep track of words that have no synonym using '~nosync' if len(syn1) == 0: yield '~nosyn', [word1] if len(syn2) == 0: yield '~nosyn', [word2] ''' for each occurence of word, increment the count for word A, synset is the number of synonyms of the other word B this value is used for calculating recall this method becomes confusing/problematic if a word appears multiple times in the final output if there is a hit for word A, set the hit to 1, and set the hit for the other word B to 0 (to avoid double count) if there is not a hit for A and B, set the hit to 0 for both ''' if word2 in syn1: yield word2, {'hit':1, 'count':1, 'synset':len(syn1)} yield word1, {'hit':0, 'count':1, 'synset':len(syn2)} elif word1 in syn2: yield word1, {'hit':1, 'count':1, 'synset':len(syn2)} yield word2, {'hit':0, 'count':1, 'synset':len(syn1)} else: yield word1, {'hit':0, 'count':1, 'synset':len(syn2)} yield word2, {'hit':0, 'count':1, 'synset':len(syn1)} def combiner(self, term, values): #combine '~nosyn' into a bigger list and yield the list if term == '~nosyn': nosynList = [] for value in values: nosynList = nosynList+value yield term, nosynList else: counters = {'hit':0, 'count':0, 'synset':0} for value in values: counters['hit'] += value['hit'] counters['count'] += value['count'] counters['synset'] = value['synset'] yield term, counters def reducer_init(self): self.plist = [] self.rlist = [] self.flist = [] def reducer(self, term, values): #yield the final list of words that have no synonym if term == '~nosyn': nosynList = [] for value in values: nosynList = nosynList+value yield term, nosynList else: counters = {'hit':0.0, 'count':0.0, 'synset':0.0} precision, recall, F1 = 0,0,0 for value in values: counters['hit'] += value['hit'] counters['count'] += value['count'] counters['synset'] = value['synset'] if counters['hit'] > 0 and counters['synset'] > 0: precision = float(counters['hit'])/float(counters['count']) recall = float(counters['hit'])/float(counters['synset']) F1 = 2*precision*recall/(precision+recall) self.plist.append(precision) self.rlist.append(recall) self.flist.append(F1) yield term, counters elif counters['synset'] > 0: self.plist.append(precision) self.rlist.append(recall) self.flist.append(F1) yield term, counters def reducer_final(self): #compute the mean of all collected measurements yield 'precision', np.mean(self.plist) yield 'recall', np.mean(self.rlist) yield 'F1', np.mean(self.flist) if __name__ == "__main__": NLTKBenchMark.run() !python NLTKBenchMark.py nltk_bench_sample.txt ''' Performance measures ''' from __future__ import division import numpy as np import json import nltk from nltk.corpus import wordnet as wn import sys #print all the synset element of an element def synonyms(string): syndict = {} for i,j in enumerate(wn.synsets(string)): syns = j.lemma_names() for syn in syns: syndict.setdefault(syn,1) return syndict.keys() hits = [] TP = 0 FP = 0 TOTAL = 0 flag = False # so we don't double count, but at the same time don't miss hits ## For this part we can use one of three outputs. They are all the same, but were generated differently # 1. the top 1000 from the full sorted dataset -> sortedSims[:1000] # 2. the top 1000 from the partial sort aggragate file -> sims2/top1000sims # 3. the top 1000 from the total order sort file -> head -1000 sims_parts/part-00004 top1000sims = [] with open("nltk_bench_sample.txt","r") as f: for line in f.readlines(): line = line.strip() lisst, avg = line.split("\t") lisst = eval(lisst) lisst.append(avg) top1000sims.append(lisst) measures = {} not_in_wordnet = [] for line in top1000sims: TOTAL += 1 words=line[0:2] for word in words: if word not in measures: measures[word] = {"syns":0,"opps": 0,"hits":0} measures[word]["opps"] += 1 syns0 = synonyms(words[0]) measures[words[1]]["syns"] = len(syns0) if len(syns0) == 0: not_in_wordnet.append(words[0]) if words[1] in syns0: TP += 1 hits.append(line) flag = True measures[words[1]]["hits"] += 1 syns1 = synonyms(words[1]) measures[words[0]]["syns"] = len(syns1) if len(syns1) == 0: not_in_wordnet.append(words[1]) if words[0] in syns1: if flag == False: TP += 1 hits.append(line) measures[words[0]]["hits"] += 1 flag = False precision = [] recall = [] f1 = [] for key in measures: p,r,f = 0,0,0 if measures[key]["hits"] > 0 and measures[key]["syns"] > 0: p = measures[key]["hits"]/measures[key]["opps"] r = measures[key]["hits"]/measures[key]["syns"] f = 2 * (p*r)/(p+r) # For calculating measures, only take into account words that have synonyms in wordnet if measures[key]["syns"] > 0: precision.append(p) recall.append(r) f1.append(f) # Take the mean of each measure print "—"*110 print "Number of Hits:",TP, "out of top",TOTAL print "Number of words without synonyms:",len(not_in_wordnet) print "—"*110 print "Precision\t", np.mean(precision) print "Recall\t\t", np.mean(recall) print "F1\t\t", np.mean(f1) print "—"*110 print "Words without synonyms:" print "-"*100 for word in not_in_wordnet: print synonyms(word),word <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Count lines in log dataset. View the first 10 lines. Rename data to log.txt Step2: Convert the output of 4.4 to be just url and url_id. Save as urls.txt. Step3: The urls.txt file is much smaller than the log.txt data and should be what is loaded into memory. This means it would be the right-side table in a left-side join. Step4: Make a file with only the first five urls to test left and inner join. Step5: Using the first ten lines of the log file and left joining it to the first five lines of the urls file, we see that some of the urls are returned as "None." This is correct behavior. Step6: Performing the same operation, but with an inner join, we see the lines that were "None" are dropped. Step7: To prove the right-side join works, we can only use the first 100 log entries. We see that urls without corresponding log entries are listed as "None" and that all urls are returned in alphabetical order. Step8: By using the limited urls file, we see that only five urls are returned and every logged page visit to those pages are returned (at least within the first 50 log entries). Step9: HW5.3 <a name="1.3"></a> Systems tests on n-grams dataset (Phase1) and full experiment (Phase 2) Step10: atlas.txt Step11: mini_stripes.txt Step12: TASK Step13: Desired result Step14: Actual result Step15: Actual result matches desired result Step16: Desired result Step17: The tests pass Step18: Desired results Step19: The numbers calculated exactly match the systems test except for the average calculations of the mini_stripes set. In this instance, the systems test calculations are not correct. Step26: PHASE 2 Step27: Test getting the index and other valid words excluding stop words on the mini_5gram.txt dataset. Return the top 10 most common words (based on the term counts) and mark the ninth and tenth most common words as the index words. Step28: To spot check the results, view the term counts of each word. Step31: 3. HW5.3.2 Full-scale experiment Step33: <a name="2.3"> Step35: <a name="2.4"> Step36: Doesn't return anything because there are no co-occurring words in the inverted index. Step37: Time the full calculations a slightly larger dataset Step38: Because there are 200 files that make up the 5-gram dataset (at least that is what I thought I heard), the true line count of the dataset is about Step39: We are going to operate on a subset of this data. Step40: This sample of the data is only a few percent (about 5.5%) of the full size of the dataset. Step41: Create index and words to use Step42: Here we will return the term count of each word (not the 5gram-based count). Step43: This code is very similar to what we would run on the full dataset Step44: Make stripes, invert index, and calculate similarities. Print top similarities. Step45: It about 3 minutes to run this code. The code processes 11 out of 200 files. It currently uses one machine. If the cluster has 50 machines available, we would expect it to take only a few minutes for these core operations to run. Step46: Experimental code on custom partitioner Step47: Results of experiment so far Step48: <a name="2.6">
14,835
<ASSISTANT_TASK:> Python Code: from time import time import numpy as np import matplotlib.pyplot as plt from collections import deque import random %matplotlib inline def benchmark(counts): def times(f): def ret(): timings = [] for c in counts: start = time() f(c) timings.append(time() - start) return timings return ret return times counts = [int(x) for x in np.logspace(4, 7, num=40)] @benchmark(counts) def accumulate_strings(n): s = '' for i in range(n): s += 'a' @benchmark(counts) def list_join(n): l = [] for i in range(n): l.append('a') ''.join(l) plt.plot(counts, accumulate_strings()) plt.plot(counts, list_join()) plt.legend(['s+=', "''.join()"], loc='best') counts = [int(x) for x in np.logspace(4, 6)] @benchmark(counts) def add_remove_deque(n): q = deque() for i in range(n): q.append(i) for i in range(n): q.pop() @benchmark(counts) def add_remove_list(n): l = [] for i in range(n): l.append(i) for i in range(n): l.pop() plt.plot(counts, add_remove_deque()) plt.plot(counts, add_remove_list()) plt.legend(['deque', 'list'], loc='best') @benchmark(counts) def just_pass(n): l = [] for i in range(n): pass for i in range(n): pass plt.plot(counts, add_remove_deque()) plt.plot(counts, add_remove_list()) plt.plot(counts, just_pass()) plt.legend(['deque', 'list', 'pass'], loc='best') counts = [int(x) for x in np.logspace(3, 5)] @benchmark(counts) def append_pop0_deque(n): q = deque() for i in range(n): q.append(i) for i in range(n): q.popleft() @benchmark(counts) def append_pop0_list(n): l = [] for i in range(n): l.append(i) for i in range(n): l.pop(0) plt.plot(counts, append_pop0_deque()) plt.plot(counts, append_pop0_list()) plt.legend(['deque', 'list'], loc='best') counts = [int(x) for x in np.logspace(3, 5)] @benchmark(counts) def accumulate_right(n): s = '' for i in range(n): s = s + 'a' @benchmark(counts) def accumulate_left(n): s = '' for i in range(n): s = 'a' + s plt.plot(counts, accumulate_right()) plt.plot(counts, accumulate_left()) plt.legend(["s = s + 'a'", "s = 'a' + s"], loc='upper left') counts = [int(x) for x in np.logspace(3, 5)] @benchmark(counts) def accumulate_bytes(n): s = b'' for i in range(n): s += b'a' @benchmark(counts) def join_bytes(n): l = [] for i in range(n): l.append(b'a') b''.join(l) plt.plot(counts, accumulate_bytes()) plt.plot(counts, join_bytes()) plt.legend(['accumulate', 'join'], loc='upper left') counts = [int(x) for x in np.logspace(3, 6)] @benchmark(counts) def accumulate_1ref(n): s = '' for i in range(n): s += 'a' @benchmark(counts) def accumulate_2ref(n): s = '' blah = s q = s for i in range(n): s += 'a' plt.plot(counts, accumulate_1ref()) plt.plot(counts, accumulate_2ref()) plt.legend(['1ref', '2ref'], loc='best') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's start with the obvious Step2: Looks pretty linear to me. Apparently string += runs in O(1). That was honestly a shocking discovery to me. I've been telling people to avoid string += for years! Step3: Seems like they're both linear time. Hey, how much is that is overhead? Step4: Not that much. What if we insert to the end and take from the beginning? Step5: Finally we see a quadratic function. Seems that lists are fine with adding and removing from one end, but they're really bad when you need to pop(0) repeatedly. Step6: Certainly seems so. That one is a little strange. If x and y are strings, x + y runs in O(len(y)).
14,836
<ASSISTANT_TASK:> Python Code: %matplotlib inline import sys sys.path.append('../..') from matplotlib import pylab from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt pylab.rcParams['figure.figsize'] = 12, 10 import functools import numpy import scipy import scipy.special from crocodile.clean import * from crocodile.synthesis import * from crocodile.simulate import * from util.visualize import * from arl.test_support import create_named_configuration vlas = create_named_configuration('VLAA_north') ha_range = numpy.arange(numpy.radians(0), numpy.radians(90), numpy.radians(90 / 36)) dec = numpy.radians(90) vobs = xyz_to_baselines(vlas.data['xyz'], ha_range, dec) # Wavelength: 5 metres wvl=5 uvw = vobs / wvl ax = plt.figure().add_subplot(111, projection='3d') ax.scatter(uvw[:,0], uvw[:,1] , uvw[:,2]) max_uvw = numpy.amax(uvw) ax.set_xlabel('U [$\lambda$]'); ax.set_xlim((-max_uvw, max_uvw)) ax.set_ylabel('V [$\lambda$]'); ax.set_ylim((-max_uvw, max_uvw)) ax.set_zlabel('W [$\lambda$]'); ax.set_zlim((-max_uvw, max_uvw)) ax.view_init(20, 20); import itertools theta = 2*0.01 lam = 18000 grid_size = int(theta * lam) image = numpy.zeros((grid_size, grid_size)) vis = numpy.zeros(len(uvw), dtype=complex) for l,m in theta/10 * numpy.array(list(itertools.product(range(-3, 4), range(-3, 4)))): vis += 1.0*simulate_point(uvw, l, m) image[grid_size//2 + int(m*lam), grid_size//2 + int(l*lam)] += 1.0 show_image(image, "image", theta) vis_simple = do_predict(theta, lam, uvw, None, image, simple_predict) print("Simple: ", numpy.sum(numpy.abs(vis_simple - vis)**2) / numpy.sum(numpy.abs(vis)**2)) oversample = 1024 supports = numpy.arange(2,14) mrange = numpy.arange(0.9, 2.0, 0.1) conv_errs = [] for support in supports: condition = support aaf = anti_aliasing_function(grid_size, 0, support) kv1 = kernel_oversample(aaf, oversample, support) kv1 /= numpy.sum(kv1[0]) vis_conv = do_predict(theta, lam, uvw, None, image/numpy.outer(aaf,aaf), conv_predict, kv=kv1) conv_errs.append(numpy.sum(numpy.abs(vis_conv - vis)**2)) print("Convolution %dx%d: " % (support, support), numpy.sum(numpy.abs(vis_conv - vis)**2) / numpy.sum(numpy.abs(vis)**2), " (mean off-centre", numpy.abs(1-numpy.mean(vis_conv / vis)),")") # Show how error changes with support plt.semilogy(supports, conv_errs / numpy.sum(numpy.abs(vis)**2)) plt.xlabel("Support, PSWF c"); plt.ylabel("Error"); plt.show() # Show error distribution plt.scatter(uvw[:,0], uvw[:,1], c=numpy.abs(vis_conv - vis)) plt.scatter(-uvw[:,0], -uvw[:,1], c=numpy.abs(vis_conv - vis)); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Generate baseline coordinates for an observation with a hypothetical north-pole VLA over 6 hours, with a visibility recorded every 10 minutes. The phase center is fixed in the zenith. This results in constant $w$-values of basically zero. Step2: We then make an image with a grid of sources to generate visibilities from. For reference we also use a direct Fourier Transform to generate visibilities Step3: Now we can attempt to generate visibilities from the image. The quality of this depends quite a bit on the quality of the used anti-aliasing function
14,837
<ASSISTANT_TASK:> Python Code: import tensorflow as tf tf.__version__ from tensorflow.contrib import keras from keras.datasets import cifar100 (X_train, Y_train), (X_test, Y_test) = cifar100.load_data(label_mode='fine') from keras import backend as K img_rows, img_cols = 32, 32 if K.image_data_format() == 'channels_first': shape_ord = (3, img_rows, img_cols) else: # channel_last shape_ord = (img_rows, img_cols, 3) shape_ord X_train.shape import numpy as np nb_classes = len(np.unique(Y_train)) from keras.applications import vgg16 from keras.layers import Input vgg16_model = vgg16.VGG16(weights='imagenet', include_top=False, input_tensor=Input(shape_ord)) vgg16_model.summary() for layer in vgg16_model.layers: layer.trainable = False # freeze layer from keras.layers.core import Dense, Dropout, Flatten from keras.layers.normalization import BatchNormalization x = Flatten(input_shape=vgg16_model.output.shape)(vgg16_model.output) x = Dense(4096, activation='relu', name='ft_fc1')(x) x = Dropout(0.5)(x) x = BatchNormalization()(x) predictions = Dense(nb_classes, activation = 'softmax')(x) from keras.models import Model #create graph of your new model model = Model(inputs=vgg16_model.input, outputs=predictions) #compile the model model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() from keras.callbacks import TensorBoard ## one-hot Encoding of labels (1 to 100 classes) from keras.utils import np_utils Y_train.shape Y_train = np_utils.to_categorical(Y_train) Y_train.shape def generate_batches(X, Y, batch_size=128): # Iterations has to go indefinitely start = 0 while True: yield (X[start:start+batch_size], Y[start:start+batch_size]) start=batch_size batch_size = 64 steps_per_epoch = np.floor(X_train.shape[0] / batch_size) model.fit_generator(generate_batches(X_train, Y_train, batch_size=batch_size), steps_per_epoch=steps_per_epoch, epochs=20, verbose=1, callbacks=[TensorBoard(log_dir='./tf_logs', histogram_freq=10, write_graph=True, write_images=True, embeddings_freq=10, embeddings_layer_names=['block1_conv2', 'block5_conv1', 'ft_fc1'], embeddings_metadata=None)]) %%bash python -m tensorflow.tensorboard --logdir=./tf_logs import operator import threading from functools import reduce import keras import keras.backend as K from keras.engine import Model import numpy as np import tensorflow as tf import time from keras.layers import Conv2D from tqdm import tqdm def prod(factors): return reduce(operator.mul, factors, 1) TRAINING = True with K.get_session() as sess: shp = [10, 200, 200, 3] shp1 = [10, 7, 7, 80] inp = K.placeholder(shp) inp1 = K.placeholder(shp1) queue = tf.FIFOQueue(20, [tf.float32, tf.float32], [shp, shp1]) x1, y1 = queue.dequeue() enqueue = queue.enqueue([inp, inp1]) model = keras.applications.ResNet50(False, "imagenet", x1, shp[1:]) for i in range(3): model.layers.pop() model.layers[-1].outbound_nodes = [] model.outputs = [model.layers[-1].output] output = model.outputs[0] # 7x7 # Reduce filter size to avoid OOM output = Conv2D(32, (1, 1), padding="same", activation='relu')(output) output3 = Conv2D(5 * (4 + 11 + 1), (1, 1), padding="same", activation='relu')( output) # YOLO output B (4 + nb_class +1) cost = tf.reduce_sum(tf.abs(output3 - y1)) optimizer = tf.train.RMSPropOptimizer(0.001).minimize(cost) sess.run(tf.global_variables_initializer()) def get_input(): # Super long processing I/O bla bla bla return np.arange(prod(shp)).reshape(shp).astype(np.float32), np.arange(prod(shp1)).reshape(shp1).astype( np.float32) def generate(coord, enqueue_op): while not coord.should_stop(): inp_feed, inp1_feed = get_input() sess.run(enqueue_op, feed_dict={inp: inp_feed, inp1: inp1_feed}) start = time.time() for i in tqdm(range(10)): # EPOCH for j in range(30): # Batch x,y = get_input() optimizer_, s = sess.run([optimizer, queue.size()], feed_dict={x1:x,y1:y, K.learning_phase(): int(TRAINING)}) print("Took : ", time.time() - start) coordinator = tf.train.Coordinator() threads = [threading.Thread(target=generate, args=(coordinator, enqueue)) for i in range(10)] for t in threads: t.start() start = time.time() for i in tqdm(range(10)): # EPOCH for j in range(30): # Batch optimizer_, s = sess.run([optimizer, queue.size()], feed_dict={K.learning_phase(): int(TRAINING)}) print("Took : ", time.time() - start) def clear_queue(queue, threads): while any([t.is_alive() for t in threads]): _, s = sess.run([queue.dequeue(), queue.size()]) print(s) coordinator.request_stop() clear_queue(queue, threads) coordinator.join(threads) print("DONE Queue") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Tensorboard Integration Step2: TensorBoard Callback Step4: ```python Step5: Runing Tensorboard Step6: tf.Queue integration with Keras
14,838
<ASSISTANT_TASK:> Python Code: %pylab inline import seaborn as sns import warnings warnings.filterwarnings("ignore") import pandas as pd names = ["Name_2MASS","Name_alt","Spectral_Type","T_eff","AJ","L_bol","IMF"] tbl6 = pd.read_csv("http://iopscience.iop.org/0067-0049/173/1/104/fulltext/71585.tb6.txt", sep='\t', names=names, na_values='\ldots') tbl6.head() upper_limits = (tbl6.T_eff == "\\leq 2400") measurements = ~upper_limits print "There are {} upper limits and {} measurements".format(upper_limits.sum(), measurements.sum()) sns.set_context("notebook", font_scale=1.5) plt.plot(tbl6.T_eff[measurements], tbl6.L_bol[measurements], '.') #plt.errorbar([2400.0]*upper_limits.sum(), tbl6.L_bol[upper_limits], xerr=0.0001, yerr=None, xlolims=True) plt.ylabel(r"$L/L_{sun}$") plt.xlabel(r"$T_{eff} (K)$") plt.yscale("log") plt.title("Luhman 2007 Chamaeleon I Members") plt.xlim(5000,2000) from astroquery.simbad import Simbad import astropy.coordinates as coord import astropy.units as u customSimbad = Simbad() customSimbad.add_votable_fields('otype', 'id', 'sptype') query_list = '2MASS'+tbl6.Name_2MASS.dropna().values result = customSimbad.query_objects(query_list, verbose=True) print "There were {} sources queried, and {} sources found.".format(len(query_list), len(result)) if len(query_list) == len(result): print "Hooray! Everything matched" else: print "Which ones were not found?" result[0:2] tbl6.to_csv("../data/Luhman2007/tbl6.csv", sep="\t") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Table 6 - Derived Properties for Members of Chamaeleon I Step2: Custom analysis Step3: Save data tables locally.
14,839
<ASSISTANT_TASK:> Python Code: !python3 -m pip install pip --upgrade --quiet --user !python3 -m pip install kfp --upgrade --quiet --user !python3 -m pip install tfx==0.21.2 --quiet --user # Set `PATH` to include user python binary directory and a directory containing `skaffold`. PATH=%env PATH %env PATH={PATH}:/home/jupyter/.local/bin import os from typing import Text import kfp import tensorflow_model_analysis as tfma from tfx.components import Evaluator from tfx.components import CsvExampleGen from tfx.components import ExampleValidator from tfx.components import Pusher from tfx.components import SchemaGen from tfx.components import StatisticsGen from tfx.components import Trainer from tfx.components import Transform from tfx.orchestration import data_types from tfx.orchestration import pipeline from tfx.orchestration.kubeflow import kubeflow_dag_runner from tfx.proto import pusher_pb2 from tfx.utils.dsl_utils import external_input # In TFX MLMD schema, pipeline name is used as the unique id of each pipeline. # Assigning workflow ID as part of pipeline name allows the user to bypass # some schema checks which are redundant for experimental pipelines. pipeline_name = 'taxi_pipeline_with_parameters' # Path of pipeline data root, should be a GCS path. # Note that when running on KFP, the pipeline root is always a runtime parameter. # The value specified here will be its default. pipeline_root = os.path.join('gs://{{kfp-default-bucket}}', 'tfx_taxi_simple', kfp.dsl.RUN_ID_PLACEHOLDER) # Location of input data, should be a GCS path under which there is a csv file. data_root_param = data_types.RuntimeParameter( name='data-root', default='gs://ml-pipeline-playground/tfx_taxi_simple/data', ptype=Text, ) # Path to the module file, GCS path. # Module file is one of the recommended way to provide customized logic for component # includeing Trainer and Transformer. # See https://github.com/tensorflow/tfx/blob/93ea0b4eda5a6000a07a1e93d93a26441094b6f5/tfx/components/trainer/component.py#L38 taxi_module_file_param = data_types.RuntimeParameter( name='module-file', default='gs://ml-pipeline-playground/tfx_taxi_simple/modules/taxi_utils.py', ptype=Text, ) # Number of epochs in training. train_steps = data_types.RuntimeParameter( name='train-steps', default=10, ptype=int, ) # Number of epochs in evaluation. eval_steps = data_types.RuntimeParameter( name='eval-steps', default=5, ptype=int, ) # The input data location is parameterized by _data_root_param examples = external_input(data_root_param) example_gen = CsvExampleGen(input=examples) statistics_gen = StatisticsGen(examples=example_gen.outputs['examples']) infer_schema = SchemaGen( statistics=statistics_gen.outputs['statistics'], infer_feature_shape=False) validate_stats = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=infer_schema.outputs['schema']) # The module file used in Transform and Trainer component is paramterized by # _taxi_module_file_param. transform = Transform( examples=example_gen.outputs['examples'], schema=infer_schema.outputs['schema'], module_file=taxi_module_file_param) # The numbers of steps in train_args are specified as RuntimeParameter with # name 'train-steps' and 'eval-steps', respectively. trainer = Trainer( module_file=taxi_module_file_param, transformed_examples=transform.outputs['transformed_examples'], schema=infer_schema.outputs['schema'], transform_graph=transform.outputs['transform_graph'], train_args={'num_steps': train_steps}, eval_args={'num_steps': eval_steps}) # Set the TFMA config for Model Evaluation and Validation. eval_config = tfma.EvalConfig( model_specs=[ # Using signature 'eval' implies the use of an EvalSavedModel. To use # a serving model remove the signature to defaults to 'serving_default' # and add a label_key. tfma.ModelSpec(signature_name='eval') ], metrics_specs=[ tfma.MetricsSpec( # The metrics added here are in addition to those saved with the # model (assuming either a keras model or EvalSavedModel is used). # Any metrics added into the saved model (for example using # model.compile(..., metrics=[...]), etc) will be computed # automatically. metrics=[ tfma.MetricConfig(class_name='ExampleCount') ], # To add validation thresholds for metrics saved with the model, # add them keyed by metric name to the thresholds map. thresholds = { 'binary_accuracy': tfma.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={'value': 0.5}), change_threshold=tfma.GenericChangeThreshold( direction=tfma.MetricDirection.HIGHER_IS_BETTER, absolute={'value': -1e-10})) } ) ], slicing_specs=[ # An empty slice spec means the overall slice, i.e. the whole dataset. tfma.SlicingSpec(), # Data can be sliced along a feature column. In this case, data is # sliced along feature column trip_start_hour. tfma.SlicingSpec(feature_keys=['trip_start_hour']) ]) # The name of slicing column is specified as a RuntimeParameter. evaluator = Evaluator( examples=example_gen.outputs['examples'], model=trainer.outputs['model'], eval_config=eval_config) pusher = Pusher( model=trainer.outputs['model'], model_blessing=evaluator.outputs['blessing'], push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=os.path.join( str(pipeline.ROOT_PARAMETER), 'model_serving')))) # Create the DSL pipeline object. # This pipeline obj carries the business logic of the pipeline, but no runner-specific information # was included. dsl_pipeline = pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[ example_gen, statistics_gen, infer_schema, validate_stats, transform, trainer, model_analyzer, model_validator, pusher ], enable_cache=True, beam_pipeline_args=['--direct_num_workers=%d' % 0], ) # Specify a TFX docker image. For the full list of tags please see: # https://hub.docker.com/r/tensorflow/tfx/tags tfx_image = 'gcr.io/tfx-oss-public/tfx:0.21.2' config = kubeflow_dag_runner.KubeflowDagRunnerConfig( kubeflow_metadata_config=kubeflow_dag_runner .get_default_kubeflow_metadata_config(), tfx_image=tfx_image) kfp_runner = kubeflow_dag_runner.KubeflowDagRunner(config=config) # KubeflowDagRunner compiles the DSL pipeline object into KFP pipeline package. # By default it is named <pipeline_name>.tar.gz kfp_runner.run(dsl_pipeline) run_result = kfp.Client( host='1234567abcde-dot-us-central2.pipelines.googleusercontent.com' # Put your KFP endpoint here ).create_run_from_pipeline_package( pipeline_name + '.tar.gz', arguments={ # Uncomment following lines in order to use custom GCS bucket/module file/training data. # 'pipeline-root': 'gs://<your-gcs-bucket>/tfx_taxi_simple/' + kfp.dsl.RUN_ID_PLACEHOLDER, # 'module-file': '<gcs path to the module file>', # delete this line to use default module file. # 'data-root': '<gcs path to the data>' # delete this line to use default data. }) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Note Step2: In this example we'll need TFX SDK later than 0.21 to leverage the RuntimeParameter feature. Step3: TFX Components
14,840
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns sns.set() # setting seaborn default for plots train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') train.head() train.shape train.describe() train.describe(include=['O']) train.info() train.isnull().sum() test.shape test.head() test.info() test.isnull().sum() survived = train[train['Survived'] == 1] not_survived = train[train['Survived'] == 0] print ("Survived: %i (%.1f%%)"%(len(survived), float(len(survived))/len(train)*100.0)) print ("Not Survived: %i (%.1f%%)"%(len(not_survived), float(len(not_survived))/len(train)*100.0)) print ("Total: %i"%len(train)) train.Pclass.value_counts() train.groupby('Pclass').Survived.value_counts() train[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False).mean() #train.groupby('Pclass').Survived.mean().plot(kind='bar') sns.barplot(x='Pclass', y='Survived', data=train) train.Sex.value_counts() train.groupby('Sex').Survived.value_counts() train[['Sex', 'Survived']].groupby(['Sex'], as_index=False).mean() #train.groupby('Sex').Survived.mean().plot(kind='bar') sns.barplot(x='Sex', y='Survived', data=train) tab = pd.crosstab(train['Pclass'], train['Sex']) print (tab) tab.div(tab.sum(1).astype(float), axis=0).plot(kind="bar", stacked=True) plt.xlabel('Pclass') plt.ylabel('Percentage') sns.factorplot('Sex', 'Survived', hue='Pclass', size=4, aspect=2, data=train) sns.factorplot(x='Pclass', y='Survived', hue='Sex', col='Embarked', data=train) train.Embarked.value_counts() train.groupby('Embarked').Survived.value_counts() train[['Embarked', 'Survived']].groupby(['Embarked'], as_index=False).mean() #train.groupby('Embarked').Survived.mean().plot(kind='bar') sns.barplot(x='Embarked', y='Survived', data=train) train.Parch.value_counts() train.groupby('Parch').Survived.value_counts() train[['Parch', 'Survived']].groupby(['Parch'], as_index=False).mean() #train.groupby('Parch').Survived.mean().plot(kind='bar') sns.barplot(x='Parch', y='Survived', ci=None, data=train) # ci=None will hide the error bar train.SibSp.value_counts() train.groupby('SibSp').Survived.value_counts() train[['SibSp', 'Survived']].groupby(['SibSp'], as_index=False).mean() #train.groupby('SibSp').Survived.mean().plot(kind='bar') sns.barplot(x='SibSp', y='Survived', ci=None, data=train) # ci=None will hide the error bar fig = plt.figure(figsize=(15,5)) ax1 = fig.add_subplot(131) ax2 = fig.add_subplot(132) ax3 = fig.add_subplot(133) sns.violinplot(x="Embarked", y="Age", hue="Survived", data=train, split=True, ax=ax1) sns.violinplot(x="Pclass", y="Age", hue="Survived", data=train, split=True, ax=ax2) sns.violinplot(x="Sex", y="Age", hue="Survived", data=train, split=True, ax=ax3) total_survived = train[train['Survived']==1] total_not_survived = train[train['Survived']==0] male_survived = train[(train['Survived']==1) & (train['Sex']=="male")] female_survived = train[(train['Survived']==1) & (train['Sex']=="female")] male_not_survived = train[(train['Survived']==0) & (train['Sex']=="male")] female_not_survived = train[(train['Survived']==0) & (train['Sex']=="female")] plt.figure(figsize=[15,5]) plt.subplot(111) sns.distplot(total_survived['Age'].dropna().values, bins=range(0, 81, 1), kde=False, color='blue') sns.distplot(total_not_survived['Age'].dropna().values, bins=range(0, 81, 1), kde=False, color='red', axlabel='Age') plt.figure(figsize=[15,5]) plt.subplot(121) sns.distplot(female_survived['Age'].dropna().values, bins=range(0, 81, 1), kde=False, color='blue') sns.distplot(female_not_survived['Age'].dropna().values, bins=range(0, 81, 1), kde=False, color='red', axlabel='Female Age') plt.subplot(122) sns.distplot(male_survived['Age'].dropna().values, bins=range(0, 81, 1), kde=False, color='blue') sns.distplot(male_not_survived['Age'].dropna().values, bins=range(0, 81, 1), kde=False, color='red', axlabel='Male Age') plt.figure(figsize=(15,6)) sns.heatmap(train.drop('PassengerId',axis=1).corr(), vmax=0.6, square=True, annot=True) train_test_data = [train, test] # combining train and test dataset for dataset in train_test_data: dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\.') train.head() pd.crosstab(train['Title'], train['Sex']) for dataset in train_test_data: dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col', \ 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Other') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') train[['Title', 'Survived']].groupby(['Title'], as_index=False).mean() title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Other": 5} for dataset in train_test_data: dataset['Title'] = dataset['Title'].map(title_mapping) dataset['Title'] = dataset['Title'].fillna(0) train.head() for dataset in train_test_data: dataset['Sex'] = dataset['Sex'].map( {'female': 1, 'male': 0} ).astype(int) train.head() train.Embarked.unique() train.Embarked.value_counts() for dataset in train_test_data: dataset['Embarked'] = dataset['Embarked'].fillna('S') train.head() for dataset in train_test_data: #print(dataset.Embarked.unique()) dataset['Embarked'] = dataset['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} ).astype(int) train.head() for dataset in train_test_data: age_avg = dataset['Age'].mean() age_std = dataset['Age'].std() age_null_count = dataset['Age'].isnull().sum() age_null_random_list = np.random.randint(age_avg - age_std, age_avg + age_std, size=age_null_count) dataset['Age'][np.isnan(dataset['Age'])] = age_null_random_list dataset['Age'] = dataset['Age'].astype(int) train['AgeBand'] = pd.cut(train['Age'], 5) print (train[['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=False).mean()) train.head() for dataset in train_test_data: dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0 dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1 dataset.loc[(dataset['Age'] > 32) & (dataset['Age'] <= 48), 'Age'] = 2 dataset.loc[(dataset['Age'] > 48) & (dataset['Age'] <= 64), 'Age'] = 3 dataset.loc[ dataset['Age'] > 64, 'Age'] = 4 train.head() for dataset in train_test_data: dataset['Fare'] = dataset['Fare'].fillna(train['Fare'].median()) train['FareBand'] = pd.qcut(train['Fare'], 4) print (train[['FareBand', 'Survived']].groupby(['FareBand'], as_index=False).mean()) train.head() for dataset in train_test_data: dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0 dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1 dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare'] = 2 dataset.loc[ dataset['Fare'] > 31, 'Fare'] = 3 dataset['Fare'] = dataset['Fare'].astype(int) train.head() for dataset in train_test_data: dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1 print (train[['FamilySize', 'Survived']].groupby(['FamilySize'], as_index=False).mean()) for dataset in train_test_data: dataset['IsAlone'] = 0 dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1 print (train[['IsAlone', 'Survived']].groupby(['IsAlone'], as_index=False).mean()) train.head(1) test.head(1) features_drop = ['Name', 'SibSp', 'Parch', 'Ticket', 'Cabin', 'FamilySize'] train = train.drop(features_drop, axis=1) test = test.drop(features_drop, axis=1) train = train.drop(['PassengerId', 'AgeBand', 'FareBand'], axis=1) train.head() test.head() X_train = train.drop('Survived', axis=1) y_train = train['Survived'] X_test = test.drop("PassengerId", axis=1).copy() X_train.shape, y_train.shape, X_test.shape # Importing Classifier Modules from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC, LinearSVC from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier clf = LogisticRegression() clf.fit(X_train, y_train) y_pred_log_reg = clf.predict(X_test) acc_log_reg = round( clf.score(X_train, y_train) * 100, 2) print (str(acc_log_reg) + ' percent') clf = SVC() clf.fit(X_train, y_train) y_pred_svc = clf.predict(X_test) acc_svc = round(clf.score(X_train, y_train) * 100, 2) print (acc_svc) clf = LinearSVC() clf.fit(X_train, y_train) y_pred_linear_svc = clf.predict(X_test) acc_linear_svc = round(clf.score(X_train, y_train) * 100, 2) print (acc_linear_svc) clf = KNeighborsClassifier(n_neighbors = 3) clf.fit(X_train, y_train) y_pred_knn = clf.predict(X_test) acc_knn = round(clf.score(X_train, y_train) * 100, 2) print (acc_knn) clf = DecisionTreeClassifier() clf.fit(X_train, y_train) y_pred_decision_tree = clf.predict(X_test) acc_decision_tree = round(clf.score(X_train, y_train) * 100, 2) print (acc_decision_tree) clf = RandomForestClassifier(n_estimators=100) clf.fit(X_train, y_train) y_pred_random_forest = clf.predict(X_test) acc_random_forest = round(clf.score(X_train, y_train) * 100, 2) print (acc_random_forest) clf = GaussianNB() clf.fit(X_train, y_train) y_pred_gnb = clf.predict(X_test) acc_gnb = round(clf.score(X_train, y_train) * 100, 2) print (acc_gnb) clf = Perceptron(max_iter=5, tol=None) clf.fit(X_train, y_train) y_pred_perceptron = clf.predict(X_test) acc_perceptron = round(clf.score(X_train, y_train) * 100, 2) print (acc_perceptron) clf = SGDClassifier(max_iter=5, tol=None) clf.fit(X_train, y_train) y_pred_sgd = clf.predict(X_test) acc_sgd = round(clf.score(X_train, y_train) * 100, 2) print (acc_sgd) from sklearn.metrics import confusion_matrix import itertools clf = RandomForestClassifier(n_estimators=100) clf.fit(X_train, y_train) y_pred_random_forest_training_set = clf.predict(X_train) acc_random_forest = round(clf.score(X_train, y_train) * 100, 2) print ("Accuracy: %i %% \n"%acc_random_forest) class_names = ['Survived', 'Not Survived'] # Compute confusion matrix cnf_matrix = confusion_matrix(y_train, y_pred_random_forest_training_set) np.set_printoptions(precision=2) print ('Confusion Matrix in Numbers') print (cnf_matrix) print ('') cnf_matrix_percent = cnf_matrix.astype('float') / cnf_matrix.sum(axis=1)[:, np.newaxis] print ('Confusion Matrix in Percentage') print (cnf_matrix_percent) print ('') true_class_names = ['True Survived', 'True Not Survived'] predicted_class_names = ['Predicted Survived', 'Predicted Not Survived'] df_cnf_matrix = pd.DataFrame(cnf_matrix, index = true_class_names, columns = predicted_class_names) df_cnf_matrix_percent = pd.DataFrame(cnf_matrix_percent, index = true_class_names, columns = predicted_class_names) plt.figure(figsize = (15,5)) plt.subplot(121) sns.heatmap(df_cnf_matrix, annot=True, fmt='d') plt.subplot(122) sns.heatmap(df_cnf_matrix_percent, annot=True) models = pd.DataFrame({ 'Model': ['Logistic Regression', 'Support Vector Machines', 'Linear SVC', 'KNN', 'Decision Tree', 'Random Forest', 'Naive Bayes', 'Perceptron', 'Stochastic Gradient Decent'], 'Score': [acc_log_reg, acc_svc, acc_linear_svc, acc_knn, acc_decision_tree, acc_random_forest, acc_gnb, acc_perceptron, acc_sgd] }) models.sort_values(by='Score', ascending=False) test.head() submission = pd.DataFrame({ "PassengerId": test["PassengerId"], "Survived": y_pred_random_forest }) submission.to_csv('submission.csv', index=False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Loading Datasets Step2: Looking into the training dataset Step3: Below is a brief information about each columns of the dataset Step4: We can see that there are 891 rows and 12 columns in our training dataset. Step5: describe(include = ['O']) will show the descriptive statistics of object data types. Step6: This shows that there are duplicate Ticket number and Cabins shared. The highest number of duplicate ticket number is "CA. 2343". It has been repeated 7 times. Similarly, the highest number of people using the same cabin is 4. They are using cabin number "C23 C25 C27". Step7: We can see that Age value is missing for many rows. Step8: There are 177 rows with missing Age, 687 rows with missing Cabin and 2 rows with missing Embarked information. Step9: Survived column is not present in Test data. Step10: There are missing entries for Age in Test dataset as well. Step11: There are 86 rows with missing Age, 327 rows with missing Cabin and 1 row with missing Fare information. Step12: Pclass vs. Survival Step13: Sex vs. Survival Step14: Pclass & Sex vs. Survival Step15: From the above plot, it can be seen that Step16: From the above plot, it can be seen that Step17: Parch vs. Survival Step18: SibSp vs. Survival Step19: Age vs. Survival Step20: From Pclass violinplot, we can see that Step21: From the above figures, we can see that Step22: Feature Extraction Step23: As you can see above, we have added a new column named Title in the Train dataset with the Title present in the particular passenger name. Step24: The number of passengers with each Title is shown above. Step25: After that, we convert the categorical Title values into numeric form. Step26: Sex Feature Step27: Embarked Feature Step28: Let's check the number of passengers for each Embarked category. Step29: We find that category "S" has maximum passengers. Hence, we replace "nan" values with "S". Step30: We now convert the categorical value of Embarked into numeric. We represent 0 as S, 1 as C and 2 as Q. Step31: Age Feature Step32: Now, we map Age according to AgeBand. Step33: Fare Feature Step34: Create FareBand. We divide the Fare into 4 category range. Step35: Map Fare according to FareBand Step36: SibSp & Parch Feature Step37: About data shows that Step38: This shows that travelling alone has only 30% survival chance. Step39: Feature Selection Step40: We are done with Feature Selection/Engineering. Now, we are ready to train a classifier with our feature set. Step41: There are many classifying algorithms present. Among them, we choose the following Classification algorithms for our problem Step42: Logistic Regression Step43: Support Vector Machine (SVM) Step44: Linear SVM Step45: $k$-Nearest Neighbors Step46: Decision Tree Step47: Random Forest Step48: Gaussian Naive Bayes Step49: Perceptron Step50: Stochastic Gradient Descent (SGD) Step51: Confusion Matrix Step52: Comparing Models Step53: From the above table, we can see that Decision Tree and Random Forest classfiers have the highest accuracy score.
14,841
<ASSISTANT_TASK:> Python Code: __author__ = "kyubyong. kbpark.linguist@gmail.com" import numpy as np np.__version__ x = np.arange(4).reshape((2, 2)) print("x=\n", x) print("ans=\n", np.amin(x, 1)) x = np.arange(4).reshape((2, 2)) print("x=\n", x) print("ans=\n", np.amax(x, 1, keepdims=True)) x = np.arange(10).reshape((2, 5)) print("x=\n", x) out1 = np.ptp(x, 1) out2 = np.amax(x, 1) - np.amin(x, 1) assert np.allclose(out1, out2) print("ans=\n", out1) x = np.arange(1, 11).reshape((2, 5)) print("x=\n", x) print("ans=\n", np.percentile(x, 75, 1)) x = np.arange(1, 10).reshape((3, 3)) print("x=\n", x) print("ans=\n", np.median(x)) x = np.arange(5) weights = np.arange(1, 6) out1 = np.average(x, weights=weights) out2 = (x*(weights/weights.sum())).sum() assert np.allclose(out1, out2) print(out1) x = np.arange(5) print("x=\n",x) out1 = np.mean(x) out2 = np.average(x) assert np.allclose(out1, out2) print("mean=\n", out1) out3 = np.std(x) out4 = np.sqrt(np.mean((x - np.mean(x)) ** 2 )) assert np.allclose(out3, out4) print("std=\n", out3) out5 = np.var(x) out6 = np.mean((x - np.mean(x)) ** 2 ) assert np.allclose(out5, out6) print("variance=\n", out5) x = np.array([0, 1, 2]) y = np.array([2, 1, 0]) print("ans=\n", np.cov(x, y)) x = np.array([0, 1, 3]) y = np.array([2, 4, 5]) print("ans=\n", np.corrcoef(x, y)) x = np.array([0, 1, 3]) y = np.array([2, 4, 5]) print("ans=\n", np.correlate(x, y)) x = np.array([0.5, 0.7, 1.0, 1.2, 1.3, 2.1]) bins = np.array([0, 1, 2, 3]) print("ans=\n", np.histogram(x, bins)) import matplotlib.pyplot as plt %matplotlib inline plt.hist(x, bins=bins) plt.show() xedges = [0, 1, 2, 3] yedges = [0, 1, 2, 3, 4] x = np.array([0, 0.1, 0.2, 1., 1.1, 2., 2.1]) y = np.array([0, 0.1, 0.2, 1., 1.1, 2., 3.3]) H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges)) print("ans=\n", H) plt.scatter(x, y) plt.grid() x = np.array([0, 1, 1, 3, 2, 1, 7]) print("ans=\n", np.bincount(x)) x = np.array([0.2, 6.4, 3.0, 1.6]) bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0]) print("ans=\n", np.digitize(x, bins)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Order statistics Step2: Q2. Return the maximum value of x along the second axis. Reduce the second axis to the dimension with size one. Step3: Q3. Calcuate the difference between the maximum and the minimum of x along the second axis. Step4: Q4. Compute the 75th percentile of x along the second axis. Step5: Averages and variances Step6: Q6. Compute the weighted average of x. Step7: Q7. Compute the mean, standard deviation, and variance of x along the second axis. Step8: Correlating Step9: Q9. In the above covariance matrix, what does the -1 mean? Step10: Q11. Compute cross-correlation of x and y. Step11: Histograms Step12: Q13. Compute the 2d histogram of x and y. Step13: Q14. Count number of occurrences of 0 through 7 in x. Step14: Q15. Return the indices of the bins to which each value in x belongs.
14,842
<ASSISTANT_TASK:> Python Code: # Import required libraries from tpot import TPOTClassifier from sklearn.cross_validation import train_test_split import pandas as pd import numpy as np #Load the data Marketing=pd.read_csv('Data_FinalProject.csv') Marketing.head(5) Marketing.groupby('loan').y.value_counts() Marketing.groupby(['loan','marital']).y.value_counts() Marketing.rename(columns={'y': 'class'}, inplace=True) Marketing.dtypes for cat in ['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week', 'poutcome' ,'class']: print("Number of levels in category '{0}': \b {1:2.2f} ".format(cat, Marketing[cat].unique().size)) for cat in ['contact', 'poutcome','class', 'marital', 'default', 'housing', 'loan']: print("Levels for catgeory '{0}': {1}".format(cat, Marketing[cat].unique())) Marketing['marital'] = Marketing['marital'].map({'married':0,'single':1,'divorced':2,'unknown':3}) Marketing['default'] = Marketing['default'].map({'no':0,'yes':1,'unknown':2}) Marketing['housing'] = Marketing['housing'].map({'no':0,'yes':1,'unknown':2}) Marketing['loan'] = Marketing['loan'].map({'no':0,'yes':1,'unknown':2}) Marketing['contact'] = Marketing['contact'].map({'telephone':0,'cellular':1}) Marketing['poutcome'] = Marketing['poutcome'].map({'nonexistent':0,'failure':1,'success':2}) Marketing['class'] = Marketing['class'].map({'no':0,'yes':1}) Marketing = Marketing.fillna(-999) pd.isnull(Marketing).any() from sklearn.preprocessing import MultiLabelBinarizer mlb = MultiLabelBinarizer() job_Trans = mlb.fit_transform([{str(val)} for val in Marketing['job'].values]) education_Trans = mlb.fit_transform([{str(val)} for val in Marketing['education'].values]) month_Trans = mlb.fit_transform([{str(val)} for val in Marketing['month'].values]) day_of_week_Trans = mlb.fit_transform([{str(val)} for val in Marketing['day_of_week'].values]) day_of_week_Trans marketing_new = Marketing.drop(['marital','default','housing','loan','contact','poutcome','class','job','education','month','day_of_week'], axis=1) assert (len(Marketing['day_of_week'].unique()) == len(mlb.classes_)), "Not Equal" #check correct encoding done Marketing['day_of_week'].unique(),mlb.classes_ marketing_new = np.hstack((marketing_new.values, job_Trans, education_Trans, month_Trans, day_of_week_Trans)) np.isnan(marketing_new).any() marketing_new[0].size marketing_class = Marketing['class'].values training_indices, validation_indices = training_indices, testing_indices = train_test_split(Marketing.index, stratify = marketing_class, train_size=0.75, test_size=0.25) training_indices.size, validation_indices.size tpot = TPOTClassifier(verbosity=2, max_time_mins=2, max_eval_time_mins=0.04, population_size=15) tpot.fit(marketing_new[training_indices], marketing_class[training_indices]) tpot.score(marketing_new[validation_indices], Marketing.loc[validation_indices, 'class'].values) tpot.export('tpot_marketing_pipeline.py') # %load tpot_marketing_pipeline.py import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier # NOTE: Make sure that the class is labeled 'target' in the data file tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64) features = tpot_data.drop('target', axis=1).values training_features, testing_features, training_target, testing_target = \ train_test_split(features, tpot_data['target'].values, random_state=None) # Average CV score on the training set was:0.913728927925 exported_pipeline = DecisionTreeClassifier(criterion="gini", max_depth=5, min_samples_leaf=16, min_samples_split=8) exported_pipeline.fit(training_features, training_target) results = exported_pipeline.predict(testing_features) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Data Exploration Step2: Data Munging Step3: At present, TPOT requires all the data to be in numerical format. As we can see below, our data set has 11 categorical variables Step4: We then check the number of levels that each of the five categorical variables have. Step5: As we can see, contact and poutcome have few levels. Let's find out what they are. Step6: We then code these levels manually into numerical values. For nan i.e. the missing values, we simply replace them with a placeholder value (-999). In fact, we perform this replacement for the entire data set. Step7: For other categorical variables, we encode the levels as digits using Scikit-learn's MultiLabelBinarizer and treat them as new features. Step8: Drop the unused features from the dataset. Step9: We then add the encoded features to form the final dataset to be used with TPOT. Step10: Keeping in mind that the final dataset is in the form of a numpy array, we can check the number of features in the final dataset as follows. Step11: Finally we store the class labels, which we need to predict, in a separate variable. Step12: Data Analysis using TPOT Step13: After that, we proceed to calling the fit(), score() and export() functions on our training dataset. Step14: In the above, 4 generations were computed, each giving the training efficiency of fitting model on the training set. As evident, the best pipeline is the one that has the CV score of 91.373%. The model that produces this result is one that fits a decision tree algorithm on the data set. Next, the test error is computed for validation purposes.
14,843
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt import numpy as np x = np.linspace(-10, 10, 201) def f(x): return x**2 y = f(x) fig, ax = plt.subplots(1, figsize=(8,4)) ax.plot(x,y, 'g', label='line') ax.fill_between(x,y, color='blue', alpha=0.3, label='area under graph') ax.grid(True) ax.legend() plt.show() x = np.linspace(-5, 5, 201) def f(x): return 6*x**2 - 20 def F(x): return 2*x**3 - 20*x y = f(x) start = 60 end = 160 section = x[start:end+1] fig, ax = plt.subplots(1, figsize=(8,4)) ax.plot(x,y, 'g', label='y = 2x') ax.fill_between(section,f(section), color='blue', alpha=0.3, label='area under graph') ax.plot(x[start], 0, 'om', color='purple', label='a') ax.plot(x[end], 0, 'om', color='r', label='b') ax.grid(True) ax.legend() plt.show() print 'shaded net area =', F(x[end]) - F(x[start]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Contents Step2: <a id='Fundamental_Theorem_of_Calculus'></a>
14,844
<ASSISTANT_TASK:> Python Code: # The kernel for this notebook is running Python 3, but we'll see: from __future__ import print_function import mxnet as mx from mxnet import nd, autograd, gluon mx.random.seed(1) data_ctx = mx.cpu() model_ctx = mx.cpu() num_inputs = 2 num_outputs = 1 num_examples = 10000 def real_fn(X): return 2 * X[:, 0] - 3.4 * X[:, 1] + 4.2 X = nd.random_normal(shape=(num_examples, num_inputs), ctx=data_ctx) noise = .1 * nd.random_normal(shape=(num_examples,), ctx=data_ctx) y = real_fn(X) + noise print(X[0]) print(y[0]) print(2 * X[0, 0] - 3.4 * X[0, 1] + 4.2) import matplotlib.pyplot as plt plt.scatter(X[:, 1].asnumpy(), y.asnumpy()) plt.show() batch_size = 4 train_data = gluon.data.DataLoader(gluon.data.ArrayDataset(X, y), batch_size=batch_size, shuffle=True) for i, (data, label) in enumerate(train_data): print(data, label) break for i, (data, label) in enumerate(train_data): print(data, label) break counter = 0 for i, (data, label) in enumerate(train_data): pass print(i+1) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Set the context Step2: Linear regression Step3: Notice that each row in X consists of a 2-dimensional data point and that each row in y consists of a 1-dimensional target value. Step4: Note that because our synthetic features X live on data_ctx and because our noise also lives on data_ctx, the labels y, produced by combining X and noise in real_fn also live on data_ctx. Step5: We can visualize the correspondence between our second feature (X[ Step6: Data iterators Step7: Once we’ve initialized our DataLoader (train_data), we can easily fetch batches by iterating over train_data just as if it were a Python list. Step8: If we run that same code again, you'll notice that we get a different batch. Step9: Finally, if we actually pass over the entire dataset and count the number of batches we'll find that there are 2500 batches.
14,845
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib from scipy.io import loadmat from sklearn.preprocessing import OneHotEncoder data = loadmat('../data/andrew_ml_ex33507/ex3data1.mat') data X = data['X'] y = data['y'] X.shape, y.shape#看下维度 # 目前考虑输入是图片的像素值,20*20像素的图片有400个输入层单元,不包括需要额外添加的加上常数项。 材料已经提供了训练好的神经网络的参数,有25个单元和10个输出单元(10个输出) weight = loadmat("../data/andrew_ml_ex33507/ex3weights.mat") theta1, theta2 = weight['Theta1'], weight['Theta2'] theta1.shape, theta2.shape sample_idx = np.random.choice(np.arange(data['X'].shape[0]), 100) sample_images = data['X'][sample_idx, :] #展示二进制图 fig, ax_array = plt.subplots(nrows=5, ncols=5, sharey=True, sharex=True, figsize=(8, 8)) for r in range(5): for c in range(5): ax_array[r, c].matshow(np.array(sample_images[5 * r + c].reshape((20, 20))).T,cmap=matplotlib.cm.binary) plt.xticks(np.array([])) plt.yticks(np.array([])) def sigmoid(z): return 1 / (1 + np.exp(-z)) #2st 上面传播规律,定义第一层,并计算第二层(隐藏层)的值,并添加额外值 def forward_propagate(X,theta1,theta2): m= X.shape[0] a1 = np.insert(X,0, values=np.ones(m), axis=1) Z2 = a1*theta1.T a2= np.insert(sigmoid(Z2),0, values=np.ones(m), axis=1) Z3= a2*theta2.T h= sigmoid(Z3) return a1,Z2,a2,Z3,h # 代价函数(不带规则化项(也叫权重衰减项) Y=R(5000*10) ,这里直接使用二维矩阵,代替循环累加 def cost(X,Y,theta1,theta2): m = X.shape[0] X = np.matrix(X) Y = np.matrix(Y) h=forward_propagate(X,theta1,theta2) # multiply 矩阵size相同对应相乘 first = np.multiply(Y,np.log(h)) second = np.multiply((1-Y),np.log((1-h))) J= np.sum(first+second) J = (-1/m)*J return J # 对y标签进行编码 一开始我们得到的y是维500*1 的向量,但我们要把他编码成的矩阵。 比如说,原始y0=2,那么转化后的Y对应行就是[0,1,0...0],原始转化后的Y对应行就是[0,0...0,1] # Scikitlearn有一个内置的编码函数,我们可以使用这个。 encoder = OneHotEncoder(sparse=False) y_onehot = encoder.fit_transform(y) y_onehot.shape y[0], y_onehot[0,:] # y0是数字0 # 初始化设置 input_size = 400 num_labels = 10 cost(X, y_onehot,theta1, theta2) # 加入正则项 def cost_reg(X,Y,theta1,theta2,learning_rate): m = X.shape[0] X = np.matrix(X) Y = np.matrix(Y) _,_,_,_,h=forward_propagate(X,theta1,theta2) first = np.multiply(Y,np.log(h)) second = np.multiply((1-Y),np.log((1-h))) J= np.sum(first+second) # 计算正则时,第一项时不参与计算 J = (-1/m)*J + (float(learning_rate) / (2 * m))*(np.sum(np.power(theta1[:,1:],2))+np.sum(np.power(theta2[:,1:],2))) return J # theta1.shape,theta2.shape cost_reg(X, y_onehot,theta1, theta2,1) # 计算sigmoid函数的导数 def sigmoid_gradient(z): return np.multiply(sigmoid(z) ,(1-sigmoid(z))) # 检查 sigmoid_gradient(0) # 初始化设置 input_size = 400 #输入单元数量 hidden_size = 25 # y隐藏单元数量 num_labels = 10 # 输出单元数 epsilon = 0.001 theta01=np.random.rand(hidden_size,input_size+1) * 2*epsilon - epsilon# +1是添加偏置单元 theta02 =np.random.rand(num_labels,hidden_size+1)* 2*epsilon - epsilon theta01.shape,theta02.shape # 分别得出 def forward_propagateNEW(X,thetalist): m= X.shape[0] a = np.insert(X,0, values=np.ones(m), axis=1) alist=[a] zlist=[] for i in range(len(thetalist)): theta= thetalist[i] z = a * theta # a= np.insert(sigmoid(z),0, values=np.ones(m), axis=1) a=sigmoid(z) if(i<len(thetalist)-1): a= np.insert(a,0, values=np.ones(m), axis=1) zlist.append(z) alist.append(a) return zlist,alist # Δ 用delta1 和delta2 替代 def backpropRegSelf(input_size, hidden_size, num_labels, X, y, learning_rate,L=3): # 随机化后的 这里为3层 m = X.shape[0] X = np.matrix(X) y = np.matrix(y) #初始化参数 theta1 = (np.random.random((input_size+1,hidden_size))- 0.5)* 0.24 theta2 = (np.random.random((hidden_size+1,num_labels))- 0.5)* 0.24 encoder = OneHotEncoder(sparse=False) y_onehot = encoder.fit_transform(y) # 格式化y # 前向计算 每层值 theta = [theta1, theta2] zlist,alist = forward_propagateNEW(X, theta)# 返回 a1 z2 a2 。。。 # 初始化Deta Delta=[] for th in theta: Delta.append(np.zeros(th.shape)) for i in range(m): # 以计算a z for l in range(L,1,-1): # 3,2 表示层数,最后一层已经算出来,单独列放 #最后一层 if l==L: delta=alist[-1][i,:]-y_onehot[i,:] # 最后一层得δ Delta[l-2] = Delta[l-2] + alist[l-2][i,:].T * delta else: zl = zlist[l-2][i,:] zl = np.insert(zl, 0, values=np.ones(1)) # (1, 26) 怎加偏执项 # d2t = np.multiply((theta2.T * d3t.T).T, sigmoid_gradient(z2t)) # (1, 26) # delta1 = delta1 + (d2t[:,1:]).T * a1t delta = np.multiply(delta*theta[l-1].T, sigmoid_gradient(zl)) # # 因为数组从零开始,且 Delta 为 1 2 层开始 delta 从2 层开始 # (25, 401)# (10, 26) Delta[l-2] = Delta[l-2] + alist[l-2][i,:].T * delta[:,1:] # add the gradient regularization term gradAll = None for j in range(len(Delta)): Delta[j][:,1:] = Delta[j][:,1:]/m + (theta[j][:,1:] * learning_rate) / m if gradAll is None: gradAll = np.ravel(Delta[j]) else: tmp=np.ravel(Delta[j]) gradAll = np.concatenate([gradAll,tmp]) # Delta[:,:,1:] = Delta[:,:,1:] + (theta[:,:,1:] * learning_rate) / m return gradAll grad2= backpropRegSelf(input_size, hidden_size, num_labels, X, y, 1) print(grad2.shape) def backpropReg(params, input_size, hidden_size, num_labels, X, y, learning_rate): m = X.shape[0] X = np.matrix(X) y = np.matrix(y) # reshape the parameter array into parameter matrices for each layer theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1)))) theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1)))) # run the feed-forward pass a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2) # initializations J = 0 delta1 = np.zeros(theta1.shape) # (25, 401) delta2 = np.zeros(theta2.shape) # (10, 26) # compute the cost for i in range(m): first_term = np.multiply(-y[i,:], np.log(h[i,:])) second_term = np.multiply((1 - y[i,:]), np.log(1 - h[i,:])) J += np.sum(first_term - second_term) J = J / m # add the cost regularization term J += (float(learning_rate) / (2 * m)) * (np.sum(np.power(theta1[:,1:], 2)) + np.sum(np.power(theta2[:,1:], 2))) # perform backpropagation for t in range(m): a1t = a1[t,:] # (1, 401) z2t = z2[t,:] # (1, 25) a2t = a2[t,:] # (1, 26) ht = h[t,:] # (1, 10) yt = y[t,:] # (1, 10) d3t = ht - yt # (1, 10) z2t = np.insert(z2t, 0, values=np.ones(1)) # (1, 26) d2t = np.multiply((theta2.T * d3t.T).T, sigmoid_gradient(z2t)) # (1, 26) delta1 = delta1 + (d2t[:,1:]).T * a1t delta2 = delta2 + d3t.T * a2t delta1 = delta1 / m delta2 = delta2 / m # add the gradient regularization term delta1[:,1:] = delta1[:,1:] + (theta1[:,1:] * learning_rate) / m delta2[:,1:] = delta2[:,1:] + (theta2[:,1:] * learning_rate) / m # unravel the gradient matrices into a single array grad = np.concatenate((np.ravel(delta1), np.ravel(delta2))) return J, grad # np.random.random(size) 返回size大小的0-1随机浮点数 params = (np.random.random(size=hidden_size * (input_size + 1) + num_labels * (hidden_size + 1)) - 0.5) * 0.24 j,grad = backpropReg(params, input_size, hidden_size, num_labels, X, y, 1) print(j,grad.shape) # j2,grad2= backpropRegSelf(input_size, hidden_size, num_labels, X, y, 1) # print(j2,grad2[0:10]) # #J θ # input_size = 400 #输入单元数量 # hidden_size = 25 # y隐藏单元数量 # num_labels = 10 # 输出单元数 def jcost(X, y,input_size, hidden_size, output_size,theta): m = X.shape[0] X = np.matrix(X) y = np.matrix(y) theta1 = np.reshape(theta[0:hidden_size*(input_size+1)],(hidden_size,input_size+1))#(25,401) theta2 = np.reshape(theta[hidden_size*(input_size+1):],(output_size,hidden_size+1))#(10.26) _,_,_,_,h=forward_propagate(X,theta1,theta2) # multiply 矩阵size相同对应相乘 first = np.multiply(y,np.log(h)) second = np.multiply((1-y),np.log((1-h))) J= np.sum(first+second) J = (-1/m)*J return J def check(X,y,theta1,theta2,eps): theta = np.concatenate((np.ravel(theta1), np.ravel(theta2))) gradapprox=np.zeros(len(theta)) for i in range(len(theta)): thetaplus = theta thetaplus[i] = thetaplus[i] + eps thetaminus = theta thetaminus[i] = thetaminus[i] - eps gradapprox[i] = (jcost(X,y,input_size,hidden_size,num_labels,thetaplus) - jcost(X,y,input_size,hidden_size,num_labels,thetaminus)) / (2 * epsilon) return gradapprox # theta01.shape , theta02.shape # 计算很慢 gradapprox = check(X,y_onehot,theta1,theta2,0.001) numerator = np.linalg.norm(grad2-gradapprox, ord=2) # Step 1' denominator = np.linalg.norm(grad2, ord=2) + np.linalg.norm(gradapprox, ord=2) # Step 2' difference = numerator / denominator print(difference) # 使用工具库计算参数最优解 from scipy.optimize import minimize # opt.fmin_tnc(func=cost, x0=theta, fprime=gradient, args=(X, y)) fmin = minimize(fun=backpropReg, x0=(params), args=(input_size, hidden_size, num_labels, X, y_onehot, learning_rate), method='TNC', jac=True, options={'maxiter': 250}) fmin X = np.matrix(X) thetafinal1 = np.matrix(np.reshape(fmin.x[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1)))) thetafinal2 = np.matrix(np.reshape(fmin.x[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1)))) print(thetafinal1[0,1],grad2[1]) # 计算使用优化后的θ得出的预测 a1, z2, a2, z3, h = forward_propagate(X, thetafinal1, thetafinal2 ) y_pred = np.array(np.argmax(h, axis=1) + 1) y_pred # 最后,我们可以计算准确度,看看我们训练完毕的神经网络效果怎么样。 # 预测值与实际值比较 from sklearn.metrics import classification_report#这个包是评价报告 print(classification_report(y, y_pred)) hidden_layer = thetafinal1[:, 1:] hidden_layer.shape fig, ax_array = plt.subplots(nrows=5, ncols=5, sharey=True, sharex=True, figsize=(12, 12)) for r in range(5): for c in range(5): ax_array[r, c].matshow(np.array(hidden_layer[5 * r + c].reshape((20, 20))),cmap=matplotlib.cm.binary) plt.xticks(np.array([])) plt.yticks(np.array([])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 模型展示 Step2: 反向传播 Step3: 初始话参数 Step4: 反向传播 Step5: 梯度检验
14,846
<ASSISTANT_TASK:> Python Code: # -*- coding: utf-8 -*- %matplotlib inline import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from pyfme.aircrafts import Cessna310 from pyfme.environment.environment import Environment from pyfme.environment.atmosphere import ISA1976 from pyfme.environment.gravity import VerticalConstant from pyfme.environment.wind import NoWind from pyfme.models.systems import EulerFlatEarth from pyfme.simulator import BatchSimulation from pyfme.utils.trimmer import steady_state_flight_trimmer aircraft = Cessna310() atmosphere = ISA1976() gravity = VerticalConstant() wind = NoWind() environment = Environment(atmosphere, gravity, wind) TAS = 312.5 * 0.3048 # m/s h0 = 8000 * 0.3048 # m psi0 = 1 # rad x0, y0 = 0, 0 # m turn_rate = 0.0 # rad/s gamma0 = +0.05 # rad system = EulerFlatEarth(lat=0, lon=0, h=h0, psi=psi0, x_earth=x0, y_earth=y0) not_trimmed_controls = {'delta_elevator': 0.05, 'hor_tail_incidence': 0.00, 'delta_aileron': 0.01 * np.sign(turn_rate), 'delta_rudder': 0.01 * np.sign(turn_rate), 'delta_t': 0.5} controls2trim = ['delta_elevator', 'delta_aileron', 'delta_rudder', 'delta_t'] trimmed_ac, trimmed_sys, trimmed_env, results = steady_state_flight_trimmer( aircraft, system, environment, TAS=TAS, controls_0=not_trimmed_controls, controls2trim=controls2trim, gamma=gamma0, turn_rate=turn_rate, verbose=2) print(results) my_simulation = BatchSimulation(trimmed_ac, trimmed_sys, trimmed_env) tfin = 150 # seconds N = tfin * 100 + 1 time = np.linspace(0, tfin, N) initial_controls = trimmed_ac.controls controls = {} for control_name, control_value in initial_controls.items(): controls[control_name] = np.ones_like(time) * control_value my_simulation.set_controls(time, controls) par_list = ['x_earth', 'y_earth', 'height', 'psi', 'theta', 'phi', 'u', 'v', 'w', 'v_north', 'v_east', 'v_down', 'p', 'q', 'r', 'alpha', 'beta', 'TAS', 'F_xb', 'F_yb', 'F_zb', 'M_xb', 'M_yb', 'M_zb'] my_simulation.set_par_dict(par_list) my_simulation.run_simulation() plt.style.use('ggplot') for ii in range(len(par_list) // 3): three_params = par_list[3*ii:3*ii+3] fig, ax = plt.subplots(3, 1, sharex=True) for jj, par in enumerate(three_params): ax[jj].plot(time, my_simulation.par_dict[par]) ax[jj].set_ylabel(par) ax[jj].set_xlabel('time (s)') fig.tight_layout() fig = plt.figure() ax = Axes3D(fig) ax.plot(my_simulation.par_dict['x_earth'], my_simulation.par_dict['y_earth'], my_simulation.par_dict['height']) ax.plot(my_simulation.par_dict['x_earth'], my_simulation.par_dict['y_earth'], my_simulation.par_dict['height'] * 0) ax.set_xlabel('x_earth') ax.set_ylabel('y_earth') ax.set_zlabel('z_earth') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Initialize variables Step2: Initial conditions
14,847
<ASSISTANT_TASK:> Python Code: from __future__ import print_function import numpy as np import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (15.0, 8.0) # First, we need to know what's in the data file. !head -15 R11ceph.dat class Cepheids(object): def __init__(self,filename): # Read in the data and store it in this master array: self.data = np.loadtxt(filename) self.hosts = self.data[:,1].astype('int').astype('str') # We'll need the plotting setup to be the same each time we make a plot: colornames = ['red','orange','yellow','green','cyan','blue','violet','magenta','gray'] self.colors = dict(zip(self.list_hosts(), colornames)) self.xlimits = np.array([0.3,2.3]) self.ylimits = np.array([30.0,17.0]) return def list_hosts(self): # The list of (9) unique galaxy host names: return np.unique(self.hosts) def select(self,ID): # Pull out one galaxy's data from the master array: index = (self.hosts == str(ID)) self.mobs = self.data[index,2] self.merr = self.data[index,3] self.logP = np.log10(self.data[index,4]) return def plot(self,X): # Plot all the points in the dataset for host galaxy X. ID = str(X) self.select(ID) plt.rc('xtick', labelsize=16) plt.rc('ytick', labelsize=16) plt.errorbar(self.logP, self.mobs, yerr=self.merr, fmt='.', ms=7, lw=1, color=self.colors[ID], label='NGC'+ID) plt.xlabel('$\\log_{10} P / {\\rm days}$',fontsize=20) plt.ylabel('${\\rm magnitude (AB)}$',fontsize=20) plt.xlim(self.xlimits) plt.ylim(self.ylimits) plt.title('Cepheid Period-Luminosity (Riess et al 2011)',fontsize=20) return def overlay_straight_line_with(self,a=0.0,b=24.0): # Overlay a straight line with gradient a and intercept b. x = self.xlimits y = a*x + b plt.plot(x, y, 'k-', alpha=0.5, lw=2) plt.xlim(self.xlimits) plt.ylim(self.ylimits) return def add_legend(self): plt.legend(loc='upper left') return data = Cepheids('R11ceph.dat') print(data.colors) data.plot(4258) # for ID in data.list_hosts(): # data.plot(ID) data.overlay_straight_line_with(a=-2.0,b=24.0) data.add_legend() # import cepheids_pgm # cepheids_pgm.simple() from IPython.display import Image Image(filename="cepheids_pgm.png") def log_likelihood(logP,mobs,merr,a,b): return -0.5*np.sum((mobs - a*logP -b)**2/(merr**2)) def log_prior(a,b): amin,amax = -10.0,10.0 bmin,bmax = 10.0,30.0 if (a > amin)*(a < amax)*(b > bmin)*(b < bmax): logp = np.log(1.0/(amax-amin)) + np.log(1.0/(bmax-bmin)) else: logp = -np.inf return logp def log_posterior(logP,mobs,merr,a,b): return log_likelihood(logP,mobs,merr,a,b) + log_prior(a,b) # Select a Cepheid dataset: data.select(4258) # Set up parameter grids: npix = 100 amin,amax = -4.0,-2.0 bmin,bmax = 25.0,27.0 agrid = np.linspace(amin,amax,npix) bgrid = np.linspace(bmin,bmax,npix) logprob = np.zeros([npix,npix]) # Loop over parameters, computing unnormlized log posterior PDF: for i,a in enumerate(agrid): for j,b in enumerate(bgrid): logprob[j,i] = log_posterior(data.logP,data.mobs,data.merr,a,b) # Normalize and exponentiate to get posterior density: Z = np.max(logprob) prob = np.exp(logprob - Z) norm = np.sum(prob) prob /= norm sorted = np.sort(prob.flatten()) C = sorted.cumsum() # Find the pixel values that lie at the levels that contain # 68% and 95% of the probability: lvl68 = np.min(sorted[C > (1.0 - 0.68)]) lvl95 = np.min(sorted[C > (1.0 - 0.95)]) plt.imshow(prob, origin='lower', cmap='Blues', interpolation='none', extent=[amin,amax,bmin,bmax]) plt.contour(prob,[lvl68,lvl95],colors='black',extent=[amin,amax,bmin,bmax]) plt.grid() plt.xlabel('slope a') plt.ylabel('intercept b / AB magnitudes') data.plot(4258) data.overlay_straight_line_with(a=-3.0,b=26.3) data.add_legend() prob_a_given_data = np.sum(prob,axis=0) # Approximate the integral as a sum prob_b_given_data = np.sum(prob,axis=1) # Approximate the integral as a sum print(prob_a_given_data.shape, np.sum(prob_a_given_data)) # Plot 1D distributions: fig,ax = plt.subplots(nrows=1, ncols=2) fig.set_size_inches(15, 6) plt.subplots_adjust(wspace=0.2) left = ax[0].plot(agrid, prob_a_given_data) ax[0].set_title('${\\rm Pr}(a|d)$') ax[0].set_xlabel('slope $a$') ax[0].set_ylabel('Posterior probability density') right = ax[1].plot(bgrid, prob_b_given_data) ax[1].set_title('${\\rm Pr}(b|d)$') ax[0].set_xlabel('intercept $b$ / AB magnitudes') ax[1].set_ylabel('Posterior probability density') # Compress each PDF into a median and 68% credible interval, and report: def compress_1D_pdf(x,pr,ci=68,dp=1): # Interpret credible interval request: low = (1.0 - ci/100.0)/2.0 # 0.16 for ci=68 high = 1.0 - low # 0.84 for ci=68 # Find cumulative distribution and compute percentiles: cumulant = pr.cumsum() pctlow = x[cumulant>low].min() median = x[cumulant>0.50].min() pcthigh = x[cumulant>high].min() # Convert to error bars, and format a string: errplus = np.abs(pcthigh - median) errminus = np.abs(median - pctlow) report = "$ "+str(round(median,dp))+"^{+"+str(round(errplus,dp))+"}_{-"+str(round(errminus,dp))+"} $" return report print("a = ",compress_1D_pdf(agrid,prob_a_given_data,ci=68,dp=2)) print("b = ",compress_1D_pdf(bgrid,prob_b_given_data,ci=68,dp=2)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: A Look at Each Host Galaxy's Cepheids Step2: OK, now we are all set up! Let's plot one of the datasets. Step3: Q Step4: Q Step5: Now, let's set up a suitable parameter grid and compute the posterior PDF! Step6: Now, plot, with confidence contours Step7: Are these inferred parameters sensible? Step8: OK, this looks good! Later in the course we will do some more extensive model checking.
14,848
<ASSISTANT_TASK:> Python Code: import graphlab sales = graphlab.SFrame('kc_house_data.gl/') import numpy as np # note this allows us to refer to numpy as np instead def get_numpy_data(data_sframe, features, output): data_sframe['constant'] = 1 # this is how you add a constant column to an SFrame # add the column 'constant' to the front of the features list so that we can extract it along with the others: features = ['constant'] + features # this is how you combine two lists # select the columns of data_SFrame given by the features list into the SFrame features_sframe (now including constant): features_sframe = data_sframe[features] # the following line will convert the features_SFrame into a numpy matrix: feature_matrix = features_sframe.to_numpy() # assign the column of data_sframe associated with the output to the SArray output_sarray output_sarray = data_sframe[output] # the following will convert the SArray into a numpy array by first converting it to a list output_array = output_sarray.to_numpy() return(feature_matrix, output_array) (example_features, example_output) = get_numpy_data(sales, ['sqft_living'], 'price') # the [] around 'sqft_living' makes it a list print example_features[0,:] # this accesses the first row of the data the ':' indicates 'all columns' print example_output[0] # and the corresponding output my_weights = np.array([1., 1.]) # the example weights my_features = example_features[0,] # we'll use the first data point predicted_value = np.dot(my_features, my_weights) print predicted_value def predict_output(feature_matrix, weights): # assume feature_matrix is a numpy matrix containing the features as columns and weights is a corresponding numpy array # create the predictions vector by using np.dot() predictions = np.dot(feature_matrix, weights) return(predictions) test_predictions = predict_output(example_features, my_weights) print test_predictions[0] # should be 1181.0 print test_predictions[1] # should be 2571.0 def feature_derivative(errors, feature): # Assume that errors and feature are both numpy arrays of the same length (number of data points) # compute twice the dot product of these vectors as 'derivative' and return the value derivative = 2 * np.dot(errors, feature) return(derivative) (example_features, example_output) = get_numpy_data(sales, ['sqft_living'], 'price') my_weights = np.array([0., 0.]) # this makes all the predictions 0 test_predictions = predict_output(example_features, my_weights) # just like SFrames 2 numpy arrays can be elementwise subtracted with '-': errors = test_predictions - example_output # prediction errors in this case is just the -example_output feature = example_features[:,0] # let's compute the derivative with respect to 'constant', the ":" indicates "all rows" derivative = feature_derivative(errors, feature) print derivative print -np.sum(example_output)*2 # should be the same as derivative from math import sqrt # recall that the magnitude/length of a vector [g[0], g[1], g[2]] is sqrt(g[0]^2 + g[1]^2 + g[2]^2) def regression_gradient_descent(feature_matrix, output, initial_weights, step_size, tolerance): converged = False weights = np.array(initial_weights) # make sure it's a numpy array while not converged: # compute the predictions based on feature_matrix and weights using your predict_output() function predictions = predict_output(feature_matrix, weights) # compute the errors as predictions - output errors = predictions - output gradient_sum_squares = 0 # initialize the gradient sum of squares # while we haven't reached the tolerance yet, update each feature's weight for i in range(len(weights)): # loop over each weight # Recall that feature_matrix[:, i] is the feature column associated with weights[i] # compute the derivative for weight[i]: derivative = feature_derivative(errors, feature_matrix[:, i]) # add the squared value of the derivative to the gradient magnitude (for assessing convergence) gradient_sum_squares += derivative * derivative # subtract the step size times the derivative from the current weight weights[i] = weights[i] - step_size * derivative # compute the square-root of the gradient sum of squares to get the gradient matnigude: gradient_magnitude = sqrt(gradient_sum_squares) if gradient_magnitude < tolerance: converged = True return(weights) train_data,test_data = sales.random_split(.8,seed=0) # let's test out the gradient descent simple_features = ['sqft_living'] my_output = 'price' (simple_feature_matrix, output) = get_numpy_data(train_data, simple_features, my_output) initial_weights = np.array([-47000., 1.]) step_size = 7e-12 tolerance = 2.5e7 simple_weights = regression_gradient_descent(simple_feature_matrix, output,initial_weights, step_size, tolerance) # weights = regression_gradient_descent(feature_matrix, output, initial_weights, step_size, tolerance) simple_weights (test_simple_feature_matrix, test_simple_output) = get_numpy_data(test_data, simple_features, my_output) test_simple_predictions = predict_output(test_simple_feature_matrix, simple_weights) test_data[['price', 'sqft_living']] test_simple_predictions[0] def rss(predictions, output): df = predictions - output return np.dot(df, df) r1 = rss(test_simple_predictions ,test_simple_output) model_features = ['sqft_living', 'sqft_living15'] # sqft_living15 is the average squarefeet for the nearest 15 neighbors. my_output = 'price' (feature_matrix, output) = get_numpy_data(train_data, model_features, my_output) initial_weights = np.array([-100000., 1., 1.]) #initial_weights = np.array([-47000., 1., 1.]) step_size = 4e-12 tolerance = 1e9 feature_matrix.size model2_weights = regression_gradient_descent(feature_matrix, output,initial_weights, step_size, tolerance) (test_feature_matrix, test_output) = get_numpy_data(test_data, model_features, my_output) test_pred = predict_output(test_feature_matrix, model2_weights) model2_weights test_feature_matrix[0],test_pred[0] test_output[0] r2 = rss(test_pred, test_output) r1 < r2 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load in house sales data Step2: If we want to do any "feature engineering" like creating new features or adjusting existing ones we should do this directly using the SFrames as seen in the other Week 2 notebook. For this notebook, however, we will work with the existing features. Step3: Now we will write a function that will accept an SFrame, a list of feature names (e.g. ['sqft_living', 'bedrooms']) and an target feature e.g. ('price') and will return two things Step4: For testing let's use the 'sqft_living' feature and a constant as our features and price as our output Step5: Predicting output given regression weights Step6: np.dot() also works when dealing with a matrix and a vector. Recall that the predictions from all the observations is just the RIGHT (as in weights on the right) dot product between the features matrix and the weights vector. With this in mind finish the following predict_output function to compute the predictions for an entire matrix of features given the matrix and the weights Step7: If you want to test your code run the following cell Step8: Computing the Derivative Step9: To test your feature derivartive run the following Step10: Gradient Descent Step11: A few things to note before we run the gradient descent. Since the gradient is a sum over all the data points and involves a product of an error and a feature the gradient itself will be very large since the features are large (squarefeet) and the output is large (prices). So while you might expect "tolerance" to be small, small is only relative to the size of the features. Step12: Although the gradient descent is designed for multiple regression since the constant is now a feature we can use the gradient descent function to estimat the parameters in the simple regression on squarefeet. The folowing cell sets up the feature_matrix, output, initial weights and step size for the first model Step13: Next run your gradient descent with the above parameters. Step14: How do your weights compare to those achieved in week 1 (don't expect them to be exactly the same)? Step15: Now compute your predictions using test_simple_feature_matrix and your weights from above. Step16: Quiz Question Step17: Now that you have the predictions on test data, compute the RSS on the test data set. Save this value for comparison later. Recall that RSS is the sum of the squared errors (difference between prediction and output). Step18: Running a multiple regression Step19: Use the above parameters to estimate the model weights. Record these values for your quiz. Step20: Use your newly estimated weights and the predict_output function to compute the predictions on the TEST data. Don't forget to create a numpy array for these features from the test set first! Step21: Quiz Question Step22: What is the actual price for the 1st house in the test data set? Step23: Quiz Question Step24: Quiz Question
14,849
<ASSISTANT_TASK:> Python Code: from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf import collections import os from google.colab import auth auth.authenticate_user() #@title Choices about the dataset you want to load. # Make choices about the dataset here. chain_length = 3 #@param {type:"slider", min:3, max:4, step:1} mode = 'valid' #@param ['train', 'test', 'valid'] # Train has 500 shards, valid 150, test 100. if mode == 'train': num_shards = 500 elif mode == 'test': num_shards = 100 elif mode == 'valid': num_shards = 150 DatasetInfo = collections.namedtuple( 'DatasetInfo', ['basepath', 'size', 'chain_length'] ) _DATASETS = dict( memo=DatasetInfo( basepath=mode, size=num_shards, chain_length=chain_length) ) def _get_dataset_files(dataset_info, root): Generates lists of files for a given dataset version. basepath = dataset_info.basepath base = os.path.join(root, basepath) num_files = dataset_info.size length = len(str(num_files)) template = 'trials-{:0%d}-of-{:0%d}' % (5, 5) return [os.path.join(base, template.format(i, num_files)) for i in range(num_files)] def parser_tf_examples(raw_data, chain_length=chain_length): if chain_length == 3: feature_map = { 'trials' : tf.io.FixedLenFeature( shape=[48, 3, 1000], dtype=tf.float32), 'correct_answer': tf.io.FixedLenFeature( shape=[48], dtype=tf.int64), 'difficulty': tf.io.FixedLenFeature( shape=[48], dtype=tf.int64), 'trial_type': tf.io.FixedLenFeature( shape=[48], dtype=tf.int64), 'memory': tf.io.FixedLenFeature( shape=[32, 2, 1000], dtype=tf.float32), } elif chain_length == 4: feature_map = { 'trials' : tf.io.FixedLenFeature( shape=[96, 3, 1000], dtype=tf.float32), 'correct_answer': tf.io.FixedLenFeature( shape=[96], dtype=tf.int64), 'difficulty': tf.io.FixedLenFeature( shape=[96], dtype=tf.int64), 'trial_type': tf.io.FixedLenFeature( shape=[96], dtype=tf.int64), 'memory': tf.io.FixedLenFeature( shape=[48, 2, 1000], dtype=tf.float32), } example = tf.io.parse_example(raw_data, feature_map) batch = [example["trials"], example["correct_answer"], example["difficulty"], example["trial_type"], example["memory"]] return batch dataset_info = 'memo' root = 'gs://deepmind-memo/length' + str(chain_length) + '/' num_epochs = 100 shuffle_buffer_size = 150 num_readers = 4 dataset_info = _DATASETS['memo'] filenames = _get_dataset_files(dataset_info, root) num_map_threads = 4 batch_size = 10 data = tf.data.Dataset.from_tensor_slices(filenames) data = data.repeat(num_epochs) data = data.shuffle(shuffle_buffer_size) data = data.interleave(tf.data.TFRecordDataset, cycle_length=num_readers, block_length=1) data = data.shuffle(shuffle_buffer_size) data = data.map(parser_tf_examples, num_parallel_calls=num_map_threads) data = data.batch(batch_size) iterator = data.__iter__() element = iterator.get_next() print(element[0].shape) # trials print(element[1].shape) # correct answer print(element[2].shape) # difficulty print(element[3].shape) # trialtype print(element[4].shape) # memory <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: If you choose chain_length 3 the data will look like this Step3: Load the data. Step4: Looking at what we loaded.
14,850
<ASSISTANT_TASK:> Python Code: # When not running on Kaggle, comment out this import from kaggle_datasets import KaggleDatasets # When not running on Kaggle, set a fixed GCS path here GCS_PATH = KaggleDatasets().get_gcs_path('jigsaw-multilingual-toxic-comment-classification') print(GCS_PATH) import os, time, logging import tensorflow as tf import tensorflow_hub as hub from matplotlib import pyplot as plt print(tf.version.VERSION) tf.get_logger().setLevel(logging.ERROR) try: # detect TPU tpu = None tpu = tf.distribute.cluster_resolver.TPUClusterResolver() # TPU detection tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) except ValueError: # detect GPU(s) and enable mixed precision strategy = tf.distribute.MirroredStrategy() # works on GPU and multi-GPU policy = tf.keras.mixed_precision.experimental.Policy('mixed_float16') tf.config.optimizer.set_jit(True) # XLA compilation tf.keras.mixed_precision.experimental.set_policy(policy) print('Mixed precision enabled') print("REPLICAS: ", strategy.num_replicas_in_sync) # mixed precision # On TPU, bfloat16/float32 mixed precision is automatically used in TPU computations. # Enabling it in Keras also stores relevant variables in bfloat16 format (memory optimization). # This additional optimization was not used for TPUs in this sample. # On GPU, specifically V100, mixed precision must be enabled for hardware TensorCores to be used. # XLA compilation must be enabled for this to work. (On TPU, XLA compilation is the default and cannot be turned off) SEQUENCE_LENGTH = 128 # Copy of the TF Hub model at https://tfhub.dev/tensorflow/bert_multi_cased_L-12_H-768_A-12/2 BERT_GCS_PATH = 'gs://bert_multilingual_public/bert_multi_cased_L-12_H-768_A-12_2/' EPOCHS = 6 if tpu: BATCH_SIZE = 128 * strategy.num_replicas_in_sync else: BATCH_SIZE = 64 * strategy.num_replicas_in_sync TRAIN_DATA = GCS_PATH + "/jigsaw-toxic-comment-train-processed-seqlen{}.csv".format(SEQUENCE_LENGTH) TRAIN_DATA_LENGTH = 223549 # rows VALID_DATA = GCS_PATH + "/validation-processed-seqlen{}.csv".format(SEQUENCE_LENGTH) STEPS_PER_EPOCH = TRAIN_DATA_LENGTH // BATCH_SIZE LR_MAX = 0.001 * strategy.num_replicas_in_sync LR_EXP_DECAY = .9 LR_MIN = 0.0001 @tf.function def lr_fn(epoch): lr = (LR_MAX - LR_MIN) * LR_EXP_DECAY**(epoch) + LR_MIN return lr print("Learning rate schedule:") rng = [i for i in range(EPOCHS)] y = [lr_fn(x) for x in rng] plt.plot(rng, [lr_fn(x) for x in rng]) plt.show() def multilingual_bert_model(max_seq_length=SEQUENCE_LENGTH): Build and return a multilingual BERT model and tokenizer. input_word_ids = tf.keras.layers.Input( shape=(max_seq_length,), dtype=tf.int32, name="input_word_ids") input_mask = tf.keras.layers.Input( shape=(max_seq_length,), dtype=tf.int32, name="input_mask") segment_ids = tf.keras.layers.Input( shape=(max_seq_length,), dtype=tf.int32, name="all_segment_id") bert_layer = tf.saved_model.load(BERT_GCS_PATH) # copy of TF Hub model 'https://tfhub.dev/tensorflow/bert_multi_cased_L-12_H-768_A-12/2' bert_layer = hub.KerasLayer(bert_layer, trainable=True) pooled_output, _ = bert_layer([input_word_ids, input_mask, segment_ids]) output = tf.keras.layers.Dense(32, activation='relu')(pooled_output) output = tf.keras.layers.Dense(1, activation='sigmoid', name='labels', dtype=tf.float32)(output) return tf.keras.Model(inputs={'input_word_ids': input_word_ids, 'input_mask': input_mask, 'all_segment_id': segment_ids}, outputs=output) def parse_string_list_into_ints(strlist): s = tf.strings.strip(strlist) s = tf.strings.substr( strlist, 1, tf.strings.length(s) - 2) # Remove parentheses around list s = tf.strings.split(s, ',', maxsplit=SEQUENCE_LENGTH) s = tf.strings.to_number(s, tf.int32) s = tf.reshape(s, [SEQUENCE_LENGTH]) # Force shape here needed for XLA compilation (TPU) return s def format_sentences(data, label='toxic', remove_language=False): labels = {'labels': data.pop(label)} if remove_language: languages = {'language': data.pop('lang')} # The remaining three items in the dict parsed from the CSV are lists of integers for k,v in data.items(): # "input_word_ids", "input_mask", "all_segment_id" data[k] = parse_string_list_into_ints(v) return data, labels def make_sentence_dataset_from_csv(filename, label='toxic', language_to_filter=None): # This assumes the column order label, input_word_ids, input_mask, segment_ids SELECTED_COLUMNS = [label, "input_word_ids", "input_mask", "all_segment_id"] label_default = tf.int32 if label == 'id' else tf.float32 COLUMN_DEFAULTS = [label_default, tf.string, tf.string, tf.string] if language_to_filter: insert_pos = 0 if label != 'id' else 1 SELECTED_COLUMNS.insert(insert_pos, 'lang') COLUMN_DEFAULTS.insert(insert_pos, tf.string) preprocessed_sentences_dataset = tf.data.experimental.make_csv_dataset( filename, column_defaults=COLUMN_DEFAULTS, select_columns=SELECTED_COLUMNS, batch_size=1, num_epochs=1, shuffle=False) # We'll do repeating and shuffling ourselves # make_csv_dataset required a batch size, but we want to batch later preprocessed_sentences_dataset = preprocessed_sentences_dataset.unbatch() if language_to_filter: preprocessed_sentences_dataset = preprocessed_sentences_dataset.filter( lambda data: tf.math.equal(data['lang'], tf.constant(language_to_filter))) #preprocessed_sentences.pop('lang') preprocessed_sentences_dataset = preprocessed_sentences_dataset.map( lambda data: format_sentences(data, label=label, remove_language=language_to_filter)) return preprocessed_sentences_dataset def make_dataset_pipeline(dataset, repeat_and_shuffle=True): Set up the pipeline for the given dataset. Caches, repeats, shuffles, and sets the pipeline up to prefetch batches. cached_dataset = dataset.cache() if repeat_and_shuffle: cached_dataset = cached_dataset.repeat().shuffle(2048) cached_dataset = cached_dataset.batch(BATCH_SIZE, drop_remainder=True) # no remainder on repeated dataset else: cached_dataset = cached_dataset.batch(BATCH_SIZE) cached_dataset = cached_dataset.prefetch(tf.data.experimental.AUTOTUNE) return cached_dataset # Load the preprocessed English dataframe. preprocessed_en_filename = TRAIN_DATA # Set up the dataset and pipeline. english_train_dataset = make_dataset_pipeline( make_sentence_dataset_from_csv(preprocessed_en_filename)) # Process the new datasets by language. preprocessed_val_filename = VALID_DATA nonenglish_val_datasets = {} for language_name, language_label in [('Spanish', 'es'), ('Italian', 'it'), ('Turkish', 'tr')]: nonenglish_val_datasets[language_name] = make_sentence_dataset_from_csv( preprocessed_val_filename, language_to_filter=language_label) nonenglish_val_datasets[language_name] = make_dataset_pipeline( nonenglish_val_datasets[language_name], repeat_and_shuffle=False) nonenglish_val_datasets['Combined'] = make_sentence_dataset_from_csv(preprocessed_val_filename) nonenglish_val_datasets['Combined'] = make_dataset_pipeline(nonenglish_val_datasets['Combined'], repeat_and_shuffle=False) with strategy.scope(): multilingual_bert = multilingual_bert_model() # Compile the model. Optimize using stochastic gradient descent. multilingual_bert.compile( loss=tf.keras.losses.BinaryCrossentropy(), optimizer=tf.keras.optimizers.SGD(learning_rate=0.001*strategy.num_replicas_in_sync), metrics=[tf.keras.metrics.AUC()]) multilingual_bert.summary() %%time # Train on English Wikipedia comment data. lr_callback = tf.keras.callbacks.LearningRateScheduler(lr_fn) history = multilingual_bert.fit( english_train_dataset, steps_per_epoch=STEPS_PER_EPOCH, epochs=EPOCHS, #validation_data=nonenglish_val_datasets['Combined'], callbacks=[lr_callback]) # Performance on non-English comments after training. for language in nonenglish_val_datasets: results = multilingual_bert.evaluate(nonenglish_val_datasets[language], verbose=0) print('{} loss, AUC after training:'.format(language), results) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Overview Step2: TPU or GPU detection Step3: Configuration Step5: Model Step6: Dataset Step8: Set up our data pipelines for training and evaluation. Step9: Instantiate the model
14,851
<ASSISTANT_TASK:> Python Code: import pandas as pd %matplotlib inline # 如果不知道函数名是什么,可以只敲击函数前几个,然后按tab键,就会有下拉框提示 titanic = pd.read_csv('train.csv') titanic.head() titanic.info() # 把所有数值类型的数据做一个简单的统计 titanic.describe() # 统计None值个数 titanic.isnull().sum() # 可以填充整个datafram里边的空值, 可以取消注释,实验一下 # titanic.fillna(0) # 单独选择一列进行控制填充,可以取消注释,实验一下 # titanic.Age.fillna(0) # 年龄的中位数 titanic.Age.median() # 按年龄的中位数去填充,此时是返回一个新的Series # titanic.Age.fillna(titanic.Age.median()) # 直接填充,并不返回新的Series titanic.Age.fillna(titanic.Age.median(), inplace=True) # 再次查看Age的空值 titanic.isnull().sum() # 做简单的汇总统计,经常用到 titanic.Sex.value_counts() # 生还者中,男女的人数 survived = titanic[titanic.Survived==1].Sex.value_counts() # 未生还者中,男女的人数 dead = titanic[titanic.Survived==0].Sex.value_counts() df = pd.DataFrame([survived, dead], index=['survived', 'dead']) df.plot.bar() # 绘图成功,但是不是我们想要的效果 # 把dataframe转置一下,就是行列替换 df = df.T df.plot.bar() # df.plot(kind='bar') 等价的 # 仍然不是我们想要的结果 df.plot(kind='bar', stacked=True) # 男女中生还者的比例情况 df['p_survived'] = df.survived / (df.survived + df.dead) df['p_dead'] = df.dead / (df.survived + df.dead) df[['p_survived', 'p_dead']].plot.bar(stacked=True) # 简单统计 # titanic.Age.value_counts() survived = titanic[titanic.Survived==1].Age dead = titanic[titanic.Survived==0].Age df = pd.DataFrame([survived, dead], index=['survived', 'dead']) df = df.T df.plot.hist(stacked=True) # 直方图柱子显示多一点 df.plot.hist(stacked=True, bins=30) # 中间很高的柱子,是因为我们把空值都替换为了中位数 # 密度图, 更直观一点 df.plot.kde() # 可以查看年龄的分布,来绝对我们图片横轴的取值范围 titanic.Age.describe() # 限定范围 df.plot.kde(xlim=(0,80)) age = 16 young = titanic[titanic.Age<=age]['Survived'].value_counts() old = titanic[titanic.Age>age]['Survived'].value_counts() df = pd.DataFrame([young, old], index=['young', 'old']) df.columns = ['dead', 'survived'] df.plot.bar(stacked=True) # 男女中生还者的比例情况 df['p_survived'] = df.survived / (df.survived + df.dead) df['p_dead'] = df.dead / (df.survived + df.dead) df[['p_survived', 'p_dead']].plot.bar(stacked=True) # 票价跟年龄特征相似 survived = titanic[titanic.Survived==1].Fare dead = titanic[titanic.Survived==0].Fare df = pd.DataFrame([survived, dead], index=['survived', 'dead']) df = df.T df.plot.kde() # 设定xlim范围,先查看票价的范围 titanic.Fare.describe() df.plot(kind='kde', xlim=(0,513)) # 比如同时查看年龄和票价对生还率的影响 import matplotlib.pyplot as plt plt.scatter(titanic[titanic.Survived==0].Age, titanic[titanic.Survived==0].Fare) # 不美观 ax = plt.subplot() # 未生还者 age = titanic[titanic.Survived==0].Age fare = titanic[titanic.Survived==0].Fare plt.scatter(age, fare, s=20, marker='o', alpha=0.3, linewidths=1, edgecolors='gray') # 生还者 age = titanic[titanic.Survived==1].Age fare = titanic[titanic.Survived==1].Fare plt.scatter(age, fare, s=20, marker='o', alpha=0.3, linewidths=1, edgecolors='gray', c='red') ax.set_xlabel('age') ax.set_ylabel('fare') titanic.Name.describe() titanic['title'] = titanic.Name.apply(lambda name: name.split(',')[1].split('.')[0].strip()) s = 'Williams, Mr. Howard Hugh "Harry"' s.split(',')[-1].split('.')[0].strip() titanic.title.value_counts() # 比如有一个人被称为 Mr,而年龄是不知道的,这个时候可以用 所有 Mr 的年龄平均值来替代,而不是用我们之前最简单的所有数据的中位数 # 夜光图,简单用灯光图的亮度来模拟gdp titanic.head() titanic['family_size'] = titanic.SibSp + titanic.Parch + 1 titanic.family_size.value_counts() def func(family_size): if family_size == 1: return 'Singleton' if family_size<=4 and family_size>=2: return 'SmallFamily' if family_size > 4: return 'LargeFamily' titanic['family_type'] = titanic.family_size.apply(func) titanic.family_type.value_counts() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 导入数据 Step2: 快速预览 Step3: | 单词 | 翻译 Step4: 处理空值 Step5: 尝试从性别进行分析 Step6: 通过上面图片可以看出:性别特征对是否生还的影响还是挺大的 Step7: 分析票价 Step8: 可以看出低票价的人的生还率比较低 Step9: 隐含特征 Step10: gdp
14,852
<ASSISTANT_TASK:> Python Code: import rebound sim = rebound.Simulation() sim.add(m=1) sim.add(m=0.1, e=0.041, a=0.4, inc=0.2, f=0.43, Omega=0.82, omega=2.98) sim.add(m=1e-3, e=0.24, a=1.0, pomega=2.14) sim.add(m=1e-3, e=0.24, a=1.5, omega=1.14, l=2.1) sim.add(a=-2.7, e=1.4, f=-1.5,omega=-0.7) # hyperbolic orbit %matplotlib inline fig = rebound.OrbitPlot(sim) fig = rebound.OrbitPlot(sim, unitlabel="[AU]", color=True, periastron=True) fig = rebound.OrbitPlot(sim, unitlabel="[AU]", periastron=True, lw=2) from IPython.display import display, clear_output import matplotlib.pyplot as plt sim.move_to_com() for i in range(3): sim.integrate(sim.t+0.31) fig = rebound.OrbitPlot(sim,color=True,unitlabel="[AU]",lim=2.) display(fig) plt.close(fig) clear_output(wait=True) fig = rebound.OrbitPlot(sim,slices=True,color=True,unitlabel="[AU]",lim=2.,limz=0.36) sim = rebound.Simulation() sim.add(m=1.) #Star A sim.add(m=1., a=1.) #Star B sim.add(a=2.) #Planet ABb sim.add(a=0.2, primary=sim.particles[1]) #Bb, sim.move_to_com() fig = rebound.OrbitPlot(sim) import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(8,8)) ps = sim.particles # manually set plot boundaries lim = 2.3 ax.set_xlim([-lim, lim]) ax.set_ylim([-lim, lim]) # plot the stars and planets with separate symbols linewidth=1. for star in ps[:2]: ax.scatter(star.x, star.y, s=35*linewidth, marker='*', facecolor='black', zorder=3) for planet in ps[2:]: ax.scatter(planet.x, planet.y, s=10*linewidth, facecolor='black', zorder=3) # Now individually plot orbit trails with appropriate orbit from rebound.plotting import fading_line ABb = ps[2] # circumbinary planet, use default jacobi coordinates o = np.array(ABb.sample_orbit()) lc = fading_line(o[:,0], o[:,1], linewidth=linewidth) ax.add_collection(lc) Bb = ps[3] # planet in orbit around B, assign it as primary o = np.array(Bb.sample_orbit(primary=ps[1])) lc = fading_line(o[:,0], o[:,1], linewidth=linewidth) ax.add_collection(lc) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: To plot these initial orbits in the $xy$-plane, we can simply call the OrbitPlot function and give it the simulation as an argument. Step2: Note that the OrbitPlot function chooses reasonable limits for the axes for you. There are various ways to customize the plot. Have a look at the arguments used in the following examples, which are pretty much self-explanatory (if in doubt, check the documentation!). Step3: Note that all orbits are draw with respect to the center of mass of all interior particles. This coordinate system is known as Jacobi coordinates. It requires that the particles are sorted by ascending semi-major axis within the REBOUND simulation's particle array. Step4: To get an idea of the three dimensional distribution of orbits, use the slices=True option. This will plot the orbits three times, from different perspectives. You can adjust the dimensions in the z direction using the limz keyword. Step5: Advanced Plotting Step6: Circumbinary Planet ABb is plotted correctly in orbit around the center of mass of A and B, but Bb's Jacobi orbit is also around the center of mass of the interior particles, which corresponds to a hyperbolic orbit. It's important to note that while the plot looks incorrect, IAS15 would correctly integrate their motions.
14,853
<ASSISTANT_TASK:> Python Code: import graphlab sales = graphlab.SFrame('kc_house_data.gl/') import numpy as np # note this allows us to refer to numpy as np instead def get_numpy_data(data_sframe, features, output): data_sframe['constant'] = 1 # this is how you add a constant column to an SFrame # add the column 'constant' to the front of the features list so that we can extract it along with the others: features = ['constant'] + features # this is how you combine two lists # select the columns of data_SFrame given by the features list into the SFrame features_sframe (now including constant): features_sframe = data_sframe[features] # the following line will convert the features_SFrame into a numpy matrix: feature_matrix = features_sframe.to_numpy() # assign the column of data_sframe associated with the output to the SArray output_sarray output_sarray = data_sframe[output] # the following will convert the SArray into a numpy array by first converting it to a list output_array = output_sarray.to_numpy() return(feature_matrix, output_array) def predict_output(feature_matrix, weights): # assume feature_matrix is a numpy matrix containing the features as columns and weights is a corresponding numpy array # create the predictions vector by using np.dot() predictions = [] for col in range(feature_matrix.shape[0]): predictions.append(np.dot(feature_matrix[col,], weights)) return(predictions) def feature_derivative_ridge(errors, feature, weight, l2_penalty, feature_is_constant): # If feature_is_constant is True, derivative is twice the dot product of errors and feature if feature_is_constant: derivative = 2 * np.dot(errors, feature) # Otherwise, derivative is twice the dot product plus 2*l2_penalty*weight else: derivative = 2 * np.dot(errors, feature) + 2 * l2_penalty * weight return derivative (example_features, example_output) = get_numpy_data(sales, ['sqft_living'], 'price') my_weights = np.array([1., 10.]) test_predictions = predict_output(example_features, my_weights) errors = test_predictions - example_output # prediction errors # next two lines should print the same values print feature_derivative_ridge(errors, example_features[:,1], my_weights[1], 1, False) print np.sum(errors*example_features[:,1])*2+20. print '' # next two lines should print the same values print feature_derivative_ridge(errors, example_features[:,0], my_weights[0], 1, True) print np.sum(errors)*2. def ridge_regression_gradient_descent(feature_matrix, output, initial_weights, step_size, l2_penalty, max_iterations=100): weights = np.array(initial_weights) # make sure it's a numpy array #while not reached maximum number of iterations: for _iter in range(max_iterations): # compute the predictions based on feature_matrix and weights using your predict_output() function predictions = predict_output(feature_matrix, weights) # compute the errors as predictions - output errors = predictions - output for i in xrange(len(weights)): # loop over each weight # Recall that feature_matrix[:,i] is the feature column associated with weights[i] # compute the derivative for weight[i]. #(Remember: when i=0, you are computing the derivative of the constant!) derivative = feature_derivative_ridge(errors, feature_matrix[:,i], weights[i], l2_penalty, bool(i == 0)) # subtract the step size times the derivative from the current weight weights[i] -= step_size * derivative return weights simple_features = ['sqft_living'] my_output = 'price' train_data,test_data = sales.random_split(.8,seed=0) (simple_feature_matrix, output) = get_numpy_data(train_data, simple_features, my_output) (simple_test_feature_matrix, test_output) = get_numpy_data(test_data, simple_features, my_output) initial_weights = np.array([0., 0.]) step_size = 1e-12 max_iterations=1000 simple_weights_0_penalty = ridge_regression_gradient_descent(simple_feature_matrix, output, initial_weights, step_size, 0, max_iterations) simple_weights_high_penalty = ridge_regression_gradient_descent(simple_feature_matrix, output, initial_weights, step_size, 1e11, max_iterations) import matplotlib.pyplot as plt %matplotlib inline plt.plot(simple_feature_matrix,output,'k.', simple_feature_matrix,predict_output(simple_feature_matrix, simple_weights_0_penalty),'b-', simple_feature_matrix,predict_output(simple_feature_matrix, simple_weights_high_penalty),'r-') predictions_1 = predict_output(simple_test_feature_matrix, initial_weights) residuals_1 = [(predictions_1[i] - test_output[i]) ** 2 for i in range(len(predictions_1))] print sum(residuals_1) predictions_2 = predict_output(simple_test_feature_matrix, simple_weights_0_penalty) residuals_2 = [(predictions_2[i] - test_output[i]) ** 2 for i in range(len(predictions_2))] print sum(residuals_2) predictions_3 = predict_output(simple_test_feature_matrix, simple_weights_high_penalty) residuals_3 = [(predictions_3[i] - test_output[i]) ** 2 for i in range(len(predictions_3))] print sum(residuals_3) simple_weights_0_penalty simple_weights_high_penalty model_features = ['sqft_living', 'sqft_living15'] # sqft_living15 is the average squarefeet for the nearest 15 neighbors. my_output = 'price' (feature_matrix, train_output) = get_numpy_data(train_data, model_features, my_output) (test_feature_matrix, test_output) = get_numpy_data(test_data, model_features, my_output) initial_weights = np.array([0.0,0.0,0.0]) step_size = 1e-12 max_iterations = 1000 multiple_weights_0_penalty = ridge_regression_gradient_descent(feature_matrix, train_output, initial_weights, step_size, 0, max_iterations) multiple_weights_high_penalty = ridge_regression_gradient_descent(feature_matrix, train_output, initial_weights, step_size, 1e11, max_iterations) predictions_4 = predict_output(test_feature_matrix, initial_weights) residuals_4 = [(predictions_4[i] - test_output[i]) ** 2 for i in range(len(predictions_4))] print sum(residuals_4) predictions_5 = predict_output(test_feature_matrix, multiple_weights_0_penalty) residuals_5 = [(predictions_5[i] - test_output[i]) ** 2 for i in range(len(predictions_5))] print sum(residuals_5) predictions_6 = predict_output(test_feature_matrix, multiple_weights_high_penalty) residuals_6 = [(predictions_6[i] - test_output[i]) ** 2 for i in range(len(predictions_6))] print sum(residuals_6) first = test_data[0] a, b, c= multiple_weights_0_penalty p_0 = a + b * first['sqft_living'] + c * first['sqft_living15'] print p_0 d, e, f = multiple_weights_high_penalty p_high = d + e * first['sqft_living'] + f * first['sqft_living15'] print p_high first['price'] multiple_weights_0_penalty multiple_weights_high_penalty <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load in house sales data Step2: If we want to do any "feature engineering" like creating new features or adjusting existing ones we should do this directly using the SFrames as seen in the first notebook of Week 2. For this notebook, however, we will work with the existing features. Step3: Also, copy and paste the predict_output() function to compute the predictions for an entire matrix of features given the matrix and the weights Step4: Computing the Derivative Step5: To test your feature derivartive run the following Step6: Gradient Descent Step7: Visualizing effect of L2 penalty Step8: Let us split the dataset into training set and test set. Make sure to use seed=0 Step9: In this part, we will only use 'sqft_living' to predict 'price'. Use the get_numpy_data function to get a Numpy versions of your data with only this feature, for both the train_data and the test_data. Step10: Let's set the parameters for our optimization Step11: First, let's consider no regularization. Set the l2_penalty to 0.0 and run your ridge regression algorithm to learn the weights of your model. Call your weights Step12: Next, let's consider high regularization. Set the l2_penalty to 1e11 and run your ridge regression algorithm to learn the weights of your model. Call your weights Step13: This code will plot the two learned models. (The blue line is for the model with no regularization and the red line is for the one with high regularization.) Step14: Compute the RSS on the TEST data for the following three sets of weights Step15: QUIZ QUESTIONS Step16: Running a multiple regression with L2 penalty Step17: We need to re-inialize the weights, since we have one extra parameter. Let us also set the step size and maximum number of iterations. Step18: First, let's consider no regularization. Set the l2_penalty to 0.0 and run your ridge regression algorithm to learn the weights of your model. Call your weights Step19: Next, let's consider high regularization. Set the l2_penalty to 1e11 and run your ridge regression algorithm to learn the weights of your model. Call your weights Step20: Compute the RSS on the TEST data for the following three sets of weights Step21: Predict the house price for the 1st house in the test set using the no regularization and high regularization models. (Remember that python starts indexing from 0.) How far is the prediction from the actual price? Which weights perform best for the 1st house? Step22: QUIZ QUESTIONS
14,854
<ASSISTANT_TASK:> Python Code: plot = ChristmasPlot('Fake', n_dataset=3, methods=['yass', 'kilosort', 'spyking circus'], logit_y=True, eval_type="Accuracy") for method in plot.methods: for i in range(plot.n_dataset): x = (np.random.rand(30) - 0.5) * 10 y = 1 / (1 + np.exp(-x + np.random.rand())) plot.add_metric(x, y, dataset_number=i, method_name=method) plot.generate_snr_metric_plot(save_to=None) plot.generate_curve_plots(save_to=None) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Generate SNR vs Metric Step2: Generate the curve plots
14,855
<ASSISTANT_TASK:> Python Code: '\\'.join(['folder1','folder2','folder3','file.png']) # join all elements using the escaped (literal) '\' string import os # contains many file path related functions print(os.path.join('folder1','folder2','folder3','file.png')) # takes string arguments and returns OS-appropriate path print(os.sep) # show the seperator currently being used. # Start at current directory defaultpath = os.path.expanduser('~/Dropbox/learn/books/Python/AutomateTheBoringStuffWithPython/') os.chdir(defaultpath) print(os.getcwd()) # Change path to /files folder os.chdir('files') # changes current working directory, if not currently in it (to /files) print(os.getcwd()) # prints the current working directory (should be /files) # Reset back to notebook directory os.chdir(defaultpath) print(os.path.abspath('files')) # print absolute path of the files subdirectory print(os.path.isabs(os.path.abspath('files'))) # Is the absolute path to files an absolute path (True) print(os.path.relpath('../..', 'files')) # print the relative file path of a folder two folders up relative to subfolder (3 folders; ../../..) print(os.path.dirname(os.path.abspath('files'))) # outputs absolute path above 'files' print(os.path.basename('files/26645.pdf')) # outputs just 'files' # Reset back to notebook directory os.chdir(defaultpath) print(os.path.exists(os.path.abspath('files'))) # checks if 'files' exists (True) print(os.path.isfile('files')) # checks if 'files' is a file (False) print(os.path.isdir('files')) # checks if 'files' is a folder (False) A simple program to loop through a folder and find the size of all files in bytes, and the total size of the folder. import os # starting size totalSize = 0 # for the fileName in the 'files' directory for fileName in os.listdir('files'): # generate filePaths filePath = os.path.join('files',fileName) # check if filePath is a file if os.path.isfile(filePath) == True: # if True, increase totalSize by the size of fileName totalSize += os.path.getsize(filePath) # also print what the file was and the size print('%s is %d bytes.'%(filePath, os.path.getsize(filePath))) # otherwise keep looping else: continue # print the size of the folder at the end print('\n\nThe \'%s\' folder contains %s bytes in total.'%('files',str(totalSize))) # clear the folders if the exist already if os.path.exists(os.path.abspath('files/newfolder/anotherone')) == True: os.removedirs(os.path.abspath('files/newfolder/anotherone')) # clear folders if they exist # create new folders at an absolute path os.makedirs(os.path.abspath('files/newfolder/anotherone')) # create new folders # check if they exist if os.path.exists(os.path.abspath('files/newfolder/anotherone')) == True: print('\'files/newfolder/anotherone\' exists.') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: But this string only works on Windows; to create an OS insensitive path, using the os module Step2: If no explicit path is specified, Python will look for files in the current working directory. Step3: There are two kinds of file paths, relative and absolute. Step4: os.path.dirname() pulls out just the directory path component above a filepath. Step5: os.path.exists() can check if a path exists. Step7: os.path.getsize() returns the size of a file (bytes) Step8: os.makedirs() creates new directories at the location.
14,856
<ASSISTANT_TASK:> Python Code: # Example Dataset Review Entry __ = { 'beer/ABV': 7.2, 'beer/beerId': '59261', 'beer/brewerId': '67', 'beer/name': 'Sierra Nevada Torpedo Extra IPA', 'beer/style': 'India Pale Ale &#40;IPA&#41;', 'review/appearance': 1.0, 'review/aroma': 0.8, 'review/overall': 0.9, 'review/palate': 0.8, 'review/taste': 1.0, 'review/text': 'Aroma is lemon and orange citrus, reddish orange hue, flavor is very well balanced between the malt and hop. this beer is very drinkable. It is not "over the top" like some of the double ipas. The alcohol content is well contained. The finish is hoppy as one would expect for this style. An excellent beer from the folks at Sierra Nevada!', 'review/timeStruct': { 'hour': 0, 'isdst': 0, 'mday': 17, 'min': 0, 'mon': 2, 'sec': 0, 'wday': 1, 'yday': 48, 'year': 2009 }, 'review/timeUnix': 1234828800, 'user/profileName': 'Blazhock' } # import statements import unicodedata import random import calendar import math import operator A variety of helper methods to group data structures accordingto def groupby_key(data, key_str): key_map = {} for datum in data: key = datum.get(key_str) key_map[key] = key_map.setdefault(key, []) key_map[key].append(datum) return key_map def groupby_key_count(data, key_str, func=None): key_map = {} for datum in data: key = datum.get(key_str) try: key = func(key) except: key = key key_map[key] = key_map.setdefault(key, 0) + 1 return key_map def group_time_split(user_array, key, func=None): return [[groupby_key_count(time_per, key, func) for time_per in user] for user in user_array] Reservoir sampling given an iterable input and k for number of items to be sampled def reservoir_sample(iterator, k): iterator = iter(iterator) # fill the reservoir to start result = [next(iterator) for _ in range(k)] n = k for item in iterator: n += 1 s = random.randint(0, n) if s < k: result[s] = item return result Calculates the average using dictionary keys as "values" and dictionary values as "counts" def avg_from_map(keymap): count, total, a = 0, 0, None for key in keymap: if (key): count += keymap[key] total += key * keymap[key] if (count): a = total / count return a average from user tuple array def avg_from_user_array_tuple(array): out = [] for user in array: user_avg = [] for time in user: count, total, a = 0, 0, None for item in time: count += item[1] total += item[0] * item[1] if count > 0: a = total/count user_avg.append(a) out.append(user_avg) return out # Parse and read in dataset from reduced_data.txt (as produced by our parsing code) parsed_red = parse_json('data/reduced_data.txt', normalize=True) dset = [i for i in parsed_red] # parse dataset, grouping reviews by username users = groupby_key(dset,'user/profileName') user_vals = users.values() print 'number of users', len(user_vals) # split each users' group of reviews into two buckets: before and after site changes user_vals_split = [] split_timestamp = calendar.timegm(datetime(2009,5,1).timetuple()) for i , posts in enumerate(user_vals): pre = [post for post in posts if post.get('review/timeUnix') < split_timestamp] post = [post for post in posts if post.get('review/timeUnix') >= split_timestamp] # Only look at users who already contributed in the prior period if len(pre) > 0: user_vals_split.append([pre, post]) # sort reviews according to the number of reviews users contributed before user_vals_split = sorted(user_vals_split, key=lambda user: len(user[0])) print 'number of users post split', len(user_vals_split) # sample "top" 5% and "low" 95% of users users_top = user_vals_split[int(math.floor(len(user_vals_split)*0.95)):] users_low = user_vals_split[:int(math.floor(len(user_vals_split)*0.95))] # sample "random" user group to be equal to the "top" group sample_size = len(users_top) users_sampled = reservoir_sample(user_vals_split, sample_size) Plot utility to plot the users's plus minus Prints out the mean, median, and standard deviation for the plus minus def plot_diff(user_list, func=lambda x: x, plot=True): user_pre = [func(user[0]) for user in user_list] user_post = [func(user[1]) for user in user_list] np_pre = np.array(user_pre) np_post = np.array(user_post) np_pm = np_post - np_pre print "Mean p/m: ", np.mean(np_pm) print "Median p/m: ", np.median(np_pm) print "Std Dev p/m: ", np.std(np_pm) ind = np.arange(len(np_pm)) if (plot): fig, ax = plt.subplots() scatt = ax.scatter(ind, np_pm, c="grey",s=10,edgecolor='none') mean = ax.axhline(y=np.mean(np_pm),xmin=0,xmax=ind[len(ind) - 1],c="blue",linewidth=0.9, linestyle = '-', zorder=1, label='mean') median = ax.axhline(y=np.median(np_pm),xmin=0,xmax=ind[len(ind) - 1],c="red",linewidth=0.9,linestyle = '--', zorder=2, label='median') plt.legend(loc=3, ncol=2) # review counts # all users stats print 'all user review counts' plot_diff(user_vals_split, lambda x: len(x)) plt.xlabel('User ID (sorted by pre-split contributions)') plt.ylabel('review after - reviews before') plt.title('Review Count Plus-Minus') print # top users stats print 'top user review counts', len(users_top) plot_diff(users_top, lambda x: len(x), False) print # low users stats print 'low user review counts', len(users_low) plot_diff(users_low, lambda x: len(x), False) print # sampled users stats print 'sampled user review counts', len(users_sampled) plot_diff(users_sampled, lambda x: len(x), False) print # remove users who did not post reviews after the split (for rest of metrics) users_split_active = [user for user in user_vals_split if len(user[1]) > 0] users_top_active = users_split_active[int(math.floor(len(users_split_active)*0.95)):] users_low_active = users_split_active[:int(math.floor(len(users_split_active)*0.95))] users_sampled_active = reservoir_sample(users_split_active, len(users_top_active)) # average number of styles reviewed before/after change print 'all users style counts' styles_all = group_time_split(users_split_active, 'beer/style') # want number of styles styles_all = map(lambda x: [len(x[0].keys()), len(x[1].keys())], styles_all) plot_diff(styles_all) plt.xlabel('User ID (sorted by pre-split contributions)') plt.ylabel('avg beer styles after - avg beer styles before') plt.title('Average Beer Style Count Plus-Minus') print print 'top users style counts' styles_top = group_time_split(users_top_active, 'beer/style') # want number of styles styles_top = map(lambda x: [len(x[0].keys()), len(x[1].keys())], styles_top) plot_diff(styles_top, lambda x: x, False) print print 'low users style counts' styles_low = group_time_split(users_low_active, 'beer/style') # want number of styles styles_low = map(lambda x: [len(x[0].keys()), len(x[1].keys())], styles_low) plot_diff(styles_low, lambda x: x, False) print print 'sample users style counts' styles_samp = group_time_split(users_sampled_active, 'beer/style') # want number of styles styles_samp = map(lambda x: [len(x[0].keys()), len(x[1].keys())], styles_samp) plot_diff(styles_samp, lambda x: x, False) print # average overall ratings before/after change print 'all users rating avg' rates_all = group_time_split(users_split_active, 'review/overall', lambda x: float(x)) rates_all = map(lambda x: [[(rating, x[0][rating]) for rating in x[0].keys()], [(rating, x[1][rating]) for rating in x[1].keys()]], rates_all) avg_rates = avg_from_user_array_tuple(rates_all) plot_diff(avg_rates) plt.xlabel('User ID (sorted by pre-split contributions)') plt.ylabel('avg overall rating after - avg overall rating before') plt.title('Average Overall Rating Plus-Minus (Max Rating = 1)') print print 'top users rating avg' rates_top = group_time_split(users_top_active, 'review/overall', lambda x: float(x)) rates_top = map(lambda x: [[(rating, x[0][rating]) for rating in x[0].keys()], [(rating, x[1][rating]) for rating in x[1].keys()]], rates_top) avg_rates = avg_from_user_array_tuple(rates_top) plot_diff(avg_rates, lambda x: x, False) print print 'low users rating avg' rates_low = group_time_split(users_low_active, 'review/overall', lambda x: float(x)) rates_low = map(lambda x: [[(rating, x[0][rating]) for rating in x[0].keys()], [(rating, x[1][rating]) for rating in x[1].keys()]], rates_low) avg_rates = avg_from_user_array_tuple(rates_low) plot_diff(avg_rates, lambda x: x, False) print print 'sampled users rating avg' rates_samp = group_time_split(users_sampled_active, 'review/overall', lambda x: float(x)) rates_samp = map(lambda x: [[(rating, x[0][rating]) for rating in x[0].keys()], [(rating, x[1][rating]) for rating in x[1].keys()]], rates_samp) avg_rates = avg_from_user_array_tuple(rates_samp) styles_plot = plot_diff(avg_rates, lambda x: x, False) print # average review lengths before/after change print 'all users review length avg' reviews_all = group_time_split(users_split_active, 'review/text', lambda x: float(x)) reviews_all = map(lambda x: [[(len(review.split()), x[0][review]) for review in x[0].keys()], [(len(review.split()), x[1][review]) for review in x[1].keys()]], reviews_all) avg_review_len = avg_from_user_array_tuple(reviews_all) styles_plot = plot_diff(avg_review_len) plt.xlabel('User ID (sorted by pre-split contributions)') plt.ylabel('avg review length after - avg review length before') plt.title('Average Review Length Plus-Minus') print print 'top users review length avg' reviews_top = group_time_split(users_top_active, 'review/text', lambda x: float(x)) reviews_top = map(lambda x: [[(len(review.split()), x[0][review]) for review in x[0].keys()], [(len(review.split()), x[1][review]) for review in x[1].keys()]], reviews_top) avg_review_len = avg_from_user_array_tuple(reviews_top) styles_plot = plot_diff(avg_review_len, lambda x: x, False) print print 'low users review length avg' reviews_low = group_time_split(users_low_active, 'review/text', lambda x: float(x)) reviews_low = map(lambda x: [[(len(review.split()), x[0][review]) for review in x[0].keys()], [(len(review.split()), x[1][review]) for review in x[1].keys()]], reviews_low) avg_review_len = avg_from_user_array_tuple(reviews_low) styles_plot = plot_diff(avg_review_len, lambda x: x, False) print print 'sampled users review length avg' reviews_samp = group_time_split(users_sampled_active, 'review/text', lambda x: float(x)) reviews_samp = map(lambda x: [[(len(review.split()), x[0][review]) for review in x[0].keys()], [(len(review.split()), x[1][review]) for review in x[1].keys()]], reviews_samp) avg_review_len = avg_from_user_array_tuple(reviews_samp) styles_plot = plot_diff(avg_review_len, lambda x: x, False) print # build feature vectors x, y_after, y_diff = [], [], [] for user in user_vals_split: pre_char = user[0] style_map = groupby_key_count(pre_char, 'beer/style') rating_map = groupby_key_count(pre_char, 'review/overall') review_map = groupby_key_count(pre_char, 'review/text', lambda x : len(x.split())) total_count = len(pre_char) style_count = len(style_map.keys()) avg_rating = avg_from_map(rating_map) rating_count = len(rating_map.keys()) avg_review = avg_from_map(review_map) review_count = len(review_map.keys()) # throw away points that don't have rating / review if (avg_rating is not None and avg_review is not None): x.append([total_count, style_count, avg_rating, rating_count, avg_review, review_count]) y_after.append(len(user[1])) y_diff.append(len(user[1])-len(user[0])) data_pool = zip(x,y_diff) def balance_pool(pool): Given a pool of year-key formatted unbalanced outcome data, return a balanced set where positive outcomes have equal number of occurances to negative outcomes The larger set is randomly sampled to reduce its size by using reservoir_sample newpool = [] neg = [] pos = [] for user in pool: if user[-1] < 0: neg.append(user) else: pos.append(user) minlen = min(len(pos), len(neg)) for elem in reservoir_sample(neg, minlen): newpool.append(elem) for elem in reservoir_sample(pos, minlen): newpool.append(elem) return newpool def create_train_test(pool, test, train): Split the data pool created in create_data_pool randomly into a 80/20 split between training data and testing data Shuffles all the years and randomly splits 80/20 between training and test Should only be ran once to randomly split train/test data as it will return different results between runs random.shuffle(pool) ind = int(len(pool) * 0.8) train += pool[:ind] test += pool[ind:] # calculate pearson correlation coefficient for each variable # use to predict plus-minus and actual number of reviews after import scipy.stats np_x = np.array(x) np_y_after = np.array(y_after) np_y_diff = np.array(y_diff) Index to Pre-Split Feature Mapping 0 - total number of reviews 1 - number of styles reviewed 2 - average overall rating 3 - number of distinct ratings 4 - average review length 5 - number of distinct review lengths print "Pearson Correlation Coefficients Against Post-Split Number of Reviews" for i in xrange(len(np_x[0])): print "pearson for char", i, ":", scipy.stats.pearsonr(np_x[:,i], np_y_after) print print "Pearson Correlation Coefficients Against Number of Reviews Plus-Minus" for i in xrange(len(np_x[0])): print "Difference -- pearson for char", i, ":", scipy.stats.pearsonr(np_x[:,i], np_y_diff) slope, intercept, r_value, p_value, std_err= scipy.stats.linregress(np_x[:,0], np_y_after) print "r-squared:", r_value**2 fit = np.polyfit(np_x[:,0],np_y_after,1) fit_fn = np.poly1d(fit) _ = plt.plot(np_x[:,0], np_y_after, 'b.', x, fit_fn(x), '--k') plt.ylim(0) plt.xlabel('# of Pre-Split Reviews') plt.ylabel('# of Post-Split Reviews') plt.title('Linear Regression of Pre/Post Split Review Count') _ = plt.plot(np_x[:,1], np_y_after, 'b.') plt.ylim(0) plt.xlabel('# of Pre-Split Styles Reviewed') plt.ylabel('# of Post-Split Reviews') plt.title('Correlation btwn Pre Styles Types and Post Review Count') _= plt.plot(np_x[:,2], np_y_after, 'b.') plt.ylim(0) plt.xlabel('Average Pre-Split Overall Rating of Reviews') plt.ylabel('# of Post-Split Reviews') plt.title('Correlation btwn Pre Average Rating and Post Review Count') _= plt.plot(np_x[:,4], np_y_after, 'b.') plt.ylim(0) plt.xlabel('Average Pre-Split Review Length (Word Count)') plt.ylabel('# of Post-Split Reviews') plt.title('Correlation btwn Average Review Length and Post Review Count') bal_data_pool = balance_pool(data_pool) test, train = [], [] create_train_test(bal_data_pool, test, train) train = [[user[0] for user in train], [1 if user[1] > 0 else -1 for user in train]] test = [[user[0] for user in test], [1 if user[1] > 0 else -1 for user in test]] from sklearn.preprocessing import StandardScaler from sklearn import svm, neighbors, qda, metrics, cross_validation from sklearn.pipeline import Pipeline clf = Pipeline([('Scaler', StandardScaler()), # ('Log-Reg', linear_model.LogisticRegression(penalty='l2', dual=True))]) # ('Log-Reg', linear_model.LogisticRegression(penalty='l2', dual=False))]) # ('SVC-linear', svm.SVC(kernel='linear'))]) ('SVC-rbf', svm.SVC(kernel='rbf'))]) cv = cross_validation.KFold(len(train[0]), n_folds=4, shuffle=True) scores = cross_validation.cross_val_score(clf, train[0], train[1], cv=cv) print "Cross Validation Scores:", scores print "Average Cross Validation Score:", np.average(scores) print # peforms test on selected model clf = clf.fit(train[0], train[1]) predicted = clf.predict(test[0]) print "Model Accuracy:", metrics.accuracy_score(test[1], predicted) print "Confusion Matrix" print metrics.confusion_matrix(test[1], predicted) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step5: User Level Results Step7: High-level Feature Trends Step8: Review Counts Step9: Average Number of Beer Styles Reviewed Step10: Average Overall Rating Step11: Average Review Length Step14: Explore Potential Correlation Step16: Pearson Correlation Coefficient Step17: In order to visualize this relationship, we plotted these two features and fit a linear line against them. The result of this operation is shown below. Step18: While performing the linear correlation analysis, we noticed several interesting visually-identifiable, non-linear trends when plotting the following variables against the # of post-split review count Step19: Explore Binary Classifier
14,857
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from matplotlib.pylab import rcParams rcParams['figure.figsize'] = 12, 10 import random x = np.array([i*np.pi/180 for i in range(60,300,4)]) np.random.seed(10) #Setting seed for reproducability y = np.sin(x) + np.random.normal(0,0.15,len(x)) data = pd.DataFrame(np.column_stack([x,y]),columns=['x','y']) plt.plot(data['x'],data['y'],'.') print data.shape #Import Linear Regression model from scikit-learn. from sklearn.linear_model import LinearRegression def linear_regression(data, power, models_to_plot): #initialize predictors: predictors=['x'] if power>=2: predictors.extend(['x_%d'%i for i in range(2,power+1)]) #Fit the model linreg = LinearRegression(normalize=True) linreg.fit(data[predictors],data['y']) y_pred = linreg.predict(data[predictors]) #Check if a plot is to be made for the entered power if power in models_to_plot: plt.subplot(models_to_plot[power]) plt.tight_layout() plt.plot(data['x'],y_pred) plt.plot(data['x'],data['y'],'.') plt.title('Plot for power: %d'%power) #Return the result in pre-defined format rss = sum((y_pred-data['y'])**2) ret = [rss] ret.extend([linreg.intercept_]) ret.extend(linreg.coef_) return ret #Create powers upto 15: for i in range(2,16): colname = 'x_%d'%i data[colname] = data['x']**i print data.head() #Initialize a dataframe to store the results: col = ['rss','intercept'] + ['coef_x_%d'%i for i in range(1,16)] ind = ['model_pow_%d'%i for i in range(1,16)] coef_matrix_simple = pd.DataFrame(index=ind, columns=col) #Define the powers for which a plot is required: models_to_plot = {1:231,3:232,6:233,9:234,12:235,15:236} #Iterate through all powers and assimilate results for i in range(1,16): coef_matrix_simple.iloc[i-1,0:i+2] = linear_regression(data, power=i, models_to_plot=models_to_plot) #Set the display format to be scientific for ease of analysis pd.options.display.float_format = '{:,.2g}'.format coef_matrix_simple from sklearn.linear_model import Ridge def ridge_regression(data, predictors, alpha, models_to_plot={}): #Fit the model ridgereg = Ridge(alpha=alpha,normalize=True) ridgereg.fit(data[predictors],data['y']) y_pred = ridgereg.predict(data[predictors]) #Check if a plot is to be made for the entered alpha if alpha in models_to_plot: plt.subplot(models_to_plot[alpha]) plt.tight_layout() plt.plot(data['x'],y_pred) plt.plot(data['x'],data['y'],'.') plt.title('Plot for alpha: %.3g'%alpha) #Return the result in pre-defined format rss = sum((y_pred-data['y'])**2) ret = [rss] ret.extend([ridgereg.intercept_]) ret.extend(ridgereg.coef_) return ret # predictors=['x'] # predictors.extend(['x_%d'%i for i in range(2,16)]) # alp = 1e5 # print ridge_regression(data, predictors, alpha=alp, models_to_plot={alp:111}) predictors=['x'] predictors.extend(['x_%d'%i for i in range(2,16)]) alpha_ridge = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20] col = ['rss','intercept'] + ['coef_x_%d'%i for i in range(1,16)] ind = ['alpha_%.2g'%alpha_ridge[i] for i in range(0,10)] coef_matrix_ridge = pd.DataFrame(index=ind, columns=col) models_to_plot = {1e-15:231, 1e-10:232, 1e-4:233, 1e-3:234, 1e-2:235, 5:236} for i in range(10): coef_matrix_ridge.iloc[i,] = ridge_regression(data, predictors, alpha_ridge[i], models_to_plot) #Set the display format to be scientific for ease of analysis pd.options.display.float_format = '{:,.2g}'.format coef_matrix_ridge coef_matrix_ridge.apply(lambda x: sum(x.values==0),axis=1) from sklearn.linear_model import Lasso def lasso_regression(data, predictors, alpha, models_to_plot={}): #Fit the model lassoreg = Lasso(alpha=alpha,normalize=True, max_iter=1e6) lassoreg.fit(data[predictors],data['y']) y_pred = lassoreg.predict(data[predictors]) #Check if a plot is to be made for the entered alpha if alpha in models_to_plot: plt.subplot(models_to_plot[alpha]) plt.tight_layout() plt.plot(data['x'],y_pred) plt.plot(data['x'],data['y'],'.') plt.title('Plot for alpha: %.3g'%alpha) #Return the result in pre-defined format rss = sum((y_pred-data['y'])**2) ret = [rss] ret.extend([lassoreg.intercept_]) ret.extend(lassoreg.coef_) return ret predictors=['x'] predictors.extend(['x_%d'%i for i in range(2,16)]) alpha_lasso = [1e-15, 1e-10, 1e-8, 1e-5,1e-4, 1e-3,1e-2, 1, 5, 10] col = ['rss','intercept'] + ['coef_x_%d'%i for i in range(1,16)] ind = ['alpha_%.2g'%alpha_lasso[i] for i in range(0,10)] coef_matrix_lasso = pd.DataFrame(index=ind, columns=col) models_to_plot = {1e-10:231, 1e-5:232,1e-4:233, 1e-3:234, 1e-2:235, 1:236} for i in range(10): coef_matrix_lasso.iloc[i,] = lasso_regression(data, predictors, alpha_lasso[i], models_to_plot) #Set the display format to be scientific for ease of analysis pd.options.display.float_format = '{:,.2g}'.format coef_matrix_lasso coef_matrix_lasso.apply(lambda x: sum(x.values==0),axis=1) data.corr() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Creating the data Step2: Fit simple linear regression Step3: Determining overfitting Step4: Fit a Linear regression model on the 15 powers Step5: Though RSS is going down, but the coefficients are increasing in magnitude. Step6: Lasso Modeling Step7: Check correlation
14,858
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import matplotlib.pyplot as plt import numpy as np import tensorflow as tf import tensorflow_datasets as tfds from tensorflow.keras import layers (train_ds, val_ds, test_ds), metadata = tfds.load( 'tf_flowers', split=['train[:80%]', 'train[80%:90%]', 'train[90%:]'], with_info=True, as_supervised=True, ) num_classes = metadata.features['label'].num_classes print(num_classes) get_label_name = metadata.features['label'].int2str image, label = next(iter(train_ds)) _ = plt.imshow(image) _ = plt.title(get_label_name(label)) IMG_SIZE = 180 resize_and_rescale = tf.keras.Sequential([ layers.Resizing(IMG_SIZE, IMG_SIZE), layers.Rescaling(1./255) ]) result = resize_and_rescale(image) _ = plt.imshow(result) print("Min and max pixel values:", result.numpy().min(), result.numpy().max()) data_augmentation = tf.keras.Sequential([ layers.RandomFlip("horizontal_and_vertical"), layers.RandomRotation(0.2), ]) # Add the image to a batch. image = tf.cast(tf.expand_dims(image, 0), tf.float32) plt.figure(figsize=(10, 10)) for i in range(9): augmented_image = data_augmentation(image) ax = plt.subplot(3, 3, i + 1) plt.imshow(augmented_image[0]) plt.axis("off") model = tf.keras.Sequential([ # Add the preprocessing layers you created earlier. resize_and_rescale, data_augmentation, layers.Conv2D(16, 3, padding='same', activation='relu'), layers.MaxPooling2D(), # Rest of your model. ]) aug_ds = train_ds.map( lambda x, y: (resize_and_rescale(x, training=True), y)) batch_size = 32 AUTOTUNE = tf.data.AUTOTUNE def prepare(ds, shuffle=False, augment=False): # Resize and rescale all datasets. ds = ds.map(lambda x, y: (resize_and_rescale(x), y), num_parallel_calls=AUTOTUNE) if shuffle: ds = ds.shuffle(1000) # Batch all datasets. ds = ds.batch(batch_size) # Use data augmentation only on the training set. if augment: ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE) # Use buffered prefetching on all datasets. return ds.prefetch(buffer_size=AUTOTUNE) train_ds = prepare(train_ds, shuffle=True, augment=True) val_ds = prepare(val_ds) test_ds = prepare(test_ds) model = tf.keras.Sequential([ layers.Conv2D(16, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Conv2D(32, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Conv2D(64, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Flatten(), layers.Dense(128, activation='relu'), layers.Dense(num_classes) ]) model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) epochs=5 history = model.fit( train_ds, validation_data=val_ds, epochs=epochs ) loss, acc = model.evaluate(test_ds) print("Accuracy", acc) def random_invert_img(x, p=0.5): if tf.random.uniform([]) < p: x = (255-x) else: x return x def random_invert(factor=0.5): return layers.Lambda(lambda x: random_invert_img(x, factor)) random_invert = random_invert() plt.figure(figsize=(10, 10)) for i in range(9): augmented_image = random_invert(image) ax = plt.subplot(3, 3, i + 1) plt.imshow(augmented_image[0].numpy().astype("uint8")) plt.axis("off") class RandomInvert(layers.Layer): def __init__(self, factor=0.5, **kwargs): super().__init__(**kwargs) self.factor = factor def call(self, x): return random_invert_img(x) _ = plt.imshow(RandomInvert()(image)[0]) (train_ds, val_ds, test_ds), metadata = tfds.load( 'tf_flowers', split=['train[:80%]', 'train[80%:90%]', 'train[90%:]'], with_info=True, as_supervised=True, ) image, label = next(iter(train_ds)) _ = plt.imshow(image) _ = plt.title(get_label_name(label)) def visualize(original, augmented): fig = plt.figure() plt.subplot(1,2,1) plt.title('Original image') plt.imshow(original) plt.subplot(1,2,2) plt.title('Augmented image') plt.imshow(augmented) flipped = tf.image.flip_left_right(image) visualize(image, flipped) grayscaled = tf.image.rgb_to_grayscale(image) visualize(image, tf.squeeze(grayscaled)) _ = plt.colorbar() saturated = tf.image.adjust_saturation(image, 3) visualize(image, saturated) bright = tf.image.adjust_brightness(image, 0.4) visualize(image, bright) cropped = tf.image.central_crop(image, central_fraction=0.5) visualize(image, cropped) rotated = tf.image.rot90(image) visualize(image, rotated) for i in range(3): seed = (i, 0) # tuple of size (2,) stateless_random_brightness = tf.image.stateless_random_brightness( image, max_delta=0.95, seed=seed) visualize(image, stateless_random_brightness) for i in range(3): seed = (i, 0) # tuple of size (2,) stateless_random_contrast = tf.image.stateless_random_contrast( image, lower=0.1, upper=0.9, seed=seed) visualize(image, stateless_random_contrast) for i in range(3): seed = (i, 0) # tuple of size (2,) stateless_random_crop = tf.image.stateless_random_crop( image, size=[210, 300, 3], seed=seed) visualize(image, stateless_random_crop) (train_datasets, val_ds, test_ds), metadata = tfds.load( 'tf_flowers', split=['train[:80%]', 'train[80%:90%]', 'train[90%:]'], with_info=True, as_supervised=True, ) def resize_and_rescale(image, label): image = tf.cast(image, tf.float32) image = tf.image.resize(image, [IMG_SIZE, IMG_SIZE]) image = (image / 255.0) return image, label def augment(image_label, seed): image, label = image_label image, label = resize_and_rescale(image, label) image = tf.image.resize_with_crop_or_pad(image, IMG_SIZE + 6, IMG_SIZE + 6) # Make a new seed. new_seed = tf.random.experimental.stateless_split(seed, num=1)[0, :] # Random crop back to the original size. image = tf.image.stateless_random_crop( image, size=[IMG_SIZE, IMG_SIZE, 3], seed=seed) # Random brightness. image = tf.image.stateless_random_brightness( image, max_delta=0.5, seed=new_seed) image = tf.clip_by_value(image, 0, 1) return image, label # Create a `Counter` object and `Dataset.zip` it together with the training set. counter = tf.data.experimental.Counter() train_ds = tf.data.Dataset.zip((train_datasets, (counter, counter))) train_ds = ( train_ds .shuffle(1000) .map(augment, num_parallel_calls=AUTOTUNE) .batch(batch_size) .prefetch(AUTOTUNE) ) val_ds = ( val_ds .map(resize_and_rescale, num_parallel_calls=AUTOTUNE) .batch(batch_size) .prefetch(AUTOTUNE) ) test_ds = ( test_ds .map(resize_and_rescale, num_parallel_calls=AUTOTUNE) .batch(batch_size) .prefetch(AUTOTUNE) ) # Create a generator. rng = tf.random.Generator.from_seed(123, alg='philox') # Create a wrapper function for updating seeds. def f(x, y): seed = rng.make_seeds(2)[0] image, label = augment((x, y), seed) return image, label train_ds = ( train_datasets .shuffle(1000) .map(f, num_parallel_calls=AUTOTUNE) .batch(batch_size) .prefetch(AUTOTUNE) ) val_ds = ( val_ds .map(resize_and_rescale, num_parallel_calls=AUTOTUNE) .batch(batch_size) .prefetch(AUTOTUNE) ) test_ds = ( test_ds .map(resize_and_rescale, num_parallel_calls=AUTOTUNE) .batch(batch_size) .prefetch(AUTOTUNE) ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: データ増強 Step2: データセットをダウンロードする Step3: 花のデータセットには 5 つのクラスがあります。 Step4: データセットから画像を取得し、それを使用してデータ増強を実演してみましょう。 Step5: Keras 前処理レイヤーを使用する Step6: 注意 Step7: ピクセルが [0, 1] の範囲にあることを確認します。 Step8: データ増強 Step9: データ拡張には、tf.keras.layers.RandomContrast、tf.keras.layers.RandomCrop、tf.keras.layers.RandomZoom など、様々な前処理レイヤーを使用できます。 Step10: この場合、2 つの重要なポイントがあります。 Step11: このアプローチでは、Dataset.map を使用して、拡張画像のバッチを生成するデータセットを作成します。この場合は、 Step12: モデルをトレーニングする Step13: tf.keras.optimizers.Adam オプティマイザとtf.keras.losses.SparseCategoricalCrossentropy 損失関数を選択します。各トレーニングエポックのトレーニングと検証の精度を表示するには、Model.compile に metrics 引数を渡します。 Step14: 数エポック、トレーニングします。 Step15: カスタムデータ増強 Step16: 次に、サブクラス化してカスタムレイヤーを実装します。 Step17: どちらのレイヤーも、上記 1 と 2 のオプションで説明した使用が可能です。 Step18: 作業に必要な画像を取得します。 Step19: 以下の関数を使用して元の画像と拡張画像を並べて視覚化し、比較してみましょう。 Step20: データ増強 Step21: 画像をグレースケールにする Step22: 画像の彩度を処理する Step23: 画像の明るさを変更する Step24: 画像を中央でトリミングする Step25: 画像を回転させる Step26: ランダム変換 Step27: 画像のコントラストをランダムに変更する Step28: ランダムに画像をトリミングする Step29: データ増強をデータセットに適用する Step30: 次に、画像のサイズ変更と再スケーリングのためのユーティリティ関数を定義します。この関数は、データセット内の画像のサイズとスケールを統一するために使用されます。 Step31: また、画像にランダム変換を適用できる augment 関数も定義します。この関数は、次のステップのデータセットで使用されます。 Step32: オプション 1 Step33: augment 関数をトレーニングデータセットにマッピングします。 Step34: オプション 2 Step35: ラッパー関数 f をトレーニングデータセットにマッピングし、resize_and_rescale 関数を検証セットとテストセットにマッピングします。
14,859
<ASSISTANT_TASK:> Python Code: # Imports import numpy as np import matplotlib from matplotlib import pyplot as plt %matplotlib inline ## use `%matplotlib notebook` for interactive figures # plt.style.use('ggplot') import sklearn import tigramite from tigramite import data_processing as pp from tigramite.toymodels import structural_causal_processes as toys from tigramite import plotting as tp from tigramite.pcmci import PCMCI from tigramite.independence_tests import ParCorr, GPDC, CMIknn, CMIsymb seed = 7 auto_coeff = 0.95 coeff = 0.4 T = 500 def lin(x): return x links ={0: [((0, -1), auto_coeff, lin), ((1, -1), coeff, lin) ], 1: [((1, -1), auto_coeff, lin), ], 2: [((2, -1), auto_coeff, lin), ((3, 0), -coeff, lin), ], 3: [((3, -1), auto_coeff, lin), ((1, -2), coeff, lin), ], 4: [((4, -1), auto_coeff, lin), ((3, 0), coeff, lin), ], 5: [((5, -1), 0.5*auto_coeff, lin), ((6, 0), coeff, lin), ], 6: [((6, -1), 0.5*auto_coeff, lin), ((5, -1), -coeff, lin), ], 7: [((7, -1), auto_coeff, lin), ((8, 0), -coeff, lin), ], 8: [], } # Specify dynamical noise term distributions, here unit variance Gaussians random_state = np.random.RandomState(seed) noises = noises = [random_state.randn for j in links.keys()] data, nonstationarity_indicator = toys.structural_causal_process( links=links, T=T, noises=noises, seed=seed) T, N = data.shape # Initialize dataframe object, specify variable names var_names = [r'$X^{%d}$' % j for j in range(N) ] dataframe = pp.DataFrame(data, var_names=var_names) true_graph = toys.links_to_graph(links=links) tp.plot_timeseries(dataframe, figsize=(15, 5)); plt.show() parcorr = ParCorr(significance='analytic') pcmci = PCMCI( dataframe=dataframe, cond_ind_test=parcorr, verbosity=1) correlations = pcmci.run_bivci(tau_max=10, val_only=True)['val_matrix'] lag_func_matrix = tp.plot_lagfuncs(val_matrix=correlations, setup_args={'var_names':var_names, 'figsize':(15, 10), 'x_base':5, 'y_base':.5}) scatter_lags = np.argmax(np.abs(correlations), axis=2) tp.plot_scatterplots(dataframe=dataframe, setup_args={'figsize':(15, 10)}, add_scatterplot_args={'scatter_lags':scatter_lags}); plt.show() tau_max = 3 pc_alpha = 0.01 pcmci.verbosity = 2 results = pcmci.run_pcmciplus(tau_min=0, tau_max=tau_max, pc_alpha=pc_alpha) print("Graph") print (results['graph']) print("Adjacency MCI partial correlations") print (results['val_matrix'].round(2)) print("Adjacency p-values") print (results['p_matrix'].round(3)) q_matrix = pcmci.get_corrected_pvalues(p_matrix=results['p_matrix'], fdr_method='fdr_bh', exclude_contemporaneous=False) tp.plot_graph( val_matrix=results['val_matrix'], graph=results['graph'], var_names=var_names, link_colorbar_label='cross-MCI (edges)', node_colorbar_label='auto-MCI (nodes)', ); plt.show() # Plot time series graph tp.plot_time_series_graph( figsize=(8, 8), node_size=0.05, val_matrix=results['val_matrix'], graph=results['graph'], var_names=var_names, link_colorbar_label='MCI', ); plt.show() tau_max = 3 alpha_level = 0.001 pcmci.verbosity = 0 results = pcmci.run_pcmci(tau_min=0, tau_max=tau_max, pc_alpha=None, alpha_level=alpha_level) # Mark false links as grey true_graph = toys.links_to_graph(links=links, tau_max=tau_max) link_attribute = np.ones(results['val_matrix'].shape, dtype = 'object') link_attribute[true_graph==""] = 'spurious' link_attribute[true_graph!=""] = '' # Symmetrize contemp. link attribute for (i,j) in zip(*np.where(true_graph[:,:,0]!="")): link_attribute[i,j,0] = link_attribute[j,i,0] = '' tp.plot_time_series_graph( figsize=(8, 8), node_size=0.05, val_matrix=results['val_matrix'], graph=results['graph'], link_attribute=link_attribute, var_names=var_names, ) plt.show() tau_max = 3 pcmci.verbosity = 0 results = pcmci.run_pcalg(tau_min=0, tau_max=tau_max, pc_alpha=0.01) tp.plot_time_series_graph( figsize=(8, 8), node_size=0.05, val_matrix=results['val_matrix'], graph=results['graph'], link_attribute=link_attribute, var_names=var_names, link_colorbar_label='PC') plt.show() data_long, nonstationarity_indicator = toys.structural_causal_process( links=links, T=100000, noises=noises, seed=seed) parcorr = ParCorr(significance='analytic') pcmci_long = PCMCI( dataframe=pp.DataFrame(data_long, var_names=var_names), cond_ind_test=parcorr, verbosity=1) tau_max = 3 pcmci_long.verbosity = 0 results = pcmci_long.run_pcalg(tau_min=0, tau_max=tau_max, pc_alpha=0.001) tp.plot_time_series_graph( figsize=(8, 8), node_size=0.05, val_matrix=results['val_matrix'], graph=results['graph'], link_attribute=link_attribute, var_names=var_names, link_colorbar_label='PC') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Structural causal processes with contemporaneous and lagged dependencies Step2: The true graph $\mathcal{G}$ here has shape (N, N, 2+1) since the maximum true time lag is tau_max=2. An entry true_graph[i,j,tau]="--&gt;" for $\tau\geq 0$ indicates a causal link $X^i_{t-\tau} \to X^j_t$, true_graph[i,j,0]="&lt;--" indicates a causal link $X^i_{t} \leftarrow X^j_t$ (only for $\tau=0$), and true_graph[i,j,tau]="" the absence of a causal link. Step3: 2. PCMCI+ Step4: Despite the high autocorrelation, it's stationary and doesn't contain missing values. Check the other tutorials for discussions of non-stationarity and missing values. Step5: Before running PCMCIplus, it's a good idea to run and plot the function run_bivci, which implements a bivariate, lagged conditional independence test (similar to bivariate Granger causality, but lag-specific). This can help to identify which maximal time lag tau_max to choose. Another option would be to plot get_lagged_dependencies, but large autocorrelation will inflate lag peaks (see https Step6: Let's do another check and use the new plot_scatterplots function to see whether the dependencies are really linear and ParCorr is the right conditional independence test. With the argument scatter_lags set to a (N, N) integer numpy array you can choose which lag to use for every pair of variables. Here we choose the lag at which the correlations above have their maximal absolute value. Of course, you might want to use a nonlinear conditional independence test to assess the lags with maximum dependency. I.e., run pcmci.get_lagged_dependencies with PCMCI initialized with a nonlinear measure (e.g., CMIknn or GPDC as introduced below). Step7: Since the dependencies peak maximally at a lag of around 3 in the lag function plot, we choose tau_max=3 for PCMCIplus. This choice may, however, stronly depend on expert knowledge of the system. Obviously, for contemporaneous causal discovery, we leave the default tau_min=0. The other main parameter is pc_alpha which sets the significance level for all tests in PCMCIplus. This is in contrast to PCMCI where pc_alpha only controls the significance tests in the condition-selection phase, not in the MCI tests. Also for PCMCIplus there is an automatic procedure (like for PCMCI) to choose the optimal value. If a list or None is passed for pc_alpha, the significance level is optimized for every graph across the given pc_alpha values using the score computed in cond_ind_test.get_model_selection_criterion(). Since PCMCIplus outputs not a DAG, but an equivalence class of DAGs, first one member is of this class is computed and then the score is computed as the average over all models fits for each variable. The score is the same for all members of the class. Step8: The output of the function print_results(results) (shown at the end on the above output) gives information on the parents for each variable and also indicates unoriented links and conflicts, which are important to report in studies. Step9: As mentioned above, p_matrix and val_matrix for PCMCIplus quantify the uncertainty and strength, respectively, only for the adjacencies in phase 2, but not for the directionality of contemporaneous links determined in phases 3 and 4. Since adjacency is a symmetric property for contemporaneous links, p_matrix and val_matrix are symmetric for tau=0, unlike the graph. We can correct the p-values by False Discovery Rate (FDR) control yielding the q_matrix. Step10: However, the important output of PCMCIplus is the graph. Step11: While the process graph is nicer to look at, the time series graph better represents the spatio-temporal dependency structure from which causal pathways can be read off. Step12: Here PCMCIplus correctly estimates the underlying causal graph regarding both the lagged and contemporaneous links and the autodependencies. Step13: False positives (grey) here appear due to indirect paths through contemporaneous parents. For example, $X^3_{t-1} \to X^2_t$ appears due to the path $X^3_{t-1} \to X^3_t \to X^2_t$ because PCMCI only removes indirect links and common drivers that come through lagged parents, not those that come through contemporaneous parents. The same holds for the false contemporaneous link $X^2_{t} - X^4_t$ due to $X^2_{t} \leftarrow X^3_t \to X^4_t$. Further, all contemporaneous links remain undirected as indicated by the lines. Step14: Still the PC algorithm fails here in multiple ways
14,860
<ASSISTANT_TASK:> Python Code: class MyClass: def __init__(self, val): self.set_val(val) def get_val(self): return self._val def set_val(self, val): if val > 0: self._val = val else: raise ValueError('val must be greater 0') myclass = MyClass(27) myclass._val class MyClass: def __init__(self, val): self.__val = val myclass = MyClass(42) myclass.__val class MySpecialClass(MyClass): def get_val(self): return self.__val msc = MySpecialClass(42) msc.get_val() class GradingError(Exception): pass class Student: def __init__(self, matrikelnr): self.matrikelnr = matrikelnr self._grade = 0 def set_grade(self, grade): if grade > 0 and grade < 6: self._grade = grade else: raise ValueError('Grade must be between 1 and 5!') def get_grade(self): if self._grade > 0: return self._grade raise GradingError('Noch nicht benotet!') anna = Student('01754645') anna.set_grade(6) anna.set_grade(2) anna.get_grade() anna._grade anna._grade = 6 class Student: def __init__(self, matrikelnr): self.matrikelnr = matrikelnr self.__grade = 0 def set_grade(self, grade): if grade > 0 and grade < 6: self.__grade = grade else: raise ValueError('Grade must be between 1 and 5!') def get_grade(self): if self.__grade > 0: return self.__grade raise GradingError('Noch nicht benotet!') grade = property(get_grade, set_grade) otto = Student('01745646465') otto.grade = 6 class Student: def __init__(self, matrikelnr, grade): self.matrikelnr = matrikelnr self.__grade = grade def get_grade(self): if self.__grade > 0: return self.__grade raise GradingError('Noch nicht benotet!') grade = property(get_grade) albert = Student('0157897846546', 5) albert.grade albert.grade = 1 class Student: def __init__(self, matrikelnr): self.matrikelnr = matrikelnr self.__grade = 0 @property def grade(self): if self.__grade > 0: return self.__grade raise GradingError('Noch nicht benotet!') @grade.setter def grade(self, grade): if grade > 0 and grade < 6: self.__grade = grade else: raise ValueError('Grade must be between 1 and 5!') hugo = Student('0176464645454') hugo.grade = 6 hugo.grade = 2 hugo.grade class MyClass: the_answer = 42 def __init__(self, val): self.the_answer = val MyClass.the_answer mc = MyClass(17) print('Objekteigenschaft:', mc.the_answer) print('Klasseneigenschaft:', MyClass.the_answer) class MyClass: instance_counter = 0 def __init__(self): MyClass.instance_counter += 1 print('Ich bin das {}. Objekt'.format(MyClass.instance_counter)) a = MyClass() b = MyClass() class MyOtherClass(MyClass): instance_counter = 0 a = MyOtherClass() b = MyOtherClass() class MyClass: instance_counter = 0 def __init__(self): self.__class__.instance_counter += 1 print('Ich bin das {}. Objekt'.format(self.__class__.instance_counter)) a = MyClass() b = MyClass() class MyOtherClass(MyClass): instance_counter = 0 a = MyOtherClass() b = MyOtherClass() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Wie wir sehen, ist die Eigenschaft _val durchaus von außerhalb verfügbar. Allerdings signalisiert das Underline, dass vom Programmierer der Klasse nicht vorgesehen ist, dass dieser Wert direkt verwendet wird (sondern z.B. nur über die Methoden get_val() und set_val()). Wenn ein anderer Programmierer der Meinung ist, dass er direkten Zugriff auf die Eigenschaft _val braucht, liegt das in seiner Verantwortung (wird aber von Python nicht unterbunden). Man spricht hier von protection by convention. Python-Programmierer halten sich in aller Regel an diese Konvention, weshalb dieser Art von "Schutz" weit verbreitet ist. Step2: Hier sehen wir, dass die Eigenschaft __val von außerhalb der Klasse gar nicht sichtbar und damit auch nicht veränderbar ist. Innerhalb der Klasse ist sie jedoch normal verfügbar. Das kann zu Problemen führen Step3: Da __val nur innerhalb der Basisklasse angelegt wurde, hat die abgeleitete Klasse keinen Zugriff darauf. Step4: Wir können jetzt die Note setzen und auslesen Step5: Allerdings ist der direkte Zugriff auf grade immer noch möglich Step6: Wie wir bereits gesehen haben, können wir das verhindern, indem wir die Eigenschaft grade auf __grade umbenennen. Step7: Wie wir sehen, können wir die Eigenschaft des Objekts direkt setzen und auslesen, der Zugriff wird aber von Python jeweils durch den Setter und Getter geleitet. Step8: Wir können also auf unsere via property() definierte Eigenschaften zugreifen. Wir können grade aber nicht verwenden, Step9: Der @Property-Dekorator Step10: Klassenvariablen (Static members) Step11: Die eine Eigenschaft hängt also am Klassenobjekt, die andere am aus der Klasse erzeugten Objekt. Solche Klassenobjekte können nützlich sein, weil sie in allen aus der Klasse erzeugten Objekten verfügbar sind (sogar via self, solange das Objekt nicht selbst eine gleichnamige Eigenschaft hat Step12: Man kann das auch so schreiben, wodurch der Counter auch für Subklassen funktioniert
14,861
<ASSISTANT_TASK:> Python Code: # Versão da Linguagem Python from platform import python_version print('Versão da Linguagem Python Usada Neste Jupyter Notebook:', python_version()) # Imports import time import numpy as np import pandas as pd import matplotlib as mat from matplotlib import pyplot as plt from sklearn.datasets import load_iris %matplotlib inline fontsize = 14 ticklabelsize = 14 np.__version__ pd.__version__ mat.__version__ # Carregando o dataset iris = load_iris() df = pd.DataFrame(iris.data, columns = iris.feature_names) print(len(df)) df.head() # Imprima os valores numéricos da Variável target (o que queremos prever), # uma de 3 possíveis categorias de plantas: setosa, versicolor ou virginica # Imprima os valores numéricos da Variável target (o que queremos prever), # uma de 3 possíveis categorias de plantas: 0, 1 ou 2 # Adicione ao dataset uma nova coluna com os nomes das espécies, pois é isso que vamos tentar prever (variável target) # Inclua no dataset uma coluna com os valores numéricos da variável target # Extraia as features (atributos) do dataset e imprima # Calcule a média de cada feature para as 3 classes # Imprima uma Transposta do dataset (transforme linhas e colunas e colunas em linhas) # Utilize a função Info do dataset para obter um resumo sobre o dataset # Faça um resumo estatístico do dataset # Verifique se existem valores nulos no dataset # Faça uma contagem de valores de sepal length # Crie um Histograma de sepal length # Crie um Gráficos de Dispersão (scatter Plot) da variável sepal length versus número da linha, # colorido por marcadores da variável target # Crie um Scatter Plot de 2 Features (atributos) # Crie um Scatter Matrix das Features (atributos) # Crie um Histograma de todas as features <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Exercício Step2: Extração e Transformação de Dados Step3: Exploração de Dados Step4: Plot
14,862
<ASSISTANT_TASK:> Python Code: # AR parameters p = 4 a = 1.0 * np.random.rand(p) - 0.5 print "Original AR parameters:\n", a # Time series data N = 1000 n = np.arange(0, N) # Input white noise eparam = (0, 1.0) e = np.sqrt(eparam[1]) * np.random.randn(N) + eparam[0] # Generate AR time series. y = genARProcess(p, a, eparam, e) # Estimate autogressive model parameters ahat = estARParam(p, y) # Generate time series using estimated parameters yhat = genARProcess(p, ahat, eparam, e) plot_arfit(n, e, y, yhat) print "Original AR parameters:\n", a print "Estimated AR parameters:\n", ahat w = whiten(y, ahat) figure(figsize=(3, 3)) plot(e, w, '.') xlabel("$e_n$", fontsize=16) ylabel("$w_n$", fontsize=16) title("$e_n$ vs. $w_n$", fontsize=16) xticks(fontsize=16) yticks(fontsize=16); # Input white noise N = 1000 n = np.arange(0, N) # v acts as a window that changes the variance of e v = 1 + (n >= 300) * (n < 700) e = v * np.sqrt(eparam[1]) * np.random.randn(N) + eparam[0] # Generate AR time series. y = genARProcess(p, a, eparam, e) ahat = estARParam(p, y) yhat = genARProcess(p, ahat, eparam, e) plot_arfit(n, e, y, yhat) print "Original AR parameters:\n", a print "Estimated AR parameters:\n", ahat w = whiten(y, ahat) figure(figsize=(3, 3)) plot(e, w, '.') xlabel("$e_n$", fontsize=16) ylabel("$w_n$", fontsize=16) title("$e_n$ vs. $w_n$", fontsize=16) xticks(fontsize=16) yticks(fontsize=16); %pylab inline import seaborn as sns # Stationary AR process implementation def genARProcess(p, a, eparam, e): N = len(e) me, ve = eparam # Generate the filtered signal y = np.zeros(N) for i in xrange(p, N): y[i] = e[i] for k in xrange(p): y[i] += a[k] * y[i - k - 1] return y # Estimation of AR parameters for a stationary process, # using the entire data set. def estARParam(p, y): N = len(y) ymat = np.zeros((N - p, p)) yb = np.zeros((N - p - 1, 1)) for c in xrange(p, 0, -1): ymat[:, p-c] = y[p-c:-c] yb = y[p:] return np.matmul(np.linalg.pinv(ymat), yb)[::-1] # Implementation of stationary whitening filter. def whiten(y, ahat): N = len(y) p = len(ahat) w = np.zeros(N) for i in xrange(N): w[i] = y[i] for k in xrange(p): if i - k - 1 >= 0: w[i] += - ahat[k] * y[i - k - 1] return w def plot_arfit(n, e, y, yhat): figure(figsize=(12, 6)) subplot(221) plot(n, e, label="$e_n$") title("$e_n$", fontsize=25) xticks(fontsize=18) yticks(fontsize=18) subplot(223) plot(0,0) plot(n, y, label="$y_n$") xlabel("$n$", fontsize=25) title("$y_n$", fontsize=25) xticks(fontsize=18) yticks(fontsize=18) subplot(122) plot(y, e, '.', label="$e_n$") plot(y, yhat, '.', label="$\hat{y}_n$") legend(loc=2, fontsize=25) xlabel("$y_n$", fontsize=25) ylabel("$e_n, \hat{y}_n$", fontsize=25) title("$y_n$ vs. $e_n, \hat{y}_n$", fontsize=25) xticks(fontsize=18) yticks(fontsize=18) tight_layout(); from IPython.core.display import HTML def css_styling(): styles = open("styles/custom.css", "r").read() return HTML(styles) css_styling() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Estimate AR parameters using the entire dataset Step2: Whiten the AR process output using the $\hat{a}$ Step3: Non-stationary AR process with input with varying variance Step4: Non-stational Autoregressive Model with Varying Model Parameters
14,863
<ASSISTANT_TASK:> Python Code: from openhunt.mordorutils import * spark = get_spark() sd_file = "https://raw.githubusercontent.com/OTRF/Security-Datasets/master/datasets/atomic/windows/defense_evasion/host/empire_psinject_PEinjection.zip" registerMordorSQLTable(spark, sd_file, "sdTable") df = spark.sql( ''' SELECT `@timestamp`, Hostname, Image, ImageLoaded FROM sdTable WHERE Channel = "Microsoft-Windows-Sysmon/Operational" AND EventID = 7 AND ( lower(ImageLoaded) LIKE "%wmiclnt.dll" OR lower(ImageLoaded) LIKE "%WmiApRpl.dll" OR lower(ImageLoaded) LIKE "%wmiprov.dll" OR lower(ImageLoaded) LIKE "%wmiutils.dll" OR lower(ImageLoaded) LIKE "%wbemcomn.dll" OR lower(ImageLoaded) LIKE "%WMINet_Utils.dll" OR lower(ImageLoaded) LIKE "%wbemsvc.dll" OR lower(ImageLoaded) LIKE "%fastprox.dll" OR lower(Description) LIKE "%wmi%" ) AND NOT ( lower(Image) LIKE "%wmiprvse.exe" OR lower(Image) LIKE "%wmiapsrv.exe" OR lower(Image) LIKE "%svchost.exe" ) ''' ) df.show(10,False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Download & Process Security Dataset Step2: Analytic I
14,864
<ASSISTANT_TASK:> Python Code: from __future__ import print_function, division import time from matplotlib import rcParams import matplotlib.pyplot as plt %matplotlib inline rcParams['figure.figsize'] = (13, 6) plt.style.use('ggplot') from nilmtk import DataSet, TimeFrame, MeterGroup, HDFDataStore from nilmtk.disaggregate import CombinatorialOptimisation train = DataSet('/data/REDD/redd.h5') test = DataSet('/data/REDD/redd.h5') building = 1 train.buildings[building].elec.mains().plot() train.set_window(end="30-4-2011") test.set_window(start="30-4-2011") train_elec = train.buildings[1].elec test_elec = test.buildings[1].elec train_elec.mains().plot() test_elec.mains().plot() fridge_meter = train_elec['fridge'] fridge_df = fridge_meter.load().next() fridge_df.head() mains = train_elec.mains() mains_df = mains.load().next() mains_df.head() top_5_train_elec = train_elec.submeters().select_top_k(k=5) top_5_train_elec start = time.time() from nilmtk.disaggregate import fhmm_exact fhmm = fhmm_exact.FHMM() # Note that we have given the sample period to downsample the data to 1 minute fhmm.train(top_5_train_elec, sample_period=60) end = time.time() print("Runtime =", end-start, "seconds.") disag_filename = '/data/REDD/redd-disag-fhmm.h5' output = HDFDataStore(disag_filename, 'w') # Note that we have mentioned to disaggregate after converting to a sample period of 60 seconds fhmm.disaggregate(test_elec.mains(), output, sample_period=60) output.close() disag_fhmm = DataSet(disag_filename) disag_fhmm_elec = disag_fhmm.buildings[building].elec from nilmtk.metrics import f1_score f1_fhmm = f1_score(disag_fhmm_elec, test_elec) f1_fhmm.index = disag_fhmm_elec.get_labels(f1_fhmm.index) f1_fhmm.plot(kind='barh') plt.ylabel('appliance'); plt.xlabel('f-score'); plt.title("FHMM"); start = time.time() from nilmtk.disaggregate import CombinatorialOptimisation co = CombinatorialOptimisation() # Note that we have given the sample period to downsample the data to 1 minute co.train(top_5_train_elec, sample_period=60) end = time.time() print("Runtime =", end-start, "seconds.") disag_filename = '/data/REDD/redd-disag-co.h5' output = HDFDataStore(disag_filename, 'w') # Note that we have mentioned to disaggregate after converting to a sample period of 60 seconds co.disaggregate(test_elec.mains(), output, sample_period=60) output.close() disag_co = DataSet(disag_filename) disag_co_elec = disag_co.buildings[building].elec from nilmtk.metrics import f1_score f1_co= f1_score(disag_co_elec, test_elec) f1_co.index = disag_co_elec.get_labels(f1_co.index) f1_co.plot(kind='barh') plt.ylabel('appliance'); plt.xlabel('f-score'); plt.title("CO"); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Dividing data into train and test set Step2: Let us use building 1 for demo purposes Step3: Let's split data at April 30th Step4: REDD data set has got appliance level data sampled every 3 or 4 seconds and mains data sampled every 1 second. Let us verify the same. Step5: Since, both of these are sampled at different frequencies, we will downsample both to 1 minute resolution. We will also select the top-5 appliances in terms of energy consumption and use them for training our FHMM and CO models. Step6: Training and disaggregation
14,865
<ASSISTANT_TASK:> Python Code: import os from copy import deepcopy import numpy as np import mne sample_data_folder = mne.datasets.sample.data_path() sample_data_raw_file = os.path.join(sample_data_folder, 'MEG', 'sample', 'sample_audvis_raw.fif') raw = mne.io.read_raw_fif(sample_data_raw_file, verbose=False) print(raw.info['bads']) picks = mne.pick_channels_regexp(raw.ch_names, regexp='EEG 05.') raw.plot(order=picks, n_channels=len(picks)) picks = mne.pick_channels_regexp(raw.ch_names, regexp='MEG 2..3') raw.plot(order=picks, n_channels=len(picks)) original_bads = deepcopy(raw.info['bads']) raw.info['bads'].append('EEG 050') # add a single channel raw.info['bads'].extend(['EEG 051', 'EEG 052']) # add a list of channels bad_chan = raw.info['bads'].pop(-1) # remove the last entry in the list raw.info['bads'] = original_bads # change the whole list at once # default is exclude='bads': good_eeg = mne.pick_types(raw.info, meg=False, eeg=True) all_eeg = mne.pick_types(raw.info, meg=False, eeg=True, exclude=[]) print(np.setdiff1d(all_eeg, good_eeg)) print(np.array(raw.ch_names)[np.setdiff1d(all_eeg, good_eeg)]) raw2 = raw.copy() raw2.info['bads'] = [] events = mne.find_events(raw2, stim_channel='STI 014') epochs = mne.Epochs(raw2, events=events)['2'].average().plot() raw.crop(tmin=0, tmax=3).load_data() eeg_data = raw.copy().pick_types(meg=False, eeg=True, exclude=[]) eeg_data_interp = eeg_data.copy().interpolate_bads(reset_bads=False) for title, data in zip(['orig.', 'interp.'], [eeg_data, eeg_data_interp]): fig = data.plot(butterfly=True, color='#00000022', bad_color='r') fig.subplots_adjust(top=0.9) fig.suptitle(title, size='xx-large', weight='bold') grad_data = raw.copy().pick_types(meg='grad', exclude=[]) grad_data_interp = grad_data.copy().interpolate_bads(reset_bads=False) for data in (grad_data, grad_data_interp): data.plot(butterfly=True, color='#00000009', bad_color='r') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Marking bad channels Step2: Here you can see that the Step3: We can do the same thing for the bad MEG channel (MEG 2443). Since we Step4: Notice first of all that the channels marked as "bad" are plotted in a light Step5: .. sidebar Step6: When to look for bad channels Step7: The bad EEG channel is not so obvious, but the bad gradiometer is easy to Step8: By default, Step9: Note that we used the exclude=[] trick in the call to
14,866
<ASSISTANT_TASK:> Python Code: from pandas import DataFrame import sqlite3 query = CREATE TABLE test (a VARCHAR(20), b VARCHAR(20), c REAL, d INTEGER ); con = sqlite3.connect(':memory:') con.execute(query) con.commit() data = [('Atlanta', 'Georgia', 1.25, 6), ('Tallahassee', 'Florida', 2.6, 3), ('Sacramento', 'California', 1.7, 5)] stmt = "INSERT INTO test VALUES(?, ?, ?, ?)" con.executemany(stmt, data) con.commit() cursor = con.execute("select * from test where b LIKE 'Georgia'") rows = cursor.fetchall() rows cursor.description df = DataFrame(rows, columns=zip(*cursor.description)[0]) df import pandas.io.sql as sql sql.read_sql('select * from test where c>2.0', con) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Loading data from SQL into a DataFrame is fairly straightforward, and pandas has some functions to simplify the process. As an example, I’ll use an in-memory SQLite database using Python’s built-in sqlite3 driver Step3: Then, insert a few rows of data Step4: Most Python SQL drivers (PyODBC, psycopg2, MySQLdb, pymssql, etc.) return a list of tuples when selecting data from a table Step5: You can pass the list of tuples to the DataFrame constructor, but you also need the column names, contained in the cursor’s description attribute Step6: This is quite a bit of munging that you’d rather not repeat each time you query the database. pandas has a read_sql function that simplifies the process. Just pass the select statement and the connection object
14,867
<ASSISTANT_TASK:> Python Code: #general imports import pygslib #get the data in gslib format into a pandas Dataframe cluster= pygslib.gslib.read_gslib_file('../datasets/cluster.dat') true= pygslib.gslib.read_gslib_file('../datasets/true.dat') true['Declustering Weight'] = 1 npoints = len(cluster['Primary']) true['Declustering Weight'] = 1 #using declustering wight parameters_qpplt = { # gslib parameters for qq-pp calculation 'qqorpp': 0, # integer (Optional, default 0, Q-Q plot). Q-Q plot (qqorpp=0); P-P plot (qqorpp=1) #'npts' : None, # integer (Optional, default min length of va1 and va2). Number of points to use on the Q-Q or P-P plot (should not exceed the smallest number of data in data1 / data2 'va1' : cluster['Primary'], # rank-1 array('d') with bounds (nd). Variable 1 'wt1' : cluster['Declustering Weight'], # rank-1 array('d') with bounds (nd) (Optional, set to array of ones). Declustering weight for variable 1. 'va2' : true['Primary'], # rank-1 array('d') with bounds (nd). Variable 2 'wt2' : true['Declustering Weight'], # rank-1 array('d') with bounds (nd) (Optional, set to array of ones). Declustering weight for variable 2. # visual parameters for figure (if a new figure is created) #'figure' : None, # a bokeh figure object (Optional: new figure created if None). Set none or undefined if creating a new figure. #'title' : None, # string (Optional, "QQ plot" or "PP plot"). Figure title #'xlabel' : 'Z1', # string (Optional, default "Z1" or "P1"). X axis label #'ylabel' : 'Z2', # string (Optional, default "Z2" or "P2"). Y axis label #'xlog' : True, # boolean (Optional, default True). If true plot X axis in log sale. #'ylog' : True, # boolean (Optional, default True). If true plot Y axis in log sale. # visual parameter for the probplt #'style' : None, # string with valid bokeh chart type 'color' : 'black', # string with valid CSS colour (https://www.w3schools.com/colors/colors_names.asp), or an RGB(A) hex value, or tuple of integers (r,g,b), or tuple of (r,g,b,a) (Optional, default "navy") 'legend': 'Declustered', # string (Optional, default "NA"). #'alpha' : None, # float [0-1] (Optional, default 0.5). Transparency of the fill colour #'lwidth': None, # float (Optional, default 1). Line width # leyend 'legendloc': None} # float (Optional, default 'bottom_right'). Any of top_left, top_center, top_right, center_right, bottom_right, bottom_center, bottom_left, center_left # Calculate the non declustered qq plot results, fig = pygslib.plothtml.qpplt(parameters_qpplt) # Calculate declustered qqplot # a) get array of ones as weights cluster['naive']= cluster['Declustering Weight'].values*0 +1 # update parameter dic parameters_qpplt['wt1'] = cluster['naive'] parameters_qpplt['color'] = 'blue' parameters_qpplt['legend']='Clustered' results, fig = pygslib.plothtml.qpplt(parameters_qpplt) # show the plot pygslib.plothtml.show(fig) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Getting the data ready for work Step2: QQ-Plot
14,868
<ASSISTANT_TASK:> Python Code: import os.path as op import numpy as np import mne data_path = mne.datasets.opm.data_path() subject = 'OPM_sample' subjects_dir = op.join(data_path, 'subjects') raw_fname = op.join(data_path, 'MEG', 'OPM', 'OPM_SEF_raw.fif') bem_fname = op.join(subjects_dir, subject, 'bem', subject + '-5120-5120-5120-bem-sol.fif') fwd_fname = op.join(data_path, 'MEG', 'OPM', 'OPM_sample-fwd.fif') coil_def_fname = op.join(data_path, 'MEG', 'OPM', 'coil_def.dat') raw = mne.io.read_raw_fif(raw_fname, preload=True) raw.filter(None, 90, h_trans_bandwidth=10.) raw.notch_filter(50., notch_widths=1) # Set epoch rejection threshold a bit larger than for SQUIDs reject = dict(mag=2e-10) tmin, tmax = -0.5, 1 # Find median nerve stimulator trigger event_id = dict(Median=257) events = mne.find_events(raw, stim_channel='STI101', mask=257, mask_type='and') picks = mne.pick_types(raw.info, meg=True, eeg=False) # We use verbose='error' to suppress warning about decimation causing aliasing, # ideally we would low-pass and then decimate instead epochs = mne.Epochs(raw, events, event_id, tmin, tmax, verbose='error', reject=reject, picks=picks, proj=False, decim=10, preload=True) evoked = epochs.average() evoked.plot() cov = mne.compute_covariance(epochs, tmax=0.) del epochs, raw bem = mne.read_bem_solution(bem_fname) trans = mne.transforms.Transform('head', 'mri') # identity transformation # To compute the forward solution, we must # provide our temporary/custom coil definitions, which can be done as:: # # with mne.use_coil_def(coil_def_fname): # fwd = mne.make_forward_solution( # raw.info, trans, src, bem, eeg=False, mindist=5.0, # n_jobs=1, verbose=True) fwd = mne.read_forward_solution(fwd_fname) # use fixed orientation here just to save memory later mne.convert_forward_solution(fwd, force_fixed=True, copy=False) with mne.use_coil_def(coil_def_fname): fig = mne.viz.plot_alignment(evoked.info, trans=trans, subject=subject, subjects_dir=subjects_dir, surfaces=('head', 'pial'), bem=bem) mne.viz.set_3d_view(figure=fig, azimuth=45, elevation=60, distance=0.4, focalpoint=(0.02, 0, 0.04)) # Fit dipoles on a subset of time points with mne.use_coil_def(coil_def_fname): dip_opm, _ = mne.fit_dipole(evoked.copy().crop(0.040, 0.080), cov, bem, trans, verbose=True) idx = np.argmax(dip_opm.gof) print('Best dipole at t=%0.1f ms with %0.1f%% GOF' % (1000 * dip_opm.times[idx], dip_opm.gof[idx])) # Plot N20m dipole as an example dip_opm.plot_locations(trans, subject, subjects_dir, mode='orthoview', idx=idx) inverse_operator = mne.minimum_norm.make_inverse_operator( evoked.info, fwd, cov, loose=0., depth=None) del fwd, cov method = "MNE" snr = 3. lambda2 = 1. / snr ** 2 stc = mne.minimum_norm.apply_inverse( evoked, inverse_operator, lambda2, method=method, pick_ori=None, verbose=True) # Plot source estimate at time of best dipole fit brain = stc.plot(hemi='rh', views='lat', subjects_dir=subjects_dir, initial_time=dip_opm.times[idx], clim=dict(kind='percent', lims=[99, 99.9, 99.99]), size=(400, 300), background='w') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Prepare data for localization Step2: Examine our coordinate alignment for source localization and compute a Step3: Perform dipole fitting Step4: Perform minimum-norm localization
14,869
<ASSISTANT_TASK:> Python Code: !pip install -I "phoebe>=2.0,<2.1" %matplotlib inline import phoebe from phoebe import u import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_binary(contact_binary=True) b.add_dataset('lc', times=np.linspace(0,1,101), dataset='lc01') b.add_dataset('rv', times=np.linspace(0,1,101), dataset='rv01') b.add_compute('phoebe', compute='phoebe2', mesh_method='marching') b.add_compute('legacy', compute='phoebe1') b.set_value_all('atm', 'extern_planckint') b.set_value_all('gridsize', 30) b.set_value_all('ld_func', 'logarithmic') b.set_value_all('ld_coeffs', [0.0, 0.0]) b.set_value_all('refl_num',0) b.set_value_all('rv_grav', False) b.set_value_all('ltte', False) b.run_compute(compute='phoebe2', model='phoebe2model', irrad_method='none') b.run_compute(compute='phoebe1', model='phoebe1model') axs, artists = b['lc01@phoebe2model'].plot(color='g') axs, artists = b['lc01@phoebe1model'].plot(color='r') leg = plt.legend(loc=4) artist, = plt.plot(b.get_value('fluxes@lc01@phoebe2model') - b.get_value('fluxes@lc01@phoebe1model'), 'g-') artist = plt.axhline(0.0, linestyle='dashed', color='k') axs, artists = b['rv01@phoebe2model'].plot(color='g') axs, artists = b['rv01@phoebe1model'].plot(color='r') artist, = plt.plot(b.get_value('rvs@primary@phoebe2model', ) - b.get_value('rvs@primary@phoebe1model'), color='g', ls=':') artist, = plt.plot(b.get_value('rvs@secondary@phoebe2model') - b.get_value('rvs@secondary@phoebe1model'), color='g', ls='-.') artist = plt.axhline(0.0, linestyle='dashed', color='k') ylim = plt.ylim(-1.5, 1.5) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As always, let's do imports and initialize a logger and a new bundle. See Building a System for more details. Step2: Adding Datasets and Compute Options Step3: Let's add compute options for phoebe using the new (marching) method for creating meshes. Step4: Now we add compute options for the 'legacy' backend. Step5: Let's use the external atmospheres available for both phoebe1 and phoebe2 Step6: Set value of gridsize for the trapezoidal (WD) mesh. Step7: Let's also disable other special effect such as heating, gravity, and light-time effects. Step8: Finally, let's compute our models Step9: Plotting Step10: Now let's plot the residuals between these two models Step11: RVs
14,870
<ASSISTANT_TASK:> Python Code: %pylab inline ! grep "multipv 1" log4.txt | grep -v lowerbound | grep -v upperbound > log4_g.txt def parse_info(l): D = {} k = l.split() i = 0 assert k[i] == "info" i += 1 while i < len(k): if k[i] == "depth": D[k[i]] = int(k[i+1]) i += 2 elif k[i] == "seldepth": D[k[i]] = int(k[i+1]) i += 2 elif k[i] == "multipv": D[k[i]] = int(k[i+1]) i += 2 elif k[i] == "score": if k[i+1] == "cp": D["score_p"] = int(k[i+2]) / 100. # score in pawns i += 3 elif k[i] == "nodes": D[k[i]] = int(k[i+1]) i += 2 elif k[i] == "nps": D[k[i]] = int(k[i+1]) i += 2 elif k[i] == "hashfull": D[k[i]] = int(k[i+1]) / 1000. # between 0 and 1 i += 2 elif k[i] == "tbhits": D[k[i]] = int(k[i+1]) i += 2 elif k[i] == "time": D[k[i]] = int(k[i+1]) / 1000. # elapsed time in [s] i += 2 elif k[i] == "pv": D[k[i]] = k[i+1:] return D else: raise Exception("Unknown kw") # Convert to an array of lists D = [] for l in open("log4_g.txt").readlines(): D.append(parse_info(l)) # Convert to a list of arrays data = {} for key in D[-1].keys(): d = [] for x in D: if key in x: d.append(x[key]) else: d.append(-1) if key != "pv": d = array(d) data[key] = d title("Number of nodes searched in time") plot(data["time"] / 60., data["nodes"], "o") xlabel("Time [min]") ylabel("Nodes") grid() show() title("Positions per second in time") plot(data["time"] / 60., data["nps"], "o") xlabel("Time [min]") ylabel("Positions / s") grid() show() title("Hashtable usage") hashfull = data["hashfull"] hashfull[hashfull == -1] = 0 plot(data["time"] / 60., hashfull * 100, "o") xlabel("Time [min]") ylabel("Hashtable filled [%]") grid() show() title("Number of nodes vs. depth") semilogy(data["depth"], data["nodes"], "o") x = data["depth"] y = exp(x/2.2) y = y / y[-1] * data["nodes"][-1] semilogy(x, y, "-") xlabel("Depth [half moves]") ylabel("Nodes") grid() show() title("Number of time vs. depth") semilogy(data["depth"], data["time"]/60., "o") xlabel("Depth [half moves]") ylabel("Time [min]") grid() show() title("Score") plot(data["depth"], data["score_p"], "o") xlabel("Depth [half moves]") ylabel("Score [pawns]") grid() show() for i in range(len(data["depth"])): print "%2i %s" % (data["depth"][i], " ".join(data["pv"][i])[:100]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The Speed of Search Step2: So nodes per second is roughly constant Step3: The hashtable usage is at full capacity Step4: Number of nodes needed for the given depth grows exponentially, except for moves that are forced, which require very little nodes to search (those show as a horizontal plateau) Step5: Convergence wrt. Depth Step6: Convergence of the variations
14,871
<ASSISTANT_TASK:> Python Code: import jax.numpy as jnp from jax import grad, jit, vmap from jax import random # A helper function to randomly initialize weights and biases # for a dense neural network layer def random_layer_params(m, n, key, scale=1e-2): w_key, b_key = random.split(key) return scale * random.normal(w_key, (n, m)), scale * random.normal(b_key, (n,)) # Initialize all layers for a fully-connected neural network with sizes "sizes" def init_network_params(sizes, key): keys = random.split(key, len(sizes)) return [random_layer_params(m, n, k) for m, n, k in zip(sizes[:-1], sizes[1:], keys)] layer_sizes = [784, 512, 512, 10] step_size = 0.01 num_epochs = 10 batch_size = 128 n_targets = 10 params = init_network_params(layer_sizes, random.PRNGKey(0)) from jax.scipy.special import logsumexp def relu(x): return jnp.maximum(0, x) def predict(params, image): # per-example predictions activations = image for w, b in params[:-1]: outputs = jnp.dot(w, activations) + b activations = relu(outputs) final_w, final_b = params[-1] logits = jnp.dot(final_w, activations) + final_b return logits - logsumexp(logits) # This works on single examples random_flattened_image = random.normal(random.PRNGKey(1), (28 * 28,)) preds = predict(params, random_flattened_image) print(preds.shape) # Doesn't work with a batch random_flattened_images = random.normal(random.PRNGKey(1), (10, 28 * 28)) try: preds = predict(params, random_flattened_images) except TypeError: print('Invalid shapes!') # Let's upgrade it to handle batches using `vmap` # Make a batched version of the `predict` function batched_predict = vmap(predict, in_axes=(None, 0)) # `batched_predict` has the same call signature as `predict` batched_preds = batched_predict(params, random_flattened_images) print(batched_preds.shape) def one_hot(x, k, dtype=jnp.float32): Create a one-hot encoding of x of size k. return jnp.array(x[:, None] == jnp.arange(k), dtype) def accuracy(params, images, targets): target_class = jnp.argmax(targets, axis=1) predicted_class = jnp.argmax(batched_predict(params, images), axis=1) return jnp.mean(predicted_class == target_class) def loss(params, images, targets): preds = batched_predict(params, images) return -jnp.mean(preds * targets) @jit def update(params, x, y): grads = grad(loss)(params, x, y) return [(w - step_size * dw, b - step_size * db) for (w, b), (dw, db) in zip(params, grads)] import tensorflow as tf # Ensure TF does not see GPU and grab all GPU memory. tf.config.set_visible_devices([], device_type='GPU') import tensorflow_datasets as tfds data_dir = '/tmp/tfds' # Fetch full datasets for evaluation # tfds.load returns tf.Tensors (or tf.data.Datasets if batch_size != -1) # You can convert them to NumPy arrays (or iterables of NumPy arrays) with tfds.dataset_as_numpy mnist_data, info = tfds.load(name="mnist", batch_size=-1, data_dir=data_dir, with_info=True) mnist_data = tfds.as_numpy(mnist_data) train_data, test_data = mnist_data['train'], mnist_data['test'] num_labels = info.features['label'].num_classes h, w, c = info.features['image'].shape num_pixels = h * w * c # Full train set train_images, train_labels = train_data['image'], train_data['label'] train_images = jnp.reshape(train_images, (len(train_images), num_pixels)) train_labels = one_hot(train_labels, num_labels) # Full test set test_images, test_labels = test_data['image'], test_data['label'] test_images = jnp.reshape(test_images, (len(test_images), num_pixels)) test_labels = one_hot(test_labels, num_labels) print('Train:', train_images.shape, train_labels.shape) print('Test:', test_images.shape, test_labels.shape) import time def get_train_batches(): # as_supervised=True gives us the (image, label) as a tuple instead of a dict ds = tfds.load(name='mnist', split='train', as_supervised=True, data_dir=data_dir) # You can build up an arbitrary tf.data input pipeline ds = ds.batch(batch_size).prefetch(1) # tfds.dataset_as_numpy converts the tf.data.Dataset into an iterable of NumPy arrays return tfds.as_numpy(ds) for epoch in range(num_epochs): start_time = time.time() for x, y in get_train_batches(): x = jnp.reshape(x, (len(x), num_pixels)) y = one_hot(y, num_labels) params = update(params, x, y) epoch_time = time.time() - start_time train_acc = accuracy(params, train_images, train_labels) test_acc = accuracy(params, test_images, test_labels) print("Epoch {} in {:0.2f} sec".format(epoch, epoch_time)) print("Training set accuracy {}".format(train_acc)) print("Test set accuracy {}".format(test_acc)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Hyperparameters Step2: Auto-batching predictions Step3: Let's check that our prediction function only works on single images. Step5: At this point, we have all the ingredients we need to define our neural network and train it. We've built an auto-batched version of predict, which we should be able to use in a loss function. We should be able to use grad to take the derivative of the loss with respect to the neural network parameters. Last, we should be able to use jit to speed up everything. Step6: Data Loading with tensorflow/datasets Step7: Training Loop
14,872
<ASSISTANT_TASK:> Python Code: !pip install tensorflow==1.15 dm-sonnet==1.36 tensor2tensor==1.14 import time import numpy as np import tensorflow.compat.v1 as tf tf.logging.set_verbosity(tf.logging.ERROR) # Hide TF deprecation messages import matplotlib.pyplot as plt %cd /tmp %rm -rf /tmp/deepmind_research !git clone https://github.com/deepmind/deepmind-research.git \ /tmp/deepmind_research %cd /tmp/deepmind_research/polygen import modules import data_utils !mkdir /tmp/vertex_model !mkdir /tmp/face_model !gsutil cp gs://deepmind-research-polygen/vertex_model.tar.gz /tmp/vertex_model/ !gsutil cp gs://deepmind-research-polygen/face_model.tar.gz /tmp/face_model/ !tar xvfz /tmp/vertex_model/vertex_model.tar.gz -C /tmp/vertex_model/ !tar xvfz /tmp/face_model/face_model.tar.gz -C /tmp/face_model/ vertex_module_config=dict( decoder_config=dict( hidden_size=512, fc_size=2048, num_heads=8, layer_norm=True, num_layers=24, dropout_rate=0.4, re_zero=True, memory_efficient=True ), quantization_bits=8, class_conditional=True, max_num_input_verts=5000, use_discrete_embeddings=True, ) face_module_config=dict( encoder_config=dict( hidden_size=512, fc_size=2048, num_heads=8, layer_norm=True, num_layers=10, dropout_rate=0.2, re_zero=True, memory_efficient=True, ), decoder_config=dict( hidden_size=512, fc_size=2048, num_heads=8, layer_norm=True, num_layers=14, dropout_rate=0.2, re_zero=True, memory_efficient=True, ), class_conditional=False, decoder_cross_attention=True, use_discrete_vertex_embeddings=True, max_seq_length=8000, ) class_id = '49) table' #@param ['0) airplane,aeroplane,plane','1) ashcan,trash can,garbage can,wastebin,ash bin,ash-bin,ashbin,dustbin,trash barrel,trash bin','2) bag,traveling bag,travelling bag,grip,suitcase','3) basket,handbasket','4) bathtub,bathing tub,bath,tub','5) bed','6) bench','7) birdhouse','8) bookshelf','9) bottle','10) bowl','11) bus,autobus,coach,charabanc,double-decker,jitney,motorbus,motorcoach,omnibus,passenger vehi','12) cabinet','13) camera,photographic camera','14) can,tin,tin can','15) cap','16) car,auto,automobile,machine,motorcar','17) cellular telephone,cellular phone,cellphone,cell,mobile phone','18) chair','19) clock','20) computer keyboard,keypad','21) dishwasher,dish washer,dishwashing machine','22) display,video display','23) earphone,earpiece,headphone,phone','24) faucet,spigot','25) file,file cabinet,filing cabinet','26) guitar','27) helmet','28) jar','29) knife','30) lamp','31) laptop,laptop computer','32) loudspeaker,speaker,speaker unit,loudspeaker system,speaker system','33) mailbox,letter box','34) microphone,mike','35) microwave,microwave oven','36) motorcycle,bike','37) mug','38) piano,pianoforte,forte-piano','39) pillow','40) pistol,handgun,side arm,shooting iron','41) pot,flowerpot','42) printer,printing machine','43) remote control,remote','44) rifle','45) rocket,projectile','46) skateboard','47) sofa,couch,lounge','48) stove','49) table','50) telephone,phone,telephone set','51) tower','52) train,railroad train','53) vessel,watercraft','54) washer,automatic washer,washing machine'] num_samples_min = 1 #@param num_samples_batch = 8 #@param max_num_vertices = 400 #@param max_num_face_indices = 2000 #@param top_p_vertex_model = 0.9 #@param top_p_face_model = 0.9 #@param tf.reset_default_graph() # Build models vertex_model = modules.VertexModel(**vertex_module_config) face_model = modules.FaceModel(**face_module_config) # Tile out class label to every element in batch class_id = int(class_id.split(')')[0]) vertex_model_context = {'class_label': tf.fill([num_samples_batch,], class_id)} vertex_samples = vertex_model.sample( num_samples_batch, context=vertex_model_context, max_sample_length=max_num_vertices, top_p=top_p_vertex_model, recenter_verts=True, only_return_complete=True) vertex_model_saver = tf.train.Saver(var_list=vertex_model.variables) # The face model generates samples conditioned on a context, which here is # the vertex model samples face_samples = face_model.sample( vertex_samples, max_sample_length=max_num_face_indices, top_p=top_p_face_model, only_return_complete=True) face_model_saver = tf.train.Saver(var_list=face_model.variables) # Start sampling start = time.time() print('Generating samples...') with tf.Session() as sess: vertex_model_saver.restore(sess, '/tmp/vertex_model/model') face_model_saver.restore(sess, '/tmp/face_model/model') mesh_list = [] num_samples_complete = 0 while num_samples_complete < num_samples_min: v_samples_np = sess.run(vertex_samples) if v_samples_np['completed'].size == 0: print('No vertex samples completed in this batch. Try increasing ' + 'max_num_vertices.') continue f_samples_np = sess.run( face_samples, {vertex_samples[k]: v_samples_np[k] for k in vertex_samples.keys()}) v_samples_np = f_samples_np['context'] num_samples_complete_batch = f_samples_np['completed'].sum() num_samples_complete += num_samples_complete_batch print('Num. samples complete: {}'.format(num_samples_complete)) for k in range(num_samples_complete_batch): verts = v_samples_np['vertices'][k][:v_samples_np['num_vertices'][k]] faces = data_utils.unflatten_faces( f_samples_np['faces'][k][:f_samples_np['num_face_indices'][k]]) mesh_list.append({'vertices': verts, 'faces': faces}) end = time.time() print('sampling time: {}'.format(end - start)) data_utils.plot_meshes(mesh_list, ax_lims=0.4) mesh_id = 4 #@param data_utils.write_obj( mesh_list[mesh_id]['vertices'], mesh_list[mesh_id]['faces'], 'mesh-{}.obj'.format(mesh_id)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Download pre-trained model weights from Google Cloud Storage Step2: Pre-trained model config Step3: Generate class-conditional samples Step4: Export meshes as .obj files
14,873
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd from IPython.display import clear_output from matplotlib import pyplot as plt # 加载数据集。 dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') import tensorflow as tf tf.random.set_seed(123) dftrain.head() dftrain.describe() dftrain.shape[0], dfeval.shape[0] dftrain.age.hist(bins=20) plt.show() dftrain.sex.value_counts().plot(kind='barh') plt.show() dftrain['class'].value_counts().plot(kind='barh') plt.show() dftrain['embark_town'].value_counts().plot(kind='barh') plt.show() pd.concat([dftrain, y_train], axis=1).groupby('sex').survived.mean().plot(kind='barh').set_xlabel('% survive') plt.show() fc = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocab)) feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() feature_columns.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32)) example = dict(dftrain.head(1)) class_fc = tf.feature_column.indicator_column(tf.feature_column.categorical_column_with_vocabulary_list('class', ('First', 'Second', 'Third'))) print('Feature value: "{}"'.format(example['class'].iloc[0])) print('One-hot encoded: ', tf.keras.layers.DenseFeatures([class_fc])(example).numpy()) tf.keras.layers.DenseFeatures(feature_columns)(example).numpy() # 使用大小为全部数据的 batch ,因为数据规模非常小. NUM_EXAMPLES = len(y_train) def make_input_fn(X, y, n_epochs=None, shuffle=True): def input_fn(): dataset = tf.data.Dataset.from_tensor_slices((dict(X), y)) if shuffle: dataset = dataset.shuffle(NUM_EXAMPLES) # 对于训练,可以按需多次循环数据集(n_epochs=None)。 dataset = dataset.repeat(n_epochs) # 在内存中训练不使用 batch。 dataset = dataset.batch(NUM_EXAMPLES) return dataset return input_fn # 训练与评估的输入函数。 train_input_fn = make_input_fn(dftrain, y_train) eval_input_fn = make_input_fn(dfeval, y_eval, shuffle=False, n_epochs=1) linear_est = tf.estimator.LinearClassifier(feature_columns) # 训练模型。 linear_est.train(train_input_fn, max_steps=100) # 评估。 result = linear_est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) # 由于数据存入内存中,在每层使用全部数据会更快。 # 上面一个 batch 定义为整个数据集。 n_batches = 1 est = tf.estimator.BoostedTreesClassifier(feature_columns, n_batches_per_layer=n_batches) # 一旦建立了指定数量的树,模型将停止训练, # 而不是基于训练步数。 est.train(train_input_fn, max_steps=100) # 评估。 result = est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities') plt.show() from sklearn.metrics import roc_curve fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 在 Tensorflow 中训练提升树(Boosted Trees)模型 Step2: 数据集由训练集和验证集组成: Step3: 训练集和评估集分别有 627 和 264 个样本。 Step4: 大多数乘客在 20 岁或 30 岁。 Step5: 男乘客大约是女乘客的两倍。 Step6: 大多数乘客都在“三等”舱。 Step7: 大多数乘客从南安普顿出发。 Step8: 与男性相比,女性存活的几率要高得多。这显然是该模型的预测特征。 Step9: 创建特征列与输入函数 Step10: 您可以查看特征列生成的转换。例如,以下是在单个样本中使用 indicator_column 的输出: Step11: 此外,您还可以一起查看所有特征列的转换: Step12: 接下来,您需要创建输入函数。这些将指定如何将数据读入到我们的模型中以供训练与推理。您将使用 tf.dataAPI 中的 from_tensor_slices 方法直接从 Pandas 中读取数据。这适用于较小的内存数据集。对于较大的数据集,tf.data API 支持各种文件格式(包括 csv),以便您能处理那些不适合放入内存中的数据集。 Step13: 训练与评估模型 Step14: 下面让我们训练提升树(Boosted Trees)模型。提升树(Boosted Trees)是支持回归(BoostedTreesRegressor)和分类(BoostedTreesClassifier)的。由于目标是预测一个生存与否的标签,您将使用 BoostedTreesClassifier。 Step15: 现在您可以使用训练的模型从评估集上对乘客进行预测了。Tensorflow 模型经过优化,可以同时在一个 batch 或一个集合的样本上进行预测。之前,eval_inout_fn 是使用整个评估集定义的。 Step16: 最后,您还可以查看结果的受试者工作特征曲线(ROC),这将使我们更好地了解真阳性率与假阴性率之间的权衡。
14,874
<ASSISTANT_TASK:> Python Code: import pandas as pd import scipy as sp from scipy import stats import matplotlib.pyplot as plt %matplotlib inline %config InlineBackend.figure_format = 'svg' exec(open('settings.py').read(), globals()) cell_numbers = pd.read_csv('../data/cell_number_data.csv') outgrowth = pd.read_csv('../data/outgrowth.csv') lcell = 13.2 lcell_sem = 0.1 L0 = 800.0 cell_numbers = cell_numbers.query('pos > -@L0') cell_numbers['quiescent'] = cell_numbers['SOX2'] - cell_numbers['PCNA'] cell_numbers_space_mean = cell_numbers[['ID', 'time', 'quiescent']].groupby('ID').agg({'time': ['mean'], 'quiescent': ['mean', 'sem']}) cell_numbers_mean = cell_numbers_space_mean.groupby([('time', 'mean')]).agg({('quiescent', 'mean'): ['mean', 'sem'], ('quiescent', 'sem'): ['mean']}) cell_numbers_mean['quiescent_delta'] = cell_numbers_mean['quiescent', 'mean', 'sem'] + cell_numbers_mean['quiescent', 'sem', 'mean'] cell_numbers_mean.index.name = 'time' cell_numbers_mean['outgrowth'] = outgrowth.groupby('time').mean()['length'] cell_numbers_mean['outgrowth_sem'] = outgrowth.groupby('time').sem()['length'] for i, row in cell_numbers_space_mean.iterrows(): cell_numbers_space_mean.loc[i, 'outgrowth'] = float(outgrowth.groupby('time').mean().loc[int(row['time'])]) cell_numbers_space_mean.loc[i, 'outgrowth_sem'] = float(outgrowth.groupby('time').sem()['length'].loc[int(row['time'])]) cell_numbers_space_mean Nq = pd.DataFrame(index = cell_numbers_mean.index) Nq['mean'] = (cell_numbers_mean['outgrowth'] + L0) / lcell * cell_numbers_mean['quiescent', 'mean', 'mean'] Nq['delta'] = Nq['mean'] * (lcell_sem / lcell + cell_numbers_mean['outgrowth_sem'] / cell_numbers_mean['outgrowth'] + cell_numbers_mean['quiescent', 'mean', 'sem'] / cell_numbers_mean['quiescent', 'mean', 'mean']) Nq.loc[0, 'delta'] = Nq.loc[0, 'mean'] * ((lcell_sem / lcell + float(cell_numbers_mean.loc[0, ('quiescent', 'mean', 'sem')]) / cell_numbers_mean.loc[0, ('quiescent', 'mean', 'mean')])) Nq day = dict() for time in Nq.index: day[time] = sp.array(cell_numbers_space_mean[cell_numbers_space_mean['time', 'mean'] == time]['quiescent', 'mean']) day[time] = day[time] * (float(outgrowth.groupby('time').mean().loc[time]) + L0) for time in Nq.index: print 'Day 0 vs Day {0}: p = {1:.2f}'.format(time, sp.stats.ttest_ind(day[0], day[time]).pvalue) from matplotlib.markers import TICKDOWN def significance_bar(start,end,height,displaystring,linewidth = 1,markersize = 3,boxpad =0.3,fontsize = 12,color = 'k'): # draw a line with downticks at the ends plt.plot([start,end],[height]*2,'-',color = color,lw=linewidth,marker = TICKDOWN,markeredgewidth=linewidth,markersize = markersize) # draw the text with a bounding box covering up the line plt.text(0.5*(start+end),height,displaystring,ha = 'center',va='center',size = fontsize) fig, ax = plt.subplots(1, figsize = (1, 31.5/25.0)) ax.errorbar(Nq.index,\ Nq['mean'], Nq['delta'], fmt = 'ko', ls = '-') significance_bar(0, 4, 305.0, '*') significance_bar(0, 6, 340.0, '*') ax.set_xlim(-0.7, 8.7) ax.set_ylim(0, 370) ax.set_yticks(sp.arange(0, 350, 100)) ax.set_xlabel('Time (days)') ax.set_ylabel('# SOX2+/PCNA- cells', labelpad = 8) plt.savefig('../figure_plots/Fig2_total_number_quiescent.svg') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Check for significant differences Step2: ttest vs day0 Step3: Plot
14,875
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf import os import pathlib import time import datetime from matplotlib import pyplot as plt from IPython import display dataset_name = "facades" #@param ["cityscapes", "edges2handbags", "edges2shoes", "facades", "maps", "night2day"] _URL = f'http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/{dataset_name}.tar.gz' path_to_zip = tf.keras.utils.get_file( fname=f"{dataset_name}.tar.gz", origin=_URL, extract=True) path_to_zip = pathlib.Path(path_to_zip) PATH = path_to_zip.parent/dataset_name list(PATH.parent.iterdir()) sample_image = tf.io.read_file(str(PATH / 'train/1.jpg')) sample_image = tf.io.decode_jpeg(sample_image) print(sample_image.shape) plt.figure() plt.imshow(sample_image) def load(image_file): # Read and decode an image file to a uint8 tensor image = tf.io.read_file(image_file) image = tf.io.decode_jpeg(image) # Split each image tensor into two tensors: # - one with a real building facade image # - one with an architecture label image w = tf.shape(image)[1] w = w // 2 input_image = image[:, w:, :] real_image = image[:, :w, :] # Convert both images to float32 tensors input_image = tf.cast(input_image, tf.float32) real_image = tf.cast(real_image, tf.float32) return input_image, real_image inp, re = load(str(PATH / 'train/100.jpg')) # Casting to int for matplotlib to display the images plt.figure() plt.imshow(inp / 255.0) plt.figure() plt.imshow(re / 255.0) # The facade training set consist of 400 images BUFFER_SIZE = 400 # The batch size of 1 produced better results for the U-Net in the original pix2pix experiment BATCH_SIZE = 1 # Each image is 256x256 in size IMG_WIDTH = 256 IMG_HEIGHT = 256 def resize(input_image, real_image, height, width): input_image = tf.image.resize(input_image, [height, width], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) real_image = tf.image.resize(real_image, [height, width], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) return input_image, real_image def random_crop(input_image, real_image): stacked_image = tf.stack([input_image, real_image], axis=0) cropped_image = tf.image.random_crop( stacked_image, size=[2, IMG_HEIGHT, IMG_WIDTH, 3]) return cropped_image[0], cropped_image[1] # Normalizing the images to [-1, 1] def normalize(input_image, real_image): input_image = (input_image / 127.5) - 1 real_image = (real_image / 127.5) - 1 return input_image, real_image @tf.function() def random_jitter(input_image, real_image): # Resizing to 286x286 input_image, real_image = resize(input_image, real_image, 286, 286) # Random cropping back to 256x256 input_image, real_image = random_crop(input_image, real_image) if tf.random.uniform(()) > 0.5: # Random mirroring input_image = tf.image.flip_left_right(input_image) real_image = tf.image.flip_left_right(real_image) return input_image, real_image plt.figure(figsize=(6, 6)) for i in range(4): rj_inp, rj_re = random_jitter(inp, re) plt.subplot(2, 2, i + 1) plt.imshow(rj_inp / 255.0) plt.axis('off') plt.show() def load_image_train(image_file): input_image, real_image = load(image_file) input_image, real_image = random_jitter(input_image, real_image) input_image, real_image = normalize(input_image, real_image) return input_image, real_image def load_image_test(image_file): input_image, real_image = load(image_file) input_image, real_image = resize(input_image, real_image, IMG_HEIGHT, IMG_WIDTH) input_image, real_image = normalize(input_image, real_image) return input_image, real_image train_dataset = tf.data.Dataset.list_files(str(PATH / 'train/*.jpg')) train_dataset = train_dataset.map(load_image_train, num_parallel_calls=tf.data.AUTOTUNE) train_dataset = train_dataset.shuffle(BUFFER_SIZE) train_dataset = train_dataset.batch(BATCH_SIZE) try: test_dataset = tf.data.Dataset.list_files(str(PATH / 'test/*.jpg')) except tf.errors.InvalidArgumentError: test_dataset = tf.data.Dataset.list_files(str(PATH / 'val/*.jpg')) test_dataset = test_dataset.map(load_image_test) test_dataset = test_dataset.batch(BATCH_SIZE) OUTPUT_CHANNELS = 3 def downsample(filters, size, apply_batchnorm=True): initializer = tf.random_normal_initializer(0., 0.02) result = tf.keras.Sequential() result.add( tf.keras.layers.Conv2D(filters, size, strides=2, padding='same', kernel_initializer=initializer, use_bias=False)) if apply_batchnorm: result.add(tf.keras.layers.BatchNormalization()) result.add(tf.keras.layers.LeakyReLU()) return result down_model = downsample(3, 4) down_result = down_model(tf.expand_dims(inp, 0)) print (down_result.shape) def upsample(filters, size, apply_dropout=False): initializer = tf.random_normal_initializer(0., 0.02) result = tf.keras.Sequential() result.add( tf.keras.layers.Conv2DTranspose(filters, size, strides=2, padding='same', kernel_initializer=initializer, use_bias=False)) result.add(tf.keras.layers.BatchNormalization()) if apply_dropout: result.add(tf.keras.layers.Dropout(0.5)) result.add(tf.keras.layers.ReLU()) return result up_model = upsample(3, 4) up_result = up_model(down_result) print (up_result.shape) def Generator(): inputs = tf.keras.layers.Input(shape=[256, 256, 3]) down_stack = [ downsample(64, 4, apply_batchnorm=False), # (batch_size, 128, 128, 64) downsample(128, 4), # (batch_size, 64, 64, 128) downsample(256, 4), # (batch_size, 32, 32, 256) downsample(512, 4), # (batch_size, 16, 16, 512) downsample(512, 4), # (batch_size, 8, 8, 512) downsample(512, 4), # (batch_size, 4, 4, 512) downsample(512, 4), # (batch_size, 2, 2, 512) downsample(512, 4), # (batch_size, 1, 1, 512) ] up_stack = [ upsample(512, 4, apply_dropout=True), # (batch_size, 2, 2, 1024) upsample(512, 4, apply_dropout=True), # (batch_size, 4, 4, 1024) upsample(512, 4, apply_dropout=True), # (batch_size, 8, 8, 1024) upsample(512, 4), # (batch_size, 16, 16, 1024) upsample(256, 4), # (batch_size, 32, 32, 512) upsample(128, 4), # (batch_size, 64, 64, 256) upsample(64, 4), # (batch_size, 128, 128, 128) ] initializer = tf.random_normal_initializer(0., 0.02) last = tf.keras.layers.Conv2DTranspose(OUTPUT_CHANNELS, 4, strides=2, padding='same', kernel_initializer=initializer, activation='tanh') # (batch_size, 256, 256, 3) x = inputs # Downsampling through the model skips = [] for down in down_stack: x = down(x) skips.append(x) skips = reversed(skips[:-1]) # Upsampling and establishing the skip connections for up, skip in zip(up_stack, skips): x = up(x) x = tf.keras.layers.Concatenate()([x, skip]) x = last(x) return tf.keras.Model(inputs=inputs, outputs=x) generator = Generator() tf.keras.utils.plot_model(generator, show_shapes=True, dpi=64) gen_output = generator(inp[tf.newaxis, ...], training=False) plt.imshow(gen_output[0, ...]) LAMBDA = 100 loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True) def generator_loss(disc_generated_output, gen_output, target): gan_loss = loss_object(tf.ones_like(disc_generated_output), disc_generated_output) # Mean absolute error l1_loss = tf.reduce_mean(tf.abs(target - gen_output)) total_gen_loss = gan_loss + (LAMBDA * l1_loss) return total_gen_loss, gan_loss, l1_loss def Discriminator(): initializer = tf.random_normal_initializer(0., 0.02) inp = tf.keras.layers.Input(shape=[256, 256, 3], name='input_image') tar = tf.keras.layers.Input(shape=[256, 256, 3], name='target_image') x = tf.keras.layers.concatenate([inp, tar]) # (batch_size, 256, 256, channels*2) down1 = downsample(64, 4, False)(x) # (batch_size, 128, 128, 64) down2 = downsample(128, 4)(down1) # (batch_size, 64, 64, 128) down3 = downsample(256, 4)(down2) # (batch_size, 32, 32, 256) zero_pad1 = tf.keras.layers.ZeroPadding2D()(down3) # (batch_size, 34, 34, 256) conv = tf.keras.layers.Conv2D(512, 4, strides=1, kernel_initializer=initializer, use_bias=False)(zero_pad1) # (batch_size, 31, 31, 512) batchnorm1 = tf.keras.layers.BatchNormalization()(conv) leaky_relu = tf.keras.layers.LeakyReLU()(batchnorm1) zero_pad2 = tf.keras.layers.ZeroPadding2D()(leaky_relu) # (batch_size, 33, 33, 512) last = tf.keras.layers.Conv2D(1, 4, strides=1, kernel_initializer=initializer)(zero_pad2) # (batch_size, 30, 30, 1) return tf.keras.Model(inputs=[inp, tar], outputs=last) discriminator = Discriminator() tf.keras.utils.plot_model(discriminator, show_shapes=True, dpi=64) disc_out = discriminator([inp[tf.newaxis, ...], gen_output], training=False) plt.imshow(disc_out[0, ..., -1], vmin=-20, vmax=20, cmap='RdBu_r') plt.colorbar() def discriminator_loss(disc_real_output, disc_generated_output): real_loss = loss_object(tf.ones_like(disc_real_output), disc_real_output) generated_loss = loss_object(tf.zeros_like(disc_generated_output), disc_generated_output) total_disc_loss = real_loss + generated_loss return total_disc_loss generator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5) discriminator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5) checkpoint_dir = './training_checkpoints' checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer, discriminator_optimizer=discriminator_optimizer, generator=generator, discriminator=discriminator) def generate_images(model, test_input, tar): prediction = model(test_input, training=True) plt.figure(figsize=(15, 15)) display_list = [test_input[0], tar[0], prediction[0]] title = ['Input Image', 'Ground Truth', 'Predicted Image'] for i in range(3): plt.subplot(1, 3, i+1) plt.title(title[i]) # Getting the pixel values in the [0, 1] range to plot. plt.imshow(display_list[i] * 0.5 + 0.5) plt.axis('off') plt.show() for example_input, example_target in test_dataset.take(1): generate_images(generator, example_input, example_target) log_dir="logs/" summary_writer = tf.summary.create_file_writer( log_dir + "fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) @tf.function def train_step(input_image, target, step): with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: gen_output = generator(input_image, training=True) disc_real_output = discriminator([input_image, target], training=True) disc_generated_output = discriminator([input_image, gen_output], training=True) gen_total_loss, gen_gan_loss, gen_l1_loss = generator_loss(disc_generated_output, gen_output, target) disc_loss = discriminator_loss(disc_real_output, disc_generated_output) generator_gradients = gen_tape.gradient(gen_total_loss, generator.trainable_variables) discriminator_gradients = disc_tape.gradient(disc_loss, discriminator.trainable_variables) generator_optimizer.apply_gradients(zip(generator_gradients, generator.trainable_variables)) discriminator_optimizer.apply_gradients(zip(discriminator_gradients, discriminator.trainable_variables)) with summary_writer.as_default(): tf.summary.scalar('gen_total_loss', gen_total_loss, step=step//1000) tf.summary.scalar('gen_gan_loss', gen_gan_loss, step=step//1000) tf.summary.scalar('gen_l1_loss', gen_l1_loss, step=step//1000) tf.summary.scalar('disc_loss', disc_loss, step=step//1000) def fit(train_ds, test_ds, steps): example_input, example_target = next(iter(test_ds.take(1))) start = time.time() for step, (input_image, target) in train_ds.repeat().take(steps).enumerate(): if (step) % 1000 == 0: display.clear_output(wait=True) if step != 0: print(f'Time taken for 1000 steps: {time.time()-start:.2f} sec\n') start = time.time() generate_images(generator, example_input, example_target) print(f"Step: {step//1000}k") train_step(input_image, target, step) # Training step if (step+1) % 10 == 0: print('.', end='', flush=True) # Save (checkpoint) the model every 5k steps if (step + 1) % 5000 == 0: checkpoint.save(file_prefix=checkpoint_prefix) %load_ext tensorboard %tensorboard --logdir {log_dir} fit(train_dataset, test_dataset, steps=40000) display.IFrame( src="https://tensorboard.dev/experiment/lZ0C6FONROaUMfjYkVyJqw", width="100%", height="1000px") !ls {checkpoint_dir} # Restoring the latest checkpoint in checkpoint_dir checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir)) # Run the trained model on a few examples from the test set for inp, tar in test_dataset.take(5): generate_images(generator, inp, tar) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: pix2pix Step2: Load the dataset Step3: Each original image is of size 256 x 512 containing two 256 x 256 images Step4: You need to separate real building facade images from the architecture label images—all of which will be of size 256 x 256. Step5: Plot a sample of the input (architecture label image) and real (building facade photo) images Step6: As described in the pix2pix paper, you need to apply random jittering and mirroring to preprocess the training set. Step7: You can inspect some of the preprocessed output Step8: Having checked that the loading and preprocessing works, let's define a couple of helper functions that load and preprocess the training and test sets Step9: Build an input pipeline with tf.data Step10: Build the generator Step11: Define the upsampler (decoder) Step12: Define the generator with the downsampler and the upsampler Step13: Visualize the generator model architecture Step14: Test the generator Step15: Define the generator loss Step16: The training procedure for the generator is as follows Step17: Visualize the discriminator model architecture Step18: Test the discriminator Step19: Define the discriminator loss Step20: The training procedure for the discriminator is shown below. Step21: Generate images Step22: Test the function Step23: Training Step24: The actual training loop. Since this tutorial can run of more than one dataset, and the datasets vary greatly in size the training loop is setup to work in steps instead of epochs. Step25: This training loop saves logs that you can view in TensorBoard to monitor the training progress. Step26: Finally, run the training loop Step27: If you want to share the TensorBoard results publicly, you can upload the logs to TensorBoard.dev by copying the following into a code-cell. Step28: Interpreting the logs is more subtle when training a GAN (or a cGAN like pix2pix) compared to a simple classification or regression model. Things to look for Step29: Generate some images using the test set
14,876
<ASSISTANT_TASK:> Python Code: def insertion_sort(unsorted_list): x = ipytracer.List1DTracer(unsorted_list) display(x) for i in range(1, len(x)): j = i - 1 key = x[i] while x[j] > key and j >= 0: x[j+1] = x[j] j = j - 1 x[j+1] = key return x.data insertion_sort([6,4,7,9,3,5,1,8,2]) def insertion_sort(unsorted_list): x = ipytracer.ChartTracer(unsorted_list) display(x) for i in range(1, len(x)): j = i - 1 key = x[i] while x[j] > key and j >= 0: x[j+1] = x[j] j = j - 1 x[j+1] = key return x.data insertion_sort([6,4,7,9,3,5,1,8,2]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: work Step2: Code2 - ChartTracer Step3: work
14,877
<ASSISTANT_TASK:> Python Code: # As usual, a bit of setup from __future__ import print_function import time import numpy as np import matplotlib.pyplot as plt from cs231n.classifiers.fc_net import * from cs231n.data_utils import get_CIFAR10_data from cs231n.gradient_check import eval_numerical_gradient, eval_numerical_gradient_array from cs231n.solver import Solver %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # for auto-reloading external modules # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython %load_ext autoreload %autoreload 2 def rel_error(x, y): returns relative error return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y)))) # Load the (preprocessed) CIFAR10 data. data = get_CIFAR10_data() for k, v in list(data.items()): print(('%s: ' % k, v.shape)) # Test the affine_forward function num_inputs = 2 input_shape = (4, 5, 6) output_dim = 3 input_size = num_inputs * np.prod(input_shape) weight_size = output_dim * np.prod(input_shape) x = np.linspace(-0.1, 0.5, num=input_size).reshape(num_inputs, *input_shape) w = np.linspace(-0.2, 0.3, num=weight_size).reshape(np.prod(input_shape), output_dim) b = np.linspace(-0.3, 0.1, num=output_dim) out, _ = affine_forward(x, w, b) correct_out = np.array([[ 1.49834967, 1.70660132, 1.91485297], [ 3.25553199, 3.5141327, 3.77273342]]) # Compare your output with ours. The error should be around 1e-9. print('Testing affine_forward function:') print('difference: ', rel_error(out, correct_out)) # Test the affine_backward function np.random.seed(231) x = np.random.randn(10, 2, 3) w = np.random.randn(6, 5) b = np.random.randn(5) dout = np.random.randn(10, 5) dx_num = eval_numerical_gradient_array(lambda x: affine_forward(x, w, b)[0], x, dout) dw_num = eval_numerical_gradient_array(lambda w: affine_forward(x, w, b)[0], w, dout) db_num = eval_numerical_gradient_array(lambda b: affine_forward(x, w, b)[0], b, dout) _, cache = affine_forward(x, w, b) dx, dw, db = affine_backward(dout, cache) # The error should be around 1e-10 print('Testing affine_backward function:') print('dx error: ', rel_error(dx_num, dx)) print('dw error: ', rel_error(dw_num, dw)) print('db error: ', rel_error(db_num, db)) # Test the relu_forward function x = np.linspace(-0.5, 0.5, num=12).reshape(3, 4) out, _ = relu_forward(x) correct_out = np.array([[ 0., 0., 0., 0., ], [ 0., 0., 0.04545455, 0.13636364,], [ 0.22727273, 0.31818182, 0.40909091, 0.5, ]]) # Compare your output with ours. The error should be around 5e-8 print('Testing relu_forward function:') print('difference: ', rel_error(out, correct_out)) np.random.seed(231) x = np.random.randn(10, 10) dout = np.random.randn(*x.shape) dx_num = eval_numerical_gradient_array(lambda x: relu_forward(x)[0], x, dout) _, cache = relu_forward(x) dx = relu_backward(dout, cache) # The error should be around 3e-12 print('Testing relu_backward function:') print('dx error: ', rel_error(dx_num, dx)) from cs231n.layer_utils import affine_relu_forward, affine_relu_backward np.random.seed(231) x = np.random.randn(2, 3, 4) w = np.random.randn(12, 10) b = np.random.randn(10) dout = np.random.randn(2, 10) out, cache = affine_relu_forward(x, w, b) dx, dw, db = affine_relu_backward(dout, cache) dx_num = eval_numerical_gradient_array(lambda x: affine_relu_forward(x, w, b)[0], x, dout) dw_num = eval_numerical_gradient_array(lambda w: affine_relu_forward(x, w, b)[0], w, dout) db_num = eval_numerical_gradient_array(lambda b: affine_relu_forward(x, w, b)[0], b, dout) print('Testing affine_relu_forward:') print('dx error: ', rel_error(dx_num, dx)) print('dw error: ', rel_error(dw_num, dw)) print('db error: ', rel_error(db_num, db)) np.random.seed(231) num_classes, num_inputs = 10, 50 x = 0.001 * np.random.randn(num_inputs, num_classes) y = np.random.randint(num_classes, size=num_inputs) dx_num = eval_numerical_gradient(lambda x: svm_loss(x, y)[0], x, verbose=False) loss, dx = svm_loss(x, y) # Test svm_loss function. Loss should be around 9 and dx error should be 1e-9 print('Testing svm_loss:') print('loss: ', loss) print('dx error: ', rel_error(dx_num, dx)) dx_num = eval_numerical_gradient(lambda x: softmax_loss(x, y)[0], x, verbose=False) loss, dx = softmax_loss(x, y) # Test softmax_loss function. Loss should be 2.3 and dx error should be 1e-8 print('\nTesting softmax_loss:') print('loss: ', loss) print('dx error: ', rel_error(dx_num, dx)) np.random.seed(231) N, D, H, C = 3, 5, 50, 7 X = np.random.randn(N, D) y = np.random.randint(C, size=N) std = 1e-3 model = TwoLayerNet(input_dim=D, hidden_dim=H, num_classes=C, weight_scale=std) print('Testing initialization ... ') W1_std = abs(model.params['W1'].std() - std) b1 = model.params['b1'] W2_std = abs(model.params['W2'].std() - std) b2 = model.params['b2'] assert W1_std < std / 10, 'First layer weights do not seem right' assert np.all(b1 == 0), 'First layer biases do not seem right' assert W2_std < std / 10, 'Second layer weights do not seem right' assert np.all(b2 == 0), 'Second layer biases do not seem right' print('Testing test-time forward pass ... ') model.params['W1'] = np.linspace(-0.7, 0.3, num=D*H).reshape(D, H) model.params['b1'] = np.linspace(-0.1, 0.9, num=H) model.params['W2'] = np.linspace(-0.3, 0.4, num=H*C).reshape(H, C) model.params['b2'] = np.linspace(-0.9, 0.1, num=C) X = np.linspace(-5.5, 4.5, num=N*D).reshape(D, N).T scores = model.loss(X) correct_scores = np.asarray( [[11.53165108, 12.2917344, 13.05181771, 13.81190102, 14.57198434, 15.33206765, 16.09215096], [12.05769098, 12.74614105, 13.43459113, 14.1230412, 14.81149128, 15.49994135, 16.18839143], [12.58373087, 13.20054771, 13.81736455, 14.43418138, 15.05099822, 15.66781506, 16.2846319 ]]) scores_diff = np.abs(scores - correct_scores).sum() assert scores_diff < 1e-6, 'Problem with test-time forward pass' print('Testing training loss (no regularization)') y = np.asarray([0, 5, 1]) loss, grads = model.loss(X, y) correct_loss = 3.4702243556 assert abs(loss - correct_loss) < 1e-10, 'Problem with training-time loss' model.reg = 1.0 loss, grads = model.loss(X, y) correct_loss = 26.5948426952 assert abs(loss - correct_loss) < 1e-10, 'Problem with regularization loss' for reg in [0.0, 0.7]: print('Running numeric gradient check with reg = ', reg) model.reg = reg loss, grads = model.loss(X, y) for name in sorted(grads): f = lambda _: model.loss(X, y)[0] grad_num = eval_numerical_gradient(f, model.params[name], verbose=False) print('%s relative error: %.2e' % (name, rel_error(grad_num, grads[name]))) model = TwoLayerNet() solver = None ############################################################################## # TODO: Use a Solver instance to train a TwoLayerNet that achieves at least # # 50% accuracy on the validation set. # ############################################################################## solver = Solver(model, data, update_rule='sgd', optim_config={ 'learning_rate': 1e-3, }, lr_decay=0.95, num_epochs=9, batch_size=100, print_every=100) solver.train() ############################################################################## # END OF YOUR CODE # ############################################################################## # Run this cell to visualize training loss and train / val accuracy plt.subplot(2, 1, 1) plt.title('Training loss') plt.plot(solver.loss_history, 'o') plt.xlabel('Iteration') plt.subplot(2, 1, 2) plt.title('Accuracy') plt.plot(solver.train_acc_history, '-o', label='train') plt.plot(solver.val_acc_history, '-o', label='val') plt.plot([0.5] * len(solver.val_acc_history), 'k--') plt.xlabel('Epoch') plt.legend(loc='lower right') plt.gcf().set_size_inches(15, 12) plt.show() np.random.seed(231) N, D, H1, H2, C = 2, 15, 20, 30, 10 X = np.random.randn(N, D) y = np.random.randint(C, size=(N,)) for reg in [0, 3.14]: print('Running check with reg = ', reg) model = FullyConnectedNet([H1, H2], input_dim=D, num_classes=C, reg=reg, weight_scale=5e-2, dtype=np.float64) loss, grads = model.loss(X, y) print('Initial loss: ', loss) for name in sorted(grads): f = lambda _: model.loss(X, y)[0] grad_num = eval_numerical_gradient(f, model.params[name], verbose=False, h=1e-5) print('%s relative error: %.2e' % (name, rel_error(grad_num, grads[name]))) # TODO: Use a three-layer Net to overfit 50 training examples. num_train = 50 small_data = { 'X_train': data['X_train'][:num_train], 'y_train': data['y_train'][:num_train], 'X_val': data['X_val'], 'y_val': data['y_val'], } weight_scale = 1e-2 learning_rate = 1e-2 model = FullyConnectedNet([100, 100], weight_scale=weight_scale, dtype=np.float64) solver = Solver(model, small_data, print_every=10, num_epochs=20, batch_size=25, update_rule='sgd', optim_config={ 'learning_rate': learning_rate, } ) solver.train() plt.plot(solver.loss_history, 'o') plt.title('Training loss history') plt.xlabel('Iteration') plt.ylabel('Training loss') plt.show() # TODO: Use a five-layer Net to overfit 50 training examples. num_train = 50 small_data = { 'X_train': data['X_train'][:num_train], 'y_train': data['y_train'][:num_train], 'X_val': data['X_val'], 'y_val': data['y_val'], } learning_rate = 1e-3 weight_scale = 1e-1 model = FullyConnectedNet([100, 100, 100, 100], weight_scale=weight_scale, dtype=np.float64) solver = Solver(model, small_data, print_every=10, num_epochs=20, batch_size=25, update_rule='sgd', optim_config={ 'learning_rate': learning_rate, } ) solver.train() plt.plot(solver.loss_history, 'o') plt.title('Training loss history') plt.xlabel('Iteration') plt.ylabel('Training loss') plt.show() from cs231n.optim import sgd_momentum N, D = 4, 5 w = np.linspace(-0.4, 0.6, num=N*D).reshape(N, D) dw = np.linspace(-0.6, 0.4, num=N*D).reshape(N, D) v = np.linspace(0.6, 0.9, num=N*D).reshape(N, D) config = {'learning_rate': 1e-3, 'velocity': v} next_w, _ = sgd_momentum(w, dw, config=config) expected_next_w = np.asarray([ [ 0.1406, 0.20738947, 0.27417895, 0.34096842, 0.40775789], [ 0.47454737, 0.54133684, 0.60812632, 0.67491579, 0.74170526], [ 0.80849474, 0.87528421, 0.94207368, 1.00886316, 1.07565263], [ 1.14244211, 1.20923158, 1.27602105, 1.34281053, 1.4096 ]]) expected_velocity = np.asarray([ [ 0.5406, 0.55475789, 0.56891579, 0.58307368, 0.59723158], [ 0.61138947, 0.62554737, 0.63970526, 0.65386316, 0.66802105], [ 0.68217895, 0.69633684, 0.71049474, 0.72465263, 0.73881053], [ 0.75296842, 0.76712632, 0.78128421, 0.79544211, 0.8096 ]]) print('next_w error: ', rel_error(next_w, expected_next_w)) print('velocity error: ', rel_error(expected_velocity, config['velocity'])) num_train = 4000 small_data = { 'X_train': data['X_train'][:num_train], 'y_train': data['y_train'][:num_train], 'X_val': data['X_val'], 'y_val': data['y_val'], } solvers = {} for update_rule in ['sgd', 'sgd_momentum']: print('running with ', update_rule) model = FullyConnectedNet([100, 100, 100, 100, 100], weight_scale=5e-2) solver = Solver(model, small_data, num_epochs=5, batch_size=100, update_rule=update_rule, optim_config={ 'learning_rate': 1e-2, }, verbose=True) solvers[update_rule] = solver solver.train() print() plt.subplot(3, 1, 1) plt.title('Training loss') plt.xlabel('Iteration') plt.subplot(3, 1, 2) plt.title('Training accuracy') plt.xlabel('Epoch') plt.subplot(3, 1, 3) plt.title('Validation accuracy') plt.xlabel('Epoch') for update_rule, solver in list(solvers.items()): plt.subplot(3, 1, 1) plt.plot(solver.loss_history, 'o', label=update_rule) plt.subplot(3, 1, 2) plt.plot(solver.train_acc_history, '-o', label=update_rule) plt.subplot(3, 1, 3) plt.plot(solver.val_acc_history, '-o', label=update_rule) for i in [1, 2, 3]: plt.subplot(3, 1, i) plt.legend(loc='upper center', ncol=4) plt.gcf().set_size_inches(15, 15) plt.show() # Test RMSProp implementation; you should see errors less than 1e-7 from cs231n.optim import rmsprop N, D = 4, 5 w = np.linspace(-0.4, 0.6, num=N*D).reshape(N, D) dw = np.linspace(-0.6, 0.4, num=N*D).reshape(N, D) cache = np.linspace(0.6, 0.9, num=N*D).reshape(N, D) config = {'learning_rate': 1e-2, 'cache': cache} next_w, _ = rmsprop(w, dw, config=config) expected_next_w = np.asarray([ [-0.39223849, -0.34037513, -0.28849239, -0.23659121, -0.18467247], [-0.132737, -0.08078555, -0.02881884, 0.02316247, 0.07515774], [ 0.12716641, 0.17918792, 0.23122175, 0.28326742, 0.33532447], [ 0.38739248, 0.43947102, 0.49155973, 0.54365823, 0.59576619]]) expected_cache = np.asarray([ [ 0.5976, 0.6126277, 0.6277108, 0.64284931, 0.65804321], [ 0.67329252, 0.68859723, 0.70395734, 0.71937285, 0.73484377], [ 0.75037008, 0.7659518, 0.78158892, 0.79728144, 0.81302936], [ 0.82883269, 0.84469141, 0.86060554, 0.87657507, 0.8926 ]]) print('next_w error: ', rel_error(expected_next_w, next_w)) print('cache error: ', rel_error(expected_cache, config['cache'])) # Test Adam implementation; you should see errors around 1e-7 or less from cs231n.optim import adam N, D = 4, 5 w = np.linspace(-0.4, 0.6, num=N*D).reshape(N, D) dw = np.linspace(-0.6, 0.4, num=N*D).reshape(N, D) m = np.linspace(0.6, 0.9, num=N*D).reshape(N, D) v = np.linspace(0.7, 0.5, num=N*D).reshape(N, D) config = {'learning_rate': 1e-2, 'm': m, 'v': v, 't': 5} next_w, _ = adam(w, dw, config=config) expected_next_w = np.asarray([ [-0.40094747, -0.34836187, -0.29577703, -0.24319299, -0.19060977], [-0.1380274, -0.08544591, -0.03286534, 0.01971428, 0.0722929], [ 0.1248705, 0.17744702, 0.23002243, 0.28259667, 0.33516969], [ 0.38774145, 0.44031188, 0.49288093, 0.54544852, 0.59801459]]) expected_v = np.asarray([ [ 0.69966, 0.68908382, 0.67851319, 0.66794809, 0.65738853,], [ 0.64683452, 0.63628604, 0.6257431, 0.61520571, 0.60467385,], [ 0.59414753, 0.58362676, 0.57311152, 0.56260183, 0.55209767,], [ 0.54159906, 0.53110598, 0.52061845, 0.51013645, 0.49966, ]]) expected_m = np.asarray([ [ 0.48, 0.49947368, 0.51894737, 0.53842105, 0.55789474], [ 0.57736842, 0.59684211, 0.61631579, 0.63578947, 0.65526316], [ 0.67473684, 0.69421053, 0.71368421, 0.73315789, 0.75263158], [ 0.77210526, 0.79157895, 0.81105263, 0.83052632, 0.85 ]]) print('next_w error: ', rel_error(expected_next_w, next_w)) print('v error: ', rel_error(expected_v, config['v'])) print('m error: ', rel_error(expected_m, config['m'])) learning_rates = {'rmsprop': 1e-4, 'adam': 1e-3} for update_rule in ['adam', 'rmsprop']: print('running with ', update_rule) model = FullyConnectedNet([100, 100, 100, 100, 100], weight_scale=5e-2) solver = Solver(model, small_data, num_epochs=5, batch_size=100, update_rule=update_rule, optim_config={ 'learning_rate': learning_rates[update_rule] }, verbose=True) solvers[update_rule] = solver solver.train() print() plt.subplot(3, 1, 1) plt.title('Training loss') plt.xlabel('Iteration') plt.subplot(3, 1, 2) plt.title('Training accuracy') plt.xlabel('Epoch') plt.subplot(3, 1, 3) plt.title('Validation accuracy') plt.xlabel('Epoch') for update_rule, solver in list(solvers.items()): plt.subplot(3, 1, 1) plt.plot(solver.loss_history, 'o', label=update_rule) plt.subplot(3, 1, 2) plt.plot(solver.train_acc_history, '-o', label=update_rule) plt.subplot(3, 1, 3) plt.plot(solver.val_acc_history, '-o', label=update_rule) for i in [1, 2, 3]: plt.subplot(3, 1, i) plt.legend(loc='upper center', ncol=4) plt.gcf().set_size_inches(15, 15) plt.show() best_model = None ################################################################################ # TODO: Train the best FullyConnectedNet that you can on CIFAR-10. You might # # batch normalization and dropout useful. Store your best model in the # # best_model variable. # ################################################################################ learning_rates['sgd_momentum']=1e-2 best_model_score=0.0 for learning_rate in [1e-2,5e-3,1e-3]: for weight_scale in [5e-2,5e-1]: model = FullyConnectedNet([100, 100, 100, 100, 100], weight_scale=weight_scale) solver = Solver(model, data, num_epochs=8, batch_size=500, update_rule='adam', optim_config={ 'learning_rate': learning_rate }, verbose=True) solver.train() print(".") if best_model_score < solver.val_acc_history[-1]: best_model = model best_model_score = solver.val_acc_history[-1] print ("score is "+str(best_model_score)) ################################################################################ # END OF YOUR CODE # ################################################################################ y_test_pred = np.argmax(best_model.loss(data['X_test']), axis=1) y_val_pred = np.argmax(best_model.loss(data['X_val']), axis=1) print('Validation set accuracy: ', (y_val_pred == data['y_val']).mean()) print('Test set accuracy: ', (y_test_pred == data['y_test']).mean()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Fully-Connected Neural Nets Step4: Affine layer Step5: Affine layer Step6: ReLU layer Step7: ReLU layer Step8: "Sandwich" layers Step9: Loss layers Step10: Two-layer network Step11: Solver Step12: Multilayer network Step13: As another sanity check, make sure you can overfit a small dataset of 50 images. First we will try a three-layer network with 100 units in each hidden layer. You will need to tweak the learning rate and initialization scale, but you should be able to overfit and achieve 100% training accuracy within 20 epochs. Step14: Now try to use a five-layer network with 100 units on each layer to overfit 50 training examples. Again you will have to adjust the learning rate and weight initialization, but you should be able to achieve 100% training accuracy within 20 epochs. Step15: Inline question Step16: Once you have done so, run the following to train a six-layer network with both SGD and SGD+momentum. You should see the SGD+momentum update rule converge faster. Step17: RMSProp and Adam Step18: Once you have debugged your RMSProp and Adam implementations, run the following to train a pair of deep networks using these new update rules Step19: Train a good model! Step20: Test you model
14,878
<ASSISTANT_TASK:> Python Code: import graphlab sales = graphlab.SFrame('kc_house_data.gl/kc_house_data.gl') c = sales.random_split(.8,seed=0) train_data=c # Let's compute the mean of the House Prices in King County in 2 different ways. prices = sales['price'] # extract the price column of the sales SFrame -- this is now an SArray # recall that the arithmetic average (the mean) is the sum of the prices divided by the total number of houses: sum_prices = prices.sum() num_houses = prices.size() # when prices is an SArray .size() returns its length avg_price_1 = sum_prices/num_houses avg_price_2 = prices.mean() # if you just want the average, the .mean() function print "average price via method 1: " + str(avg_price_1) print "average price via method 2: " + str(avg_price_2) # if we want to multiply every price by 0.5 it's a simple as: half_prices = 0.5*prices # Let's compute the sum of squares of price. We can multiply two SArrays of the same length elementwise also with * prices_squared = prices*prices sum_prices_squared = prices_squared.sum() # price_squared is an SArray of the squares and we want to add them up. print "the sum of price squared is: " + str(sum_prices_squared) def simple_linear_regression(input_feature, output): input_sum = input_feature.sum() output_sum = output.sum() N = input_feature.size() input_mean = input_sum/N output_mean = output_sum/N in_out_prod = input_feature * output in_out_prod_sum = in_out_prod.sum() prod_sum = output_sum * input_sum prod_mean = prod_sum/N sqr_test = input_feature * input_feature sqr_test_sum = sqr_test.sum() sqr_sum = input_sum * input_sum sqr_mean = sqr_sum/N slope = (in_out_prod_sum - prod_mean)/(sqr_test_sum - sqr_mean) intercept = output_mean - (input_mean * slope) return(intercept, slope) test_feature = graphlab.SArray(range(5)) test_output = graphlab.SArray(3 + 5*test_feature) (test_intercept, test_slope) = simple_linear_regression(test_feature, test_output) print "Intercept: " + str(test_intercept) print "Slope: " + str(test_slope) sqft_intercept, sqft_slope = simple_linear_regression(train_data['sqft_living'], train_data['price']) print "Intercept: " + str(sqft_intercept) print "Slope: " + str(sqft_slope) def get_regression_predictions(input_feature, intercept, slope): predicted_values = intercept + slope * input_feature return predicted_values my_house_sqft = 2650 estimated_price = get_regression_predictions(my_house_sqft, sqft_intercept, sqft_slope) print "The estimated price for a house with %d squarefeet is $%.2f" % (my_house_sqft, estimated_price) import numpy as np def get_residual_sum_of_squares(input_feature, output, intercept, slope): # First get the predictions predictions = input_feature.apply(lambda x:get_regression_predictions(x, intercept, slope)) # then compute the residuals (since we are squaring it doesn't matter which order you subtract) diff = np.subtract(predictions,output) # square the residuals and add them up RSS = np.vdot(diff,diff) return(RSS) print get_residual_sum_of_squares(test_feature, test_output, test_intercept, test_slope) # should be 0.0 rss_prices_on_sqft = get_residual_sum_of_squares(train_data['sqft_living'], train_data['price'], sqft_intercept, sqft_slope) print 'The RSS of predicting Prices based on Square Feet is : ' + str(rss_prices_on_sqft) def inverse_regression_predictions(output, intercept, slope): # solve output = intercept + slope*input_feature for input_feature. Use this equation to compute the inverse predictions: estimated_feature = (output - intercept)/slope return estimated_feature my_house_price = 800000 estimated_squarefeet = inverse_regression_predictions(my_house_price, sqft_intercept, sqft_slope) print "The estimated squarefeet for a house worth $%.2f is %d" % (my_house_price, estimated_squarefeet) # Estimate the slope and intercept for predicting 'price' based on 'bedrooms' sqft_bed_intercept, sqft_bed_slope = simple_linear_regression(train_data['bedrooms'], train_data['price']) print "Intercept: " + str(sqft_bed_intercept) print "Slope: " + str(sqft_bed_slope) # Compute RSS when using bedrooms on TEST data: rss_prices_on_bedrooms = get_residual_sum_of_squares(test_data['bedrooms'], test_data['price'], sqft_bed_intercept, sqft_bed_slope) print 'The RSS of predicting Prices based on Bedrooms is : ' + str(rss_prices_on_bedrooms) # Compute RSS when using squarfeet on TEST data: rss_prices_on_sqft = get_residual_sum_of_squares(test_data['sqft_living'], test_data['price'], sqft_intercept, sqft_slope) print 'The RSS of predicting Prices based on Square Feet is : ' + str(rss_prices_on_sqft) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load house sales data Step2: Split data into training and testing Step3: Useful SFrame summary functions Step4: As we see we get the same answer both ways Step5: Aside Step6: We can test that our function works by passing it something where we know the answer. In particular we can generate a feature and then put the output exactly on a line Step7: Now that we know it works let's build a regression model for predicting price based on sqft_living. Rembember that we train on train_data! Step8: Predicting Values Step9: Now that we can calculate a prediction given the slop and intercept let's make a prediction. Use (or alter) the following to find out the estimated price for a house with 2650 squarefeet according to the squarefeet model we estiamted above. Step10: Residual Sum of Squares Step11: Let's test our get_residual_sum_of_squares function by applying it to the test model where the data lie exactly on a line. Since they lie exactly on a line the residual sum of squares should be zero! Step12: Now use your function to calculate the RSS on training data from the squarefeet model calculated above. Step13: Predict the squarefeet given price Step14: Now that we have a function to compute the squarefeet given the price from our simple regression model let's see how big we might expect a house that coses $800,000 to be. Step15: New Model Step16: Test your Linear Regression Algorithm
14,879
<ASSISTANT_TASK:> Python Code: import os import re import operator import matplotlib.pyplot as plt import warnings import gensim import numpy as np warnings.filterwarnings('ignore') # Let's not pay heed to them right now import nltk nltk.download('stopwords') # Let's make sure the 'stopword' package is downloaded & updated nltk.download('wordnet') # Let's also download wordnet, which will be used for lemmatization from gensim.models import CoherenceModel, LdaModel, LsiModel, HdpModel from gensim.models.wrappers import LdaMallet from gensim.corpora import Dictionary from pprint import pprint %matplotlib inline test_data_dir = '{}'.format(os.sep).join([gensim.__path__[0], 'test', 'test_data']) lee_train_file = test_data_dir + os.sep + 'lee_background.cor' with open(lee_train_file) as f: for n, l in enumerate(f): if n < 5: print([l]) def build_texts(fname): Function to build tokenized texts from file Parameters: ---------- fname: File to be read Returns: ------- yields preprocessed line with open(fname) as f: for line in f: yield gensim.utils.simple_preprocess(line, deacc=True, min_len=3) train_texts = list(build_texts(lee_train_file)) len(train_texts) bigram = gensim.models.Phrases(train_texts) # for bigram collocation detection bigram[['new', 'york', 'example']] from gensim.utils import lemmatize from nltk.corpus import stopwords stops = set(stopwords.words('english')) # nltk stopwords list def process_texts(texts): Function to process texts. Following are the steps we take: 1. Stopword Removal. 2. Collocation detection. 3. Lemmatization (not stem since stemming can reduce the interpretability). Parameters: ---------- texts: Tokenized texts. Returns: ------- texts: Pre-processed tokenized texts. texts = [[word for word in line if word not in stops] for line in texts] texts = [bigram[line] for line in texts] from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() texts = [[word for word in lemmatizer.lemmatize(' '.join(line), pos='v').split()] for line in texts] return texts train_texts = process_texts(train_texts) train_texts[5:6] dictionary = Dictionary(train_texts) corpus = [dictionary.doc2bow(text) for text in train_texts] lsimodel = LsiModel(corpus=corpus, num_topics=10, id2word=dictionary) lsimodel.show_topics(num_topics=5) # Showing only the top 5 topics lsitopics = lsimodel.show_topics(formatted=False) hdpmodel = HdpModel(corpus=corpus, id2word=dictionary) hdpmodel.show_topics() hdptopics = hdpmodel.show_topics(formatted=False) ldamodel = LdaModel(corpus=corpus, num_topics=10, id2word=dictionary) import pyLDAvis.gensim pyLDAvis.enable_notebook() pyLDAvis.gensim.prepare(ldamodel, corpus, dictionary) ldatopics = ldamodel.show_topics(formatted=False) def evaluate_graph(dictionary, corpus, texts, limit): Function to display num_topics - LDA graph using c_v coherence Parameters: ---------- dictionary : Gensim dictionary corpus : Gensim corpus limit : topic limit Returns: ------- lm_list : List of LDA topic models c_v : Coherence values corresponding to the LDA model with respective number of topics c_v = [] lm_list = [] for num_topics in range(1, limit): lm = LdaModel(corpus=corpus, num_topics=num_topics, id2word=dictionary) lm_list.append(lm) cm = CoherenceModel(model=lm, texts=texts, dictionary=dictionary, coherence='c_v') c_v.append(cm.get_coherence()) # Show graph x = range(1, limit) plt.plot(x, c_v) plt.xlabel("num_topics") plt.ylabel("Coherence score") plt.legend(("c_v"), loc='best') plt.show() return lm_list, c_v %%time lmlist, c_v = evaluate_graph(dictionary=dictionary, corpus=corpus, texts=train_texts, limit=10) pyLDAvis.gensim.prepare(lmlist[2], corpus, dictionary) lmtopics = lmlist[5].show_topics(formatted=False) def ret_top_model(): Since LDAmodel is a probabilistic model, it comes up different topics each time we run it. To control the quality of the topic model we produce, we can see what the interpretability of the best topic is and keep evaluating the topic model until this threshold is crossed. Returns: ------- lm: Final evaluated topic model top_topics: ranked topics in decreasing order. List of tuples top_topics = [(0, 0)] while top_topics[0][1] < 0.97: lm = LdaModel(corpus=corpus, id2word=dictionary) coherence_values = {} for n, topic in lm.show_topics(num_topics=-1, formatted=False): topic = [word for word, _ in topic] cm = CoherenceModel(topics=[topic], texts=train_texts, dictionary=dictionary, window_size=10) coherence_values[n] = cm.get_coherence() top_topics = sorted(coherence_values.items(), key=operator.itemgetter(1), reverse=True) return lm, top_topics lm, top_topics = ret_top_model() print(top_topics[:5]) pprint([lm.show_topic(topicid) for topicid, c_v in top_topics[:10]]) lda_lsi_topics = [[word for word, prob in lm.show_topic(topicid)] for topicid, c_v in top_topics] lsitopics = [[word for word, prob in topic] for topicid, topic in lsitopics] hdptopics = [[word for word, prob in topic] for topicid, topic in hdptopics] ldatopics = [[word for word, prob in topic] for topicid, topic in ldatopics] lmtopics = [[word for word, prob in topic] for topicid, topic in lmtopics] lsi_coherence = CoherenceModel(topics=lsitopics[:10], texts=train_texts, dictionary=dictionary, window_size=10).get_coherence() hdp_coherence = CoherenceModel(topics=hdptopics[:10], texts=train_texts, dictionary=dictionary, window_size=10).get_coherence() lda_coherence = CoherenceModel(topics=ldatopics, texts=train_texts, dictionary=dictionary, window_size=10).get_coherence() lm_coherence = CoherenceModel(topics=lmtopics, texts=train_texts, dictionary=dictionary, window_size=10).get_coherence() lda_lsi_coherence = CoherenceModel(topics=lda_lsi_topics[:10], texts=train_texts, dictionary=dictionary, window_size=10).get_coherence() def evaluate_bar_graph(coherences, indices): Function to plot bar graph. coherences: list of coherence values indices: Indices to be used to mark bars. Length of this and coherences should be equal. assert len(coherences) == len(indices) n = len(coherences) x = np.arange(n) plt.bar(x, coherences, width=0.2, tick_label=indices, align='center') plt.xlabel('Models') plt.ylabel('Coherence Value') evaluate_bar_graph([lsi_coherence, hdp_coherence, lda_coherence, lm_coherence, lda_lsi_coherence], ['LSI', 'HDP', 'LDA', 'LDA_Mod', 'LDA_LSI']) from gensim.topic_coherence import (segmentation, probability_estimation, direct_confirmation_measure, indirect_confirmation_measure, aggregation) from gensim.matutils import argsort from collections import namedtuple make_pipeline = namedtuple('Coherence_Measure', 'seg, prob, conf, aggr') measure = make_pipeline(segmentation.s_one_one, probability_estimation.p_boolean_sliding_window, direct_confirmation_measure.log_ratio_measure, aggregation.arithmetic_mean) topics = [] for topic in lm.state.get_lambda(): bestn = argsort(topic, topn=10, reverse=True) topics.append(bestn) # Perform segmentation segmented_topics = measure.seg(topics) # Since this is a window-based coherence measure we will perform window based prob estimation per_topic_postings, num_windows = measure.prob(texts=train_texts, segmented_topics=segmented_topics, dictionary=dictionary, window_size=2) confirmed_measures = measure.conf(segmented_topics, per_topic_postings, num_windows, normalize=False) print(measure.aggr(confirmed_measures)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Analysing our corpus. Step4: Preprocessing our data. Remember Step5: Finalising our dictionary and corpus Step6: Topic modeling with LSI Step7: Topic modeling with HDP Step8: Topic modeling using LDA Step9: pyLDAvis is a great way to visualize an LDA model. To summarize in short, the area of the circles represent the prevelance of the topic. The length of the bars on the right represent the membership of a term in a particular topic. pyLDAvis is based on this paper. Step11: Finding out the optimal number of topics Step13: LDA as LSI Step14: Inference Step16: Evaluating all the topic models Step17: Customizing the topic coherence measure Step18: To get topics out of the topic model Step19: Step 1 Step20: Step 2 Step21: Step 3 Step22: Step 4
14,880
<ASSISTANT_TASK:> Python Code: def countGreater(arr , n , k ) : l = 0 r = n - 1 leftGreater = n while(l <= r ) : m = int(l +(r - l ) / 2 ) if(arr[m ] > k ) : leftGreater = m r = m - 1  else : l = m + 1   return(n - leftGreater )  if __name__== ' __main __' : arr =[3 , 3 , 4 , 7 , 7 , 7 , 11 , 13 , 13 ] n = len(arr ) k = 7 print(countGreater(arr , n , k ) )  <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
14,881
<ASSISTANT_TASK:> Python Code: import copy import cPickle import glob import gzip import os import random import shutil import subprocess import cdpybio as cpb import matplotlib.pyplot as plt import numpy as np import pandas as pd import peer import pybedtools as pbt import scipy.stats as stats import seaborn as sns import statsmodels.api as sm import vcf as pyvcf import ciepy import cardipspy as cpy %matplotlib inline %load_ext rpy2.ipython dy_name = 'eqtl_input' import socket if socket.gethostname() == 'fl-hn1' or socket.gethostname() == 'fl-hn2': dy = os.path.join(ciepy.root, 'sandbox', dy_name) cpy.makedir(dy) pbt.set_tempdir(dy) outdir = os.path.join(ciepy.root, 'output', dy_name) cpy.makedir(outdir) private_outdir = os.path.join(ciepy.root, 'private_output', dy_name) cpy.makedir(private_outdir) random.seed(20150605) sns.set_context('notebook') fn = os.path.join(ciepy.root, 'output', 'input_data', 'wgs_metadata.tsv') wgs_meta = pd.read_table(fn, index_col=0, squeeze=True) fn = os.path.join(ciepy.root, 'output', 'input_data', 'rnaseq_metadata.tsv') rna_meta = pd.read_table(fn, index_col=0) rna_meta = rna_meta[rna_meta.in_eqtl] fn = os.path.join(ciepy.root, 'output', 'input_data', 'subject_metadata.tsv') subject_meta = pd.read_table(fn, index_col=0) gene_info = pd.read_table(cpy.gencode_gene_info, index_col=0) fn = os.path.join(ciepy.root, 'output', 'input_data', 'rsem_tpm.tsv') tpm = pd.read_table(fn, index_col=0) tpm = tpm[rna_meta.index] #log_tpm = np.log10(tpm + 1) def transform_standard_normal(df): gc_ranks = df.rank(axis=1) gc_ranks = gc_ranks / (gc_ranks.shape[1] + 1) std_norm = stats.norm.ppf(gc_ranks) std_norm = pd.DataFrame(std_norm, index=gc_ranks.index, columns=gc_ranks.columns) return std_norm erna = rna_meta[rna_meta.in_eqtl] esub = subject_meta.ix[erna.subject_id] ewgs = wgs_meta.ix[erna.wgs_id] print('We have {} distinct subjects for eQTL analysis.'.format(erna.shape[0])) erna.passage.value_counts() esub.sex.value_counts() esub.age.hist() plt.ylabel('Number of samples') plt.xlabel('Age'); vc = esub.family_id.value_counts() vc = vc[vc > 1] vc.plot(kind='bar') plt.ylabel('Number of subjects from family') plt.xlabel('Family ID'); print('{} unique family IDs.'.format(len(set(esub.family_id)))) print('{} families have only one subject.'.format(sum(esub.family_id.value_counts() == 1))) esub.ethnicity_group.value_counts() ewgs.cell.value_counts() dy = os.path.join(private_outdir, 'kinship') cpy.makedir(dy) # Intersect our variants with 1KGP variants so we get variants in both cardips and # 1KGP to use for LD pruning. This takes several hours. This could probably be sped # up by running separate intersections for each chromosome separately. fn = os.path.join(dy, '1kgp_isec', '0000.vcf.gz') autosomal_variants = os.path.join(ciepy.root, 'private_output', 'input_data', 'autosomal_variants.vcf.gz') if not os.path.exists(fn): vcfs = [('/publicdata/1KGP_20151103/ALL.chr{}.' 'phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz'.format(x)) for x in range(1, 23)] c = ('bcftools isec -i\'TYPE="snp" & N_ALT == 1\' -c none -O z -p {} -n=2 {} {}'.format( os.path.join(dy, '1kgp_isec'), autosomal_variants, ' '.join(vcfs))) subprocess.check_call(c, shell=True) tdy = os.path.join(dy, '1kgp_pruned') if not os.path.exists(tdy): from ipyparallel import Client parallel_client = Client() dview = parallel_client[:] with dview.sync_imports(): import os import subprocess cpy.makedir(tdy) dview.push(dict(tdy=tdy)) %px os.chdir(tdy) # The plink --keep option needs a column for sample ID and a column for # family ID. We can use the sample name as the family ID here. se = pd.read_table('/publicdata/1KGP_20151103/EUR_individuals.txt', header=None, squeeze=True) se = se + '\t' + se with open(os.path.join(tdy, 'keep_samples.tsv'), 'w') as f: f.write('\n'.join(se.values) + '\n') vcfs = [os.path.join(dy, '1kgp_isec', '00{:02}.vcf.gz'.format(x)) for x in range(1, 23)] commands = [('/frazer01/software/plink-1.90b3x/plink ' '--keep {} ' '--biallelic-only --indep-pairwise 50 5 0.2 --vcf {} ' '--out {}_pruned'.format(os.path.join(tdy, 'keep_samples.tsv'), x, os.path.split(x)[1].split('.')[0])) for x in vcfs] dview.scatter('commands', commands) %px [subprocess.check_call(c, shell=True) for c in commands]; # Now I need to take the plink text files and filter the 1KGP VCFs from the # intersection step. I'll do this in parallel on the IPython cluster again. tdy = os.path.join(dy, '1kgp_pruned') vcfs = [os.path.join(dy, '1kgp_isec', '00{:02}.vcf.gz'.format(x)) for x in range(1, 23)] out_vcfs = [x.replace('.vcf.gz', '_pruned.vcf.gz').replace('1kgp_isec', '1kgp_pruned') for x in vcfs] snps = [os.path.join(tdy, '00{:02}_pruned.prune.in'.format(i)) for i in range(1, 23)] if not os.path.exists(out_vcfs[0]): from ipyparallel import Client parallel_client = Client() dview = parallel_client[:] with dview.sync_imports(): import os import subprocess commands = ['/frazer01/software/bcftools-1.2/bcftools view -i\'ID=@{}\' ' '{} -O z -o {}'.format(snps[i], vcfs[i], out_vcfs[i]) for i in range(len(snps))] dview.scatter('commands', commands) %px [subprocess.check_call(c, shell=True) for c in commands]; # We'll index the pruned VCF files as well. commands = ['/frazer01/software/bcftools-1.2/bcftools index -t {}'.format(x) for x in out_vcfs] dview.scatter('commands', commands) %px [subprocess.check_call(c, shell=True) for c in commands]; # Intersect our variants with 1KGP variants so we get variants in both cardips and # 1KGP to use for LD pruning. This takes a few hours. This could probably be sped # up by running separate intersections for each chromosome separately. tdy = os.path.join(dy, 'cardips_pruned_isec') if not os.path.exists(tdy): fn = os.path.join(dy, '1kgp_isec', '0000.vcf.gz') out_vcfs = [x.replace('.vcf.gz', '_pruned.vcf.gz').replace('1kgp_isec', '1kgp_pruned') for x in vcfs] c = ('bcftools isec -i\'TYPE="snp" & N_ALT == 1\' -c none -O z -p {} -n=2 {} {}'.format( tdy, fn, ' '.join(out_vcfs))) subprocess.check_call(c, shell=True) vcf = os.path.join(dy, 'cardips_pruned_isec', '0000.vcf.gz') kmatrix = os.path.join(outdir, 'wgs.kin') if not os.path.exists(kmatrix): c = ('epacts make-kin --vcf {} --min-maf 0.01 --min-callrate 0.95 ' '--out {} --run 10'.format(vcf, kmatrix)) subprocess.check_call(c, shell=True) kdump = os.path.join(outdir, 'wgs.kindump') if not os.path.exists(kdump): c = ('pEmmax kin-util --kinf {} --outf {} --dump'.format( kmatrix, os.path.splitext(kdump)[0])) subprocess.check_call(c, shell=True) kmatrix = pd.read_table(kdump) sns.clustermap(kmatrix, xticklabels=False, yticklabels=False, linewidths=0); fn = os.path.join(outdir, 'unrelateds.tsv') if not os.path.exists(fn): import networkx as nx bkmatrix = kmatrix < 0.05 t = bkmatrix.ix[set(rna_meta.wgs_id), set(rna_meta.wgs_id)] ts = subject_meta.ix[set(rna_meta.subject_id)] ts = ts.merge(rna_meta[['subject_id', 'wgs_id']], left_index=True, right_on='subject_id') vc = ts.family_id.value_counts() vc = vc[vc > 1] keep = [] for i in vc.index: ind = ts[ts.family_id == i].wgs_id tbk = bkmatrix.ix[ind, ind] g = nx.Graph(tbk.values) c = list(nx.find_cliques(g)) m = max([len(x) for x in c]) c = [x for x in c if len(x) == m] c = random.choice(c) for j in c: keep.append(ind[j]) vc = ts.family_id.value_counts() vc = vc[vc == 1] keep += list(ts[ts.family_id.apply(lambda x: x in vc.index)].wgs_id) # keep has the wgs_id's for unrelated people unrelateds = rna_meta[rna_meta.wgs_id.apply(lambda x: x in keep)] unrelateds.to_csv(fn, sep='\t') else: unrelateds = pd.read_table(fn, index_col=0) meta = wgs_meta.merge(subject_meta, left_on='subject_id', right_index=True) kmatrix = kmatrix.ix[meta.index, meta.index] vals = [] f = meta.father_id.dropna() m = meta.mother_id.dropna() for i in kmatrix.index: if i in f.index: fid = meta.ix[i, 'father_id'] if fid in wgs_meta.subject_id.values: fid = wgs_meta[wgs_meta.subject_id == fid].index[0] vals.append(kmatrix.ix[i, fid]) if i in m.index: mid = meta.ix[i, 'mother_id'] if mid in wgs_meta.subject_id.values: mid = wgs_meta[wgs_meta.subject_id == mid].index[0] vals.append(kmatrix.ix[i, mid]) pd.Series(vals).plot(kind='hist') plt.ylabel('Number of parent/child pairs') plt.xlabel('Kinship coefficient') plt.title('Kinship coefficient for parent/child pairs'); fn = os.path.join(outdir, 'emmax_samples.tsv') if not os.path.exists(fn): se = rna_meta[rna_meta.in_eqtl].wgs_id.copy(deep=True) se.sort_values(inplace=True) samples = pd.DataFrame(se) samples.column = ['wgs_id'] samples['wgs_id'].to_csv(fn, sep='\t', header=False, index=False) fn = os.path.join(outdir, 'emmax_full.tsv') cov = pd.get_dummies(data=rna_meta.ix[samples.index], columns=['sequence_id']) cov = cov.merge(subject_meta, left_on='subject_id', right_index=True) cov.index = cov.wgs_id cov = cov[['sex', 'age', 'sequence_id_6', 'sequence_id_7', 'sequence_id_8']] cov['sex'] = cov.sex.apply(lambda x: {'M':1, 'F':2}[x]) cov = cov.astype(int) cov.to_csv(fn, sep='\t', header=False) cov['sex'].to_csv(os.path.join(outdir, 'emmax_sex_only.tsv'), sep='\t', header=False) else: cov = pd.read_table(os.path.join(outdir, 'emmax_full.tsv'), index_col=0, header=None, names=['sex', 'age', 'sequence_id_6', 'sequence_id_7', 'sequence_id_8']) fn = os.path.join(outdir, 'emmax_samples_unrelated.tsv') if not os.path.exists(fn): se = unrelateds.wgs_id.copy(deep=True) se.sort_values(inplace=True) samples = pd.DataFrame(se) samples.column = ['wgs_id'] samples['wgs_id'].to_csv(fn, sep='\t', header=False, index=False) fn = os.path.join(outdir, 'emmax_full_unrelated.tsv') cov = pd.get_dummies(data=rna_meta.ix[samples.index], columns=['sequence_id']) cov = cov.merge(subject_meta, left_on='subject_id', right_index=True) cov.index = cov.wgs_id cov = cov[['sex', 'age', 'sequence_id_6', 'sequence_id_7', 'sequence_id_8']] cov['sex'] = cov.sex.apply(lambda x: {'M':1, 'F':2}[x]) cov = cov.astype(int) cov.to_csv(fn, sep='\t', header=False) cov['sex'].to_csv(os.path.join(outdir, 'emmax_sex_only_unrelated.tsv'), sep='\t', header=False) random.seed(20160223) fn = os.path.join(outdir, 'unrelated_subsets.tsv') if not os.path.exists(fn): samples = [] for n in np.arange(40, unrelateds.shape[0], 10): samples.append(','.join(random.sample(unrelateds.wgs_id, n))) samples = pd.Series(samples, index=np.arange(40, unrelateds.shape[0], 10)) samples.to_csv(fn, sep='\t') %%R library(edgeR) %%R -i tpm -o tpm_size_factors tpm_size_factors <- calcNormFactors(tpm) tpm_size_factors = pd.Series(tpm_size_factors, index=tpm.columns) tpm_size_factors.describe() tpm_norm = tpm / tpm_size_factors fn = os.path.join(outdir, 'tpm_log_filtered_phe_std_norm.tsv') if not os.path.exists(fn): log_tpm = np.log10(tpm_norm + 1) tpm_f = log_tpm[rna_meta[rna_meta.in_eqtl].index] tpm_f = tpm_f[(tpm_f > np.log10(2)).sum(axis=1) >= 10] tpm_f = (tpm_f.T - tpm_f.mean(axis=1)).T tpm_f.to_csv(os.path.join(outdir, 'tpm_log_filtered.tsv'), sep='\t') # I'll also write a file with the WGS ID for each sample # for use with EMMAX. tpm_f.columns = rna_meta.ix[tpm_f.columns, 'wgs_id'] tpm_f.to_csv(os.path.join(outdir, 'tpm_log_filtered_phe.tsv'), sep='\t') # Standard normal transformed. tpm_f_std_norm = transform_standard_normal(tpm_f) tpm_f_std_norm.to_csv(fn, sep='\t') else: tpm_f = pd.read_table(os.path.join(outdir, 'tpm_log_filtered.tsv'), index_col=0) tpm_f_std_norm = pd.read_table(fn, index_col=0) fig, axs = plt.subplots(1, 2) ax = axs[0] tpm_f.ix[tpm_f.index[0]].hist(ax=ax) ax.set_title('Before std norm quantile norm') ax.set_ylabel('Number of samples') ax.set_xlabel('TPM') ax = axs[1] tpm_f_std_norm.ix[tpm_f.index[0]].hist(ax=ax) ax.set_title('After std norm quantile norm') ax.set_ylabel('Number of samples') ax.set_xlabel('TPM'); fns = [os.path.join(outdir, 'peer_20_factors.tsv'), os.path.join(outdir, 'peer_20_weights.tsv'), os.path.join(outdir, 'peer_20_precision.tsv'), os.path.join(outdir, 'peer_20_residuals.tsv')] if sum([os.path.exists(x) for x in fns]) != len(fns): tpm_f_std_norm_t = tpm_f_std_norm.T model = peer.PEER() model.setPhenoMean(tpm_f_std_norm_t) model.setNk(20) model.update() factors_20 = pd.DataFrame(model.getX(), index=tpm_f_std_norm_t.index) factors_20.to_csv(os.path.join(outdir, 'peer_20_factors.tsv'), sep='\t', header=False) weights_20 = pd.DataFrame(model.getW(), index=tpm_f_std_norm_t.columns) weights_20.to_csv(os.path.join(outdir, 'peer_20_weights.tsv'), sep='\t', header=False) precision_20 = pd.Series(model.getAlpha()[:, 0]) precision_20.to_csv(os.path.join(outdir, 'peer_20_precision.tsv'), sep='\t', index=False, header=False) residuals_20 = pd.DataFrame(model.getResiduals(), index=tpm_f_std_norm_t.index, columns=tpm_f_std_norm_t.columns) residuals_20.to_csv(os.path.join(outdir, 'peer_20_residuals.tsv'), sep='\t') else: factors_20 = pd.read_table(os.path.join(outdir, 'peer_20_factors.tsv'), index_col=0, header=None) weights_20 = pd.read_table(os.path.join(outdir, 'peer_20_weights.tsv'), index_col=0, header=None) precision_20 = pd.read_table(os.path.join(outdir, 'peer_20_precision.tsv'), header=None, squeeze=True) residuals_20 = pd.read_table(os.path.join(outdir, 'peer_20_residuals.tsv'), index_col=0) variance_20 = 1 / precision_20 variance_20.plot(kind='bar') plt.ylabel('Variance') plt.xlabel('Factor'); # Find correlation between PEER factors and known covariates. vals = [] pvals = [] for c in cov.columns: tvals = [] tpvals = [] for f in factors_20.columns: res = stats.spearmanr(cov.ix[factors_20.index, c], factors_20.ix[:, f]) tvals.append(res[0]) tpvals.append(res[1]) vals.append(tvals) pvals.append(tpvals) c_corrs = pd.DataFrame(vals, index=cov.columns).T c_pvals = pd.DataFrame(pvals, index=cov.columns).T c_corrs.max() c_corrs.min() t = sns.heatmap(c_corrs) plt.xlabel('Known covariates') plt.ylabel('PEER factors') plt.title('Correlation between PEER factors and covariates'); sns.heatmap(-np.log10(c_pvals)) plt.xlabel('Known covariates') plt.ylabel('PEER factors') plt.title('Correlation $p$-values'); sns.heatmap(-np.log10(c_pvals.drop('sex', axis=1))) plt.xlabel('Known covariates') plt.ylabel('PEER factors') plt.title('Correlation $p$-values'); fns = [os.path.join(outdir, 'peer_10_factors.tsv'), os.path.join(outdir, 'peer_10_weights.tsv'), os.path.join(outdir, 'peer_10_precision.tsv'), os.path.join(outdir, 'peer_10_residuals.tsv')] if sum([os.path.exists(x) for x in fns]) != len(fns): tpm_f_std_norm_t = tpm_f_std_norm.T model = peer.PEER() model.setPhenoMean(tpm_f_std_norm_t) model.setNk(10) model.update() factors_10 = pd.DataFrame(model.getX(), index=tpm_f_std_norm_t.index) factors_10.to_csv(os.path.join(outdir, 'peer_10_factors.tsv'), sep='\t', header=False) weights_10 = pd.DataFrame(model.getW(), index=tpm_f_std_norm_t.columns) weights_10.to_csv(os.path.join(outdir, 'peer_10_weights.tsv'), sep='\t', header=False) precision_10 = pd.Series(model.getAlpha()[:, 0]) precision_10.to_csv(os.path.join(outdir, 'peer_10_precision.tsv'), sep='\t', index=False, header=False) residuals_10 = pd.DataFrame(model.getResiduals(), index=tpm_f_std_norm_t.index, columns=tpm_f_std_norm_t.columns) residuals_10.to_csv(os.path.join(outdir, 'peer_10_residuals.tsv'), sep='\t') residuals_std_norm = transform_standard_normal(residuals_10.T) residuals_std_norm.to_csv( os.path.join(outdir, 'tpm_log_filtered_phe_std_norm_peer_resid.tsv'), sep='\t') else: factors_10 = pd.read_table(os.path.join(outdir, 'peer_10_factors.tsv'), index_col=0, header=None) weights_10 = pd.read_table(os.path.join(outdir, 'peer_10_weights.tsv'), index_col=0, header=None) precision_10 = pd.read_table(os.path.join(outdir, 'peer_10_precision.tsv'), header=None, squeeze=True) residuals_10 = pd.read_table(os.path.join(outdir, 'peer_10_residuals.tsv'), index_col=0) residuals_std_norm = pd.read_table( os.path.join(outdir, 'tpm_log_filtered_phe_std_norm_peer_resid.tsv'), index_col=0) # Find correlation between PEER factors and known covariates. vals = [] pvals = [] for c in cov.columns: tvals = [] tpvals = [] for f in factors_10.columns: res = stats.spearmanr(cov.ix[factors_10.index, c], factors_10.ix[:, f]) tvals.append(res[0]) tpvals.append(res[1]) vals.append(tvals) pvals.append(tpvals) c_corrs_10 = pd.DataFrame(vals, index=cov.columns).T c_pvals_10 = pd.DataFrame(pvals, index=cov.columns).T c_corrs_10.max() c_corrs.min() t = sns.heatmap(c_corrs_10) plt.xlabel('Known covariates') plt.ylabel('PEER factors') plt.title('Correlation between PEER factors and covariates') plt.savefig(os.path.join(outdir, 'peer_cov_corr.pdf')) sns.heatmap(-np.log10(c_pvals_10)) plt.xlabel('Known covariates') plt.ylabel('PEER factors') plt.title('Correlation $-\log_{10}$ $p$-values'); sns.heatmap(c_pvals_10 < 0.05) plt.xlabel('Known covariates') plt.ylabel('PEER factors') plt.title('Significant correlations'); gi = residuals_std_norm.index[gene_info.ix[residuals_std_norm.index, 'chrom'].apply( lambda x: x not in ['chrY', 'chrX', 'chrM'])] with open(os.path.join(outdir, 'eqtl_genes.tsv'), 'w') as f: f.write('\n'.join(gi) + '\n') fn = os.path.join(outdir, 'variant_regions.bed') if not os.path.exists(fn): variant_regions = cpb.gencode.make_promoter_bed(cpy.gencode_gtf, merge_by_gene=True, up=1000000, down=1000000, out=fn) else: variant_regions = pbt.BedTool(fn) a = len(variant_regions) b = gene_info.shape[0] print('There are {} genes and {} regions'.format(b, a)) fn = os.path.join(outdir, 'gene_to_regions.p') if not os.path.exists(fn): gene_to_regions = dict() for r in variant_regions: gene = r.name.split('_')[0] gene_to_regions[gene] = gene_to_regions.get(gene, []) + ['{}:{}-{}'.format( r.chrom, r.start, r.end)] fn = os.path.join(outdir, 'gene_to_regions.p') cPickle.dump(gene_to_regions, open(fn, 'wb') ) subject_meta.ethnicity_group.value_counts() tdf = subject_meta[subject_meta.ethnicity_group == 'European'] a = tdf[tdf.family_id.isnull()] b = tdf.dropna(subset=['family_id']) b = b.drop_duplicates(subset=['family_id']) tdf = pd.concat([a, b]) print('Number to use for HWE: {}'.format(tdf.shape[0])) fn = os.path.join(private_outdir, 'filtered_european.vcf.gz') if not os.path.exists(fn): v = os.path.join(ciepy.root, 'private_output', 'input_data', 'autosomal_variants.vcf.gz') samples = wgs_meta[wgs_meta.subject_id.apply(lambda x: x in tdf.index)].index c = ('bcftools view -m2 -M2 --min-ac 1:minor {} -Ov ' '| vcftools --vcf - --indv {} --hwe 0.000001 --recode --stdout ' '| bgzip > {}'.format( v, ' --indv '.join(samples), fn)) subprocess.check_call(c, shell=True) shutil.move('out.log', os.path.join(private_outdir, 'hwe_filtering.log')) c = ('bcftools index {}'.format(fn)) subprocess.check_call(c, shell=True) c = ('bcftools index -t {}'.format(fn)) subprocess.check_call(c, shell=True) fn = os.path.join(private_outdir, 'filtered_all', '0000.vcf.gz') if not os.path.exists(fn): filtered_vcf = os.path.join(private_outdir, 'filtered_european.vcf.gz') all_vcf = os.path.join(ciepy.root, 'private_output', 'input_data', 'autosomal_variants.vcf.gz') out = os.path.join(private_outdir, 'filtered_all') c = ('bcftools isec -O z -p {} -n=2 -w1 {} {}'.format( out, all_vcf, filtered_vcf)) subprocess.check_call(c, shell=True) c = ('bcftools index {}'.format(fn)) subprocess.check_call(c, shell=True) c = ('bcftools index -t {}'.format(fn)) subprocess.check_call(c, shell=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Cohort Information Step2: Most were collected at passage 12-16 although a few are at later passages. Step3: Kinship Matrix Step4: LD prune 1KGP variants Step5: Filter cardips variants Step6: Make kinship matrix Step7: I'm going to get unrelated individuals. I'll take a cutoff of 0.05 for the Step8: We can see that the kinship coefficient is near 0.5 for all parent/child pairs Step9: I'm going to make random groups of the unrelated individuals for the purpose of Step10: Gene Expression Step11: Here's an example of what the standard normal quantile normalization does for a Step12: There are a few elbows/dropoffs, but the variance starts to get really small Step13: I want to define the genes I'll use for the eQTL. I'm not using sex chromosome Step14: Variant Regions Step15: In principle, there could be multiple regions per gene if a gene has TSSs located more than Step16: SNV Filtering
14,882
<ASSISTANT_TASK:> Python Code: data = pd.read_csv('../benchMarkingResult.txt', header=None, sep='\t', names=('iteration', 'basic_result', 'efficient_result')) x = data.iteration y1 = data.basic_result y2 = data.efficient_result fig, ax = plt.subplots(figsize=(10,10)) ax.scatter(x, y1, s=15) ax.scatter(x, y2, s=15, c='g') d1 = {'x':x, 'y_basic':y1} d2 = {'x':x, 'y_efficient':y2} mod1 = smf.ols(formula='y_basic ~ x - 1', data = d1).fit() print mod1.summary() mod2 = smf.ols(formula='y_efficient ~ x - 1', data=d2).fit() mod2.summary() y_est_basic = mod1.predict(x) y_est_effi = mod2.predict(x) fig, ax = plt.subplots(figsize=(10,10)) ax.scatter(x, y1, s=15) ax.scatter(x, y2, s=15, c='g') ax.plot(x, y_est_basic) ax.plot(x, y_est_effi) ax.legend(scatterpoints=1) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Plot the Basic and Efficient data first Step2: do a linear regression for the 2 lines and evaluate the r-squared value Step3: both r-squared look quite nice
14,883
<ASSISTANT_TASK:> Python Code: %load_ext autoreload %autoreload 2 from __future__ import print_function import numpy as np import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (6.0, 6.0) plt.rcParams['savefig.dpi'] = 100 from straightline_utils import * (x,y,sigmay) = generate_data() plot_yerr(x, y, sigmay) def straight_line_log_likelihood(theta, x, y, sigmay): ''' Returns the log-likelihood of drawing data values *y* at known values *x* given Gaussian measurement noise with standard deviation with known *sigmay*, where the "true" y values are *y_t = m * x + b* x: list of x coordinates y: list of y coordinates sigmay: list of y uncertainties m: scalar slope b: scalar line intercept Returns: scalar log likelihood ''' m,b = theta return (np.sum(np.log(1./(np.sqrt(2.*np.pi) * sigmay))) + np.sum(-0.5 * (y - (m*x + b))**2 / sigmay**2)) def straight_line_log_prior(theta, theta_limits): m, b = theta mlimits, blimits = theta_limits # Uniform in m: if (m < mlimits[0]) | (m > mlimits[1]): log_m_prior = -np.inf else: log_m_prior = np.log(1.0/(mlimits[1] - mlimits[0])) # Uniform in b: if (b < blimits[0]) | (b > blimits[1]): log_b_prior = -np.inf else: log_b_prior = np.log(1.0/(blimits[1] - blimits[0])) return log_m_prior + log_b_prior def straight_line_log_posterior(theta, x, y, sigmay, theta_limits): return (straight_line_log_likelihood(theta, x, y, sigmay) + straight_line_log_prior(theta, theta_limits)) # Evaluate log P(m,b | x,y,sigmay) on a grid. # Define uniform prior limits, enforcing positivity in both parameters: mlimits = [0.0, 2.0] blimits = [0.0, 200.0] theta_limits = (mlimits, blimits) # Set up grid: mgrid = np.linspace(mlimits[0], mlimits[1], 101) bgrid = np.linspace(blimits[0], blimits[1], 101) log_posterior = np.zeros((len(mgrid),len(bgrid))) # Evaluate log posterior PDF: for im,m in enumerate(mgrid): for ib,b in enumerate(bgrid): theta = (m,b) log_posterior[im,ib] = straight_line_log_posterior(theta, x, y, sigmay, theta_limits) # Convert to probability density and plot, taking care with very small values: posterior = np.exp(log_posterior - log_posterior.max()) plt.imshow(posterior, extent=[blimits[0],blimits[1],mlimits[0],mlimits[1]],cmap='Blues', interpolation='none', origin='lower', aspect=(blimits[1]-blimits[0])/(mlimits[1]-mlimits[0]), vmin=0, vmax=1) plt.contour(bgrid, mgrid, posterior, pdf_contour_levels(posterior), colors='k') i = np.argmax(posterior) i,j = np.unravel_index(i, posterior.shape) print('Grid maximum posterior values (m,b) =', mgrid[i], bgrid[j]) plt.title('Straight line: posterior PDF for parameters'); plot_mb_setup(*theta_limits); def metropolis(log_posterior, theta, theta_limits, stepsize, nsteps=10000): ''' log_posterior: function of theta theta_limits: uniform prior ranges stepsize: scalar or vector proposal distribution width nsteps: desired number of samples ''' log_prob = log_posterior(theta, x, y, sigmay, theta_limits) # Store Markov chain as an array of samples: chain = np.empty((nsteps, len(theta))) log_probs = np.empty(nsteps) # Count our accepted proposals: naccept = 0 for i in range(nsteps): theta_new = theta + stepsize * np.random.randn(len(theta)) log_prob_new = log_posterior(theta_new, x, y, sigmay, theta_limits) if np.log(np.random.rand()) < (log_prob_new - log_prob): # accept, and move to the proposed position: theta = theta_new log_prob = log_prob_new naccept += 1 else: # reject, and store the same sample as before: pass chain[i] = theta log_probs[i] = log_prob acceptance_rate = naccept/float(nsteps) return chain,log_probs,acceptance_rate # Initialize m, b at the center of prior: m = 0.5*(mlimits[0]+mlimits[1]) b = 0.5*(blimits[0]+blimits[1]) theta = np.array([m,b]) # Step sizes, 2% or 5% of the prior mstep = 0.02*(mlimits[1]-mlimits[0]) bstep = 0.05*(blimits[1]-blimits[0]) stepsize = np.array([mstep,bstep]) # How many steps? nsteps = 10000 print('Running Metropolis Sampler for', nsteps, 'steps...') chain, log_probs, acceptance_rate = metropolis( straight_line_log_posterior, theta, theta_limits, stepsize, nsteps=nsteps ) print('Acceptance fraction:', acceptance_rate) # Pull m and b arrays out of the Markov chain and plot them: mm = [m for m,b in chain] bb = [b for m,b in chain] # Traces, for convergence inspection: plt.figure(figsize=(8,5)) plt.subplot(2,1,1) plt.plot(mm, 'k-') plt.ylim(mlimits) plt.ylabel('m') plt.subplot(2,1,2) plt.plot(bb, 'k-') plt.ylabel('Intercept b') plt.ylim(blimits) !pip install --upgrade --no-deps corner import corner corner.corner(chain[5000:], labels=['m','b'], range=[mlimits,blimits],quantiles=[0.16,0.5,0.84], show_titles=True, title_args={"fontsize": 12}, plot_datapoints=True, fill_contours=True, levels=[0.68, 0.95], color='b', bins=80, smooth=1.0); # Generate a straight line model for each parameter combination, and plot: X = np.linspace(xlimits[0],xlimits[1],50) for i in (np.random.rand(100)*len(chain)).astype(int): m,b = chain[i] plt.plot(X, b+X*m, 'b-', alpha=0.1) # Overlay the data, for comparison: plot_yerr(x, y, sigmay); # Test statistics: functions of the data, not the parameters. # 1) Weighted mean y: # def test_statistic(x,y,sigmay): # return np.sum(y/sigmay**2.0)/np.sum(1.0/sigmay**2.0) # 2) Variance of y: # def test_statistic(x,y,sigmay): # return np.var(y) # 3) Pearson r correlation coefficient: import scipy.stats def test_statistic(x,y,dummy): ''' Pearson r correlation coefficient: r12 = \sum [(xi - xbar)*(yi - ybar)] / [\sum (xi - xbar)^2 * \sum (yi - ybar)^2]^1/2 ''' r12 = np.sum((x - np.mean(x))*(y - np.mean(y))) / \ np.sqrt(np.sum((x - np.mean(x))**2) * np.sum((y - np.mean(y))**2)) return r12 # Approximate the posterior predictive distribution for T, # by drawing a replica dataset for each sample (m,b) and computing its T: T = np.zeros(len(chain)) for k,(m,b) in enumerate(chain): yrep = b + m*x + np.random.randn(len(x)) * sigmay T[k] = test_statistic(x,yrep,sigmay) # Compare with the test statistic of the data, on a plot: Td = test_statistic(x, y, sigmay) plt.hist(T, 100, histtype='step', color='blue', lw=2, range=(0.0,np.percentile(T,99.0))) plt.axvline(Td, color='black', linestyle='--', lw=2) plt.xlabel('Test statistic') plt.ylabel('Posterior predictive distribution') # What is Pr(T>T(d)|d)? greater = (T > Td) P = 100*len(T[greater])/(1.0*len(T)) print("Pr(T>T(d)|d) = ",P,"%") # Discrepancy: functions of the data AND parameters. # 1) Reduced chisq for the model: def discrepancy(x,y,sigmay,b,m): return np.sum((y - m*x - b)**2.0/sigmay**2.0)/(len(y)-2) # Approximate the posterior predictive distribution for T, # by drawing a replica dataset for each sample (m,b) and computing its T, # AND ALSO its Td (which now depends on the parameters, too): T = np.zeros(len(chain)) Td = np.zeros(len(chain)) for k,(m,b) in enumerate(chain): yrep = b + m*x + np.random.randn(len(x)) * sigmay T[k] = discrepancy(x,yrep,sigmay,b,m) Td[k] = discrepancy(x,y,sigmay,b,m) # Compare T with Td, on a scatter plot - how often is T>Td? plt.scatter(Td, T, color='blue',alpha=0.1) plt.plot([0.0, 100.0], [0.0, 100.], color='k', linestyle='--', linewidth=2) plt.xlabel('Observed discrepancy $T(d,\\theta)$') plt.ylabel('Replicated discrepancy $T(d^{\\rm rep},\\theta)$') plt.ylim([0.0,np.percentile(Td,99.0)]) plt.xlim([0.0,np.percentile(Td,99.0)]) # Histogram of differences: diff = T-Td plt.hist(diff, 100, histtype='step', color='blue', lw=2, range=(np.percentile(diff,1.0),np.percentile(diff,99.0))) plt.axvline(0.0, color='black', linestyle='--', lw=2) plt.xlabel('Difference $T(d^{\\rm rep},\\theta) - T(d,\\theta)$') plt.ylabel('Posterior predictive distribution') # What is Pr(T>T(d)|d)? greater = (T > Td) Pline = 100*len(T[greater])/(1.0*len(T)) print("Pr(T>T(d)|d) = ",Pline,"%") def quadratic_log_likelihood(theta, x, y, sigmay): ''' Returns the log-likelihood of drawing data values y at known values x given Gaussian measurement noise with standard deviation with known sigmay, where the "true" y values are y_t = m*x + b + q**2 x: list of x coordinates y: list of y coordinates sigmay: list of y uncertainties m: scalar slope b: scalar line intercept q: quadratic term coefficient where theta = (m, b, q) Returns: scalar log likelihood ''' m, b, q = theta return (np.sum(np.log(1./(np.sqrt(2.*np.pi) * sigmay))) + np.sum(-0.5 * (y - (m*x + b + q*x**2))**2 / sigmay**2)) def quadratic_log_prior(theta, theta_limits): m, b, q = theta mlimits, blimits, qpars = theta_limits # m and b: log_mb_prior = straight_line_log_prior(np.array([m,b]), np.array([mlimits, blimits])) # q: log_q_prior = np.log(1./(np.sqrt(2.*np.pi) * qpars[1])) - \ 0.5 * (q - qpars[0])**2 / qpars[1]**2 return log_mb_prior + log_q_prior def quadratic_log_posterior(theta, x, y, sigmay, theta_limits): return (quadratic_log_likelihood(theta, x, y, sigmay) + quadratic_log_prior(theta, theta_limits)) # Define uniform prior limits, enforcing positivity in m and b: mlimits = [0.0, 2.0] blimits = [0.0, 200.0] # Define Gaussian prior centered on zero for q: qpars = [0.0,0.003] # Initialize m, b at the center of prior: m = 0.5*(mlimits[0]+mlimits[1]) b = 0.5*(blimits[0]+blimits[1]) q = qpars[0] # Arrays to pass to the sampler: qtheta = np.array([m,b,q]) qtheta_limits = (mlimits, blimits, qpars) # Step sizes, small fractions of the prior width: mstep = 0.01*(mlimits[1]-mlimits[0]) bstep = 0.04*(blimits[1]-blimits[0]) qstep = 0.02*qpars[1] stepsize = np.array([mstep,bstep,qstep]) # How many steps? nsteps = 10000 print('Running Metropolis Sampler for', nsteps, 'steps...') qchain, log_probs, acceptance_rate = metropolis( quadratic_log_posterior, qtheta, qtheta_limits, stepsize, nsteps=nsteps ) print('Acceptance fraction:', acceptance_rate) # Pull m, b and q arrays out of the Markov chain and plot them: mm = [m for m,b,q in qchain] bb = [b for m,b,q in qchain] qq = [q for m,b,q in qchain] # Traces, for convergence inspection: plt.figure(figsize=(8,5)) plt.subplot(3,1,1) plt.plot(mm, 'k-') plt.ylim(mlimits) plt.ylabel('Slope m') plt.subplot(3,1,2) plt.plot(bb, 'k-') plt.ylim(blimits) plt.ylabel('Intercept b') plt.subplot(3,1,3) plt.plot(qq, 'k-') plt.ylim([qpars[0]-3*qpars[1],qpars[0]+3*qpars[1]]) plt.ylabel('Quadratic coefficient q') corner.corner(qchain, labels=['m','b','q'], range=[mlimits,blimits,(qpars[0]-3*qpars[1],qpars[0]+3*qpars[1])],quantiles=[0.16,0.5,0.84], show_titles=True, title_args={"fontsize": 12}, plot_datapoints=True, fill_contours=True, levels=[0.68, 0.95], color='green', bins=80, smooth=1.0); # Posterior visual check, in data space: X = np.linspace(xlimits[0],xlimits[1],100) for i in (np.random.rand(100)*len(chain)).astype(int): m,b,q = qchain[i] plt.plot(X, b + X*m + q*X**2, 'g-', alpha=0.1) plot_yerr(x, y, sigmay) # Discrepancy: functions of the data AND parameters. # 1) Reduced chisq for the model: def discrepancy(x,y,sigmay,m,b,q): return np.sum((y - m*x - b - q*x**2)**2.0/sigmay**2.0)/(len(y)-3) # Approximate the posterior predictive distribution for T, # by drawing a replica dataset for each sample (m,b) and computing its T, # AND ALSO its Td: T = np.zeros(len(qchain)) Td = np.zeros(len(qchain)) for k,(m,b,q) in enumerate(qchain): yp = b + m*x + q*x**2 + sigmay*np.random.randn(len(x)) T[k] = discrepancy(x,yp,sigmay,m,b,q) Td[k] = discrepancy(x,y,sigmay,m,b,q) # Histogram of differences: diff = T - Td plt.hist(diff, 100, histtype='step', color='green', lw=2, range=(np.percentile(diff,1.0),np.percentile(diff,99.0))) plt.axvline(0.0, color='black', linestyle='--', lw=2) plt.xlabel('Difference $T(d^{\\rm rep},\\theta) - T(d,\\theta)$') plt.ylabel('Posterior predictive distribution') # What is Pr(T>T(d)|d)? greater = (T > Td) Pquad = 100*len(T[greater])/(1.0*len(T)) print("Pr(T>T(d)|d,quadratic) = ",Pquad,"%, cf. Pr(T>T(d)|d,straightline) = ",Pline,"%") # Draw a large number of prior samples and calculate the log likelihood for each one: N = 50000 # Set the priors: mlimits = [0.0, 2.0] blimits = [0.0, 200.0] qpars = [0.0,0.003] # Sample from the prior: mm = np.random.uniform(mlimits[0],mlimits[1], size=N) bb = np.random.uniform(blimits[0],blimits[1], size=N) qq = qpars[0] + qpars[1]*np.random.randn(N) # We'll store the posterior samples as a "chain" again schain = [] log_likelihood_straight_line = np.zeros(N) log_likelihood_quadratic = np.zeros(N) for i in range(N): theta = np.array([mm[i], bb[i]]) log_likelihood_straight_line[i] = straight_line_log_likelihood(theta, x, y, sigmay) qtheta = np.array([mm[i], bb[i], qq[i]]) log_likelihood_quadratic[i] = quadratic_log_likelihood(qtheta, x, y, sigmay) schain.append((mm[i],bb[i],qq[i])) # Unnormalized likelihoods for plotting: unnormalized_likelihood_straight_line = np.exp(log_likelihood_straight_line - log_likelihood_straight_line.max()) unnormalized_likelihood_quadratic = np.exp(log_likelihood_quadratic - log_likelihood_quadratic.max()) corner.corner(schain, labels=['m','b','q'], range=[mlimits,blimits,(qpars[0]-3*qpars[1],qpars[0]+3*qpars[1])],quantiles=[0.16,0.5,0.84], weights=unnormalized_likelihood_straight_line, show_titles=True, title_args={"fontsize": 12}, plot_datapoints=False, fill_contours=True, levels=[0.68, 0.95], color='blue', bins=80, smooth=1.0); corner.corner(schain, labels=['m','b','q'], range=[mlimits,blimits,(qpars[0]-3*qpars[1],qpars[0]+3*qpars[1])],quantiles=[0.16,0.5,0.84], weights=unnormalized_likelihood_quadratic, show_titles=True, title_args={"fontsize": 12}, plot_datapoints=False, fill_contours=True, levels=[0.68, 0.95], color='green', bins=80, smooth=1.0); def logaverage(x): mx = x.max() return np.log(np.sum(np.exp(x - mx))) + mx - np.log(len(x)) log_evidence_straight_line = logaverage(log_likelihood_straight_line) log_evidence_quadratic = logaverage(log_likelihood_quadratic) print('log Evidence for Straight Line Model:', log_evidence_straight_line) print('log Evidence for Quadratic Model:', log_evidence_quadratic) print('Evidence ratio in favour of the Quadratic Model:', np.int(np.exp(log_evidence_quadratic - log_evidence_straight_line)),"to 1") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The Data Step2: Characterizing the posterior PDF Step3: And now to draw some samples Step4: Looks reasonable Step5: It looks like we made a nice, precise measurement! Step6: Posterior Predictive Model Checking Step7: If our model is true (and we're just uncertain about its parameters, given the data), we can compute the probability of getting a $T$ less than that observed. Step8: The conclusion drawn from the discrepancy is more interesting, in this case. All our $\theta = (m,b)$ samples are plausible, so replica datasets generated by them should also be plausible. The straight line defined by each $(m,b)$ should go through the real data points as readily (on average) as it does its replica dataset. Step9: All parameters are again precisely constrained. Step10: How do the two models compare? Which one matches the data better? Step11: Now that we have the log likelihood for each sample, let's check that we did actually sample the posterior well. Here are the corner plots (note that for plotting, the weights don't need to be correctly normalized - and also that we do not want to plot the points as well as the contours, since the points are prior samples not posterior ones!) Step12: Question Step13: Now let's compute the evidence - we'll need a special function that stably calculates the average $x$ given an array of $\log x$...
14,884
<ASSISTANT_TASK:> Python Code: import plotly.graph_objs as go from plotly.offline import init_notebook_mode,iplot init_notebook_mode(connected=True) import pandas as pd df = pd.read_csv('./2014_World_Power_Consumption') df.head() data = {'type':'choropleth', 'locations':df['Country'],'locationmode':'country names', 'z':df['Power Consumption KWH'], 'text':df['Text']} layout={'title':'World power consumption', 'geo':{'showframe':True, 'projection':{'type':'Mercator'}}} choromap = go.Figure(data = [data],layout = layout) iplot(choromap,validate=False) df2 = pd.read_csv('./2012_Election_Data') df2.head() data = {'type':'choropleth', 'locations':df2['State Abv'],'locationmode':'USA-states', 'z':df2['% Non-citizen'], 'text':df2['% Non-citizen']} layout={'geo':{'scope':'usa'}} choromap = go.Figure(data = [data],layout = layout) iplot(choromap,validate=False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Import pandas and read the csv file Step2: Referencing the lecture notes, create a Choropleth Plot of the Power Consumption for Countries using the data and layout dictionary. Step3: USA Choropleth Step4: Check the head of the DataFrame. Step5: Now create a plot that displays the Voting-Age Population (VAP) per state. If you later want to play around with other columns, make sure you consider their data type. VAP has already been transformed to a float for you.
14,885
<ASSISTANT_TASK:> Python Code: !pip install -I "phoebe>=2.2,<2.3" %matplotlib inline import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_binary() b.add_constraint('semidetached', 'primary') b['requiv@constraint@primary'] b['requiv_max@constraint@primary'] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As always, let's do imports and initialize a logger and a new Bundle. See Building a System for more details. Step2: Semi-Detached Systems Step3: We can view the constraint on requiv by accessing the constraint Step4: Now whenever any of the relevant parameters (q, ecc, syncpar, sma) are changed, the value of requiv will change to match the critical value as defined by requiv_max.
14,886
<ASSISTANT_TASK:> Python Code: % matplotlib inline import pandas as pd import glob import matplotlib.pyplot as plt GRLM = "345_GRLM10.txt"; print GRLM df_grlm = pd.read_csv(GRLM, skiprows=43, delim_whitespace=True, names="mission,cycle,date,hour,minute,lake_height,error,mean(decibels),IonoCorrection,TropCorrection".split(","), engine='python', index_col=False) df_grlm.head(5) df_grlm = pd.read_csv(GRLM, skiprows=43, delim_whitespace=True, names="mission,cycle,date,hour,minute,lake_height,error,mean(decibels),IonoCorrection,TropCorrection".split(","), engine='python', index_col=False) def get_year(date): return int(str(date)[0:4]) def get_month(date): return int(str(date)[4:6]) def get_day(date): return int(str(date)[6:]) df_grlm['year'] = df_grlm['date'].apply(get_year) df_grlm['month'] = df_grlm['date'].apply(get_month) df_grlm['day'] = df_grlm['date'].apply(get_day) df_grlm = df_grlm.where(df_grlm.minute < 61 ) # remove lines that do not have time df_grlm = df_grlm.where(df_grlm.lake_height < 900 ) # remove entries that do not have lake-height df_grlm.lake_height.plot(); plt.title("Actual data without resampling"); plt.ylabel("Variation (m)") df_grlm.lake_height.interpolate().plot(); plt.title("Interpolated Actual data without resampling"); plt.ylabel("Variation (m)") df = df_grlm df[["year", "month", "day", "hour", "minute"]] = df[["year", "month", "day", "hour", "minute"]].fillna(0).astype(int) df['Time'] = df.year.astype(str).str.cat(df.month.astype(str).astype(str), sep='-').str.cat(df.day.astype(str), sep='-')\ .str.cat(df.hour.astype(str).astype(str), sep='-').str.cat(df.minute.astype(str).astype(str), sep='-') df = df.where(df.year>10) # to ger rid of all the nan values df.index = pd.to_datetime(pd.Series(df["Time"]), format="%Y-%m-%d-%H-%M"); print df.index[0:3], df.index[-3:] df["lake_height"].resample("M").mean().plot(); plt.title("Mean Monthly Altimetry"); plt.ylabel("Variation (m)") df["lake_height"].resample("A").mean().plot(); plt.title("Mean Annual Altimetry"); plt.ylabel("Variation (m)") df_modis = pd.read_csv('MODIS_t.txt', names=["Area"], engine='python', index_col=False) df_time = pd.read_csv('DV.txt', sep = "\t", names=["Year", "Month", "Day", "", "", ""], engine='python', index_col=False) df_time['Time'] = df_time.Year.astype(str).str.cat(df_time.Month.astype(str).astype(str), sep='-').str.cat(df_time.Day.astype(str), sep='-') df_time = df_time.where(df_time.Year>10) # to ger rid of all the nan values df_modis.index = pd.to_datetime(pd.Series(df_time["Time"]), format="%Y-%m-%d")#df.index[0:3] df_modis.plot(); plt.title("MODIS data - Surface Area"); plt.ylabel("Surface Area (sq.m.?)") df_glrm_subset = df["lake_height"].resample("D").mean().interpolate() df_glrm_subset = df_glrm_subset[(df_glrm_subset.index > '2008-07-22') & (df_glrm_subset.index <= '2015-08-13')] df_glrm_subset.plot(); plt.legend(); plt.title("Subset of Altimetry"); plt.ylabel("Variation (m)") df_glrm_subset.index df_modis_daily = df_modis["Area"].resample("D").mean().interpolate() df_modis_subset = df_modis_daily[(df_modis_daily.index > '2008-07-22') & (df_modis_daily.index <= '2015-08-13')] df_modis_subset.plot() df_modis_subset.index # QA: Create a time series of time alone, to check the number of data points that we should have for days. #Note the vaiable called length print pd.date_range('22/07/2008', periods=len(df_modis_subset), freq='D') # Check if the two vectors are of the same length print len(df_glrm_subset.tolist()), len(df_modis_subset.tolist()) import numpy cor = numpy.corrcoef(df_glrm_subset.resample("W").mean().interpolate().tolist(), df_modis_subset.resample("W").mean().interpolate().tolist()) print "correlation coefficient is: " , cor[0][1] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: GRLM Altimetry data from July 22 2008 to September 3, 2016 Step2: Interpolate the missing data points Step3: Add time information to the dataframe Step4: Resample the data to get monthly and annual variation in lake height Step5: MODIS data Lake Surface Area (Feb 18, 2000 to Aug 13, 2015) Step6: Create subsets of both vectors (altimetry and surface area) for the overlapping period Step7: Compute correlation coefficient
14,887
<ASSISTANT_TASK:> Python Code: a = 10 b = 20 c = "Hello" print a, b, c list_items = ["milk", "cereal", "banana", 22.5, [1,2,3]] ## A list can contain another list and items of different types print list_items print "3rd item in the list: ", list_items[2] # Zero based index starts from 0 so 3rd item will have index 2 set_items = set([1,2,3, 1]) print set_items print "Is 1 in set_items: ", 1 in set_items print "Is 10 in set_items: ", 10 in set_items item_details = { "milk": { "brand": "Amul", "quantity": 2.5, "cost": 10 }, "chocolate": { "brand": "Cadbury", "quantity": 1, "cost": 5 }, } print item_details print "What are is the brand of milk: ", item_details["milk"]["brand"] print "What are is the cost of chocolate: ", item_details["chocolate"]["cost"] def get_items_from_file(filename): data = [] with open(filename) as fp: for line in fp: line = line.strip().split(" ") data.append(line) return data print "Data in file data/temp1.txt" print get_items_from_file("../data/temp1.txt") print "Data in file data/temp2.txt" print get_items_from_file("../data/temp2.txt") from scipy.io import arff data, meta = arff.loadarff("../data/iris.arff") data.shape, meta data[0] import pandas as pd df_iris = pd.DataFrame(data, columns=meta.names()) df_iris.head() print "The shape of iris data is: ", df_iris.shape print "Show how many instances are of each class: " df_iris["class"].value_counts() df_iris["sepallength"].hist(bins=10) print "Show data containing with petalwidth > 2.0" df_iris[df_iris["petalwidth"] > 2.0] df = pd.read_csv("../data/titanic.csv") df.shape df.head() # We need the line below to show plots directly in the notebook. %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns sns.set_style("ticks") sns.set_context("paper") colors = { "Iris-setosa": "red", "Iris-versicolor": "green", "Iris-virginica": "blue", } plt.scatter(df_iris.petallength, df_iris.petalwidth, c=map(lambda x: colors[x], df_iris["class"])) plt.xlabel("petallength") plt.ylabel("petalwidth") sns.lmplot(x="petallength", y="petalwidth", hue="class", data=df_iris, fit_reg=False) sns.pairplot(df_iris, hue="class") sns.countplot(x="sex", data=df) sns.countplot(x="class", data=df) sns.countplot(x="embark_town", data=df) sns.countplot(x="alive", data=df) sns.countplot(x="alone", data=df) sns.lmplot(x="age", y="survived", hue="sex", data=df, fit_reg=True, logistic=True) sns.barplot(x="sex", y="survived", hue="embark_town", data=df) sns.barplot(x="sex", y="survived", hue="class", data=df) sns.barplot(x="sex", y="survived", hue=pd.cut(df.age, bins=[0,18,30,100]), data=df) sns.barplot(x="sex", y="survived", hue="alone", data=df) sns.barplot(x="sex", y="survived", hue=pd.cut(df.sibsp, bins=[0,1,2,3,10]), data=df) sns.barplot(x="sex", y="survived", hue=pd.cut(df.parch, bins=[0,1,2,3,10]), data=df) sns.barplot(x="sex", y="age", hue=pd.cut(df.parch, bins=[0,1,2,3,10]), data=df) sns.barplot(x="sex", y="age", hue=pd.cut(df.sibsp, bins=[0,1,2,3,10]), data=df) sns.barplot(x="sex", y="age", hue="embark_town", data=df) sns.barplot(x="sex", y="age", hue="class", data=df) sns.barplot(x="class", y="petalwidth", hue=pd.cut(df_iris.petallength, bins=[0, 2.5, 4.5, 6.5, 10]), data=df_iris) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Lists Step2: Sets Step3: Dictionaries Step4: Functions Step5: Loading Data Step6: Pandas Step7: Filtering data Step8: Titanic data Step9: Plotting data Step10: Question
14,888
<ASSISTANT_TASK:> Python Code: # initialize your CORDEX submission form template from dkrz_forms import form_handler from dkrz_forms import checks my_email = "..." # example: sf.email = "Mr.Mitty@yahoo.com" my_first_name = "..." # example: sf.first_name = "Harold" my_last_name = "..." # example: sf.last_name = "Mitty" my_keyword = "..." # example: sf.keyword = "mymodel_myrunid" sf = form_handler.init_form("CORDEX",my_first_name,my_last_name,my_email,my_keyword) sf.submission_type = "..." # example: sf.submission_type = "initial_version" sf.institution = "..." # example: sf.institution = "Alfred Wegener Institute" sf.institute_id = "..." # example: sf.institute_id = "AWI" sf.model_id = "..." # example: sf.model_id = "AWI-HIRHAM5" sf.experiment_id = "..." # example: sf.experiment_id = "evaluation" # ["value_a","value_b"] in case of multiple experiments sf.time_period = "..." # example: sf.time_period = "197901-201412" # ["time_period_a","time_period_b"] in case of multiple values sf.example_file_name = "..." # example: sf.example_file_name = "tas_AFR-44_MPI-M-MPI-ESM-LR_rcp26_r1i1p1_MPI-CSC-REMO2009_v1_mon_yyyymm-yyyymm.nc" # Please run this cell as it is to check your example file name structure # to_do: implement submission_form_check_file function - output result (attributes + check_result) form_handler.cordex_file_info(sf,sf.example_file_name) sf.grid_mapping_name = "..." # example: sf.grid_mapping_name = "rotated_latitude_longitude" sf.grid_as_specified_if_rotated_pole = "..." # example: sf.grid_as_specified_if_rotated_pole = "yes" sf.data_qc_status = "..." # example: sf.data_qc_status = "QC2-CORDEX" sf.data_qc_comment = "..." # any comment of quality status of the files sf.terms_of_use = "..." # example: sf.terms_of_use = "unrestricted" sf.directory_structure = "..." # example: sf.directory_structure = "compliant" sf.data_path = "..." # example: sf.data_path = "mistral.dkrz.de:/mnt/lustre01/work/bm0021/k204016/CORDEX/archive/" sf.data_information = "..." # ...any info where data can be accessed and transfered to the data center ... " sf.exclude_variables_list = "..." # example: sf.exclude_variables_list=["bnds", "vertices"] sf.uniqueness_of_tracking_id = "..." # example: sf.uniqueness_of_tracking_id = "yes" sf.variable_list_day = [ "clh","clivi","cll","clm","clt","clwvi", "evspsbl","evspsblpot", "hfls","hfss","hurs","huss","hus850", "mrfso","mrro","mrros","mrso", "pr","prc","prhmax","prsn","prw","ps","psl", "rlds","rlus","rlut","rsds","rsdt","rsus","rsut", "sfcWind","sfcWindmax","sic","snc","snd","snm","snw","sund", "tas","tasmax","tasmin","tauu","tauv","ta200","ta500","ta850","ts", "uas","ua200","ua500","ua850", "vas","va200","va500","va850","wsgsmax", "zg200","zg500","zmla" ] sf.variable_list_mon = [ "clt", "evspsbl", "hfls","hfss","hurs","huss","hus850", "mrfso","mrro","mrros","mrso", "pr","psl", "rlds","rlus","rlut","rsds","rsdt","rsus","rsut", "sfcWind","sfcWindmax","sic","snc","snd","snm","snw","sund", "tas","tasmax","tasmin","ta200", "ta500","ta850", "uas","ua200","ua500","ua850", "vas","va200","va500","va850", "zg200","zg500" ] sf.variable_list_sem = [ "clt", "evspsbl", "hfls","hfss","hurs","huss","hus850", "mrfso","mrro","mrros","mrso", "pr","psl", "rlds","rlus","rlut","rsds","rsdt","rsus","rsut", "sfcWind","sfcWindmax","sic","snc","snd","snm","snw","sund", "tas","tasmax","tasmin","ta200","ta500","ta850", "uas","ua200","ua500","ua850", "vas","va200","va500","va850", "zg200","zg500" ] sf.variable_list_fx = [ "areacella", "mrsofc", "orog", "rootd", "sftgif","sftlf" ] # simple consistency check report for your submission form res = form_handler.check_submission(sf) sf.sub['status_flag_validity'] = res['valid_submission'] form_handler.DictTable(res) form_handler.form_save(sf) #evaluate this cell if you want a reference to the saved form emailed to you # (only available if you access this form via the DKRZ form hosting service) form_handler.email_form_info() # evaluate this cell if you want a reference (provided by email) # (only available if you access this form via the DKRZ hosting service) form_handler.email_form_info(sf) form_handler.email_form_info(sf) form_handler.form_submission(sf) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: please provide information on the contact person for this CORDEX data submission request Step2: Type of submission Step3: Requested general information Step4: institute_id Step5: model_id Step6: experiment_id and time_period Step7: Example file name Step8: information on the grid_mapping Step9: Does the grid configuration exactly follow the specifications in ADD2 (Table 1) Step10: Please provide information on quality check performed on the data you plan to submit Step11: Terms of use Step12: Information on directory structure and data access path Step13: Give the path where the data reside, for example Step14: Exclude variable list Step15: Uniqueness of tracking_id and creation_date Step16: Variable list Step17: Check your submission before submission Step18: Save your form Step19: officially submit your form
14,889
<ASSISTANT_TASK:> Python Code: import numpy as np # importing this way allows us to refer to numpy as np mylist = [1., 2., 3., 4.] mynparray = np.array(mylist) mynparray one_vector = np.ones(4) print one_vector # using print removes the array() portion one2Darray = np.ones((2, 4)) # an 2D array with 2 "rows" and 4 "columns" print one2Darray zero_vector = np.zeros(4) print zero_vector empty_vector = np.empty(5) print empty_vector mynparray[2] my_matrix = np.array([[1, 2, 3], [4, 5, 6]]) print my_matrix print my_matrix[1,2] print my_matrix[0:2, 2] # recall 0:2 = [0, 1] print my_matrix[0, 0:3] fib_indices = np.array([1, 1, 2, 3]) random_vector = np.random.random(10) # 10 random numbers between 0 and 1 print random_vector print random_vector[fib_indices] my_vector = np.array([1, 2, 3, 4]) select_index = np.array([True, False, True, False]) print my_vector[select_index] select_cols = np.array([True, False, True]) # 1st and 3rd column select_rows = np.array([False, True]) # 2nd row print my_matrix[select_rows, :] # just 2nd row but all columns print my_matrix[:, select_cols] # all rows and just the 1st and 3rd column print my_matrix[select_rows, select_cols] my_array = np.array([1., 2., 3., 4.]) print my_array*my_array print my_array**2 print my_array - np.ones(4) print my_array + np.ones(4) print my_array / 3 print my_array / np.array([2., 3., 4., 5.]) # = [1.0/2.0, 2.0/3.0, 3.0/4.0, 4.0/5.0] print np.sum(my_array) print np.average(my_array) print np.sum(my_array)/len(my_array) array1 = np.array([1., 2., 3., 4.]) array2 = np.array([2., 3., 4., 5.]) print np.dot(array1, array2) print np.sum(array1*array2) array1_mag = np.sqrt(np.dot(array1, array1)) print array1_mag print np.sqrt(np.sum(array1*array1)) my_features = np.array([[1., 2.], [3., 4.], [5., 6.], [7., 8.]]) print my_features my_weights = np.array([0.4, 0.5]) print my_weights my_predictions = np.dot(my_features, my_weights) # note that the weights are on the right print my_predictions # which has 4 elements since my_features has 4 rows my_matrix = my_features my_array = np.array([0.3, 0.4, 0.5, 0.6]) print np.dot(my_array, my_matrix) # which has 2 elements because my_matrix has 2 columns matrix_1 = np.array([[1., 2., 3.],[4., 5., 6.]]) print matrix_1 matrix_2 = np.array([[1., 2.], [3., 4.], [5., 6.]]) print matrix_2 print np.dot(matrix_1, matrix_2) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Creating Numpy Arrays Step2: You can initialize an array (of any dimension) of all ones or all zeroes with the ones() and zeros() functions Step3: You can also initialize an empty array which will be filled with values. This is the fastest way to initialize a fixed-size numpy array however you must ensure that you replace all of the values. Step4: Accessing array elements Step5: 2D arrays are accessed similarly by referring to the row and column index separated by a comma Step6: Sequences of indices can be accessed using ' Step7: You can also pass a list of indices. Step8: You can also use true/false values to select values Step9: For 2D arrays you can select specific columns and specific rows. Passing ' Step10: Operations on Arrays Step11: You can compute the sum with np.sum() and the average with np.average() Step12: The dot product Step13: Recall that the Euclidean length (or magnitude) of a vector is the squareroot of the sum of the squares of the components. This is just the squareroot of the dot product of the vector with itself Step14: We can also use the dot product when we have a 2D array (or matrix). When you have an vector with the same number of elements as the matrix (2D array) has columns you can right-multiply the matrix by the vector to get another vector with the same number of elements as the matrix has rows. For example this is how you compute the predicted values given a matrix of features and an array of weights. Step15: Similarly if you have a vector with the same number of elements as the matrix has rows you can left multiply them. Step16: Multiplying Matrices
14,890
<ASSISTANT_TASK:> Python Code: cadena_caracteres = "Hola mundo" print dir(cadena_caracteres) print 'Hola mundo' print 'Pero el print también imprime un Enter al terminar la línea' print 'Pero al imprimir con la coma al final', print 'cambia el enter por un espacio' print 'También puedo escribir lo mismo' ' en dos partes' print 'Lo que puedo usar ' \ 'cuando un string es muy largo' \ 'si le agrego una contrabarra' print 'Entonces tengo que ponerlo después de la coma:', 5 print 'Al que también le agrega la coma para separarlo' print 'También puedo ponerlo en el medio:\nHoy es', 29, 'de Octubre' print str.format.__doc__ print 'El nombre del jugador número {0} es {1}'.format(10, 'Lionel Messi') print 'El nombre del jugador número {} es {}'.format(10, 'Lionel Messi') print '{0}{1}{0}'.format('abra', 'cad') print 'La nota del alumno {padron} - {nombre} es un {nota}.'. \ format(padron=123, nombre='Carlos Sanchez', nota=8) alumno = { 'padron': 123, 'nombre': 'Carlos Sanchez', 'nota': 8 } print 'La nota del alumno {padron} - {nombre} es un {nota}.'.\ format(**alumno) alumno = { 'padron': 123, 'nombre': 'Carlos Sanchez', 'tps': [8, 9] } print 'La nota de los tps de {nombre} son {tps[0]} y {tps[1]}.'.\ format(**alumno) print 'Imprimo un texto alineado a la |{:<20}| de 20 posiciones'.format( 'izquierda') print 'Imprimo un texto alineado a la |{:>20}| de 20 posiciones'.format( 'derecha') print 'Imprimo un texto |{:^20}| de 20 posiciones'.format('centrado') print 'Relleno |{:#<20}| con #'.format('izquierda') print 'Relleno |{:#>20}| con #'.format('derecha') print 'Relleno |{:#^20}| con #'.format('centrado') cadena_caracteres = 'Hola mundo' print '"{0}" cambia a "{1}" con title'.format(cadena_caracteres, cadena_caracteres.title()) print '"{0}" cambia a "{1}" con lower'.format(cadena_caracteres, cadena_caracteres.lower()) print '"{0}" cambia a "{1} con upper"'.format(cadena_caracteres, cadena_caracteres.upper()) print '"{0}" cambia a "{1}" con capitalize'.format(cadena_caracteres, cadena_caracteres.capitalize()) print '"{0}" cambia a "{1}" cuando reemplazamos las o por 0'.format(cadena_caracteres, cadena_caracteres.replace('o', '0')) x = 'mi string' y = x.replace('i', 'AA') print x, y print id(x) x += 'Hola mundo' print id(x) print "Hola mundo".split() print "Hola mundo".split('o') print "Hola mundo".split('mu') print ''.join(['Hola', 'mundo']) print ' '.join(['Hola', 'mundo']) var = '#separador#'.join(['Hola', 'mundo']) print var padron, nombre, nota = '12321,nom bekr,4'.split(',') arch = open("ejemplo.txt") cadena = arch.read(15) print "# Imprimo los primeros 15 caracteres del archivo. Tiene que ser 'Python was crea'" print cadena print "# Leo otros 7 caracteres y dejo el cursor del archivo en la siguiente posición. Tiene que ser 'ted in '" cadena = arch.read(7) print cadena print "# Ahora leo el resto del archivo." cadena = arch.read() print cadena print '# Cierro el archivo' arch.close() arch2 = open("ejemplo2.txt", "w") arch2.read() # Y si intentamos con un append? arch3 = open("ejemplo1.txt", "a") arch3.read() arch = open("ejemplo.txt") linea = arch.readline() # Notar que también imprime el Enter o \n print linea linea = arch.readline(7) # La segunda línea es 'Mathematisch Centrum (CWI, see http://www.cwi.nl) in the Netherlands' print linea arch.close() arch = open("ejemplo.txt") lineas = arch.readlines() print lineas arch.close() arch = open("ejemplo.txt") for linea in arch: print len(linea) arch.close() arch2 = open("ejemplo2.txt", "w") arch2.write("Es la primer cadena") arch2.write("Seguida de la segunda con un fin de linea\n") arch2.writelines(["1. Primero de la lista sin fin de línea. ", "2. Segundo string con fin de línea.\n", "3. Tercero con\\n.\n", "4. y último."]) arch2.flush() arch2.close() arch2 = open("ejemplo2.txt", "r+a") strfile = arch2.read() print strfile arch2.write("Esto lo estoy agregando.\n.") arch2.writelines("Y estas dos líneas también con un \\n al final\n de cada una.\n") arch2.flush() arch2 = open("ejemplo2.txt", "r") # El open hace que me mueva a la primer posición del archivo. print arch2.read() arch2.close() arch = open("ejemplo.txt") arch.seek(30) # Voy a la posición número 30 del archivo print arch.read(7) # Debería salir 'y 1990s' arch.seek(-5,1) # Me muevo 5 posiciones para atrás desde mi posición actual. print arch.read(7) # Debería imprimir '1990s b' arch.seek(-12,2) # Me muevo a la posición número 12, comenzando a contar desde el final. print arch.read(10) # Debería imprimir 'compatible' arch.close() arch = open("ejemplo.txt") arch.seek(30) print arch.tell() # Debería imprimir 30 arch.seek(-5,1) # Retrocedo 5 posiciones print arch.tell() # Debería imprimir 25 arch.seek(-12,2) # Voy a 12 posiciones antes del fin de archivo print arch.tell() # Debería imprimir 1132 print arch.read(10) # Leo 10 caracteres print arch.tell() # Debería imprimir 1142 arch = open("ejemplo.txt") # El archivo ejemplo.txt tiene 22 líneas, por lo que # si quiero imprimirlo completo anteponiendo el # número de línea y la cantidad de caracteres # puedo hacer: for x in range(1, 25): linea = arch.readline() print '{:2}[{:02}] - {}'.format(x, len(linea), linea) arch.close() arch = open("ejemplo.txt") # Si no sabemos la cantidad de líneas que tiene # el archivo que queremos recorrer podemos hacer: linea = arch.readline() x = 0 while linea: # Es decir, mientras me devuelva algo # distinto al sting vacío x += 1 print '{:2}[{:02}] - {}'.format(x, len(linea), linea) linea = arch.readline() arch.close() arch = open("ejemplo.txt") # Si no sabemos la cantidad de líneas que tiene # el archivo que queremos recorrer podemos hacer: x = 0 for linea in arch: x += 1 print '{:2}[{:02}] - {}'.format(x, len(linea), linea) arch.close() arch = open("ejemplo.txt") # Si no sabemos la cantidad de líneas que tiene # el archivo que queremos recorrer podemos hacer: # Usando enumerate y comenzando en 1 for x, linea in enumerate(arch, 1): print '{:2}[{:02}] - {}'.format(x, len(linea), linea) arch.close() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: String formating Step2: Pero si no queremos imprimir ese último Enter lo que tenemos que hacer es poner una coma al final de la línea Step3: ¿Y si lo que quiero es imprimir un número pegado al string? Step4: String formating Step5: Format lo que hace es reemplazar las llaves con los parámetros que le pasen Step6: Aunque en realidad los números no son obligatorios Step7: Pero la ventaja de usar los números es que podemos imprimir ese parámetro varias veces, y no necesariamente en el órden que figura Step8: Incluso, se pueden usar parámetros nombrados Step9: Incluso, si en lugar de pasarle cada uno de los parámetros le pasamos un diccionario usando el operador ** Step10: Incluso, si lo que le pasamos es una lista, podemos acceder a una posición en particular Step11: Incluso puedo alinear el texto que pongo usando los dos puntos ( Step12: Pueden ver más ejemplos en la documentación oficial de Python<br> Step13: Y también podemos separar y combinar strings Step14: Unicodes Step15: La única condición que tenemos para usar este método es que el archivo lo hayamos abierto en modo lectura. Step16: Otra primitiva que podemos usar es readline, que al igual que read, también puede recibir un parámetro que indique la cantidad máxima de bytes a leer. Si no se le pasa ningún parámetro, lee toda la línea. Step17: Pero no es necesario que leamos de a una sola línea, sino que también podemos leer todas las líneas del archivo y guardarlas en una lista haciendo uso de la primitiva readlines. Step18: Sin embargo, la forma más Pythonic de leer el archivo por líneas es usando la estructura for y quedaría casi como lo diríamos en castellano Step19: Escritura de archivos Step20: ¿Y qué pasa si le quiero agregar algunas líneas a este archivo? Step21: Otra forma de asegurarse que se escriba lo que hay en el disco es cerrándolo. Step22: Y así como podemos movernos en un archivo, también podemos averiguar nuestra posición usando la primitiva tell(). Step23: ¿Cómo recorrer todo un archivo? Step24: Como pueden ver, todas las líneas hasta la 22 (que es la última linea del arhcivo) tienen una longitud mayor a 0; incluso las 5, 10 y 19 que aparentemente no tienen ningún caracter. Eso es así ya que siempre tienen por lo menos uno, que es el Enter o \n. <br> Step25: Aunque Python también nos ofrece otra forma de recorer un archivo, y es usando una de las estructuras que ya conocemos Step26: O, incluso, usar enumerate para saber qué línea estoy leyendo
14,891
<ASSISTANT_TASK:> Python Code: data_original = np.loadtxt('stanford_dl_ex/ex1/housing.data') data = np.insert(data_original, 0, 1, axis=1) np.random.shuffle(data) train_X = data[:400, :-1] train_y = data[:400, -1] test_X = data[400:, :-1] test_y = data[400:, -1] m, n = train_X.shape def cost_function(theta, X, y): squared_errors = (X.dot(theta) - y) ** 2 J = 0.5 * squared_errors.sum() return J def gradient(theta, X, y): errors = X.dot(theta) - y return errors.dot(X) J_history = [] t0 = time.time() res = scipy.optimize.minimize( fun=cost_function, x0=np.random.rand(n), args=(train_X, train_y), method='bfgs', jac=gradient, options={'maxiter': 200, 'disp': True}, callback=lambda x: J_history.append(cost_function(x, train_X, train_y)), ) t1 = time.time() print('Optimization took {s} seconds'.format(s=t1 - t0)) optimal_theta = res.x plt.plot(J_history, marker='o') plt.xlabel('Iterations') plt.ylabel('J(theta)') for dataset, (X, y) in ( ('train', (train_X, train_y)), ('test', (test_X, test_y)), ): actual_prices = y predicted_prices = X.dot(optimal_theta) print( 'RMS {dataset} error: {error}'.format( dataset=dataset, error=np.sqrt(np.mean((predicted_prices - actual_prices) ** 2)) ) ) plt.figure(figsize=(10, 8)) plt.scatter(np.arange(test_y.size), sorted(test_y), c='b', edgecolor='None', alpha=0.5, label='actual') plt.scatter(np.arange(test_y.size), sorted(test_X.dot(optimal_theta)), c='g', edgecolor='None', alpha=0.5, label='predicted') plt.legend(loc='upper left') plt.ylabel('House price ($1000s)') plt.xlabel('House #') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create train & test sets. Step2: Define the cost function and how to compute the gradient.<br> Step3: Run a timed optimization and store the iteration values of the cost function (for latter investigation). Step4: It's always interesting to take a more detailed look at the optimization results. Step5: Now compute the Root Mean Square Error on both the train and the test set and hopefully they are similar to each other. Step6: Finally, let's have a more intuitive look at the predictions.
14,892
<ASSISTANT_TASK:> Python Code: from pynq import Overlay from pynq.drivers import Audio Overlay('base.bit').download() pAudio = Audio() pAudio.record(3) pAudio.save("Recording_1.pdm") pAudio.load("/home/xilinx/pynq/drivers/tests/pynq_welcome.pdm") pAudio.play() import time import numpy as np start = time.time() af_uint8 = np.unpackbits(pAudio.buffer.astype(np.int16) .byteswap(True).view(np.uint8)) end = time.time() print("Time to convert {:,d} PDM samples: {:0.2f} seconds" .format(np.size(pAudio.buffer)*16, end-start)) print("Size of audio data: {:,d} Bytes" .format(af_uint8.nbytes)) import time from scipy import signal start = time.time() af_dec = signal.decimate(af_uint8,8,zero_phase=True) af_dec = signal.decimate(af_dec,6,zero_phase=True) af_dec = signal.decimate(af_dec,2,zero_phase=True) af_dec = (af_dec[10:-10]-af_dec[10:-10].mean()) end = time.time() print("Time to convert {:,d} Bytes: {:0.2f} seconds" .format(af_uint8.nbytes, end-start)) print("Size of audio data: {:,d} Bytes" .format(af_dec.nbytes)) del af_uint8 from IPython.display import Audio as IPAudio IPAudio(af_dec, rate=32000) %matplotlib inline import numpy as np import matplotlib.pyplot as plt plt.figure(num=None, figsize=(15, 5)) time_axis = np.arange(0,((len(af_dec))/32000),1/32000) plt.title('Audio Signal in Time Domain') plt.xlabel('Time in s') plt.ylabel('Amplitude') plt.plot(time_axis, af_dec) plt.show() from scipy.fftpack import fft yf = fft(af_dec) yf_2 = yf[1:len(yf)//2] xf = np.linspace(0.0, 32000//2, len(yf_2)) plt.figure(num=None, figsize=(15, 5)) plt.plot(xf, abs(yf_2)) plt.title('Magnitudes of Audio Signal Frequency Components') plt.xlabel('Frequency in Hz') plt.ylabel('Magnitude') plt.show() import matplotlib np.seterr(divide='ignore',invalid='ignore') matplotlib.style.use("classic") plt.figure(num=None, figsize=(15, 4)) plt.title('Audio Signal Spectogram') plt.xlabel('Time in s') plt.ylabel('Frequency in Hz') _ = plt.specgram(af_dec, Fs=32000) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Record and play Step2: Load and play Step3: Play in notebook Step4: Step 2 Step5: Step 3 Step6: Plotting PCM data Step7: Frequency spectrum Step8: Frequency spectrum over time
14,893
<ASSISTANT_TASK:> Python Code: import requests response = requests.get("https://api.forecast.io/forecast/e554f37a8164ce189acd210d00a452e0/47.4079,9.4647") weather_data = response.json() weather_data.keys() print(weather_data['timezone']) print("Longitude:", weather_data['longitude'], "Latitude", weather_data['latitude']) type(weather_data['currently']) weather_data['currently'].keys() print("The wind in Trogen, Switzerland, is currently blowing at", weather_data['currently']['windSpeed'], "mph.") weather = weather_data['currently'] Temperature = int(weather['apparentTemperature']) - int(weather['temperature']) Celsius = round((int(weather['temperature']) - 32) * 5 / 9) if Temperature == 0: print("The temperature feels exactly as you would expect it to feel, namely", weather['temperature'], "degrees Fahrenheit, or", Celsius, "degrees Celsius.") elif Temperature > 0: print("It feels", Temperature, "degrees Fahrenheit warmer than the actual temperature, which is", weather['temperature'], "degrees Fahrenheit, or", Celsius, "degrees Celsius.") else: print("It feels", Temperature, "degrees Fahrenheit colder than the actual temperature, which is", weather['temperature'], "degrees Fahrenheit, or", Celsius, "degrees Celsius.") type(weather_data['daily']) weather_data['daily'].keys() type(weather_data['daily']['data']) for phase in weather_data['daily']['data']: moon_forecast_tomorrow = phase['moonPhase'] break #print(phase['moonPhase']) if moon_forecast_tomorrow == 0: print("Tomorrow is New Moon.") elif moon_forecast_tomorrow > .75: print("Tomorrow the Moon is in a Waning Crescent phase.") elif moon_forecast_tomorrow == .75: print("Tomorrow is last quarter Moon.") elif moon_forecast_tomorrow > .5: print("Tommorrow the Moon is in a Waning Gibbous phase.") elif moon_forecast_tomorrow == .5: print("Tommorrow is Full Moon.") elif moon_forecast_tomorrow > .25: print("Tommorrow the Moon is a Waxing Gibbous phase.") elif moon_forecast_tomorrow == .25: print("Tommorrow is first Quarter Moon.") elif moon_forecast_tomorrow > 0: print("Tommorrow the Moon is in a Waxing Crescent phase. This is the first phase after New Moon.") print(weather_data['currently']) response = requests.get("https://api.forecast.io/forecast/e554f37a8164ce189acd210d00a452e0/47.4079,9.4647,1465420000") hist_weather_data = response.json() hist_weather_data.keys() hist_weather_data['daily'].keys() print(hist_weather_data['daily']['data']) for n in hist_weather_data['daily']['data']: Min = n['temperatureMin'] Max = n['temperatureMax'] Min_Max = Max - Min Min_Max_Celsius = ((Max - 32) * 5 / 9) - ((Min - 32) * 5 / 9) print("The diffrence between the high and low temperatures on Wedesday, June 8, in Trogen, Switzerland, was", round(Min_Max), "Fahrenheit", "or", round(Min_Max_Celsius), "Celsius.") response = requests.get("https://api.forecast.io/forecast/e554f37a8164ce189acd210d00a452e0/40.7128,-74.0059") weather_data = response.json() weather_data.keys() weather_data['daily'].keys() print(weather_data['daily']['data'][0]) Forecast = weather_data['daily']['data'] for max_temp in Forecast: Convert_Celsius = (max_temp['temperatureMax'] - 32) * 5 / 9 if Convert_Celsius > 30: Temperature = "hot" elif Convert_Celsius > 20: Temperature = "warm" else: Temperature = "cold" print("The maximum temperature in New York for next week are", max_temp['temperatureMax'], "Fahrenheit or", round(Convert_Celsius), "Celsius. That is", Temperature) import datetime print(datetime.datetime.fromtimestamp(int("1284101485")).strftime('%Y-%m-%d')) import time import datetime Forecast = weather_data['daily']['data'] for max_temp in Forecast: Convert_Celsius = (max_temp['temperatureMax'] - 32) * 5 / 9 time1 = max_temp['time'] if Convert_Celsius > 30: Temperature = "hot" elif Convert_Celsius > 20: Temperature = "comfortably warm." else: Temperature = "cold" #print("On", time.strftime('%A, %b %d', time.localtime(time1)), "the maximum temperature will be", max_temp['temperatureMax'], "Fahrenheit or", round(Convert_Celsius), "Celsius. That is", Temperature) print("On", time.strftime('%A', time.localtime(time1)), "the maximum temperature will be", max_temp['temperatureMax'], "Fahrenheit or", round(Convert_Celsius), "Celsius. That is", Temperature) import datetime print(datetime.datetime.fromtimestamp(int(time)).strftime('%Y-%m-%d')) response = requests.get("https://api.forecast.io/forecast/e554f37a8164ce189acd210d00a452e0/25.7617,-80.1918") Florida = response.json() Florida.keys() Florida['hourly'].keys() #print(Florida['hourly']['data']) import time import datetime Hourly = Florida['hourly']['data'] Hourly = Hourly for weather in Hourly: time = weather['time'] stop_time = datetime.datetime.fromtimestamp(int(time)).strftime('%H') if stop_time == '01': break if weather['cloudCover'] > 0.5: cloudy = "and cloudy" else: cloudy = "not cloudy" print(datetime.datetime.fromtimestamp(int(time)).strftime('%H:%M'), "{", weather['temperature'], "°F}",cloudy) response = requests.get("https://api.forecast.io/forecast/e554f37a8164ce189acd210d00a452e0/40.781750,-73.966641,346593600") weather_data = response.json() weather_data.keys() #print(weather_data['daily']['data'][0]) for Christmas in weather_data['daily']['data']: Convert_Celsius = (Christmas['temperatureMax'] - 32) * 5 / 9 print("The maximum temperature on Christmas Day 1980 in Centralpark was", Christmas['temperatureMax'], "Fahrenheit, or", round(Convert_Celsius), "degrees Celsius.") response = requests.get("https://api.forecast.io/forecast/e554f37a8164ce189acd210d00a452e0/40.781750,-73.966641,662126400") weather_data_1990 = response.json() weather_data_1990.keys() response = requests.get("https://api.forecast.io/forecast/e554f37a8164ce189acd210d00a452e0/40.781750,-73.966641,977745600") weather_data_2000 = response.json() weather_data_2000.keys() for Christmas in weather_data_1990['daily']['data']: Convert_Celsius = (Christmas['temperatureMax'] - 32) * 5 / 9 print("The maximum temperature on Christmas Day 1990 in Centralpark was", Christmas['temperatureMax'], "Fahrenheit, or", round(Convert_Celsius), "degrees Celsius.") for Christmas in weather_data_2000['daily']['data']: Convert_Celsius = (Christmas['temperatureMax'] - 32) * 5 / 9 print("The maximum temperature on Christmas Day 1980 in Centralpark was", Christmas['temperatureMax'], "Fahrenheit, or", round(Convert_Celsius), "degrees Celsius.") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The time zone of Trogen is correct! This is where I live. Step2: The longitude is mentioned first, and then the latitude. Usually, it is the other way round. Step3: 3) The first daily forecast is the forecast for today. For the place you decided on up above, how much of the moon is currently visible? Step4: 4) What's the difference between the high and low temperatures for today? Step5: 5) Loop through the daily forecast, printing out the next week's worth of predictions. I'd like to know the high temperature for each day, and whether it's hot, warm, or cold, based on what temperatures you think are hot, warm or cold. Step6: 6) What's the weather looking like for the rest of today in Miami, Florida? I'd like to know the temperature for every hour, and if it's going to have cloud cover of more than 0.5 say "{temperature} and cloudy" instead of just the temperature. Step7: 7) What was the temperature in Central Park on Christmas Day, 1980? How about 1990? 2000?
14,894
<ASSISTANT_TASK:> Python Code: import coiled cluster = coiled.Cluster(n_workers=10) from dask.distributed import Client client = Client(cluster) print('Dashboard:', client.dashboard_link) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's point the distributed client to the Dask cluster on Coiled and output the link to the dashboard
14,895
<ASSISTANT_TASK:> Python Code: #Create references to important directories we will use over and over import os, sys DATA_HOME_DIR = '/home/nathan/olin/spring2017/line-follower/line-follower/data' #import modules import numpy as np from glob import glob from PIL import Image from tqdm import tqdm from scipy.ndimage import zoom from keras.models import Sequential from keras.metrics import categorical_crossentropy, categorical_accuracy from keras.layers.convolutional import * from keras.preprocessing import image from keras.layers.core import Flatten, Dense from keras.optimizers import Adam from keras.layers.normalization import BatchNormalization from matplotlib import pyplot as plt import seaborn as sns %matplotlib inline %cd $DATA_HOME_DIR path = DATA_HOME_DIR train_path=path + '/sun_apr_16_office_full_line_1' valid_path=path + '/sun_apr_16_office_full_line_2' def resize_vectorized4D(data, new_size=(64, 64)): A vectorized implementation of 4d image resizing Args: data (4D array): The images you want to resize new_size (tuple): The desired image size Returns: (4D array): The resized images fy, fx = np.asarray(new_size, np.float32) / data.shape[1:3] return zoom(data, (1, fy, fx, 1), order=1) # order is the order of spline interpolation def lowerHalfImage(array): Returns the lower half rows of an image Args: array (array): the array you want to extract the lower half from Returns: The lower half of the array return array[round(array.shape[0]/2):,:,:] def folder_to_numpy(image_directory_full): Read sorted pictures (by filename) in a folder to a numpy array. We have hardcoded the extraction of the lower half of the images as that is the relevant data USAGE: data_folder = '/train/test1' X_train = folder_to_numpy(data_folder) Args: data_folder (str): The relative folder from DATA_HOME_DIR Returns: picture_array (np array): The numpy array in tensorflow format # change directory print ("Moving to directory: " + image_directory_full) os.chdir(image_directory_full) # read in filenames from directory g = glob('*.png') if len(g) == 0: g = glob('*.jpg') print ("Found {} pictures".format(len(g))) # sort filenames g.sort() # open and convert images to numpy array - then extract the lower half of each image print("Starting pictures to numpy conversion") picture_arrays = np.array([lowerHalfImage(np.array(Image.open(image_path))) for image_path in g]) # reshape to tensorflow format # picture_arrays = picture_arrays.reshape(*picture_arrays.shape, 1) print ("Shape of output: {}".format(picture_arrays.shape)) # return array return picture_arrays return picture_arrays.astype('float32') def flip4DArray(array): Produces the mirror images of a 4D image array return array[..., ::-1,:] #[:,:,::-1] also works but is 50% slower def concatCmdVelFlip(array): Concatentaes and returns Cmd Vel array return np.concatenate((array, array*-1)) # multiply by negative 1 for opposite turn %cd $train_path Y_train = np.genfromtxt('cmd_vel.csv', delimiter=',')[:,1] # only use turning angle Y_train = np.concatenate((Y_train, Y_train*-1)) X_train = folder_to_numpy(train_path + '/raw') X_train = np.concatenate((X_train, flip4DArray(X_train))) X_train.shape, Y_train.shape %cd /tmp img = Image.fromarray(X_train[0], 'RGB') img.save("temp.jpg") image.load_img("temp.jpg") %cd $valid_path Y_valid = np.genfromtxt('cmd_vel.csv', delimiter=',')[:,1] Y_valid = np.concatenate((Y_valid, Y_valid*-1)) X_valid = folder_to_numpy(valid_path + '/raw') X_valid = np.concatenate((X_valid, flip4DArray(X_valid))) X_valid.shape, Y_valid.shape img_rows, img_cols = (64, 64) print(img_rows) print(img_cols) X_train = resize_vectorized4D(X_train, (img_rows, img_cols)) X_valid = resize_vectorized4D(X_valid, (img_rows, img_cols)) print(X_train.shape) print(X_valid.shape) %cd /tmp img = Image.fromarray(X_train[np.random.randint(0, X_train.shape[0])], 'RGB') img.save("temp.jpg") image.load_img("temp.jpg") gen = image.ImageDataGenerator( # rescale=1. / 255 # normalize data between 0 and 1 ) train_generator = gen.flow(X_train, Y_train)#, batch_size=batch_size, shuffle=True) valid_generator = gen.flow(X_valid, Y_valid)#, batch_size=batch_size, shuffle=True) # get_batches(train_path, batch_size=batch_size, # target_size=in_shape, # gen=gen) # val_batches = get_batches(valid_path, batch_size=batch_size, # target_size=in_shape, # gen=gen) data, category = next(train_generator) print ("Shape of data: {}".format(data[0].shape)) %cd /tmp img = Image.fromarray(data[np.random.randint(0, data.shape[0])].astype('uint8'), 'RGB') img.save("temp.jpg") image.load_img("temp.jpg") in_shape = (img_rows, img_cols, 3) def get_model(): model = Sequential([ Convolution2D(32,3,3, border_mode='same', activation='relu', input_shape=in_shape), MaxPooling2D(), Convolution2D(64,3,3, border_mode='same', activation='relu'), MaxPooling2D(), Convolution2D(128,3,3, border_mode='same', activation='relu'), MaxPooling2D(), Flatten(), Dense(2048, activation='relu'), Dense(1024, activation='relu'), Dense(512, activation='relu'), Dense(1) ]) model.compile(loss='mean_absolute_error', optimizer='adam') return model model = get_model() model.summary() history = model.fit_generator(train_generator, samples_per_epoch=train_generator.n, nb_epoch=2500, validation_data=valid_generator, nb_val_samples=valid_generator.n, verbose=True) # %cd $DATA_HOME_DIR # model.save_weights('epoche_2500.h5') %cd $DATA_HOME_DIR model.load_weights('epoche_2500.h5') val_plot = np.convolve(history.history['val_loss'], np.repeat(1/10, 10), mode='valid') train_plot = np.convolve(history.history['loss'], np.repeat(1/10, 10), mode='valid') sns.tsplot(val_plot) X_preds = model.predict(X_valid).reshape(X_valid.shape[0],) for i in range(len(X_valid)): print("{:07f} | {:07f}".format(Y_valid[i], X_preds[i])) X_train_preds = model.predict(X_train).reshape(X_train.shape[0],) for i in range(len(X_train_preds)): print("{:07f} | {:07f}".format(Y_train[i], X_train_preds[i])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create paths to data directories Step7: Helper Functions Step8: Data Step9: Test the shape of the arrays Step10: Visualize the training data, currently using a hacky method to display the numpy matrix as this is being run over a remote server and I can't view new windows Step11: Validation Data Step12: Test the shape of the arrays Step13: Resize Data Step14: Visualize newly resized image. Step15: Batches Step16: Next, create the train and valid generators, these are shuffle and have a batch size of 32 by default Step17: Convnet Step18: Model Step19: Train Step20: Visualize Training
14,896
<ASSISTANT_TASK:> Python Code: import deltascope as ds import deltascope.alignment as ut import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import normalize from scipy.optimize import minimize import os import tqdm import json import datetime # -------------------------------- # -------- User input ------------ # -------------------------------- data = { # Specify sample type key '30hpf': { # Specify path to data directory 'path': '.\\Data\\30hpf\\Output-02-14-2019', # Specify which channels are in the directory and are of interest 'channels': ['AT','ZRF'] }, '28hpf': { 'path': '.\Data\\28hpf\\Output-02-14-2019-yot-ilastik', 'channels': ['AT','ZRF'] }, '26hpf': { 'path': '.\Data\\26hpf\\Output-02-14-2019', 'channels': ['AT','ZRF'] }, '24hpf': { 'path': '.\Data\\24hpf\\Output-02-15-2019', 'channels': ['AT','ZRF'] }, '22hpf': { 'path': '.\Data\\22hpf\\Output-02-14-2019', 'channels': ['AT','ZRF'] } } data_pairs = [] for s in data.keys(): for c in data[s]['channels']: data_pairs.append((s,c)) D = {} for s in data.keys(): D[s] = {} for c in data[s]['channels']: D[s][c] = ds.read_psi_to_dict(data[s]['path'],c) # -------------------------------- # -------- User input ------------ # -------------------------------- # Pick an integer value for bin number anum = 30 # Specify the percentiles which will be used to calculate landmarks percbins = [50] theta_step = np.pi/4 lm = ds.landmarks(percbins=percbins, rnull=np.nan) lm.calc_bins(D['28hpf']['AT'], anum, theta_step) print('Alpha bins') print(lm.acbins) print('Theta bins') print(lm.tbins) lmdf = pd.DataFrame() # Loop through each pair of stype and channels for s,c in tqdm.tqdm(data_pairs): print(s,c) # Calculate landmarks for each sample with this data pair for k,df in tqdm.tqdm(D[s][c].items()): lmdf = lm.calc_perc(df, k, '-'.join([s,c]), lmdf) # Set timestamp for saving data tstamp = datetime.datetime.now().strftime('%Y-%m-%d') # Save completed landmarks to a csv file lmdf.to_csv(os.path.join('.\Data',tstamp+'_landmarks.csv')) # Save landmark bins to json file bins = { 'acbins':list(lm.acbins), 'tbins':list(lm.tbins) } with open(os.path.join('.\Data', tstamp+'_landmarks_bins.json'), 'w') as outfile: json.dump(bins, outfile) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Import raw data Step2: We'll generate a list of pairs of stypes and channels for ease of use. Step3: We can now read in all datafiles specified by the data dictionary above. Step4: Calculate landmark bins Step5: Calculate landmark bins based on user input parameters and the previously specified control sample. Step6: Calculate landmarks
14,897
<ASSISTANT_TASK:> Python Code: import numpy as np from load import mnist X_train, X_test, y_train2, y_test2 = mnist(onehot=True) y_train = np.argmax(y_train2, axis=1) y_test = np.argmax(y_test2, axis=1) X_train[1].reshape((28, 28)).round(2)[:, 4:9].tolist() from pylab import imshow, show, cm import matplotlib.pylab as plt %matplotlib inline def view_image(image, label="", predicted='', size=4): View a single image. plt.figure(figsize = (size, size)) plt.imshow(image.reshape((28, 28)), cmap=cm.gray, ) plt.tick_params(axis='x',which='both', bottom='off',top='off', labelbottom='off') plt.tick_params(axis='y',which='both', left='off',top='off', labelleft='off') show() if predicted == '': print("Label: %s" % label) else: print('Label: ', str(label), 'Predicted: ', str(predicted)) view_image(X_train[1], y_train[1]) view_image(X_train[40000], y_train[40000]) def similarity(image, images): similarities = [] image = image.reshape((28, 28)) images = images.reshape((-1, 28, 28)) for i in range(images.shape[0]): distance = np.sqrt(np.sum(image - images[i]) ** 2) sim = 1 / distance similarities.append(sim) return similarities np.random.seed(52) small_train = np.random.choice(X_train.shape[0], 100) view_image(X_test[0]) similarities = similarity(X_test[0], X_train[small_train]) view_image(X_train[small_train[np.argmax(similarities)]]) view_image(X_test[200]) similarities = similarity(X_test[200], X_train[small_train]) view_image(X_train[small_train[np.argmax(similarities)]]) import theano from theano import tensor as T import numpy as np import datetime as dt theano.config.floatX = 'float32' def floatX(X): # return np.asarray(X, dtype='float32') return np.asarray(X, dtype=theano.config.floatX) def init_weights(shape): return theano.shared(floatX(np.random.randn(*shape) * 0.01)) def model(X, w): return T.nnet.softmax(T.dot(X, w)) X = T.fmatrix() Y = T.fmatrix() w = init_weights((784, 10)) w.get_value() py_x = model(X, w) y_pred = T.argmax(py_x, axis=1) cost = T.mean(T.nnet.categorical_crossentropy(py_x, Y)) gradient = T.grad(cost=cost, wrt=w) update = [[w, w - gradient * 0.05]] train = theano.function(inputs=[X, Y], outputs=cost, updates=update, allow_input_downcast=True) predict = theano.function(inputs=[X], outputs=y_pred, allow_input_downcast=True) for start, end in zip(range(0, X_train.shape[0], 128), range(128, X_train.shape[0], 128)): cost = train(X_train[start:end], y_train2[start:end]) errors = [(np.mean(y_train != predict(X_train)), np.mean(y_test != predict(X_test)))] errors t0 = dt.datetime.now() for i in range(100): for start, end in zip(range(0, X_train.shape[0], 128), range(128, X_train.shape[0], 128)): cost = train(X_train[start:end], y_train2[start:end]) errors.append((np.mean(y_train != predict(X_train)), np.mean(y_test != predict(X_test)))) print(i, errors[-1]) print('Total time: ', (dt.datetime.now()-t0).seconds / 60.) res = np.array(errors) plt.plot(np.arange(res.shape[0]), res[:, 0], label='train error') plt.plot(np.arange(res.shape[0]), res[:, 1], label='test error') plt.legend() y_pred = predict(X_test) np.random.seed(2) small_test = np.random.choice(X_test.shape[0], 10) for i in small_test: view_image(X_test[i], label=y_test[i], predicted=y_pred[i], size=1) def sgd(cost, params, lr=0.05): grads = T.grad(cost=cost, wrt=params) updates = [] for p, g in zip(params, grads): updates.append([p, p - g * lr]) return updates def model(X, w_h, w_o): h = T.nnet.sigmoid(T.dot(X, w_h)) pyx = T.nnet.softmax(T.dot(h, w_o)) return pyx w_h = init_weights((784, 625)) w_o = init_weights((625, 10)) py_x = model(X, w_h, w_o) y_x = T.argmax(py_x, axis=1) cost = T.mean(T.nnet.categorical_crossentropy(py_x, Y)) params = [w_h, w_o] updates = sgd(cost, params) train = theano.function(inputs=[X, Y], outputs=cost, updates=updates, allow_input_downcast=True) predict = theano.function(inputs=[X], outputs=y_x, allow_input_downcast=True) t0 = dt.datetime.now() errors = [] for i in range(100): for start, end in zip(range(0, X_train.shape[0], 128), range(128, X_train.shape[0], 128)): cost = train(X_train[start:end], y_train2[start:end]) errors.append((np.mean(y_train != predict(X_train)), np.mean(y_test != predict(X_test)))) print(i, errors[-1]) print('Total time: ', (dt.datetime.now()-t0).seconds / 60.) res = np.array(errors) plt.plot(np.arange(res.shape[0]), res[:, 0], label='train error') plt.plot(np.arange(res.shape[0]), res[:, 1], label='test error') plt.legend() from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams srng = RandomStreams() def rectify(X): return T.maximum(X, 0.) def RMSprop(cost, params, lr=0.001, rho=0.9, epsilon=1e-6): grads = T.grad(cost=cost, wrt=params) updates = [] for p, g in zip(params, grads): acc = theano.shared(p.get_value() * 0.) acc_new = rho * acc + (1 - rho) * g ** 2 gradient_scaling = T.sqrt(acc_new + epsilon) g = g / gradient_scaling updates.append((acc, acc_new)) updates.append((p, p - lr * g)) return updates def dropout(X, p=0.): if p > 0: retain_prob = 1 - p X *= srng.binomial(X.shape, p=retain_prob, dtype=theano.config.floatX) X /= retain_prob return X def model(X, w_h, w_h2, w_o, p_drop_input, p_drop_hidden): X = dropout(X, p_drop_input) h = rectify(T.dot(X, w_h)) h = dropout(h, p_drop_hidden) h2 = rectify(T.dot(h, w_h2)) h2 = dropout(h2, p_drop_hidden) py_x = softmax(T.dot(h2, w_o)) return h, h2, py_x def softmax(X): e_x = T.exp(X - X.max(axis=1).dimshuffle(0, 'x')) return e_x / e_x.sum(axis=1).dimshuffle(0, 'x') w_h = init_weights((784, 625)) w_h2 = init_weights((625, 625)) w_o = init_weights((625, 10)) noise_h, noise_h2, noise_py_x = model(X, w_h, w_h2, w_o, 0.2, 0.5) h, h2, py_x = model(X, w_h, w_h2, w_o, 0., 0.) y_x = T.argmax(py_x, axis=1) cost = T.mean(T.nnet.categorical_crossentropy(noise_py_x, Y)) params = [w_h, w_h2, w_o] updates = RMSprop(cost, params, lr=0.001) train = theano.function(inputs=[X, Y], outputs=cost, updates=updates, allow_input_downcast=True) predict = theano.function(inputs=[X], outputs=y_x, allow_input_downcast=True) t0 = dt.datetime.now() errors = [] for i in range(100): for start, end in zip(range(0, X_train.shape[0], 128), range(128, X_train.shape[0], 128)): cost = train(X_train[start:end], y_train2[start:end]) errors.append((np.mean(y_train != predict(X_train)), np.mean(y_test != predict(X_test)))) print(i, errors[-1]) print('Total time: ', (dt.datetime.now()-t0).seconds / 60.) res = np.array(errors) plt.plot(np.arange(res.shape[0]), res[:, 0], label='train error') plt.plot(np.arange(res.shape[0]), res[:, 1], label='test error') plt.legend() # from theano.tensor.nnet.conv import conv2d from theano.tensor.nnet import conv2d from theano.tensor.signal.downsample import max_pool_2d def model(X, w, w2, w3, w4, w_o, p_drop_conv, p_drop_hidden): l1a = rectify(conv2d(X, w, border_mode='full')) l1 = max_pool_2d(l1a, (2, 2)) l1 = dropout(l1, p_drop_conv) l2a = rectify(conv2d(l1, w2)) l2 = max_pool_2d(l2a, (2, 2)) l2 = dropout(l2, p_drop_conv) l3a = rectify(conv2d(l2, w3)) l3b = max_pool_2d(l3a, (2, 2)) # convert from 4tensor to normal matrix l3 = T.flatten(l3b, outdim=2) l3 = dropout(l3, p_drop_conv) l4 = rectify(T.dot(l3, w4)) l4 = dropout(l4, p_drop_hidden) pyx = softmax(T.dot(l4, w_o)) return l1, l2, l3, l4, pyx X_train2 = X_train.reshape(-1, 1, 28, 28) X_test2 = X_test.reshape(-1, 1, 28, 28) # now 4tensor for conv instead of matrix X = T.ftensor4() Y = T.fmatrix() w = init_weights((32, 1, 3, 3)) w2 = init_weights((64, 32, 3, 3)) w3 = init_weights((128, 64, 3, 3)) w4 = init_weights((128 * 3 * 3, 625)) w_o = init_weights((625, 10)) noise_l1, noise_l2, noise_l3, noise_l4, noise_py_x = model(X, w, w2, w3, w4, w_o, 0.2, 0.5) l1, l2, l3, l4, py_x = model(X, w, w2, w3, w4, w_o, 0., 0.) y_x = T.argmax(py_x, axis=1) cost = T.mean(T.nnet.categorical_crossentropy(noise_py_x, Y)) params = [w, w2, w3, w4, w_o] updates = RMSprop(cost, params, lr=0.001) train = theano.function(inputs=[X, Y], outputs=cost, updates=updates, allow_input_downcast=True) predict = theano.function(inputs=[X], outputs=y_x, allow_input_downcast=True) t0 = dt.datetime.now() errors = [] for i in range(100): t1 = dt.datetime.now() for start, end in zip(range(0, X_train.shape[0], 128), range(128, X_train.shape[0], 128)): cost = train(X_train2[start:end], y_train2[start:end]) errors.append((np.mean(y_train != predict(X_train2)), np.mean(y_test != predict(X_test2)))) print(i, errors[-1]) print('Current iter time: ', (dt.datetime.now()-t1).seconds / 60.) print('Total time: ', (dt.datetime.now()-t0).seconds / 60.) print('Total time: ', (dt.datetime.now()-t0).seconds / 60.) res = np.array(errors) plt.plot(np.arange(res.shape[0]), res[:, 0], label='train error') plt.plot(np.arange(res.shape[0]), res[:, 1], label='test error') plt.legend() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 12 - Introduction to Deep Learning Step2: Naive model Step3: Lets try an other example Step4: Logistic Regression Step5: ``` Step6: initialize model Step7: One iteration Step8: Now for 100 epochs Step9: Checking the results Step10: Simple Neural Net Step11: Complex Neural Net Step12: Understanding rectifier units Step13: RMSprop Step14: Convolutional Neural Network Step15: Modify dropout function Step16: reshape into conv 4tensor (b, c, 0, 1) format
14,898
<ASSISTANT_TASK:> Python Code: import astropy.coordinates as coord import astropy.table as at from astropy.time import Time import astropy.units as u import matplotlib.pyplot as plt import numpy as np %matplotlib inline import corner import pymc3 as pm import pymc3_ext as pmx import exoplanet as xo import arviz as az import thejoker as tj # set up a random number generator to ensure reproducibility rnd = np.random.default_rng(seed=42) data_tbl = at.QTable.read('data.ecsv') sub_tbl = data_tbl[rnd.choice(len(data_tbl), size=18, replace=False)] # downsample data data = tj.RVData.guess_from_table(sub_tbl, t_ref=data_tbl.meta['t_ref']) _ = data.plot() prior = tj.JokerPrior.default( P_min=2*u.day, P_max=1e3*u.day, sigma_K0=30*u.km/u.s, sigma_v=100*u.km/u.s) prior_samples = prior.sample(size=250_000, random_state=rnd) joker = tj.TheJoker(prior, random_state=rnd) joker_samples = joker.rejection_sample(data, prior_samples, max_posterior_samples=256) joker_samples joker_samples.tbl _ = tj.plot_rv_curves(joker_samples, data=data) with prior.model: mcmc_init = joker.setup_mcmc(data, joker_samples) trace = pmx.sample(tune=500, draws=500, start=mcmc_init, cores=1, chains=2) az.summary(trace, var_names=prior.par_names) mcmc_samples = joker.trace_to_samples(trace, data) mcmc_samples.wrap_K() mcmc_samples import pickle with open('true-orbit.pkl', 'rb') as f: truth = pickle.load(f) # make sure the angles are wrapped the same way if np.median(mcmc_samples['omega']) < 0: truth['omega'] = coord.Angle(truth['omega']).wrap_at(np.pi*u.radian) if np.median(mcmc_samples['M0']) < 0: truth['M0'] = coord.Angle(truth['M0']).wrap_at(np.pi*u.radian) df = mcmc_samples.tbl.to_pandas() truths = [] colnames = [] for name in df.columns: if name in truth: colnames.append(name) truths.append(truth[name].value) _ = corner.corner(df[colnames], truths=truths) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Here we will again load some pre-generated data meant to represent well-sampled, precise radial velocity observations of a single luminous source with a single companion (we again downsample the data set here just for demonstration) Step2: We will use the default prior, but feel free to play around with these values Step3: The data above look fairly constraining Step4: The sample that was returned by The Joker does look like it is a reasonable fit to the RV data, but to fully explore the posterior pdf we will use standard MCMC through pymc3. Here we will use the NUTS sampler, but you could also experiment with other backends (e.g., Metropolis-Hastings, or even emcee by following this blog post) Step5: If you get warnings from running the sampler above, they usually indicate that we should run the sampler for many more steps to tune the sampler and for our main run, but let's ignore that for now. With the MCMC traces in hand, we can summarize the properties of the chains using pymc3.summary Step6: To convert the trace into a JokerSamples instance, we can use the TheJoker.trace_to_samples() method. Note here that the sign of K is arbitrary, so to compare to the true value, we also call wrap_K() to store only the absolute value of K (which also increases omega by π, to stay consistent) Step7: We can now compare the samples we got from MCMC to the true orbital parameters used to generate this data
14,899
<ASSISTANT_TASK:> Python Code: # !pip install ray[tune] !pip install scikit-optimize==0.8.1 !pip install sklearn==0.18.2 import time from typing import Dict, Optional, Any import ray import skopt from ray import tune from ray.tune.suggest import ConcurrencyLimiter from ray.tune.suggest.skopt import SkOptSearch ray.init(configure_logging=False) def evaluate(step, width, height, activation): time.sleep(0.1) activation_boost = 10 if activation=="relu" else 0 return (0.1 + width * step / 100) ** (-1) + height * 0.1 + activation_boost def objective(config): for step in range(config["steps"]): score = evaluate(step, config["width"], config["height"], config["activation"]) tune.report(iterations=step, mean_loss=score) search_space = { "steps": 100, "width": tune.uniform(0, 20), "height": tune.uniform(-100, 100), "activation": tune.choice(["relu", "tanh"]), } algo = SkOptSearch() algo = ConcurrencyLimiter(algo, max_concurrent=4) num_samples = 1000 # We override here for our smoke tests. num_samples = 10 analysis = tune.run( objective, search_alg=algo, metric="mean_loss", mode="min", name="skopt_exp", num_samples=num_samples, config=search_space ) print("Best hyperparameters found were: ", analysis.best_config) initial_params = [ {"width": 10, "height": 0, "activation": "relu"}, {"width": 15, "height": -20, "activation": "tanh"} ] known_rewards = [-189, -1144] algo = SkOptSearch(points_to_evaluate=initial_params) algo = ConcurrencyLimiter(algo, max_concurrent=4) analysis = tune.run( objective, search_alg=algo, metric="mean_loss", mode="min", name="skopt_exp_with_warmstart", num_samples=num_samples, config=search_space ) print("Best hyperparameters found were: ", analysis.best_config) ray.shutdown() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Click below to see all the imports we need for this example. Step2: Let's start by defining a simple evaluation function. Again, an explicit math formula is queried here for demonstration, yet in practice this is typically a black-box function-- e.g. the performance results after training an ML model. We artificially sleep for a bit (0.1 seconds) to simulate a long-running ML experiment. This setup assumes that we're running multiple steps of an experiment while tuning three hyperparameters, namely width, height, and activation. Step3: Next, our objective function to be optimized takes a Tune config, evaluates the score of your experiment in a training loop, Step4: Next we define a search space. The critical assumption is that the optimal hyperparamters live within this space. Yet, if the space is very large, then those hyperparameters may be difficult to find in a short amount of time. Step5: The search algorithm is instantiated from the SkOptSearch class. We also constrain the the number of concurrent trials to 4 with a ConcurrencyLimiter. Step6: The number of samples is the number of hyperparameter combinations that will be tried out. This Tune run is set to 1000 samples. Step7: Finally, we run the experiment to "min"imize the "mean_loss" of the objective by searching search_config via algo, num_samples times. This previous sentence is fully characterizes the search problem we aim to solve. With this in mind, notice how efficient it is to execute tune.run(). Step8: We now have hyperparameters found to minimize the mean loss. Step9: Providing an initial set of hyperparameters Step10: Now the search_alg built using SkOptSearch takes points_to_evaluate. Step11: And again run the experiment, this time with initial hyperparameter evaluations Step12: And we again show the ideal hyperparameters.