Unnamed: 0
int64
0
15.9k
cleaned_code
stringlengths
67
124k
cleaned_prompt
stringlengths
168
30.3k
15,200
<ASSISTANT_TASK:> Python Code: # Authors: Pierre Ablin <pierreablin@gmail.com> # # License: BSD-3-Clause from time import time import mne from mne.preprocessing import ICA from mne.datasets import sample print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' raw = mne.io.read_raw_fif(raw_fname).crop(0, 60).pick('meg').load_data() reject = dict(mag=5e-12, grad=4000e-13) raw.filter(1, 30, fir_design='firwin') def run_ica(method, fit_params=None): ica = ICA(n_components=20, method=method, fit_params=fit_params, max_iter='auto', random_state=0) t0 = time() ica.fit(raw, reject=reject) fit_time = time() - t0 title = ('ICA decomposition using %s (took %.1fs)' % (method, fit_time)) ica.plot_components(title=title) run_ica('fastica') run_ica('picard') run_ica('infomax') run_ica('infomax', fit_params=dict(extended=True)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Read and preprocess the data. Preprocessing consists of Step2: Define a function that runs ICA on the raw MEG data and plots the components Step3: FastICA Step4: Picard Step5: Infomax Step6: Extended Infomax
15,201
<ASSISTANT_TASK:> Python Code: %matplotlib inline import pandas as pd import matplotlib.pyplot as plt import textmining_blackboxes as tm #see if package imported correctly tm.icantbelieve("butter") title_info=pd.read_csv('data/na-slave-narratives/data/toc.csv') #this is the "metadata" of these files--we'll use today #why does data appear twice in the filename? title_info title_info["Date"].str.replace("\-\?", "5") title_info["Date"].str.replace("[^0-9]", "") #use regular expressions to clean up title_info["Date"]=title_info["Date"].str.replace("\-\?", "5") title_info["Date"]=title_info["Date"].str.replace("[^0-9]", "") # what assumptions have I made about the data? title_info["Date"]=pd.to_datetime(title_info["Date"], coerce=True) title_info["Date"]<pd.datetime(1800,1,1) title_info[title_info["Date"]<pd.datetime(1800,1,1)] #Let's use a brittle thing for reading in a directory of pure txt files. our_texts=tm.readtextfiles('data/na-slave-narratives/data/texts') #again, this is not a std python package #returns a simple list of the document as very long strings #note if you want the following notebook will work on any directory of text files. our_texts=tm.data_cleanse(our_texts) #more necessary when have messy text #eliminate escaped characters from sklearn.feature_extraction.text import TfidfVectorizer vectorizer=TfidfVectorizer(min_df=0.5, stop_words='english', use_idf=True) document_term_matrix=vectorizer.fit_transform(our_texts) # now let's get our vocabulary--the names corresponding to the rows vocab=vectorizer.get_feature_names() len(vocab) document_term_matrix.shape vocab[1000:1100] document_term_matrix_dense=document_term_matrix.toarray() dtmdf=pd.DataFrame(document_term_matrix_dense, columns=vocab) dtmdf #easy to program, but let's use a robust version from sklearn! from sklearn.metrics.pairwise import cosine_similarity similarity=cosine_similarity(document_term_matrix) #Note here that the `cosine_similiary` can take #an entire matrix as its argument #what'd we get? similarity similarity.shape similarity[100] #this gives the similarity of row 100 to each of the other rows term_document_matrix=document_term_matrix.T # .T is the easy transposition method for a # matrix in python's matrix packages. # import a bunch of packages we need import matplotlib.pyplot as plt from sklearn.metrics.pairwise import cosine_similarity from scipy.cluster.hierarchy import ward, dendrogram #distance is 1-similarity, so: dist=1-cosine_similarity(term_document_matrix) # ward is an algorithm for hierarchical clustering linkage_matrix=ward(dist) #plot dendogram f=plt.figure(figsize=(9,9)) R=dendrogram(linkage_matrix, orientation="right", labels=vocab) plt.tight_layout() vectorizer=TfidfVectorizer(min_df=.96, stop_words='english', use_idf=True) #try a very high min_df #rerun the model document_term_matrix=vectorizer.fit_transform(our_texts) vocab=vectorizer.get_feature_names() #check the length of the vocab len(vocab) #switch again to the term_document_matrix term_document_matrix=document_term_matrix.T dist=1-cosine_similarity(term_document_matrix) linkage_matrix=ward(dist) #plot dendogram f=plt.figure(figsize=(9,9)) R=dendrogram(linkage_matrix, orientation="right", labels=vocab) plt.tight_layout() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: IMPORTANT Step2: Let's keep using the remarkable narratives available from Documenting the American South (http Step3: back to boolean indexing! Step4: For now, we'll play with the cool scientists and use the powerful and fast scikit learn package. Step5: back to vectorizer from scikit learn Step6: so document_term_matrix is a matrix with 294 rows--the documents--and 1650 columns--the vocabulary or terms or features Step7: right now stored super efficiently as a sparse matrix Step8: While this data frame is lovely to look at and useful to think with, it's tough on your computer's memory Step9: that is a symmetrical matrix relating each of the texts (rows) to another text (row) Step10: HOMEWORK EXERCISE Step11: OMG U...G...L...Y!
15,202
<ASSISTANT_TASK:> Python Code: from __future__ import print_function, division import time from matplotlib import rcParams import matplotlib.pyplot as plt import pandas as pd import numpy as np from six import iteritems from nilmtk import DataSet, TimeFrame, MeterGroup, HDFDataStore from nilmtk.disaggregate import CombinatorialOptimisation, FHMM import nilmtk.utils %matplotlib inline import warnings warnings.filterwarnings("ignore") rcParams['figure.figsize'] = (13, 6) train = DataSet('../datasets/REDD/low_freq.h5') test = DataSet('../datasets/REDD/low_freq.h5') building = 1 train.set_window(end="2011-04-30") test.set_window(start="2011-04-30") train_elec = train.buildings[1].elec test_elec = test.buildings[1].elec print(' TRAIN MAINS') train_elec.mains().plot(); print(' TRAIN APPLIANCES') train_elec.submeters().plot(); print(' TEST MAINS') test_elec.mains().plot(); print(' TEST APPLIANCES') test_elec.submeters().plot(); fridge_meter = train_elec['fridge'] fridge_df = next(fridge_meter.load()) fridge_df.head() mains = train_elec.mains() mains_df = next(mains.load()) mains_df.head() top_5_train_elec = train_elec.submeters().select_top_k(k=5) top_5_train_elec def predict(clf, test_elec, sample_period, timezone): pred = {} gt= {} # "ac_type" varies according to the dataset used. # Make sure to use the correct ac_type before using the default parameters in this code. for i, chunk in enumerate(test_elec.mains().load(physical_quantity = 'power', ac_type = 'apparent', sample_period=sample_period)): chunk_drop_na = chunk.dropna() pred[i] = clf.disaggregate_chunk(chunk_drop_na) gt[i]={} for meter in test_elec.submeters().meters: # Only use the meters that we trained on (this saves time!) gt[i][meter] = next(meter.load(physical_quantity = 'power', ac_type = 'active', sample_period=sample_period)) gt[i] = pd.DataFrame({k:v.squeeze() for k,v in iteritems(gt[i]) if len(v)}, index=next(iter(gt[i].values())).index).dropna() # If everything can fit in memory gt_overall = pd.concat(gt) gt_overall.index = gt_overall.index.droplevel() pred_overall = pd.concat(pred) pred_overall.index = pred_overall.index.droplevel() # Having the same order of columns gt_overall = gt_overall[pred_overall.columns] #Intersection of index gt_index_utc = gt_overall.index.tz_convert("UTC") pred_index_utc = pred_overall.index.tz_convert("UTC") common_index_utc = gt_index_utc.intersection(pred_index_utc) common_index_local = common_index_utc.tz_convert(timezone) gt_overall = gt_overall.loc[common_index_local] pred_overall = pred_overall.loc[common_index_local] appliance_labels = [m for m in gt_overall.columns.values] gt_overall.columns = appliance_labels pred_overall.columns = appliance_labels return gt_overall, pred_overall classifiers = {'CO':CombinatorialOptimisation(), 'FHMM':FHMM()} predictions = {} sample_period = 120 for clf_name, clf in classifiers.items(): print("*"*20) print(clf_name) print("*" *20) start = time.time() # Note that we have given the sample period to downsample the data to 1 minute. # If instead of top_5 we wanted to train on all appliance, we would write # fhmm.train(train_elec, sample_period=60) clf.train(top_5_train_elec, sample_period=sample_period) end = time.time() print("Runtime =", end-start, "seconds.") gt, predictions[clf_name] = predict(clf, test_elec, sample_period, train.metadata['timezone']) appliance_labels = [m.label() for m in gt.columns.values] gt.columns = appliance_labels predictions['CO'].columns = appliance_labels predictions['FHMM'].columns = appliance_labels gt.head() predictions['CO'].head() predictions['FHMM'].head() predictions['CO']['Fridge'].head(300).plot(label="Pred") gt['Fridge'].head(300).plot(label="GT") plt.legend() predictions['FHMM']['Fridge'].head(300).plot(label="Pred") gt['Fridge'].head(300).plot(label="GT") plt.legend() ? nilmtk.utils.compute_rmse rmse = {} for clf_name in classifiers.keys(): rmse[clf_name] = nilmtk.utils.compute_rmse(gt, predictions[clf_name]) rmse = pd.DataFrame(rmse) rmse <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Dividing data into train and test set Step2: Let us use building 1 for demo purposes Step3: Let's split data at April 30th Step4: Visualizing the data Step5: Test Step6: REDD data set has got appliance level data sampled every 3 or 4 seconds and mains data sampled every 1 second. Let us verify the same. Step7: Since, both of these are sampled at different frequencies, we will downsample both to 1 minute resolution. We will also select the top-5 appliances in terms of energy consumption and use them for training our FHMM and CO models. Step8: Training and disaggregation Step9: Train using 2 benchmarking algorithms - Combinatorial Optimisation (CO) and Factorial Hidden Markov Model (FHMM) Step10: Using prettier labels! Step11: Taking a look at the ground truth of top 5 appliance power consumption Step12: Plotting the predictions against the actual usage Step13: Comparing NILM algorithms (CO vs FHMM)
15,203
<ASSISTANT_TASK:> Python Code: DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE from urllib.request import urlretrieve from os.path import isfile, isdir from tqdm import tqdm import problem_unittests as tests import tarfile cifar10_dataset_folder_path = 'cifar-10-batches-py' # Use Floyd's cifar-10 dataset if present floyd_cifar10_location = '/input/cifar-10/python.tar.gz' if isfile(floyd_cifar10_location): tar_gz_path = floyd_cifar10_location else: tar_gz_path = 'cifar-10-python.tar.gz' class DLProgress(tqdm): last_block = 0 def hook(self, block_num=1, block_size=1, total_size=None): self.total = total_size self.update((block_num - self.last_block) * block_size) self.last_block = block_num if not isfile(tar_gz_path): with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar: urlretrieve( 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz', tar_gz_path, pbar.hook) if not isdir(cifar10_dataset_folder_path): with tarfile.open(tar_gz_path) as tar: tar.extractall() tar.close() tests.test_folder_path(cifar10_dataset_folder_path) %matplotlib inline %config InlineBackend.figure_format = 'retina' import helper import numpy as np # Explore the dataset batch_id = 1 sample_id = 5 helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id) def normalize(x): Normalize a list of sample image data in the range of 0 to 1 : x: List of image data. The image shape is (32, 32, 3) : return: Numpy array of normalize data # TODO: Implement Function scale_max = 255 scale_min = 0 return (x-scale_min)/(scale_max-scale_min) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_normalize(normalize) from sklearn import preprocessing lb = preprocessing.LabelBinarizer() lb.fit([0,1,2,3,4,5,6,7,8,9]) def one_hot_encode(x): One hot encode a list of sample labels. Return a one-hot encoded vector for each label. : x: List of sample Labels : return: Numpy array of one-hot encoded labels # TODO: Implement Function return lb.transform(x) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_one_hot_encode(one_hot_encode) DON'T MODIFY ANYTHING IN THIS CELL # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode) DON'T MODIFY ANYTHING IN THIS CELL import pickle import problem_unittests as tests import helper # Load the Preprocessed Validation data valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb')) import tensorflow as tf def neural_net_image_input(image_shape): Return a Tensor for a bach of image input : image_shape: Shape of the images : return: Tensor for image input. # TODO: Implement Function return tf.placeholder(tf.float32, shape=[None, image_shape[0], image_shape[1], image_shape[2]], name='x') def neural_net_label_input(n_classes): Return a Tensor for a batch of label input : n_classes: Number of classes : return: Tensor for label input. # TODO: Implement Function return tf.placeholder(tf.float32, shape=[None, n_classes], name='y') def neural_net_keep_prob_input(): Return a Tensor for keep probability : return: Tensor for keep probability. # TODO: Implement Function return tf.placeholder(tf.float32, name='keep_prob') DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tf.reset_default_graph() tests.test_nn_image_inputs(neural_net_image_input) tests.test_nn_label_inputs(neural_net_label_input) tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input) def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides): Apply convolution then max pooling to x_tensor :param x_tensor: TensorFlow Tensor :param conv_num_outputs: Number of outputs for the convolutional layer :param conv_ksize: kernal size 2-D Tuple for the convolutional layer :param conv_strides: Stride 2-D Tuple for convolution :param pool_ksize: kernal size 2-D Tuple for pool :param pool_strides: Stride 2-D Tuple for pool : return: A tensor that represents convolution and max pooling of x_tensor # TODO: Implement Function filter_height = conv_ksize[0] filter_width = conv_ksize[1] in_depth = x_tensor.get_shape().as_list()[3] out_depth = conv_num_outputs weights = tf.Variable(tf.truncated_normal([filter_height, filter_width, in_depth, out_depth], mean = 0.0, stddev = 1.0/out_depth)) biases = tf.Variable(tf.zeros(conv_num_outputs)) conv_layer_out = tf.nn.bias_add(tf.nn.conv2d(x_tensor, weights, strides=[1, conv_strides[0], conv_strides[1], 1], padding='SAME'), biases) conv_layer_out = tf.nn.relu(conv_layer_out) maxpooling_out = tf.nn.max_pool(conv_layer_out, ksize=[1, pool_ksize[0], pool_ksize[1], 1], strides=[1, pool_strides[0], pool_strides[1], 1], padding='SAME') return maxpooling_out DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_con_pool(conv2d_maxpool) def flatten(x_tensor): Flatten x_tensor to (Batch Size, Flattened Image Size) : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions. : return: A tensor of size (Batch Size, Flattened Image Size). # TODO: Implement Function x_dim = x_tensor.get_shape().as_list() return tf.reshape(x_tensor, [-1, x_dim[1]*x_dim[2]*x_dim[3]]) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_flatten(flatten) def fully_conn(x_tensor, num_outputs): Apply a fully connected layer to x_tensor using weight and bias : x_tensor: A 2-D tensor where the first dimension is batch size. : num_outputs: The number of output that the new tensor should be. : return: A 2-D tensor where the second dimension is num_outputs. # TODO: Implement Function input_size = x_tensor.get_shape().as_list()[1] output_size = num_outputs weights = tf.Variable(tf.truncated_normal([input_size, output_size], mean = 0.0, stddev = 1.0 / input_size)) biases = tf.Variable(tf.zeros(num_outputs)) fc_out = tf.add(tf.matmul(x_tensor, weights), biases) fc_out = tf.nn.relu(fc_out) return fc_out DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_fully_conn(fully_conn) def output(x_tensor, num_outputs): Apply a output layer to x_tensor using weight and bias : x_tensor: A 2-D tensor where the first dimension is batch size. : num_outputs: The number of output that the new tensor should be. : return: A 2-D tensor where the second dimension is num_outputs. # TODO: Implement Function input_size = x_tensor.get_shape().as_list()[1] output_size = num_outputs weights = tf.Variable(tf.truncated_normal([input_size, output_size], mean = 0.0, stddev = 1.0/input_size)) biases = tf.Variable(tf.zeros(num_outputs)) out = tf.add(tf.matmul(x_tensor, weights), biases) return out DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_output(output) def conv_net(x, keep_prob): Create a convolutional neural network model : x: Placeholder tensor that holds image data. : keep_prob: Placeholder tensor that hold dropout keep probability. : return: Tensor that represents logits # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers # Play around with different number of outputs, kernel size and stride # Function Definition from Above: # conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides) conv = [16,32,64] num_output = 10 conv_layer_1 = conv2d_maxpool(x, conv_num_outputs = conv[0], conv_ksize = [4, 4], conv_strides = [1, 1], pool_ksize = [2, 2], pool_strides = [2, 2]) dropout_layer_1 = tf.nn.dropout(conv_layer_1, keep_prob) conv_layer_2 = conv2d_maxpool(dropout_layer_1, conv_num_outputs = conv[1], conv_ksize = [4, 4], conv_strides = [1, 1], pool_ksize = [2, 2], pool_strides = [2, 2]) dropout_layer_2 = tf.nn.dropout(conv_layer_2, keep_prob) conv_layer_3 = conv2d_maxpool(dropout_layer_2, conv_num_outputs = conv[2], conv_ksize = [4, 4], conv_strides = [1, 1], pool_ksize = [2, 2], pool_strides = [2, 2]) dropout_layer_3 = tf.nn.dropout(conv_layer_3, keep_prob) # TODO: Apply a Flatten Layer # Function Definition from Above: # flatten(x_tensor) flatten_layer = flatten(dropout_layer_3) # TODO: Apply 1, 2, or 3 Fully Connected Layers # Play around with different number of outputs # Function Definition from Above: # fully_conn(x_tensor, num_outputs) fc1 = fully_conn(flatten_layer, num_output) fc1_drop = tf.nn.dropout(fc1, keep_prob) fc2 = fully_conn(fc1_drop, num_output) fc2_drop = tf.nn.dropout(fc2, keep_prob) # TODO: Apply an Output Layer # Set this to the number of classes # Function Definition from Above: # output(x_tensor, num_outputs) out_layer = output(fc2_drop, num_output) # TODO: return output return out_layer DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE ############################## ## Build the Neural Network ## ############################## # Remove previous weights, bias, inputs, etc.. tf.reset_default_graph() # Inputs x = neural_net_image_input((32, 32, 3)) y = neural_net_label_input(10) keep_prob = neural_net_keep_prob_input() # Model logits = conv_net(x, keep_prob) # Name logits Tensor, so that is can be loaded from disk after training logits = tf.identity(logits, name='logits') # Loss and Optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y)) optimizer = tf.train.AdamOptimizer().minimize(cost) # Accuracy correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy') tests.test_conv_net(conv_net) def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch): Optimize the session on a batch of images and labels : session: Current TensorFlow session : optimizer: TensorFlow optimizer function : keep_probability: keep probability : feature_batch: Batch of Numpy image data : label_batch: Batch of Numpy label data # TODO: Implement Function return session.run(optimizer, feed_dict={x:feature_batch,y:label_batch,keep_prob:keep_probability}) DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_train_nn(train_neural_network) def print_stats(session, feature_batch, label_batch, cost, accuracy): Print information about loss and validation accuracy : session: Current TensorFlow session : feature_batch: Batch of Numpy image data : label_batch: Batch of Numpy label data : cost: TensorFlow cost function : accuracy: TensorFlow accuracy function loss = session.run(cost, feed_dict={x: feature_batch, y: label_batch, keep_prob: 1.}) valid_acc = session.run(accuracy, feed_dict={x: valid_features, y: valid_labels, keep_prob: 1.}) print('Loss: {:>10.4f}, Validation Accuracy: {:.6f}'.format(loss, valid_acc)) # TODO: Tune Parameters epochs = 100 batch_size = 256 keep_probability = 0.8 DON'T MODIFY ANYTHING IN THIS CELL print('Checking the Training on a Single Batch...') with tf.Session() as sess: # Initializing the variables sess.run(tf.global_variables_initializer()) # Training cycle for epoch in range(epochs): batch_i = 1 for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size): train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels) print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1, batch_i), end='') print_stats(sess, batch_features, batch_labels, cost, accuracy) DON'T MODIFY ANYTHING IN THIS CELL save_model_path = './image_classification' print('Training...') with tf.Session() as sess: # Initializing the variables sess.run(tf.global_variables_initializer()) # Training cycle for epoch in range(epochs): # Loop over all batches n_batches = 5 for batch_i in range(1, n_batches + 1): for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size): train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels) print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1, batch_i), end='') print_stats(sess, batch_features, batch_labels, cost, accuracy) # Save Model saver = tf.train.Saver() save_path = saver.save(sess, save_model_path) DON'T MODIFY ANYTHING IN THIS CELL %matplotlib inline %config InlineBackend.figure_format = 'retina' import tensorflow as tf import pickle import helper import random # Set batch size if not already set try: if batch_size: pass except NameError: batch_size = 64 save_model_path = './image_classification' n_samples = 4 top_n_predictions = 3 def test_model(): Test the saved model against the test dataset test_features, test_labels = pickle.load(open('preprocess_training.p', mode='rb')) loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load model loader = tf.train.import_meta_graph(save_model_path + '.meta') loader.restore(sess, save_model_path) # Get Tensors from loaded model loaded_x = loaded_graph.get_tensor_by_name('x:0') loaded_y = loaded_graph.get_tensor_by_name('y:0') loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0') loaded_logits = loaded_graph.get_tensor_by_name('logits:0') loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0') # Get accuracy in batches for memory limitations test_batch_acc_total = 0 test_batch_count = 0 for train_feature_batch, train_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size): test_batch_acc_total += sess.run( loaded_acc, feed_dict={loaded_x: train_feature_batch, loaded_y: train_label_batch, loaded_keep_prob: 1.0}) test_batch_count += 1 print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count)) # Print Random Samples random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples))) random_test_predictions = sess.run( tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions), feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0}) helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions) test_model() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Image Classification Step2: Explore the Data Step5: Implement Preprocess Functions Step8: One-hot encode Step10: Randomize Data Step12: Check Point Step17: Build the network Step20: Convolution and Max Pooling Layer Step23: Flatten Layer Step26: Fully-Connected Layer Step29: Output Layer Step32: Create Convolutional Model Step35: Train the Neural Network Step37: Show Stats Step38: Hyperparameters Step40: Train on a Single CIFAR-10 Batch Step42: Fully Train the Model Step45: Checkpoint
15,204
<ASSISTANT_TASK:> Python Code: # Author: Eric Larson <larson.eric.d@gmail.com> # # License: BSD-3-Clause import mne from mne.datasets import sample from mne.minimum_norm import make_inverse_operator, apply_inverse print(__doc__) data_path = sample.data_path() subjects_dir = data_path + '/subjects' # Read data (just MEG here for speed, though we could use MEG+EEG) fname_evoked = data_path + '/MEG/sample/sample_audvis-ave.fif' evoked = mne.read_evokeds(fname_evoked, condition='Right Auditory', baseline=(None, 0)) fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-oct-6-fwd.fif' fname_cov = data_path + '/MEG/sample/sample_audvis-cov.fif' fwd = mne.read_forward_solution(fname_fwd) cov = mne.read_cov(fname_cov) # crop for speed in these examples evoked.crop(0.05, 0.15) inv = make_inverse_operator(evoked.info, fwd, cov, loose=0., depth=0.8, verbose=True) snr = 3.0 lambda2 = 1.0 / snr ** 2 kwargs = dict(initial_time=0.08, hemi='lh', subjects_dir=subjects_dir, size=(600, 600), clim=dict(kind='percent', lims=[90, 95, 99]), smoothing_steps=7) stc = abs(apply_inverse(evoked, inv, lambda2, 'MNE', verbose=True)) brain = stc.plot(figure=1, **kwargs) brain.add_text(0.1, 0.9, 'MNE', 'title', font_size=14) stc = abs(apply_inverse(evoked, inv, lambda2, 'dSPM', verbose=True)) brain = stc.plot(figure=2, **kwargs) brain.add_text(0.1, 0.9, 'dSPM', 'title', font_size=14) stc = abs(apply_inverse(evoked, inv, lambda2, 'sLORETA', verbose=True)) brain = stc.plot(figure=3, **kwargs) brain.add_text(0.1, 0.9, 'sLORETA', 'title', font_size=14) stc = abs(apply_inverse(evoked, inv, lambda2, 'eLORETA', verbose=True)) brain = stc.plot(figure=4, **kwargs) brain.add_text(0.1, 0.9, 'eLORETA', 'title', font_size=14) del inv inv = make_inverse_operator(evoked.info, fwd, cov, loose=1., depth=0.8, verbose=True) del fwd stc = apply_inverse(evoked, inv, lambda2, 'MNE', verbose=True) brain = stc.plot(figure=5, **kwargs) brain.add_text(0.1, 0.9, 'MNE', 'title', font_size=14) stc = apply_inverse(evoked, inv, lambda2, 'dSPM', verbose=True) brain = stc.plot(figure=6, **kwargs) brain.add_text(0.1, 0.9, 'dSPM', 'title', font_size=14) stc = apply_inverse(evoked, inv, lambda2, 'sLORETA', verbose=True) brain = stc.plot(figure=7, **kwargs) brain.add_text(0.1, 0.9, 'sLORETA', 'title', font_size=14) stc = apply_inverse(evoked, inv, lambda2, 'eLORETA', verbose=True, method_params=dict(eps=1e-4)) # larger eps just for speed brain = stc.plot(figure=8, **kwargs) brain.add_text(0.1, 0.9, 'eLORETA', 'title', font_size=14) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Fixed orientation Step2: Let's look at the current estimates using MNE. We'll take the absolute Step3: Next let's use the default noise normalization, dSPM Step4: And sLORETA Step5: And finally eLORETA Step6: Free orientation Step7: Let's look at the current estimates using MNE. We'll take the absolute Step8: Next let's use the default noise normalization, dSPM Step9: sLORETA Step10: And finally eLORETA
15,205
<ASSISTANT_TASK:> Python Code: from ib_insync import * util.startLoop() ib = IB() ib.connect('127.0.0.1', 7497, clientId=14) contract = Stock('TSLA', 'SMART', 'USD') ib.reqHeadTimeStamp(contract, whatToShow='TRADES', useRTH=True) bars = ib.reqHistoricalData( contract, endDateTime='', durationStr='60 D', barSizeSetting='1 hour', whatToShow='TRADES', useRTH=True, formatDate=1) bars[0] df = util.df(bars) display(df.head()) display(df.tail()) %matplotlib inline df.plot(y='close'); util.barplot(bars[-100:], title=contract.symbol); contract = Forex('EURUSD') bars = ib.reqHistoricalData( contract, endDateTime='', durationStr='900 S', barSizeSetting='10 secs', whatToShow='MIDPOINT', useRTH=True, formatDate=1, keepUpToDate=True) from IPython.display import display, clear_output import matplotlib.pyplot as plt def onBarUpdate(bars, hasNewBar): plt.close() plot = util.barplot(bars) clear_output(wait=True) display(plot) bars.updateEvent += onBarUpdate ib.sleep(10) ib.cancelHistoricalData(bars) def onBarUpdate(bars, hasNewBar): print(bars[-1]) bars = ib.reqRealTimeBars(contract, 5, 'MIDPOINT', False) bars.updateEvent += onBarUpdate ib.sleep(30) ib.cancelRealTimeBars(bars) ib.disconnect() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Historical data Step2: To request hourly data of the last 60 trading days Step3: Convert the list of bars to a data frame and print the first and last rows Step4: Instruct the notebook to draw plot graphics inline Step5: Plot the close data Step6: There is also a utility function to plot bars as a candlestick plot. It can accept either a DataFrame or a list of bars. Here it will print the last 100 bars Step7: Historical data with realtime updates Step8: Replot for every change of the last bar Step9: Realtime bars Step10: Then do the real request and connect the event handler, Step11: let it run for half a minute and then cancel the realtime bars. Step12: The advantage of reqRealTimeBars is that it behaves more robust when the connection to the IB server farms is interrupted. After the connection is restored, the bars from during the network outage will be backfilled and the live bars will resume.
15,206
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np import json from pandas.io.json import json_normalize # define json string data = [{'state': 'Florida', 'shortname': 'FL', 'info': {'governor': 'Rick Scott'}, 'counties': [{'name': 'Dade', 'population': 12345}, {'name': 'Broward', 'population': 40000}, {'name': 'Palm Beach', 'population': 60000}]}, {'state': 'Ohio', 'shortname': 'OH', 'info': {'governor': 'John Kasich'}, 'counties': [{'name': 'Summit', 'population': 1234}, {'name': 'Cuyahoga', 'population': 1337}]}] # use normalization to create tables from nested element json_normalize(data, 'counties') # further populate tables created from nested element json_normalize(data, 'counties', ['state', 'shortname', ['info', 'governor']]) # load json as string json.load((open('data/world_bank_projects_less.json'))) # load as Pandas dataframe sample_json_df = pd.read_json('data/world_bank_projects_less.json') sample_json_df bank = pd.read_json('data/world_bank_projects.json') bank.head() bank.countryname.value_counts().head(10) names = [] for i in bank.index: namecode = bank.loc[i,'mjtheme_namecode'] names.extend(list(json_normalize(namecode)['name'])) pd.Series(names).value_counts().head(10).drop('', axis=0) codes_names = pd.DataFrame(columns=['code', 'name']) for i in bank.index: namecode = bank.loc[i,'mjtheme_namecode'] codes_names = pd.concat([codes_names, json_normalize(namecode)]) codes_names_dict = (codes_names[codes_names.name != ''] .drop_duplicates() .to_dict()) for i in bank.index: namecode = bank.loc[i,'mjtheme_namecode'] cell = json_normalize(namecode).replace('', np.nan) cell = cell.fillna(codes_names_dict) bank.set_value(i, 'mjtheme_namecode', cell.to_dict(orient='record')) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: imports for Python, Pandas Step2: JSON example, with string Step3: JSON example, with file Step4: JSON exercise Step5: 1. Find the 10 countries with most projects Step6: 2. Find the top 10 major project themes (using column 'mjtheme_namecode') Step7: 3. In 2. above you will notice that some entries have only the code and the name is missing. Create a dataframe with the missing names filled in.
15,207
<ASSISTANT_TASK:> Python Code: import urllib.request urllib.request.urlretrieve("http://www.amstat.org/publications/jse/datasets/cigarettes.dat.txt", "cigarettes.dat") !wc -l cigarettes.dat cat cigarettes.dat import pandas as pd df = pd.read_csv("cigarettes.dat", delim_whitespace=True, header=None, names=["Marca", "Alquitrán", "Nicotina", "Peso", "Monóxido"]) df.head() df["Clases"] = ['Rubio', 'Negro', 'Negro', 'Rubio', 'Rubio', 'Negro', 'Rubio', 'Rubio', 'Negro', 'Rubio', 'Rubio', 'Rubio', 'Rubio', 'Rubio', 'Rubio', 'Rubio', 'Negro', 'Rubio', 'Negro', 'Rubio', 'Negro', 'Rubio', 'Negro', 'Negro', 'Rubio'] df[["Clases", "Alquitrán", "Nicotina", "Peso", "Monóxido"]] df.describe().transpose() df.sem() df.var() (df.describe(percentiles=[.05, .10, .25, .50, .75, .90, .95]) [["Monóxido", "Alquitrán", "Nicotina", "Peso"]] .transpose() [["5%", "10%", "25%", "50%", "75%", "90%", "95%"]]) df.median() iqr = df.quantile(.75) - df.quantile(.25) iqr %matplotlib inline import matplotlib.pyplot as plt plt.style.use("fivethirtyeight") plt.figure(figsize=(8, 8)) plt.subplot(2, 2, 1) df.boxplot("Monóxido", return_type='axes') plt.subplot(2, 2, 2) df.boxplot("Alquitrán", return_type='axes') plt.ylim(0, 35) # Para ver una medida discordante plt.subplot(2, 2, 3) df.boxplot("Nicotina", return_type='axes') plt.subplot(2, 2, 4) df.boxplot("Peso", return_type='axes') plt.ylim(0, 1.20) # Importante df[df["Alquitrán"] > df["Alquitrán"].quantile(.75) + 1.5 * iqr["Alquitrán"]] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Vamos a cargar los en Python con pandas. pandas es una biblioteca de Python para trabajar con tablas de datos (llamados DataFrames) de forma cómoda. En Pybonacci escribimos un tutorial de pandas desde lo más básico a usos un poco más intermedios. Step2: Además, vamos a añadir el tipo de cigarro para que la tabla quede como la presentada en el curso. Step3: Parte 1 Step4: Podemos añadir también el error estándar de la media y la varianza Step5: Por tanto, contestando a las preguntas del informe Step6: Recuperamos además la mediana y el recorrido intercuartílico Step7: Observamos una gran variabilidad de los contenidos de alquitrán y monóxido de carbono, mientras que las cantidades de nicotina son más estables y el peso de los cigarrillos prácticamente no cambia. Los resultados son similares a los obtenidos estudiando la media y su dispersión. Step8: Tanto el monóxido como el peso presentan distribuciones bastante simétricas, mientras que el alquitrán tiene un claro sesgo positivo. Especial atención merece el peso en este caso, pues una correcta escala vertical es esencial para no percibir una variabilidad errónea. Tanto en los datos de nicotina como en los de alquitrán se aprecian sendos valores discordantes, que invitarían a no comprar esa marca de cigarrillos.
15,208
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt from pyunlocbox import functions, solvers plt.rcParams['figure.figsize'] = (17, 5) f1 = functions.norm_l2(y=[4, 5, 6, 7]) f2 = functions.dummy() solver = solvers.forward_backward() ret = solvers.solve([f1, f2], [0., 0, 0, 0], solver, atol=1e-5) ret['sol'] plt.semilogy(np.array(ret['objective'])[:, 0], '.-'); class myfunc(functions.func): def __init__(self, myparam=1, **kwargs): self.myparam = myparam super(myfunc, self).__init__(**kwargs) def _eval(self, x): return 0 # Function evaluated at x. def _grad(self, x): return x # Gradient evaluated at x, if available. def _prox(self, x, T): return x # Proximal operator evaluated at x, if available. f = myfunc(myparam=2) f.cap([0, 0]) # Your code here. # Your code here. %pip install numpy <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1 Solve an optimization problem Step2: 2 Define your own objective function Step3: Likewise, you can implement your owns solvers and acceleration schemes by sub-classing pyunlocbox.solvers.solver and pyunlocbox.acceleration.accel. Step4: 4 Playground Step5: If you miss a package, you can install it with
15,209
<ASSISTANT_TASK:> Python Code: # Init matplotlib %matplotlib inline import matplotlib matplotlib.rcParams['figure.figsize'] = (8, 8) from mpl_toolkits.mplot3d import axes3d import matplotlib.colors as colors import numpy as np import warnings from scipy import optimize def plot_contour_2d_solution_space(func, fig=None, ax=None, show=True, xmin=-np.ones(2), xmax=np.ones(2), xstar=None, xvisited=None, title=""): Plot points visited during the execution of an optimization algorithm. TODO if (fig is None) or (ax is None): # TODO fig, ax = plt.subplots(figsize=(12, 8)) if xvisited is not None: xmin = np.amin(np.hstack([xmin.reshape([-1, 1]), xvisited]), axis=1) xmax = np.amax(np.hstack([xmax.reshape([-1, 1]), xvisited]), axis=1) x1_space = np.linspace(xmin[0], xmax[0], 200) x2_space = np.linspace(xmin[1], xmax[1], 200) x1_mesh, x2_mesh = np.meshgrid(x1_space, x2_space) zz = func(np.array([x1_mesh.ravel(), x2_mesh.ravel()])).reshape(x1_mesh.shape) ############################ min_value = func(xstar) max_value = zz.max() levels = np.logspace(0.1, 3., 5) # TODO im = ax.pcolormesh(x1_mesh, x2_mesh, zz, vmin=0.1, # TODO vmax=max_value, norm=colors.LogNorm(), # TODO shading='gouraud', cmap='gnuplot2') # 'jet' # 'gnuplot2' plt.colorbar(im, ax=ax) cs = plt.contour(x1_mesh, x2_mesh, zz, levels, linewidths=(2, 2, 2, 2, 3), linestyles=('dotted', '-.', 'dashed', 'solid', 'solid'), alpha=0.5, colors='white') ax.clabel(cs, inline=False, fontsize=12) ############################ if xvisited is not None: ax.plot(xvisited[0], xvisited[1], '-og', alpha=0.5, label="$visited$") ############################ if xstar is not None: sc = ax.scatter(xstar[0], xstar[1], c='red', label="$x^*$") sc.set_zorder(10) # put this point above every thing else ############################ ax.set_title(title) ax.set_xlabel(r"$x_1$") ax.set_ylabel(r"$x_2$") ax.legend(fontsize=12) if show: plt.show() return fig, ax def plot_2d_solution_space(func, fig=None, ax=None, show=True, xmin=-np.ones(2), xmax=np.ones(2), xstar=None, xvisited=None, angle_view=None, title=""): Plot points visited during the execution of an optimization algorithm. TODO if fig is None or ax is None: # TODO fig = plt.figure(figsize=(12, 8)) ax = axes3d.Axes3D(fig) if angle_view is not None: ax.view_init(angle_view[0], angle_view[1]) x1_space = np.linspace(xmin[0], xmax[0], 100) x2_space = np.linspace(xmin[1], xmax[1], 100) x1_mesh, x2_mesh = np.meshgrid(x1_space, x2_space) zz = func(np.array([x1_mesh.ravel(), x2_mesh.ravel()])).reshape(x1_mesh.shape) # TODO ############################ surf = ax.plot_surface(x1_mesh, x2_mesh, zz, cmap='gnuplot2', # 'jet' # 'gnuplot2' norm=colors.LogNorm(), # TODO rstride=1, cstride=1, #color='b', shade=False) ax.set_zlabel(r"$f(x_1, x_2)$") fig.colorbar(surf, shrink=0.5, aspect=5) ############################ if xstar is not None: ax.scatter(xstar[0], xstar[1], func(xstar), #s=50, # TODO c='red', alpha=1, label="$x^*$") ax.set_title(title) ax.set_xlabel(r"$x_1$") ax.set_ylabel(r"$x_2$") ax.legend(fontsize=12) if show: plt.show() return fig, ax class Sphere: def __init__(self): self.reset_log() self.log = False self.arg_min = np.zeros(2) # The actual optimal solution def reset_log(self): self.log_dict = {'x': [], 'y': []} def __call__(self, x): rThe Sphere function. The Sphere function is a famous **convex** function used to test the performance of optimization algorithms. This function is very easy to optimize and can be used as a first test to check an optimization algorithm. $$ f(\boldsymbol{x}) = \sum_{i=1}^{n} x_{i}^2 $$ Global minimum: $$ f(\boldsymbol{0}) = 0 $$ Search domain: $$ \boldsymbol{x} \in \mathbb{R}^n $$ Example: single 2D point ------------------------ To evaluate $x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$: >>> sphere( np.array([0, 0]) ) 0.0 The result should be $f(x) = 0$. Example: single 3D point ------------------------ To evaluate $x = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$: >>> sphere( np.array([1, 1, 1]) ) 3.0 The result should be $f(x) = 3.0$. Example: multiple 2D points --------------------------- To evaluate $x_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $x_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $x_3 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ at once: >>> sphere( np.array([[0, 1, 2], [0, 1, 2]]) ) array([ 0., 2., 8.]) The result should be $f(x_1) = 0$, $f(x_2) = 1$ and $f(x_3) = 8$. Parameters ---------- x : array_like One dimension Numpy array of the point at which the Sphere function is to be computed or a two dimension Numpy array of points at which the Sphere function is to be computed. Returns ------- float or array_like The value(s) of the Sphere function for the given point(s) `x`. # Remark: `sum(x**2.0)` is equivalent to `np.sum(x**2.0, axis=0)` but only the latter works if x is a scallar (e.g. x = np.float(3)). y = np.sum(x**2.0, axis=0) if self.log is True: self.log_dict['x'].append(x) self.log_dict['y'].append(y) return y func = Sphere() xmin = np.full(2, -10) xmax = np.full(2, 10) from scipy import optimize bounds = [[-10, 10], [-10, 10]] res = optimize.differential_evolution(func, bounds, # The initial point maxiter=100, # The number of DE iterations polish=True) print("x* =", res.x) print("f(x*) =", res.fun) print("Cause of the termination:", res.message) print("Number of evaluations of the objective functions:", res.nfev) print("Number of iterations performed by the optimizer:", res.nit) print(res) %%time bounds = np.array([[-10, 10], [-10, 10]]) it_x_list = [] it_fx_list = [] def callback(xk, convergence): it_x_list.append(xk) it_fx_list.append(func(xk)) print(len(it_x_list), xk, it_fx_list[-1]) func.reset_log() func.log = True with warnings.catch_warnings(): warnings.simplefilter("ignore") res = optimize.differential_evolution(func, bounds, # The initial point maxiter=100, # The number of DE iterations callback=callback, polish=False, disp=False) # Print status messages func.log = False eval_x_array = np.array(func.log_dict['x']).T eval_error_array = np.array(func.log_dict['y']) - func(func.arg_min) it_x_array = np.array(it_x_list).T it_error_array = np.array(it_fx_list) - func(func.arg_min) print("x* =", res.x) print("f(x*) =", res.fun) print("Cause of the termination:", res.message) print("Number of evaluations of the objective functions:", res.nfev) print("Number of iterations performed by the optimizer:", res.nit) plot_contour_2d_solution_space(func, xmin=xmin, xmax=xmax, xstar=res.x, xvisited=it_x_array, title="Differential Evolution (best iterations solution only)"); plot_contour_2d_solution_space(func, xmin=xmin, xmax=xmax, xstar=res.x, xvisited=eval_x_array, title="Differential Evolution (all tested solution)"); plt.loglog(it_error_array) plt.title("Error of the best individual per iteration") plt.xlabel("Iteration") plt.ylabel("Error"); plt.loglog(eval_error_array) plt.title("Error for all tested solutions") plt.xlabel("Evaluation") plt.ylabel("Error"); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step3: Plot functions Step5: Objective function Step6: The "Differential Evolution" (DE) algorithm Step7: Performances analysis
15,210
<ASSISTANT_TASK:> Python Code: import re import os import random import numpy as np import pandas as pd import tensorflow as tf import matplotlib.pyplot as plt try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect() print("Device:", tpu.master()) strategy = tf.distribute.TPUStrategy(tpu) except: strategy = tf.distribute.get_strategy() print("Number of replicas:", strategy.num_replicas_in_sync) AUTOTUNE = tf.data.AUTOTUNE BATCH_SIZE = 25 * strategy.num_replicas_in_sync IMAGE_SIZE = [180, 180] CLASS_NAMES = ["NORMAL", "PNEUMONIA"] train_images = tf.data.TFRecordDataset( "gs://download.tensorflow.org/data/ChestXRay2017/train/images.tfrec" ) train_paths = tf.data.TFRecordDataset( "gs://download.tensorflow.org/data/ChestXRay2017/train/paths.tfrec" ) ds = tf.data.Dataset.zip((train_images, train_paths)) COUNT_NORMAL = len( [ filename for filename in train_paths if "NORMAL" in filename.numpy().decode("utf-8") ] ) print("Normal images count in training set: " + str(COUNT_NORMAL)) COUNT_PNEUMONIA = len( [ filename for filename in train_paths if "PNEUMONIA" in filename.numpy().decode("utf-8") ] ) print("Pneumonia images count in training set: " + str(COUNT_PNEUMONIA)) def get_label(file_path): # convert the path to a list of path components parts = tf.strings.split(file_path, "/") # The second to last is the class-directory return parts[-2] == "PNEUMONIA" def decode_img(img): # convert the compressed string to a 3D uint8 tensor img = tf.image.decode_jpeg(img, channels=3) # resize the image to the desired size. return tf.image.resize(img, IMAGE_SIZE) def process_path(image, path): label = get_label(path) # load the raw data from the file as a string img = decode_img(image) return img, label ds = ds.map(process_path, num_parallel_calls=AUTOTUNE) ds = ds.shuffle(10000) train_ds = ds.take(4200) val_ds = ds.skip(4200) for image, label in train_ds.take(1): print("Image shape: ", image.numpy().shape) print("Label: ", label.numpy()) test_images = tf.data.TFRecordDataset( "gs://download.tensorflow.org/data/ChestXRay2017/test/images.tfrec" ) test_paths = tf.data.TFRecordDataset( "gs://download.tensorflow.org/data/ChestXRay2017/test/paths.tfrec" ) test_ds = tf.data.Dataset.zip((test_images, test_paths)) test_ds = test_ds.map(process_path, num_parallel_calls=AUTOTUNE) test_ds = test_ds.batch(BATCH_SIZE) def prepare_for_training(ds, cache=True): # This is a small dataset, only load it once, and keep it in memory. # use `.cache(filename)` to cache preprocessing work for datasets that don't # fit in memory. if cache: if isinstance(cache, str): ds = ds.cache(cache) else: ds = ds.cache() ds = ds.batch(BATCH_SIZE) # `prefetch` lets the dataset fetch batches in the background while the model # is training. ds = ds.prefetch(buffer_size=AUTOTUNE) return ds train_ds = prepare_for_training(train_ds) val_ds = prepare_for_training(val_ds) image_batch, label_batch = next(iter(train_ds)) def show_batch(image_batch, label_batch): plt.figure(figsize=(10, 10)) for n in range(25): ax = plt.subplot(5, 5, n + 1) plt.imshow(image_batch[n] / 255) if label_batch[n]: plt.title("PNEUMONIA") else: plt.title("NORMAL") plt.axis("off") show_batch(image_batch.numpy(), label_batch.numpy()) from tensorflow import keras from tensorflow.keras import layers def conv_block(filters, inputs): x = layers.SeparableConv2D(filters, 3, activation="relu", padding="same")(inputs) x = layers.SeparableConv2D(filters, 3, activation="relu", padding="same")(x) x = layers.BatchNormalization()(x) outputs = layers.MaxPool2D()(x) return outputs def dense_block(units, dropout_rate, inputs): x = layers.Dense(units, activation="relu")(inputs) x = layers.BatchNormalization()(x) outputs = layers.Dropout(dropout_rate)(x) return outputs def build_model(): inputs = keras.Input(shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3)) x = layers.Rescaling(1.0 / 255)(inputs) x = layers.Conv2D(16, 3, activation="relu", padding="same")(x) x = layers.Conv2D(16, 3, activation="relu", padding="same")(x) x = layers.MaxPool2D()(x) x = conv_block(32, x) x = conv_block(64, x) x = conv_block(128, x) x = layers.Dropout(0.2)(x) x = conv_block(256, x) x = layers.Dropout(0.2)(x) x = layers.Flatten()(x) x = dense_block(512, 0.7, x) x = dense_block(128, 0.5, x) x = dense_block(64, 0.3, x) outputs = layers.Dense(1, activation="sigmoid")(x) model = keras.Model(inputs=inputs, outputs=outputs) return model initial_bias = np.log([COUNT_PNEUMONIA / COUNT_NORMAL]) print("Initial bias: {:.5f}".format(initial_bias[0])) TRAIN_IMG_COUNT = COUNT_NORMAL + COUNT_PNEUMONIA weight_for_0 = (1 / COUNT_NORMAL) * (TRAIN_IMG_COUNT) / 2.0 weight_for_1 = (1 / COUNT_PNEUMONIA) * (TRAIN_IMG_COUNT) / 2.0 class_weight = {0: weight_for_0, 1: weight_for_1} print("Weight for class 0: {:.2f}".format(weight_for_0)) print("Weight for class 1: {:.2f}".format(weight_for_1)) checkpoint_cb = tf.keras.callbacks.ModelCheckpoint("xray_model.h5", save_best_only=True) early_stopping_cb = tf.keras.callbacks.EarlyStopping( patience=10, restore_best_weights=True ) initial_learning_rate = 0.015 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate, decay_steps=100000, decay_rate=0.96, staircase=True ) with strategy.scope(): model = build_model() METRICS = [ tf.keras.metrics.BinaryAccuracy(), tf.keras.metrics.Precision(name="precision"), tf.keras.metrics.Recall(name="recall"), ] model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=lr_schedule), loss="binary_crossentropy", metrics=METRICS, ) history = model.fit( train_ds, epochs=100, validation_data=val_ds, class_weight=class_weight, callbacks=[checkpoint_cb, early_stopping_cb], ) fig, ax = plt.subplots(1, 4, figsize=(20, 3)) ax = ax.ravel() for i, met in enumerate(["precision", "recall", "binary_accuracy", "loss"]): ax[i].plot(history.history[met]) ax[i].plot(history.history["val_" + met]) ax[i].set_title("Model {}".format(met)) ax[i].set_xlabel("epochs") ax[i].set_ylabel(met) ax[i].legend(["train", "val"]) model.evaluate(test_ds, return_dict=True) for image, label in test_ds.take(1): plt.imshow(image[0] / 255.0) plt.title(CLASS_NAMES[label[0].numpy()]) prediction = model.predict(test_ds.take(1))[0] scores = [1 - prediction, prediction] for score, name in zip(scores, CLASS_NAMES): print("This image is %.2f percent %s" % ((100 * score), name)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We need a Google Cloud link to our data to load the data using a TPU. Step2: Load the data Step3: Let's count how many healthy/normal chest X-rays we have and how many Step4: Notice that there are way more images that are classified as pneumonia than normal. This Step5: Let's split the data into a training and validation datasets. Step6: Let's visualize the shape of an (image, label) pair. Step7: Load and format the test data as well. Step8: Visualize the dataset Step9: Call the next batch iteration of the training data. Step10: Define the method to show the images in the batch. Step11: As the method takes in NumPy arrays as its parameters, call the numpy function on the Step12: Build the CNN Step13: The following method will define the function to build our model for us. Step14: Correct for data imbalance Step15: The weight for class 0 (Normal) is a lot higher than the weight for class 1 Step16: We also want to tune our learning rate. Too high of a learning rate will cause the model Step17: Fit the model Step18: Visualizing model performance Step19: We see that the accuracy for our model is around 95%. Step20: We see that our accuracy on our test data is lower than the accuracy for our validating
15,211
<ASSISTANT_TASK:> Python Code: Fe2O3_spectrum_dataframe = pd.read_pickle('Fe2O3_computational_spectrum.pkl') Fe2O3_spectrum_dataframe spectrum_energy = Fe2O3_spectrum_dataframe['x_axis_energy_55eV'].values[0] spectrum_mu = Fe2O3_spectrum_dataframe['interp_spectrum_55eV'].values[0] Fe2O3_XANES_object1 = XANES(spectrum_energy, spectrum_mu, absorption_specie='Fe', edge='K') Fe2O3_object1_CenvPred = CenvPrediction(Fe2O3_XANES_object1, energy_reference='lowest', energy_range=45) ##Plot interpolated spectrum used in coordination environment prediction plt.plot(Fe2O3_object1_CenvPred.interp_energy, Fe2O3_object1_CenvPred.interp_spectrum) Fe2O3_object1_CenvPred.cenv_prediction() print('Predicted coordination environment label: ', Fe2O3_object1_CenvPred.pred_cenv) Fe2O3_XANES_object2 = XANES.from_K_XANES_MP_tsv('xas.XANES.K.Fe2O3.mp-24972.tsv') Fe2O3_object2_CenvPred = CenvPrediction(Fe2O3_XANES_object2, energy_reference='lowest', energy_range=45) ##Plot interpolated spectrum used in coordination environment prediction plt.plot(Fe2O3_object2_CenvPred.interp_energy, Fe2O3_object2_CenvPred.interp_spectrum) Fe2O3_object2_CenvPred.cenv_prediction() print('Predicted coordination environment label: ', Fe2O3_object2_CenvPred.pred_cenv) Fe2O3_xdi_file = 'fe2o3_rt.xdi' Fe2O3_xanes_xdi = XANES.from_XDI_file(Fe2O3_xdi_file, absorption_specie='Fe') #Using the -15eV to 45eV range around the edge energy reference point for coordination environment prediction Fe2O3_CenvPred_xdi = CenvPrediction(Fe2O3_xanes_xdi, 'E0', [-15, 45], Fe2O3_xanes_xdi.e0) ##Plot interpolated spectrum used in coordination environment prediction plt.plot(Fe2O3_CenvPred_xdi.interp_energy, Fe2O3_CenvPred_xdi.interp_spectrum) Fe2O3_CenvPred_xdi.cenv_prediction() print('Predicted coordination environment label: ', Fe2O3_CenvPred_xdi.pred_cenv) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Initiate XANES object from Materials Project website downloaded spectrum file (tsv) Step2: Initiate XANES object from XAS Data Interchange (XDI) distribution
15,212
<ASSISTANT_TASK:> Python Code: k0, m0 = 1.0, 1.0 # ideally, dimensional units... w20 = k0/m0 w0 = np.sqrt(w20) k1, k2 = 2*k0, 3*k0 m1, m2 = 2*m0, 4*m0 M = np.array(((m1, 0), ( 0, m2))) K = np.array(((k1+k2, -k2), (-k2, k2))) p = np.array(( 0.0, 1.0)); w = 2.0*w0 print_mat(M, pre='\\boldsymbol{M}=m\\,', fmt='%d') print_mat(K, pre='\\boldsymbol{K}=k\\,', fmt='%d') print_mat(p[:,None], pre=r'\boldsymbol{p}(t) = p_0\,', fmt='%d', post='\\sin(%d\\omega_0t)'%w, mt='B') evals, Psi = eigh(K, M) Psi[:,0] /= Psi[0,0] ; Psi[:,1] /= Psi[1,1] Mstar = Psi.T@M@Psi Kstar = Psi.T@K@Psi pstar = Psi.T@p print_mat(evals[None,:], mt='p', pre=r'\omega^2_i=\omega^2_o\,') print_mat(Psi, pre=r'\boldsymbol{\Psi}=') print_mat(Mstar, pre=r'\boldsymbol{M}^\star=m\,') print_mat(Kstar, pre=r'\boldsymbol{K}^\star=k\,') print_mat(pstar[:,None], pre=r'\boldsymbol{p}^\star=p_o\,', mt='B') L = np.sqrt(evals) DAF = np.linalg.inv(Mstar)@(1.0/(L**2-w**2)) beta = w/L t = np.linspace(0,50,1001)[:,None] q = pstar*DAF*(np.sin(w*t)-beta*np.sin(L*t)) plt.style.use(['fivethirtyeight', '00_mplrc']) curves = plt.plot(t,q) plt.legend(curves,['q1', 'q2']) plt.title('Modal Response') plt.xlabel('$\omega_0t$') plt.ylabel('$q_i/\Delta_{st}$'); plt.tight_layout() plt.savefig('../figures/modal_response.pdf') x = (Psi@q.T).T curves = plt.plot(t, x) plt.legend(curves,['x1', 'x2']) plt.title('Structural Response') plt.xlabel('$\omega_0t$') plt.ylabel('$X_i/\Delta_{st}$') plt.tight_layout() plt.savefig('../figures/structural_response.pdf') plt.plot(t, (2*x[:,0]+4*x[:,1])/6, label='$(4x_2+2x_1)/6$') plt.plot(t, (x[:,1]+x[:,0]) , label='$(x_2-x_1)$') plt.title('Structural Response Tweaked') plt.xlabel('$\omega_0t$') plt.ylabel('$X_i/\Delta_{st}$') plt.legend() plt.tight_layout() plt.savefig('../figures/tweaked.pdf') %matplotlib inline import matplotlib.pyplot as plt import numpy as np ; from scipy.linalg import eigh np.set_printoptions(suppress=False, linewidth=120) from IPython.display import Latex def print_mat(mat, pre='', post='', fmt='%.6f', mt='b'): display(Latex( r'$$' + pre + r'\begin{%smatrix}'%mt + r'\\'.join('&'.join(fmt%x for x in row) for row in mat) + r'\end{%smatrix}'%mt + post + r'$$')) from IPython.display import HTML HTML(open('00_custom.css').read()) import sympy as sy sy.init_printing(use_latex=1) o, m0, k0 = sy.symbols('omega^2 m k') k1, k2, m1, m2 = 2*k0, 3*k0, 2*m0, 4*m0 sM = sy.Matrix(((m1,0,),(0,m2))) sK = sy.Matrix(((k1+k2, -k2),(-k2,k2))) KooM = sK - o*sM display(KooM) display(KooM.det()) display(KooM.det().expand()) iKooM = KooM.inv() sp = sy.Matrix(((0,),(1,))) a,b=(iKooM*sp) display(sy.Eq(sy.symbols('D_1'),a),sy.Eq(sy.symbols('D_2'),b)) a = a.expand().simplify().subs({m0:1,k0:1}) b = b.expand().simplify().subs({m0:1,k0:1}); with plt.style.context(['classic', '00_mplrc']): plot = sy.plot(a, b, (o, 0, 5), ylim=(-5,5), show=False) plot[0].line_color = 'black'; plot[0].label = '$D_1$' plot[1].line_color = 'red' ; plot[1].label = '$D_2$' plot.xlabel = r'$\beta^2$' plot.ylabel = r'$D_{i}$' plot.legend = True plot.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Computing the eigenvalues and the eigenvectors Step2: The @ operator stands, in this context, for matrix multiplication. Step3: Modal Response Step4: The definition of time vector is a bit complicated... Step5: The following code cell (that is executed before any other code cell by the notebook) loads libraries (or functions from libraries) and determines the style of plots and of the notebook itself. Besides the cell defines a function to format conveniently matrices and vectors.
15,213
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt %matplotlib inline import nengo import numpy as np import scipy.ndimage import matplotlib.animation as animation from matplotlib import pylab from PIL import Image import nengo.spa as spa import cPickle import random from nengo_extras.data import load_mnist from nengo_extras.vision import Gabor, Mask #Encode categorical integer features using a one-hot aka one-of-K scheme. def one_hot(labels, c=None): assert labels.ndim == 1 n = labels.shape[0] c = len(np.unique(labels)) if c is None else c y = np.zeros((n, c)) y[np.arange(n), labels] = 1 return y # --- load the data img_rows, img_cols = 28, 28 (X_train, y_train), (X_test, y_test) = load_mnist() X_train = 2 * X_train - 1 # normalize to -1 to 1 X_test = 2 * X_test - 1 # normalize to -1 to 1 train_targets = one_hot(y_train, 10) test_targets = one_hot(y_test, 10) rng = np.random.RandomState(9) # --- set up network parameters #Want to encode and decode the image n_vis = X_train.shape[1] n_out = X_train.shape[1] #number of neurons/dimensions of semantic pointer n_hid = 1000 #Try with more neurons for more accuracy #Want the encoding/decoding done on the training images ens_params = dict( eval_points=X_train, neuron_type=nengo.LIF(), #Why not use LIF? originally used LIFRate() intercepts=nengo.dists.Choice([-0.5]), max_rates=nengo.dists.Choice([100]), ) #Least-squares solver with L2 regularization. solver = nengo.solvers.LstsqL2(reg=0.01) #solver = nengo.solvers.LstsqL2(reg=0.0001) solver2 = nengo.solvers.LstsqL2(reg=0.01) #network that generates the weight matrices between neuron activity and images and the labels with nengo.Network(seed=3) as model: a = nengo.Ensemble(n_hid, n_vis, seed=3, **ens_params) v = nengo.Node(size_in=n_out) conn = nengo.Connection( a, v, synapse=None, eval_points=X_train, function=X_train,#want the same thing out (identity) solver=solver) v2 = nengo.Node(size_in=train_targets.shape[1]) conn2 = nengo.Connection( a, v2, synapse=None, eval_points=X_train, function=train_targets, #Want to get the labels out solver=solver2) # linear filter used for edge detection as encoders, more plausible for human visual system encoders = Gabor().generate(n_hid, (11, 11), rng=rng) encoders = Mask((28, 28)).populate(encoders, rng=rng, flatten=True) #Set the ensembles encoders to this a.encoders = encoders #Check the encoders were correctly made plt.imshow(encoders[0].reshape(28, 28), vmin=encoders[0].min(), vmax=encoders[0].max(), cmap='gray') #Get the one hot labels for the images def get_outs(sim, images): #The activity of the neurons when an image is given as input _, acts = nengo.utils.ensemble.tuning_curves(a, sim, inputs=images) #The activity multiplied by the weight matrix (calculated in the network) to give the one-hot labels return np.dot(acts, sim.data[conn2].weights.T) #Check how many of the labels were produced correctly #def get_error(sim, images, labels): # return np.argmax(get_outs(sim, images), axis=1) != labels #Get label of the images #def get_labels(sim,images): # return np.argmax(get_outs(sim, images), axis=1) #Get the neuron activity of an image or group of images (this is the semantic pointer in this case) def get_activities(sim, images): _, acts = nengo.utils.ensemble.tuning_curves(a, sim, inputs=images) return acts #Get the representation of the image after it has gone through the encoders (Gabor filters) but before it is in the neurons #This must be computed to create the weight matrix for rotation from neuron activity to this step # This allows a recurrent connection to be made from the neurons to themselves later def get_encoder_outputs(sim,images): #Pass the images through the encoders outs = np.dot(images,sim.data[a].encoders.T) #before the neurons return outs dim =28 #Scale an image def scale(img, scale): newImg = scipy.ndimage.interpolation.zoom(np.reshape(img, (dim,dim), 'F').T,scale,cval=-1) #If its scaled up if(scale >1): newImg = newImg[len(newImg)/2-(dim/2):-(len(newImg)/2-(dim/2)),len(newImg)/2-(dim/2):-(len(newImg)/2-(dim/2))] if len(newImg) >28: newImg = newImg[:28,:28] newImg = newImg.ravel() else: #Scaled down m = np.zeros((dim,dim)) m.fill(-1) m[(dim-len(newImg))/2:(dim-len(newImg))/2+len(newImg),(dim-len(newImg))/2:(dim-len(newImg))/2+len(newImg)] = newImg newImg = m return newImg.ravel() #Images to train, starting at random size orig_imgs = X_train[:100000].copy() for img in orig_imgs: while True: try: img[:] = scale(img,random.uniform(0.5,1.5)) break except: img[:] = img #Images scaled up a fixed amount from the original random scaling scaled_up_imgs = orig_imgs.copy() for img in scaled_up_imgs: img[:] = scale(img,1.1) #Images scaled down a fixed amount from the original random scaling scaled_down_imgs = orig_imgs.copy() for img in scaled_down_imgs: img[:] = scale(img,0.9) #Images not used for training, but for testing (all at random orientations) test_imgs = X_test[:1000].copy() for img in test_imgs: img[:] = scipy.ndimage.interpolation.rotate(np.reshape(img,(28,28)), (np.random.randint(360)),reshape=False,mode="nearest").ravel() #Images not used for training, but for testing (all at random sizes) test_imgs = X_test[:1000].copy() for img in test_imgs: while True: try: img[:] = scale(img,random.uniform(0.5,1.5)) break except: img[:] = img #Check to make sure images were generated correctly plt.subplot(131) plt.imshow(np.reshape(orig_imgs[1],(28,28)), cmap='gray') plt.subplot(132) plt.imshow(np.reshape(scaled_up_imgs[1],(28,28)), cmap='gray') plt.subplot(133) plt.imshow(np.reshape(scaled_down_imgs[1],(28,28)), cmap='gray') plt.show with nengo.Simulator(model) as sim: #Neuron activities of different mnist images #The semantic pointers orig_acts = get_activities(sim,orig_imgs) scaled_up_acts = get_activities(sim,scaled_up_imgs) scaled_down_acts = get_activities(sim,scaled_down_imgs) test_acts = get_activities(sim,test_imgs) X_test_acts = get_activities(sim,X_test) labels_out = get_outs(sim,X_test) scaled_up_after_encoders = get_encoder_outputs(sim,scaled_up_imgs) scaled_down_after_encoders = get_encoder_outputs(sim,scaled_down_imgs) #solvers for a learning rule solver_scale_up = nengo.solvers.LstsqL2(reg=1e-8) solver_scale_down = nengo.solvers.LstsqL2(reg=1e-8) solver_word = nengo.solvers.LstsqL2(reg=1e-8) solver_scaled_up_encoder = nengo.solvers.LstsqL2(reg=1e-8) solver_scaled_down_encoder = nengo.solvers.LstsqL2(reg=1e-8) #find weight matrix between neuron activity of the original image and the rotated image #weights returns a tuple including information about learning process, just want the weight matrix scale_up_weights,_ = solver_scale_up(orig_acts, scaled_up_acts) scale_down_weights,_ = solver_scale_down(orig_acts, scaled_down_acts) #find weight matrix between labels and neuron activity label_weights,_ = solver_word(labels_out,X_test_acts) scaled_up_after_encoder_weights,_ = solver_scaled_up_encoder(orig_acts,scaled_up_after_encoders) scaled_down_after_encoder_weights,_ = solver_scaled_down_encoder(orig_acts,scaled_down_after_encoders) #filename = "label_weights" + str(n_hid) +".p" #cPickle.dump(label_weights, open( filename, "wb" ) ) filename = "activity_to_img_weights_scale" + str(n_hid) +".p" cPickle.dump(sim.data[conn].weights.T, open( filename, "wb" ) ) filename = "scale_up_weights" + str(n_hid) +".p" cPickle.dump(scale_up_weights, open( filename, "wb" ) ) filename = "scale_down_weights" + str(n_hid) +".p" cPickle.dump(scale_down_weights, open( filename, "wb" ) ) filename = "scale_up_after_encoder_weights" + str(n_hid) +".p" cPickle.dump(scaled_up_after_encoder_weights, open( filename, "wb" ) ) filename = "scale_down_after_encoder_weights" + str(n_hid) +".p" cPickle.dump(scaled_down_after_encoder_weights, open( filename, "wb" ) ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Represent each number using a one-hot where the index of the one represents the digit value Step2: Load the MNIST training and testing images Step3: The Network Step4: Evaluating the network statically Step5: Images Step6: Simulator Step7: Saving weight matrices
15,214
<ASSISTANT_TASK:> Python Code: # Copyright 2018 The TensorFlow Hub Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== %%capture !pip3 install seaborn #@title Load the Universal Sentence Encoder's TF Hub module from absl import logging import tensorflow as tf import tensorflow_hub as hub import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import re import seaborn as sns module_url = "https://tfhub.dev/google/universal-sentence-encoder/4" #@param ["https://tfhub.dev/google/universal-sentence-encoder/4", "https://tfhub.dev/google/universal-sentence-encoder-large/5"] model = hub.load(module_url) print ("module %s loaded" % module_url) def embed(input): return model(input) #@title Compute a representation for each message, showing various lengths supported. word = "Elephant" sentence = "I am a sentence for which I would like to get its embedding." paragraph = ( "Universal Sentence Encoder embeddings also support short paragraphs. " "There is no hard limit on how long the paragraph is. Roughly, the longer " "the more 'diluted' the embedding will be.") messages = [word, sentence, paragraph] # Reduce logging output. logging.set_verbosity(logging.ERROR) message_embeddings = embed(messages) for i, message_embedding in enumerate(np.array(message_embeddings).tolist()): print("Message: {}".format(messages[i])) print("Embedding size: {}".format(len(message_embedding))) message_embedding_snippet = ", ".join( (str(x) for x in message_embedding[:3])) print("Embedding: [{}, ...]\n".format(message_embedding_snippet)) def plot_similarity(labels, features, rotation): corr = np.inner(features, features) sns.set(font_scale=1.2) g = sns.heatmap( corr, xticklabels=labels, yticklabels=labels, vmin=0, vmax=1, cmap="YlOrRd") g.set_xticklabels(labels, rotation=rotation) g.set_title("Semantic Textual Similarity") def run_and_plot(messages_): message_embeddings_ = embed(messages_) plot_similarity(messages_, message_embeddings_, 90) messages = [ # Smartphones "I like my phone", "My phone is not good.", "Your cellphone looks great.", # Weather "Will it snow tomorrow?", "Recently a lot of hurricanes have hit the US", "Global warming is real", # Food and health "An apple a day, keeps the doctors away", "Eating strawberries is healthy", "Is paleo better than keto?", # Asking about age "How old are you?", "what is your age?", ] run_and_plot(messages) import pandas import scipy import math import csv sts_dataset = tf.keras.utils.get_file( fname="Stsbenchmark.tar.gz", origin="http://ixa2.si.ehu.es/stswiki/images/4/48/Stsbenchmark.tar.gz", extract=True) sts_dev = pandas.read_table( os.path.join(os.path.dirname(sts_dataset), "stsbenchmark", "sts-dev.csv"), error_bad_lines=False, skip_blank_lines=True, usecols=[4, 5, 6], names=["sim", "sent_1", "sent_2"]) sts_test = pandas.read_table( os.path.join( os.path.dirname(sts_dataset), "stsbenchmark", "sts-test.csv"), error_bad_lines=False, quoting=csv.QUOTE_NONE, skip_blank_lines=True, usecols=[4, 5, 6], names=["sim", "sent_1", "sent_2"]) # cleanup some NaN values in sts_dev sts_dev = sts_dev[[isinstance(s, str) for s in sts_dev['sent_2']]] sts_data = sts_dev #@param ["sts_dev", "sts_test"] {type:"raw"} def run_sts_benchmark(batch): sts_encode1 = tf.nn.l2_normalize(embed(tf.constant(batch['sent_1'].tolist())), axis=1) sts_encode2 = tf.nn.l2_normalize(embed(tf.constant(batch['sent_2'].tolist())), axis=1) cosine_similarities = tf.reduce_sum(tf.multiply(sts_encode1, sts_encode2), axis=1) clip_cosine_similarities = tf.clip_by_value(cosine_similarities, -1.0, 1.0) scores = 1.0 - tf.acos(clip_cosine_similarities) / math.pi Returns the similarity scores return scores dev_scores = sts_data['sim'].tolist() scores = [] for batch in np.array_split(sts_data, 10): scores.extend(run_sts_benchmark(batch)) pearson_correlation = scipy.stats.pearsonr(scores, dev_scores) print('Pearson correlation coefficient = {0}\np-value = {1}'.format( pearson_correlation[0], pearson_correlation[1])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Universal Sentence Encoder Step2: More detailed information about installing Tensorflow can be found at https Step3: Semantic Textual Similarity Task Example Step4: Similarity Visualized Step5: Evaluation Step7: Evaluate Sentence Embeddings
15,215
<ASSISTANT_TASK:> Python Code: # Import the libraries we need import pandas as pd # Import the dataset from the CSV file accidents_data_file = '/Users/robert.dempsey/Dropbox/Private/Art of Skill Hacking/' \ 'Books/Python Business Intelligence Cookbook/Data/Stats19-Data1979-2004/Accidents7904.csv' accidents = pd.read_csv(accidents_data_file, sep=',', header=0, index_col=False, parse_dates=['Date'], dayfirst=True, tupleize_cols=False, error_bad_lines=True, warn_bad_lines=True, skip_blank_lines=True, low_memory=False ) accidents.head() # Use the describe function to generate summary stats for the entire dataset accidents.describe() # Transpose the results provided by describe() accidents.describe().transpose() # By default describe() restricts the stats to numerical or categorical columns. Use the following to include object columns accidents.describe(include=['object']) # Show the mode of each column and transpose it so we can read everything in iPython Notebook accidents.mode().transpose() accidents['Weather_Conditions'].describe() # Get the count of each unique value in the Date column. pd.value_counts(accidents['Date']) # Get the count of each unique value in the Date column. print("Min Value: {}".format(accidents['Number_of_Vehicles'].min())) print("Max Value: {}".format(accidents['Number_of_Vehicles'].max())) accidents['Number_of_Vehicles'].quantile([.05, .1, .25, .5, .75, .9, .99]) # Mean: the average # Median: the middle value # Mode: the value that occurs most often # Range: the difference between the minimum and maximum values print("Mean: {}".format(accidents['Number_of_Vehicles'].mean())) print("Median: {}".format(accidents['Number_of_Vehicles'].median())) print("Mode: {}".format(accidents['Number_of_Vehicles'].mode())) print("Range: {}".format( range(accidents['Number_of_Vehicles'].min(), accidents['Number_of_Vehicles'].max() ) )) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Generate Summary Statistics for the Entire Dataset Step2: Generate Summary Statistics for Object Type Columns Step3: Get the Mode of the Entire Dataset Step4: Generate Summary Statistics for a Single Column Step5: Get a Count of Unique Values for a Single Column Step6: Get the Minimum and Maximum of a Single Column Step7: Generate Quantiles for a Single Column Step8: Get the Mean, Median, Mode and Range for a Single Column
15,216
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt from scipy.special import erfc def sInf(p, kD, b, x): '''Return steady state head change due to fixed recharge p starting at t=0''' return p / (2 * kD) * (b**2 - x**2) def sDiff(p, x, b, S, kD, t): '''Return difference between steady state and actual state''' sign = -1 if isinstance(x, np.ndarray): s = np.zeros_like(x) elif isinstance(t, np.ndarray): s = np.zeros_like(t) for j in range(1, 20): sign = -sign j2 = 2 * j - 1 s += sign / j2**3 * np.cos(j2 * np.pi / (2 * b) * x) * np.exp(-((j2 * np.pi) / (2 * b))**2 * kD / S * t) return 16 * p * b**2 /(np.pi**3 * kD) * s L = 150 # m (strip width) b =L/2 # [m] half width of strip x = np.linspace(-L/2, L/2, 201) # points, taking left at zero. kD = 600 # m2/d S = 0.1 # [-] a = 1.0 # m, sudden head change at x = -L/2 times = np.linspace(0, 2, 11) # p = 0.01 plt.title("Head change in strip subjected to sudden change of recharge p") plt.xlabel('x [m]') plt.ylabel('s [m]') plt.xlim((-b, b)) plt.grid() for t in times: s = sInf(p, kD, b, x) - sDiff(p, x, b, S, kD, t) plt.plot(x, s, label='t={:.2f} d'.format(t)) plt.plot(x, sInf(p, kD, b, x ), 'k', lw=3, label='t=$\infty$') plt.legend() plt.show() # simulate a time series with varying recharge. # The recharge changes at switch times swt (may be irregularly spaced) swt = [0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] # The absolute recharge values starting at swt Pabs= np.array([0, 10, 0, -3, -1, 5, -2, 0, 4, 0]) * 1e-3 # The recharge changes, using Pabs[0] as the first change P = np.hstack((Pabs[0], np.diff(Pabs))) # Choose a point where the head time series is desired x = 0.3 * b # Choose times at which the head is to be computed (frequency is higher than that of the swt) t = np.linspace(0, 5, 51) # Initialize the time series with all zeros stot = np.zeros_like(t) plt.title("Simulated time series at x={:.1f} m".format(x)) plt.xlabel("time [d]") plt.ylabel("head in time series") plt.grid() # Start uperposition for p, st in zip(P, swt): I = t >= st # These are the times after the current switch time # heads for these times due to only this recharge change s = sInf(p, kD, b, x) - sDiff(p, x, b, S, kD, t[I] - st) # show it by way of illustration plt.plot(t[I], s, label='p={:.2f} mm/d'.format(1e3 *p)) # superposition stot[I] += s # Plot the final result plt.plot(t, stot, 'k', lw=3, label='heat time series x={:.1f} m'.format(x)) plt.legend(loc='right') plt.show() T = (2/np.pi) * b**2 * S / kD print('characteristic system time T = {:.2f} d'.format(T)) print('halftime of the system = {:.2f} d'.format(np.log(2) * T)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: It seems profitable to define a function that computes the sum Step2: Discussion
15,217
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import matplotlib.pyplot as plt from datetime import datetime # To illustrate the order of arguments my_year = 2017 my_month = 1 my_day = 2 my_hour = 13 my_minute = 30 my_second = 15 # January 2nd, 2017 my_date = datetime(my_year,my_month, my_day) # Defaults to 0:00 my_date # January 2nd, 2017 at 13:30:15 my_date_time = datetime(my_year, my_month, my_day, my_hour, my_minute, my_second) my_date_time my_date.day my_date_time.hour # Create an example datetime list/array first_two = [datetime(2016, 1, 1), datetime(2016, 1, 2)] first_two # Converted to an index dt_ind = pd.DatetimeIndex(first_two) dt_ind # Attached to some random data data = np.random.randn(2, 2) print(data) cols = ['A','B'] df = pd.DataFrame(data,dt_ind,cols) df df.index # Latest Date Location df.index.argmax() df.index.max() # Earliest Date Index Location df.index.argmin() df.index.min() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: You can grab any part of the datetime object you want Step2: Pandas with Datetime Index
15,218
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt from scipy import stats plt.style.use('seaborn') import fig_code fig_code.plot_example_decision_tree() from sklearn.datasets import make_blobs X, y = make_blobs(n_samples=300, centers=4, random_state=0, cluster_std=1.0) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='rainbow'); from fig_code import visualize_tree, plot_tree_interactive plot_tree_interactive(X, y); from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier() plt.figure() visualize_tree(clf, X[:200], y[:200], boundaries=False) plt.figure() visualize_tree(clf, X[-200:], y[-200:], boundaries=False) def fit_randomized_tree(random_state=0): X, y = make_blobs(n_samples=300, centers=4, random_state=0, cluster_std=2.0) clf = DecisionTreeClassifier(max_depth=15) rng = np.random.RandomState(random_state) i = np.arange(len(y)) rng.shuffle(i) visualize_tree(clf, X[i[:250]], y[i[:250]], boundaries=False, xlim=(X[:, 0].min(), X[:, 0].max()), ylim=(X[:, 1].min(), X[:, 1].max())) from ipywidgets import interact interact(fit_randomized_tree, random_state=(0, 100)); from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(n_estimators=100, random_state=0) visualize_tree(clf, X, y, boundaries=False); from sklearn.ensemble import RandomForestRegressor x = 10 * np.random.rand(100) def model(x, sigma=0.3): fast_oscillation = np.sin(5 * x) slow_oscillation = np.sin(0.5 * x) noise = sigma * np.random.randn(len(x)) return slow_oscillation + fast_oscillation + noise y = model(x) plt.errorbar(x, y, 0.3, fmt='o'); xfit = np.linspace(0, 10, 1000) yfit = RandomForestRegressor(100).fit(x[:, None], y).predict(xfit[:, None]) ytrue = model(xfit, 0) plt.errorbar(x, y, 0.3, fmt='o') plt.plot(xfit, yfit, '-r'); plt.plot(xfit, ytrue, '-k', alpha=0.5); from sklearn.datasets import load_digits digits = load_digits() digits.keys() X = digits.data y = digits.target print(X.shape) print(y.shape) # set up the figure fig = plt.figure(figsize=(6, 6)) # figure size in inches fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05) # plot the digits: each image is 8x8 pixels for i in range(64): ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[]) ax.imshow(digits.images[i], cmap=plt.cm.binary, interpolation='nearest') # label the image with the target value ax.text(0, 7, str(digits.target[i])) from sklearn.model_selection import train_test_split from sklearn import metrics Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, random_state=0) clf = DecisionTreeClassifier(max_depth=11) clf.fit(Xtrain, ytrain) ypred = clf.predict(Xtest) metrics.accuracy_score(ypred, ytest) plt.imshow(metrics.confusion_matrix(ypred, ytest), interpolation='nearest', cmap=plt.cm.binary) plt.grid(False) plt.colorbar() plt.xlabel("predicted label") plt.ylabel("true label"); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Motivating Random Forests Step2: The binary splitting makes this extremely efficient. Step3: We have some convenience functions in the repository that help Step4: Now using IPython's interact (available in IPython 2.0+, and requires a live kernel) we can view the decision tree splits Step5: Notice that at each increase in depth, every node is split in two except those nodes which contain only a single class. Step6: The details of the classifications are completely different! That is an indication of over-fitting Step7: See how the details of the model change as a function of the sample, while the larger characteristics remain the same! Step8: By averaging over 100 randomly perturbed models, we end up with an overall model which is a much better fit to our data! Step9: As you can see, the non-parametric random forest model is flexible enough to fit the multi-period data, without us even specifying a multi-period model! Step10: To remind us what we're looking at, we'll visualize the first few data points Step11: We can quickly classify the digits using a decision tree as follows Step12: We can check the accuracy of this classifier Step13: and for good measure, plot the confusion matrix
15,219
<ASSISTANT_TASK:> Python Code: import types @types.coroutine def gen(): yield 42 async def delegating(): await gen() coro = delegating() coro coro.send(None) # coro.send(None) # --> StopIteration @types.coroutine def gen123(): return (i for i in range(1, 4)) async def delegating(): await gen123() coro = delegating() coro.send(None) coro.send(None) coro.send(None) # coro.send(None) # --> StopIteration # coro.send(None) # --> RuntimeError import types @types.coroutine def times10(terms): n = yield 'Ready to begin!' for _ in range(terms): n = yield n * 10 return n * 10 async def delegating(terms): res = await times10(terms) return res coro = delegating(3) coro.send(None) coro.send(5) coro.send(6) coro.send(7) try: coro.send(8) except StopIteration as e: res = e.value res <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The driving code starts here Step2: A slightly more interesting demo Step3: Driving code Step4: A generator-coroutine that receives values Step5: Driving code must prime the coroutine by sending None initially Step6: To retrieve the last result, we must catch StopIteration and get its value attribute
15,220
<ASSISTANT_TASK:> Python Code: def load_frames(path): frame_size = 220 frames = np.fromfile(path, dtype = 'uint8') frames = frames[:frames.size//frame_size*frame_size].reshape((-1, frame_size)) return frames frames = load_frames('ATA_2021-09-18/ce5_frames.u8') aos = [CE5_AOSFrame.parse(f) for f in frames] collections.Counter([a.primary_header.transfer_frame_version_number for a in aos]) collections.Counter([a.primary_header.spacecraft_id for a in aos if a.primary_header.transfer_frame_version_number == 1]) collections.Counter([a.primary_header.virtual_channel_id for a in aos if a.primary_header.transfer_frame_version_number == 1 and a.primary_header.spacecraft_id == 108]) [a.primary_header for a in aos if a.primary_header.virtual_channel_id == 1][:10] vc1 = [a for a in aos if a.primary_header.virtual_channel_id == 1] fc = np.array([a.primary_header.virtual_channel_frame_count for a in vc1]) [a.insert_zone for a in aos[:10]] t_vc1 = np.datetime64('2012-08-01') + np.timedelta64(1, 's') * np.array([a.insert_zone.timestamp for a in vc1]) t_vc1[0] plt.figure(figsize = (10,6), facecolor = 'w') plt.plot(t_vc1, fc, '.') plt.title("Chang'e 5 virtual channel 1 timestamps") plt.xlabel('AOS frame timestamp') plt.ylabel('AOS virtual channel frame counter'); plt.figure(figsize = (10,6), facecolor = 'w') plt.plot(t_vc1[1:], np.diff(fc)-1, '.') plt.title("Chang'e 5 spacecraft 91 virtual channel 1 frame loss") plt.xlabel('AOS frame timestamp') plt.ylabel('Frame loss'); vc1_packets = list(ccsds.extract_space_packets(vc1, 108, 1, get_timestamps = True)) vc1_sp_headers = [ccsds.SpacePacketPrimaryHeader.parse(p[0]) for p in vc1_packets] vc1_apids = collections.Counter([p.APID for p in vc1_sp_headers]) vc1_apids vc1_by_apid = {apid : [p for h,p in zip(vc1_sp_headers, vc1_packets) if h.APID == apid] for apid in vc1_apids} plot_apids(vc1_by_apid, 108, 1) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: AOS frames Step2: Virtual channel 1 Step3: We need to sort the data, since the different files we've loaded up are not in chronological order. Step4: There are space packets in may APIDs. The contents of each APID are shown belown in plot form, but it's not easy to guess what any of the values mean.
15,221
<ASSISTANT_TASK:> Python Code: try: dot_product except: assert False else: assert True import numpy as np np.random.seed(56985) x = np.random.random(48) y = np.random.random(48) np.testing.assert_allclose(14.012537210130272, dot_product(x, y)) x = np.random.random(48) y = np.random.random(49) assert dot_product(x, y) is None try: mv_multiply except: assert False else: assert True import numpy as np np.random.seed(487543) A = np.random.random((92, 458)) v = np.random.random(458) np.testing.assert_allclose(mv_multiply(A, v), np.dot(A, v)) import numpy as np np.random.seed(49589) A = np.random.random((83, 75)) v = np.random.random(83) assert mv_multiply(A, v) is None try: mm_multiply except: assert False else: assert True import numpy as np np.random.seed(489547) A = np.random.random((48, 683)) B = np.random.random((683, 58)) np.testing.assert_allclose(mm_multiply(A, B), A @ B) A = np.random.random((359, 45)) B = np.random.random((83, 495)) assert mm_multiply(A, B) is None import numpy as np np.random.seed(466525) A = np.random.random((58, 683)) B = np.random.random((683, 58)) np.testing.assert_allclose(mm_multiply(B, A), B @ A) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: B Step2: C
15,222
<ASSISTANT_TASK:> Python Code: __builtins__? # ipython help on object (module) __builtins__ __builtins__?? # should also show code if present (not built in) help(__builtins__) # extended help (python) help() # type keywords below to see keywords and quit to quit #help('modules') # there is an error in my Ipython implementation import sys sys.executable sys.platform sys.version sys.path sys.modules help('modules keywords') # There is an error in my python implemetation (TODO, reinstall) import keyword dir(keyword) import sys dir(sys) dir() __builtins__ dir(__builtins__) dir('this is a string') dir(42) # Integer (and the meaning of life) dir([]) # List (an empty list, actually) dir(()) # Tuple (also empty) dir({}) # Dictionary (ditto) dir(dir) # Function (functions are also objects) class Person(object): Person class. def __init__(self, name, age): self.name = name self.age = age def intro(self): Return an introduction. return "Hello, my name is {:s} and I'm {:d}.".format(self.name, self.age) bob = Person("Robert", 35) # Create a Person instance joe = Person("Joseph", 17) # Create another joe.sport = "football" # Assign a new attribute to one instance dir(Person) # Attributes of the Person class dir(bob) # Attributes of bob dir(joe) # Note that joe has an additional attribute bob.intro() # Calling bob's intro method dir(bob.intro) # Attributes of the intro method print(__builtins__.__doc__) # Module docstring Person.__doc__ # Class docstring Person.intro.__doc__ # Class method docstring print(dir.__doc__) # Function docstring dir() # The dir() function directory = dir # Create a new variable directory() # Works just like the original object dir.__name__ # What's your name? directory.__name__ # My name is the same __name__ # And now for something completely different if __name__ == '__main__': # Do something appropriate here, like calling a # main() function defined elsewhere in this module. main() else: # Do nothing. This module has been imported by another # module that wants to make use of the functions, # classes and other useful bits it has defined. pass import types dir(types) def s(x): return x**2 type(s) if type(s) is types.FunctionType: print("s is a function") type(42) type([]) type({}) type(dir) print(id.__doc__) alist = [1, 2, 3] blist = [1, 2, 3] clist = blist clist blist alist id(alist) id(blist) id(clist) alist is blist blist is clist clist.append(4) clist blist alist print(hasattr.__doc__) print(getattr.__doc__) hasattr(id, '__doc__') print(getattr(id, '__doc__')) print(callable.__doc__) callable('a string') callable(dir) print(isinstance.__doc__) isinstance(42, str) isinstance('a string', int) isinstance(42, int) isinstance('a string', str) print(issubclass.__doc__) issubclass(float, complex) class SuperHero(Person): # SuperHero inherits from Person... def intro(self): # but with a new SuperHero intro Return an introduction. return "Hello, I'm SuperHero %s and I'm %s." % (self.name, self.age) issubclass(SuperHero, Person) issubclass(Person, SuperHero) def interrogate(item): Print useful information about item. if hasattr(item, '__name__'): print("NAME: ", item.__name__) if hasattr(item, '__class__'): print("CLASS: ", item.__class__.__name__) print("ID: ", id(item)) print("TYPE: ", type(item)) print("VALUE: ", repr(item)) print("CALLABLE: ", end="") if callable(item): print("Yes") else: print("No") if hasattr(item, '__doc__'): doc = getattr(item, '__doc__') doc = doc.strip() # Remove leading/trailing whitespace. firstline = doc.split('\n')[0] print("DOC: ", firstline) print() interrogate('a string') # String object interrogate(43) interrogate([1, 2, 'a']) interrogate(('a', 'b', 3)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: When we typed help(), we were greeted with a message and some instructions, followed by the help prompt. At the prompt, we entered keywords and were shown a list of Python keywords. Having gotten the answer to our question, we then quit the help utility, saw a brief farewell message, and were returned to the Python prompt. Step2: The sys module Step3: When we enter a line of code that consists of nothing more than the name of an object, Python responds by displaying a representation of the object, which, for simple objects, tends to be the value of the object. In this case, since the displayed value is enclosed in quotes, we get a clue that sys.executable is probably a string object. We'll look at other, more precise, ways to determine an object's type later, but simply typing the name of an object at the Python prompt is a quick and easy form of introspection. Step4: The current Python version is available as a string, and as a tuple (a tuple contains a sequence of objects) Step5: The argv variable is a list containing command line arguments, if any were specified. The first item, argv[0], is the path of the script that was run. When we run Python interactively this value is an empty string Step6: The modules variable is a dictionary that maps module names to module objects for all the currently loaded modules. As you can see, Python loads certain modules by default Step7: The keyword module Step8: Here is a list of matching modules. Enter any module name to get more help. Step9: The dir() function Step10: And how about the sys module we looked at earlier? Step11: Without any argument, dir() returns names in the current scope. Notice how keyword and sys appear in the list, since we imported them earlier. Importing a module adds the module's name to the current scope Step12: So builtins appears to be a name in the current scope that's bound to the module object named builtin. (Since modules are not simple objects with single values, Python displays information about the module inside angle brackets instead.) Note that if you look for a builtin.py file on disk you'll come up empty-handed. This particular module object is created out of thin air by the Python interpreter, because it contains items that are always available to the interpreter. And while there is no physical file to look at, we can still apply our dir() function to this object to see all the built-in functions, error objects, and a few miscellaneous attributes that it contains Step13: The dir() function works on all object types, including strings, integers, lists, tuples, dictionaries, functions, custom classes, class instances, and class methods. Let's apply dir() to a string object and see what Python returns. As you can see, even a simple Python string has a number of attributes Step14: Try the following examples yourself to see what they return. Note that the # character marks the start of a comment. Everything from the start of the comment to the end of the line is ignored by Python Step17: To illustrate the dynamic nature of Python's introspection capabilities, let's look at some examples using dir() on a custom class and some class instances. We're going to define our own class interactively, create some instances of the class, add a unique attribute to only one of the instances, and see if Python can keep all of this straight. Here are the results Step18: Documentation strings Step19: Once again, Python even maintains docstrings on classes and methods that are defined interactively in the Python shell. Let's look at the docstrings for our Person class and its intro method Step20: Because docstrings provide such valuable information, many Python development environments have ways of automatically displaying the docstrings for objects. Let's look at one more docstring, for the dir() function Step21: Interrogating Python objects Step22: Modules have names, and the Python interpreter itself is considered the top-level, or main, module. When you run Python interactively the local name variable is assigned a value of 'main'. Likewise, when you execute a Python module from the command line, rather than importing it into another module, its name attribute is assigned a value of 'main', rather than the actual name of the module. In this way, modules can look at their own name value to determine for themselves how they are being used, whether as support for another program or as the main application executed from the command line. Thus, the following idiom is quite common in Python modules Step23: Type Step24: Types that are part of optional modules (e.g. array) are not listed. Step25: Identity Step26: Attributes Step27: Callables Step28: Instances Step30: Subclasses Step32: Interrogation time
15,223
<ASSISTANT_TASK:> Python Code: import numpy as np np.random.seed(777) from skopt import gp_minimize noise_level = 0.1 def obj_fun(x, noise_level=noise_level): return np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) + np.random.randn() * noise_level res = gp_minimize(obj_fun, # the function to minimize [(-2.0, 2.0)], # the bounds on each dimension of x x0=[0.], # the starting point acq_func="LCB", # the acquisition function (optional) n_calls=15, # the number of evaluations of f including at x0 n_random_starts=0, # the number of random initialization points random_state=777) from skopt import dump, load dump(res, 'result.pkl') res_loaded = load('result.pkl') res_loaded.fun dump(res, 'result.gz', compress=9) from os.path import getsize print('Without compression: {} bytes'.format(getsize('result.pkl'))) print('Compressed with gz: {} bytes'.format(getsize('result.gz'))) dump(res, 'result_without_objective.pkl', store_objective=False) res_loaded_without_objective = load('result_without_objective.pkl') print('Loaded object: ', res_loaded_without_objective.specs['args'].keys()) print('Local variable:', res.specs['args'].keys()) del res.specs['args']['func'] dump(res, 'result_without_objective_2.pkl') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Problem statement Step2: As long as your Python session is active, you can access all the optimization results via the res object. Step3: And load from file using skopt.load() Step4: You can fine-tune the serialization and deserialization process by calling skopt.dump() and skopt.load() with additional keyword arguments. See the joblib documentation (dump and load) for the additional parameters. Step5: Unserializable objective functions Step6: Notice that the entry 'func' is absent in the loaded object but is still present in the local variable Step7: Possible problems
15,224
<ASSISTANT_TASK:> Python Code: import numpy as np import subprocess import os from os.path import join as opj import re import nibabel as nib # paths = np.genfromtxt('/home1/varunk/results_again_again/anat_file_paths.txt', dtype='str') #Didn't work # paths = np.genfromtxt('/home1/varunk/results_again_again/skullstrip_anat.txt', dtype='str') paths = np.genfromtxt('/home1/varunk/results_again_again/bet_resample_reg_brain_paths.txt', dtype='str') # paths = np.genfromtxt('/home1/varunk/results_again_again/bet_resample_brain_paths.txt', dtype='str') paths = np.sort(paths) save_destination = '/home1/varunk/results_again_again/registered_anat_qc/' if not os.path.exists(save_destination): os.mkdir(save_destination) os.chdir(save_destination) # print(np.sort(paths)[0:10]) paths # paths = paths[0:3] res_voxels = [] for path in paths: base_dir = '/home1/varunk/results_again_again/ABIDE1_Preprocess/motion_correction_bet/coreg_reg' anat_path = base_dir + path[1:] print(anat_path) sub_id_extracted = re.search('.+_subject_id_(\d+)', anat_path).group(1) # out_file = 'sub_' + sub_id_extracted + '_residual' res_file = opj(os.getcwd(),out_file) proc = subprocess.Popen(['fslstats', anat_path, '-V'], stdout=subprocess.PIPE) voxels = int((proc.communicate()[0]).decode("utf-8").split(' ')[0]) res_voxels.append(voxels) res_voxels %matplotlib inline import matplotlib.pyplot as plt bins = np.arange(min(res_voxels), max(res_voxels), 500) # fixed bin size res = plt.hist(res_voxels, bins=bins, alpha=0.5, color='#887E43', label='Defender') np.mean(res_voxels),np.std(res_voxels) #number_of_outliers = (res_voxels > 10.0*np.std(res_voxels)).sum() paths[np.where((res_voxels > 20.0*np.std(res_voxels)) == True)] np.mean(res_voxels),np.std(res_voxels) #number_of_outliers = s = 3 (res_voxels > np.mean(res_voxels) + s*np.std(res_voxels)).sum(), (res_voxels < np.mean(res_voxels) - s*np.std(res_voxels)).sum() # index of outliers np.where((res_voxels > 6.0*np.std(res_voxels)) == True) # Subjects that are outliers paths[np.where((res_voxels > 15.0*np.std(res_voxels)) == True)] # Subjects that are outliers set(paths[np.where((res_voxels > 12.0*np.std(res_voxels)) == True)]) # Subjects that are outliers set(paths[np.where((res_voxels > 11.0*np.std(res_voxels)) == True)]) - set(paths[np.where((res_voxels > 12.0*np.std(res_voxels)) == True)]) set(paths[np.where((res_voxels > 10.0*np.std(res_voxels)) == True)]) - set(paths[np.where((res_voxels > 11.0*np.std(res_voxels)) == True)]) paths[np.where((res_voxels > 10.0*np.std(res_voxels)) == True)].shape subject_ids_corrupted = [] for path in paths[np.where((res_voxels > 6.0*np.std(res_voxels)) == True)]: sub_id_extracted = re.search('.+_subject_id_(\d+)', path).group(1) subject_ids_corrupted.append(str(int(sub_id_extracted))) subject_ids_corrupted # Find the error: import nibabel as nib res_voxels = [] res_file = '/home1/varunk/results_again_again/registered_anat_qc/0050977_residual.nii.gz' proc = subprocess.Popen(['fslstats', res_file, '-V'], stdout=subprocess.PIPE) voxels = int((proc.communicate()[0]).decode("utf-8").split(' ')[0]) res_voxels.append(voxels) res_voxels !fslmaths /home1/varunk/results_again_again/ABIDE1_Preprocess/motion_correction_bet/coreg_reg/_subject_id_0050977/skullStrip/sub-0050977_T1w_resample_brain.nii.gz -mul /home1/varunk/results_again_again/registered_anat_qc/mask_inverted.nii.gz 0050977_residual paths = paths[0:3] for path in paths: base_dir = '/home1/varunk/results_again_again/ABIDE1_Preprocess/motion_correction_bet/coreg_reg' anat_path = base_dir + path[1:] print(anat_path) # (stddata[0]).decode("utf-8").split(' ')[0] mask = '/home1/varunk/results_again_again/ABIDE1_Preprocess/motion_correction_bet/coreg_reg/resample_mni/MNI152_T1_2mm_brain_resample_mask.nii.gz' proc = subprocess.Popen(['fslmaths', mask, '-mul', '-1', '-add' ,'1', 'mask_inverted'], stdout=subprocess.PIPE) stdoutdata= proc.communicate() print("The commandline is: {}".format(subprocess.list2cmdline(proc.args))) cwd = os.getcwd() mask_inverted_path = opj(cwd, 'mask_inverted.nii.gz') # /home1/varunk/results_again_again/registered_anat_qc/mask_inverted.nii.gz # paths %%time # paths = paths[0:3] res_voxels = [] for path in paths: base_dir = '/home1/varunk/results_again_again/ABIDE1_Preprocess/motion_correction_bet/coreg_reg' anat_path = base_dir + path[1:] # print(anat_path) sub_id_extracted = re.search('.+_subject_id_(\d+)', anat_path).group(1) out_file = 'sub_' + sub_id_extracted + '_residual' proc = subprocess.Popen(['fslmaths', anat_path, '-mul', mask_inverted_path, out_file], stdout=subprocess.PIPE) stdoutdata= proc.communicate() print("The command executed is: {}".format(subprocess.list2cmdline(proc.args))) # print('Created the residual file for Subject', sub_id_extracted) res_file = opj(os.getcwd(),out_file) proc = subprocess.Popen(['fslstats', res_file, '-V'], stdout=subprocess.PIPE) voxels = int((proc.communicate()[0]).decode("utf-8").split(' ')[0]) res_voxels.append(voxels) # print(stdoutdata) # , stderrdata , # , stderr=subprocess.STDOUT !fslmaths /home1/varunk/results_again_again/ABIDE1_Preprocess/motion_correction_bet/coreg_reg/_subject_id_0050002/skullStrip/sub-0050002_T1w_resample_brain.nii.gz -mul /home1/varunk/results_again_again/registered_anat_qc/mask_inverted.nii.gz sub_0050002_residual res_voxels np.mean(res_voxels),np.std(res_voxels) #number_of_outliers = (res_voxels > 6*np.std(res_voxels)).sum() # index of outliers np.where((res_voxels > 6*np.std(res_voxels)) == True) # Subjects that are outliers paths[np.where((res_voxels > 6*np.std(res_voxels)) == True)] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Metric Step2: The metric that did not work.
15,225
<ASSISTANT_TASK:> Python Code: from globus_sdk import AuthClient, TransferClient, AccessTokenAuthorizer, NativeAppAuthClient, TransferData CLIENT_ID = '2f9482c4-67b3-4783-bac7-12b37d6f8966' client = NativeAppAuthClient(CLIENT_ID) client.oauth2_start_flow() authorize_url = client.oauth2_get_authorize_url() print('Please go to this URL and login: {0}'.format(authorize_url)) # this is to work on Python2 and Python3 -- you can just use raw_input() or # input() for your specific version get_input = getattr(__builtins__, 'raw_input', input) auth_code = get_input( 'Please enter the code you get after login here: ').strip() token_response = client.oauth2_exchange_code_for_tokens(auth_code) AUTH_TOKEN = token_response.by_resource_server['auth.globus.org']['access_token'] TRANSFER_TOKEN = token_response.by_resource_server['transfer.api.globus.org']['access_token'] tc = TransferClient(AccessTokenAuthorizer(TRANSFER_TOKEN)) ac = AuthClient(authorizer=AccessTokenAuthorizer(AUTH_TOKEN)) # discover an Endpoint ID search_str = "Globus Tutorial Endpoint" endpoints = tc.endpoint_search(search_str) print("==== Displaying endpoint matches for search: '{}' ===".format(search_str)) for ep in endpoints: print("{} ({})".format(ep["display_name"] or ep["canonical_name"], ep["id"])) import sys, random, uuid from globus_sdk import AuthClient, TransferClient, AccessTokenAuthorizer, TransferData host_id = 'ddb59aef-6d04-11e5-ba46-22000b92c6ec' # Endpoint for shared endpoint source_path = '/share/godata/' # Directory to copy data from email ='chard@uchicago.edu' # Email address to share with tc = TransferClient(AccessTokenAuthorizer(TRANSFER_TOKEN)) ac = AuthClient(authorizer=AccessTokenAuthorizer(AUTH_TOKEN)) share_path = '/~/' + str(uuid.uuid4()) + '/' r = tc.operation_mkdir(host_id, path=share_path) print (r['message']) shared_ep_data = { 'DATA_TYPE': 'shared_endpoint', 'host_endpoint': host_id, 'host_path': share_path, 'display_name': 'RDP shared endpoint', 'description': 'RDP shared endpoint' } r = tc.create_shared_endpoint(shared_ep_data) share_id = r['id'] print(share_id) tc.endpoint_autoactivate(share_id) tdata = TransferData(tc, host_id, share_id, label='RDP copy data', sync_level='checksum') tdata.add_item(source_path, '/', recursive=True) r = tc.submit_transfer(tdata) o = tc.task_wait(r['task_id'], timeout=1000, polling_interval=10) print (r['task_id']) for f in tc.operation_ls(share_id): print (f['name']) r = ac.get_identities(usernames=email) user_id = r['identities'][0]['id'] rule_data = { 'DATA_TYPE': 'access', 'principal_type': 'identity', # Grantee is 'principal': user_id, # a user. 'path': '/', # Path is / 'permissions': 'r', # Read-only 'notify_email': email, # Email invite 'notify_message': # Invite msg 'Requested data is available.' } r = tc.add_endpoint_acl_rule(share_id, rule_data) print (r['message']) r = tc.delete_endpoint(share_id) print (r['message']) from globus_sdk import TransferClient, TransferData, AccessTokenAuthorizer from globus_sdk import AuthClient import sys, random, uuid def rdp(host_id, # Endpoint for shared endpoint source_path, # Directory to copy data from email): # Email address to share with # Instantiate transfer and auth clients tc = TransferClient(AccessTokenAuthorizer(TRANSFER_TOKEN)) ac = AuthClient(authorizer=AccessTokenAuthorizer(AUTH_TOKEN)) tc.endpoint_autoactivate(host_id) # (1) Create shared endpoint: # (a) Create directory to be shared share_path = '/~/' + str(uuid.uuid4()) + '/' tc.operation_mkdir(host_id, path=share_path) # (b) Create shared endpoint on directory shared_ep_data = { 'DATA_TYPE': 'shared_endpoint', 'host_endpoint': host_id, 'host_path': share_path, 'display_name': 'RDP shared endpoint', 'description': 'RDP shared endpoint' } r = tc.create_shared_endpoint(shared_ep_data) share_id = r['id'] # (2) Copy data into the shared endpoint tc.endpoint_autoactivate(share_id) tdata = TransferData(tc, host_id, share_id, label='RDP copy data', sync_level='checksum') tdata.add_item(source_path, '/', recursive=True) r = tc.submit_transfer(tdata) tc.task_wait(r['task_id'], timeout=1000, polling_interval=10) # (3) Enable access by user r = ac.get_identities(usernames=email) user_id = r['identities'][0]['id'] rule_data = { 'DATA_TYPE': 'access', 'principal_type': 'identity', # Grantee is 'principal': user_id, # a user. 'path': '/', # Path is / 'permissions': 'r', # Read-only 'notify_email': email, # Email invite 'notify_message': # Invite msg 'Requested data is available.' } tc.add_endpoint_acl_rule(share_id, rule_data) # (4) Ultimately, delete the shared endpoint #tc.delete_endpoint(share_id) rdp('ddb59aef-6d04-11e5-ba46-22000b92c6ec', '/share/godata/' , 'chard@uchicago.edu') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Using the Globus SDK Step2: The Research Data Portal function Step3: We use the Globus SDK function operation_mkdir to create a directory (in our example call, a UUID) on the existing endpoint with identifier host_id. Step4: Then we use the Globus SDK function create_shared_endpoint to create a shared endpoint for the new directory. At this point, the new shared endpoint exists and is associated with the new directory. However, only the creating user has access to this new shared endpoint at this point. Step5: To provide access to the requested data we copy data to the shared endpoint. We use sample data contained on the Globus Tutorial Endpoint under path "/share/godata". Step6: To confirm all data is in place for sharing we check the contents of the shared endpoint. Step7: We now share the endpoint with the appropriate user. We first use the Globus SDK function get_identities to retrieve the user identifier associated with the supplied email address; this is the user for whom sharing is to be enabled. (If this user is not known to Globus, an identity is created.) We then use the function add_endpoint_acl_rule to add an access control rule to the new shared endpoint to grant the specified user readonly access to the endpoint. The various elements in the rule_data structure specify, among other things Step8: The shared endpoint will typically be left operational for some period, after which it can be deleted. Note that deleting a shared endpoint does not delete the data that it contains. The portal admin may want to retain the data for other purposes. If not, we can use the Globus SDK function submit_delete to delete the folder. Step9: Putting it all together
15,226
<ASSISTANT_TASK:> Python Code: import time from collections import namedtuple import numpy as np import tensorflow as tf with open('anna.txt', 'r') as f: text=f.read() vocab = set(text) vocab_to_int = {c: i for i, c in enumerate(vocab)} int_to_vocab = dict(enumerate(vocab)) encoded = np.array([vocab_to_int[c] for c in text], dtype=np.int32) text[:1000] encoded[:100] len(vocab) def get_batches(arr, n_seqs, n_steps): '''Create a generator that returns batches of size n_seqs x n_steps from arr. Arguments --------- arr: Array you want to make batches from n_seqs: Batch size, the number of sequences per batch n_steps: Number of sequence steps per batch ''' # Get the number of characters per batch and number of batches we can make characters_per_batch = n_seqs * n_steps n_batches = len(arr)//characters_per_batch # Keep only enough characters to make full batches arr = arr[:n_batches * characters_per_batch] # Reshape into n_seqs rows arr = arr.reshape(n_seqs, -1) for n in range(0, arr.shape[1], n_steps): # The features x = arr[:, n:n+n_steps] # The targets, shifted by one y = np.zeros_like(x) y[:, :-1], y[:, -1] = x[:, 1:], x[:, 0] yield x, y batches = get_batches(encoded, 10, 50) x, y = next(batches) print('x\n', x[:10, :10]) print('\ny\n', y[:10, :10]) def build_inputs(batch_size, num_steps): ''' Define placeholders for inputs, targets, and dropout Arguments --------- batch_size: Batch size, number of sequences per batch num_steps: Number of sequence steps in a batch ''' # Declare placeholders we'll feed into the graph inputs = tf.placeholder(tf.int32, [batch_size, num_steps], name='inputs') targets = tf.placeholder(tf.int32, [batch_size, num_steps], name='targets') # Keep probability placeholder for drop out layers keep_prob = tf.placeholder(tf.float32, name='keep_prob') return inputs, targets, keep_prob def build_lstm(lstm_size, num_layers, batch_size, keep_prob): ''' Build LSTM cell. Arguments --------- keep_prob: Scalar tensor (tf.placeholder) for the dropout keep probability lstm_size: Size of the hidden layers in the LSTM cells num_layers: Number of LSTM layers batch_size: Batch size ''' ### Build the LSTM Cell def build_cell(lstm_size, keep_prob): # Use a basic LSTM cell lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size) # Add dropout to the cell outputs drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob) # Stack up multiple LSTM layers, for deep learning cell = tf.contrib.rnn.MultiRNNCell([build_cell(lstm_size, keep_prob)] for _ in range(num_layers)) initial_state = cell.zero_state(batch_size, tf.float32) return cell, initial_state def build_output(lstm_output, in_size, out_size): ''' Build a softmax layer, return the softmax output and logits. Arguments --------- lstm_output: List of output tensors from the LSTM layer in_size: Size of the input tensor, for example, size of the LSTM cells out_size: Size of this softmax layer ''' # Reshape output so it's a bunch of rows, one row for each step for each sequence. # Concatenate lstm_output over axis 1 (the columns) seq_output = tf.concat(lstm_output, axis=1) # Reshape seq_output to a 2D tensor with lstm_size columns x = tf.reshape(seq_output, [-1, in_size]) # Connect the RNN outputs to a softmax layer with tf.variable_scope('softmax'): # Create the weight and bias variables here softmax_w = tf.Variable(tf.truncated_normal((in_size, out_size), stddev=0.1)) softmax_b = tf.Variable(tf.zeros(out_size)) # Since output is a bunch of rows of RNN cell outputs, logits will be a bunch # of rows of logit outputs, one for each step and sequence logits = tf.matmul(x, softmax_w) + softmax_b # Use softmax to get the probabilities for predicted characters out = tf.nn.softmax(logits, name='predictions') return out, logits def build_loss(logits, targets, lstm_size, num_classes): ''' Calculate the loss from the logits and the targets. Arguments --------- logits: Logits from final fully connected layer targets: Targets for supervised learning lstm_size: Number of LSTM hidden units num_classes: Number of classes in targets ''' # One-hot encode targets and reshape to match logits, one row per sequence per step y_one_hot = tf.one_hot(targets, num_classes) y_reshaped = tf.reshape(y_one_hot, logits.get_shape()) # Softmax cross entropy loss loss = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y_reshaped) loss = tf.reduce_mean(loss) return loss def build_optimizer(loss, learning_rate, grad_clip): ''' Build optmizer for training, using gradient clipping. Arguments: loss: Network loss learning_rate: Learning rate for optimizer ''' # Optimizer for training, using gradient clipping to control exploding gradients tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(loss, tvars), grad_clip) train_op = tf.train.AdamOptimizer(learning_rate) optimizer = train_op.apply_gradients(zip(grads, tvars)) return optimizer class CharRNN: def __init__(self, num_classes, batch_size=64, num_steps=50, lstm_size=128, num_layers=2, learning_rate=0.001, grad_clip=5, sampling=False): # When we're using this network for sampling later, we'll be passing in # one character at a time, so providing an option for that if sampling == True: batch_size, num_steps = 1, 1 else: batch_size, num_steps = batch_size, num_steps tf.reset_default_graph() # Build the input placeholder tensors self.inputs, self.targets, self.keep_prob = # Build the LSTM cell cell, self.initial_state = ### Run the data through the RNN layers # First, one-hot encode the input tokens x_one_hot = # Run each sequence step through the RNN with tf.nn.dynamic_rnn outputs, state = self.final_state = state # Get softmax predictions and logits self.prediction, self.logits = # Loss and optimizer (with gradient clipping) self.loss = self.optimizer = batch_size = 10 # Sequences per batch num_steps = 50 # Number of sequence steps per batch lstm_size = 128 # Size of hidden layers in LSTMs num_layers = 2 # Number of LSTM layers learning_rate = 0.01 # Learning rate keep_prob = 0.5 # Dropout keep probability epochs = 20 # Save every N iterations save_every_n = 200 model = CharRNN(len(vocab), batch_size=batch_size, num_steps=num_steps, lstm_size=lstm_size, num_layers=num_layers, learning_rate=learning_rate) saver = tf.train.Saver(max_to_keep=100) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # Use the line below to load a checkpoint and resume training #saver.restore(sess, 'checkpoints/______.ckpt') counter = 0 for e in range(epochs): # Train network new_state = sess.run(model.initial_state) loss = 0 for x, y in get_batches(encoded, batch_size, num_steps): counter += 1 start = time.time() feed = {model.inputs: x, model.targets: y, model.keep_prob: keep_prob, model.initial_state: new_state} batch_loss, new_state, _ = sess.run([model.loss, model.final_state, model.optimizer], feed_dict=feed) end = time.time() print('Epoch: {}/{}... '.format(e+1, epochs), 'Training Step: {}... '.format(counter), 'Training loss: {:.4f}... '.format(batch_loss), '{:.4f} sec/batch'.format((end-start))) if (counter % save_every_n == 0): saver.save(sess, "checkpoints/i{}_l{}.ckpt".format(counter, lstm_size)) saver.save(sess, "checkpoints/i{}_l{}.ckpt".format(counter, lstm_size)) tf.train.get_checkpoint_state('checkpoints') def pick_top_n(preds, vocab_size, top_n=5): p = np.squeeze(preds) p[np.argsort(p)[:-top_n]] = 0 p = p / np.sum(p) c = np.random.choice(vocab_size, 1, p=p)[0] return c def sample(checkpoint, n_samples, lstm_size, vocab_size, prime="The "): samples = [c for c in prime] model = CharRNN(len(vocab), lstm_size=lstm_size, sampling=True) saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, checkpoint) new_state = sess.run(model.initial_state) for c in prime: x = np.zeros((1, 1)) x[0,0] = vocab_to_int[c] feed = {model.inputs: x, model.keep_prob: 1., model.initial_state: new_state} preds, new_state = sess.run([model.prediction, model.final_state], feed_dict=feed) c = pick_top_n(preds, len(vocab)) samples.append(int_to_vocab[c]) for i in range(n_samples): x[0,0] = c feed = {model.inputs: x, model.keep_prob: 1., model.initial_state: new_state} preds, new_state = sess.run([model.prediction, model.final_state], feed_dict=feed) c = pick_top_n(preds, len(vocab)) samples.append(int_to_vocab[c]) return ''.join(samples) tf.train.latest_checkpoint('checkpoints') checkpoint = tf.train.latest_checkpoint('checkpoints') samp = sample(checkpoint, 2000, lstm_size, len(vocab), prime="Far") print(samp) checkpoint = 'checkpoints/i200_l512.ckpt' samp = sample(checkpoint, 1000, lstm_size, len(vocab), prime="Far") print(samp) checkpoint = 'checkpoints/i600_l512.ckpt' samp = sample(checkpoint, 1000, lstm_size, len(vocab), prime="Far") print(samp) checkpoint = 'checkpoints/i1200_l512.ckpt' samp = sample(checkpoint, 1000, lstm_size, len(vocab), prime="Far") print(samp) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: First we'll load the text file and convert it into integers for our network to use. Here I'm creating a couple dictionaries to convert the characters to and from integers. Encoding the characters as integers makes it easier to use as input in the network. Step2: Let's check out the first 100 characters, make sure everything is peachy. According to the American Book Review, this is the 6th best first line of a book ever. Step3: And we can see the characters encoded as integers. Step4: Since the network is working with individual characters, it's similar to a classification problem in which we are trying to predict the next character from the previous text. Here's how many 'classes' our network has to pick from. Step5: Making training mini-batches Step6: Now I'll make my data sets and we can check out what's going on here. Here I'm going to use a batch size of 10 and 50 sequence steps. Step7: If you implemented get_batches correctly, the above output should look something like Step8: LSTM Cell Step9: RNN Output Step10: Training loss Step11: Optimizer Step12: Build the network Step13: Hyperparameters Step14: Time for training Step15: Saved checkpoints Step16: Sampling Step17: Here, pass in the path to a checkpoint and sample from the network.
15,227
<ASSISTANT_TASK:> Python Code: %load_ext ipython_unittest def add(x, y): return x + y %%unittest assert add(1, 1) == 2 assert add(1, 2) == 3 assert add(2, 2) == 4 %load_ext ipython_unittest def fizzbuzz(): pass %%unittest -p 1 assert fizzbuzz() == 0 import unittest import sys class JupyterTest(unittest.TestCase): def test_add_1_1_returns_2(self): self.assertEqual(add(1, 1), 2) def test_add_1_2_returns_3(self): self.assertEqual(add(1, 2), 3) def test_add_2_2_returns_4(self): self.assertEqual(add(2, 2), 4) suite = unittest.TestLoader().loadTestsFromTestCase(JupyterTest) unittest.TextTestRunner(verbosity=1, stream=sys.stdout).run(suite) !pip install astunparse %%unittest -u "add 1 + 1 returns 2" assert add(1, 1) == 2 "add 1 + 2 returns 3" assert add(1, 2) == 3 "add 2 + 2 returns 4" assert add(2, 2) == 4 %%write javascript test.js var assert = require('assert'); describe('Array', function() { describe('#indexOf()', function() { it('should return -1 when the value is not present', function() { assert.equal(-1, [1,2,3].indexOf(4)); }); }); }); %%external --previous 1 mocha test.js %%unittest_main class JupyterTest(unittest.TestCase): def test_add_1_1_returns_2(self): self.assertEqual(add(1, 1), 2) def test_add_1_2_returns_3(self): self.assertEqual(add(1, 2), 3) def test_add_2_2_returns_4(self): self.assertEqual(add(2, 2), 4) %%unittest_testcase def test_add_1_1_returns_2(self): self.assertEqual(add(1, 1), 2) def test_add_1_2_returns_3(self): self.assertEqual(add(1, 2), 3) def test_add_2_2_returns_4(self): self.assertEqual(add(2, 2), 4) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Other magics
15,228
<ASSISTANT_TASK:> Python Code: import SimpleITK as sitk import registration_utilities as ru import registration_callbacks as rc %matplotlib inline import matplotlib.pyplot as plt from ipywidgets import interact, fixed # utility method that either downloads data from the Girder repository or # if already downloaded returns the file name for reading from disk (cached data) %run update_path_to_download_script from downloaddata import fetch_data as fdata %run popi_utilities_setup.py images = [] masks = [] points = [] for i in range(0, 10): image_file_name = f"POPI/meta/{i}0-P.mhd" mask_file_name = f"POPI/masks/{i}0-air-body-lungs.mhd" points_file_name = f"POPI/landmarks/{i}0-Landmarks.pts" images.append( sitk.ReadImage(fdata(image_file_name), sitk.sitkFloat32) ) # read and cast to format required for registration masks.append(sitk.ReadImage(fdata(mask_file_name))) points.append(read_POPI_points(fdata(points_file_name))) interact( display_coronal_with_overlay, temporal_slice=(0, len(images) - 1), coronal_slice=(0, images[0].GetSize()[1] - 1), images=fixed(images), masks=fixed(masks), label=fixed(lung_label), window_min=fixed(-1024), window_max=fixed(976), ); label_shape_statistics_filter = sitk.LabelShapeStatisticsImageFilter() for i, mask in enumerate(masks): label_shape_statistics_filter.Execute(mask) print( f"Lung volume in image {i} is {0.000001*label_shape_statistics_filter.GetPhysicalSize(lung_label)} liters." ) def bspline_intra_modal_registration( fixed_image, moving_image, fixed_image_mask=None, fixed_points=None, moving_points=None, ): registration_method = sitk.ImageRegistrationMethod() # Determine the number of BSpline control points using the physical spacing we want for the control grid. grid_physical_spacing = [50.0, 50.0, 50.0] # A control point every 50mm image_physical_size = [ size * spacing for size, spacing in zip(fixed_image.GetSize(), fixed_image.GetSpacing()) ] mesh_size = [ int(image_size / grid_spacing + 0.5) for image_size, grid_spacing in zip(image_physical_size, grid_physical_spacing) ] initial_transform = sitk.BSplineTransformInitializer( image1=fixed_image, transformDomainMeshSize=mesh_size, order=3 ) registration_method.SetInitialTransform(initial_transform) registration_method.SetMetricAsMeanSquares() # Settings for metric sampling, usage of a mask is optional. When given a mask the sample points will be # generated inside that region. Also, this implicitly speeds things up as the mask is smaller than the # whole image. registration_method.SetMetricSamplingStrategy(registration_method.RANDOM) registration_method.SetMetricSamplingPercentage(0.01) if fixed_image_mask: registration_method.SetMetricFixedMask(fixed_image_mask) # Multi-resolution framework. registration_method.SetShrinkFactorsPerLevel(shrinkFactors=[4, 2, 1]) registration_method.SetSmoothingSigmasPerLevel(smoothingSigmas=[2, 1, 0]) registration_method.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn() registration_method.SetInterpolator(sitk.sitkLinear) registration_method.SetOptimizerAsLBFGSB( gradientConvergenceTolerance=1e-5, numberOfIterations=100 ) # If corresponding points in the fixed and moving image are given then we display the similarity metric # and the TRE during the registration. if fixed_points and moving_points: registration_method.AddCommand( sitk.sitkStartEvent, rc.metric_and_reference_start_plot ) registration_method.AddCommand( sitk.sitkEndEvent, rc.metric_and_reference_end_plot ) registration_method.AddCommand( sitk.sitkIterationEvent, lambda: rc.metric_and_reference_plot_values( registration_method, fixed_points, moving_points ), ) return registration_method.Execute(fixed_image, moving_image) #%%timeit -r1 -n1 # Select the fixed and moving images, valid entries are in [0,9]. fixed_image_index = 0 moving_image_index = 7 tx = bspline_intra_modal_registration( fixed_image=images[fixed_image_index], moving_image=images[moving_image_index], fixed_image_mask=(masks[fixed_image_index] == lung_label), fixed_points=points[fixed_image_index], moving_points=points[moving_image_index], ) ( initial_errors_mean, initial_errors_std, _, initial_errors_max, initial_errors, ) = ru.registration_errors( sitk.Euler3DTransform(), points[fixed_image_index], points[moving_image_index] ) ( final_errors_mean, final_errors_std, _, final_errors_max, final_errors, ) = ru.registration_errors(tx, points[fixed_image_index], points[moving_image_index]) plt.hist(initial_errors, bins=20, alpha=0.5, label="before registration", color="blue") plt.hist(final_errors, bins=20, alpha=0.5, label="after registration", color="green") plt.legend() plt.title("TRE histogram") print( f"Initial alignment errors in millimeters, mean(std): {initial_errors_mean:.2f}({initial_errors_std:.2f}), max: {initial_errors_max:.2f}" ) print( f"Final alignment errors in millimeters, mean(std): {final_errors_mean:.2f}({final_errors_std:.2f}), max: {final_errors_max:.2f}" ) # Transfer the segmentation via the estimated transformation. Use Nearest Neighbor interpolation to retain the labels. transformed_labels = sitk.Resample( masks[moving_image_index], images[fixed_image_index], tx, sitk.sitkNearestNeighbor, 0.0, masks[moving_image_index].GetPixelID(), ) segmentations_before_and_after = [masks[moving_image_index], transformed_labels] interact( display_coronal_with_label_maps_overlay, coronal_slice=(0, images[0].GetSize()[1] - 1), mask_index=(0, len(segmentations_before_and_after) - 1), image=fixed(images[fixed_image_index]), masks=fixed(segmentations_before_and_after), label=fixed(lung_label), window_min=fixed(-1024), window_max=fixed(976), ) # Compute the Dice coefficient and Hausdorff distance between the segmentations before, and after registration. ground_truth = masks[fixed_image_index] == lung_label before_registration = masks[moving_image_index] == lung_label after_registration = transformed_labels == lung_label label_overlap_measures_filter = sitk.LabelOverlapMeasuresImageFilter() label_overlap_measures_filter.Execute(ground_truth, before_registration) print( f"Dice coefficient before registration: {label_overlap_measures_filter.GetDiceCoefficient():.2f}" ) label_overlap_measures_filter.Execute(ground_truth, after_registration) print( f"Dice coefficient after registration: {label_overlap_measures_filter.GetDiceCoefficient():.2f}" ) hausdorff_distance_image_filter = sitk.HausdorffDistanceImageFilter() hausdorff_distance_image_filter.Execute(ground_truth, before_registration) print( f"Hausdorff distance before registration: {hausdorff_distance_image_filter.GetHausdorffDistance():.2f}" ) hausdorff_distance_image_filter.Execute(ground_truth, after_registration) print( f"Hausdorff distance after registration: {hausdorff_distance_image_filter.GetHausdorffDistance():.2f}" ) def bspline_intra_modal_registration2( fixed_image, moving_image, fixed_image_mask=None, fixed_points=None, moving_points=None, ): registration_method = sitk.ImageRegistrationMethod() # Determine the number of BSpline control points using the physical spacing we # want for the finest resolution control grid. grid_physical_spacing = [50.0, 50.0, 50.0] # A control point every 50mm image_physical_size = [ size * spacing for size, spacing in zip(fixed_image.GetSize(), fixed_image.GetSpacing()) ] mesh_size = [ int(image_size / grid_spacing + 0.5) for image_size, grid_spacing in zip(image_physical_size, grid_physical_spacing) ] # The starting mesh size will be 1/4 of the original, it will be refined by # the multi-resolution framework. mesh_size = [int(sz / 4 + 0.5) for sz in mesh_size] initial_transform = sitk.BSplineTransformInitializer( image1=fixed_image, transformDomainMeshSize=mesh_size, order=3 ) # Instead of the standard SetInitialTransform we use the BSpline specific method which also # accepts the scaleFactors parameter to refine the BSpline mesh. In this case we start with # the given mesh_size at the highest pyramid level then we double it in the next lower level and # in the full resolution image we use a mesh that is four times the original size. registration_method.SetInitialTransformAsBSpline( initial_transform, inPlace=True, scaleFactors=[1, 2, 4] ) registration_method.SetMetricAsMeanSquares() # Settings for metric sampling, usage of a mask is optional. When given a mask the sample points will be # generated inside that region. Also, this implicitly speeds things up as the mask is smaller than the # whole image. registration_method.SetMetricSamplingStrategy(registration_method.RANDOM) registration_method.SetMetricSamplingPercentage(0.01) if fixed_image_mask: registration_method.SetMetricFixedMask(fixed_image_mask) # Multi-resolution framework. registration_method.SetShrinkFactorsPerLevel(shrinkFactors=[4, 2, 1]) registration_method.SetSmoothingSigmasPerLevel(smoothingSigmas=[2, 1, 0]) registration_method.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn() registration_method.SetInterpolator(sitk.sitkLinear) # Use the LBFGS2 instead of LBFGS. The latter cannot adapt to the changing control grid resolution. registration_method.SetOptimizerAsLBFGS2( solutionAccuracy=1e-2, numberOfIterations=100, deltaConvergenceTolerance=0.01 ) # If corresponding points in the fixed and moving image are given then we display the similarity metric # and the TRE during the registration. if fixed_points and moving_points: registration_method.AddCommand( sitk.sitkStartEvent, rc.metric_and_reference_start_plot ) registration_method.AddCommand( sitk.sitkEndEvent, rc.metric_and_reference_end_plot ) registration_method.AddCommand( sitk.sitkIterationEvent, lambda: rc.metric_and_reference_plot_values( registration_method, fixed_points, moving_points ), ) return registration_method.Execute(fixed_image, moving_image) #%%timeit -r1 -n1 # Select the fixed and moving images, valid entries are in [0,9]. fixed_image_index = 0 moving_image_index = 7 tx = bspline_intra_modal_registration2( fixed_image=images[fixed_image_index], moving_image=images[moving_image_index], fixed_image_mask=(masks[fixed_image_index] == lung_label), fixed_points=points[fixed_image_index], moving_points=points[moving_image_index], ) ( initial_errors_mean, initial_errors_std, _, initial_errors_max, initial_errors, ) = ru.registration_errors( sitk.Euler3DTransform(), points[fixed_image_index], points[moving_image_index] ) ( final_errors_mean, final_errors_std, _, final_errors_max, final_errors, ) = ru.registration_errors(tx, points[fixed_image_index], points[moving_image_index]) plt.hist(initial_errors, bins=20, alpha=0.5, label="before registration", color="blue") plt.hist(final_errors, bins=20, alpha=0.5, label="after registration", color="green") plt.legend() plt.title("TRE histogram") print( f"Initial alignment errors in millimeters, mean(std): {initial_errors_mean:.2f}({initial_errors_std:.2f}), max: {initial_errors_max:.2f}" ) print( f"Final alignment errors in millimeters, mean(std): {final_errors_mean:.2f}({final_errors_std:.2f}), max: {final_errors_max:.2f}" ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Utilities Step2: Loading Data Step3: Getting to know your data Step4: Free Form Deformation Step5: Perform Registration Step6: Another option for evaluating the registration is to use segmentation. In this case, we transfer the segmentation from one image to the other and compare the overlaps, both visually, and quantitatively. Step7: Multi-resolution control point grid
15,229
<ASSISTANT_TASK:> Python Code: mkdir -p hello_world from asdf import AsdfFile # Make the tree structure, and create a AsdfFile from it. tree = {'hello': 'world'} ff = AsdfFile(tree) ff.write_to("hello_world/test.asdf") # You can also make the AsdfFile first, and modify its tree directly: ff = AsdfFile() ff.tree['hello'] = 'world' ff.write_to("hello_world/test_hello_world.asdf") cat hello_world/test.asdf cat hello_world/test_hello_world.asdf mkdir -p array_storage from asdf import AsdfFile import numpy as np tree = {'my_array': np.random.rand(8, 8)} ff = AsdfFile(tree) ff.write_to("array_storage/test_arrays.asdf") cat array_storage/test_arrays.asdf from asdf import ValidationError from asdf import AsdfFile tree = {'data': 'Not an array'} try: AsdfFile(tree) except: raise ValidationError('data needs an array!') mkdir -p data_sharing from asdf import AsdfFile import numpy as np my_array = np.random.rand(8, 8) subset = my_array[2:4,3:6] tree = { 'my_array': my_array, 'subset': subset } ff = AsdfFile(tree) ff.write_to("data_sharing/test_overlap.asdf") cat data_sharing/test_overlap.asdf mkdir -p streaming_data from asdf import AsdfFile, Stream import numpy as np tree = { # Each "row" of data will have 128 entries. 'my_stream': Stream([128], np.float64) } ff = AsdfFile(tree) with open('streaming_data/stream_test.asdf', 'wb') as fd: ff.write_to(fd) # Write 100 rows of data, one row at a time. ``write`` # expects the raw binary bytes, not an array, so we use # ``tostring()``. for i in range(10): fd.write(np.array([i] * 128, np.float64).tostring()) cat streaming_data/stream_test.asdf mkdir -p exploded_data from asdf import AsdfFile import numpy as np my_array = np.random.rand(3, 4) tree = {'my_array': my_array} my_big_array = np.random.rand(8, 8) tree['my_big_array'] = my_big_array ff = AsdfFile(tree) ff.set_array_storage(my_array, 'inline') ff.set_array_storage(my_big_array, 'external') ff.write_to("exploded_data/test_exploded.asdf") # Or for every block: # ff.write_to("test.asdf", all_array_storage='external') ls exploded_data/ cat exploded_data/test_exploded.asdf cat exploded_data/test_exploded0000.asdf mkdir -p provenance from asdf import AsdfFile import numpy as np tree = { 'some_random_data': np.random.rand(5, 5) } ff = AsdfFile(tree) ff.add_history_entry( u"Initial random numbers", {u'name': u'asdf examples', u'author': u'John Q. Public', u'homepage': u'http://github.com/spacetelescope/asdf', u'version': u'0.1', u'spase_dict': {u'resource_id': 5}}) ff.write_to('provenance/provenance.asdf') cat provenance/provenance.asdf mkdir -p compression from asdf import AsdfFile import numpy as np x = np.linspace(-20, 20, 30) y = np.linspace(-30, 30, 50) xx,yy = np.meshgrid(x,y) tree = dict(variables = dict(x = xx, y = yy ) ) ff = AsdfFile(tree) ff.write_to("compression/uncompressed_data.asdf", all_array_compression=None) ff.write_to("compression/compressed_data.asdf", all_array_compression='bzp2') import os print 'uncompressed:', os.path.getsize("compression/uncompressed_data.asdf"), 'bytes' print 'compressed (bz2):', os.path.getsize("compression/compressed_data.asdf"), 'bytes' mkdir -p time from asdf import AsdfFile from astropy.time import Time astrot = Time('2016-10-3') from asdf.tags.time import TimeType tree = {'my_time': astrot} ff = AsdfFile(tree) ff.write_to("time/test_time.asdf") ff.close() cat time/test_time.asdf sample_time = AsdfFile.open('time/test_time.asdf') my_time = sample_time.tree['my_time'] type(my_time) == type(astrot) mkdir -p units from astropy import units as u rho_unit = u.kg*u.cm**-3 density = np.linspace(0, 11, 5)*rho_unit density.unit from asdf import AsdfFile tree = dict(variables=dict(density = dict(data=density.value, unit = density.unit))) ff = AsdfFile(tree) ff.set_array_storage(density, 'inline') ff.write_to("units/units_test.asdf", all_array_compression=None) ff.close() cat units/units_test.asdf units_file = AsdfFile.open('units/units_test.asdf') rho = units_file.tree['variables']['density'] rho <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Storing Arrays Step2: Schema validation Step3: Data Sharing Step4: Streaming Data Step5: Explosive Storage Step6: Data Provenance Step7: Compression Step8: Custom types Step9: verify that time matches astropy type Step10: Units Step11: verify variables load - comes as dictionary
15,230
<ASSISTANT_TASK:> Python Code: x = np.array([1, 2, 3]) x.dtype x = np.array([1, 2, 3]) x.dtype #2.7과 3버전의 차이인가? np.exp(-np.inf) -np.inf np.exp(1) np.array([1, 0]) / np.array([0, 0]) np.array([1, 0]) / np.array([0, 0]) x = np.array([1, 2, 3]) x a = np.zeros(5) a b = np.zeros((5, 2), dtype="f8") b c = np.zeros(5, dtype='S4') c c = np.zeros(5, dtype="S4") c[0] = 'abcd' c[1] = 'ABCDE' c d = np.ones((2,3,2,4), dtype='i8') d e = range(10) print(e) f=np.ones_like(e, dtype="f") f g = np.empty((3,6)) g np.arange(10) # 0 . . . n-1 np.arange(3, 21, 2) # start, end (exclusive), step np.linspace(0, 100, 5) # start, end, num-points np.logspace(0, 4, 4, endpoint=False) np.random.seed(0) np.random.rand(4) np.random.randn(3,5) a = np.arange(12) a b = a.reshape(3, 4) b a.reshape(2,2,-1) a.reshape(2,-1,2) a.flatten() x = np.arange(5) x y = x.reshape(5, 1) y z = x[:, np.newaxis] z a1 = np.ones((2, 3)) a1 a2 = np.zeros((2, 2)) a2 np.hstack([a1, a2]) b1 = np.ones((2, 3)) b1 b2 = np.zeros((3, 3)) b2 np.vstack([b1, b2]) c1 = np.ones((2,3)) c1 c2 = np.zeros((2,3)) c2 np.dstack([c1, c2]) np.stack([c1, c2]) np.stack([c1, c2], axis=0) np.stack([c1, c2], axis=1) np.stack([c1, c2], axis=2) np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])] a = np.array([0, 1, 2]) np.tile(a, 2) np.tile(a, [2,3]) b = np.array([2,3]) np.tile(a,b) np.tile(a, (3, 2)) x = np.arange(3) x y = np.arange(5) y X, Y = np.meshgrid(x, y) X Y [zip(x, y)] [zip(X, Y)] for x, y in zip(X, Y): print (x, y) for x, y in zip(X,Y): print (x, y) [zip(x, y) for x, y in zip(X, Y)] X Y plt.scatter(X, Y, linewidths=10); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 만약 부동소수점을 사용하는 경우에는 무한대를 표현하기 위한 np.inf와 정의할 수 없는 숫자를 나타내는 np.nan 을 사용할 수 있다. Step2: The irrational number e is also known as Euler’s number. It is approximately 2.718281, and is the base of the natural logarithm Step3: 배열 생성 Step4: 앞에서 파이썬 리스트를 NumPy의 ndarray 객체로 변환하여 생성하려면 array 명령을 사용하였다. 그러나 보통은 이러한 기본 객체없이 다음과 같은 명령을 사용하여 바로 ndarray 객체를 생성한다. Step5: dtype 인수를 명시하면 해당 자료형 원소를 가진 배열을 만든다. Step6: 문자열 배열도 가능하지면 모든 원소의 문자열 크기가 같아야 한다. 만약 더 큰 크기의 문자열을 할당하면 잘릴 수 있다. Step7: 0이 아닌 1로 초기화된 배열을 생성하려면 ones 명령을 사용한다. Step8: 만약 크기를 튜플(tuple)로 명시하지 않고 특정한 배열 혹은 리스트와 같은 크기의 배열을 생성하고 싶다면 ones_like, zeros_like 명령을 사용한다. Step9: 배열의 크기가 커지면 배열을 초기화하는데도 시간이 걸린다. 이 시간을 단축하려면 생성만 하고 초기화를 하지 않는 empty 명령을 사용할 수 있다. empty 명령으로 생성된 배열에 어떤 값이 들어있을지는 알 수 없다. Step10: arange 명령은 NumPy 버전의 range 명령이라고 볼 수 있다. 해당하는 범위의 숫자 순열을 생성한다. Step11: linspace 명령이나 logspace 명령은 선형 구간 혹은 로그 구간을 지정한 구간의 수만큼 분할한다. Step12: 임의의 난수를 생성하고 싶다면 random 서브패키지의 rand 혹은 randn 명령을 사용한다. rand 명령을 uniform 분포를 따르는 난수를 생성하고 randn 명령을 가우시안 정규 분포를 따르는 난수를 생성한다. 생성할 시드(seed)값을 지정하려면 seed 명령을 사용한다. Step13: 배열의 크기 변형 Step14: 사용하는 원소의 갯수가 정해저 있기 때문에 reshape 명령의 형태 튜플의 원소 중 하나는 -1이라는 숫자로 대체할 수 있다. -1을 넣으면 해당 숫자는 다른 값에서 계산되어 사용된다. Step15: 다차원 배열을 무조건 1차원으로 펼치기 위해서는 flatten 명령이나 메서드를 사용한다. Step16: 길이가 5인 1차원 배열과 행, 열의 갯수가 (5,1)인 2차원 배열은 데이터는 같아도 엄연히 다른 객체이다. Step17: 이렇게 같은 배열에 대해 차원만 1차원 증가시키는 경우에는 newaxis 명령을 사용하기도 한다. Step18: 배열 연결 Step19: vstack 명령은 열의 수가 같은 두 개 이상의 배열을 위아래로 연결하여 행의 수가 더 많은 배열을 만든다. 연결할 배열은 마찬가지로 하나의 리스트에 담아야 한다. Step20: dstack 명령은 제3의 축 즉, 행이나 열이 아닌 깊이(depth) 방향으로 배열을 합친다. Step21: stack 명령은 새로운 차원(축으로) 배열을 연결하며 당연히 연결하고자 하는 배열들의 크기가 모두 같아야 한다. Step22: r_ 메서드는 hstack 명령과 유사하다. 다만 메서드임에도 불구하고 소괄호(parenthesis, ())를 사용하지 않고 인덱싱과 같이 대괄호(bracket, [])를 사용한다. Step23: tile 명령은 동일한 배열을 반복하여 연결한다. Step24: 그리드 생성
15,231
<ASSISTANT_TASK:> Python Code: from IPython.display import display, Image ## eis a imagem da notícia infograficoG1 = Image('reservatorios1403.jpg') display(infograficoG1) import urllib.request req = urllib.request.urlopen("https://sabesp-api.herokuapp.com/").read().decode() import json data = json.loads(req) import datetime as dt print('dados disponibilizados pela sabesb hoje, %s \n-----' % dt.date.today()) for x in data: print (x['name']) for i in range(len(x['data'])): item = x['data'][i] print ('item %d) %35s = %s' % (i, item['key'], item['value'])) #print ( [item['value'] for item in x['data'] ]) print('-----') ## com isso posso usar list comprehension para pegar os dados que me interessam [ (x['name'], x['data'][0]['value']) for x in data ] import datetime as dt # datas usadas no grafico do G1 today = dt.date(2015,3,14) yr = dt.timedelta(days=365) last_year = today - yr today=today.isoformat() last_year=last_year.isoformat() def getData(date): recebe um objeto date ou uma string com a data no formato YYYY-MM-DD e retorna uma 'Série' (do pacote pandas) com os níveis dos reservatórios da sabesp # def parsePercent(s): # recebe uma string no formato '\d*,\d* %' e retorna o float equivalente # return float(s.replace(",",".").replace("%","")) # da pra fazer com o lambda tbm, huehue fixPercent = lambda s: float(s.replace(",",".").replace("%","")) import datetime if type(date) == datetime.date: date = date.isoformat() ## requisição import urllib.request req = urllib.request.urlopen("https://sabesp-api.herokuapp.com/" + date).read().decode() ## transforma o json em dicionario import json data = json.loads(req) ## serie dados = [ fixPercent(x['data'][0]['value']) for x in data ] sistemas = [ x['name'] for x in data ] import pandas as pd return pd.Series(dados, index=sistemas, name=date) %matplotlib inline import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns ## só pra deixar o matplotlib com o estilo bonitão do seaborn ;) sns.set_context("talk") #pd.options.display.mpl_style = 'default' df = pd.DataFrame([getData(today), getData(last_year)]) #, index=[today, last_year]) df.T.plot(kind='bar', rot=0, figsize=(8,4)) plt.show() df datas = [last_year, '2014-05-15', # pré-volume morto '2014-05-16', # estréia da "primeira reserva técnica", a.k.a. volume morto '2014-07-12', '2014-10-23', '2014-10-24', # "segunda reserva técnica" ou "VOLUME MORTO 2: ELECTRIC BOOGALOO" '2015-01-01', # feliz ano novo ? today] import numpy as np df = pd.DataFrame(pd.concat(map(getData, datas), axis=1)) df = df.T df def plotSideBySide(dfTupl, cm=['Spectral', 'coolwarm']): fig, axes = plt.subplots(1,2, figsize=(17,5)) for i, ax in enumerate(axes): dfTupl[i].ix[:].T.plot( kind='bar', ax=ax, rot=0, colormap=cm[i]) #ax[i]. for j in range(len(dfTupl[i].columns)): itens = dfTupl[i].ix[:,j] y = 0 if itens.max() > 0: y = itens.max() ax.text(j, y +0.5, '$\Delta$\n{:0.1f}%'.format(itens[1] - itens[0]), ha='center', va='bottom', fontsize=14, color='k') plt.show() #%psource plotaReservatecnica dados = df.ix[['2014-05-15','2014-05-16']], df.ix[['2014-10-23','2014-10-24']] plotSideBySide(dados) def fixCantareira(p, data): corrige o percentual divulgado pela sabesp def str2date(data, format='%Y-%m-%d'): converte uma string contendo uma data e retorna um objeto date import datetime as dt return dt.datetime.strptime(data,format) vm1day = str2date('16/05/2014', format='%d/%m/%Y') vm2day = str2date('24/10/2014', format='%d/%m/%Y') vm1 = 182.5 vm2 = 105.4 def percReal(perc,volumeMorto=0): a = perc/100 volMax = 982.07 volAtual = volMax*a -volumeMorto b = 100*volAtual/volMax b = np.round(b,1) return b if str2date(data) < vm1day: print(data, p, end=' ') perc = percReal(p) print('===>', perc) return perc elif str2date(data) < vm2day: print('primeira reserva técnica em uso', data, p, end=' ') perc = percReal(p, volumeMorto=vm1) print('===>', perc) return perc else: print('segunda reserva técnica em uso', data, p, end=' ') perc = percReal(p, volumeMorto=vm1+vm2) print('===>', perc) return perc dFixed = df.copy() dFixed.Cantareira = ([fixCantareira(p, dia) for p, dia in zip(df.Cantareira, df.index)]) dados = dFixed.ix[['2014-05-15','2014-05-16']], dFixed.ix[['2014-10-23','2014-10-24']] plotSideBySide(dados) dias = ['2014-03-14','2015-03-14'] dados = df.ix[dias,:], dFixed.ix[dias,:] plotSideBySide(dados,cm=[None,None]) dFixed.ix[dias] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step3: A sabesp disponibiliza dados para consulta neste endereço, mas não faço idéia de como pegar os dados com o python... Step4: OK. Tudo certo. Bate com os gráficos mostrados pelo G1, apenas está sendo mostrado de uma forma diferente. Step7: o cantareira tem capacidade total de quase 1 trilhão de litros, segundo a matéria do G1. Step8: AAAAAAAAH, AGORA SIM! Corrigido. Agora vamos comparar o grafico com os dados usados pelo G1 e o com dados corrigidos Step9: G1 errou 30%. errou feio, errou rude.
15,232
<ASSISTANT_TASK:> Python Code: # import load_iris function from datasets module from sklearn.datasets import load_iris # save "bunch" object containing iris dataset and its attributes iris = load_iris() # store feature matrix in "X" X = iris.data # store response vector in "y" y = iris.target # print the shapes of X and y print X.shape print y.shape from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=1) print knn knn.fit(X, y) print(knn.predict([[3, 5, 4, 2]])) X_new = [[3, 5, 4, 2], [5, 4, 3, 2]] knn.predict(X_new) # instantiate the model (using the value K=5) knn = KNeighborsClassifier(n_neighbors=5) # fit the model with data knn.fit(X, y) # predict the response for new observations knn.predict(X_new) # import the class from sklearn.linear_model import LogisticRegression # instantiate the model (using the default parameters) logreg = LogisticRegression() # fit the model with data logreg.fit(X, y) # predict the response for new observations logreg.predict(X_new) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: scikit-learn 4-step modeling pattern Step 1 Step2: Step 2 Step3: Name of the object does not matter Step4: Step 3 Step5: Step 4 Step6: Returns a NumPy array Step7: Using a different value for K Step8: Using a different classification model
15,233
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. !pip install tf-agents import abc import numpy as np import tensorflow as tf from tf_agents.agents import tf_agent from tf_agents.drivers import driver from tf_agents.environments import py_environment from tf_agents.environments import tf_environment from tf_agents.environments import tf_py_environment from tf_agents.policies import tf_policy from tf_agents.specs import array_spec from tf_agents.specs import tensor_spec from tf_agents.trajectories import time_step as ts from tf_agents.trajectories import trajectory from tf_agents.trajectories import policy_step nest = tf.nest class BanditPyEnvironment(py_environment.PyEnvironment): def __init__(self, observation_spec, action_spec): self._observation_spec = observation_spec self._action_spec = action_spec super(BanditPyEnvironment, self).__init__() # Helper functions. def action_spec(self): return self._action_spec def observation_spec(self): return self._observation_spec def _empty_observation(self): return tf.nest.map_structure(lambda x: np.zeros(x.shape, x.dtype), self.observation_spec()) # These two functions below should not be overridden by subclasses. def _reset(self): Returns a time step containing an observation. return ts.restart(self._observe(), batch_size=self.batch_size) def _step(self, action): Returns a time step containing the reward for the action taken. reward = self._apply_action(action) return ts.termination(self._observe(), reward) # These two functions below are to be implemented in subclasses. @abc.abstractmethod def _observe(self): Returns an observation. @abc.abstractmethod def _apply_action(self, action): Applies `action` to the Environment and returns the corresponding reward. class SimplePyEnvironment(BanditPyEnvironment): def __init__(self): action_spec = array_spec.BoundedArraySpec( shape=(), dtype=np.int32, minimum=0, maximum=2, name='action') observation_spec = array_spec.BoundedArraySpec( shape=(1,), dtype=np.int32, minimum=-2, maximum=2, name='observation') super(SimplePyEnvironment, self).__init__(observation_spec, action_spec) def _observe(self): self._observation = np.random.randint(-2, 3, (1,), dtype='int32') return self._observation def _apply_action(self, action): return action * self._observation environment = SimplePyEnvironment() observation = environment.reset().observation print("observation: %d" % observation) action = 2 #@param print("action: %d" % action) reward = environment.step(action).reward print("reward: %f" % reward) tf_environment = tf_py_environment.TFPyEnvironment(environment) class SignPolicy(tf_policy.TFPolicy): def __init__(self): observation_spec = tensor_spec.BoundedTensorSpec( shape=(1,), dtype=tf.int32, minimum=-2, maximum=2) time_step_spec = ts.time_step_spec(observation_spec) action_spec = tensor_spec.BoundedTensorSpec( shape=(), dtype=tf.int32, minimum=0, maximum=2) super(SignPolicy, self).__init__(time_step_spec=time_step_spec, action_spec=action_spec) def _distribution(self, time_step): pass def _variables(self): return () def _action(self, time_step, policy_state, seed): observation_sign = tf.cast(tf.sign(time_step.observation[0]), dtype=tf.int32) action = observation_sign + 1 return policy_step.PolicyStep(action, policy_state) sign_policy = SignPolicy() current_time_step = tf_environment.reset() print('Observation:') print (current_time_step.observation) action = sign_policy.action(current_time_step).action print('Action:') print (action) reward = tf_environment.step(action).reward print('Reward:') print(reward) step = tf_environment.reset() action = 1 next_step = tf_environment.step(action) reward = next_step.reward next_observation = next_step.observation print("Reward: ") print(reward) print("Next observation:") print(next_observation) class TwoWayPyEnvironment(BanditPyEnvironment): def __init__(self): action_spec = array_spec.BoundedArraySpec( shape=(), dtype=np.int32, minimum=0, maximum=2, name='action') observation_spec = array_spec.BoundedArraySpec( shape=(1,), dtype=np.int32, minimum=-2, maximum=2, name='observation') # Flipping the sign with probability 1/2. self._reward_sign = 2 * np.random.randint(2) - 1 print("reward sign:") print(self._reward_sign) super(TwoWayPyEnvironment, self).__init__(observation_spec, action_spec) def _observe(self): self._observation = np.random.randint(-2, 3, (1,), dtype='int32') return self._observation def _apply_action(self, action): return self._reward_sign * action * self._observation[0] two_way_tf_environment = tf_py_environment.TFPyEnvironment(TwoWayPyEnvironment()) class TwoWaySignPolicy(tf_policy.TFPolicy): def __init__(self, situation): observation_spec = tensor_spec.BoundedTensorSpec( shape=(1,), dtype=tf.int32, minimum=-2, maximum=2) action_spec = tensor_spec.BoundedTensorSpec( shape=(), dtype=tf.int32, minimum=0, maximum=2) time_step_spec = ts.time_step_spec(observation_spec) self._situation = situation super(TwoWaySignPolicy, self).__init__(time_step_spec=time_step_spec, action_spec=action_spec) def _distribution(self, time_step): pass def _variables(self): return [self._situation] def _action(self, time_step, policy_state, seed): sign = tf.cast(tf.sign(time_step.observation[0, 0]), dtype=tf.int32) def case_unknown_fn(): # Choose 1 so that we get information on the sign. return tf.constant(1, shape=(1,)) # Choose 0 or 2, depending on the situation and the sign of the observation. def case_normal_fn(): return tf.constant(sign + 1, shape=(1,)) def case_flipped_fn(): return tf.constant(1 - sign, shape=(1,)) cases = [(tf.equal(self._situation, 0), case_unknown_fn), (tf.equal(self._situation, 1), case_normal_fn), (tf.equal(self._situation, 2), case_flipped_fn)] action = tf.case(cases, exclusive=True) return policy_step.PolicyStep(action, policy_state) class SignAgent(tf_agent.TFAgent): def __init__(self): self._situation = tf.Variable(0, dtype=tf.int32) policy = TwoWaySignPolicy(self._situation) time_step_spec = policy.time_step_spec action_spec = policy.action_spec super(SignAgent, self).__init__(time_step_spec=time_step_spec, action_spec=action_spec, policy=policy, collect_policy=policy, train_sequence_length=None) def _initialize(self): return tf.compat.v1.variables_initializer(self.variables) def _train(self, experience, weights=None): observation = experience.observation action = experience.action reward = experience.reward # We only need to change the value of the situation variable if it is # unknown (0) right now, and we can infer the situation only if the # observation is not 0. needs_action = tf.logical_and(tf.equal(self._situation, 0), tf.not_equal(reward, 0)) def new_situation_fn(): This returns either 1 or 2, depending on the signs. return (3 - tf.sign(tf.cast(observation[0, 0, 0], dtype=tf.int32) * tf.cast(action[0, 0], dtype=tf.int32) * tf.cast(reward[0, 0], dtype=tf.int32))) / 2 new_situation = tf.cond(needs_action, new_situation_fn, lambda: self._situation) new_situation = tf.cast(new_situation, tf.int32) tf.compat.v1.assign(self._situation, new_situation) return tf_agent.LossInfo((), ()) sign_agent = SignAgent() # We need to add another dimension here because the agent expects the # trajectory of shape [batch_size, time, ...], but in this tutorial we assume # that both batch size and time are 1. Hence all the expand_dims. def trajectory_for_bandit(initial_step, action_step, final_step): return trajectory.Trajectory(observation=tf.expand_dims(initial_step.observation, 0), action=tf.expand_dims(action_step.action, 0), policy_info=action_step.info, reward=tf.expand_dims(final_step.reward, 0), discount=tf.expand_dims(final_step.discount, 0), step_type=tf.expand_dims(initial_step.step_type, 0), next_step_type=tf.expand_dims(final_step.step_type, 0)) step = two_way_tf_environment.reset() for _ in range(10): action_step = sign_agent.collect_policy.action(step) next_step = two_way_tf_environment.step(action_step.action) experience = trajectory_for_bandit(step, action_step, next_step) print(experience) sign_agent.train(experience) step = next_step # Imports for example. from tf_agents.bandits.agents import lin_ucb_agent from tf_agents.bandits.environments import stationary_stochastic_py_environment as sspe from tf_agents.bandits.metrics import tf_metrics from tf_agents.drivers import dynamic_step_driver from tf_agents.replay_buffers import tf_uniform_replay_buffer import matplotlib.pyplot as plt batch_size = 2 # @param arm0_param = [-3, 0, 1, -2] # @param arm1_param = [1, -2, 3, 0] # @param arm2_param = [0, 0, 1, 1] # @param def context_sampling_fn(batch_size): Contexts from [-10, 10]^4. def _context_sampling_fn(): return np.random.randint(-10, 10, [batch_size, 4]).astype(np.float32) return _context_sampling_fn class LinearNormalReward(object): A class that acts as linear reward function when called. def __init__(self, theta, sigma): self.theta = theta self.sigma = sigma def __call__(self, x): mu = np.dot(x, self.theta) return np.random.normal(mu, self.sigma) arm0_reward_fn = LinearNormalReward(arm0_param, 1) arm1_reward_fn = LinearNormalReward(arm1_param, 1) arm2_reward_fn = LinearNormalReward(arm2_param, 1) environment = tf_py_environment.TFPyEnvironment( sspe.StationaryStochasticPyEnvironment( context_sampling_fn(batch_size), [arm0_reward_fn, arm1_reward_fn, arm2_reward_fn], batch_size=batch_size)) observation_spec = tensor_spec.TensorSpec([4], tf.float32) time_step_spec = ts.time_step_spec(observation_spec) action_spec = tensor_spec.BoundedTensorSpec( dtype=tf.int32, shape=(), minimum=0, maximum=2) agent = lin_ucb_agent.LinearUCBAgent(time_step_spec=time_step_spec, action_spec=action_spec) def compute_optimal_reward(observation): expected_reward_for_arms = [ tf.linalg.matvec(observation, tf.cast(arm0_param, dtype=tf.float32)), tf.linalg.matvec(observation, tf.cast(arm1_param, dtype=tf.float32)), tf.linalg.matvec(observation, tf.cast(arm2_param, dtype=tf.float32))] optimal_action_reward = tf.reduce_max(expected_reward_for_arms, axis=0) return optimal_action_reward regret_metric = tf_metrics.RegretMetric(compute_optimal_reward) num_iterations = 90 # @param steps_per_loop = 1 # @param replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer( data_spec=agent.policy.trajectory_spec, batch_size=batch_size, max_length=steps_per_loop) observers = [replay_buffer.add_batch, regret_metric] driver = dynamic_step_driver.DynamicStepDriver( env=environment, policy=agent.collect_policy, num_steps=steps_per_loop * batch_size, observers=observers) regret_values = [] for _ in range(num_iterations): driver.run() loss_info = agent.train(replay_buffer.gather_all()) replay_buffer.clear() regret_values.append(regret_metric.result()) plt.plot(regret_values) plt.ylabel('Average Regret') plt.xlabel('Number of Iterations') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Tutorial on Multi Armed Bandits in TF-Agents Step2: Imports Step7: Introduction Step8: The above interim abstract class implements PyEnvironment's _reset and _step functions and exposes the abstract functions _observe and _apply_action to be implemented by subclasses. Step9: Now we can use this environment to get observations, and receive rewards for our actions. Step10: TF Environments Step11: Policies Step12: Now we can request an observation from the environment, call the policy to choose an action, then the environment will output the reward Step13: The way bandit environments are implemented ensures that every time we take a step, we not only receive the reward for the action we took, but also the next observation. Step14: Agents Step15: A More Complicated Policy Step17: The Agent Step18: In the above code, the agent defines the policy, and the variable situation is shared by the agent and the policy. Step19: Training an Agent Step20: From the output one can see that after the second step (unless the observation was 0 in the first step), the policy chooses the action in the right way and thus the reward collected is always non-negative. Step23: Stationary Stochastic Environment with Linear Payoff Functions Step24: The LinUCB Agent Step25: Regret Metric Step26: Training
15,234
<ASSISTANT_TASK:> Python Code: import rebound import numpy as np import matplotlib.pyplot as plt def setupSimulation(): ''' Setup the 3-Body scenario''' sim = rebound.Simulation() sim.integrator = "ias15" # IAS15 is the default integrator, so we don't need this line sim.add(m=1.) sim.add(m=1e-3, a=1., r=np.sqrt(1e-3/3.)) # we now set collision radii! sim.add(m=5e-3, a=1.25, r=1.25*np.sqrt(5e-3/3.)) sim.move_to_com() return sim sim = setupSimulation() sim.collision = "direct" sim.collision_resolve = "merge" # Built in function print("Particles in the simulation at t=%6.1f: %d"%(sim.t,sim.N)) print("System Mass: {}".format([p.m for p in sim.particles])) sim.integrate(100.) print("Particles in the simulation at t=%6.1f: %d"%(sim.t,sim.N)) print("System Mass: {}".format([p.m for p in sim.particles])) def my_merge(sim_pointer, collided_particles_index): sim = sim_pointer.contents # retreive the standard simulation object ps = sim.particles # easy access to list of particles i = collided_particles_index.p1 # Note that p1 < p2 is not guaranteed. j = collided_particles_index.p2 # This part is exciting! We can execute additional code during collisions now! fig, ax = rebound.OrbitPlot(sim, xlim = (-1.3, 1.3), ylim = (-1.3, 1.3), color=['blue', 'green']) ax.set_title("Merging particle {} into {}".format(j, i)) ax.text(ps[1].x, ps[1].y, "1"); ax.text(ps[2].x, ps[2].y, "2") # So we plot the scenario exactly at the timestep that the collision function is triggered # Merging Logic total_mass = ps[i].m + ps[j].m merged_planet = (ps[i] * ps[i].m + ps[j] * ps[j].m)/total_mass # conservation of momentum # merged radius assuming a uniform density merged_radius = (ps[i].r**3 + ps[j].r**3)**(1/3) ps[i] = merged_planet # update p1's state vector (mass and radius will need corrections) ps[i].m = total_mass # update to total mass ps[i].r = merged_radius # update to joined radius return 2 # remove particle with index j sim = setupSimulation() sim.collision = "direct" ps = sim.particles sim.collision_resolve = my_merge # user defined collision resolution function sim.integrate(100.) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: To reiterate the previous method, let's run the built-in merge collision resolution method Step2: We can see above that two particles merged into one with a combined mass of 0.006. Step3: Now we can set our new collision resolution function in the simulation object.
15,235
<ASSISTANT_TASK:> Python Code: !pip install --upgrade apache-beam[gcp] import os import shutil import numpy as np import tensorflow as tf from google import api_core from google.cloud import aiplatform, bigquery from google.protobuf import json_format from google.protobuf.struct_pb2 import Value from matplotlib import pyplot as plt print(tf.__version__) # Change below if necessary PROJECT = !gcloud config get-value project # noqa: E999 PROJECT = PROJECT[0] BUCKET = PROJECT REGION = "us-central1" %env PROJECT=$PROJECT %env BUCKET=$BUCKET %env REGION=$REGION %%bash gcloud config set project $PROJECT gcloud config set ai/region $REGION bq = bigquery.Client() dataset = bigquery.Dataset(bq.dataset("taxifare")) try: bq.create_dataset(dataset) # will fail if dataset already exists print("Dataset created.") except api_core.exceptions.Conflict: print("Dataset already exists.") dataset = bigquery.Dataset(bq.dataset("taxifare")) table_ref = dataset.table("traffic_realtime") SCHEMA = [ bigquery.SchemaField("trips_last_5min", "INTEGER", mode="REQUIRED"), bigquery.SchemaField("time", "TIMESTAMP", mode="REQUIRED"), ] table = bigquery.Table(table_ref, schema=SCHEMA) try: bq.create_table(table) print("Table created.") except api_core.exceptions.Conflict: print("Table already exists.") %%bigquery SELECT * FROM `taxifare.traffic_realtime` ORDER BY time DESC LIMIT 10 # TODO 2a. Write a function to take most recent entry in `traffic_realtime` # table and add it to instance. def add_traffic_last_5min(instance): bq = bigquery.Client() query_string = TODO: Your code goes here trips = bq.query(query_string).to_dataframe()["trips_last_5min"][0] instance['traffic_last_5min'] = # TODO: Your code goes here. return instance add_traffic_last_5min( instance={ "dayofweek": 4, "hourofday": 13, "pickup_longitude": -73.99, "pickup_latitude": 40.758, "dropoff_latitude": 41.742, "dropoff_longitude": -73.07, } ) # TODO 2b. Write code to call prediction on instance using realtime traffic # info. Hint: Look at this sample # https://github.com/googleapis/python-aiplatform/blob/master/samples/snippets/predict_custom_trained_model_sample.py # TODO: Copy the `ENDPOINT_RESOURCENAME` from the deployment in the previous # lab. ENDPOINT_RESOURCENAME = "" api_endpoint = f"{REGION}-aiplatform.googleapis.com" # The AI Platform services require regional API endpoints. client_options = {"api_endpoint": api_endpoint} # Initialize client that will be used to create and send requests. # This client only needs to be created once, and can be reused for multiple # requests. client = aiplatform.gapic.PredictionServiceClient(client_options=client_options) instance = { "dayofweek": 4, "hourofday": 13, "pickup_longitude": -73.99, "pickup_latitude": 40.758, "dropoff_latitude": 41.742, "dropoff_longitude": -73.07, } # The format of each instance should conform to the deployed model's # prediction input schema. instance_dict = # TODO: Your code goes here. instance = json_format.ParseDict(instance, Value()) instances = [instance] response = # TODO: Your code goes here. # The predictions are a google.protobuf.Value representation of the model's # predictions. print(" prediction:", # TODO: Your code goes here. ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Restart the kernel before proceeding further (On the Notebook menu - Kernel - Restart Kernel). Step2: Re-train our model with trips_last_5min feature Step3: Next, we create a table called traffic_realtime and set up the schema. Step4: Launch Streaming Dataflow Pipeline Step6: Make predictions from the new data Step7: The traffic_realtime table is updated in realtime using Cloud Pub/Sub and Dataflow so, if you run the cell below periodically, you should see the traffic_last_5min feature added to the instance and change over time. Step8: Finally, we'll use the python api to call predictions on an instance, using the realtime traffic information in our prediction. Just as above, you should notice that our resulting predicitons change with time as our realtime traffic information changes as well.
15,236
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib import matplotlib.pyplot as plt from thetis import * lx = 40e3 ly = 2e3 nx = 25 ny = 2 mesh2d = RectangleMesh(nx, ny, lx, ly) fig, ax = plt.subplots(figsize=(12,1)) triplot(mesh2d, axes=ax); P1_2d = FunctionSpace(mesh2d, 'CG', 1) bathymetry_2d = Function(P1_2d, name='Bathymetry') depth = 20.0 bathymetry_2d.assign(depth); solver_obj = solver2d.FlowSolver2d(mesh2d, bathymetry_2d) options = solver_obj.options options.simulation_end_time = 12 * 3600 options.simulation_export_time = 1200.0 options.output_directory = 'outputs_2d_channel' options.fields_to_export_hdf5 = ['elev_2d', 'uv_2d'] options.timestepper_type = 'CrankNicolson' options.timestep = 200.0 left_bnd_id = 1 right_bnd_id = 2 swe_bnd = {} swe_bnd[left_bnd_id] = {'elev': Constant(0.0)} tide_amp = 0.01 # amplitude of the tide tide_t = 12 * 3600. # period of the tide def tidal_elevation(simulation_time): Time-dependent tidal elevation elev = tide_amp * sin(2 * pi * simulation_time / tide_t) return elev plt.plot(np.arange(0,100000,500),[tidal_elevation(i) for i in np.arange(0,100000,500)]) plt.ylabel('Elev (m)') plt.xlabel('t (sec)'); tide_elev_const = Constant(tidal_elevation(0)) swe_bnd[right_bnd_id] = {'elev': tide_elev_const} solver_obj.bnd_functions['shallow_water'] = swe_bnd def update_forcings(t_new): Callback function that updates all time dependent forcing fields uv, elev = solver_obj.fields.solution_2d.split() tide_elev_const.assign(tidal_elevation(t_new)) solver_obj.iterate(update_forcings=update_forcings) elev = Function(solver_obj.function_spaces.H_2d, name='elev_2d') uv = Function(solver_obj.function_spaces.U_2d, name='uv_2d') idx = 9 # which hdf5 do we want to open filename = os.path.join(options.output_directory, 'hdf5','Elevation2d_%05d' % idx) dc = DumbCheckpoint(filename, mode=FILE_READ) dc.load(elev) fig, ax = plt.subplots(figsize=(12,2)) tricontourf(elev, axes=ax, cmap=matplotlib.cm.coolwarm, levels=50) plt.axis('equal'); idx = 9 # which hdf5 do we want to open filename = os.path.join(options.output_directory, 'hdf5','Velocity2d_%05d' % idx) dc = DumbCheckpoint(filename, mode=FILE_READ) dc.load(uv) fig, ax = plt.subplots(figsize=(12,2)) quiver(uv, axes=ax, cmap=matplotlib.cm.coolwarm) plt.axis('equal'); last_idx = solver_obj.i_export matplotlib.rcParams['figure.max_open_warning'] = last_idx+1 # avoid warning for idx in range(last_idx+1): filename = os.path.join(options.output_directory, 'hdf5','Elevation2d_%05d' % idx) dc = DumbCheckpoint(filename, mode=FILE_READ) dc.load(elev) dc.close() fig, ax = plt.subplots(figsize=(16,1)) tricontourf(elev, axes=ax, cmap=matplotlib.cm.coolwarm, levels=50) # Firedrake sets an automatic colorbar range which therefore changes per timestep # instead, we want to fix it: cbar = fig.axes[0].collections[-1].set_clim(-tide_amp, tide_amp) plt.axis('equal') # setup the mesh: lx = 40e3 ly = 2e3 nx = 25 ny = 2 mesh2d = RectangleMesh(nx, ny, lx, ly) # setup the bathymetry: P1_2d = FunctionSpace(mesh2d, 'CG', 1) bathymetry_2d = Function(P1_2d, name='Bathymetry') depth = 20.0 bathymetry_2d.assign(depth); # setup the solver object and set some options solver_obj = solver2d.FlowSolver2d(mesh2d, bathymetry_2d) options = solver_obj.options options.simulation_end_time = 12 * 3600 options.simulation_export_time = 1200.0 options.output_directory = 'outputs_2d_channel' options.fields_to_export_hdf5 = ['elev_2d', 'uv_2d'] options.timestepper_type = 'CrankNicolson' options.timestep = 200.0 # setup boundary conditions: left_bnd_id = 1 right_bnd_id = 2 swe_bnd = {} swe_bnd[left_bnd_id] = {'elev': Constant(0.0)} tide_amp = 0.01 # amplitude of the tide tide_t = 12 * 3600. # period of the tide def tidal_elevation(simulation_time): Time-dependent tidal elevation elev = tide_amp * sin(2 * pi * simulation_time / tide_t) return elev tide_elev_const = Constant(tidal_elevation(0)) swe_bnd[right_bnd_id] = {'elev': tide_elev_const} solver_obj.bnd_functions['shallow_water'] = swe_bnd def update_forcings(t_new): Callback function that updates all time dependent forcing fields uv, elev = solver_obj.fields.solution_2d.split() tide_elev_const.assign(tidal_elevation(t_new)) solver_obj.iterate(update_forcings=update_forcings) x, y = SpatialCoordinate(mesh2d) bathymetry_2d.interpolate(depth * (1-0.5*max_value(cos((x-lx/2)/lx*pi*2), 0))); options.use_wetting_and_drying = True x, y = SpatialCoordinate(mesh2d) bathymetry_2d.interpolate(depth * x/lx); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We create a rectangular mesh using the builtin Firedrake mesh utility. Step2: We can use the built in plot function of firedrake to visualise the mesh. Step3: Next we define a bathymetry function in this domain using continuous linear elements, and set the bathymetry to a constant 20 m depth Step4: We are now ready to create a 2D solver object. This object can be used to solve the depth-averaged shallow water equations controlled by some options that can be set by the user. Step5: First we set the options for the total duration and export intervals. The latter determines how frequently Thetis writes output files. Step6: We also select the directory in which the output files will appear, which will be created automatically if it does not yet exist Step7: The standard output of Thetis is in the form of a .pvd file with an associated series of .vtu files (and .pvtu when running in parallel). For visualisation we recommend the program paraview. This program is however not available inside this jupyter environment. Therefore we will here use hdf5 output files instead, which can be used to read back in the solution in Firedrake and Thetis (unlike the .pvd+.vtu output which cannot be read back in by Firedrake). This output can also be used as checkpoints, from which Thetis can be restarted. Here we will use the hdf5 output to read it back into Firedrake and plot it. Step8: Next we define the time integrator, and set the time step, which can be chosen freely since Crank-Nicolson is unconditionally stable. Of course it will influence the accuracy of the simulation. Step9: Boundary conditions Step10: At each boundary we can define the external value of the prognostic variables, i.e. in this case the water elevation and velocity.The value should be either a Firedrake Constant or a Firedrake Function (in case the boundary condition is not uniform in space). Step12: Above we set the water elevation (using key 'elev') on the left bounday. Alternatively, we could also prescribe the normal velocity (with key 'un'), the full 2D velocity vector ('uv') or the total flux through the boundary ('flux'). For all supported boundary conditions, see module shallowwater_eq. Step13: We then create a Constant object with the initial value, and assign it to the left boundary Step14: Boundary conditions are now complete, and we assign them to the solver object Step16: Note that if boundary conditions are not assigned for some boundaries (the lateral boundaries 3 and 4 in this case), Thetis assumes impermeable land conditions. Step17: Finally we pass this callback to the time iterator and run the model Step18: While the model is running, Thetis prints some statistics on the command line Step19: The following code opens the 9th output. We use os.path.join to combine the different parts (base outputdirectory, hdf5 sub directory, and actual filename) into a filename. Step20: Now we can read the solution into the elev and plot it Step21: In the same way we can also load and plot the velocity field Step22: The following plots the elevations of all exported timesteps Step25: Exercises Step26: Try to make the following changes Step27: For now let's make sure the bathymetry is sufficiently deep, so that the total depth (including the free surface elevation) does not go negative! This avoids us having to deal with wetting and drying. Step28: To simulate the run up onto a beach, you could try the following bathymetry
15,237
<ASSISTANT_TASK:> Python Code: #$HIDE_INPUT$ import pandas as pd pd.set_option('max_rows', 5) import numpy as np reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv", index_col=0) reviews reviews.points.describe() reviews.taster_name.describe() reviews.points.mean() reviews.taster_name.unique() reviews.taster_name.value_counts() review_points_mean = reviews.points.mean() reviews.points.map(lambda p: p - review_points_mean) def remean_points(row): row.points = row.points - review_points_mean return row reviews.apply(remean_points, axis='columns') reviews.head(1) review_points_mean = reviews.points.mean() reviews.points - review_points_mean reviews.country + " - " + reviews.region_1 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Summary functions Step2: This method generates a high-level summary of the attributes of the given column. It is type-aware, meaning that its output changes based on the data type of the input. The output above only makes sense for numerical data; for string data here's what we get Step3: If you want to get some particular simple summary statistic about a column in a DataFrame or a Series, there is usually a helpful pandas function that makes it happen. Step4: To see a list of unique values we can use the unique() function Step5: To see a list of unique values and how often they occur in the dataset, we can use the value_counts() method Step6: Maps Step7: The function you pass to map() should expect a single value from the Series (a point value, in the above example), and return a transformed version of that value. map() returns a new Series where all the values have been transformed by your function. Step8: If we had called reviews.apply() with axis='index', then instead of passing a function to transform each row, we would need to give a function to transform each column. Step9: Pandas provides many common mapping operations as built-ins. For example, here's a faster way of remeaning our points column Step10: In this code we are performing an operation between a lot of values on the left-hand side (everything in the Series) and a single value on the right-hand side (the mean value). Pandas looks at this expression and figures out that we must mean to subtract that mean value from every value in the dataset.
15,238
<ASSISTANT_TASK:> Python Code: !pip install git+https://github.com/google/starthinker from starthinker.util.configuration import Configuration CONFIG = Configuration( project="", client={}, service={}, user="/content/user.json", verbose=True ) FIELDS = { 'auth_write':'service', # Credentials used for writing data. 'query':'', # SQL with newlines and all. 'dataset':'', # Existing BigQuery dataset. 'table':'', # Table to create from this query. 'legacy':True, # Query type must match source tables. } print("Parameters Set To: %s" % FIELDS) from starthinker.util.configuration import execute from starthinker.util.recipe import json_set_fields TASKS = [ { 'bigquery':{ 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Credentials used for writing data.'}}, 'from':{ 'query':{'field':{'name':'query','kind':'text','order':1,'default':'','description':'SQL with newlines and all.'}}, 'legacy':{'field':{'name':'legacy','kind':'boolean','order':4,'default':True,'description':'Query type must match source tables.'}} }, 'to':{ 'dataset':{'field':{'name':'dataset','kind':'string','order':2,'default':'','description':'Existing BigQuery dataset.'}}, 'table':{'field':{'name':'table','kind':'string','order':3,'default':'','description':'Table to create from this query.'}} } } } ] json_set_fields(TASKS, FIELDS) execute(CONFIG, TASKS, force=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2. Set Configuration Step2: 3. Enter BigQuery Query To Table Recipe Parameters Step3: 4. Execute BigQuery Query To Table
15,239
<ASSISTANT_TASK:> Python Code: from sklearn import datasets import matplotlib.pyplot as plt bost = datasets.load_boston() fig = plt.figure(figsize=(15, 10)) for i in range(0, 12): ax = fig.add_subplot(3, 4, i + 1) ax.set_xlabel(bost.feature_names[i]) xs, ys = bost.data[:, i], bost.target plt.scatter(xs, ys, marker='.') plt.show() diab = datasets.load_diabetes() fig = plt.figure(figsize=(15, 15)) for i in range(0, 10): ax = fig.add_subplot(4, 3, i + 1) ax.set_xlabel(diab['feature_names'][i]) xs, ys = diab.data[:, i], diab.target plt.scatter(xs, ys, marker='.') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Goals
15,240
<ASSISTANT_TASK:> Python Code: import torch import gpytorch import math from matplotlib import cm from matplotlib import pyplot as plt import numpy as np %matplotlib inline %load_ext autoreload %autoreload 2 def franke(X, Y): term1 = .75*torch.exp(-((9*X - 2).pow(2) + (9*Y - 2).pow(2))/4) term2 = .75*torch.exp(-((9*X + 1).pow(2))/49 - (9*Y + 1)/10) term3 = .5*torch.exp(-((9*X - 7).pow(2) + (9*Y - 3).pow(2))/4) term4 = .2*torch.exp(-(9*X - 4).pow(2) - (9*Y - 7).pow(2)) f = term1 + term2 + term3 - term4 dfx = -2*(9*X - 2)*9/4 * term1 - 2*(9*X + 1)*9/49 * term2 + \ -2*(9*X - 7)*9/4 * term3 + 2*(9*X - 4)*9 * term4 dfy = -2*(9*Y - 2)*9/4 * term1 - 9/10 * term2 + \ -2*(9*Y - 3)*9/4 * term3 + 2*(9*Y - 7)*9 * term4 return f, dfx, dfy xv, yv = torch.meshgrid([torch.linspace(0, 1, 10), torch.linspace(0, 1, 10)]) train_x = torch.cat(( xv.contiguous().view(xv.numel(), 1), yv.contiguous().view(yv.numel(), 1)), dim=1 ) f, dfx, dfy = franke(train_x[:, 0], train_x[:, 1]) train_y = torch.stack([f, dfx, dfy], -1).squeeze(1) train_y += 0.05 * torch.randn(train_y.size()) # Add noise to both values and gradients class GPModelWithDerivatives(gpytorch.models.ExactGP): def __init__(self, train_x, train_y, likelihood): super(GPModelWithDerivatives, self).__init__(train_x, train_y, likelihood) self.mean_module = gpytorch.means.ConstantMeanGrad() self.base_kernel = gpytorch.kernels.RBFKernelGrad(ard_num_dims=2) self.covar_module = gpytorch.kernels.ScaleKernel(self.base_kernel) def forward(self, x): mean_x = self.mean_module(x) covar_x = self.covar_module(x) return gpytorch.distributions.MultitaskMultivariateNormal(mean_x, covar_x) likelihood = gpytorch.likelihoods.MultitaskGaussianLikelihood(num_tasks=3) # Value + x-derivative + y-derivative model = GPModelWithDerivatives(train_x, train_y, likelihood) # this is for running the notebook in our testing framework import os smoke_test = ('CI' in os.environ) training_iter = 2 if smoke_test else 50 # Find optimal model hyperparameters model.train() likelihood.train() # Use the adam optimizer optimizer = torch.optim.Adam(model.parameters(), lr=0.05) # Includes GaussianLikelihood parameters # "Loss" for GPs - the marginal log likelihood mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, model) for i in range(training_iter): optimizer.zero_grad() output = model(train_x) loss = -mll(output, train_y) loss.backward() print("Iter %d/%d - Loss: %.3f lengthscales: %.3f, %.3f noise: %.3f" % ( i + 1, training_iter, loss.item(), model.covar_module.base_kernel.lengthscale.squeeze()[0], model.covar_module.base_kernel.lengthscale.squeeze()[1], model.likelihood.noise.item() )) optimizer.step() # Set into eval mode model.eval() likelihood.eval() # Initialize plots fig, ax = plt.subplots(2, 3, figsize=(14, 10)) # Test points n1, n2 = 50, 50 xv, yv = torch.meshgrid([torch.linspace(0, 1, n1), torch.linspace(0, 1, n2)]) f, dfx, dfy = franke(xv, yv) # Make predictions with torch.no_grad(), gpytorch.settings.fast_computations(log_prob=False, covar_root_decomposition=False): test_x = torch.stack([xv.reshape(n1*n2, 1), yv.reshape(n1*n2, 1)], -1).squeeze(1) predictions = likelihood(model(test_x)) mean = predictions.mean extent = (xv.min(), xv.max(), yv.max(), yv.min()) ax[0, 0].imshow(f, extent=extent, cmap=cm.jet) ax[0, 0].set_title('True values') ax[0, 1].imshow(dfx, extent=extent, cmap=cm.jet) ax[0, 1].set_title('True x-derivatives') ax[0, 2].imshow(dfy, extent=extent, cmap=cm.jet) ax[0, 2].set_title('True y-derivatives') ax[1, 0].imshow(mean[:, 0].detach().numpy().reshape(n1, n2), extent=extent, cmap=cm.jet) ax[1, 0].set_title('Predicted values') ax[1, 1].imshow(mean[:, 1].detach().numpy().reshape(n1, n2), extent=extent, cmap=cm.jet) ax[1, 1].set_title('Predicted x-derivatives') ax[1, 2].imshow(mean[:, 2].detach().numpy().reshape(n1, n2), extent=extent, cmap=cm.jet) ax[1, 2].set_title('Predicted y-derivatives') None <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Franke function Step2: Setting up the training data Step3: Setting up the model Step4: The model training is similar to training a standard GP regression model Step5: Model predictions are also similar to GP regression with only function values, but we need more CG iterations to get accurate estimates of the predictive variance
15,241
<ASSISTANT_TASK:> Python Code: import pandas as pd import pinkfish as pf # format price data pd.options.display.float_format = '{:0.2f}'.format # increase display of dataframe rows pd.set_option('display.max_rows', 1000) df = pf.get_symbol_metadata(symbols=['msft', 'orcl', 'tsla']) df.sort_values('num_years', ascending=False).reset_index(drop=True) df = pf.get_symbol_metadata(dir_name='data') df.sort_values('num_years', ascending=False).reset_index(drop=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Get metadata for the symbols below. Step2: Get metadata for all symbols in the cache directory
15,242
<ASSISTANT_TASK:> Python Code: import pints import pints.toy import numpy as np import matplotlib.pyplot as plt # Create log pdf (default is 2-dimensional with r0=10 and sigma=1) log_pdf = pints.toy.AnnulusLogPDF() # Contour plot of pdf num_points = 100 x = np.linspace(-15, 15, num_points) y = np.linspace(-15, 15, num_points) X, Y = np.meshgrid(x, y) Z = np.zeros(X.shape) Z = np.exp([[log_pdf([i, j]) for i in x] for j in y]) plt.contour(X, Y, Z) plt.xlabel('x') plt.ylabel('y') plt.show() samples = log_pdf.sample(100) num_points = 100 x = np.linspace(-15, 15, num_points) y = np.linspace(-15, 15, num_points) X, Y = np.meshgrid(x, y) Z = np.zeros(X.shape) Z = np.exp([[log_pdf([i, j]) for i in x] for j in y]) plt.contour(X, Y, Z) plt.scatter(samples[:, 0], samples[:, 1]) plt.xlabel('x') plt.ylabel('y') plt.show() # Create an adaptive covariance MCMC routine x0 = np.random.uniform([2, 2], [8, 8], size=(4, 2)) mcmc = pints.MCMCController(log_pdf, 4, x0, method=pints.HaarioBardenetACMC) # Set maximum number of iterations mcmc.set_max_iterations(4000) # Disable logging mcmc.set_log_to_screen(False) # Number of chains num_chains = 4 # Run! print('Running...') chains = mcmc.run() print('Done!') # Discard warm-up chains = [chain[1000:] for chain in chains] stacked = np.vstack(chains) plt.contour(X, Y, Z, colors='k', alpha=0.5) plt.scatter(stacked[:,0], stacked[:,1], marker='.', alpha=0.2) plt.xlim(-15, 15) plt.ylim(-15, 15) plt.xlabel('x') plt.ylabel('y') plt.show() # Create an adaptive covariance MCMC routine x0 = np.random.uniform([2, 2], [8, 8], size=(4, 2)) sigma0 = [2, 2] mcmc = pints.MCMCController(log_pdf, 4, x0, method=pints.HamiltonianMCMC, sigma0=sigma0) # Set maximum number of iterations mcmc.set_max_iterations(500) # Disable logging # mcmc.set_log_to_screen(False) # Number of chains num_chains = 4 # Run! print('Running...') chains = mcmc.run() print('Done!') # Discard warm-up chains = [chain[200:] for chain in chains] plt.contour(X, Y, Z, colors='k', alpha=0.5) plt.plot(chains[0][:, 0], chains[0][:, 1]) plt.xlim(-15, 15) plt.ylim(-15, 15) plt.xlabel('x') plt.ylabel('y') plt.show() log_pdf = pints.toy.AnnulusLogPDF(dimensions=3, r0=20, sigma=0.5) # Create an adaptive covariance MCMC routine x0 = np.zeros(log_pdf.n_parameters()) + np.random.normal(0, 1, size=(4, log_pdf.n_parameters())) mcmc = pints.MCMCController(log_pdf, 4, x0, method=pints.HaarioBardenetACMC) # Set maximum number of iterations mcmc.set_max_iterations(4000) # Disable logging mcmc.set_log_to_screen(False) # Number of chains num_chains = 4 # Run! print('Running...') chains = mcmc.run() print('Done!') # Discard warm-up chains = [chain[1000:] for chain in chains] stacked = np.vstack(chains) from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.gca(projection='3d') ax.plot(stacked[:, 0], stacked[:, 1], stacked[:, 2], '.', alpha=0.1) ax.legend() plt.show() a_mean = np.mean(stacked, axis=0) print("True mean = " + str(log_pdf.mean())) print("Sample mean = " + str(a_mean)) log_pdf = pints.toy.AnnulusLogPDF(dimensions=10, r0=15, sigma=2) # Create an adaptive covariance MCMC routine x0 = np.zeros(log_pdf.n_parameters()) + np.random.normal(0, 1, size=(4, log_pdf.n_parameters())) mcmc = pints.MCMCController(log_pdf, 4, x0, method=pints.HaarioBardenetACMC) # Set maximum number of iterations mcmc.set_max_iterations(8000) # Disable logging mcmc.set_log_to_screen(False) # Number of chains num_chains = 4 # Run! print('Running...') chains = mcmc.run() print('Done!') # Discard warm-up chains = [chain[1000:] for chain in chains] chain = np.vstack(chains) d = list(map(lambda x: np.linalg.norm(x), chain)) a_mean = np.mean(d) a_var = np.var(d) print("True normed mean = " + str(log_pdf.mean_normed())) print("Sample normed mean = " + str(a_mean)) print("True normed var = " + str(log_pdf.var_normed())) print("Sample normed var = " + str(a_var)) a_mean = np.mean(chain, axis=0) print("True mean = " + str(log_pdf.mean())) print("Sample mean = " + str(a_mean)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Generate independent samples from this distribution and plot them Step2: Use adaptive covariance MCMC to sample from this (un-normalised) pdf. Step3: Scatter plot of the samples. Adaptive covariance MCMC seems to do ok at sampling from this distribution. Step4: Try Hamiltonian Monte Carlo on same problem. Step5: A single chain of HMC moves much more naturally around the annulus. Step6: 3-dimensional annulus Step7: The samples are near to the surface of a sphere of radius 20. Step8: We can see that the mean of the samples is a long way from the true value (0, 0, 0) Step9: 10-dimensional annulus Step10: Compare the theoretical mean and variance of the normed distance from the origin with the sample-based estimates. Does ok! Step11: Less good at recapitulating the actual mean.
15,243
<ASSISTANT_TASK:> Python Code: # You might have to set the path to run this notebook directly from ipython notebook import sys my_path_to_modules = "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/" sys.path.append(my_path_to_modules) from pergola import mapping # load mapping file mapping_info = mapping.MappingInfo("../../sample_data/feeding_behavior/b2p.txt") mapping_info.write() from pergola import parsers from pergola import intervals # load the data into an IntData object that will store the sequence of events int_data = intervals.IntData("../../sample_data/feeding_behavior/feeding_behavior_HF_mice.csv", map_dict=mapping_info.correspondence) #Displays first 10 tuples of data list int_data.data[:10] int_data.data_types int_data.min int_data.max int_data.tracks mapping_info.write() mapping_info.correspondence['EndT'] int_data_read = int_data.read(relative_coord=True) int_data_read.list_tracks int_data_read.range_values dict_bed = int_data_read.convert(mode='bed') #dict_bed = data_read.convert(mode='bed') for key in dict_bed: print "key.......: ",key#del bedSingle = dict_bed [key] print "::::::::::::::",bedSingle.data_types bed_12_food_sc = dict_bed[('2', 'food_sc')] bed_12_food_sc.range_values type(bed_12_food_sc) bed_12_food_sc.data # Code to print the data inside a bed object (generator object) #for row in bed_12_food_sc.data: # print row dict_bedGraph = int_data_read.convert(mode='bedGraph') for key in dict_bedGraph: print "key.......: ",key#del bedGraphSingle = dict_bedGraph [key] print "::::::::::::::",bedGraphSingle.data_types bedG_8_food_sc = dict_bedGraph[('8', 'food_sc')] bedG_8_food_sc.data # Code to print the data inside a bed object (generator object) #for row in bedG_8_food_sc: # print row type(int_data_read) type(int_data_read.data) int_data_read.range_values int_data_read.list_tracks int_data_read.data[-10] int_data_read.data_types #data_read.convert(mode=write_format, tracks=sel_tracks, tracks_merge=tracks2merge, # data_types=data_types_list, dataTypes_actions=dataTypes_act, # window=window_size) mapping.write_chr (int_data_read) # Generate a cytoband file and a bed file with phases mapping.write_cytoband(end = int_data.max - int_data.min, delta=43200, start_phase="dark", lab_bed=False) #data_read = intData.read(relative_coord=True, multiply_t=1) data_read = int_data.read(relative_coord=True) #for i in data_read.data: # print i data_type_col = {'food_sc': 'orange', 'food_fat':'blue'} bed_str = data_read.convert(mode="bed", data_types=["food_sc", "food_fat"], dataTypes_actions="all", color_restrictions=data_type_col) for key in bed_str: bedSingle = bed_str[key] bedSingle.save_track() data_type_col_bedGraph = {'food_sc':'orange', 'food_fat_food_sc':'blue'} bedGraph_str = data_read.convert(mode="bedGraph", window=1800, data_types=["food_sc", "food_fat"], dataTypes_actions="all", color_restrictions=data_type_col_bedGraph) for key in bedGraph_str: bedGraph_single = bedGraph_str[key] bedGraph_single.save_track() ## Bed file showing the files (recordings) # reading correspondence file mapping_file_data = mapping.MappingInfo("../../sample_data/feeding_behavior/f2g.txt") mapping_file_data.write() # Reading file info files_data = intervals.IntData("../../sample_data/feeding_behavior/files.csv", map_dict=mapping_file_data.correspondence) data_file_read = files_data.read(relative_coord=True) bed_file = data_file_read.convert(mode="bed", dataTypes_actions="all", tracks_merge=files_data.tracks) for key in bed_file: bed_file_single = bed_file[key] bed_file_single.save_track(name_file = "files_data") # Reading phase info phase_data = intervals.IntData("../../sample_data/feeding_behavior/phases_exp.csv", map_dict=mapping_file_data.correspondence) data_phase_read = phase_data.read(relative_coord=True) bed_file = data_phase_read.convert(mode="bed", dataTypes_actions="all", tracks_merge=phase_data.tracks) for key in bed_file: bed_file_single = bed_file[key] bed_file_single.save_track(name_file = "phase_exp") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: MappingInfo objects Step2: To view the mappings MappingInfo objects provide the Step3: MappingInfo objects are needed to load data into IntData objects as it will be explained in the lines below. Step4: Intervals when loaded are stored in a list of tuples that can be accessed by data attribute Step5: IntData objects also provide some other attributes like the set of different tracks (term for IDs in pergola ontology) contained in the data Step6: The minimun value present in the data Step7: The maximun value Step8: The set of different tracks present in the data (term for different IDs in pergola ontology). In this case the different IDs for each mice Step9: And finally the dataTypes (term for different types of data in pergola ontology) that can be used to encode for example different behaviours Step10: Data conversion Step11: Track object Step12: Output data Step13: bedGraph files
15,244
<ASSISTANT_TASK:> Python Code: %load_ext watermark %watermark -a "Sebastian Raschka" -u -d -p numpy,pandas,matplotlib,sklearn # Use the IPython/jupyter feature to show images inline with the notebook # output rather than have images popup. from IPython.display import Image %matplotlib inline # Sample csv import pandas as pd from io import StringIO import sys csv_data = \ '''A,B,C,D 1.0,2.0,3.0,4.0 5.0,6.0,,8.0 10.0,11.0,12.0,''' # If you are using Python 2.7, you need # to convert the string to unicode: if (sys.version_info < (3, 0)): csv_data = unicode(csv_data) df = pd.read_csv(StringIO(csv_data)) df # Give a count of null values for each column df.isnull().sum() # access the underlying NumPy array # via the `values` attribute df.values # remove rows that contain missing values df.dropna(axis=0) # remove columns that contain missing values df.dropna(axis=1) # remove columns that contain missing values df.dropna(axis=1) csv_data = \ '''A,B,C,D 1.0,2.0,3.0,4.0 ,,, 4.0,,, 4.0,6.0,, 5.0,6.0,,8.0 10.0,11.0,12.0,''' # If you are using Python 2.7, you need # to convert the string to unicode: if (sys.version_info < (3, 0)): csv_data = unicode(csv_data) df2 = pd.read_csv(StringIO(csv_data)) df2 # only drop rows where all columns are NaN df2.dropna(how='all') # drop rows that have less than 3 real values df2.dropna(thresh=3) # only drop rows where NaN appear in specific columns (here: 'C') df2.dropna(subset=['C']) # again: our original array df.values # impute missing values via the column mean from sklearn.preprocessing import Imputer imr = Imputer(missing_values='NaN', strategy='mean', axis=0) imr = imr.fit(df.values) imputed_data = imr.transform(df.values) imputed_data # impute missing values via the row mean imr = Imputer(missing_values='NaN', strategy='mean', axis=1) imr = imr.fit(df.values) imputed_data = imr.transform(df.values) imputed_data Image(filename='images/04_01.png', width=400) Image(filename='images/04_02.png', width=300) import pandas as pd df = pd.DataFrame([['green', 'M', 10.1, 'class1'], ['red', 'L', 13.5, 'class2'], ['blue', 'XL', 15.3, 'class1']]) df.columns = ['color', 'size', 'price', 'classlabel'] df size_mapping = {'XL': 3, 'L': 2, 'M': 1} df['size'] = df['size'].map(size_mapping) df inv_size_mapping = {v: k for k, v in size_mapping.items()} df['size'].map(inv_size_mapping) import numpy as np # create a mapping dict # to convert class labels from strings to integers class_mapping = {label: idx for idx, label in enumerate(np.unique(df['classlabel']))} class_mapping # class_mapping is the code we pass to the map function # to convert class labels from strings to integers df['classlabel'] = df['classlabel'].map(class_mapping) df # reverse the class label mapping inv_class_mapping = {v: k for k, v in class_mapping.items()} df['classlabel'] = df['classlabel'].map(inv_class_mapping) df # To avoid doing this by hand we can use the sklearn.preprocessing library # LabelEncoder method from sklearn.preprocessing import LabelEncoder # Label encoding with sklearn's LabelEncoder class_le = LabelEncoder() y = class_le.fit_transform(df['classlabel'].values) y # reverse mapping class_le.inverse_transform(y) # Just looking at color, size & price we can convert non numeric data with # the LabelEncoder X = df[['color', 'size', 'price']].values color_le = LabelEncoder() X[:, 0] = color_le.fit_transform(X[:, 0]) X from sklearn.preprocessing import OneHotEncoder ohe = OneHotEncoder(categorical_features=[0]) ohe.fit_transform(X).toarray() # return dense array so that we can skip # the toarray step ohe = OneHotEncoder(categorical_features=[0], sparse=False) ohe.fit_transform(X) df # one-hot encoding via pandas - just color as a nominal value pd.get_dummies(df[['price', 'color', 'size']]) # one-hot encoding via pandas - both color and class label as nominal values pd.get_dummies(df[['price', 'color', 'size','classlabel']]) # multicollinearity guard in get_dummies pd.get_dummies(df[['price', 'color', 'size']], drop_first=True) # multicollinearity guard in get_dummies # - both color and class label as nominal values pd.get_dummies(df[['price', 'color', 'size','classlabel']], drop_first=True) X # multicollinearity guard for the OneHotEncoder ohe = OneHotEncoder(categorical_features=[0]) ohe.fit_transform(X).toarray() ohe.fit_transform(X).toarray()[:, 1:] df_wine = pd.read_csv('https://archive.ics.uci.edu/' 'ml/machine-learning-databases/wine/wine.data', header=None) # if the Wine dataset is temporarily unavailable from the # UCI machine learning repository, un-comment the following line # of code to load the dataset from a local path: # df_wine = pd.read_csv('wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] print('Class labels', np.unique(df_wine['Class label'])) df_wine.head() from sklearn.model_selection import train_test_split X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test =\ train_test_split(X, y, test_size=0.3, random_state=0, stratify=y) # X data # y class label that will be used to train # Test size 0.3 = 30% test data, the rest training data from sklearn.preprocessing import MinMaxScaler mms = MinMaxScaler() X_train_norm = mms.fit_transform(X_train) X_test_norm = mms.transform(X_test) X[0,:] X_train[0,:] X_train_norm[0,:] from sklearn.preprocessing import StandardScaler stdsc = StandardScaler() X_train_std = stdsc.fit_transform(X_train) X_test_std = stdsc.transform(X_test) X_train_std[0,:] ex = np.array([0, 1, 2, 3, 4, 5]) print('standardized:', (ex - ex.mean()) / ex.std()) # Please note that pandas uses ddof=1 (sample standard deviation) # by default, whereas NumPy's std method and the StandardScaler # uses ddof=0 (population standard deviation) # normalize print('normalized:', (ex - ex.min()) / (ex.max() - ex.min())) Image(filename='images/04_04.png', width=500) Image(filename='images/04_05.png', width=500) Image(filename='images/04_06.png', width=500) from sklearn.linear_model import LogisticRegression LogisticRegression(penalty='l1') from sklearn.linear_model import LogisticRegression lr = LogisticRegression(penalty='l1', C=1.0) lr.fit(X_train_std, y_train) print('Training accuracy:', lr.score(X_train_std, y_train)) print('Test accuracy :', lr.score(X_test_std, y_test)) lr.intercept_ # A numpy function to set precision np.set_printoptions(8) lr.coef_[lr.coef_!=0].shape lr.coef_ import matplotlib.pyplot as plt fig = plt.figure() ax = plt.subplot(111) colors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'pink', 'lightgreen', 'lightblue', 'gray', 'indigo', 'orange'] weights, params = [], [] for c in np.arange(-4., 6.): lr = LogisticRegression(penalty='l1', C=10.**c, random_state=0) lr.fit(X_train_std, y_train) weights.append(lr.coef_[1]) params.append(10**c) weights = np.array(weights) for column, color in zip(range(weights.shape[1]), colors): plt.plot(params, weights[:, column], label=df_wine.columns[column + 1], color=color) plt.axhline(0, color='black', linestyle='--', linewidth=3) plt.xlim([10**(-5), 10**5]) plt.ylabel('weight coefficient') plt.xlabel('C') plt.xscale('log') plt.legend(loc='upper left') ax.legend(loc='upper center', bbox_to_anchor=(1.38, 1.03), ncol=1, fancybox=True) #plt.savefig('images/04_07.png', dpi=300, # bbox_inches='tight', pad_inches=0.2) plt.show() lr = LogisticRegression(penalty='l1', C=0.01) lr.fit(X_train_std, y_train) print('Training accuracy:', lr.score(X_train_std, y_train)) print('Test accuracy :', lr.score(X_test_std, y_test)) lr = LogisticRegression(penalty='l1', C=0.1) lr.fit(X_train_std, y_train) print('Training accuracy:', lr.score(X_train_std, y_train)) print('Test accuracy :', lr.score(X_test_std, y_test)) lr = LogisticRegression(penalty='l1', C=1) lr.fit(X_train_std, y_train) print('Training accuracy:', lr.score(X_train_std, y_train)) print('Test accuracy :', lr.score(X_test_std, y_test)) lr = LogisticRegression(penalty='l1', C=10) lr.fit(X_train_std, y_train) print('Training accuracy:', lr.score(X_train_std, y_train)) print('Test accuracy :', lr.score(X_test_std, y_test)) from sklearn.base import clone from itertools import combinations import numpy as np from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split class SBS(): def __init__(self, estimator, k_features, scoring=accuracy_score, test_size=0.25, random_state=1): self.scoring = scoring self.estimator = clone(estimator) self.k_features = k_features self.test_size = test_size self.random_state = random_state def fit(self, X, y): X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=self.test_size, random_state=self.random_state) dim = X_train.shape[1] self.indices_ = tuple(range(dim)) self.subsets_ = [self.indices_] score = self._calc_score(X_train, y_train, X_test, y_test, self.indices_) self.scores_ = [score] while dim > self.k_features: scores = [] subsets = [] for p in combinations(self.indices_, r=dim - 1): score = self._calc_score(X_train, y_train, X_test, y_test, p) scores.append(score) subsets.append(p) best = np.argmax(scores) self.indices_ = subsets[best] self.subsets_.append(self.indices_) dim -= 1 self.scores_.append(scores[best]) self.k_score_ = self.scores_[-1] return self def transform(self, X): return X[:, self.indices_] def _calc_score(self, X_train, y_train, X_test, y_test, indices): self.estimator.fit(X_train[:, indices], y_train) y_pred = self.estimator.predict(X_test[:, indices]) score = self.scoring(y_test, y_pred) return score import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=5) # selecting features sbs = SBS(knn, k_features=1) sbs.fit(X_train_std, y_train) # plotting performance of feature subsets k_feat = [len(k) for k in sbs.subsets_] plt.plot(k_feat, sbs.scores_, marker='o') plt.ylim([0.7, 1.02]) plt.ylabel('Accuracy') plt.xlabel('Number of features') plt.grid() plt.tight_layout() # plt.savefig('images/04_08.png', dpi=300) plt.show() k3 = list(sbs.subsets_[10]) print(df_wine.columns[1:][k3]) k6 = list(sbs.subsets_[7]) print(df_wine.columns[1:][k6]) knn.fit(X_train_std, y_train) print('Training accuracy: %0.3f' % knn.score(X_train_std, y_train)) print('Test accuracy : %0.3f' % knn.score(X_test_std, y_test)) knn.fit(X_train_std[:, k3], y_train) print('Training accuracy: %0.3f' % knn.score(X_train_std[:, k3], y_train)) print('Test accuracy : %0.3f' % knn.score(X_test_std[:, k3], y_test)) knn.fit(X_train_std[:, k6], y_train) print('Training accuracy: %0.3f' % knn.score(X_train_std[:, k6], y_train)) print('Test accuracy : %0.3f' % knn.score(X_test_std[:, k6], y_test)) from sklearn.ensemble import RandomForestClassifier feat_labels = df_wine.columns[1:] forest = RandomForestClassifier(n_estimators=500, random_state=1) forest.fit(X_train, y_train) importances = forest.feature_importances_ indices = np.argsort(importances)[::-1] for f in range(X_train.shape[1]): print("%2d) %-*s %f" % (f + 1, 30, feat_labels[indices[f]], importances[indices[f]])) plt.title('Feature Importance') plt.bar(range(X_train.shape[1]), importances[indices], align='center') plt.xticks(range(X_train.shape[1]), feat_labels[indices], rotation=90) plt.xlim([-1, X_train.shape[1]]) plt.tight_layout() #plt.savefig('images/04_09.png', dpi=300) plt.show() from sklearn.feature_selection import SelectFromModel sfm = SelectFromModel(forest, threshold=0.1, prefit=True) X_selected = sfm.transform(X_train) print('Number of samples that meet this criterion: %d out of in the training set %d' % (X_selected.shape[0], X_train.shape[0])) for f in range(X_selected.shape[1]): print("%2d) %-*s %f" % (f + 1, 30, feat_labels[indices[f]], importances[indices[f]])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The use of watermark is optional. You can install this IPython extension via "pip install watermark". For more information, please see Step2: Dealing with missing data Step3: <br> Step4: <br> Step5: <br> Step6: Here we are using fit and transform methods as a preprocessor, for example from the Min Max Scaler, to map data from it's original form to one better suited for Machine learning. Step7: This time the fit method from, for example from Logistic Regression, is used with training data and training labels to generate a model. Step8: <br> Step9: And we can map these back if required Step10: <br> Step11: <br> Step12: What is the problem with this approach? Step13: <br> Step14: <br> Step15: A visual example Step16: <br> Step17: Sparse solutions with L1-regularization Step18: For regularized models in scikit-learn that support L1 regularization, we can simply set the penalty parameter to 'l1' to obtain a sparse solution Step19: Applied to the standardized Wine data ... Step20: This shows the intercept of each of the three models being used. Step21: Here we can see the total number of weights that have not been brought to zero by using L1 regularization out of the maximum of 39. Step22: Here we can see the all the weights for the three classes and the 13 dimensions in the wine dataset. Step23: With this information we can graph now the regularization strength effects the weights. Step24: Below we can see the effect on the training and test accuracy. Step25: <br> Step26: <br> Step27: This is great for finding discriminative features with one gotcha, if two or more features are highly correlated one feature may be highly ranked and information on the other feature(s) may not be fully captured. Not a problem if model performance is key but it would be if understanding feature importance is. Step28: <br>
15,245
<ASSISTANT_TASK:> Python Code: import os # Google Cloud Notebook if os.path.exists("/opt/deeplearning/metadata/env_version"): USER_FLAG = "--user" else: USER_FLAG = "" ! pip3 install --upgrade google-cloud-aiplatform[full] $USER_FLAG ! pip3 install -U google-cloud-storage $USER_FLAG ! pip3 install $USER kfp google-cloud-pipeline-components --upgrade import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ! python3 -c "import kfp; print('KFP SDK version: {}'.format(kfp.__version__))" ! python3 -c "import google_cloud_pipeline_components; print('google_cloud_pipeline_components version: {}'.format(google_cloud_pipeline_components.__version__))" PROJECT_ID = "python-docs-samples-tests" # @param {type:"string"} if PROJECT_ID == "" or PROJECT_ID is None or PROJECT_ID == "python-docs-samples-tests": # Get your GCP project id from gcloud shell_output = ! gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID:", PROJECT_ID) ! gcloud config set project $PROJECT_ID REGION = "us-central1" # @param {type: "string"} from datetime import datetime TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your GCP account. This provides access to your # Cloud Storage bucket and lets you submit training jobs and prediction # requests. import os import sys # If on Google Cloud Notebook, then don't execute this code if not os.path.exists("/opt/deeplearning/metadata/env_version"): if "google.colab" in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. elif not os.getenv("IS_TESTING"): %env GOOGLE_APPLICATION_CREDENTIALS '' BUCKET_NAME = "gs://[your-bucket-name]" # @param {type:"string"} if BUCKET_NAME == "" or BUCKET_NAME is None or BUCKET_NAME == "gs://[your-bucket-name]": BUCKET_NAME = "gs://" + PROJECT_ID + "aip-" + TIMESTAMP ! gsutil mb -l $REGION $BUCKET_NAME ! gsutil ls -al $BUCKET_NAME SERVICE_ACCOUNT = "[your-service-account]" # @param {type:"string"} if ( SERVICE_ACCOUNT == "" or SERVICE_ACCOUNT is None or SERVICE_ACCOUNT == "[your-service-account]" ): # Get your GCP project id from gcloud shell_output = !gcloud auth list 2>/dev/null SERVICE_ACCOUNT = shell_output[2].strip() print("Service Account:", SERVICE_ACCOUNT) ! gsutil iam ch serviceAccount:{SERVICE_ACCOUNT}:roles/storage.objectCreator $BUCKET_NAME ! gsutil iam ch serviceAccount:{SERVICE_ACCOUNT}:roles/storage.objectViewer $BUCKET_NAME import google.cloud.aiplatform as aip # API service endpoint API_ENDPOINT = "{}-aiplatform.googleapis.com".format(REGION) PIPELINE_ROOT = "{}/pipeline_root/beans".format(BUCKET_NAME) from typing import NamedTuple import kfp from google_cloud_pipeline_components import aiplatform as gcc_aip from kfp.v2 import dsl from kfp.v2.dsl import (Artifact, ClassificationMetrics, Input, Metrics, Output, component) aip.init(project=PROJECT_ID, staging_bucket=BUCKET_NAME) @component( base_image="gcr.io/deeplearning-platform-release/tf2-cpu.2-6:latest", output_component_file="tabular_eval_component.yaml", packages_to_install=["google-cloud-aiplatform"], ) def classification_model_eval_metrics( project: str, location: str, # "us-central1", api_endpoint: str, # "us-central1-aiplatform.googleapis.com", thresholds_dict_str: str, model: Input[Artifact], metrics: Output[Metrics], metricsc: Output[ClassificationMetrics], ) -> NamedTuple("Outputs", [("dep_decision", str)]): # Return parameter. import json import logging from google.cloud import aiplatform as aip # Fetch model eval info def get_eval_info(client, model_name): from google.protobuf.json_format import MessageToDict response = client.list_model_evaluations(parent=model_name) metrics_list = [] metrics_string_list = [] for evaluation in response: print("model_evaluation") print(" name:", evaluation.name) print(" metrics_schema_uri:", evaluation.metrics_schema_uri) metrics = MessageToDict(evaluation._pb.metrics) for metric in metrics.keys(): logging.info("metric: %s, value: %s", metric, metrics[metric]) metrics_str = json.dumps(metrics) metrics_list.append(metrics) metrics_string_list.append(metrics_str) return ( evaluation.name, metrics_list, metrics_string_list, ) # Use the given metrics threshold(s) to determine whether the model is # accurate enough to deploy. def classification_thresholds_check(metrics_dict, thresholds_dict): for k, v in thresholds_dict.items(): logging.info("k {}, v {}".format(k, v)) if k in ["auRoc", "auPrc"]: # higher is better if metrics_dict[k] < v: # if under threshold, don't deploy logging.info("{} < {}; returning False".format(metrics_dict[k], v)) return False logging.info("threshold checks passed.") return True def log_metrics(metrics_list, metricsc): test_confusion_matrix = metrics_list[0]["confusionMatrix"] logging.info("rows: %s", test_confusion_matrix["rows"]) # log the ROC curve fpr = [] tpr = [] thresholds = [] for item in metrics_list[0]["confidenceMetrics"]: fpr.append(item.get("falsePositiveRate", 0.0)) tpr.append(item.get("recall", 0.0)) thresholds.append(item.get("confidenceThreshold", 0.0)) print(f"fpr: {fpr}") print(f"tpr: {tpr}") print(f"thresholds: {thresholds}") metricsc.log_roc_curve(fpr, tpr, thresholds) # log the confusion matrix annotations = [] for item in test_confusion_matrix["annotationSpecs"]: annotations.append(item["displayName"]) logging.info("confusion matrix annotations: %s", annotations) metricsc.log_confusion_matrix( annotations, test_confusion_matrix["rows"], ) # log textual metrics info as well for metric in metrics_list[0].keys(): if metric != "confidenceMetrics": val_string = json.dumps(metrics_list[0][metric]) metrics.log_metric(metric, val_string) # metrics.metadata["model_type"] = "AutoML Tabular classification" logging.getLogger().setLevel(logging.INFO) aip.init(project=project) # extract the model resource name from the input Model Artifact model_resource_path = model.metadata["resourceName"] logging.info("model path: %s", model_resource_path) client_options = {"api_endpoint": api_endpoint} # Initialize client that will be used to create and send requests. client = aip.gapic.ModelServiceClient(client_options=client_options) eval_name, metrics_list, metrics_str_list = get_eval_info( client, model_resource_path ) logging.info("got evaluation name: %s", eval_name) logging.info("got metrics list: %s", metrics_list) log_metrics(metrics_list, metricsc) thresholds_dict = json.loads(thresholds_dict_str) deploy = classification_thresholds_check(metrics_list[0], thresholds_dict) if deploy: dep_decision = "true" else: dep_decision = "false" logging.info("deployment decision is %s", dep_decision) return (dep_decision,) DISPLAY_NAME = "automl-beans{}".format(TIMESTAMP) PIPELINE_NAME = "automl-tabular-beans-training-v2" MACHINE_TYPE = "n1-standard-4" @kfp.dsl.pipeline(name=PIPELINE_NAME, pipeline_root=PIPELINE_ROOT) def pipeline( bq_source: str = "bq://aju-dev-demos.beans.beans1", display_name: str = DISPLAY_NAME, project: str = PROJECT_ID, gcp_region: str = REGION, api_endpoint: str = API_ENDPOINT, thresholds_dict_str: str = '{"auRoc": 0.95}', ): dataset_create_op = gcc_aip.TabularDatasetCreateOp( project=project, display_name=display_name, bq_source=bq_source ) training_op = gcc_aip.AutoMLTabularTrainingJobRunOp( project=project, display_name=display_name, optimization_prediction_type="classification", optimization_objective="minimize-log-loss", budget_milli_node_hours=1000, column_specs={ "Area": "numeric", "Perimeter": "numeric", "MajorAxisLength": "numeric", "MinorAxisLength": "numeric", "AspectRation": "numeric", "Eccentricity": "numeric", "ConvexArea": "numeric", "EquivDiameter": "numeric", "Extent": "numeric", "Solidity": "numeric", "roundness": "numeric", "Compactness": "numeric", "ShapeFactor1": "numeric", "ShapeFactor2": "numeric", "ShapeFactor3": "numeric", "ShapeFactor4": "numeric", "Class": "categorical", }, dataset=dataset_create_op.outputs["dataset"], target_column="Class", ) model_eval_task = classification_model_eval_metrics( project, gcp_region, api_endpoint, thresholds_dict_str, training_op.outputs["model"], ) with dsl.Condition( model_eval_task.outputs["dep_decision"] == "true", name="deploy_decision", ): endpoint_op = gcc_aip.EndpointCreateOp( project=project, location=gcp_region, display_name="train-automl-beans", ) gcc_aip.ModelDeployOp( model=training_op.outputs["model"], endpoint=endpoint_op.outputs["endpoint"], dedicated_resources_min_replica_count=1, dedicated_resources_max_replica_count=1, dedicated_resources_machine_type=MACHINE_TYPE, ) from kfp.v2 import compiler # noqa: F811 compiler.Compiler().compile( pipeline_func=pipeline, package_path="tabular classification_pipeline.json".replace(" ", "_"), ) DISPLAY_NAME = "beans_" + TIMESTAMP job = aip.PipelineJob( display_name=DISPLAY_NAME, template_path="tabular classification_pipeline.json".replace(" ", "_"), pipeline_root=PIPELINE_ROOT, parameter_values={"project": PROJECT_ID, "display_name": DISPLAY_NAME}, enable_caching=False, ) job.submit() ! rm tabular_classification_pipeline.json pipeline_df = aip.get_pipeline_df(pipeline=PIPELINE_NAME) print(pipeline_df.head(2)) delete_dataset = True delete_pipeline = True delete_model = True delete_endpoint = True delete_batchjob = True delete_customjob = True delete_hptjob = True delete_bucket = True try: if delete_model and "DISPLAY_NAME" in globals(): models = aip.Model.list( filter=f"display_name={DISPLAY_NAME}", order_by="create_time" ) model = models[0] aip.Model.delete(model) print("Deleted model:", model) except Exception as e: print(e) try: if delete_endpoint and "DISPLAY_NAME" in globals(): endpoints = aip.Endpoint.list( filter=f"display_name={DISPLAY_NAME}_endpoint", order_by="create_time" ) endpoint = endpoints[0] endpoint.undeploy_all() aip.Endpoint.delete(endpoint.resource_name) print("Deleted endpoint:", endpoint) except Exception as e: print(e) if delete_dataset and "DISPLAY_NAME" in globals(): if "tabular" == "tabular": try: datasets = aip.TabularDataset.list( filter=f"display_name={DISPLAY_NAME}", order_by="create_time" ) dataset = datasets[0] aip.TabularDataset.delete(dataset.resource_name) print("Deleted dataset:", dataset) except Exception as e: print(e) if "tabular" == "image": try: datasets = aip.ImageDataset.list( filter=f"display_name={DISPLAY_NAME}", order_by="create_time" ) dataset = datasets[0] aip.ImageDataset.delete(dataset.resource_name) print("Deleted dataset:", dataset) except Exception as e: print(e) if "tabular" == "text": try: datasets = aip.TextDataset.list( filter=f"display_name={DISPLAY_NAME}", order_by="create_time" ) dataset = datasets[0] aip.TextDataset.delete(dataset.resource_name) print("Deleted dataset:", dataset) except Exception as e: print(e) if "tabular" == "video": try: datasets = aip.VideoDataset.list( filter=f"display_name={DISPLAY_NAME}", order_by="create_time" ) dataset = datasets[0] aip.VideoDataset.delete(dataset.resource_name) print("Deleted dataset:", dataset) except Exception as e: print(e) try: if delete_pipeline and "DISPLAY_NAME" in globals(): pipelines = aip.PipelineJob.list( filter=f"display_name={DISPLAY_NAME}", order_by="create_time" ) pipeline = pipelines[0] aip.PipelineJob.delete(pipeline.resource_name) print("Deleted pipeline:", pipeline) except Exception as e: print(e) if delete_bucket and "BUCKET_NAME" in globals(): ! gsutil rm -r $BUCKET_NAME <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Install the latest GA version of google-cloud-storage library as well. Step2: Install the latest GA version of google-cloud-pipeline-components library as well. Step3: Restart the kernel Step4: Check the versions of the packages you installed. The KFP SDK version should be >=1.8. Step5: Before you begin Step6: Region Step7: Timestamp Step8: Authenticate your Google Cloud account Step9: Create a Cloud Storage bucket Step10: Only if your bucket doesn't already exist Step11: Finally, validate access to your Cloud Storage bucket by examining its contents Step12: Service Account Step13: Set service account access for Vertex AI Pipelines Step14: Set up variables Step15: Vertex AI constants Step16: Vertex AI Pipelines constants Step17: Additional imports. Step18: Initialize Vertex AI SDK for Python Step19: Define a metrics evaluation custom component Step20: Define an AutoML tabular classification pipeline that uses components from google_cloud_pipeline_components Step21: Compile the pipeline Step22: Run the pipeline Step23: Click on the generated link to see your run in the Cloud Console. Step24: Cleaning up
15,246
<ASSISTANT_TASK:> Python Code: !pip install --pre deepchem[jax] import numpy as np import functools try: import jax import jax.numpy as jnp import haiku as hk import optax from deepchem.models import PINNModel, JaxModel from deepchem.data import NumpyDataset from deepchem.models.optimizers import Adam from jax import jacrev has_haiku_and_optax = True except: has_haiku_and_optax = False import matplotlib.pyplot as plt give_size = 10 in_given = np.linspace(-2 * np.pi, 2 * np.pi, give_size) out_given = np.cos(in_given) + 0.1*np.random.normal(loc=0.0, scale=1, size=give_size) # red for numpy.sin() plt.figure(figsize=(13, 7)) plt.scatter(in_given, out_given, color = 'green', marker = "o") plt.xlabel("x --> ", fontsize=18) plt.ylabel("f (x) -->", fontsize=18) plt.legend(["Supervised Data"], prop={'size': 16}, loc ="lower right") plt.title("Data of our physical system", fontsize=18) import matplotlib.pyplot as plt test = np.expand_dims(np.linspace(-2.5 * np.pi, 2.5 * np.pi, 100), 1) out_array = np.cos(test) plt.figure(figsize=(13, 7)) plt.plot(test, out_array, color = 'blue', alpha = 0.5) plt.scatter(in_given, out_given, color = 'green', marker = "o") plt.xlabel("x --> ", fontsize=18) plt.ylabel("f (x) -->", fontsize=18) plt.legend(["Actual data" ,"Supervised Data"], prop={'size': 16}, loc ="lower right") plt.title("Data of our physical system", fontsize=18) # defining the Haiku model # A neural network is defined as a function of its weights & operations. # NN(x) = F(x, W) # forward function defines the F which describes the mathematical operations like Matrix & dot products, Signmoid functions, etc # W is the init_params def f(x): net = hk.nets.MLP(output_sizes=[256, 128, 1], activation=jax.nn.softplus) val = net(x) return val init_params, forward_fn = hk.transform(f) rng = jax.random.PRNGKey(500) params = init_params(rng, np.random.rand(1000, 1)) train_dataset = NumpyDataset(np.expand_dims(in_given, axis=1), np.expand_dims(out_given, axis=1)) rms_loss = lambda pred, tar, w: jnp.mean(optax.l2_loss(pred, tar)) # JaxModel Working nn_model = JaxModel( forward_fn, params, rms_loss, batch_size=100, learning_rate=0.001, log_frequency=2) nn_model.fit(train_dataset, nb_epochs=10000, deterministic=True) dataset_test = NumpyDataset(test) nn_output = nn_model.predict(dataset_test) plt.figure(figsize=(13, 7)) plt.plot(test, out_array, color = 'blue', alpha = 0.5) plt.scatter(in_given, out_given, color = 'green', marker = "o") plt.plot(test, nn_output, color = 'red', marker = "o", alpha = 0.7) plt.xlabel("x --> ", fontsize=18) plt.ylabel("f (x) -->", fontsize=18) plt.legend(["Actual data", "Vanilla NN", "Supervised Data"], prop={'size': 16}, loc ="lower right") plt.title("Data of our physical system", fontsize=18) def create_eval_fn(forward_fn, params): Calls the function to evaluate the model @jax.jit def eval_model(x, rng=None): bu = forward_fn(params, rng, x) return jnp.squeeze(bu) return eval_model def gradient_fn(forward_fn, loss_outputs, initial_data): This function calls the gradient function, to implement the backpropagation boundary_data = initial_data['X0'] boundary_target = initial_data['u0'] @jax.jit def model_loss(params, target, weights, rng, x_train): @functools.partial(jax.vmap, in_axes=(None, 0)) def periodic_loss(params, x): diffrential equation => grad(f(x)) = - sin(x) minimize f(x) := grad(f(x)) + sin(x) x = jnp.expand_dims(x, 0) u_x = jacrev(forward_fn, argnums=(2))(params, rng, x) return u_x + jnp.sin(x) u_pred = forward_fn(params, rng, boundary_data) loss_u = jnp.mean((u_pred - boundary_target)**2) f_pred = periodic_loss(params, x_train) loss_f = jnp.mean((f_pred**2)) return loss_u + loss_f return model_loss initial_data = { 'X0': jnp.expand_dims(in_given, 1), 'u0': jnp.expand_dims(out_given, 1) } opt = Adam(learning_rate=1e-3) pinn_model= PINNModel( forward_fn=forward_fn, params=params, initial_data=initial_data, batch_size=1000, optimizer=opt, grad_fn=gradient_fn, eval_fn=create_eval_fn, deterministic=True, log_frequency=1000) # defining our training data. We feed 100 points between [-2.5pi, 2.5pi] without the labels, # which will be used as the differential loss(regulariser) X_f = np.expand_dims(np.linspace(-3 * np.pi, 3 * np.pi, 1000), 1) dataset = NumpyDataset(X_f) pinn_model.fit(dataset, nb_epochs=3000) import matplotlib.pyplot as plt pinn_output = pinn_model.predict(dataset_test) plt.figure(figsize=(13, 7)) plt.plot(test, out_array, color = 'blue', alpha = 0.5) plt.scatter(in_given, out_given, color = 'green', marker = "o") # plt.plot(test, nn_output, color = 'red', marker = "x", alpha = 0.3) plt.scatter(test, pinn_output, color = 'red', marker = "o", alpha = 0.7) plt.xlabel("x --> ", fontsize=18) plt.ylabel("f (x) -->", fontsize=18) plt.legend(["Actual data" ,"Supervised Data", "PINN"], prop={'size': 16}, loc ="lower right") plt.title("Data of our physical system", fontsize=18) plt.figure(figsize=(13, 7)) # plt.plot(test, out_array, color = 'blue', alpha = 0.5) # plt.scatter(in_given, out_given, color = 'green', marker = "o") plt.scatter(test, nn_output, color = 'blue', marker = "x", alpha = 0.3) plt.scatter(test, pinn_output, color = 'red', marker = "o", alpha = 0.7) plt.xlabel("x --> ", fontsize=18) plt.ylabel("f (x) -->", fontsize=18) plt.legend(["Vanilla NN", "PINN"], prop={'size': 16}, loc ="lower right") plt.title("Data of our physical system", fontsize=18) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Given Physical Data Step2: From simple integeration, we can easily solve the diffrential equation and the solution will be - Step3: Building a Simple Neural Network Model - Step4: Fitting a simple Neural Network solution to the Physical Data Step8: Learning to fit the Data using the underlying Diffrential equation Step9: Comparing the results between PINN & Vanilla NN model
15,247
<ASSISTANT_TASK:> Python Code: import errno import os import shutil import zipfile import numpy as np import pandas as pd # In[22]: # TARGETDIR = '../btc/graphs_njp.zip' # In[23]: # with open(doc, "rb") as zipsrc: # zfile = zipfile.ZipFile(zipsrc) # for member in zfile.infolist(): # target_path = os.path.join(TARGETDIR, member.filename) # if target_path.endswith('/'): # folder entry, create # try: # os.makedirs(target_path) # except (OSError, IOError) as err: # # Windows may complain if the folders already exist # if err.errno != errno.EEXIST: # raise # continue # with open(target_path, 'wb') as outfile, zfile.open(member) as infile: # shutil.copyfileobj(infile, outfile) !ls !unzip bitcoin_dataset.zip # addresses addr = pd.read_csv('addresses.txt', header = None, names = ['user:ID', 'addr'], delimiter= '\t') addr[':LABEL'] = 'address' addr.to_csv('addresses.csv', index = False) addr.head() # blocks blks = pd.read_csv('blockhash.txt', header = None, names = ['block:ID', 'bhash', 'btime', 'txs' ], delimiter= '\t') blks[':LABEL'] = 'blockchain' blks.to_csv('blockhash.csv', index = False) blks.head() !rm addresses.txt !rm blockhash.txt # transactions + transaction time txns = pd.read_csv('txhash.txt', header = None, names = ['tx:ID', 'txhash'], delimiter= '\t') txns2 = pd.read_csv('tx.txt', header = None, names = ['tx:ID', 'block' ,'n_inputs', 'n_outputs'], delimiter= '\t') # txns = txns.drop(['Unnamed: 0', ':LABEL'], axis = 1) txnstime = pd.read_csv('txtime.txt', header = None, names = ['tx:ID', 'unixtime'], delimiter= '\t') txnstime['time'] = pd.to_datetime(txnstime['unixtime'],unit='s') txns = txns.merge(txnstime, how = 'left', on = 'tx:ID') txns = txns.merge(txns2, how = 'left', on = 'tx:ID') txns[':LABEL'] = 'transaction' txns.head() txns.to_csv('tx.csv', index = False) print(txns.columns) !rm txhash.txt !rm txtime.txt !rm tx.txt # txnsin txnsin = pd.read_csv('txin.txt', header = None, names = ['tx:ID', 'user' ,'value'], delimiter= '\t') txnsin[':LABEL'] = 'incoming_payment' txnsin.to_csv('txin.csv', index = False) txnsin.head() # txnsout txnsout = pd.read_csv('txout.txt', header = None, names = ['tx:ID', 'user' ,'value'], delimiter= '\t') txnsout[':LABEL'] = 'sent_coins' txnsout.to_csv('txout.csv', index = False) txnsout.head() !rm txin.txt !rm txout.txt import numpy as np import pandas as pd !ls rels_txns_to_block = pd.read_csv('tx.csv') #, compression='zip') rels_txns_to_block.columns rels_txns_to_block = rels_txns_to_block.drop(['txhash', 'unixtime', 'time', 'n_inputs', 'n_outputs', ':LABEL'], axis = 1) rels_txns_to_block.head() rels_txns_to_block[':TYPE'] = 'part_of_block' rels_txns_to_block.to_csv('relsPaymentsToAddress.csv', index = False) txnsout.head() # In[ ]: file = open("poc_transaction.txt", "w") fileIn = open("poc_transactionsIn.txt", "w") fileOut = open("poc_transactionsOut.txt", "w") fileTransList = open("poc_transactionList.txt","w") fileAddressList = open ("poc_addressList.txt","w") fileBlockList = open("poc_blockdata.txt", "w") file.write(":ID,Transaction_ID,Hash,Time,V_In,V_Out,:LABEL" + "\n") fileIn.write(":ID,Transaction_ID,Transaction_Hash,Address,Spent,Value,:LABEL" + "\n") fileOut.write(":ID,Transaction_ID,Transaction_Hash,Type,:LABEL" + "\n") fileAddressList.write(":ID,AddressID,:LABEL" + "\n") fileBlockList.write(":ID,BlockID,Hash,Received_Time,Previous_Block_Hash,Transaction_Count,Height,:LABEL" + "\n") fileBlockTrans = open("poc_relsBlocksTransactions.txt","w") fileTransOut = open("poc_relsTransactionsOut.txt","w") fileTransInRels = open("poc_relsTransactionsIn.txt","w") filePaymentOutAddr = open("poc_relsPaymentsToAddress.txt","w") filePaymentInAddr = open("poc_relsRedeemedFromAddress.txt","w") fileBlockTrans.write(":START_ID,:END_ID,:TYPE" + "\n") fileTransOut.write(":START_ID,:END_ID,Spent,Value,:TYPE" + "\n") fileTransInRels.write(":START_ID,:END_ID,Spent,Value,:TYPE" + "\n") filePaymentOutAddr.write(":START_ID,:END_ID,Spent,Value,:TYPE" + "\n") filePaymentInAddr.write(":START_ID,:END_ID,Spent,Value,:TYPE" + "\n") fileBlockTrans.write(str(hash) + ',' + str('trans' + str(item["tx_index"])) + ',' + 'PART_OF_BLOCK' + "\n") fileTransOut.write('trans' + str(xx["tx_index"]) + ',' + 'out_' + str(tout) + ',' + str(xx["spent"]) + ','+ str( Decimal(xx["value"]) / Decimal(100000000.0)) + ',' + 'SENT_COINS' + "\n") fileTransInRels.write('transin_' + str(tin) + ',' + 'trans' + str(tx_index) + ',' + str(nn["prev_out"]["spent"]) + ','+ str( Decimal(nn["prev_out"]["value"]) / Decimal(100000000.0)) + ',' + 'INCOMING_PAYMENT' + "\n") filePaymentOutAddr.write('out_' + str(tout) + ',' + rec + ',' + str(xx["spent"]) + ','+ str( Decimal(xx["value"]) / Decimal(100000000.0)) + ','+ 'WAS_SENT_TO' + "\n") filePaymentInAddr.write(strAddr + ',' + 'transin_' + str(tin) + ',' + str(nn["prev_out"]["spent"]) + ','+ str( Decimal(nn["prev_out"]["value"])/ Decimal(100000000.0)) + ','+ 'REDEEMED' + "\n") # tout = 1 # tin = 1 # f = open('blockList.txt', 'r') # temp = f.read().splitlines() # for line in temp: # words = line.split("|") # s = words[1] # url = "https://blockchain.info/rawblock/" + str(s) # print url # usock = urllib2.urlopen(url) # data = usock.read() # result = json.loads(data) # hash = result['hash'] # block_index = result['block_index'] # height = result['height'] # size = result['size'] # main_chain = result['main_chain'] # prev_block = result['prev_block'] # try: # received_time = result['received_time'] # except KeyError: # received_time = 'NA' # n_tx = result['n_tx'] # fileBlockList.write(str(hash) + ',' + str(block_index) + ',' +str(hash) + ',' + str(received_time) + ',' + str(prev_block) + ',' + str(n_tx) + ',' + str(height) + ",BlockChain" + "\n"); # parent = result["tx"] # for item in parent: # tx_index = str(item["tx_index"]) # tx_hash = str(item["hash"]) # file.write(str('trans' + str(item["tx_index"])) + ',' + str(item["tx_index"]) + ',' +str(item["hash"]) + ',' + str(item["time"]) + ',' + str(item["vin_sz"]) + ',' + str(item["vout_sz"]) + ",Transaction"+ "\n"); # fileBlockTrans.write(str(hash) + ',' + str('trans' + str(item["tx_index"])) + ',' + 'PART_OF_BLOCK' + "\n") # if 'inputs' in item : # for nn in item["inputs"]: # # print nn["sequence"] # if 'prev_out' in nn : # # print nn["prev_out"]["addr"] # # print nn["prev_out"]["spent"] # # print nn["prev_out"]["value"] # try: # strAddr = str(nn["prev_out"]["addr"]) # except KeyError: # strAddr = 'NA' # fileIn.write('transin_' + str(tin) + ',' + tx_index + ',' + str(tx_hash) + ',' + strAddr + ',' +str(nn["prev_out"]["spent"]) + ',' + str( Decimal(nn["prev_out"]["value"]) / Decimal(100000000.0)) + ",IncomingPayment" + "\n"); # fileTransInRels.write('transin_' + str(tin) + ',' + 'trans' + str(tx_index) + ',' + str(nn["prev_out"]["spent"]) + ','+ str( Decimal(nn["prev_out"]["value"]) / Decimal(100000000.0)) + ',' + 'INCOMING_PAYMENT' + "\n") # filePaymentInAddr.write(strAddr + ',' + 'transin_' + str(tin) + ',' + str(nn["prev_out"]["spent"]) + ','+ str( Decimal(nn["prev_out"]["value"])/ Decimal(100000000.0)) + ','+ 'REDEEMED' + "\n") # fileTransList.write('transin_' + str(tin) + ',' + tx_hash + "\n") # fileAddressList.write(strAddr + ',' + strAddr + ',Address' + "\n") # tin = tin + 1 # if 'out' in item : # for xx in item["out"]: # # print xx["tx_index"] # # print xx["type"] # # print xx["addr"] # # print xx["spent"] # # print xx["value"] # try: # rec = str(xx["addr"]) # fileOut.write('out_' + str(tout) + ',' + str(xx["tx_index"]) + ',' + str(tx_hash) + ',' + str(xx["type"]) + ",OutgoingPayment"+ "\n"); # fileTransOut.write('trans' + str(xx["tx_index"]) + ',' + 'out_' + str(tout) + ',' + str(xx["spent"]) + ','+ str( Decimal(xx["value"]) / Decimal(100000000.0)) + ',' + 'SENT_COINS' + "\n") # filePaymentOutAddr.write('out_' + str(tout) + ',' + rec + ',' + str(xx["spent"]) + ','+ str( Decimal(xx["value"]) / Decimal(100000000.0)) + ','+ 'WAS_SENT_TO' + "\n") # fileAddressList.write(str(rec) + ',' + str(rec) + ',Address' + "\n") # tout = tout+1 # except KeyError: # rec = 'Unavailable' usock.close() file.close() fileIn.close() fileOut.close() fileTransList.close() fileBlockTrans.close() fileTransInRels.close() filePaymentOutAddr.close() filePaymentInAddr.close() fileAddressList.close() fileBlockList.close() f.close(); print "Done" #!/usr/bin/env python import simplejson as json import httplib import urllib2 from httplib import HTTPConnection, HTTPS_PORT import ssl from decimal import * file = open("poc_transaction.txt", "w") fileIn = open("poc_transactionsIn.txt", "w") fileOut = open("poc_transactionsOut.txt", "w") fileTransList = open("poc_transactionList.txt","w") fileBlockTrans = open("poc_relsBlocksTransactions.txt","w") fileTransOut = open("poc_relsTransactionsOut.txt","w") fileTransInRels = open("poc_relsTransactionsIn.txt","w") filePaymentOutAddr = open("poc_relsPaymentsToAddress.txt","w") filePaymentInAddr = open("poc_relsRedeemedFromAddress.txt","w") fileAddressList = open ("poc_addressList.txt","w") fileBlockList = open("poc_blockdata.txt", "w") file.write(":ID,Transaction_ID,Hash,Time,V_In,V_Out,:LABEL" + "\n") fileIn.write(":ID,Transaction_ID,Transaction_Hash,Address,Spent,Value,:LABEL" + "\n") fileOut.write(":ID,Transaction_ID,Transaction_Hash,Type,:LABEL" + "\n") fileBlockTrans.write(":START_ID,:END_ID,:TYPE" + "\n") fileTransOut.write(":START_ID,:END_ID,Spent,Value,:TYPE" + "\n") fileTransInRels.write(":START_ID,:END_ID,Spent,Value,:TYPE" + "\n") filePaymentOutAddr.write(":START_ID,:END_ID,Spent,Value,:TYPE" + "\n") filePaymentInAddr.write(":START_ID,:END_ID,Spent,Value,:TYPE" + "\n") fileAddressList.write(":ID,AddressID,:LABEL" + "\n") fileBlockList.write(":ID,BlockID,Hash,Received_Time,Previous_Block_Hash,Transaction_Count,Height,:LABEL" + "\n") tout = 1 tin = 1 f = open('blockList.txt', 'r') temp = f.read().splitlines() for line in temp: words = line.split("|") s = words[1] url = "https://blockchain.info/rawblock/" + str(s) print url usock = urllib2.urlopen(url) data = usock.read() result = json.loads(data) hash = result['hash'] block_index = result['block_index'] height = result['height'] size = result['size'] main_chain = result['main_chain'] prev_block = result['prev_block'] try: received_time = result['received_time'] except KeyError: received_time = 'NA' n_tx = result['n_tx'] fileBlockList.write(str(hash) + ',' + str(block_index) + ',' +str(hash) + ',' + str(received_time) + ',' + str(prev_block) + ',' + str(n_tx) + ',' + str(height) + ",BlockChain" + "\n"); parent = result["tx"] for item in parent: tx_index = str(item["tx_index"]) tx_hash = str(item["hash"]) file.write(str('trans' + str(item["tx_index"])) + ',' + str(item["tx_index"]) + ',' +str(item["hash"]) + ',' + str(item["time"]) + ',' + str(item["vin_sz"]) + ',' + str(item["vout_sz"]) + ",Transaction"+ "\n"); fileBlockTrans.write(str(hash) + ',' + str('trans' + str(item["tx_index"])) + ',' + 'PART_OF_BLOCK' + "\n") if 'inputs' in item : for nn in item["inputs"]: # print nn["sequence"] if 'prev_out' in nn : # print nn["prev_out"]["addr"] # print nn["prev_out"]["spent"] # print nn["prev_out"]["value"] try: strAddr = str(nn["prev_out"]["addr"]) except KeyError: strAddr = 'NA' fileIn.write('transin_' + str(tin) + ',' + tx_index + ',' + str(tx_hash) + ',' + strAddr + ',' +str(nn["prev_out"]["spent"]) + ',' + str( Decimal(nn["prev_out"]["value"]) / Decimal(100000000.0)) + ",IncomingPayment" + "\n"); fileTransInRels.write('transin_' + str(tin) + ',' + 'trans' + str(tx_index) + ',' + str(nn["prev_out"]["spent"]) + ','+ str( Decimal(nn["prev_out"]["value"]) / Decimal(100000000.0)) + ',' + 'INCOMING_PAYMENT' + "\n") filePaymentInAddr.write(strAddr + ',' + 'transin_' + str(tin) + ',' + str(nn["prev_out"]["spent"]) + ','+ str( Decimal(nn["prev_out"]["value"])/ Decimal(100000000.0)) + ','+ 'REDEEMED' + "\n") fileTransList.write('transin_' + str(tin) + ',' + tx_hash + "\n") fileAddressList.write(strAddr + ',' + strAddr + ',Address' + "\n") tin = tin + 1 if 'out' in item : for xx in item["out"]: # print xx["tx_index"] # print xx["type"] # print xx["addr"] # print xx["spent"] # print xx["value"] try: rec = str(xx["addr"]) fileOut.write('out_' + str(tout) + ',' + str(xx["tx_index"]) + ',' + str(tx_hash) + ',' + str(xx["type"]) + ",OutgoingPayment"+ "\n"); fileTransOut.write('trans' + str(xx["tx_index"]) + ',' + 'out_' + str(tout) + ',' + str(xx["spent"]) + ','+ str( Decimal(xx["value"]) / Decimal(100000000.0)) + ',' + 'SENT_COINS' + "\n") filePaymentOutAddr.write('out_' + str(tout) + ',' + rec + ',' + str(xx["spent"]) + ','+ str( Decimal(xx["value"]) / Decimal(100000000.0)) + ','+ 'WAS_SENT_TO' + "\n") fileAddressList.write(str(rec) + ',' + str(rec) + ',Address' + "\n") tout = tout+1 except KeyError: rec = 'Unavailable' usock.close() file.close() fileIn.close() fileOut.close() fileTransList.close() fileBlockTrans.close() fileTransInRels.close() filePaymentOutAddr.close() filePaymentInAddr.close() fileAddressList.close() fileBlockList.close() f.close(); print "Done" # # NODES # - Convert txt files to csv # - http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html # - nodes first # - https://neo4j.com/docs/operations-manual/3.2/tools/import/file-header-format/#import-tool-id-spaces # In[10]: test = pd.read_csv('graph_addresses.txt', header = None, names = ['user:ID', ':LABEL'], delimiter= '\t') # In[11]: test.head() # In[12]: test2 = test.groupby('user:ID').sum() # In[13]: test2.head() # In[27]: test.to_csv('graph_addresses.csv') # In[39]: test.shape # number of nodes # # EDGES # - Specify start, end, and type for each edge # In[ ]: test = pd.read_csv('txedgeunique.txt', header = None, delimiter= '\t') # In[29]: test1 = pd.read_csv('../btc/au_graph.txt', header = None, names = [':START_ID', 'stop', 'unixtime'], delimiter= '\t') # In[30]: test1[':END_ID'] = test1['stop'] # In[35]: test1 = test1.drop('stop', axis = 1) # test[':TYPE'] = 'TXN' # In[36]: test1.head() # In[37]: test1.to_csv('au_graph.csv') # In[40]: test1.shape # number of transactions import pandas from math import log10, floor from scipy.constants import codata def most_significant_digit(x): e = floor(log10(x)) return int(x*10**-e) def f(x): return most_significant_digit(abs(x)) # read in the ticker data tick = pandas.read_csv('./your_ticker_data.csv') tick_ret = tick.diff() # count leading digits data = tick_ret[tick_ret!=0] counts = data.fillna(method='bfill').apply(f).value_counts() total = counts.sum() # expected number of each leading digit per Benford's law benford = [total*log10(1 + 1./i) for i in range(1, 10)] # plot actual vs expected bins = np.arange(9) error_config = {'ecolor': '0.3'} r1 = plt.bar(bins, counts.values, 0.35, alpha=0.4, color='b', error_kw=error_config, label = 'actual') r2 = plt.bar(bins + 0.35, benford, 0.35, alpha=0.4, color='r', error_kw=error_config, label = 'expected') plt.xlabel('Most significant digit') plt.ylabel('Occurence count') plt.title('Leading digits in BTC-E ticker volume') plt.xticks(bins + 0.35, bins+1) plt.legend() plt.show() from neo4j.v1 import GraphDatabase, basic_auth # In[ ]: driver = GraphDatabase.driver("bolt://localhost:7687", auth=basic_auth("neo4j", "neo4j")) session = driver.session() session.run("CREATE (a:Person {name: {name}, title: {title}})", {"name": "Arthur", "title": "King"}) result = session.run("MATCH (a:Person) WHERE a.name = {name} " "RETURN a.name AS name, a.title AS title", {"name": "Arthur"}) for record in result: print("%s %s" % (record["title"], record["name"])) session.close() # In[ ]: from py2neo import Graph, Path graph = Graph() tx = graph.cypher.begin() for name in ["Alice", "Bob", "Carol"]: tx.append("CREATE (person:Person {name:{name}}) RETURN person", name=name) alice, bob, carol = [result.one for result in tx.commit()] friends = Path(alice, "KNOWS", bob, "KNOWS", carol) graph.create(friends) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Change the headers Step2: NODES Step3: ----------------------------- Step4: Import script - LOAD CSV?? - STOPPED HERE Step5: Original Blockchain API Step6: OLD CODE Step7: benford's law test for ticker data Step8: Python Drivers
15,248
<ASSISTANT_TASK:> Python Code: !yes|azure login !azure account show sid_tid = !azure account show|awk -F ':' '/ID/{ print $3}' sid = sid_tid[0] tid = sid_tid[1] out=!azure ad sp create --name simpleazure cid = out[6].split(":")[1].lstrip() newout="\n".join(out) print(newout) password="" !azure ad sp set -p $password $cid !azure role assignment create --objectId $cid -o Owner -c /subscriptions/$sid from simpleazure import SimpleAzure as saz import os os.environ['AZURE_SUBSCRIPTION_ID'] = $sid os.environ['AZURE_CLIENT_SECRET'] = $password os.environ['AZURE_TENANT_ID'] = $tid os.environ['AZURE_CLIENT_ID'] = $cid saz_obj = saz() url = "https://raw.githubusercontent.com/Azure-Samples/resource-manager-python-template-deployment/master/templates/template.json" saz_obj.arm.deploy(template = url, param = {"sshKeyData": "ssh-rsa AAAAB3...<skipped>... hroe.lee@simpleazure", 'dnsLabelPrefix':"simpleazure", 'vmName':'simpleazure-first-vm'}) saz_obj.arm.remove_resource_group() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Credentials for Azure Python SDK Step2: IPython filters the subscription ID and tenant ID using awk command and stores into sid and tid variables. Step3: Service Principal for Simple Azure Step4: Id after Service Principal Names is our client id for Simple Azure. cid variable stores the ID in the previous commands. Step5: Note that '$cid' is a client id obtained from the previous command. Step6: Are you completed all steps without any issues? Step7: Credentials via Environment Variables Step8: Template from Azure-Samples Step9: Deploy with Template and Parameters Step10: Termination (deleting resource group)
15,249
<ASSISTANT_TASK:> Python Code: import networkx as nx G = nx.Graph() G.add_node(1) G.add_nodes_from([2, 3]) H = nx.path_graph(10) G.add_nodes_from(H) H.edges() G.add_node(H) G.add_edge(1, 2) e = (2, 3) G.add_edge(*e) # unpack edge tuple* G.add_edges_from([(1, 2), (1, 3)]) G.add_edges_from(H.edges()) G.clear() G.add_edges_from([(1, 2), (1, 3)]) G.add_node(1) G.add_edge(1, 2) G.add_node("spam") # adds node "spam" G.add_nodes_from("spam") # adds 4 nodes: 's', 'p', 'a', 'm' G.add_edge(3, 'm') G.number_of_nodes() G.number_of_edges() list(G.nodes()) list(G.edges()) list(G.adj[1]) # or list(G.neighbors(1)) G.degree()[1] # the number of edges incident to 1 G.edges([2, 'm']) G.degree([2, 3]) G.remove_node(2) G.remove_nodes_from("spam") list(G.nodes()) G.remove_edge(1, 3) G.add_edge(1, 2) H = nx.DiGraph(G) # create a DiGraph using the connections from G list(H.edges()) edgelist = [(0, 1), (1, 2), (2, 3)] H = nx.Graph(edgelist) G[1] # same as G.adj[1] G[1][2] G.edges(1, 2) G.add_edge(1, 3) G[1][3]['color'] = "blue" G.edges[1, 2]['color'] = "red" FG = nx.Graph() FG.add_weighted_edges_from([(1, 2, 0.125), (1, 3, 0.75), (2, 4, 1.2), (3, 4, 0.375)]) for n, nbrs in FG.adj.items(): for nbr, eattr in nbrs.items(): wt = eattr['weight'] if wt < 0.5: print('(%d, %d, %.3f)' % (n, nbr, wt)) for (u, v, wt) in FG.edges.data('weight'): if wt < 0.5: print('(%d, %d, %.3f)' % (u, v, wt)) G = nx.Graph(day="Friday") G.graph G.graph['day'] = "Monday" G.graph G.add_node(1, time='5pm') G.add_nodes_from([3], time='2pm') G.nodes[1] G.nodes[1]['room'] = 714 G.nodes.data() G.add_edge(1, 2, weight=4.7 ) G.add_edges_from([(3, 4), (4, 5)], color='red') G.add_edges_from([(1, 2, {'color': 'blue'}), (2, 3, {'weight': 8})]) G[1][2]['weight'] = 4.7 G.edges[3, 4]['weight'] = 4.2 DG = nx.DiGraph() DG.add_weighted_edges_from([(1, 2, 0.5), (3, 1, 0.75)]) DG.out_degree(1, weight='weight') DG.degree(1, weight='weight') list(DG.successors(1)) list(DG.neighbors(1)) H = nx.Graph(G) # convert G to undirected graph MG = nx.MultiGraph() MG.add_weighted_edges_from([(1, 2, 0.5), (1, 2, 0.75), (2, 3, 0.5)]) dict(MG.degree(weight='weight')) GG = nx.Graph() for n, nbrs in MG.adjacency(): for nbr, edict in nbrs.items(): minvalue = min([d['weight'] for d in edict.values()]) GG.add_edge(n, nbr, weight = minvalue) nx.shortest_path(GG, 1, 3) petersen = nx.petersen_graph() tutte = nx.tutte_graph() maze = nx.sedgewick_maze_graph() tet = nx.tetrahedral_graph() K_5 = nx.complete_graph(5) K_3_5 = nx.complete_bipartite_graph(3, 5) barbell = nx.barbell_graph(10, 10) lollipop = nx.lollipop_graph(10, 20) er = nx.erdos_renyi_graph(100, 0.15) ws = nx.watts_strogatz_graph(30, 3, 0.1) ba = nx.barabasi_albert_graph(100, 5) red = nx.random_lobster(100, 0.9, 0.9) nx.write_gml(red, "path.to.file") mygraph = nx.read_gml("path.to.file") G = nx.Graph() G.add_edges_from([(1, 2), (1, 3)]) G.add_node("spam") # adds node "spam" list(nx.connected_components(G)) sorted(d for n, d in G.degree()) nx.clustering(G) sp = dict(nx.all_pairs_shortest_path(G)) sp[3] # %matplotlib inline import matplotlib.pyplot as plt G = nx.petersen_graph() plt.subplot(121) nx.draw(G, with_labels=True, font_weight='bold') plt.subplot(122) nx.draw_shell(G, nlist=[range(5, 10), range(5)], with_labels=True, font_weight='bold') plt.show() options = { 'node_color': 'black', 'node_size': 100, 'width': 3, } plt.subplot(221) nx.draw_random(G, **options) plt.subplot(222) nx.draw_circular(G, **options) plt.subplot(223) nx.draw_spectral(G, **options) plt.subplot(224) nx.draw_shell(G, nlist=[range(5,10), range(5)], **options) plt.show() G = nx.dodecahedral_graph() shells = [[2, 3, 4, 5, 6], [8, 1, 0, 19, 18, 17, 16, 15, 14, 7], [9, 10, 11, 12, 13]] nx.draw_shell(G, nlist=shells, **options) plt.hold plt.show() nx.draw(G) plt.savefig("path.png") from networkx.drawing.nx_pydot import write_dot pos = nx.nx_agraph.graphviz_layout(G) nx.draw(G, pos=pos) write_dot(G, 'file.dot') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: By definition, a Graph is a collection of nodes (vertices) along with Step2: add a list of nodes, Step3: or add any iterable container of nodes. You can also add nodes along with node Step4: Note that G now contains the nodes of H as nodes of G. Step5: The graph G now contains H as a node. This flexibility is very powerful as Step6: by adding a list of edges, Step7: or by adding any ebunch of edges. An ebunch is any iterable Step8: There are no complaints when adding existing nodes or edges. For example, Step9: we add new nodes/edges and NetworkX quietly ignores any that are Step10: At this stage the graph G consists of 8 nodes and 3 edges, as can be seen by Step11: We can examine the nodes and edges. Four basic graph properties facilitate Step12: One can specify to report the edges and degree from a subset of all nodes Step13: One can remove nodes and edges from the graph in a similar fashion to adding. Step14: When creating a graph structure by instantiating one of the graph Step15: What to use as nodes and edges Step16: You can get/set the attributes of an edge using subscript notation Step17: Fast examination of all (node, adjacency) pairs is achieved using Step18: Convenient access to all edges is achieved with the edges property. Step19: Adding attributes to graphs, nodes, and edges Step20: Or you can modify attributes later Step21: Node attributes Step22: Note that adding a node to G.nodes does not add it to the graph, use Step23: The special attribute weight should be numeric as it is used by Step24: Some algorithms work only for directed graphs and others are not well Step25: Multigraphs Step26: Graph generators and graph operations Step27: Using a (constructive) generator for a classic graph, e.g., Step28: Using a stochastic graph generator, e.g., Step29: Reading a graph stored in a file using common graph formats, Step30: For details on graph formats see Reading and writing graphs Step31: Some functions with large output iterate over (node, value) 2-tuples. Step32: See Algorithms for details on graph algorithms Step33: You may find it useful to interactively test code using ipython -pylab, Step34: when drawing to an interactive display. Note that you may need to issue a Step35: command if you are not using matplotlib in interactive mode (see Step36: You can find additional options via draw_networkx() and Step37: To save drawings to a file, use, for example Step38: writes to the file path.png in the local directory. If Graphviz and
15,250
<ASSISTANT_TASK:> Python Code: %matplotlib inline %config InlineBackend.figure_format = 'retina' import numpy as np import pandas as pd import matplotlib.pyplot as plt data_path = 'Bike-Sharing-Dataset/hour.csv' rides = pd.read_csv(data_path) rides.head() rides[:24*10].plot(x='dteday', y='cnt') dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday'] for each in dummy_fields: dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False) rides = pd.concat([rides, dummies], axis=1) fields_to_drop = ['instant', 'dteday', 'season', 'weathersit', 'weekday', 'atemp', 'mnth', 'workingday', 'hr'] data = rides.drop(fields_to_drop, axis=1) data.head() quant_features = ['casual', 'registered', 'cnt', 'temp', 'hum', 'windspeed'] # Store scalings in a dictionary so we can convert back later scaled_features = {} for each in quant_features: mean, std = data[each].mean(), data[each].std() scaled_features[each] = [mean, std] data.loc[:, each] = (data[each] - mean)/std # Save data for approximately the last 21 days test_data = data[-21*24:] # Now remove the test data from the data set data = data[:-21*24] # Separate the data into features and targets target_fields = ['cnt', 'casual', 'registered'] features, targets = data.drop(target_fields, axis=1), data[target_fields] test_features, test_targets = test_data.drop(target_fields, axis=1), test_data[target_fields] # Hold out the last 60 days or so of the remaining data as a validation set train_features, train_targets = features[:-60*24], targets[:-60*24] val_features, val_targets = features[-60*24:], targets[-60*24:] class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Set number of nodes in input, hidden and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Initialize weights self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes**-0.5, (self.input_nodes, self.hidden_nodes)) self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes**-0.5, (self.hidden_nodes, self.output_nodes)) self.lr = learning_rate #### TODO: Set self.activation_function to your implemented sigmoid function #### # # Note: in Python, you can define a function with a lambda expression, # as shown below. self.activation_function = lambda x : 1/(1 + np.exp(-x)) # Replace 0 with your sigmoid calculation. ### If the lambda code above is not something you're familiar with, # You can uncomment out the following three lines and put your # implementation there instead. # #def sigmoid(x): # return 0 # Replace 0 with your sigmoid calculation here #self.activation_function = sigmoid def train(self, features, targets): ''' Train the network on batch of features and targets. Arguments --------- features: 2D array, each row is one data record, each column is a feature targets: 1D array of target values ''' n_records = features.shape[0] delta_weights_i_h = np.zeros(self.weights_input_to_hidden.shape) delta_weights_h_o = np.zeros(self.weights_hidden_to_output.shape) for X, y in zip(features, targets): #### Implement the forward pass here #### ### Forward pass ### # TODO: Hidden layer - Replace these values with your calculations. hidden_inputs = np.dot(X, self.weights_input_to_hidden) # signals into hidden layer hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer # TODO: Output layer - Replace these values with your calculations. final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer final_outputs = final_inputs # signals from final output layer #### Implement the backward pass here #### ### Backward pass ### # TODO: Output error - Replace this value with your calculations. error = y - final_outputs # Output layer error is the difference between desired target and actual output. # TODO: Calculate the hidden layer's contribution to the error hidden_error = np.dot(self.weights_hidden_to_output, error) # TODO: Backpropagated error terms - Replace these values with your calculations. output_error_term = error hidden_error_term = hidden_error * hidden_outputs * (1 - hidden_outputs) # Weight step (input to hidden) delta_weights_i_h += hidden_error_term * X[:, None] # Weight step (hidden to output) delta_weights_h_o += output_error_term * hidden_outputs[:, None] # TODO: Update the weights - Replace these values with your calculations. self.weights_hidden_to_output += self.lr * delta_weights_h_o / n_records # update hidden-to-output weights with gradient descent step self.weights_input_to_hidden += self.lr * delta_weights_i_h / n_records # update input-to-hidden weights with gradient descent step def run(self, features): ''' Run a forward pass through the network with input features Arguments --------- features: 1D array of feature values ''' #### Implement the forward pass here #### # TODO: Hidden layer - replace these values with the appropriate calculations. hidden_inputs = np.dot(features, self.weights_input_to_hidden) # signals into hidden layer hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer # TODO: Output layer - Replace these values with the appropriate calculations. final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer final_outputs = final_inputs # signals from final output layer return final_outputs def MSE(y, Y): return np.mean((y-Y)**2) import unittest inputs = np.array([[0.5, -0.2, 0.1]]) targets = np.array([[0.4]]) test_w_i_h = np.array([[0.1, -0.2], [0.4, 0.5], [-0.3, 0.2]]) test_w_h_o = np.array([[0.3], [-0.1]]) class TestMethods(unittest.TestCase): ########## # Unit tests for data loading ########## def test_data_path(self): # Test that file path to dataset has been unaltered self.assertTrue(data_path.lower() == 'bike-sharing-dataset/hour.csv') def test_data_loaded(self): # Test that data frame loaded self.assertTrue(isinstance(rides, pd.DataFrame)) ########## # Unit tests for network functionality ########## def test_activation(self): network = NeuralNetwork(3, 2, 1, 0.5) # Test that the activation function is a sigmoid self.assertTrue(np.all(network.activation_function(0.5) == 1/(1+np.exp(-0.5)))) def test_train(self): # Test that weights are updated correctly on training network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() network.train(inputs, targets) #print("weights_h_t_o: {0}".format(network.weights_hidden_to_output)) self.assertTrue(np.allclose(network.weights_hidden_to_output, np.array([[ 0.37275328], [-0.03172939]]))) #print("weights_i_t_h: {0}".format(network.weights_input_to_hidden)) self.assertTrue(np.allclose(network.weights_input_to_hidden, np.array([[ 0.10562014, -0.20185996], [0.39775194, 0.50074398], [-0.29887597, 0.19962801]]))) def test_run(self): # Test correctness of run method network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() #print("run output: {0}".format(network.run(inputs))) self.assertTrue(np.allclose(network.run(inputs), 0.09998924)) suite = unittest.TestLoader().loadTestsFromModule(TestMethods()) unittest.TextTestRunner().run(suite) import sys ### Set the hyperparameters here ### iterations = 3300 learning_rate = 0.5 hidden_nodes = 25 output_nodes = 1 N_i = train_features.shape[1] network = NeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate) losses = {'train':[], 'validation':[]} for ii in range(iterations): # Go through a random batch of 128 records from the training data set batch = np.random.choice(train_features.index, size=128) X, y = train_features.ix[batch].values, train_targets.ix[batch]['cnt'] network.train(X, y) # Printing out the training progress train_loss = MSE(network.run(train_features).T, train_targets['cnt'].values) val_loss = MSE(network.run(val_features).T, val_targets['cnt'].values) sys.stdout.write("\rProgress: {:2.1f}".format(100 * ii/float(iterations)) \ + "% ... Training loss: " + str(train_loss)[:5] \ + " ... Validation loss: " + str(val_loss)[:5]) sys.stdout.flush() losses['train'].append(train_loss) losses['validation'].append(val_loss) plt.plot(losses['train'], label='Training loss') plt.plot(losses['validation'], label='Validation loss') plt.legend() # cropped y to see more details around the lower loss _ = plt.ylim(0,2) fig, ax = plt.subplots(figsize=(8,4)) mean, std = scaled_features['cnt'] predictions = network.run(test_features).T*std + mean ax.plot(predictions[0], label='Prediction') ax.plot((test_targets['cnt']*std + mean).values, label='Data') ax.set_xlim(right=len(predictions)) ax.legend() dates = pd.to_datetime(rides.ix[test_data.index]['dteday']) dates = dates.apply(lambda d: d.strftime('%b %d')) ax.set_xticks(np.arange(len(dates))[12::24]) _ = ax.set_xticklabels(dates[12::24], rotation=45) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load and prepare the data Step2: Checking out the data Step3: Dummy variables Step4: Scaling target variables Step5: Splitting the data into training, testing, and validation sets Step6: We'll split the data into two sets, one for training and one for validating as the network is being trained. Since this is time series data, we'll train on historical data, then try to predict on future data (the validation set). Step7: Time to build the network Step8: Unit tests Step9: Training the network Step10: Check out your predictions
15,251
<ASSISTANT_TASK:> Python Code: class HandleGZippedJSON: def __init__(self, url): self.url = url self.json_data = None def run(self): request = urllib2.Request(self.url) request.add_header('Accept-encoding', 'gzip') opener = urllib2.build_opener() f = opener.open(request) c_data = f.read() c_stream = StringIO(c_data) gzipper = gzip.GzipFile(fileobj=c_stream) data = gzipper.read() output = data.splitlines() datastr=[] for lines in output: try: r=json.loads(lines) datastr.append(r) except ValueError: # includes simplejson.decoder.JSONDecodeError print 'Decoding JSON has failed' pass return datastr fileurl="http://thedataincubator.s3.amazonaws.com/coursedata/mldata/yelp_train_academic_dataset_review.json.gz" out=HandleGZippedJSON(fileurl) xfile=out.run() df = pd.DataFrame(xfile) x_train, x_test, y_train, y_test = cross_validation.train_test_split(xfile,df['stars'],test_size=0.2) print(len(xfile)) print(xfile[0]) class ColumnSelector(TransformerMixin): def __init__(self,namecol): import pandas as pd import numpy as np self.namecol=namecol def fit(self, data, y=None): import pandas as pd import numpy as np return self def transform(self, data): import pandas as pd import numpy as np if type(data) is list: df = pd.DataFrame(data) D=df[self.namecol] elif type(data) is dict: df = pd.DataFrame(columns=[self.namecol], index=['x']) df.loc['x'] = pd.Series({self.namecol:data[self.namecol]}) D=df[self.namecol] return D class RidgeRegressor2(BaseEstimator, RegressorMixin): def __init__(self): import pandas as pd import numpy as np pass def fit(self, X, y): import pandas as pd import numpy as np from sklearn import datasets, linear_model, utils, preprocessing, cross_validation, neighbors, ensemble self.ridge_regression = linear_model.Ridge().fit(X, y) return self def predict(self, X): import pandas as pd import numpy as np from sklearn import datasets, linear_model, utils, preprocessing, cross_validation, neighbors, ensemble Xy=self.ridge_regression.predict(X) if type(Xy) is list: Xyz=Xy elif type(Xy) is np.ndarray: Xyz=[] for record in Xy: frecord=float(record) Xyz.append(frecord) if len(Xyz)<2: Xyz=Xyz[0] return Xyz ### JUST USING ONE-GRAMS #### mypipeline=Pipeline([ ('text_extractor', ColumnSelector('text')), ('hvect', HashingVectorizer(norm='l2',stop_words=nltk.corpus.stopwords.words('english'))), ('ridgefit', RidgeRegressor2()) ]) mypipeline.fit(x_train,y_train) print(mypipeline.score(x_test,y_test)) #### ALSO USING BIGRAMS #### mypipeline2=Pipeline([ ('text_extractor', ColumnSelector('text')), ('hvect', HashingVectorizer(norm='l2', ngram_range=(1, 2), stop_words=nltk.corpus.stopwords.words('english'))), ('ridgefit', RidgeRegressor2()) ]) mypipeline2.fit(x_train,y_train) print(mypipeline2.score(x_test,y_test)) #import and merge data from previous dataset to identify restaurants fileurl2="http://thedataincubator.s3.amazonaws.com/coursedata/mldata/yelp_train_academic_dataset_business.json.gz" out=HandleGZippedJSON(fileurl2) xfile_rests=out.run() dfrest=pd.DataFrame(xfile_rests) xrests=list(myrests['business_id'] for myrests in xfile_rests if ('Restaurants' in myrests['categories']) or ('Food' in myrests['categories'])) print(len(xfile)) xfile2 = [review for review in xfile if review['business_id'] in xrests] print(len(xfile2)) dfonlyrests=pd.DataFrame(xfile2) reviewtext=dfonlyrests['text'] estopwords=stopwords.words('english') xonegramst = CountVectorizer(ngram_range=(1,1),stop_words=estopwords) xonegrams = xonegramst.fit_transform(reviewtext) xbigramst = CountVectorizer(ngram_range=(2,2),stop_words=estopwords) xbigrams = xbigramst.fit_transform(reviewtext) all_onegrams=xonegramst.get_feature_names() all_bigrams=xbigramst.get_feature_names() tot_words=xonegrams.sum() #total words in corpus (~50 million) unique_words=xonegramst.get_feature_names() tot_unique=len(unique_words) #total unique words in corpus (~322k) new_tot_words=tot_words+tot_unique wordcount_list=np.array(xonegrams.sum(axis=0))[0] #array of occurrances of each word in corpus wordloc=xonegramst.vocabulary_ #location of each unique word in list wc_list = [wordcount_list[wordloc[key]] for key in all_onegrams] #occurrances of particular unique word ###BIGRAMS### unique_biwords=xbigramst.get_feature_names() bi_keys_split = [re.split('\s',key) for key in unique_biwords] biwordcount_list=np.array(xbigrams.sum(axis=0))[0] biwordloc=xbigramst.vocabulary_ bi_wc_list=[biwordcount_list[biwordloc[key]] for key in unique_biwords] def get_probs(xgrams,xgramst): wordloc=xgramst.vocabulary_ unique_words=xgramst.get_feature_names() tot_words=xgrams.sum() #total words in corpus (~50 million) wordcount_list=np.array(xgrams.sum(axis=0))[0] prob_word={} for xword in unique_words: prob_word[xword] = float((wordcount_list[wordloc[xword]]) + 5) return prob_word arb_cutoff = 35 biprobs=get_probs(xbigrams,xbigramst) monoprobs=get_probs(xonegrams,xonegramst) bigram_prob = [biprobs[b]/(monoprobs[s[0]]*monoprobs[s[1]]) for b,s in zip(unique_biwords,bi_keys_split)] dfbiprob = pd.DataFrame({'biprob':bigram_prob,'bigram':unique_biwords}) dfbiprob = dfbiprob.sort('biprob',ascending=False) dfbiprob = dfbiprob[dfbiprob['biprob'] != np.inf] blist=[] for x in dfbiprob['bigram']: if bi_wc_list[biwordloc[x]] > arb_cutoff: blist.append(x) print(blist[0:100]) hv = HashingVectorizer(norm='l2',stop_words=nltk.corpus.stopwords.words('english')) hvcounts = hv.fit_transform(df['text']) cv = cross_validation.KFold(len(df['stars']), n_folds=10, shuffle=True) params = {'alpha':np.logspace(-6,-3,10)} grid = grid_search.GridSearchCV(linear_model.SGDRegressor(),cv=cv,param_grid=params) grid.fit(hvcounts,df['stars']) with open('/home/vagrant/miniprojects/questions/nlp1.pkl', 'wb') as handle: pickle.dump(grid, handle) mypipeline3=Pipeline([ ('text_extractor', ColumnSelector('text')), ('hvect', HashingVectorizer(norm=None, ngram_range=(1, 2), non_negative=True, stop_words=nltk.corpus.stopwords.words('english'))), ('tfidft', TfidfTransformer()), ('svd', TruncatedSVD(n_components=100)), ('normdata', Normalizer(copy=False)), ('compatibility', Compatibility()) ]) mypipeline2.fit(xfile,yout) with open('/home/vagrant/miniprojects/nlp3.pkl', 'wb') as handle2: pickle.dump(mypipeline2, handle2) mypipeline2.predict(xfile[0:10]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: ANALYSIS Step2: FOOD BIGRAMS Step3: CLEANING, PROCESSING THE DATA Step4: EXTRA CODE
15,252
<ASSISTANT_TASK:> Python Code: from devito import * grid = Grid(shape=(5, 6), extent=(1., 1.)) grid print(Function.__doc__) f = Function(name='f', grid=grid) f f.data g = TimeFunction(name='g', grid=grid) g g.shape g.dt g.dt.evaluate g.forward g.backward g.forward.dt g.forward.dy from examples.cfd import init_smooth, plot_field nt = 100 # Number of timesteps dt = 0.2 * 2. / 80 # Timestep size (sigma=0.2) c = 1 # Value for c # Then we create a grid and our function grid = Grid(shape=(81, 81), extent=(2., 2.)) u = TimeFunction(name='u', grid=grid) # We can now set the initial condition and plot it init_smooth(field=u.data[0], dx=grid.spacing[0], dy=grid.spacing[1]) init_smooth(field=u.data[1], dx=grid.spacing[0], dy=grid.spacing[1]) plot_field(u.data[0]) eq = Eq(u.dt + c * u.dxl + c * u.dyl) eq stencil = solve(eq, u.forward) update = Eq(u.forward, stencil) update op = Operator(update, opt='noop') op(time=nt+1, dt=dt) plot_field(u.data[0]) print(op.ccode) u = TimeFunction(name='u', grid=grid, space_order=2) u.dx2 u.dx2.evaluate u = TimeFunction(name='u', grid=grid, space_order=4) u.dx2 u.dx2.evaluate grid_3d = Grid(shape=(5, 6, 7), extent=(1., 1., 1.)) u = TimeFunction(name='u', grid=grid_3d, space_order=2) u u = TimeFunction(name='u', grid=grid_3d, space_order=12) u.laplace u.dx2 + u.dy2 + u.dz2 u = TimeFunction(name='u', grid=grid, space_order=2) v = TimeFunction(name='v', grid=grid, space_order=2, time_order=2) v.dt2 + u.laplace (v.dt2 + u.laplace).dx2 (v.dt2 + u.laplace).dx2.evaluate <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: From equations to code in a few lines of Python Step2: Functions and data Step3: Ok, let's create a function $f(x, y)$ and look at the data Devito has associated with it. Please note that it is important to use explicit keywords, such as name or grid when creating Function objects. Step4: By default, Devito Function objects use the spatial dimensions (x, y) for 2D grids and (x, y, z) for 3D grids. To solve a PDE over several timesteps a time dimension is also required by our symbolic function. For this Devito provides an additional function type, the TimeFunction, which incorporates the correct dimension along with some other intricacies needed to create a time stepping scheme. Step5: Since the default time order of a TimeFunction is 1, the shape of f is (2, 5, 6), i.e. Devito has allocated two buffers to represent g(t, x, y) and g(t + dt, x, y) Step6: Derivatives of symbolic functions Step7: We may also want to take a look at the stencil Devito will generate based on the chosen discretisation Step8: There also exist convenient shortcuts to express the forward and backward stencil points, g(t+dt, x, y) and g(t-dt, x, y). Step9: And of course, there's nothing to stop us taking derivatives on these objects Step10: A linear convection operator Step11: Next, we wish to discretise our governing equation so that a functional Operator can be created from it. We begin by simply writing out the equation as a symbolic expression, while using shorthand expressions for the derivatives provided by the Function object. This will create a symbolic object of the dicretised equation. Step12: We now need to rearrange our equation so that the term $u(t+dt, x, y)$ is on the left-hand side, since it represents the next point in time for our state variable $u$. Devito provides a utility called solve, built on top of SymPy's solve, to rearrange our equation so that it represents a valid state update for $u$. Here, we use solve to create a valid stencil for our update to u(t+dt, x, y) Step13: The right-hand side of the 'update' equation should be a stencil of the shape Step14: Note that the real power of Devito is hidden within Operator, it will automatically generate and compile the optimized C code. We can look at this code (noting that this is not a requirement of executing it) via Step15: Second derivatives and high-order stencils Step16: We can increase the discretisation arbitrarily if we wish to specify higher order FD stencils Step17: To implement the diffusion or wave equations, we must take the Laplacian $\nabla^2 u$, which is the sum of the second derivatives in all spatial dimensions. For this, Devito also provides a shorthand expression, which means we do not have to hard-code the problem dimension (2D or 3D) in the code. To change the problem dimension we can create another Grid object and use this to re-define our Function's Step18: We can re-define our function u with a different space_order argument to change the discretisation order of the stencil expression created. For example, we can derive an expression of the 12th-order Laplacian $\nabla^2 u$ Step19: The same expression could also have been generated explicitly via Step20: Derivatives of composite expressions Step21: Which can, depending on the chosen discretisation, lead to fairly complex stencils
15,253
<ASSISTANT_TASK:> Python Code: # Load libraries import numpy as np from sklearn.datasets import load_iris # Load iris data iris = load_iris() # Create feature matrix X = iris.data # Create target vector y = iris.target # Remove first 40 observations X = X[40:,:] y = y[40:] # Create binary target vector indicating if class 0 y = np.where((y == 0), 0, 1) # Look at the imbalanced target vector y # Indicies of each class' observations i_class0 = np.where(y == 0)[0] i_class1 = np.where(y == 1)[0] # Number of observations in each class n_class0 = len(i_class0) n_class1 = len(i_class1) # For every observation of class 0, randomly sample from class 1 without replacement i_class1_downsampled = np.random.choice(i_class1, size=n_class0, replace=False) # Join together class 0's target vector with the downsampled class 1's target vector np.hstack((y[i_class0], y[i_class1_downsampled])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load Iris Dataset Step2: Make Iris Dataset Imbalanced Step3: Downsample Majority Class To Match Minority Class
15,254
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'mohc', 'sandbox-3', 'toplevel') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.flux_correction.details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.year_released') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.CMIP3_parent') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.CMIP5_parent') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.previous_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.components_structure') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.coupler') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "OASIS" # "OASIS3-MCT" # "ESMF" # "NUOPC" # "Bespoke" # "Unknown" # "None" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.coupling.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.coupling.atmosphere_double_flux') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.coupling.atmosphere_fluxes_calculation_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Atmosphere grid" # "Ocean grid" # "Specific coupler grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.coupling.atmosphere_relative_winds') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.energy_balance') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.fresh_water_balance') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.global') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.atmos_ocean_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.atmos_land_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.atmos_sea-ice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.ocean_seaice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.land_ocean_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.global') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.atmos_ocean_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.atmos_land_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.atmos_sea-ice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.ocean_seaice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.runoff') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.iceberg_calving') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.endoreic_basins') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.snow_accumulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.salt.ocean_seaice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.momentum.details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CO2.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CO2.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CH4.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CH4.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.N2O.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.N2O.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.tropospheric_O3.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.tropospheric_O3.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.stratospheric_O3.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.stratospheric_O3.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CFC.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CFC.equivalence_concentration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "Option 1" # "Option 2" # "Option 3" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CFC.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.SO4.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.SO4.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.black_carbon.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.black_carbon.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.organic_carbon.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.organic_carbon.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.nitrate.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.nitrate.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_albedo_effect.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_albedo_effect.aerosol_effect_on_ice_clouds') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_albedo_effect.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_lifetime_effect.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_lifetime_effect.aerosol_effect_on_ice_clouds') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_lifetime_effect.RFaci_from_sulfate_only') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_lifetime_effect.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.dust.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.dust.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.tropospheric_volcanic.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.tropospheric_volcanic.historical_explosive_volcanic_aerosol_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Type A" # "Type B" # "Type C" # "Type D" # "Type E" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.tropospheric_volcanic.future_explosive_volcanic_aerosol_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Type A" # "Type B" # "Type C" # "Type D" # "Type E" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.tropospheric_volcanic.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.stratospheric_volcanic.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.stratospheric_volcanic.historical_explosive_volcanic_aerosol_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Type A" # "Type B" # "Type C" # "Type D" # "Type E" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.stratospheric_volcanic.future_explosive_volcanic_aerosol_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Type A" # "Type B" # "Type C" # "Type D" # "Type E" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.stratospheric_volcanic.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.sea_salt.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.sea_salt.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.land_use.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.land_use.crop_change_only') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.land_use.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.solar.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "irradiance" # "proton" # "electron" # "cosmic ray" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.solar.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 2. Key Properties --&gt; Flux Correction Step7: 3. Key Properties --&gt; Genealogy Step8: 3.2. CMIP3 Parent Step9: 3.3. CMIP5 Parent Step10: 3.4. Previous Name Step11: 4. Key Properties --&gt; Software Properties Step12: 4.2. Code Version Step13: 4.3. Code Languages Step14: 4.4. Components Structure Step15: 4.5. Coupler Step16: 5. Key Properties --&gt; Coupling Step17: 5.2. Atmosphere Double Flux Step18: 5.3. Atmosphere Fluxes Calculation Grid Step19: 5.4. Atmosphere Relative Winds Step20: 6. Key Properties --&gt; Tuning Applied Step21: 6.2. Global Mean Metrics Used Step22: 6.3. Regional Metrics Used Step23: 6.4. Trend Metrics Used Step24: 6.5. Energy Balance Step25: 6.6. Fresh Water Balance Step26: 7. Key Properties --&gt; Conservation --&gt; Heat Step27: 7.2. Atmos Ocean Interface Step28: 7.3. Atmos Land Interface Step29: 7.4. Atmos Sea-ice Interface Step30: 7.5. Ocean Seaice Interface Step31: 7.6. Land Ocean Interface Step32: 8. Key Properties --&gt; Conservation --&gt; Fresh Water Step33: 8.2. Atmos Ocean Interface Step34: 8.3. Atmos Land Interface Step35: 8.4. Atmos Sea-ice Interface Step36: 8.5. Ocean Seaice Interface Step37: 8.6. Runoff Step38: 8.7. Iceberg Calving Step39: 8.8. Endoreic Basins Step40: 8.9. Snow Accumulation Step41: 9. Key Properties --&gt; Conservation --&gt; Salt Step42: 10. Key Properties --&gt; Conservation --&gt; Momentum Step43: 11. Radiative Forcings Step44: 12. Radiative Forcings --&gt; Greenhouse Gases --&gt; CO2 Step45: 12.2. Additional Information Step46: 13. Radiative Forcings --&gt; Greenhouse Gases --&gt; CH4 Step47: 13.2. Additional Information Step48: 14. Radiative Forcings --&gt; Greenhouse Gases --&gt; N2O Step49: 14.2. Additional Information Step50: 15. Radiative Forcings --&gt; Greenhouse Gases --&gt; Tropospheric O3 Step51: 15.2. Additional Information Step52: 16. Radiative Forcings --&gt; Greenhouse Gases --&gt; Stratospheric O3 Step53: 16.2. Additional Information Step54: 17. Radiative Forcings --&gt; Greenhouse Gases --&gt; CFC Step55: 17.2. Equivalence Concentration Step56: 17.3. Additional Information Step57: 18. Radiative Forcings --&gt; Aerosols --&gt; SO4 Step58: 18.2. Additional Information Step59: 19. Radiative Forcings --&gt; Aerosols --&gt; Black Carbon Step60: 19.2. Additional Information Step61: 20. Radiative Forcings --&gt; Aerosols --&gt; Organic Carbon Step62: 20.2. Additional Information Step63: 21. Radiative Forcings --&gt; Aerosols --&gt; Nitrate Step64: 21.2. Additional Information Step65: 22. Radiative Forcings --&gt; Aerosols --&gt; Cloud Albedo Effect Step66: 22.2. Aerosol Effect On Ice Clouds Step67: 22.3. Additional Information Step68: 23. Radiative Forcings --&gt; Aerosols --&gt; Cloud Lifetime Effect Step69: 23.2. Aerosol Effect On Ice Clouds Step70: 23.3. RFaci From Sulfate Only Step71: 23.4. Additional Information Step72: 24. Radiative Forcings --&gt; Aerosols --&gt; Dust Step73: 24.2. Additional Information Step74: 25. Radiative Forcings --&gt; Aerosols --&gt; Tropospheric Volcanic Step75: 25.2. Historical Explosive Volcanic Aerosol Implementation Step76: 25.3. Future Explosive Volcanic Aerosol Implementation Step77: 25.4. Additional Information Step78: 26. Radiative Forcings --&gt; Aerosols --&gt; Stratospheric Volcanic Step79: 26.2. Historical Explosive Volcanic Aerosol Implementation Step80: 26.3. Future Explosive Volcanic Aerosol Implementation Step81: 26.4. Additional Information Step82: 27. Radiative Forcings --&gt; Aerosols --&gt; Sea Salt Step83: 27.2. Additional Information Step84: 28. Radiative Forcings --&gt; Other --&gt; Land Use Step85: 28.2. Crop Change Only Step86: 28.3. Additional Information Step87: 29. Radiative Forcings --&gt; Other --&gt; Solar Step88: 29.2. Additional Information
15,255
<ASSISTANT_TASK:> Python Code: from bqplot import (LinearScale, Axis, Figure, OrdinalScale, LinearScale, Bars, Lines, Scatter) # first, let's create two vectors x and y to plot using a Lines mark import numpy as np x = np.linspace(-10, 10, 100) y = np.sin(x) # 1. Create the scales xs = LinearScale() ys = LinearScale() # 2. Create the axes for x and y xax = Axis(scale=xs, label='X') yax = Axis(scale=ys, orientation='vertical', label='Y') # 3. Create a Lines mark by passing in the scales # note that Lines object is stored in `line` which can be used later to update the plot line = Lines(x=x, y=y, scales={'x': xs, 'y': ys}) # 4. Create a Figure object by assembling marks and axes fig = Figure(marks=[line], axes=[xax, yax], title='Simple Line Chart') # 5. Render the figure using display or just as is fig # first, let's create two vectors x and y to plot a bar chart x = list('ABCDE') y = np.random.rand(5) # 1. Create the scales xs = OrdinalScale() # note the use of ordinal scale to represent categorical data ys = LinearScale() # 2. Create the axes for x and y xax = Axis(scale=xs, label='X', grid_lines='none') # no grid lines needed for x yax = Axis(scale=ys, orientation='vertical', label='Y', tick_format='.0%') # note the use of tick_format to format ticks # 3. Create a Bars mark by passing in the scales # note that Bars object is stored in `bar` object which can be used later to update the plot bar = Bars(x=x, y=y, scales={'x': xs, 'y': ys}, padding=.2) # 4. Create a Figure object by assembling marks and axes Figure(marks=[bar], axes=[xax, yax], title='Simple Bar Chart') # first, let's create two vectors x and y import numpy as np x = np.linspace(-10, 10, 25) y = 3 * x + 5 y_noise = y + 10 * np.random.randn(25) # add some random noise to y # 1. Create the scales xs = LinearScale() ys = LinearScale() # 2. Create the axes for x and y xax = Axis(scale=xs, label='X') yax = Axis(scale=ys, orientation='vertical', label='Y') # 3. Create a Lines and Scatter marks by passing in the scales # additional attributes (stroke_width, colors etc.) can be passed as attributes to the mark objects as needed line = Lines(x=x, y=y, scales={'x': xs, 'y': ys}, colors=['green'], stroke_width=3) scatter = Scatter(x=x, y=y_noise, scales={'x': xs, 'y': ys}, colors=['red'], stroke='black') # 4. Create a Figure object by assembling marks and axes # pass both the marks (line and scatter) as a list to the marks attribute Figure(marks=[line, scatter], axes=[xax, yax], title='Scatter and Line') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: For creating other marks (like scatter, pie, bars, etc.), only step 3 needs to be changed. Lets look a simple example to create a bar chart Step2: Mutiple marks can be rendered in a figure. It's as easy as passing a list of marks when constructing the Figure object
15,256
<ASSISTANT_TASK:> Python Code: a = -0.7 j_vals = [] kl_vals = [] mus = np.linspace(0,1,100) for mu in mus: j_vals.append(J(mu,p_sig,a)[0]) kl_vals.append(KL(mu,p_sig)[0]) fig = plt.figure(figsize=(15,5)) p_vals = p(mus) plt.plot(mus, p_vals/p_vals.max(), label="$p(x)$") #plt.plot(mus, j_vals/np.max(np.abs(j_vals)), label='$J$') plt.plot(mus, j_vals, label='$J$') plt.plot(mus, kl_vals/np.max(np.abs(kl_vals)), label='$KL$') plt.title("Divergences with alpha = {}".format(a)) plt.xlabel('$\mu$') plt.legend() plt.show() dj_vals = [] dkl_vals = [] mus = np.linspace(0,1.0,100) for mu in mus: dj_vals.append(dJ_dmu(mu,p_sig,a)[0]) dkl_vals.append(dKL_dmu(mu,p_sig)[0]) fig = plt.figure(figsize=(15,5)) p_vals = p(mus) plt.plot(mus, p_vals/p_vals.max(), label="$p(x)$") #plt.plot(mus, dj_vals/np.max(np.abs(dj_vals)), label='$\partial J/\partial \mu_q$') plt.plot(mus, dj_vals, label='$\partial J/\partial \mu_q$') plt.plot(mus, dkl_vals/np.max(np.abs(dkl_vals)), label='$\partial KL/\partial \mu_q$') plt.title("Derivative of Divergences with alpha = {}".format(a)) plt.xlabel('$\mu$') plt.legend() plt.show() a = -0.7 j_optims = [] j_maxErrs = [] kl_optims = [] kl_maxErrs = [] tot_mus_list = [1000,2000,3000,4000,5000] for tot_mus in tot_mus_list: print("Operating on {} mus...".format(tot_mus)) dj_vals = [] dj_errs = [] dkl_vals = [] dkl_errs = [] mus = np.linspace(0.4,0.6,tot_mus) for mu in mus: j_quad, j_err = dJ_dmu(mu,p_sig,a) dj_vals.append(j_quad) dj_errs.append(j_err) kl_quad, kl_err = dKL_dmu(mu,p_sig) dkl_vals.append(kl_quad) dkl_errs.append(kl_err) j_optims.append(mus[np.argmin(np.abs(dj_vals))]) j_maxErrs.append(np.max(dj_errs)) kl_optims.append(mus[np.argmin(np.abs(dkl_vals))]) kl_maxErrs.append(np.max(dkl_errs)) fig = plt.figure(figsize=(15,5)) ax1 = fig.add_subplot(121) ax1.set_title("Error") ax1.set_xlabel("Number of $\mu$s in Calcuation") ax1.plot(tot_mus_list, j_maxErrs, label="max $J$-err") ax1.plot(tot_mus_list, kl_maxErrs, label="max $KL$-err") ax1.legend() ax2 = fig.add_subplot(122) ax2.set_title("$|\max{J}-\min{KL}|$") ax2.set_xlabel("Number of $\mu$s in Calcuation") ax2.plot(tot_mus_list, np.abs(np.array(j_optims)-np.array(kl_optims)), label="error") ax2.legend() j_vals = [] kl_vals = [] alphas = np.linspace(-3,0.999,1000) for a in alphas: j_vals.append(J(p_mean,p_sig,a)[0]) kl_vals.append(KL(p_mean,p_sig)[0]) fig = plt.figure(figsize=(15,5)) plt.plot(alphas, j_vals, label='$J$') plt.plot(alphas, kl_vals, label='$KL$') plt.title("Divergences vs alpha") plt.xlabel('alpha') plt.legend() plt.show() dj_vals = [] dkl_vals = [] alphas = np.linspace(-3,0.999,1000) for a in alphas: dj_vals.append(dJ_dmu(p_mean,p_sig,a)[0]) dkl_vals.append(dKL_dmu(p_mean,p_sig)[0]) fig = plt.figure(figsize=(15,5)) plt.plot(alphas, dj_vals, label='$\partial J/\partial \mu_q$') plt.plot(alphas, dkl_vals, label='$\partial KL/\partial \mu_q$') plt.title("Derivative of Divergences vs alpha") plt.xlabel('alpha') plt.legend() plt.show() from mpl_toolkits.mplot3d import axes3d from matplotlib import cm mu_min = 0.4 mu_max = 0.6 num_mus = 1000 mus = np.linspace(mu_min, mu_max, num_mus) sig_min = 0.0001 sig_max = 0.01 num_sigs = 1000 sigmas = np.linspace(sig_min, sig_max, num_sigs) mu,sigma = np.meshgrid(mus,sigmas) vals = np.array((mu,sigma)) z = np.ndarray(mu.shape) for i in range(len(mu[0])): for j in range(len(sigma[0])): m,s = vals[:,i,j] z[i,j] = J(m,s,-0.7)[0] fig = plt.figure(figsize=(16,12)) ax = fig.gca(projection='3d') ax.plot_surface(mu, sigma, z, rstride=5, cstride=5, alpha=0.3) cset = ax.contour(mu, sigma, z, zdir='z', offset=-0.1, cmap=cm.coolwarm) cset = ax.contour(mu, sigma, z, zdir='x', offset=mu_min, cmap=cm.coolwarm) cset = ax.contour(mu, sigma, z, zdir='y', offset=sig_max, cmap=cm.coolwarm) ax.set_xlabel('$\mu$') ax.set_xlim(mu_min, mu_max) ax.set_ylabel('$\sigma$') ax.set_ylim(sig_min, sig_max) ax.set_zlabel('$f$') ax.set_zlim(-0.1,100) plt.show() z[0,0] len(np.where(np.isnan(z))[0]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Derivative of Divergences as a function of $\mu_q$ Step2: Finding the Zeros of the Derivatives Step3: Examining the Divergences as a function of $\alpha$ Step4: Derivatives of Divergences vs alpha Step5: Cost Surface for the Convolution
15,257
<ASSISTANT_TASK:> Python Code: import logging logging.basicConfig() from sklearn.datasets import fetch_20newsgroups categories = ['alt.atheism', 'soc.religion.christian','comp.graphics', 'sci.med'] twenty_train = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=42) print len(twenty_train.data) print twenty_train.data[0] from sklearn.feature_extraction.text import CountVectorizer count_vect = CountVectorizer() X_train_counts = count_vect.fit_transform(twenty_train.data) print(X_train_counts.shape) from sklearn.feature_extraction.text import TfidfTransformer tf_transformer = TfidfTransformer(use_idf=False).fit(X_train_counts) X_train_tf = tf_transformer.transform(X_train_counts) from sklearn.naive_bayes import MultinomialNB clf = MultinomialNB().fit(X_train_tf, twenty_train.target) docs_new = ['God is love', 'OpenGL on the GPU is fast', 'learn python'] X_new_counts = count_vect.transform(docs_new) X_new_tfidf = tf_transformer.transform(X_new_counts) predicted = clf.predict(X_new_tfidf) for doc, category in zip(docs_new, predicted): print('%r => %s' % (doc, twenty_train.target_names[category])) %matplotlib inline import matplotlib import numpy as np import matplotlib.pyplot as plt x = np.linspace(0, 2*np.pi, 500) plt.plot(x, np.sin(x)) # plt.show() plt.plot(x, np.sin(x*2)) plt.title('A simple chirp') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 从 sklearn.datasets 这个库中导入 fetch_20newsgroups 模块 Step2: 整个数据集包含了 2257 个这样的文档。 我们需要用这 2257 条数据来训练我们的模型, 让它变得智能起来。 Step3: X_train_counts 的维度, 包含了 2257 个条目, 每个条目包含了 35788 的字符计数。 Step4: 训练数据模型 Step5: 进行一个实际验证 Step6: 使用matplotlib作图
15,258
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns; sns.set_context('notebook') # Import radon data srrs2 = pd.read_csv('../data/srrs2.dat') srrs2.columns = srrs2.columns.map(str.strip) srrs_mn = srrs2[srrs2.state=='MN'] srrs_mn['fips'] = srrs_mn.stfips*1000 + srrs_mn.cntyfips cty = pd.read_csv('../data/cty.dat') cty_mn = cty[cty.st=='MN'].copy() cty_mn[ 'fips'] = 1000*cty_mn.stfips + cty_mn.ctfips srrs_mn = srrs_mn.merge(cty_mn[['fips', 'Uppm']], on='fips') srrs_mn = srrs_mn.drop_duplicates(subset='idnum') u = np.log(srrs_mn.Uppm) n = len(srrs_mn) srrs_mn.head() srrs_mn.county = srrs_mn.county.map(str.strip) mn_counties = srrs_mn.county.unique() counties = len(mn_counties) county_lookup = dict(zip(mn_counties, range(len(mn_counties)))) county = srrs_mn['county_code'] = srrs_mn.county.replace(county_lookup).values radon = srrs_mn.activity srrs_mn['log_radon'] = log_radon = np.log(radon + 0.1).values floor_measure = srrs_mn.floor.values srrs_mn.activity.apply(lambda x: np.log(x+0.1)).hist(bins=25) from pymc3 import Model, sample, Normal, HalfCauchy, Uniform floor = srrs_mn.floor.values log_radon = srrs_mn.log_radon.values with Model() as pooled_model: beta = Normal('beta', 0, sd=1e5, shape=2) sigma = HalfCauchy('sigma', 5) theta = beta[0] + beta[1]*floor y = Normal('y', theta, sd=sigma, observed=log_radon) with pooled_model: pooled_trace = sample(2000) b0, m0 = pooled_trace['beta', 1000:].mean(axis=0) plt.scatter(srrs_mn.floor, np.log(srrs_mn.activity+0.1)) xvals = np.linspace(-0.2, 1.2) plt.plot(xvals, m0*xvals+b0, 'r--') with Model() as unpooled_model: beta0 = Normal('beta0', 0, sd=1e5, shape=counties) beta1 = Normal('beta1', 0, sd=1e5) sigma = HalfCauchy('sigma', 5) theta = beta0[county] + beta1*floor y = Normal('y', theta, sd=sigma, observed=log_radon) with unpooled_model: unpooled_trace = sample(2000) from pymc3 import forestplot forestplot(unpooled_trace, varnames=['beta0']) unpooled_estimates = pd.Series(unpooled_trace['beta0'].mean(axis=0), index=mn_counties) unpooled_se = pd.Series(unpooled_trace['beta0'].std(axis=0), index=mn_counties) order = unpooled_estimates.order().index plt.scatter(range(len(unpooled_estimates)), unpooled_estimates[order]) for i, m, se in zip(range(len(unpooled_estimates)), unpooled_estimates[order], unpooled_se[order]): plt.plot([i,i], [m-se, m+se], 'b-') plt.xlim(-1,86); plt.ylim(-1,4) plt.ylabel('Radon estimate');plt.xlabel('Ordered county'); sample_counties = ('LAC QUI PARLE', 'AITKIN', 'KOOCHICHING', 'DOUGLAS', 'CLAY', 'STEARNS', 'RAMSEY', 'ST LOUIS') fig, axes = plt.subplots(2, 4, figsize=(12, 6), sharey=True, sharex=True) axes = axes.ravel() m = unpooled_trace['beta1'].mean() for i,c in enumerate(sample_counties): y = srrs_mn.log_radon[srrs_mn.county==c] x = srrs_mn.floor[srrs_mn.county==c] axes[i].scatter(x + np.random.randn(len(x))*0.01, y, alpha=0.4) # No pooling model b = unpooled_estimates[c] # Plot both models and data xvals = np.linspace(-0.2, 1.2) axes[i].plot(xvals, m*xvals+b) axes[i].plot(xvals, m0*xvals+b0, 'r--') axes[i].set_xticks([0,1]) axes[i].set_xticklabels(['basement', 'floor']) axes[i].set_ylim(-1, 3) axes[i].set_title(c) if not i%2: axes[i].set_ylabel('log radon level') with Model() as partial_pooling: # Priors mu_a = Normal('mu_a', mu=0., sd=1e5) sigma_a = HalfCauchy('sigma_a', 5) # Random intercepts a = Normal('a', mu=mu_a, sd=sigma_a, shape=counties) # Model error sigma_y = HalfCauchy('sigma_y',5) # Expected value y_hat = a[county] # Data likelihood y_like = Normal('y_like', mu=y_hat, sd=sigma_y, observed=log_radon) with partial_pooling: partial_pooling_trace = sample(2000) sample_trace = partial_pooling_trace['a', 1000:] fig, axes = plt.subplots(1, 2, figsize=(14,6), sharex=True, sharey=True) samples, counties = sample_trace.shape jitter = np.random.normal(scale=0.1, size=counties) n_county = srrs_mn.groupby('county')['idnum'].count() unpooled_means = srrs_mn.groupby('county')['log_radon'].mean() unpooled_sd = srrs_mn.groupby('county')['log_radon'].std() unpooled = pd.DataFrame({'n':n_county, 'm':unpooled_means, 'sd':unpooled_sd}) unpooled['se'] = unpooled.sd/np.sqrt(unpooled.n) axes[0].plot(unpooled.n + jitter, unpooled.m, 'b.') for j, row in zip(jitter, unpooled.iterrows()): name, dat = row axes[0].plot([dat.n+j,dat.n+j], [dat.m-dat.se, dat.m+dat.se], 'b-') axes[0].set_xscale('log') axes[0].hlines(sample_trace.mean(), 0.9, 100, linestyles='--') samples, counties = sample_trace.shape means = sample_trace.mean(axis=0) sd = sample_trace.std(axis=0) axes[1].scatter(n_county.values + jitter, means) axes[1].set_xscale('log') axes[1].set_xlim(1,100) axes[1].set_ylim(0, 3) axes[1].hlines(sample_trace.mean(), 0.9, 100, linestyles='--') for j,n,m,s in zip(jitter, n_county.values, means, sd): axes[1].plot([n+j]*2, [m-s, m+s], 'b-') with Model() as varying_intercept: # Priors mu_a = Normal('mu_a', mu=0., tau=0.0001) sigma_a = HalfCauchy('sigma_a', 5) # Random intercepts a = Normal('a', mu=mu_a, sd=sigma_a, shape=counties) # Common slope b = Normal('b', mu=0., sd=1e5) # Model error sd_y = HalfCauchy('sd_y', 5) # Expected value y_hat = a[county] + b * floor_measure # Data likelihood y_like = Normal('y_like', mu=y_hat, sd=sd_y, observed=log_radon) with varying_intercept: varying_intercept_trace = sample(2000) from pymc3 import forestplot, traceplot, plot_posterior plt.figure(figsize=(6,10)) forestplot(varying_intercept_trace[1000:], varnames=['a']) plot_posterior(varying_intercept_trace[1000:], varnames=['sigma_a', 'b']) from pymc3 import summary summary(varying_intercept_trace, varnames=['b']) xvals = np.arange(2) bp = varying_intercept_trace[a, 1000:].mean(axis=0) mp = varying_intercept_trace[b, 1000:].mean() for bi in bp: plt.plot(xvals, mp*xvals + bi, 'bo-', alpha=0.4) plt.xlim(-0.1,1.1); fig, axes = plt.subplots(2, 4, figsize=(12, 6), sharey=True, sharex=True) axes = axes.ravel() for i,c in enumerate(sample_counties): # Plot county data y = srrs_mn.log_radon[srrs_mn.county==c] x = srrs_mn.floor[srrs_mn.county==c] axes[i].scatter(x + np.random.randn(len(x))*0.01, y, alpha=0.4) # No pooling model m,b = unpooled_estimates[['floor', c]] xvals = np.linspace(-0.2, 1.2) # Unpooled estimate axes[i].plot(xvals, m*xvals+b) # Pooled estimate axes[i].plot(xvals, m0*xvals+b0, 'r--') # Partial pooling esimate axes[i].plot(xvals, mp*xvals+bp[county_lookup[c]], 'k:') axes[i].set_xticks([0,1]) axes[i].set_xticklabels(['basement', 'floor']) axes[i].set_ylim(-1, 3) axes[i].set_title(c) if not i%2: axes[i].set_ylabel('log radon level') with Model() as varying_slope: # Priors mu_b = Normal('mu_b', mu=0., sd=1e5) sigma_b = HalfCauchy('sigma_b', 5) # Common intercepts a = Normal('a', mu=0., sd=1e5) # Random slopes b = Normal('b', mu=mu_b, sd=sigma_b, shape=counties) # Model error sigma_y = HalfCauchy('sigma_y',5) # Expected value y_hat = a + b[county] * floor_measure # Data likelihood y_like = Normal('y_like', mu=y_hat, sd=sigma_y, observed=log_radon) with varying_slope: varying_slope_trace = sample(2000) plt.figure(figsize=(6,10)) forestplot(varying_slope_trace[1000:], varnames=['b']) xvals = np.arange(2) b = varying_slope_trace['a', 1000:].mean() m = varying_slope_trace['b', 1000:].mean(axis=0) for mi in m: plt.plot(xvals, mi*xvals + b, 'bo-', alpha=0.4) plt.xlim(-0.2, 1.2); with Model() as varying_intercept_slope: # Priors mu_a = Normal('mu_a', mu=0., sd=1e5) sigma_a = HalfCauchy('sigma_a', 5) mu_b = Normal('mu_b', mu=0., sd=1e5) sigma_b = HalfCauchy('sigma_b', 5) # Random intercepts a = Normal('a', mu=mu_a, sd=sigma_a, shape=counties) # Random slopes b = Normal('b', mu=mu_b, sd=sigma_b, shape=counties) # Model error sigma_y = Uniform('sigma_y', lower=0, upper=100) # Expected value y_hat = a[county] + b[county] * floor_measure # Data likelihood y_like = Normal('y_like', mu=y_hat, sd=sigma_y, observed=log_radon) with varying_intercept_slope: varying_intercept_slope_trace = sample(2000) plt.figure(figsize=(6,16)) forestplot(varying_intercept_slope_trace[1000:], varnames=['a','b']) xvals = np.arange(2) b = varying_intercept_slope_trace['a', 1000:].mean(axis=0) m = varying_intercept_slope_trace['b', 1000:].mean(axis=0) for bi,mi in zip(b,m): plt.plot(xvals, mi*xvals + bi, 'bo-', alpha=0.4) plt.xlim(-0.1, 1.1); from pymc3 import Deterministic with Model() as hierarchical_intercept: # Priors sigma_a = HalfCauchy('sigma_a', 5) # County uranium model for slope gamma_0 = Normal('gamma_0', mu=0., sd=1e5) gamma_1 = Normal('gamma_1', mu=0., sd=1e5) # Uranium model for intercept mu_a = gamma_0 + gamma_1*u # County variation not explained by uranium eps_a = Normal('eps_a', mu=0, sd=sigma_a, shape=counties) a = Deterministic('a', mu_a + eps_a[county]) # Common slope b = Deterministic('b', Normal('b', mu=0., sd=1e5)) # Model error sigma_y = Uniform('sigma_y', lower=0, upper=100) # Expected value y_hat = a + b * floor_measure # Data likelihood y_like = Normal('y_like', mu=y_hat, sd=sigma_y, observed=log_radon) with hierarchical_intercept: hierarchical_intercept_trace = sample(2000) a_means = hierarchical_intercept_trace['a', 1000:].mean(axis=0) plt.scatter(u, a_means) g0 = hierarchical_intercept_trace['gamma_0'].mean() g1 = hierarchical_intercept_trace['gamma_1'].mean() xvals = np.linspace(-1, 0.8) plt.plot(xvals, g0+g1*xvals, 'k--') plt.xlim(-1, 0.8) a_se = hierarchical_intercept_trace['a', 1000:].std(axis=0) for ui, m, se in zip(u, a_means, a_se): plt.plot([ui,ui], [m-se, m+se], 'b-') plt.xlabel('County-level uranium'); plt.ylabel('Intercept estimate') # Create new variable for mean of floor across counties xbar = srrs_mn.groupby('county')['floor'].mean().rename(county_lookup).values with Model() as contextual_effect: # Priors sigma_a = HalfCauchy('sigma_a', 5) # County uranium model for slope gamma = Normal('gamma', mu=0., sd=1e5, shape=3) # Uranium model for intercept mu_a = Deterministic('mu_a', gamma[0] + gamma[1]*u.values + gamma[2]*xbar[county]) # County variation not explained by uranium eps_a = Normal('eps_a', mu=0, sd=sigma_a, shape=counties) a = Deterministic('a', mu_a + eps_a[county]) # Common slope b = Normal('b', mu=0., sd=1e15) # Model error sigma_y = Uniform('sigma_y', lower=0, upper=100) # Expected value y_hat = a + b * floor_measure # Data likelihood y_like = Normal('y_like', mu=y_hat, sd=sigma_y, observed=log_radon) with contextual_effect: contextual_effect_trace = sample(2000) forestplot(contextual_effect_trace[1000:], varnames=['gamma']) summary(contextual_effect_trace[1000:], varnames=['gamma']) county_lookup['ST LOUIS'] with Model() as contextual_pred: # Priors sigma_a = HalfCauchy('sigma_a', 5) # County uranium model for slope gamma = Normal('gamma', mu=0., sd=1e5, shape=3) # Uranium model for intercept mu_a = Deterministic('mu_a', gamma[0] + gamma[1]*u.values + gamma[2]*xbar[county]) # County variation not explained by uranium eps_a = Normal('eps_a', mu=0, sd=sigma_a, shape=counties) a = Deterministic('a', mu_a + eps_a[county]) # Common slope b = Normal('b', mu=0., sd=1e15) # Model error sigma_y = Uniform('sigma_y', lower=0, upper=100) # Expected value y_hat = a + b * floor_measure # Data likelihood y_like = Normal('y_like', mu=y_hat, sd=sigma_y, observed=log_radon) # St Louis county prediction stl_pred = Normal('stl_pred', mu=a[69] + b, sd=sigma_y) with contextual_pred: contextual_pred_trace = sample(2000) plot_posterior(contextual_pred_trace[1000:], varnames=['stl_pred']) # Write your answer here <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Next, obtain the county-level predictor, uranium, by combining two variables. Step2: Use the merge method to combine home- and county-level information in a single DataFrame. Step3: We also need a lookup table (dict) for each unique county, for indexing. Step4: Finally, create local copies of variables. Step5: Distribution of radon levels in MN (log scale) Step6: Conventional approaches Step7: Estimates of county radon levels for the unpooled model Step8: We can plot the ordered estimates to identify counties with high radon levels Step9: Here are visual comparisons between the pooled and unpooled estimates for a subset of counties representing a range of sample sizes. Step10: Neither of these models are satisfactory Step11: Notice the difference between the unpooled and partially-pooled estimates, particularly at smaller sample sizes. The former are both more extreme and more imprecise. Step12: We can fit the above model using MCMC. Step13: The estimate for the floor coefficient is approximately -0.66, which can be interpreted as houses without basements having about half ($\exp(-0.66) = 0.52$) the radon levels of those with basements, after accounting for county. Step14: It is easy to show that the partial pooling model provides more objectively reasonable estimates than either the pooled or unpooled models, at least for counties with small sample sizes. Step15: Varying slope model Step16: Varying intercept and slope model Step17: Adding group-level predictors Step18: The standard errors on the intercepts are narrower than for the partial-pooling model without a county-level covariate. Step19: So, we might infer from this that counties with higher proportions of houses without basements tend to have higher baseline levels of radon. Perhaps this is related to the soil type, which in turn might influence what type of structures are built. Step20: That is, Step21: Exercise
15,259
<ASSISTANT_TASK:> Python Code: import tohu from tohu.v4.primitive_generators import * from tohu.v4.derived_generators import * from tohu.v4.dispatch_generators import * from tohu.v4.custom_generator import * from tohu.v4.utils import print_generated_sequence, make_dummy_tuples print(f'Tohu version: {tohu.__version__}') class QuuxGenerator(CustomGenerator): aa = Integer(100, 200) bb = HashDigest(length=6) cc = FakerGenerator(method='name') g = QuuxGenerator() print_generated_sequence(g, num=10, sep='\n', seed=12345) class SomeGeneratorWithExplicitItemsName(CustomGenerator): __tohu_items_name__ = 'Foobar' aa = Integer(100, 200) bb = HashDigest(length=6) cc = FakerGenerator(method='name') g = SomeGeneratorWithExplicitItemsName() print_generated_sequence(g, num=10, sep='\n', seed=12345) class QuuxGenerator(CustomGenerator): aa = Integer(100, 200) def __init__(self, faker_method): self.bb = FakerGenerator(method=faker_method) # Note: the call to super().__init__() needs to be at the end, # and it needs to be passed the same arguments as the __init__() # method from which it is called (here: `faker_method`). super().__init__(faker_method) g1 = QuuxGenerator(faker_method='first_name') g2 = QuuxGenerator(faker_method='city') print_generated_sequence(g1, num=10, sep='\n', seed=12345); print() print_generated_sequence(g2, num=10, sep='\n', seed=12345) some_tuples = make_dummy_tuples('abcdefghijklmnopqrstuvwxyz') #some_tuples[:5] class QuuxGenerator(CustomGenerator): aa = SelectOne(some_tuples) bb = GetAttribute(aa, 'x') cc = GetAttribute(aa, 'y') g = QuuxGenerator() print_generated_sequence(g, num=10, sep='\n', seed=12345) def square(x): return x * x def add(x, y): return x + y class QuuxGenerator(CustomGenerator): aa = Integer(0, 20) bb = Integer(0, 20) cc = Apply(add, aa, Apply(square, bb)) g = QuuxGenerator() print_generated_sequence(g, num=10, sep='\n', seed=12345) df = g.generate(num=100, seed=12345).to_df() print(list(df['aa'][:20])) print(list(df['bb'][:20])) print(list(df['cc'][:20])) all(df['aa'] + df['bb']**2 == df['cc']) class QuuxGenerator(CustomGenerator): name = FakerGenerator(method="name") tag = SelectOne(['a', 'bb', 'ccc']) g = QuuxGenerator() quux_items = g.generate(num=100, seed=12345) quux_items.to_df().head(5) tag_lookup = { 'a': [1, 2, 3, 4, 5], 'bb': [10, 20, 30, 40, 50], 'ccc': [100, 200, 300, 400, 500], } class FoobarGenerator(CustomGenerator): some_quux = SelectOne(quux_items) number = SelectOneDerived(Lookup(GetAttribute(some_quux, 'tag'), tag_lookup)) h = FoobarGenerator() h_items = h.generate(10000, seed=12345) df = h_items.to_df(fields={'name': 'some_quux.name', 'tag': 'some_quux.tag', 'number': 'number'}) df.head() print(df.query('tag == "a"')['number'].isin([1, 2, 3, 4, 5]).all()) print(df.query('tag == "bb"')['number'].isin([10, 20, 30, 40, 50]).all()) print(df.query('tag == "ccc"')['number'].isin([100, 200, 300, 400, 500]).all()) df.query('tag == "a"').head(5) df.query('tag == "bb"').head(5) df.query('tag == "ccc"').head(5) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Custom generator without __init__ method Step2: Explicitly setting the name of generated items Step3: The generated sequence is the same as above, but the name of the items has changed from Quux to Foobar. Step4: Custom generator with __init__ method Step5: Custom generator containing derived generators Step6: Example Step7: Example Step8: Example
15,260
<ASSISTANT_TASK:> Python Code: %matplotlib inline import math import random import seaborn as sns import matplotlib.pyplot as plt import pandas as pd from sklearn.datasets import load_boston import numpy as np import tensorflow as tf sns.set(style="ticks", color_codes=True) #load data from scikit-learn library dataset = load_boston() #load data as DataFrame houses = pd.DataFrame(dataset.data, columns=dataset.feature_names) #add target data to DataFrame houses['target'] = dataset.target #print first 5 entries of data print houses.head() print dataset['DESCR'] # Create a datset of correlations between house features corrmat = houses.corr() # Set up the matplotlib figure f, ax = plt.subplots(figsize=(9, 6)) # Draw the heatmap using seaborn sns.set_context("notebook", font_scale=0.7, rc={"lines.linewidth": 1.5}) sns.heatmap(corrmat, annot=True, square=True) f.tight_layout() sns.jointplot(houses['target'], houses['RM'], kind='hex') sns.jointplot(houses['target'], houses['LSTAT'], kind='hex') # convert housing data to numpy format houses_array = houses.as_matrix().astype(float) # split data into feature and target sets X = houses_array[:, :-1] y = houses_array[:, -1] # normalize the data per feature by dividing by the maximum value in each column X = X / X.max(axis=0) # split data into training and test sets trainingSplit = int(.7 * houses_array.shape[0]) X_train = X[:trainingSplit] y_train = y[:trainingSplit] X_test = X[trainingSplit:] y_test = y[trainingSplit:] print('Training set', X_train.shape, y_train.shape) print('Test set', X_test.shape, y_test.shape) # helper variables num_samples = X_train.shape[0] num_features = X_train.shape[1] num_outputs = 1 # Hyper-parameters batch_size = 50 num_hidden_1 = 10 num_hidden_2 = 5 learning_rate = 0.0001 training_epochs = 900 dropout_keep_prob = 0.4# set to no dropout by default # variable to control the resolution at which the training results are stored display_step = 1 def accuracy(predictions, targets): error = np.absolute(predictions.reshape(-1) - targets) return np.mean(error) def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) '''First we create a variable to store our graph''' graph = tf.Graph() '''Next we build our neural network within this graph variable''' with graph.as_default(): '''Our training data will come in as x feature data and y target data. We need to create tensorflow placeholders to capture this data as it comes in''' x = tf.placeholder(tf.float32, shape=(None, num_features)) _y = tf.placeholder(tf.float32, shape=(None)) '''Another placeholder stores the hyperparameter that controls dropout''' keep_prob = tf.placeholder(tf.float32) '''Finally, we convert the test and train feature data sets to tensorflow constants so we can use them to generate predictions on both data sets''' tf_X_test = tf.constant(X_test, dtype=tf.float32) tf_X_train = tf.constant(X_train, dtype=tf.float32) '''Next we create the parameter variables for the model. Each layer of the neural network needs it's own weight and bias variables which will be tuned during training. The sizes of the parameter variables are determined by the number of neurons in each layer.''' W_fc1 = weight_variable([num_features, num_hidden_1]) b_fc1 = bias_variable([num_hidden_1]) W_fc2 = weight_variable([num_hidden_1, num_hidden_2]) b_fc2 = bias_variable([num_hidden_2]) W_fc3 = weight_variable([num_hidden_2, num_outputs]) b_fc3 = bias_variable([num_outputs]) '''Next, we define the forward computation of the model. We do this by defining a function model() which takes in a set of input data, and performs computations through the network until it generates the output.''' def model(data, keep): # computing first hidden layer from input, using relu activation function fc1 = tf.nn.sigmoid(tf.matmul(data, W_fc1) + b_fc1) # adding dropout to first hidden layer fc1_drop = tf.nn.dropout(fc1, keep) # computing second hidden layer from first hidden layer, using relu activation function fc2 = tf.nn.sigmoid(tf.matmul(fc1_drop, W_fc2) + b_fc2) # adding dropout to second hidden layer fc2_drop = tf.nn.dropout(fc2, keep) # computing output layer from second hidden layer # the output is a single neuron which is directly interpreted as the prediction of the target value fc3 = tf.matmul(fc2_drop, W_fc3) + b_fc3 # the output is returned from the function return fc3 '''Next we define a few calls to the model() function which will return predictions for the current batch input data (x), as well as the entire test and train feature set''' prediction = model(x, keep_prob) test_prediction = model(tf_X_test, 1.0) train_prediction = model(tf_X_train, 1.0) '''Finally, we define the loss and optimization functions which control how the model is trained. For the loss we will use the basic mean square error (MSE) function, which tries to minimize the MSE between the predicted values and the real values (_y) of the input dataset. For the optimization function we will use basic Gradient Descent (SGD) which will minimize the loss using the specified learning rate.''' loss = tf.reduce_mean(tf.square(tf.sub(prediction, _y))) optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) '''We also create a saver variable which will allow us to save our trained model for later use''' saver = tf.train.Saver() # create an array to store the results of the optimization at each epoch results = [] '''First we open a session of Tensorflow using our graph as the base. While this session is active all the parameter values will be stored, and each step of training will be using the same model.''' with tf.Session(graph=graph) as session: '''After we start a new session we first need to initialize the values of all the variables.''' tf.initialize_all_variables().run() print('Initialized') '''Now we iterate through each training epoch based on the hyper-parameter set above. Each epoch represents a single pass through all the training data. The total number of training steps is determined by the number of epochs and the size of mini-batches relative to the size of the entire training set.''' for epoch in range(training_epochs): '''At the beginning of each epoch, we create a set of shuffled indexes so that we are using the training data in a different order each time''' indexes = range(num_samples) random.shuffle(indexes) '''Next we step through each mini-batch in the training set''' for step in range(int(math.floor(num_samples/float(batch_size)))): offset = step * batch_size '''We subset the feature and target training sets to create each mini-batch''' batch_data = X_train[indexes[offset:(offset + batch_size)]] batch_labels = y_train[indexes[offset:(offset + batch_size)]] '''Then, we create a 'feed dictionary' that will feed this data, along with any other hyper-parameters such as the dropout probability, to the model''' feed_dict = {x : batch_data, _y : batch_labels, keep_prob: dropout_keep_prob} '''Finally, we call the session's run() function, which will feed in the current training data, and execute portions of the graph as necessary to return the data we ask for. The first argument of the run() function is a list specifying the model variables we want it to compute and return from the function. The most important is 'optimizer' which triggers all calculations necessary to perform one training step. We also include 'loss' and 'prediction' because we want these as ouputs from the function so we can keep track of the training process. The second argument specifies the feed dictionary that contains all the data we want to pass into the model at each training step.''' _, l, p = session.run([optimizer, loss, prediction], feed_dict=feed_dict) '''At the end of each epoch, we will calcule the error of predictions on the full training and test data set. We will then store the epoch number, along with the mini-batch, training, and test accuracies to the 'results' array so we can visualize the training process later. How often we save the data to this array is specified by the display_step variable created above''' if (epoch % display_step == 0): batch_acc = accuracy(p, batch_labels) train_acc = accuracy(train_prediction.eval(session=session), y_train) test_acc = accuracy(test_prediction.eval(session=session), y_test) results.append([epoch, batch_acc, train_acc, test_acc]) '''Once training is complete, we will save the trained model so that we can use it later''' save_path = saver.save(session, "model_houses.ckpt") print("Model saved in file: %s" % save_path) df = pd.DataFrame(data=results, columns = ["epoch", "batch_acc", "train_acc", "test_acc"]) df.set_index("epoch", drop=True, inplace=True) fig, ax = plt.subplots(1, 1, figsize=(10, 4)) ax.plot(df) ax.set(xlabel='Epoch', ylabel='Error', title='Training result') ax.legend(df.columns, loc=1) print "Minimum test loss:", np.min(df["test_acc"]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Next, let's import the Boston housing prices dataset. This is included with the scikit-learn library, so we can import it directly from there. The data will come in as two numpy arrays, one with all the features, and one with the target (price). We will use pandas to convert this data to a DataFrame so we can visualize it. We will then print the first 5 entries of the dataset to see the kind of data we will be working with. Step2: You can see that the dataset contains only continuous features, which we can feed directly into the neural network for training. The target is also a continuous variable, so we can use regression to try to predict the exact value of the target. You can see more information about this dataset by printing the 'DESCR' object stored in the data set. Step3: Next, we will do some exploratory data visualization to get a general sense of the data and how the different features are related to each other and to the target we will try to predict. First, let's plot the correlations between each feature. Larger positive or negative correlation values indicate that the two features are related (large positive or negative correlation), while values closer to zero indicate that the features are not related (no correlation). Step4: We can get a more detailed picture of the relationship between any two variables in the dataset by using seaborn's jointplot function and passing it two features of our data. This will show a single-dimension histogram distribution for each feature, as well as a two-dimension density scatter plot for how the two features are related. From the correlation matrix above, we can see that the RM feature has a strong positive correlation to the target, while the LSTAT feature has a strong negative correlation to the target. Let's create jointplots for both sets of features to see how they relate in more detail Step5: As expected, the plots show a positive relationship between the RM feature and the target, and a negative relationship between the LSTAT feature and the target. Step6: Next, we set up some variables that we will use to define our model. The first group are helper variables taken from the dataset which specify the number of samples in our training set, the number of features, and the number of outputs. The second group are the actual hyper-parameters which define how the model is structured and how it performs. In this case we will be building a neural network with two hidden layers, and the size of each hidden layer is controlled by a hyper-parameter. The other hyper-parameters include Step7: Next, we define a few helper functions which will dictate how error will be measured for our model, and how the weights and biases should be defined. Step8: Now we are ready to build our neural network model in Tensorflow. Step9: Now that we have specified our model, we are ready to train it. We do this by iteratively calling the model, with each call representing one training step. At each step, we Step10: Now that the model is trained, let's visualize the training process by plotting the error we achieved in the small training batch, the full training set, and the test set at each epoch. We will also print out the minimum loss we were able to achieve in the test set over all the training steps.
15,261
<ASSISTANT_TASK:> Python Code: # Execute this cell to load the notebook's style sheet, then ignore it from IPython.core.display import HTML css_file = '../../style/custom.css' HTML(open(css_file, "r").read()) # Import Libraries # ---------------- import numpy as np from numba import jit import matplotlib import matplotlib.pyplot as plt from pylab import rcParams # Ignore Warning Messages # ----------------------- import warnings warnings.filterwarnings("ignore") from mpl_toolkits.axes_grid1 import make_axes_locatable # Definition of modelling parameters # ---------------------------------- # Define model discretization nx = 500 # number of grid points in x-direction nz = 174 # number of grid points in z-direction dx = 20.0 # spatial grid point distance in x-direction (m) dz = dx # spatial grid point distance in z-direction (m) # Define xmax, zmax xmax = nx * dx zmax = nz * dz # Define maximum recording time tmax = 6.0 # maximum wave propagation time (s) # Define source and receiver position xsrc = 2000.0 # x-source position (m) zsrc = 40.0 # z-source position (m) xrec = 8000.0 # x-receiver position (m) zrec = 40.0 # z-source position (m) f0 = 10 # dominant frequency of the source (Hz) print("f0 = ", f0, " Hz") t0 = 4.0/f0 # source time shift (s) isnap = 2 # snapshot interval (timesteps) # Calculate monochromatic wavefields for discrete frequency freq freq = 5.0 # discrete frequency (Hz) @jit(nopython=True) # use JIT for C-performance def update_d2px_d2pz_3pt(p, dx, dz, nx, nz, d2px, d2pz): for i in range(1, nx - 1): for j in range(1, nz - 1): d2px[i,j] = (p[i + 1,j] - 2 * p[i,j] + p[i - 1,j]) / dx**2 d2pz[i,j] = (p[i,j + 1] - 2 * p[i,j] + p[i,j - 1]) / dz**2 return d2px, d2pz # Define simple absorbing boundary frame based on wavefield damping # according to Cerjan et al., 1985, Geophysics, 50, 705-708 def absorb(nx,nz): FW = 60 # thickness of absorbing frame (gridpoints) a = 0.0053 coeff = np.zeros(FW) # define coefficients in absorbing frame for i in range(FW): coeff[i] = np.exp(-(a**2 * (FW-i)**2)) # initialize array of absorbing coefficients absorb_coeff = np.ones((nx,nz)) # compute coefficients for left grid boundaries (x-direction) zb=0 for i in range(FW): ze = nz - i - 1 for j in range(zb,ze): absorb_coeff[i,j] = coeff[i] # compute coefficients for right grid boundaries (x-direction) zb=0 for i in range(FW): ii = nx - i - 1 ze = nz - i - 1 for j in range(zb,ze): absorb_coeff[ii,j] = coeff[i] # compute coefficients for bottom grid boundaries (z-direction) xb=0 for j in range(FW): jj = nz - j - 1 xb = j xe = nx - j for i in range(xb,xe): absorb_coeff[i,jj] = coeff[j] return absorb_coeff # FD_2D_acoustic code with JIT optimization # ----------------------------------------- def FD_2D_acoustic_JIT(vp,dt,dx,dz,f0,xsrc,zsrc,op,freq): # calculate number of time steps nt # --------------------------------- nt = (int)(tmax/dt) # locate source on Cartesian FD grid # ---------------------------------- isrc = (int)(xsrc/dx) # source location in grid in x-direction jsrc = (int)(zsrc/dz) # source location in grid in x-direction # Source time function (Gaussian) # ------------------------------- src = np.zeros(nt + 1) time = np.linspace(0 * dt, nt * dt, nt) # 1st derivative of Gaussian src = -2. * (time - t0) * (f0 ** 2) * (np.exp(- (f0 ** 2) * (time - t0) ** 2)) # define clip value: 0.1 * absolute maximum value of source wavelet clip = 0.1 * max([np.abs(src.min()), np.abs(src.max())]) / (dx*dz) * dt**2 # Define absorbing boundary frame # ------------------------------- absorb_coeff = absorb(nx,nz) # Define squared vp-model # ----------------------- vp2 = vp**2 # Initialize empty pressure arrays # -------------------------------- p = np.zeros((nx,nz)) # p at time n (now) pold = np.zeros((nx,nz)) # p at time n-1 (past) pnew = np.zeros((nx,nz)) # p at time n+1 (present) d2px = np.zeros((nx,nz)) # 2nd spatial x-derivative of p d2pz = np.zeros((nx,nz)) # 2nd spatial z-derivative of p # INITIALIZE ARRAYS FOR REAL AND IMAGINARY PARTS OF MONOCHROMATIC WAVEFIELDS HERE! # -------------------------------------------------------------------------------- # real part of the monochromatic wavefield # imaginary part of the monochromatic wavefield # Initalize animation of pressure wavefield # ----------------------------------------- fig = plt.figure(figsize=(7,3)) # define figure size extent = [0.0,xmax,zmax,0.0] # define model extension # Plot Vp-model image = plt.imshow((vp.T)/1000, cmap=plt.cm.gray, interpolation='nearest', extent=extent) # Plot pressure wavefield movie image1 = plt.imshow(p.T, animated=True, cmap="RdBu", alpha=.75, extent=extent, interpolation='nearest', vmin=-clip, vmax=clip) plt.title('Pressure wavefield') plt.xlabel('x [m]') plt.ylabel('z [m]') plt.ion() plt.show(block=False) # Calculate Partial Derivatives # ----------------------------- for it in range(nt): # FD approximation of spatial derivative by 3 point operator if(op==3): d2px, d2pz = update_d2px_d2pz_3pt(p, dx, dz, nx, nz, d2px, d2pz) # Time Extrapolation # ------------------ pnew = 2 * p - pold + vp2 * dt**2 * (d2px + d2pz) # Add Source Term at isrc # ----------------------- # Absolute pressure w.r.t analytical solution pnew[isrc,jsrc] = pnew[isrc,jsrc] + src[it] / (dx * dz) * dt ** 2 # Apply absorbing boundary frame # ------------------------------ p *= absorb_coeff pnew *= absorb_coeff # Remap Time Levels # ----------------- pold, p = p, pnew # Calculate frequency domain wavefield at discrete frequency freq by DFT # ---------------------------------------------------------------------- # time # real part # imaginary part # Estimate real and imaginary part of pressur wavefield p by DFT # -------------------------------------------------------------- # display pressure snapshots if (it % isnap) == 0: image1.set_data(p.T) fig.canvas.draw() # Finalize computation of DFT # Return real and imaginary parts of the monochromatic wavefield # Run 2D acoustic FD modelling with 3-point spatial operater # ---------------------------------------------------------- %matplotlib notebook op = 3 # define spatial FD operator (3-point) # define homogeneous model with vp = 2500 m/s # Define time step dt = dx / (np.sqrt(2) * np.max(vp_hom))# time step (s) p_hom_re, p_hom_im = FD_2D_acoustic_JIT(vp_hom,dt,dx,dz,f0,xsrc,zsrc,op,freq) %matplotlib notebook # Plot real and imaginary parts of monochromatic wavefields clip_seis = 5e-10 extent_seis = [0.0,xmax/1000,zmax/1000,0.0] ax = plt.subplot(211) plt.imshow(p_hom_re.T, cmap=plt.cm.RdBu, aspect=1, vmin=-clip_seis, vmax=clip_seis, extent=extent_seis) plt.title('Real part of monochromatic wavefield') #plt.xlabel('x [km]') ax.set_xticks([]) plt.ylabel('z [km]') plt.subplot(212) plt.imshow(p_hom_im.T, cmap=plt.cm.RdBu, aspect=1, vmin=-clip_seis, vmax=clip_seis, extent=extent_seis) plt.title('Imaginary part of monochromatic wavefield') plt.xlabel('x [km]') plt.ylabel('z [km]') plt.tight_layout() plt.show() # Import FATT result for Marmousi-2 Vp model # ------------------------------------------ # Define model filename name_vp = "../marmousi-2/marmousi_II_fatt.vp" # Open file and write binary data to vp f = open(name_vp) data_type = np.dtype ('float32').newbyteorder ('<') vp_fatt = np.fromfile (f, dtype=data_type) # Reshape (1 x nx*nz) vector to (nx x nz) matrix vp_fatt = vp_fatt.reshape(nx,nz) # Plot Marmousi-2 vp-model # ------------------------ %matplotlib notebook extent = [0, xmax/1000, zmax/1000, 0] fig = plt.figure(figsize=(7,3)) # define figure size image = plt.imshow((vp_fatt.T)/1000, cmap=plt.cm.viridis, interpolation='nearest', extent=extent) cbar = plt.colorbar(aspect=12, pad=0.02) cbar.set_label('Vp [km/s]', labelpad=10) plt.title('Marmousi-2 FATT model') plt.xlabel('x [km]') plt.ylabel('z [km]') plt.show() # Run 2D acoustic FD modelling with 3-point spatial operater # ---------------------------------------------------------- %matplotlib notebook op = 3 # define spatial FD operator (3-point) # Define time step by CFL criterion dt = dx / (np.sqrt(2) * np.max(vp_fatt))# time step (s) p_fatt_re, p_fatt_im = FD_2D_acoustic_JIT(vp_fatt,dt,dx,dz,f0,xsrc,zsrc,op,freq) %matplotlib notebook # Plot real and imaginary parts of monochromatic wavefields clip_seis = 5e-9 extent_seis = [0.0,xmax/1000,zmax/1000,0.0] ax = plt.subplot(211) plt.imshow(p_fatt_re.T, cmap=plt.cm.RdBu, aspect=1, vmin=-clip_seis, vmax=clip_seis, extent=extent_seis) plt.title('Real part of monochromatic wavefield') #plt.xlabel('x [km]') ax.set_xticks([]) plt.ylabel('z [km]') plt.subplot(212) plt.imshow(p_fatt_im.T, cmap=plt.cm.RdBu, aspect=1, vmin=-clip_seis, vmax=clip_seis, extent=extent_seis) plt.title('Imaginary part of monochromatic wavefield') plt.xlabel('x [km]') plt.ylabel('z [km]') plt.tight_layout() plt.show() # COMPUTE RECEIVER GREEN'S FUNCTION FOR HOMOGENEOUS MODEL HERE! # ------------------------------------------------------------- %matplotlib notebook op = 3 # define spatial FD operator (3-point) # Define time step dt = dx / (np.sqrt(2) * np.max(vp_hom))# time step (s) g_hom_re, g_hom_im = FD_2D_acoustic_JIT(vp_hom,dt,dx,dz,f0,xsrc,zsrc,op,freq) %matplotlib notebook # COMPUTE SENSITVITY KERNEL FOR HOMOGENEOUS MODEL HERE! clip = 4e-18 extent = [0.0,xmax/1000,zmax/1000,0.0] # define model extension fig = plt.figure(figsize=(7,3)) # define figure size # Plot Vp-model image = plt.imshow((vp_hom.T)/1000, cmap=plt.cm.gray, interpolation='nearest', extent=extent) # Plot Sensitivity Kernel image1 = plt.imshow(K_hom.T, cmap="RdBu", alpha=.75, extent=extent, interpolation='nearest', vmin=-clip, vmax=clip) plt.title('Sensitivity Kernel (homogeneous model)') plt.xlabel('x [km]') plt.ylabel('z [km]') plt.show() # COMPUTE RECEIVER GREEN'S FUNCTION FOR MARMOUSI-2 FATT MODEL HERE! # ----------------------------------------------------------------- %matplotlib notebook op = 3 # define spatial FD operator (3-point) # Define time step dt = dx / (np.sqrt(2) * np.max(vp_fatt))# time step (s) g_fatt_re, g_fatt_im = FD_2D_acoustic_JIT(vp_fatt,dt,dx,dz,f0,xsrc,zsrc,op,freq) %matplotlib notebook # COMPUTE SENSITVITY KERNEL FOR Marmousi-2 FATT MODEL HERE! clip = 8e-17 extent = [0.0,xmax/1000,zmax/1000,0.0] # define model extension fig = plt.figure(figsize=(7,3)) # define figure size # Plot Vp-model image = plt.imshow((vp_fatt.T)/1000, cmap=plt.cm.gray, interpolation='nearest', extent=extent) # Plot Sensitivity Kernel image1 = plt.imshow(K_hom.T, cmap="RdBu", alpha=.5, extent=extent, interpolation='nearest', vmin=-clip, vmax=clip) plt.title('Sensitivity Kernel (Marmousi-2 FATT model)') plt.xlabel('x [km]') plt.ylabel('z [km]') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Computation of Sensitivity Kernels by 2D acoustic FD modelling Step2: As always, we start with the definition of the basic modelling parameters ... Step3: ... define a JIT-ed function for the spatial FD approximation ... Step4: ... initialize the absorbing boundary frame ... Step5: In the 2D FD acoustic modelling code, we implement the DFT of the time-domain wavefields, by initializing the real and imaginary parts of the pressure wavefields, calculate the trigonometric factors for the DFT within the time-loop, apply the DFT to the pressure wavefield p for the discrete frequency freq and finally return the real and imaginary parts of the frequency domain wavefields ... Step6: Modelling monochromatic frequency domain wavefields for a homogeneous acoustic medium Step7: The time domain wavefields seem to be correct. Let's take a look at the frequency domain wavefield Step8: Modelling monochromatic frequency domain wavefields for the Marmousi-2 FATT model Step9: ... and run the time-domain modelling code Step10: Sensitivity Kernels
15,262
<ASSISTANT_TASK:> Python Code: import numpy from matplotlib import pyplot %matplotlib notebook def RHS(U, dx): RHS term. Parameters ---------- U : array contains [phi, phi_t, phi_x] at each point dx : double grid spacing Returns ------- dUdt : array contains the required time derivatives # def apply_boundaries(dUdt): Periodic boundaries # def grid(Npoints): Npoints is the number of interior points dx = 2.0 / Npoints return dx, numpy.linspace(-1.0-dx/2.0, 1.0+dx/2.0, Npoints+2) def RK2_step(U, RHS, apply_boundaries, dt, dx): RK2 method # def initial_data(x): Set the initial data. x are the coordinates. U (phi, phi_t, phi_x) are the variables. U = numpy.zeros((3, len(x))) U[0, :] = numpy.exp(-20.0 * x**2) U[2, :] = -40.0*x*numpy.exp(-20.0 * x**2) return U Npoints = 50 dx, x = grid(Npoints) dt = dx / 4 U0 = initial_data(x) U = initial_data(x) Nsteps = int(1.0 / dt) for n in range(Nsteps): # pyplot.figure() pyplot.plot(x, U0[0, :], 'b--', label="Initial data") pyplot.plot(x, U[0, :], 'k-', label=r"$t=1$") pyplot.xlabel(r"$x$") pyplot.ylabel(r"$\phi$") pyplot.xlim(-1, 1) pyplot.legend() pyplot.show() Npoints = 50 dx, x = grid(Npoints) dt = dx / 4 U0 = initial_data(x) U = initial_data(x) Nsteps = int(2.0 / dt) for n in range(Nsteps): # pyplot.figure() pyplot.plot(x, U0[0, :], 'b--', label="Initial data") pyplot.plot(x, U[0, :], 'k-', label=r"$t=2$") pyplot.xlabel(r"$x$") pyplot.ylabel(r"$\phi$") pyplot.xlim(-1, 1) pyplot.legend() pyplot.show() def error_norms(U, U_initial): Error norms (1, 2, infinity) N = len(U) error_1 = numpy.sum(numpy.abs(U - U_initial))/N error_2 = numpy.sqrt(numpy.sum((U - U_initial)**2)/N) error_inf = numpy.max(numpy.abs(U - U_initial)) return error_1, error_2, error_inf Npoints_all = 50 * 2**(numpy.arange(0, 6)) dxs = numpy.zeros((len(Npoints_all,))) wave_errors = numpy.zeros((3, len(Npoints_all))) for i, Npoints in enumerate(Npoints_all): dx, x = grid(Npoints) dt = dx / 4 U0 = initial_data(x) U = initial_data(x) Nsteps = int(2.0 / dt) for n in range(Nsteps): # dxs[i] = dx wave_errors[:, i] = error_norms(U[0, :], U0[0, :]) pyplot.figure() pyplot.loglog(dxs, wave_errors[0, :], 'bx', label=r"${\cal E}_1$") pyplot.loglog(dxs, wave_errors[1, :], 'go', label=r"${\cal E}_2$") pyplot.loglog(dxs, wave_errors[2, :], 'r+', label=r"${\cal E}_{\infty}$") pyplot.loglog(dxs, wave_errors[1, 0]*(dxs/dxs[0])**4, 'k-', label=r"$p=4$") pyplot.xlabel(r"$\Delta x$") pyplot.ylabel("Error norm") pyplot.legend(loc="lower right") pyplot.show() def initial_data_asymmetric(x): Set the initial data. x are the coordinates. U (phi, phi_t, phi_x) are the variables. U = numpy.zeros((3, len(x))) U[0, :] = numpy.sin(numpy.pi*x)*(1-x)**2*(1+x)**3 U[2, :] = numpy.pi*numpy.cos(numpy.pi*x)*(1-x)**2*(1+x)**3 + numpy.sin(numpy.pi*x)*(2.0*(1-x)*(1+x)**3 + 3.0*(1-x)**2*(1+x)**2) return U Npoints_all = 50 * 2**(numpy.arange(0, 6)) dxs = numpy.zeros((len(Npoints_all,))) wave_errors = numpy.zeros((3, len(Npoints_all))) for i, Npoints in enumerate(Npoints_all): dx, x = grid(Npoints) dt = dx / 4 U0 = initial_data_asymmetric(x) U = initial_data_asymmetric(x) Nsteps = int(2.0 / dt) for n in range(Nsteps): # dxs[i] = dx wave_errors[:, i] = error_norms(U[0, :], U0[0, :]) pyplot.figure() pyplot.loglog(dxs, wave_errors[0, :], 'bx', label=r"${\cal E}_1$") pyplot.loglog(dxs, wave_errors[1, :], 'go', label=r"${\cal E}_2$") pyplot.loglog(dxs, wave_errors[2, :], 'r+', label=r"${\cal E}_{\infty}$") pyplot.loglog(dxs, wave_errors[1, 0]*(dxs/dxs[0])**2, 'k-', label=r"$p=2$") pyplot.xlabel(r"$\Delta x$") pyplot.ylabel("Error norm") pyplot.legend(loc="lower right") pyplot.show() Npoints = 50 dx, x = grid(Npoints) dt = dx U0 = initial_data(x) U = initial_data(x) Nsteps = int(2.0/dt) for n in range(Nsteps): # pyplot.figure() pyplot.plot(x, U0[0, :], 'b--', label="Initial data") pyplot.plot(x, U[0, :], 'k-', label=r"$t=2$") pyplot.xlabel(r"$x$") pyplot.ylabel(r"$\phi$") pyplot.xlim(-1, 1) pyplot.legend() pyplot.show() Npoints = 200 dx, x = grid(Npoints) dt = dx U0 = initial_data(x) U = initial_data(x) Nsteps = int(2.0/dt) for n in range(Nsteps): # pyplot.figure() pyplot.plot(x, U0[0, :], 'b--', label="Initial data") pyplot.plot(x, U[0, :], 'k-', label=r"$t=2$") pyplot.xlabel(r"$x$") pyplot.ylabel(r"$\phi$") pyplot.xlim(-1, 1) pyplot.legend() pyplot.show() Npoints = 400 dx, x = grid(Npoints) dt = dx U0 = initial_data(x) U = initial_data(x) Nsteps = int(2.0/dt) for n in range(Nsteps): # pyplot.figure() pyplot.plot(x, U0[0, :], 'b--', label="Initial data") pyplot.plot(x, U[0, :], 'k-', label=r"$t=2$") pyplot.xlabel(r"$x$") pyplot.ylabel(r"$\phi$") pyplot.xlim(-1, 1) pyplot.legend() pyplot.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: We start by implementing the right-hand-side of the evolution Step4: We see that this doesn't give us the update term at the edges of the domain. We'll enforce that the domain is periodic as a simple boundary condition. Usually this would be an outgoing wave type boundary condition, but anything that fixes the update term at the boundary is fine. Step6: Then we fix the grid. To work with the periodic domain we need to stagger the grid away from the boundaries. We'll fix the domain to be $x \in [-1, 1]$ Step8: We take, with some changes in notation, the RK2 method from earlier. This will take only one step. Step10: There are only two things we need to fix. One is the timestep. For now, we'll set it to $\Delta t = \Delta x / 4$. The second is the initial data. We will choose the initial data to be a time symmetric gaussian, Step11: Now we can evolve Step12: We can see the expected behaviour Step14: Convergence Step16: This fourth order convergence is an artefact of the initial data and boundary conditions, which are perfectly symmetric. If we change the initial data to make it asymmetric, we'll get something much closer to second order Step17: Courant limits Step18: The result doesn't look too bad, but the numerical approximation is actually bigger than the correct solution. What happens as we increase resolution? Step19: The bulk of the solution looks good, but there's small oscillations at the edges. Increase resolution a bit further
15,263
<ASSISTANT_TASK:> Python Code: def find_similar_pt(): rn = lambda: random.randint(0, 10000) aset = [(rn(), rn()) for i in range(40000)] q = (rn(), rn()) rad = 9990 distance = lambda a, b: math.sqrt(sum([((x-y)**2) for x, y in zip(a, b)])) s = time.time() print("creating vptree...") root = VpNode(aset, distance=distance) print("vptree created", time.time() - s) s = time.time() print("searching...") se = VpSearch(root, q, rad, 30) #out = se.search() out = se.knn() for k, v in sorted(se.stat.items()): print(k, v) print("number of resultes: %s" % len(out)) print("vptree search done, searching time", time.time() - s) projx = lambda x: map(lambda y: y[0], x) projy = lambda x: map(lambda y: y[1], x) fig, ax = plt.subplots(nrows=1, ncols=2) ax[0].scatter(list(projx(aset)), list(projy(aset)), s = 20, alpha=0.1) ax[0].scatter([q[0]], [q[1]], s = 40, color='g') ax[0].scatter(list(projx(out)), list(projy(out)), s = 10, color='r') ax[0].annotate("query", xy=q) ax[1].scatter([q[0]], [q[1]], s = 40, color='g') ax[1].scatter(list(projx(out)), list(projy(out)), s = 10, color='r') plt.show() find_similar_pt() def tsmaker(m, s, j): "returns metadata and a time series in the shape of a jittered normal" t = np.arange(0.0, 1.0, 0.01) v = norm.pdf(t, m, s) + j*np.random.randn(100) return (t, v) mus = np.random.uniform(low=0.0, high=1.0, size=50) sigs = np.random.uniform(low=0.05, high=0.4, size=50) jits = np.random.uniform(low=0.05, high=0.2, size=50) ts_set = [tsmaker(m, s, j) for i, m, s, j in zip(range(50), mus, sigs, jits)] ts_set[0][1] def find_similar_ts(): rn = lambda: random.randint(0, 10000) aset = [tsmaker(m, s, j) for i, m, s, j in zip(range(50), mus, sigs, jits)] q = tsmaker(mus[1], sigs[1], jits[1]) rad = 9990 distance = lambda a, b: math.sqrt(sum([((x-y)**2) for x, y in zip(a[1], b[1])])) s = time.time() print("creating vptree...") root = VpNode(aset, distance=distance) print("vptree created", time.time() - s) s = time.time() print("searching...") se = VpSearch(root, q, rad, 5) #out = se.search() out = se.knn() for k, v in sorted(se.stat.items()): print(k, v) print("number of resultes: %s s" % len(out)) print("vptree search done", time.time() - s) plt.plot(q[1], label='original timeseries', linewidth=2) plt.plot(out[0][1], label='similar_1') plt.plot(out[1][1], label='similar_2') plt.plot(out[2][1], label='similar_3') plt.legend() plt.show() find_similar_ts() find_similar_ts() find_similar_ts() def levenshtein(a,b): "Calculates the Levenshtein distance between a and b." n, m = len(a), len(b) if n > m: # Make sure n <= m, to use O(min(n,m)) space a,b = b,a n,m = m,n current = range(n+1) for i in range(1,m+1): previous, current = current, [i]+[0]*n for j in range(1,n+1): add, delete = previous[j]+1, current[j-1]+1 change = previous[j-1] if a[j-1] != b[i-1]: change = change + 1 current[j] = min(add, delete, change) return current[n] def find_similar_ts(file_name): f = open(file_name) next(f) aset = [w[:-1] for w in f] rad = 1 distance = levenshtein s = time.time() print("\ninput set %s points" % len(aset)) print("creating tree...") root = VpNode(aset, distance=distance) print("created: %s nodes" % VpNode.ids) print("done in s: %s" % (time.time() - s)) print("searching...") while True: q = input(">>") s = time.time() se = VpSearch(root, q, rad, 10) out = se.knn() print(se.stat) print("founded %s results:" % len(out)) count = 1 print("\n".join(out)) print("done in s: %s" % (time.time() - s)) find_similar_ts('wordsEn.txt') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: here we find the top 30 closest points to objective point in a set of 40000 tuples. The graph below shows Step2: 2. VPTREE on timeseries Step3: 3. VPTREE on text corpus Step4: Note
15,264
<ASSISTANT_TASK:> Python Code: import pandas as pd df = pd.DataFrame({'Name': ['Name1', 'Name2', 'Name3'], '2001': [2, 1, 0], '2002': [5, 4, 5], '2003': [0, 2, 0], '2004': [0, 0, 0], '2005': [4, 4, 0], '2006': [6, 0, 2]}) def g(df): cols = list(df)[1:] cols = cols[::-1] for idx in df.index: s = 0 cnt = 0 for col in cols: if df.loc[idx, col] != 0: s += df.loc[idx, col] cnt += 1 df.loc[idx, col] = s / (max(cnt, 1)) return df df = g(df.copy()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
15,265
<ASSISTANT_TASK:> Python Code: # Import all the libraries we'll be using import numpy as np import statsmodels.api as sm from statsmodels import regression, stats import statsmodels import matplotlib.pyplot as plt residuals = np.random.normal(0, 1, 100) _, pvalue, _, _ = statsmodels.stats.stattools.jarque_bera(residuals) print pvalue residuals = np.random.poisson(size = 100) _, pvalue, _, _ = statsmodels.stats.stattools.jarque_bera(residuals) print pvalue # Artificially create dataset with constant variance around a line xs = np.arange(100) y1 = xs + 3*np.random.randn(100) # Get results of linear regression slr1 = regression.linear_model.OLS(y1, sm.add_constant(xs)).fit() # Construct the fit line fit1 = slr1.params[0] + slr1.params[1]*xs # Plot data and regression line plt.scatter(xs, y1) plt.plot(xs, fit1) plt.title('Homoskedastic errors'); plt.legend(['Predicted', 'Observed']) plt.xlabel('X') plt.ylabel('Y'); # Artificially create dataset with changing variance around a line y2 = xs*(1 + .5*np.random.randn(100)) # Perform linear regression slr2 = regression.linear_model.OLS(y2, sm.add_constant(xs)).fit() fit2 = slr2.params[0] + slr2.params[1]*xs # Plot data and regression line plt.scatter(xs, y2) plt.plot(xs, fit2) plt.title('Heteroskedastic errors') plt.legend(['Predicted', 'Observed']) plt.xlabel('X') plt.ylabel('Y') # Print summary of regression results slr2.summary() residuals1 = y1-fit1 residuals2 = y2-fit2 xs_with_constant = sm.add_constant(xs) _, jb_pvalue1, _, _ = statsmodels.stats.stattools.jarque_bera(residuals1) _, jb_pvalue2, _, _ = statsmodels.stats.stattools.jarque_bera(residuals2) print "p-value for residuals1 being normal", jb_pvalue1 print "p-value for residuals2 being normal", jb_pvalue2 _, pvalue1, _, _ = stats.diagnostic.het_breushpagan(residuals1, xs_with_constant) _, pvalue2, _, _ = stats.diagnostic.het_breushpagan(residuals2, xs_with_constant) print "p-value for residuals1 being heteroskedastic", pvalue1 print "p-value for residuals2 being heteroskedastic", pvalue2 print slr2.summary() print slr2.get_robustcov_results().summary() # Load pricing data for an asset start = '2014-01-01' end = '2015-01-01' y = get_pricing('DAL', fields='price', start_date=start, end_date=end) x = np.arange(len(y)) # Regress pricing data against time model = regression.linear_model.OLS(y, sm.add_constant(x)).fit() # Construct the fit line prediction = model.params[0] + model.params[1]*x # Plot pricing data and regression line plt.plot(x,y) plt.plot(x, prediction, color='r') plt.legend(['DAL Price', 'Regression Line']) plt.xlabel('Time') plt.ylabel('Price') # Print summary of regression results model.summary() _, prices_qstats, prices_qstat_pvalues = statsmodels.tsa.stattools.acf(y, qstat=True) _, prices_qstats, prices_qstat_pvalues = statsmodels.tsa.stattools.acf(y-prediction, qstat=True) print 'Prices autocorrelation p-values', prices_qstat_pvalues print 'Residuals autocorrelation p-values', prices_qstat_pvalues _, jb_pvalue, _, _ = statsmodels.stats.stattools.jarque_bera(y-prediction) print 'Jarque-Bera p-value that residuals are normally distributed', jb_pvalue from math import sqrt # Find the covariance matrix of the coefficients cov_mat = stats.sandwich_covariance.cov_hac(model) # Print the standard errors of each coefficient from the original model and from the adjustment print 'Old standard errors:', model.bse[0], model.bse[1] print 'Adjusted standard errors:', sqrt(cov_mat[0,0]), sqrt(cov_mat[1,1]) # Load pricing data for asset and two market indices start = '2014-01-01' end = '2015-01-01' b1 = get_pricing('SPY', fields='price', start_date=start, end_date=end) b2 = get_pricing('MDY', fields='price', start_date=start, end_date=end) a = get_pricing('HPQ', fields='price', start_date=start, end_date=end) # Run multiple linear regression mlr = regression.linear_model.OLS(a, sm.add_constant(np.column_stack((b1,b2)))).fit() # Construct fit curve using dependent variables and estimated coefficients mlr_prediction = mlr.params[0] + mlr.params[1]*b1 + mlr.params[2]*b2 # Print regression statistics print 'R-squared:', mlr.rsquared_adj print 't-statistics of coefficients:\n', mlr.tvalues # Plot asset and model a.plot() mlr_prediction.plot() plt.legend(['Asset', 'Model']); plt.ylabel('Price') # Perform linear regression slr = regression.linear_model.OLS(a, sm.add_constant(b1)).fit() slr_prediction = slr.params[0] + slr.params[1]*b1 # Print fit statistics print 'R-squared:', slr.rsquared_adj print 't-statistics of coefficients:\n', slr.tvalues # Plot asset and model a.plot() slr_prediction.plot() plt.ylabel('Price') plt.legend(['Asset', 'Model']); from scipy.stats import pearsonr # Construct Anscombe's arrays x1 = [10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5] y1 = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68] x2 = [10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5] y2 = [9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74] x3 = [10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5] y3 = [7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73] x4 = [8, 8, 8, 8, 8, 8, 8, 19, 8, 8, 8] y4 = [6.58, 5.76, 7.71, 8.84, 8.47, 7.04, 5.25, 12.50, 5.56, 7.91, 6.89] # Perform linear regressions on the datasets slr1 = regression.linear_model.OLS(y1, sm.add_constant(x1)).fit() slr2 = regression.linear_model.OLS(y2, sm.add_constant(x2)).fit() slr3 = regression.linear_model.OLS(y3, sm.add_constant(x3)).fit() slr4 = regression.linear_model.OLS(y4, sm.add_constant(x4)).fit() # Print regression coefficients, Pearson r, and R-squared for the 4 datasets print 'Cofficients:', slr1.params, slr2.params, slr3.params, slr4.params print 'Pearson r:', pearsonr(x1, y1)[0], pearsonr(x2, y2)[0], pearsonr(x3, y3)[0], pearsonr(x4, y4)[0] print 'R-squared:', slr1.rsquared, slr2.rsquared, slr3.rsquared, slr4.rsquared # Plot the 4 datasets with their regression lines f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2) xs = np.arange(20) ax1.plot(slr1.params[0] + slr1.params[1]*xs, 'r') ax1.scatter(x1, y1) ax1.set_xlabel('x1') ax1.set_ylabel('y1') ax2.plot(slr2.params[0] + slr2.params[1]*xs, 'r') ax2.scatter(x2, y2) ax2.set_xlabel('x2') ax2.set_ylabel('y2') ax3.plot(slr3.params[0] + slr3.params[1]*xs, 'r') ax3.scatter(x3, y3) ax3.set_xlabel('x3') ax3.set_ylabel('y3') ax4.plot(slr4.params[0] + slr4.params[1]*xs, 'r') ax4.scatter(x4,y4) ax4.set_xlabel('x4') ax4.set_ylabel('y4'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Heteroskedasticity Step2: Testing for Heteroskedasticity Step3: Correcting for Heteroskedasticity Step4: Serial correlation of errors Step5: Testing for Autocorrelation Step6: Newey-West Step7: # Multicollinearity Step8: Example
15,266
<ASSISTANT_TASK:> Python Code: %%capture !python -m pip install abraia import os if not os.getenv('ABRAIA_KEY'): #@markdown <a href="https://abraia.me/console/settings" target="_blank">Get your ABRAIA_KEY</a> abraia_key = '' #@param {type: "string"} %env ABRAIA_KEY=$abraia_key from abraia import Abraia abraia = Abraia() %%capture #@markdown <a href="https://abraia.me/console/gallery" target="_blank">Upload and manage your images</a> url = 'http://upload.wikimedia.org/wikipedia/commons/1/13/Usain_Bolt_16082009_Berlin.JPG' abraia.upload_file(url, 'usain.jpg') import pandas as pd folder = '' files, folders = abraia.list_files(folder) pd.DataFrame(files) import matplotlib.pyplot as plt img = abraia.load_image('usain.jpg') plt.figure() plt.title('Image') plt.imshow(img) plt.axis('off') plt.show() import json meta = abraia.load_metadata('usain.jpg') abraia.save_file('usain.json', json.dumps(meta)) meta <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: List files Step2: Plot an image Step3: Image metadata
15,267
<ASSISTANT_TASK:> Python Code: from dkrz_forms import form_widgets form_widgets.show_status('form-submission') MY_LAST_NAME = "ki" # e.gl MY_LAST_NAME = "schulz" #------------------------------------------------- from dkrz_forms import form_handler, form_widgets, checks form_info = form_widgets.check_pwd(MY_LAST_NAME) sfg = form_handler.init_form(form_info) sf = sfg.sub.entity_out.form_info sf.submission_type = "..." # example: sf.submission_type = "initial_version" sf.institution = "..." # example: sf.institution = "Alfred Wegener Institute" sf.institute_id = "..." # example: sf.institute_id = "AWI" sf.model_id = "..." # example: sf.model_id = "AWI-HIRHAM5" sf.experiment_id = "..." # example: sf.experiment_id = "evaluation" # ["value_a","value_b"] in case of multiple experiments sf.time_period = "..." # example: sf.time_period = "197901-201412" # ["time_period_a","time_period_b"] in case of multiple values sf.example_file_name = "..." # example: sf.example_file_name = "tas_AFR-44_MPI-M-MPI-ESM-LR_rcp26_r1i1p1_MPI-CSC-REMO2009_v1_mon_yyyymm-yyyymm.nc" # Please run this cell as it is to check your example file name structure # to_do: implement submission_form_check_file function - output result (attributes + check_result) form_handler.cordex_file_info(sf,sf.example_file_name) sf.grid_mapping_name = "..." # example: sf.grid_mapping_name = "rotated_latitude_longitude" sf.grid_as_specified_if_rotated_pole = "..." # example: sf.grid_as_specified_if_rotated_pole = "yes" sf.data_qc_status = "..." # example: sf.data_qc_status = "QC2-CORDEX" sf.data_qc_comment = "..." # any comment of quality status of the files sf.terms_of_use = "..." # example: sf.terms_of_use = "unrestricted" sf.directory_structure = "..." # example: sf.directory_structure = "compliant" sf.data_path = "..." # example: sf.data_path = "mistral.dkrz.de:/mnt/lustre01/work/bm0021/k204016/CORDEX/archive/" sf.data_information = "..." # ...any info where data can be accessed and transfered to the data center ... " sf.exclude_variables_list = "..." # example: sf.exclude_variables_list=["bnds", "vertices"] sf.uniqueness_of_tracking_id = "..." # example: sf.uniqueness_of_tracking_id = "yes" sf.variable_list_day = [ "clh","clivi","cll","clm","clt","clwvi", "evspsbl","evspsblpot", "hfls","hfss","hurs","huss","hus850", "mrfso","mrro","mrros","mrso", "pr","prc","prhmax","prsn","prw","ps","psl", "rlds","rlus","rlut","rsds","rsdt","rsus","rsut", "sfcWind","sfcWindmax","sic","snc","snd","snm","snw","sund", "tas","tasmax","tasmin","tauu","tauv","ta200","ta500","ta850","ts", "uas","ua200","ua500","ua850", "vas","va200","va500","va850","wsgsmax", "zg200","zg500","zmla" ] sf.variable_list_mon = [ "clt", "evspsbl", "hfls","hfss","hurs","huss","hus850", "mrfso","mrro","mrros","mrso", "pr","psl", "rlds","rlus","rlut","rsds","rsdt","rsus","rsut", "sfcWind","sfcWindmax","sic","snc","snd","snm","snw","sund", "tas","tasmax","tasmin","ta200", "ta500","ta850", "uas","ua200","ua500","ua850", "vas","va200","va500","va850", "zg200","zg500" ] sf.variable_list_sem = [ "clt", "evspsbl", "hfls","hfss","hurs","huss","hus850", "mrfso","mrro","mrros","mrso", "pr","psl", "rlds","rlus","rlut","rsds","rsdt","rsus","rsut", "sfcWind","sfcWindmax","sic","snc","snd","snm","snw","sund", "tas","tasmax","tasmin","ta200","ta500","ta850", "uas","ua200","ua500","ua850", "vas","va200","va500","va850", "zg200","zg500" ] sf.variable_list_fx = [ "areacella", "mrsofc", "orog", "rootd", "sftgif","sftlf" ] # simple consistency check report for your submission form res = form_handler.check_submission(sf) sf.sub.valid_submission = res['valid_submission'] form_handler.DictTable(res) form_handler.save_form(sf,"..my comment..") # edit my comment info #evaluate this cell if you want a reference to the saved form emailed to you # (only available if you access this form via the DKRZ form hosting service) form_handler.email_form_info() # evaluate this cell if you want a reference (provided by email) # (only available if you access this form via the DKRZ hosting service) form_handler.email_form_info(sf) form_handler.email_form_info(sf) form_handler.form_submission(sf) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Start submission procedure Step2: please provide information on the contact person for this CORDEX data submission request Step3: Requested general information Step4: institute_id Step5: model_id Step6: experiment_id and time_period Step7: Example file name Step8: information on the grid_mapping Step9: Does the grid configuration exactly follow the specifications in ADD2 (Table 1) Step10: Please provide information on quality check performed on the data you plan to submit Step11: Terms of use Step12: Information on directory structure and data access path Step13: Give the path where the data reside, for example Step14: Exclude variable list Step15: Uniqueness of tracking_id and creation_date Step16: Variable list Step17: Check your submission form Step18: Save your form Step19: officially submit your form
15,268
<ASSISTANT_TASK:> Python Code: # Import Numpy, TensorFlow, TFLearn, and MNIST data import numpy as np import tensorflow as tf import tflearn import tflearn.datasets.mnist as mnist # Retrieve the training and test data trainX, trainY, testX, testY = mnist.load_data(one_hot=True) # Visualizing the data import matplotlib.pyplot as plt %matplotlib inline # Function for displaying a training image by it's index in the MNIST set def show_digit(index): label = trainY[index].argmax(axis=0) # Reshape 784 array into 28x28 image image = trainX[index].reshape([28,28]) plt.title('Training data, index: %d, Label: %d' % (index, label)) plt.imshow(image, cmap='gray_r') plt.show() # Display the first (index 0) training image show_digit(0) # Define the neural network def build_model(): # This resets all parameters and variables, leave this here tf.reset_default_graph() #### Your code #### # Include the input layer, hidden layer(s), and set how you want to train the model net = tflearn.input_data([None, 784]) net = tflearn.fully_connected(net, 500, activation='ReLU') net = tflearn.fully_connected(net, 250, activation='ReLU') net = tflearn.fully_connected(net, 10, activation='softmax') net = tflearn.regression(net, optimizer='sgd', learning_rate=0.1, loss='categorical_crossentropy') # This model assumes that your network is named "net" model = tflearn.DNN(net) return model # Build the model model = build_model() # Training model.fit(trainX, trainY, validation_set=0.1, show_metric=True, batch_size=100, n_epoch=20) # Compare the labels that our model predicts with the actual labels # Find the indices of the most confident prediction for each item. That tells us the predicted digit for that sample. predictions = np.array(model.predict(testX)).argmax(axis=1) # Calculate the accuracy, which is the percentage of times the predicated labels matched the actual labels actual = testY.argmax(axis=1) test_accuracy = np.mean(predictions == actual, axis=0) # Print out the result print("Test accuracy: ", test_accuracy) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Retrieving training and test data Step2: Visualize the training data Step3: Building the network Step4: Training the network Step5: Testing
15,269
<ASSISTANT_TASK:> Python Code: %matplotlib inline import os import sys import platform import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import flopy print(sys.version) print('numpy version: {}'.format(np.__version__)) print('matplotlib version: {}'.format(mpl.__version__)) print('flopy version: {}'.format(flopy.__version__)) modelname = 'swiex1' #Set name of MODFLOW exe # assumes executable is in users path statement exe_name = 'mf2005' if platform.system() == 'Windows': exe_name = 'mf2005.exe' workspace = os.path.join('data') #make sure workspace directory exists if not os.path.exists(workspace): os.makedirs(workspace) ml = flopy.modflow.Modflow(modelname, version='mf2005', exe_name=exe_name, model_ws=workspace) nlay = 1 nrow = 1 ncol = 50 delr = 5. delc = 1. nper, perlen, nstp = 1, 400., 200 discret = flopy.modflow.ModflowDis(ml, nlay=nlay, nrow=nrow, ncol=ncol, delr=delr, delc=delc, top=0, botm=-40.0, steady=True, nper=nper, perlen=perlen, nstp=nstp) ibound = np.ones((nrow, ncol)) ibound[0, -1] = -1 bas = flopy.modflow.ModflowBas(ml, ibound=ibound, strt=0.0) lpf = flopy.modflow.ModflowLpf(ml, hk=2., laytyp=0, layavg=0) wel = flopy.modflow.ModflowWel(ml, stress_period_data = {0:[[0, 0, 0, 1]]} ) spd = {} for istp in range(49, nstp+1, 50): spd[(0, istp)] = ['save head', 'print budget'] spd[(0, istp+1)] = [] oc = flopy.modflow.ModflowOc(ml, stress_period_data=spd) pcg = flopy.modflow.ModflowPcg(ml) z = np.zeros((nrow, ncol), np.float) z[0, 16:24] = np.arange(-2.5, -40, -5) z[0, 24:] = -40 z = [z] # zeta needs to be isource = np.ones((nrow, ncol), np.int) isource[0, 0] = 2 # swi = flopy.modflow.ModflowSwi2(ml, nsrf=1, istrat=1, toeslope=0.2, tipslope=0.2, nu=[0, 0.025], zeta=z, ssz=0.2, isource=isource, nsolver=1, iswizt=55) ml.write_input() ml.run_model(silent=True) # read model heads hfile = flopy.utils.HeadFile(os.path.join(ml.model_ws, modelname+'.hds')) head = hfile.get_alldata() # read model zeta zfile = flopy.utils.CellBudgetFile(os.path.join(ml.model_ws, modelname+'.zta')) kstpkper = zfile.get_kstpkper() zeta = [] for kk in kstpkper: zeta.append(zfile.get_data(kstpkper=kk, text='ZETASRF 1')[0]) zeta = np.array(zeta) plt.figure(figsize=(16,6)) # define x-values of xcells and plot interface x = np.arange(0, ncol*delr, delr) + delr/2. label = ['SWI2','_','_','_'] # labels with an underscore are not added to legend for i in range(4): zt = np.ma.masked_outside(zeta[i,0,0,:], -39.99999, -0.00001) plt.plot(x, zt, 'r-', lw=1, zorder=10, label=label[i]) # Data for the Wilson - Sa da Costa solution k = 2.0 n = 0.2 nu = 0.025 H = 40.0 tzero = H * n / (k * nu) / 4.0 Ltoe = np.zeros(4) v = 0.125 t = np.arange(100, 500, 100) label = ['Wilson and Sa Da Costa (1982)','_','_','_'] # labels with an underscore are not added to legend for i in range(4): Ltoe[i] = H * np.sqrt(k * nu * (t[i] + tzero) / n / H) plt.plot([100 - Ltoe[i] + v * t[i], 100 + Ltoe[i] + v * t[i]], [0, -40], '0.75', lw=8, zorder=0, label=label[i]) # Scale figure and add legend plt.axis('scaled') plt.xlim(0, 250) plt.ylim(-40, 0) plt.legend(loc='best'); fig = plt.figure(figsize=(16, 3)) ax = fig.add_subplot(1, 1, 1) modelxsect = flopy.plot.ModelCrossSection(model=ml, line={'Row': 0}) label = ['SWI2','_','_','_'] for k in range(zeta.shape[0]): modelxsect.plot_surface(zeta[k, :, :, :], masked_values=[0, -40.], color='red', lw=1, label=label[k]) linecollection = modelxsect.plot_grid() ax.set_title('ModelCrossSection.plot_surface()') # Data for the Wilson - Sa da Costa solution k = 2.0 n = 0.2 nu = 0.025 H = 40.0 tzero = H * n / (k * nu) / 4.0 Ltoe = np.zeros(4) v = 0.125 t = np.arange(100, 500, 100) label = ['Wilson and Sa Da Costa (1982)','_','_','_'] # labels with an underscore are not added to legend for i in range(4): Ltoe[i] = H * np.sqrt(k * nu * (t[i] + tzero) / n / H) ax.plot([100 - Ltoe[i] + v * t[i], 100 + Ltoe[i] + v * t[i]], [0, -40], 'blue', lw=1, zorder=0, label=label[i]) # Scale figure and add legend ax.axis('scaled') ax.set_xlim(0, 250) ax.set_ylim(-40, 0) ax.legend(loc='best'); fig = plt.figure(figsize=(16, 3)) ax = fig.add_subplot(1, 1, 1) modelxsect = flopy.plot.ModelCrossSection(model=ml, line={'Row': 0}) modelxsect.plot_fill_between(zeta[3, :, :, :]) linecollection = modelxsect.plot_grid() ax.set_title('ModelCrossSection.plot_fill_between()'); X, Y = np.meshgrid(x, [0, -40]) zc = flopy.plot.SwiConcentration(model=ml) conc = zc.calc_conc(zeta={0:zeta[3,:,:,:]}) / 0.025 print(conc[0, 0, :]) v = np.vstack((conc[0, 0, :], conc[0, 0, :])) plt.imshow(v, extent=[0, 250, -40, 0], cmap='Reds') cb = plt.colorbar(orientation='horizontal') cb.set_label('percent seawater'); plt.contour(X, Y, v, [0.25, 0.5, 0.75], linewidths=[2, 1.5, 1], colors='black'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Define model name of your model and the location of MODFLOW executable. All MODFLOW files and output will be stored in the subdirectory defined by the workspace. Create a model named ml and specify that this is a MODFLOW-2005 model. Step2: Define the number of layers, rows and columns, and the cell size along the rows (delr) and along the columns (delc). Then create a discretization file. Specify the top and bottom of the aquifer. The heads are computed quasi-steady state (hence a steady MODFLOW run) while the interface will move. There is one stress period with a length of 400 days and 200 steps (so one step is 2 days). Step3: All cells are active (ibound=1), while the last cell is fixed head (ibound=-1). The starting values of the head are not important, as the heads are computed every time with a steady run. Step4: Define the hydraulic conductivity. The aquifer is confined (laytype=0) and the intercell hydraulic conductivity is the harmonic meand (layavg=0). Step5: Inflow on the right side of the model is 1 m$^3$/d (layer 0, row 0, column 0, discharge 1) Step6: Define the output control to save heads and interface every 50 steps, and define the pcg solver with default arguments. Step7: The intial interface is straight. The isource is one everywhere (inflow and outflow is fresh (zone 1)) except for the first cell (index=0) which has saltwater inflow (zone 2). Step8: Write the MODFLOW input files and run the model Step9: Load the head and zeta data from the file Step10: Make a graph and add the solution of Wilson and Sa da Costa Step11: Use ModelCrossSection plotting class and plot_surface() method to plot zeta surfaces. Step12: Use ModelCrossSection plotting class and plot_fill_between() method to fill between zeta surfaces. Step13: Convert zeta surfaces to relative seawater concentrations
15,270
<ASSISTANT_TASK:> Python Code: from jyquickhelper import add_notebook_menu add_notebook_menu() %matplotlib inline import numpy mat = numpy.random.random((15, 15)) mat = mat + mat.T adja = (mat >= 1.4).astype(int) for i in range(adja.shape[0]): adja[i ,i] = 0 adja import networkx import matplotlib.pyplot as plt fix, ax = plt.subplots(1, 1,figsize=(4,4)) G = networkx.from_numpy_matrix(adja) networkx.draw(G, with_labels=True, ax=ax) degres = adja.sum(axis=1) degres distrib = {} for d in degres: if d in distrib: distrib[d] += 1 else: distrib[d] = 1 distrib adjan = adja.copy() conne = numpy.zeros(adja.shape) for i in range(1, adja.shape[0]): conne += adjan adjan = adjan @ adja (conne > 0).astype(int) mat = numpy.random.random((15, 15)) mat = mat + mat.T adja = (mat >= 1.45).astype(int) for i in range(adja.shape[0]): adja[i ,i] = 0 fix, ax = plt.subplots(1, 1, figsize=(4, 4)) G = networkx.from_numpy_matrix(adja) networkx.draw(G, with_labels=True, ax=ax) C = numpy.arange(adja.shape[0]) maj = 1 while maj > 0: maj = 0 for i in range(adja.shape[0]): for j in range(i + 1, adja.shape[1]): if adja[i, j] > 0 and C[i] != C[j]: maj += 1 C[i] = C[j] = min(C[i], C[j]) C set(C) print("Il y a %r composantes connexes." % len(set(C))) def distribution_to_degree_list(hist): N = int(hist.sum()) deg = numpy.zeros(N, dtype=numpy.int32) p = 0 for i, nh in enumerate(hist): for n in range(nh): deg[p] = i p += 1 return deg dist = numpy.array(numpy.array([0, 4, 3, 2])) distribution_to_degree_list(dist) import warnings from tqdm import tqdm # pour visualiser la progression de l'algorithme def random_graph(distribution_degree): degrees = distribution_to_degree_list(distribution_degree) current = numpy.zeros(degrees.shape[0], dtype=numpy.int32) expected = degrees.sum() adja = numpy.zeros((degrees.shape[0], degrees.shape[0]), dtype=numpy.int32) nb = 0 # tqdm: une boucle qui affiche l'avancement dans un notebook # on évite la boucle infinie en limitant le nombre d'itération loop = tqdm(range(expected * 5)) for n_iter in loop: loop.set_description("sum=%r expected=%r" % (nb, expected)) nodes = [i for i, (c, d) in enumerate(zip(current, degrees)) if c < d] if len(nodes) == 1: i, j = 0, 0 elif len(nodes) == 2: di, dj = 0, 0 i, j = nodes[di], nodes[dj] else: di, dj = numpy.random.randint(0, len(nodes), 2) i, j = nodes[di], nodes[dj] if i == j or adja[i, j] == 1: # arc déjà créé ou impossible continue current[i] += 1 current[j] += 1 adja[i, j] = 1 adja[j, i] = 1 nb += 2 if nb >= expected: # Tous les noeuds ont le degré souhaité. loop.set_description("sum=%r expected=%r" % (nb, expected)) break if nb < expected: warnings.warn("Graphe incomplet\ndegrees=%r\ncurrent=%r" % (degrees, current)) return adja adja = random_graph(numpy.array([0, 5, 3, 2])) adja adja = random_graph(numpy.array([0, 4, 3, 2])) adja adja.sum(axis=1) from collections import Counter Counter(adja.sum(axis=1)) def random_graph_remove(distribution_degree): degrees = distribution_to_degree_list(distribution_degree) current = numpy.zeros(degrees.shape[0], dtype=numpy.int32) expected = degrees.sum() adja = numpy.zeros((degrees.shape[0], degrees.shape[0]), dtype=numpy.int32) nb = 0 loop = tqdm(range(expected * 5)) last_added = 0 n_removed = 0 edges = {i: [] for i in range(current.shape[0])} for n_iter in loop: loop.set_description("sum=%r expected=%r n_removed=%r" % (nb, expected, n_removed)) nodes = [i for i, (c, d) in enumerate(zip(current, degrees)) if c < d] if len(nodes) > 1: di, dj = numpy.random.randint(0, len(nodes), 2) i, j = nodes[di], nodes[dj] else: i = j = 0 if i == j or adja[i, j] == 1: if last_added + 5 < n_iter: # on supprime un arc nodes = [i for i, c in enumerate(current) if c > 0] di = (0 if len(nodes) <= 1 else numpy.random.randint(0, len(nodes))) i = nodes[di] dh = (0 if len(edges[i]) <= 1 else numpy.random.randint(0, len(edges[i]))) j = edges[i][dh] adja[i, j] = 0 adja[j, i] = 0 edges[i].remove(j) edges[j].remove(i) current[i] -= 1 current[j] -= 1 nb -= 2 n_removed += 2 continue current[i] += 1 current[j] += 1 adja[i, j] = 1 adja[j, i] = 1 nb += 2 last_added = n_iter edges[i].append(j) edges[j].append(i) if nb >= expected: # Tous les noeuds ont le degré souhaité. loop.set_description("sum=%r expected=%r n_removed=%r" % (nb, expected, n_removed)) break if nb < expected: warnings.warn("Graphe incomplet\ndegrees=%r\ncurrent=%r" % (degrees, current)) return adja adja = random_graph_remove(numpy.array([0, 4, 3, 2])) adja Counter(adja.sum(axis=1)) def distribution_degree_realisable(distribution): degrees = -numpy.array(sorted(-distribution_to_degree_list(distribution))) if degrees.sum() % 2 != 0: return False sumdi = 0 for i in range(degrees.shape[0] - 1): sumdi += degrees[i] mindi = numpy.minimum(degrees[i+1:], i + 1).sum() if sumdi >= i * (i + 1) + mindi: return False return True distribution_degree_realisable(numpy.array([0, 2, 0, 0, 0, 0, 0, 0, 0, 1])) distribution_degree_realisable(numpy.array([0, 4, 3, 2])) fix, ax = plt.subplots(1, 1, figsize=(4, 4)) G = networkx.from_numpy_matrix(adja) networkx.draw(G, with_labels=True, ax=ax) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Graphe aléatoire - matrice d'adjacence aléatoire Step2: En le visualisant... Step3: Vocabulaire lié aux graphes Step4: D'après les remarques précédentes, $\sum A_{pq} > 0$ s'il existe un chemin reliant les noeuds $p, q$, donc s'il font partie de la même composante connexe. Et 0 si les deux noeuds font partie de deux composantes connexes distinctes. Step5: Génération d'un graphe aléatoire Step6: Etape 2 Step7: On remarque que la somme des degrés ne peut être impaire car chaque arc est connecté à deux noeuds. Step8: On regarde la distribution des degrés Step9: L'algorithme ne semble pas aboutir à un graphe qui répond au critère souhaité. Il existe deux cas pour lesquels l'algorithme reste bloqué. On note $A_t$ l'ensemble des noeuds à l'itération t dont les degrés sont inférieurs au degré souhaité. Step10: Il est possible que cet algorithme aboutisse au résultat souhaité même avec beaucoup de temps. Est-ce la stratégie ou le fait que la distribution des noeuds ne soit pas réalisable.
15,271
<ASSISTANT_TASK:> Python Code: %load_ext rpy2.ipython %%R mean = 1500 sd = 300 d = 1800 (d-mean)/sd %%R mean = 1500 sd = 300 point = 2100 LT = T pnorm(point,mean=mean,sd=sd,lower.tail=LT) %%R mean = 1500 sd = 300 percentile = 0.4 LT = T qnorm(percentile,mean=mean,sd=sd,lower.tail=LT) %%R mean = 70 sd = 3.3 lower = 69 upper = 74 LT = T # IN RANGE # 1 - pnorm(upper,mean=mean,sd=sd,lower.tail=!LT) - pnorm(lower,mean=mean,sd=sd,lower.tail=LT) # OUT RANGE # pnorm(upper,mean=mean,sd=sd,lower.tail=!LT) + pnorm(lower,mean=mean,sd=sd,lower.tail=LT) %%R k = 8 n = 10 p = 0.3 dbinom(k,size=n,p=p) %%R k_success = 8 trials = 8 choose(trials,k_success) import numpy as np n = 40 p = 0.35 sd = round(np.sqrt(n*p*(1-p)),2) print 'Expected Value of point success is', n*p print 'standard deviation is', sd print 'variance is' , sd**2 import numpy as np n = 2500 p = 0.7 sd = round(np.sqrt(n*p*(1-p)),2) print 'Expected Value of point success is', n*p print 'standard deviation is', sd print 'variance is' , sd**2 p = 0.01 n = 300 assert (n*p >= 10 and n*(1-p) >= 10), 'Not large enough to take advantage of normal approximation' %%R val = 59 mu = 80 sd = 8 tail = T # Add 0.5 to val if observe small range of observation ifsmall = (-0.5+!tail) pnorm (val,mean=mu,sd=sd,lower.tail=tail) %%R #95% = 1.96 #99% = 2.58 n = 50 mu = 3.2 s = 1.74 # z = 1.96 CL = 0.95 z = round(qnorm((1-CL)/2,lower.tail=F),digits=2) SE = s/sqrt(n) ME = z*SE c(mu-ME,mu+ME) %%R CL = 0.9 ME = 4 sd = 18 #CONFIDENCE LEVEL #95% = 1.96 #99% = 2.58 #90% = 1.65 ##### z_star = round(qnorm((1-CL)/2,lower.tail=F),digits=2) #z_star = 1.65 ((z_star*sd)/ME)**2 %%R CL = 0.9 ME = 4 sd = 18 #CONFIDENCE LEVEL #95% = 1.96 #99% = 2.58 #90% = 1.65 ##### z_star = round(qnorm((1-CL)/2,lower.tail=F),digits=2) #z_star = 1.65 ((z_star*sd)/ME)**2 %%R xbar = 118.2 mu = 100 sd = 6.5 n = 36 SE = round(sd/sqrt(n),digits=2) pnorm(xbar, mean=mu,sd=SE, lower.tail=xbar < mu) * 2 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Associated is dependant variable. Both can't happen at the same time Step2: To calculate the percentiles Step3: Pnorm ranges Step4: Standard normal distributions, is mean 0 and sd 1. Used in default pnorm and qnorm R. Step5: Requirements Step6: Screenshot taken from Coursera video, 12 Step7: To check whether the data is sufficiently large, Step8: For binorm norm, and for taking the probability of more than one events Step9: Because there's no exact value in binomial, we have to decrement by 0.05. Step10: Sample Size for ME Step11: Hypothesis Testing
15,272
<ASSISTANT_TASK:> Python Code: %matplotlib inline from matplotlib import pyplot as plt import numpy as np from IPython.html.widgets import interact def char_probs(s): Find the probabilities of the unique characters in the string s. Parameters ---------- s : str A string of characters. Returns ------- probs : dict A dictionary whose keys are the unique characters in s and whose values are the probabilities of those characters. a = len(s) b = list(s) dict1 = {'a':1, 'b':2, 'c':3, 'd':4, 'e':5, 'f':6, 'g':7, 'h':8, 'i':9, 'j':10, 'k':11, 'l':12, 'm':13, 'n':14, 'o':15, 'p':16, 'q':17, 'r':18, 's':19, 't':20, 'u':21, 'v':22, 'w':23, 'x':24, 'y':25, 'z':26} dict2 = {'a':0, 'b':0, 'c':0, 'd':0, 'e':0, 'f':0, 'g':0, 'h':0, 'i':0, 'j':0, 'k':0, 'l':0, 'm':0, 'n':0, 'o':0, 'p':0, 'q':0, 'r':0, 's':0, 't':0, 'u':0, 'v':0, 'w':0, 'x':0, 'y':0, 'z':0} for item in b: dict2[item] += 1 for key in dict2: print return dict2 print(char_probs('hibebe')) test1 = char_probs('aaaa') assert np.allclose(test1['a'], 1.0) test2 = char_probs('aabb') assert np.allclose(test2['a'], 0.5) assert np.allclose(test2['b'], 0.5) test3 = char_probs('abcd') assert np.allclose(test3['a'], 0.25) assert np.allclose(test3['b'], 0.25) assert np.allclose(test3['c'], 0.25) assert np.allclose(test3['d'], 0.25) def entropy(d): Compute the entropy of a dict d whose values are probabilities. d = {'1':2, '3':4} for item in d: print(item) assert np.allclose(entropy({'a': 0.5, 'b': 0.5}), 1.0) assert np.allclose(entropy({'a': 1.0}), 0.0) # YOUR CODE HERE raise NotImplementedError() assert True # use this for grading the pi digits histogram <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Character counting and entropy Step4: The entropy is a quantiative measure of the disorder of a probability distribution. It is used extensively in Physics, Statistics, Machine Learning, Computer Science and Information Science. Given a set of probabilities $P_i$, the entropy is defined as Step5: Use IPython's interact function to create a user interface that allows you to type a string into a text box and see the entropy of the character probabilities of the string.
15,273
<ASSISTANT_TASK:> Python Code: import urllib.request urllib.request.urlretrieve('https://raw.githubusercontent.com/lawrennd/talks/gh-pages/mlai.py','mlai.py') urllib.request.urlretrieve('https://raw.githubusercontent.com/lawrennd/talks/gh-pages/teaching_plots.py','teaching_plots.py') urllib.request.urlretrieve('https://raw.githubusercontent.com/lawrennd/talks/gh-pages/gp_tutorial.py','gp_tutorial.py') import matplotlib.pyplot as plt plt.rcParams.update({'font.size': 22}) %pip install --upgrade git+https://github.com/sods/ods import pods import numpy as np import pods data = pods.datasets.olympic_marathon_men() x = data['X'] y = data['Y'] offset = y.mean() scale = np.sqrt(y.var()) import matplotlib.pyplot as plt import teaching_plots as plot import mlai xlim = (1875,2030) ylim = (2.5, 6.5) yhat = (y-offset)/scale fig, ax = plt.subplots(figsize=plot.big_wide_figsize) _ = ax.plot(x, y, 'r.',markersize=10) ax.set_xlabel('year', fontsize=20) ax.set_ylabel('pace min/km', fontsize=20) ax.set_xlim(xlim) ax.set_ylim(ylim) mlai.write_figure(filename='olympic-marathon.svg', directory='./datasets') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <!--setupplotcode{import seaborn as sns Step2: from the command prompt where you can access your python installation. Step3: Olympic Marathon Data
15,274
<ASSISTANT_TASK:> Python Code: from default import * import os lexsub = LexSub(os.path.join('data','glove.6B.100d.magnitude')) output = [] with open(os.path.join('data','input','dev.txt')) as f: for line in f: fields = line.strip().split('\t') output.append(" ".join(lexsub.substitutes(int(fields[0].strip()), fields[1].strip().split()))) print("\n".join(output[:10])) from lexsub_check import precision with open(os.path.join('data','reference','dev.out'), 'rt') as refh: ref_data = [str(x).strip() for x in refh.read().splitlines()] print("Score={:.2f}".format(100*precision(ref_data, output))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Run the default solution on dev Step2: Evaluate the default output
15,275
<ASSISTANT_TASK:> Python Code: # Requirements: # - sox + soundfile + our vowel_discri package # - ABXpy.distances (could be made independent from ABXpy) import soundfile import os import os.path as path import pandas as pd import numpy as np import seaborn from ast import literal_eval as make_tuple import wave import subprocess import shutil # To get vowel_discri from github repo, run: # export PYTHONPATH=:/path/2/vowel-discri/repository:`$PYTHONPATH` # in the terminal before launching jupyter notebook import vowel_discri.mfcc as mfcc_lib %matplotlib inline # load raw data, this should be changed when we make the repository public # so that the script can be used by anybody to reproduce our results (doing wget to download the files directly # from the OSF server) root = '/Users/admin/Documents/PhD/Data/vowel_discri/osf' wav_dir = path.join(root, 'Stimuli', 'final_stimuli') xp_designs_path = path.join('/Users/admin/Documents/PhD/Data/vowel_discri', 'xp_designs.txt') filename = {'ES': 'InPhonDb_native_nonnative - vowels.csv', 'F1F2_natural': path.join('F1F2_measures', 'formants_natural.txt'), 'F1F2_synthetic': path.join('F1F2_measures', 'formants_synthetic.txt'), 'stim_groups': 'Stimulus name mapping - mapping.csv'} sep = {'ES': ",", 'F1F2_natural': "\t",'F1F2_synthetic': "\t", 'stim_groups': ","} data = {} for key in filename: data[key] = pd.read_csv(path.join(root, filename[key]), sep=sep[key]) def add_kuhl82_es1_design(xp_designs): # Kuhl82 first effect size has a special trial structure es_id = 7 study_id = 'Kuhl1982' bases = [('kuhl82_p1_a_monotone.wav',), ('kuhl82_p1_a_rise_fall.wav',)] deviants = [('kuhl82_p1_i_monotone.wav',), ('kuhl82_p1_i_rise_fall.wav',)] counterbalanced = True trial = 1 for base, deviant in zip(bases, deviants): xp_designs['study_id'].append(study_id) xp_designs['ES_id'].append(es_id) xp_designs['trial_id'].append(trial) xp_designs['base_stims'].append(base) xp_designs['deviant_stims'].append(deviant) trial = trial+1 if counterbalanced: xp_designs['study_id'].append(study_id) xp_designs['ES_id'].append(es_id) xp_designs['trial_id'].append(trial) xp_designs['base_stims'].append(deviant) xp_designs['deviant_stims'].append(base) trial = trial+1 return xp_designs # collect effect size ids pair2ESid = {} pair2studyid = {} for pair, df in data['ES'].groupby('stimulus_pair'): if not(pair.strip == ''): pair2ESid[pair] = list(df['effect_ID']) pair2studyid[pair] = list(df['study_ID']) # get list of stimuli wavs wavs = os.listdir(wav_dir) wavs = [wav for wav in wavs if wav[-4:] == '.wav'] # function to determine if a stim is base or deviant # this is ad hoc, as stim could play different roles # in different studies, but works here in combination # with 'not_counterbalanced' below is_base = { 'liu16_p1': lambda name: '_i_' in name, 'mazuka13_p1': lambda name: '_e_' in name, 'mazuka13_p2': lambda name: '_u_' in name, 'mazuka13_p3': lambda name: '_ue_' in name, 'mugitani09_p1': lambda name: '_aa_' in name, 'mugitani09_p2': lambda name: '_aa_' in name, 'phan08_p1': lambda name: '_aimw_' in name, 'phan08_p2': lambda name: '_ais_' in name, 'phan08_p3': lambda name: '_aimw_' in name, 'phan08_p4': lambda name: '_V_' in name, 'polka96_p1': lambda name: '_u_' in name, 'sebastian09_p1': lambda name: '_o_' in name, 'sebastian09_p2': lambda name: '_e_' in name, 'sundara11_p1': lambda name: '_eh_' in name, 'tsuji17_p1': lambda name: '_ei_' in name, 'tsuji17_p2': lambda name: '_oi_' in name, 'tsuji17_p3': lambda name: '_a_' in name, 'versteegh15_p1': lambda name: '_ei_' in name, 'figueras10_p1': lambda name: '_o_' in name, 'cardillo10_p1': lambda name: '_u' in name, 'kuhl79_p1': lambda name: '_a_' in name, 'kuhl82_p1': lambda name: '_a_' in name, 'swoboda76_p1': lambda name: '_i_' in name, 'tsao04_p1': lambda name: '_u' in name, 'marean92_p1': lambda name: '_a_' in name} for i in range(1, 10): is_base['eilers84_p{}'.format(i)] = lambda name: '300' in name for i in range(1, 5): is_base['trainor02_p{}'.format(i)] = lambda name: '_i_' in name # list of effect size for which base/deviant role was counterbalanced ll = ['tsao04_p1', 'cardillo10_p1', 'marean92_p1'] +\ ['eilers84_p{}'.format(i) for i in range(1, 10)] not_counterbalanced = [es_id for pair in ll for es_id in pair2ESid[pair]] # instantiate xp_design structure, study_ID is included for human readability cols = ['study_id', 'ES_id', 'trial_id', 'base_stims', 'deviant_stims'] xp_designs = {col : [] for col in cols} for pair in pair2ESid: if pair == 'sebastian09_p2': # we ignore this one because we are not sure what the experimental stimuli were continue pair_wavs = [wav for wav in wavs if wav[:len(pair)] == pair] bases = tuple([wav for wav in pair_wavs if is_base[pair](wav)]) deviants = tuple([wav for wav in pair_wavs if not(is_base[pair](wav))]) for ES_id, study_id in zip(pair2ESid[pair], pair2studyid[pair]): if ES_id == 7: # Kuhl82 first effect size has a special trial structure assert pair == 'kuhl82_p1' xp_designs = add_kuhl82_es1_design(xp_designs) else: xp_designs['study_id'].append(study_id) xp_designs['ES_id'].append(ES_id) xp_designs['trial_id'].append(1) xp_designs['base_stims'].append(bases) xp_designs['deviant_stims'].append(deviants) if not(ES_id in not_counterbalanced): # counterbalance base/deviant role xp_designs['study_id'].append(study_id) xp_designs['ES_id'].append(ES_id) xp_designs['trial_id'].append(2) xp_designs['base_stims'].append(deviants) xp_designs['deviant_stims'].append(bases) xp_designs = pd.DataFrame(xp_designs) # make sure column order is nice xp_designs = xp_designs[cols] # make sure row order is nice xp_designs = xp_designs.sort_values(["study_id", "ES_id"]) xp_designs.to_csv(xp_designs_path, sep=" ") def read_xp_designs(xp_designs_path): xp_designs = pd.read_csv(xp_designs_path, sep=" ") del xp_designs['Unnamed: 0'] xp_designs['base_stims'] = [make_tuple(e) for e in xp_designs['base_stims']] xp_designs['deviant_stims'] = [make_tuple(e) for e in xp_designs['deviant_stims']] return xp_designs xp_designs = read_xp_designs(xp_designs_path) std_wav_dir = path.join(root, 'Stimuli', 'standardized_final_stimuli') standardize_fs = True # If true resample all wavefiles to standard_fs Hz sampling rate standard_fs = 16000 base_wavs = [f for e in xp_designs['base_stims'] for f in e] deviant_wavs = [f for e in xp_designs['deviant_stims'] for f in e] wavs = base_wavs + deviant_wavs for wav in wavs: fpath = path.join(wav_dir, wav) std_fpath = path.join(std_wav_dir, wav) tmp_out = os.path.join(std_wav_dir, '__tmp__.wav') # to avoid shennanigans with self-replacement of a file with wave.open(fpath, 'rb') as fh: params = fh.getparams() assert params.comptype == 'NONE', wav assert params.compname == 'not compressed', wav assert params.sampwidth == 2, wav # 2 bytes == 16 bits try: assert params.nchannels == 1, wav except AssertionError: assert params.nchannels == 2 # fuse channels with sox out = subprocess.run(["sox", fpath, tmp_out, "channels", "1"]) assert out.returncode == 0, out shutil.move(tmp_out, std_fpath) fpath = std_fpath if standardize_fs and params.framerate != standard_fs: out = subprocess.run(["sox", fpath, "-r", str(standard_fs), tmp_out]) assert out.returncode == 0, out shutil.move(tmp_out, std_fpath) fpath = std_fpath if fpath != std_fpath: shutil.copy(fpath, std_fpath) if path.exists(tmp_out): os.remove(tmp_out) # Get MFCCs for each wav mfcc = {} for wav in wavs: fpath = os.path.join(std_wav_dir, wav) data, fs = soundfile.read(fpath) mfcc[wav] = mfcc_lib.mfcc(data, fs).T # take the transpose to be in dtw.dtw expected format # Get F1F2 for each wav def read_F1F2(filename, sep): f1f2_n = pd.read_csv(path.join(root, filename['F1F2_natural']), sep=sep['F1F2_natural']) f1f2_s = pd.read_csv(path.join(root, filename['F1F2_synthetic']), sep=sep['F1F2_synthetic']) f1f2_all = pd.concat([f1f2_n, f1f2_s]) f1f2 = {} missing_f1f2 = [] for wav in wavs: line = f1f2_all[f1f2_all['Filename'] == wav[:-4]] if len(line) == 0: missing_f1f2.append(wav) else: assert len(line) == 1 f1f2[wav] = np.array([line.f1early.iloc[0], line.f2early.iloc[0], line.f1mid.iloc[0], line.f2mid.iloc[0], line.f1late.iloc[0], line.f2late.iloc[0]]) return f1f2, missing_f1f2 f1f2, missing_f1f2 = read_F1F2(filename, sep) import ABXpy.distances.metrics.dtw as dtw # cosine in ABXpy is actually the angular distance import ABXpy.distances.metrics.cosine as cos def dtw_cosine(x, y): return dtw.dtw(x, y, cos.cosine_distance, normalized=True) def rms_euclidean(x, y): d = np.sum((x[:2]-y[:2])**2) + \ np.sum((x[2:4]-y[2:4])**2) + \ np.sum((x[4:]-y[4:])**2) d = np.sqrt(d/3.) return d def simulate_trial(df, dis, feats): assert len(df) == 1, df xs = df['base_stims'].iloc[0] ys = df['deviant_stims'].iloc[0] # assumes counterbalancing here, or at least ignore possible asymetries # there is probably a more df-style way of doing this, possibly by renaming # columns and doing an external merge D_across = 0 for x in xs: for y in ys: D_across = D_across + dis(feats[x], feats[y])**2 D_within_x = 0 for x1 in xs: for x2 in xs: D_within_x = D_within_x + dis(feats[x1], feats[x2])**2 D_within_y = 0 for y1 in ys: for y2 in ys: D_within_y = D_within_y + dis(feats[y1], feats[y2])**2 m = len(xs) n = len(ys) D_across = D_across / float(m*n) D_within = .5 * (D_within_x / float(m*m) + D_within_y / float(n*n)) D = np.sqrt(max(0, D_across-D_within)) return pd.Series({'D': D}, index=['D']) def simulate_xp(xp_design, dis, feats): by_trial = xp_design.groupby('trial_id').apply(lambda df: simulate_trial(df, dis, feats)) by_trial.reset_index(level=by_trial.index.names, inplace=True) return by_trial.groupby('trial_id', as_index=False).mean() def simulate_xps(xp_designs, dis, feats): res = xp_designs.groupby(['study_id', 'ES_id']).apply(lambda df: simulate_xp(df, dis, feats)) res.reset_index(level=res.index.names, inplace=True) return res mfcc_regs = simulate_xps(xp_designs, dtw_cosine, mfcc) # provisory f1f2_regs (exclusions based on missing_f1f2) excluded = ['Eilers1984', 'Marean1992', 'Mazuka2013', 'Phan2008', 'Swoboda1976', 'Trainor2002', 'Tsuji2017', 'Versteegh2015'] xp_designs2 = xp_designs[[not(e in excluded) for e in xp_designs['study_id']]] f1f2_regs = simulate_xps(xp_designs2, rms_euclidean, f1f2) mfcc_regs_restricted = simulate_xps(xp_designs2, dtw_cosine, mfcc) df = pd.DataFrame({'ES_id': data['ES']['effect_ID'], 'ES': data['ES']['g_calc']}) res_df = pd.merge(mfcc_regs, df, on='ES_id') res_df_f1f2 = pd.merge(f1f2_regs, df, on='ES_id') res_df_mfcc_restricted = pd.merge(mfcc_regs_restricted, df, on='ES_id') del res_df_mfcc_restricted['level_2'] del res_df_f1f2['level_2'] # F1F2 g = seaborn.regplot(data=res_df_f1f2, x='D', y='ES') g.axes.grid() arr = np.column_stack([res_df_f1f2['D'], res_df_f1f2['ES']]).T print(np.corrcoef(arr)) # MFCC (on same studies as available for F1F2) g = seaborn.regplot(data=res_df_mfcc_restricted, x='D', y='ES') g.axes.grid() arr = np.column_stack([res_df_mfcc_restricted['D'], res_df_mfcc_restricted['ES']]).T print(np.corrcoef(arr)) # Correlation MFCC vs F1F2 predictions data_both = pd.merge(res_df_mfcc_restricted, res_df_f1f2, on=['study_id', 'ES_id', 'trial_id', 'ES'], suffixes=['_MFCC', '_F1F2']) assert len(data_both) == len(res_df_mfcc_restricted) assert len(data_both) == len(res_df_f1f2) g = seaborn.regplot(data=data_both, x='D_MFCC', y='D_F1F2') g.axes.grid() arr = np.column_stack([data_both['D_MFCC'], data_both['D_F1F2']]).T print(np.corrcoef(arr)) # MFCC on all studies, but that include some pure duration contrasts we don't want to look at. g = seaborn.regplot(data=res_df, x='D', y='ES') g.axes.grid() arr = np.column_stack([res_df['D'], res_df['ES']]).T print(np.corrcoef(arr)) study_id ES_id level_2 trial_id # MFCC on all studies but the ones with duration contrasts (not completely sure the filtering is perfect here...) g = seaborn.regplot(data=res_df[(res_df['D']>=.005)], x='D', y='ES') g.axes.grid() arr = np.column_stack([res_df[res_df['D']>.005]['D'], res_df[res_df['D']>.005]['ES']]).T print(np.corrcoef(arr)) # MFCC without duration contrasts and without the studies with the largest differences g = seaborn.regplot(data=res_df[(res_df['D']<=.06) & (res_df['D']>=.005)], x='D', y='ES') g.axes.grid() arr = np.column_stack([res_df[(res_df['D']<=.06) & (res_df['D']>=.005)]['D'], res_df[(res_df['D']<=.06) & (res_df['D']>=.005)]['ES']]).T print(np.corrcoef(arr)) with open(path.join(root, 'missing_f1f2.txt'), 'w') as fh: fh.write(str(missing_f1f2)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load relevant data Step2: Create XP designs Step3: Standardize wavefiles Step4: Get MFCC and F1F2 figure for each wavefile Step5: Define dissimilarity measures Step6: Simulate experiments Step7: Assemble results Step8: Quick look at the results and exploratory analyses Step9: TODO
15,276
<ASSISTANT_TASK:> Python Code: # Import some libraries that will be necessary for working with data and displaying plots import numpy as np import hashlib # Test functions def hashstr(str1): Implements the secure hash of a string return hashlib.sha1(str1).hexdigest() def test_arrayequal(x1, x2, err_msg, ok_msg='Test passed'): Test if all elements in arrays x1 and x2 are the same item by item :param x1: First array for the comparison :param x2: Second array for the comparison :param err_msg: Display message if both arrays are not the same :param ok_msg: Display message if arrays are the same (optional) try: np.testing.assert_array_equal(x1, x2) print(ok_msg) except: print(err_msg) def test_strequal(str1, str2, err_msg, ok_msg='Test passed'): Test if str1 and str2 are the same string :param str1: First string for the comparison :param str2: Second string for the comparison :param err_msg: Display message if both strings are not the same :param ok_msg: Display message if strings are the same (optional) try: np.testing.assert_string_equal(str1, str2) print(ok_msg) except: print(err_msg) def test_hashedequal(str1, str2, err_msg, ok_msg='Test passed'): Test if hashed(str1) and str2 are the same string :param str1: First string for the comparison str1 will be hashed for the comparison :param str2: Second string for the comparison :param err_msg: Display message if both strings are not the same :param ok_msg: Display message if strings are the same (optional) try: np.testing.assert_string_equal(hashstr(str1), str2) print(ok_msg) except: print(err_msg) x = [5, 4, 3, 4] print(type(x[0])) # Create a list of floats containing the same elements as in x # x_f = list(map(<FILL IN>)) x_f = list(map(float, x)) test_arrayequal(x, x_f, 'Elements of both lists are not the same') if ((type(x[-2])==int) & (type(x_f[-2])==float)): print('Test passed') else: print('Type conversion incorrect') # Numpy arrays can be created from numeric lists or using different numpy methods y = np.arange(8)+1 x = np.array(x_f) # Check the different data types involved print('Variable x_f is of type', type(x_f)) print('Variable x is of type ', type(x)) print('Variable y is of type', type(y)) # Print the shapes of the numpy arrays print('Variable y has dimension', y.shape) print('Variable x has dimension', x.shape) #Complete the following exercises # Convert x into a variable x_matrix, of type `numpy.matrixlib.defmatrix.matrix` using command # np.matrix(). The resulting matrix should be of dimensions 4x1 # x_matrix = <FILL IN> x_matrix = np.matrix(x).T # Convert x into a variable x_array, of type `ndarray`, and shape (4,1) # x_array = <FILL IN> x_array = x[:,np.newaxis] # Reshape array y into a numpy array of shape (4,2) using command np.reshape() # y = <FILL IN> y = y.reshape((4,2)) test_strequal(str(type(x_matrix)), "<class 'numpy.matrixlib.defmatrix.matrix'>", 'x_matrix is not defined as a matrix') test_hashedequal(x_matrix.tostring(), '1215ced5d82501bf03e04b30f16c45a4bdcb8838', 'Incorrect variable x_matrix') test_strequal(str(type(x_array)), "<class 'numpy.ndarray'>", 'x_array is not defined as numpy ndarray') test_hashedequal(x_array.tostring(), '1215ced5d82501bf03e04b30f16c45a4bdcb8838', 'Incorrect variable x_array') test_strequal(str(type(y)), "<class 'numpy.ndarray'>", 'y is not defined as a numpy ndarray') test_hashedequal(y.tostring(), '0b61a85386775357e0710800497771a34fdc8ae5', 'Incorrect variable y') print('Applying flatten() to matrix x_matrix (of type matrix)') print('x_matrix.flatten():', x_matrix.flatten()) print('Its type:', type(x_matrix.flatten())) print('Its dimensions:', x_matrix.flatten().shape) print('\nApplying flatten() to matrix y (of type ndarray)') print('y.flatten():', y.flatten()) print('Its type:', type(y.flatten())) print('Its dimensions:', y.flatten().shape) print('\nApplying tolist() to x_matrix (of type matrix) and to the 2D vector y (of type ndarray)') print('x_matrix.tolist():', x_matrix.tolist()) print('y.tolist():', y.tolist()) # Try to run the following command on variable x_matrix, and check what happens print(x_array**2) print('Remember that the shape of x_array is', x_array.shape) print('Remember that the shape of y is', y.shape) # Complete the following exercises. You can print the partial results to visualize them # Multiply the 2-D array `y` by 2 # y_by2 = <FILL IN> y_by2 = y * 2 # Multiply each of the columns in `y` by the column vector x_array # z_4_2 = <FILL IN> z_4_2 = x_array * y # Obtain the matrix product of the transpose of x_array and y # x_by_y = <FILL IN> x_by_y = x_array.T.dot(y) # Repeat the previous calculation, this time using x_matrix (of type numpy matrix) instead of x_array # Note that in this case you do not need to use method dot() # x_by_y2 = <FILL IN> x_by_y2 = x_matrix.T * y # Multiply vector x_array by its transpose to obtain a 4 x 4 matrix #x_4_4 = <FILL IN> x_4_4 = x_array.dot(x_array.T) # Multiply the transpose of vector x_array by vector x_array. The result is the squared-norm of the vector #x_norm2 = <FILL IN> x_norm2 = x_array.T.dot(x_array) test_hashedequal(y_by2.tostring(),'1b54af8620657d5b8da424ca6be8d58b6627bf9a','Incorrect result for variable y_by2') test_hashedequal(z_4_2.tostring(),'0727ed01af0aa4175316d3916fd1c8fe2eb98f27','Incorrect result for variable z_4_2') test_hashedequal(x_by_y.tostring(),'b33f700fec2b6bd66e76260d31948ce07b8c15d3','Incorrect result for variable x_by_y') test_hashedequal(x_by_y2.tostring(),'b33f700fec2b6bd66e76260d31948ce07b8c15d3','Incorrect result for variable x_by_y2') test_hashedequal(x_4_4.tostring(),'832c97cc2d69298287838350b0bae66deec58b03','Incorrect result for variable x_4_4') test_hashedequal(x_norm2.tostring(),'33b80b953557002511474aa340441d5b0728bbaf','Incorrect result for variable x_norm2') print(z_4_2.shape) print(np.mean(z_4_2)) print(np.mean(z_4_2,axis=0)) print(np.mean(z_4_2,axis=1)) # Previous check that you are working with the right matrices test_hashedequal(z_4_2.tostring(),'0727ed01af0aa4175316d3916fd1c8fe2eb98f27','Incorrect result for variable z_4_2') test_hashedequal(x_array.tostring(), '1215ced5d82501bf03e04b30f16c45a4bdcb8838', 'Incorrect variable x_array') # Vertically stack matrix z_4_2 with itself # ex1_res = <FILL IN> ex1_res = np.vstack((z_4_2,z_4_2)) # Horizontally stack matrix z_4_2 and vector x_array # ex2_res = <FILL IN> ex2_res = np.hstack((z_4_2,x_array)) # Horizontally stack a column vector of ones with the result of the first exercise (variable ex1_res) # X = <FILL IN> X = np.hstack((np.ones((8,1)),ex1_res)) test_hashedequal(ex1_res.tostring(),'e740ea91c885cdae95499eaf53ec6f1429943d9c','Wrong value for variable ex1_res') test_hashedequal(ex2_res.tostring(),'d5f18a630b2380fcae912f449b2a87766528e0f2','Wrong value for variable ex2_res') test_hashedequal(X.tostring(),'bdf94b49c2b7c6ae71a916beb647236918ead39f','Wrong value for variable X') # Keep last row of matrix X # X_sub1 = <FILL IN> X_sub1 = X[-1,] # Keep first column of the three first rows of X # X_sub2 = <FILL IN> X_sub2 = X[:3,0] # Keep first two columns of the three first rows of X # X_sub3 = <FILL IN> X_sub3 = X[:3,:2] # Invert the order of the rows of X # X_sub4 = <FILL IN> X_sub4 = X[::-1,:] test_hashedequal(X_sub1.tostring(),'51fb613567c9ef5fc33e7190c60ff37e0cd56706','Wrong value for variable X_sub1') test_hashedequal(X_sub2.tostring(),'12a72e95677fc01de6b7bfb7f62d772d0bdb5b87','Wrong value for variable X_sub2') test_hashedequal(X_sub3.tostring(),'f45247c6c31f9bcccfcb2a8dec9d288ea41e6acc','Wrong value for variable X_sub3') test_hashedequal(X_sub4.tostring(),'1fd985c087ba518c6d040799e49a967e4b1d433a','Wrong value for variable X_sub4') X_col2 = X[:,1] X_row3 = X[2,] print('Matrix X is\n', X) print('Second column of matrix X:', X_col2, '; Dimensions:', X_col2.shape) print('Third row of matrix X:', X_row3, '; Dimensions:', X_row3.shape) X_col2 = X[:,1:2] X_row3 = X[2:3,] print('Second column of matrix X:', X_col2, '; Dimensions:', X_col2.shape) print('Third row of matrix X:', X_row3, '; Dimensions:', X_row3.shape) print(X.shape) print(X.dot(X.T)) print(X.T.dot(X)) print(np.linalg.inv(X.T.dot(X))) #print np.linalg.inv(X.dot(X.T)) test_hashedequal(X.tostring(),'bdf94b49c2b7c6ae71a916beb647236918ead39f','Wrong value for variable X') # Obtain matrix Z using concatenation functions # Z = np.hstack(<FILL IN>) Z = np.hstack((X,np.log(X[:,1:]))) test_hashedequal(Z.tostring(),'737dee4c168c5ce8fc53a5ec5cad43b5a53c7656','Incorrect matrix Z') def log_transform(x): # return <FILL IN> return np.hstack((x,np.log(x[1]),np.log(x[2]))) Z_map = np.array(list(map(log_transform,X))) test_hashedequal(Z_map.tostring(),'737dee4c168c5ce8fc53a5ec5cad43b5a53c7656','Incorrect matrix Z') # Z_lambda = np.array(list(map(lambda x: <FILL IN>,X))) Z_lambda = np.array(list(map(lambda x: np.hstack((x,np.log(x[1]),np.log(x[2]))),X))) test_hashedequal(Z_lambda.tostring(),'737dee4c168c5ce8fc53a5ec5cad43b5a53c7656','Incorrect matrix Z') # Calculate variable Z_poly, using any method that you want # Z_poly = <FILL IN> Z_poly = np.array(list(map(lambda x: np.array([x[1]**k for k in range(4)]),X))) test_hashedequal(Z_poly.tostring(),'7e025512fcee1c1db317a1a30f01a0d4b5e46e67','Wrong variable Z_poly') w_log = np.array([3.3, 0.5, -2.4, 3.7, -2.9]) w_poly = np.array([3.2, 4.5, -3.2, 0.7]) # f_log = <FILL IN> f_log = Z.dot(w_log) # f_poly = <FILL IN> f_poly = Z_poly.dot(w_poly) test_hashedequal(f_log.tostring(),'d5801dfbd603f6db7010b9ef80fa48e351c0b38b','Incorrect evaluation of the logarithmic model') test_hashedequal(f_poly.tostring(),'32abdcc0e32e76500947d0691cfa9917113d7019','Incorrect evaluation of the polynomial model') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step4: Exercises about Numpy Step5: This notebook reviews some of the Python modules that make it possible to work with data structures in an easy an efficient manner. We will review Numpy arrays and matrices, and some of the common operations which are needed when working with these data structures in Machine Learning. Step6: Numpy arrays can be defined directly using methods such as np.arange(), np.ones(), np.zeros(), as well as random number generators. Alternatively, you can easily generate them from python lists (or lists of lists) containing elements of numeric type. Step7: Some other useful Numpy methods are Step8: 2. Products and powers of numpy arrays and matrices Step9: 3. Numpy methods that can be carried out along different dimensions Step10: Other numpy methods where you can specify the axis along with a certain operation should be carried out are Step11: 5. Slicing Step12: Extracting columns and rows from multidimensional arrays Step13: If you wish that the extracted row or column is still a 2-D row or column vector, it is important to specify an interval instead of a single value, even if such interval consists of just one value. Step14: 6. Matrix inversion Step15: 7. Exercises Step16: 7.1. Non-linear transformations Step17: Repeat the previous exercise, this time using the map() method together with function log_transform(). This function needs to be defined in such a way that guarantees that variable Z_map is the same as the previously computed variable Z. Step18: Repeat the previous exercise once more. This time, define a lambda function for the task. Step19: 7.2. Polynomial transformations Step20: 7.3. Model evaluation
15,277
<ASSISTANT_TASK:> Python Code: %matplotlib inline import skrf as rf import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit rf.stylely() capas = rf.read_all('S_Matrices/', f_unit='MHz') capas_set = rf.NetworkSet(capas) f_band = '35-65MHz' f = capas_set[0].f omega = 2*np.pi*f D_cylinders = [110, 100, 90, 80, 77, 76] print(f'{len(capas)} s-parameter files representing {len(D_cylinders)} values of D_cyclinders') # check the data capas_set[f_band].plot_s_re(m=1, n=0) idx = (f > 40e6) & (f < 60e6) # dummy transmission line to match port 3 coax = rf.media.Coaxial(frequency=capas_set[0].frequency) def Z1(omega, R, C, L): ''' Resistor R in series with a capacitance C and an inductance L R in Ohm, C in pF and L in nH ''' return (R +1j*(- 1/(C*1e-12*omega) + L*1e-9*omega)) def Z1_re(omega, R, C, L): return np.real(Z1(omega, R, C, L)) def Z1_im(omega, R, C, L): return np.imag(Z1(omega, R, C, L)) def Z3(omega, Cshunt): 'shung capacitance. C_shunt in pF' return -1j/(Cshunt*1e-12*omega) def Z3_im(omega, Cshunt): return np.imag(Z3(omega, Cshunt)) Z1s, Z2s, Z3s = {}, {}, {} Cs, Rs, Ls, C_shunts = [], [], [], [] # For each network in the network set, extract the equivalent network parameters for (ntw_name, ntw) in capas.items(): # connect the port 3 (voltage probe) to match load to make a 2-port network # (since equivalent T network is only for a 2-ports network) ntw = rf.connect(ntw, 2, coax.match(), 0) # extract impedances Z3s[ntw_name] = 1/ntw.a[:,1,0] Z1s[ntw_name] = ntw.a[:,0,1] Z2s[ntw_name] = 0 # fit the equivalent impedances values to the equivalent circuit elements R,l,Cs (C_shunt,), cov = curve_fit(Z3_im, omega[idx], np.imag(Z3s[ntw_name][idx])) (_, C, L), cov = curve_fit(Z1_im, omega[idx], np.imag(Z1s[ntw_name][idx])) (R, _, _), cov = curve_fit(Z1_re, omega[idx], np.real(Z1s[ntw_name][idx])) print(f'{ntw_name}: C={C:.1f} pF, L={L:.1f} nH, C_shunt={C_shunt:.1f} pF, R={R:0.1e} Ohm') Cs.append(C) Rs.append(R) Ls.append(L) C_shunts.append(C_shunt) fig, ax = plt.subplots() ax.plot(D_cylinders, Cs, '.', ms=10) ax.set_xlabel('D_cylinders') ax.set_ylabel('Capacitance [pF]') R_eq = np.mean(Rs) L_eq = np.mean(Ls) C_shunt_eq = np.mean(C_shunts) def equivalent_capa_ntw(omega, C, R=R_eq, L=L_eq, C_shunt=C_shunt_eq): _Z1 = Z1(omega, R, C, L) _Z3 = Z3(omega, Cshunt=C_shunt) A11 = 1 + _Z1/_Z3 A12 = _Z1 A21 = 1/_Z3 A22 = np.ones_like(omega) ntw = rf.Network() ntw.f_unit = 'Hz' ntw.f = omega/(2*np.pi) ntw.s = rf.a2s(np.array([[A11, A21], [A12, A22]]).T) return ntw eq_capa = equivalent_capa_ntw(omega, C=100, C_shunt=50) fig, ax = plt.subplots() capas_set[-2].plot_s_db(m=0, n=0, ls='--', ax=ax) ax.plot(omega/(2*np.pi), eq_capa.s_db[:,0,0]) # L expressed in nH and C in pF to make the fit to work! def ZZ(omega, R, C, L): return R + 1j*(L*1e-9*omega - 1/(C*1e-12*omega)) def re_Z(omega, R, C, L): return np.real( ZZ(omega, R, C, L) ) def im_Z(omega, R, C, L): return np.imag( ZZ(omega, R, C, L) ) fix, (ax1, ax2) = plt.subplots(2,1, sharex=True) # dummy transmission line to match port 3 coax = rf.media.Coaxial(frequency=capas_set[0].frequency) for (ntw_name, ntw) in capas.items(): ntw = rf.connect(ntw, 2, coax.match(), 0) Z = ntw.a[idx,0,1] (R,_,_), pcov = curve_fit(re_Z, omega[idx], np.real(Z)) (_,C,L), pcov = curve_fit(im_Z, omega[idx], np.imag(Z)) print(f'C={C:0.1f} pF, L={L:0.1f} nH, R={R:0.1e} Ohm') ax1.plot(f[idx]/1e6, np.real(Z)) media = rf.media.DefinedGammaZ0(frequency=ntw.frequency, z0=50) ntw2 = media.capacitor(C*1e-12) ** media.inductor(L*1e-9) ** media.resistor(1e-1) ax1.plot(f[idx]/1e6, ntw2.a_re[idx,0,1], ls='--') ax2.plot(f[idx]/1e6, np.imag(Z)) ax2.plot(f[idx]/1e6, ntw2.a_im[idx,0,1], ls='--') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: First we import all the scattering parameters of the capacitor simulated at different positions. S-parameters are imported as skrf networks in a NetworkSet object. This NetworkSet will allow interpolating the capacitors are intermediate values of the $D_{cylinders}$ values, by interpolating the scattering parameters between individual Networks. Step2: Extracting the capacitance values Step3: T impedance Step4: The equivalent circuit parameters R,L can be set as constant Step5: Now to test the performance of the equivalent model, we create a Network from the equivalent circuit and we compare S-parameter values to the ones of the NetworkSet Step6: serie impedance
15,278
<ASSISTANT_TASK:> Python Code: %matplotlib notebook from sympy import init_printing from sympy import S from sympy import sin, cos, tanh, exp, pi, sqrt from boutdata.mms import x, y, z, t from boutdata.mms import DDX import os, sys # If we add to sys.path, then it must be an absolute path common_dir = os.path.abspath('./../../../../common') # Sys path is a list of system paths sys.path.append(common_dir) from CELMAPy.MES import get_metric, make_plot, BOUT_print init_printing() folder = '../properZ/' metric = get_metric() # Initialization the_vars = {} # We need Lx from boututils.options import BOUTOptions myOpts = BOUTOptions(folder) Lx = eval(myOpts.geom['Lx']) # We make f a tanh function # NOTE: We get a blow up in S here # We multiply with cos(6*pi*x/(2*Lx)) in order to give it a modulation, and to get a non-zero value at the boundary # We multiply with (x/Lx) in order for S not to blow up at rho=0 s = 0.15 c = 50 w = 30 the_vars['f'] = ((1/2) - (1/2)*(tanh(s*(x-(c - (w/2))))))*cos(6*pi*x/(2*Lx))*sin(2*z) the_vars['S'] = (1/metric.J)*DDX(the_vars['f'], metric=metric) make_plot(folder=folder, the_vars=the_vars, plot2d=True, include_aux=False) BOUT_print(the_vars, rational=False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Initialize Step2: Define the variables Step3: NOTE Step4: Calculating the solution Step5: Plot Step6: Print the variables in BOUT++ format
15,279
<ASSISTANT_TASK:> Python Code: # Librería de cálculo simbólico import sympy as sym # Para imprimir en formato TeX from sympy import init_printing; init_printing(use_latex='mathjax') sym.var('x', real = True) f = x**2 f df = sym.diff(f, x) df x_c = sym.solve(df, x) x_c[0] import numpy as np import matplotlib.pyplot as plt %matplotlib inline f_num = sym.lambdify([x], f, 'numpy') x_vec = np.linspace(-5, 5, 100) plt.plot(x_vec, f_num(x_vec)) plt.xlabel('$x$') plt.ylabel('$x^2$') plt.show() def f(x): return x**2 df = sym.diff(f(x), x) df x_c = sym.solve(df, x) x_c[0] def g(x): return x**3 dg = sym.diff(g(x), x) x_c = sym.solve(dg, x) x_c x_vec = np.linspace(-2,2,100) plt.figure(figsize=(8,6)) plt.plot(x_vec, g(x_vec)) plt.xlabel('$x$') plt.ylabel('$x^3$') plt.show() f = x**2 #d2f = sym.diff(f, x, x) d2f = sym.diff(f, x, 2) d2f d2f>0 g(x) d2g = sym.diff(g(x), x, 2) d2g d2g.subs(x, 0) f = x**2-6*x f df = sym.diff(f, x) df x_c = sym.solve(df, x) x_c f.subs(x, 0), f.subs(x, 5), f.subs(x, x_c[0]) f_num = sym.lambdify([x], f, 'numpy') x_vec = np.linspace(0, 5, 100) plt.figure(figsize=(8,6)) plt.plot(x_vec, f_num(x_vec), 'k', label = '$y=f(x)$') plt.plot([0], [0], '*r', label = '$(0,0=\max_{0\leq x\leq 5} f(x))$') plt.plot([3], [-9], '*b', label = '$(3,-9=\min_{0\leq x\leq 5} f(x))$') plt.legend(loc='best') plt.xlabel('x') plt.show() def h(x): return x**3-3*x dh = sym.diff(h(x), x) x_c = sym.solve(dh, x) x_c h(-2.2), h(x_c[0]), h(x_c[1]), h(1.8) x_vec = np.linspace(-2.2, 1.8, 100) plt.figure(figsize=(8,6)) plt.plot(x_vec, h(x_vec), 'k', label = '$y=f(x)$') plt.plot([x_c[0]], [h(x_c[0])], '*r', label = '$\max_{-2.2\leq x\leq 1.8} h(x)$') plt.plot([-2.2], [h(-2.2)], '*b', label = '$\min_{-2.2\leq x\leq 1.8} h(x)$') plt.legend(loc='best') plt.xlabel('x') plt.show() sym.var('x y') x, y def f(x, y): return x**2 + y**2 dfx = sym.diff(f(x,y), x) dfy = sym.diff(f(x,y), y) dfx, dfy xy_c = sym.solve([dfx, dfy], [x, y]) xy_c x_c, y_c = xy_c[x], xy_c[y] x_c d2fx = sym.diff(f(x,y), x, 2) d2fy = sym.diff(f(x,y), y, 2) dfxy = sym.diff(f(x,y), x, y) Jf = sym.Matrix([[d2fx, dfxy], [dfxy, d2fy]]) Jf.eigenvals() import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.add_subplot(111, projection='3d') x = np.linspace(-2, 2, 100) y = x X, Y = np.meshgrid(x, y) ax.plot_surface(X, Y, f(X, Y)) ax.plot([x_c], [y_c], [f(x_c,y_c)], '*r') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Veamos la gráfica... Step2: Otra manera de hacer lo anterior Step3: El converso del teorema anterior no es cierto. Step4: 2. Criterio de la segunda derivada Step5: Por tanto, por el criterio de la segunda derivada, $f(0)=0$ es un mínimo relativo (en efecto, el mínimo global). Step6: 3. Método para determinar extremos absolutos de una función continua y=f(x) en [a,b] Step7: Evaluamos $f$ en los extremos y en los puntos críticos Step8: Concluimos que el máximo absoluto de $f$ en $\left[0,5\right]$ es $0$ y se alcanza en $x=0$, y que el mínimo absoluto es $-9$ y se alcanza en $x=3$. Step9: Actividad Step10: En varias variables...
15,280
<ASSISTANT_TASK:> Python Code: DON'T MODIFY ANYTHING IN THIS CELL import helper import problem_unittests as tests source_path = 'data/small_vocab_en' target_path = 'data/small_vocab_fr' source_text = helper.load_data(source_path) target_text = helper.load_data(target_path) view_sentence_range = (0, 10) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in source_text.split()}))) sentences = source_text.split('\n') word_counts = [len(sentence.split()) for sentence in sentences] print('Number of sentences: {}'.format(len(sentences))) print('Average number of words in a sentence: {}'.format(np.average(word_counts))) print() print('English sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(source_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) print() print('French sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(target_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) def text_to_ids(source_text, target_text, source_vocab_to_int, target_vocab_to_int): Convert source and target text to proper word ids :param source_text: String that contains all the source text. :param target_text: String that contains all the target text. :param source_vocab_to_int: Dictionary to go from the source words to an id :param target_vocab_to_int: Dictionary to go from the target words to an id :return: A tuple of lists (source_id_text, target_id_text) # TODO: Implement Function source_id_text =[] target_id_text =[] for sentences in source_text.split('\n'): sentence_out = [source_vocab_to_int[word] for word in sentences.split()] source_id_text.append(sentence_out) for sentences in target_text.split('\n'): sentence_out = [target_vocab_to_int[word] for word in sentences.split()] sentence_out.append(target_vocab_to_int['<EOS>']) target_id_text.append(sentence_out) return source_id_text, target_id_text DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_text_to_ids(text_to_ids) DON'T MODIFY ANYTHING IN THIS CELL helper.preprocess_and_save_data(source_path, target_path, text_to_ids) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np import helper (source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess() DON'T MODIFY ANYTHING IN THIS CELL from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) in [LooseVersion('1.0.0'), LooseVersion('1.0.1')], 'This project requires TensorFlow version 1.0 You are using {}'.format(tf.__version__) print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) def model_inputs(): Create TF Placeholders for input, targets, and learning rate. :return: Tuple (input, targets, learning rate, keep probability) inputs = tf.placeholder(tf.int32, [None, None], name='input') targets = tf.placeholder(tf.int32, [None, None], name='target') learning_rate = tf.placeholder(tf.float32, name='learning_rate') keep_prob = tf.placeholder(tf.float32, name='keep_prob') return inputs, targets, learning_rate, keep_prob DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_model_inputs(model_inputs) def process_decoding_input(target_data, target_vocab_to_int, batch_size): Preprocess target data for dencoding :param target_data: Target Placehoder :param target_vocab_to_int: Dictionary to go from the target words to an id :param batch_size: Batch Size :return: Preprocessed target data go_batch = tf.concat([tf.fill([batch_size, 1], target_vocab_to_int['<GO>']), tf.strided_slice(target_data, [0,0], [batch_size, -1], [1,1])], 1) return go_batch DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_process_decoding_input(process_decoding_input) def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob): Create encoding layer :param rnn_inputs: Inputs for the RNN :param rnn_size: RNN Size :param num_layers: Number of layers :param keep_prob: Dropout keep probability :return: RNN state # TODO: Implement Function basic_cell = tf.contrib.rnn.BasicLSTMCell(rnn_size) multi_cell = tf.contrib.rnn.MultiRNNCell([basic_cell] * num_layers) dropout = tf.contrib.rnn.DropoutWrapper(multi_cell, keep_prob) output, state = tf.nn.dynamic_rnn(dropout, rnn_inputs, dtype=tf.float32) return state DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_encoding_layer(encoding_layer) def decoding_layer_train(encoder_state, dec_cell, dec_embed_input, sequence_length, decoding_scope, output_fn, keep_prob): Create a decoding layer for training :param encoder_state: Encoder State :param dec_cell: Decoder RNN Cell :param dec_embed_input: Decoder embedded input :param sequence_length: Sequence Length :param decoding_scope: TenorFlow Variable Scope for decoding :param output_fn: Function to apply the output layer :param keep_prob: Dropout keep probability :return: Train Logits # TODO: Implement Function simple_decoder_fn_train = tf.contrib.seq2seq.simple_decoder_fn_train(encoder_state) output, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder(dec_cell, simple_decoder_fn_train, dec_embed_input, sequence_length, scope=decoding_scope) logits = output_fn(tf.nn.dropout(output, keep_prob)) return logits DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer_train(decoding_layer_train) def decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, maximum_length, vocab_size, decoding_scope, output_fn, keep_prob): Create a decoding layer for inference :param encoder_state: Encoder state :param dec_cell: Decoder RNN Cell :param dec_embeddings: Decoder embeddings :param start_of_sequence_id: GO ID :param end_of_sequence_id: EOS Id :param maximum_length: The maximum allowed time steps to decode :param vocab_size: Size of vocabulary :param decoding_scope: TensorFlow Variable Scope for decoding :param output_fn: Function to apply the output layer :param keep_prob: Dropout keep probability :return: Inference Logits # TODO: Implement Function simple_decoder_fn_inference = tf.contrib.seq2seq.simple_decoder_fn_inference(output_fn, encoder_state, dec_embeddings, start_of_sequence_id, end_of_sequence_id, maximum_length, vocab_size) logits, _, _ = tf.contrib.seq2seq.dynamic_rnn_decoder(dec_cell, simple_decoder_fn_inference, scope=decoding_scope) return logits DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer_infer(decoding_layer_infer) def decoding_layer(dec_embed_input, dec_embeddings, encoder_state, vocab_size, sequence_length, rnn_size, num_layers, target_vocab_to_int, keep_prob): Create decoding layer :param dec_embed_input: Decoder embedded input :param dec_embeddings: Decoder embeddings :param encoder_state: The encoded state :param vocab_size: Size of vocabulary :param sequence_length: Sequence Length :param rnn_size: RNN Size :param num_layers: Number of layers :param target_vocab_to_int: Dictionary to go from the target words to an id :param keep_prob: Dropout keep probability :return: Tuple of (Training Logits, Inference Logits) # TODO: Implement Function basic_cell = tf.contrib.rnn.BasicLSTMCell(rnn_size) dropout = tf.contrib.rnn.DropoutWrapper(basic_cell, keep_prob) multi_cell = tf.contrib.rnn.MultiRNNCell([dropout] * num_layers) with tf.variable_scope("decoding") as decoding_scope: output_fn = lambda x: tf.contrib.layers.fully_connected(x, vocab_size, None, scope=decoding_scope) decoding_logits_train = decoding_layer_train(encoder_state, multi_cell, dec_embed_input, sequence_length, decoding_scope, output_fn, keep_prob) with tf.variable_scope("decoding", reuse=True) as decoding_scope: decoding_logits_infer = decoding_layer_infer(encoder_state, multi_cell, dec_embeddings, target_vocab_to_int['<GO>'], target_vocab_to_int['<EOS>'], sequence_length, vocab_size, decoding_scope, output_fn, keep_prob) return decoding_logits_train, decoding_logits_infer DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer(decoding_layer) def seq2seq_model(input_data, target_data, keep_prob, batch_size, sequence_length, source_vocab_size, target_vocab_size, enc_embedding_size, dec_embedding_size, rnn_size, num_layers, target_vocab_to_int): Build the Sequence-to-Sequence part of the neural network :param input_data: Input placeholder :param target_data: Target placeholder :param keep_prob: Dropout keep probability placeholder :param batch_size: Batch Size :param sequence_length: Sequence Length :param source_vocab_size: Source vocabulary size :param target_vocab_size: Target vocabulary size :param enc_embedding_size: Decoder embedding size :param dec_embedding_size: Encoder embedding size :param rnn_size: RNN Size :param num_layers: Number of layers :param target_vocab_to_int: Dictionary to go from the target words to an id :return: Tuple of (Training Logits, Inference Logits) # TODO: Implement Function encoder_embed_input = tf.contrib.layers.embed_sequence(input_data, source_vocab_size, enc_embedding_size) encoder_output = encoding_layer(encoder_embed_input, rnn_size, num_layers, keep_prob) decoder_input = process_decoding_input(target_data, target_vocab_to_int, batch_size) decoder_embed = tf.Variable(tf.random_uniform([target_vocab_size, dec_embedding_size])) decoder_embed_input = tf.nn.embedding_lookup(decoder_embed, decoder_input) t_logits, i_logits = decoding_layer(decoder_embed_input, decoder_embed, encoder_output, target_vocab_size, sequence_length, rnn_size, num_layers, target_vocab_to_int, keep_prob) return t_logits, i_logits DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_seq2seq_model(seq2seq_model) # Number of Epochs epochs = 5 # Batch Size batch_size = 256 # RNN Size rnn_size = 512 # Number of Layers num_layers = 2 # Embedding Size encoding_embedding_size = 128 decoding_embedding_size = 128 # Learning Rate learning_rate = 0.001 # Dropout Keep Probability keep_probability = 0.5 DON'T MODIFY ANYTHING IN THIS CELL save_path = 'checkpoints/dev' (source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess() max_source_sentence_length = max([len(sentence) for sentence in source_int_text]) train_graph = tf.Graph() with train_graph.as_default(): input_data, targets, lr, keep_prob = model_inputs() sequence_length = tf.placeholder_with_default(max_source_sentence_length, None, name='sequence_length') input_shape = tf.shape(input_data) train_logits, inference_logits = seq2seq_model( tf.reverse(input_data, [-1]), targets, keep_prob, batch_size, sequence_length, len(source_vocab_to_int), len(target_vocab_to_int), encoding_embedding_size, decoding_embedding_size, rnn_size, num_layers, target_vocab_to_int) tf.identity(inference_logits, 'logits') with tf.name_scope("optimization"): # Loss function cost = tf.contrib.seq2seq.sequence_loss( train_logits, targets, tf.ones([input_shape[0], sequence_length])) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) DON'T MODIFY ANYTHING IN THIS CELL import time def get_accuracy(target, logits): Calculate accuracy max_seq = max(target.shape[1], logits.shape[1]) if max_seq - target.shape[1]: target = np.pad( target, [(0,0),(0,max_seq - target.shape[1])], 'constant') if max_seq - logits.shape[1]: logits = np.pad( logits, [(0,0),(0,max_seq - logits.shape[1]), (0,0)], 'constant') return np.mean(np.equal(target, np.argmax(logits, 2))) train_source = source_int_text[batch_size:] train_target = target_int_text[batch_size:] valid_source = helper.pad_sentence_batch(source_int_text[:batch_size]) valid_target = helper.pad_sentence_batch(target_int_text[:batch_size]) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(epochs): for batch_i, (source_batch, target_batch) in enumerate( helper.batch_data(train_source, train_target, batch_size)): start_time = time.time() _, loss = sess.run( [train_op, cost], {input_data: source_batch, targets: target_batch, lr: learning_rate, sequence_length: target_batch.shape[1], keep_prob: keep_probability}) batch_train_logits = sess.run( inference_logits, {input_data: source_batch, keep_prob: 1.0}) batch_valid_logits = sess.run( inference_logits, {input_data: valid_source, keep_prob: 1.0}) train_acc = get_accuracy(target_batch, batch_train_logits) valid_acc = get_accuracy(np.array(valid_target), batch_valid_logits) end_time = time.time() print('Epoch {:>3} Batch {:>4}/{} - Train Accuracy: {:>6.3f}, Validation Accuracy: {:>6.3f}, Loss: {:>6.3f}' .format(epoch_i, batch_i, len(source_int_text) // batch_size, train_acc, valid_acc, loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_path) print('Model Trained and Saved') DON'T MODIFY ANYTHING IN THIS CELL # Save parameters for checkpoint helper.save_params(save_path) DON'T MODIFY ANYTHING IN THIS CELL import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, (source_vocab_to_int, target_vocab_to_int), (source_int_to_vocab, target_int_to_vocab) = helper.load_preprocess() load_path = helper.load_params() def sentence_to_seq(sentence, vocab_to_int): Convert a sentence to a sequence of ids :param sentence: String :param vocab_to_int: Dictionary to go from the words to an id :return: List of word ids # TODO: Implement Function unknown_word = vocab_to_int['<UNK>'] sentence_lowercase = sentence.lower() word_ids = [vocab_to_int.get(word, unknown_word) for word in sentence_lowercase.split()] return word_ids DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_sentence_to_seq(sentence_to_seq) translate_sentence = 'he saw a old yellow truck .' DON'T MODIFY ANYTHING IN THIS CELL translate_sentence = sentence_to_seq(translate_sentence, source_vocab_to_int) loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_path + '.meta') loader.restore(sess, load_path) input_data = loaded_graph.get_tensor_by_name('input:0') logits = loaded_graph.get_tensor_by_name('logits:0') keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0') translate_logits = sess.run(logits, {input_data: [translate_sentence], keep_prob: 1.0})[0] print('Input') print(' Word Ids: {}'.format([i for i in translate_sentence])) print(' English Words: {}'.format([source_int_to_vocab[i] for i in translate_sentence])) print('\nPrediction') print(' Word Ids: {}'.format([i for i in np.argmax(translate_logits, 1)])) print(' French Words: {}'.format([target_int_to_vocab[i] for i in np.argmax(translate_logits, 1)])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Language Translation Step3: Explore the Data Step6: Implement Preprocessing Function Step8: Preprocess all the data and save it Step10: Check Point Step12: Check the Version of TensorFlow and Access to GPU Step15: Build the Neural Network Step18: Process Decoding Input Step21: Encoding Step24: Decoding - Training Step27: Decoding - Inference Step30: Build the Decoding Layer Step33: Build the Neural Network Step34: Neural Network Training Step36: Build the Graph Step39: Train Step41: Save Parameters Step43: Checkpoint Step46: Sentence to Sequence Step48: Translate
15,281
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. !pip install -q -U tensorflow-text !pip install -q tensorflow_datasets import collections import os import pathlib import re import string import sys import tempfile import time import numpy as np import matplotlib.pyplot as plt import tensorflow_datasets as tfds import tensorflow_text as text import tensorflow as tf tf.get_logger().setLevel('ERROR') pwd = pathlib.Path.cwd() examples, metadata = tfds.load('ted_hrlr_translate/pt_to_en', with_info=True, as_supervised=True) train_examples, val_examples = examples['train'], examples['validation'] for pt, en in train_examples.take(1): print("Portuguese: ", pt.numpy().decode('utf-8')) print("English: ", en.numpy().decode('utf-8')) train_en = train_examples.map(lambda pt, en: en) train_pt = train_examples.map(lambda pt, en: pt) from tensorflow_text.tools.wordpiece_vocab import bert_vocab_from_dataset as bert_vocab bert_tokenizer_params=dict(lower_case=True) reserved_tokens=["[PAD]", "[UNK]", "[START]", "[END]"] bert_vocab_args = dict( # The target vocabulary size vocab_size = 8000, # Reserved tokens that must be included in the vocabulary reserved_tokens=reserved_tokens, # Arguments for `text.BertTokenizer` bert_tokenizer_params=bert_tokenizer_params, # Arguments for `wordpiece_vocab.wordpiece_tokenizer_learner_lib.learn` learn_params={}, ) %%time pt_vocab = bert_vocab.bert_vocab_from_dataset( train_pt.batch(1000).prefetch(2), **bert_vocab_args ) print(pt_vocab[:10]) print(pt_vocab[100:110]) print(pt_vocab[1000:1010]) print(pt_vocab[-10:]) def write_vocab_file(filepath, vocab): with open(filepath, 'w') as f: for token in vocab: print(token, file=f) write_vocab_file('pt_vocab.txt', pt_vocab) %%time en_vocab = bert_vocab.bert_vocab_from_dataset( train_en.batch(1000).prefetch(2), **bert_vocab_args ) print(en_vocab[:10]) print(en_vocab[100:110]) print(en_vocab[1000:1010]) print(en_vocab[-10:]) write_vocab_file('en_vocab.txt', en_vocab) !ls *.txt pt_tokenizer = text.BertTokenizer('pt_vocab.txt', **bert_tokenizer_params) en_tokenizer = text.BertTokenizer('en_vocab.txt', **bert_tokenizer_params) for pt_examples, en_examples in train_examples.batch(3).take(1): for ex in en_examples: print(ex.numpy()) # Tokenize the examples -> (batch, word, word-piece) token_batch = en_tokenizer.tokenize(en_examples) # Merge the word and word-piece axes -> (batch, tokens) token_batch = token_batch.merge_dims(-2,-1) for ex in token_batch.to_list(): print(ex) # Lookup each token id in the vocabulary. txt_tokens = tf.gather(en_vocab, token_batch) # Join with spaces. tf.strings.reduce_join(txt_tokens, separator=' ', axis=-1) words = en_tokenizer.detokenize(token_batch) tf.strings.reduce_join(words, separator=' ', axis=-1) START = tf.argmax(tf.constant(reserved_tokens) == "[START]") END = tf.argmax(tf.constant(reserved_tokens) == "[END]") def add_start_end(ragged): count = ragged.bounding_shape()[0] starts = tf.fill([count,1], START) ends = tf.fill([count,1], END) return tf.concat([starts, ragged, ends], axis=1) words = en_tokenizer.detokenize(add_start_end(token_batch)) tf.strings.reduce_join(words, separator=' ', axis=-1) def cleanup_text(reserved_tokens, token_txt): # Drop the reserved tokens, except for "[UNK]". bad_tokens = [re.escape(tok) for tok in reserved_tokens if tok != "[UNK]"] bad_token_re = "|".join(bad_tokens) bad_cells = tf.strings.regex_full_match(token_txt, bad_token_re) result = tf.ragged.boolean_mask(token_txt, ~bad_cells) # Join them into strings. result = tf.strings.reduce_join(result, separator=' ', axis=-1) return result en_examples.numpy() token_batch = en_tokenizer.tokenize(en_examples).merge_dims(-2,-1) words = en_tokenizer.detokenize(token_batch) words cleanup_text(reserved_tokens, words).numpy() class CustomTokenizer(tf.Module): def __init__(self, reserved_tokens, vocab_path): self.tokenizer = text.BertTokenizer(vocab_path, lower_case=True) self._reserved_tokens = reserved_tokens self._vocab_path = tf.saved_model.Asset(vocab_path) vocab = pathlib.Path(vocab_path).read_text().splitlines() self.vocab = tf.Variable(vocab) ## Create the signatures for export: # Include a tokenize signature for a batch of strings. self.tokenize.get_concrete_function( tf.TensorSpec(shape=[None], dtype=tf.string)) # Include `detokenize` and `lookup` signatures for: # * `Tensors` with shapes [tokens] and [batch, tokens] # * `RaggedTensors` with shape [batch, tokens] self.detokenize.get_concrete_function( tf.TensorSpec(shape=[None, None], dtype=tf.int64)) self.detokenize.get_concrete_function( tf.RaggedTensorSpec(shape=[None, None], dtype=tf.int64)) self.lookup.get_concrete_function( tf.TensorSpec(shape=[None, None], dtype=tf.int64)) self.lookup.get_concrete_function( tf.RaggedTensorSpec(shape=[None, None], dtype=tf.int64)) # These `get_*` methods take no arguments self.get_vocab_size.get_concrete_function() self.get_vocab_path.get_concrete_function() self.get_reserved_tokens.get_concrete_function() @tf.function def tokenize(self, strings): enc = self.tokenizer.tokenize(strings) # Merge the `word` and `word-piece` axes. enc = enc.merge_dims(-2,-1) enc = add_start_end(enc) return enc @tf.function def detokenize(self, tokenized): words = self.tokenizer.detokenize(tokenized) return cleanup_text(self._reserved_tokens, words) @tf.function def lookup(self, token_ids): return tf.gather(self.vocab, token_ids) @tf.function def get_vocab_size(self): return tf.shape(self.vocab)[0] @tf.function def get_vocab_path(self): return self._vocab_path @tf.function def get_reserved_tokens(self): return tf.constant(self._reserved_tokens) tokenizers = tf.Module() tokenizers.pt = CustomTokenizer(reserved_tokens, 'pt_vocab.txt') tokenizers.en = CustomTokenizer(reserved_tokens, 'en_vocab.txt') model_name = 'ted_hrlr_translate_pt_en_converter' tf.saved_model.save(tokenizers, model_name) reloaded_tokenizers = tf.saved_model.load(model_name) reloaded_tokenizers.en.get_vocab_size().numpy() tokens = reloaded_tokenizers.en.tokenize(['Hello TensorFlow!']) tokens.numpy() text_tokens = reloaded_tokenizers.en.lookup(tokens) text_tokens round_trip = reloaded_tokenizers.en.detokenize(tokens) print(round_trip.numpy()[0].decode('utf-8')) !zip -r {model_name}.zip {model_name} !du -h *.zip pt_lookup = tf.lookup.StaticVocabularyTable( num_oov_buckets=1, initializer=tf.lookup.TextFileInitializer( filename='pt_vocab.txt', key_dtype=tf.string, key_index = tf.lookup.TextFileIndex.WHOLE_LINE, value_dtype = tf.int64, value_index=tf.lookup.TextFileIndex.LINE_NUMBER)) pt_tokenizer = text.BertTokenizer(pt_lookup) pt_lookup.lookup(tf.constant(['é', 'um', 'uma', 'para', 'não'])) pt_lookup = tf.lookup.StaticVocabularyTable( num_oov_buckets=1, initializer=tf.lookup.KeyValueTensorInitializer( keys=pt_vocab, values=tf.range(len(pt_vocab), dtype=tf.int64))) pt_tokenizer = text.BertTokenizer(pt_lookup) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <table class="tfo-notebook-buttons" align="left"> Step2: Download the dataset Step3: This dataset produces Portuguese/English sentence pairs Step4: Note a few things about the example sentences above Step5: Generate the vocabulary Step6: The bert_vocab.bert_vocab_from_dataset function will generate the vocabulary. Step7: Here are some slices of the resulting vocabulary. Step8: Write a vocabulary file Step9: Use that function to generate a vocabulary from the english data Step10: Here are the two vocabulary files Step11: Build the tokenizer Step12: Now you can use it to encode some text. Take a batch of 3 examples from the english data Step13: Run it through the BertTokenizer.tokenize method. Initially, this returns a tf.RaggedTensor with axes (batch, word, word-piece) Step14: If you replace the token IDs with their text representations (using tf.gather) you can see that in the first example the words "searchability" and "serendipity" have been decomposed into "search ##ability" and "s ##ere ##nd ##ip ##ity" Step15: To re-assemble words from the extracted tokens, use the BertTokenizer.detokenize method Step16: Note Step17: Custom detokenization Step18: Export Step19: Build a CustomTokenizer for each language Step20: Export the tokenizers as a saved_model Step21: Reload the saved_model and test the methods Step22: Archive it for the translation tutorials Step23: <a id="algorithm"></a> Step24: Now you have direct access to the lookup table used in the tokenizer. Step25: You don't need to use a vocabulary file, tf.lookup has other initializer options. If you have the vocabulary in memory you can use lookup.KeyValueTensorInitializer
15,282
<ASSISTANT_TASK:> Python Code: import graphlab as gl from IPython.display import display from IPython.display import Image gl.canvas.set_target('ipynb') %matplotlib inline import matplotlib.pyplot as plt plt.plot(2, 2) plt.text(2, 2, '汉字', fontsize = 300) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 如何卸载一个包
15,283
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import cartopy.crs as ccrs plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.PlateCarree()) ax.coastlines(resolution='110m') ax.stock_img() ax.gridlines(); plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.PlateCarree(central_longitude=180)) ax.coastlines(resolution='110m') ax.stock_img() ax.gridlines(); plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.LambertConformal()) ax.coastlines(resolution='110m') ax.gridlines(); plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.LambertCylindrical()) ax.coastlines(resolution='110m') ax.stock_img() ax.gridlines(); plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.Mercator()) ax.coastlines(resolution='110m') ax.stock_img() ax.gridlines(); plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.Miller()) ax.coastlines(resolution='110m') ax.stock_img() ax.gridlines(); plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.Mollweide()) ax.coastlines(resolution='110m') ax.stock_img() ax.gridlines(); plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.Orthographic()) ax.coastlines(resolution='110m') ax.stock_img() ax.gridlines(); plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.Robinson()) ax.coastlines(resolution='110m') ax.stock_img() ax.gridlines(); plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.Stereographic()) ax.coastlines(resolution='110m') ax.gridlines(); plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.TransverseMercator()) ax.coastlines(resolution='110m') ax.gridlines(); plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.InterruptedGoodeHomolosine()) ax.coastlines(resolution='110m') ax.stock_img() ax.gridlines(); plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.RotatedPole(pole_latitude=37.5, pole_longitude=177.5)) ax.coastlines(resolution='110m') ax.stock_img() ax.gridlines(); plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.OSGB()) ax.coastlines(resolution='110m') ax.stock_img() ax.gridlines(); plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.EuroPP()) ax.coastlines(resolution='110m') ax.stock_img() ax.gridlines(); plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.Geostationary()) ax.coastlines(resolution='110m') ax.stock_img() ax.gridlines(); plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.Gnomonic()) ax.coastlines(resolution='110m') ax.stock_img() ax.gridlines(); plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.NorthPolarStereo()) ax.coastlines(resolution='110m') ax.stock_img() ax.gridlines(); # note: # coastlines methods can use several resolution (110m, 50m, 10m) # for convenience here we use 110m # see : # ax.coastlines? plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.OSNI()) ax.coastlines(resolution='110m') ax.stock_img() ax.gridlines(); plt.figure(figsize=(12, 12)) ax = plt.axes(projection=ccrs.SouthPolarStereo()) ax.coastlines(resolution='110m') ax.stock_img() ax.gridlines(); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: PlateCarree Step2: set the central longitude to $180^\circ$ Step3: AzimuthalEquidistant Step4: LambertCylindrical Step5: Mercator Step6: Miller Step7: Mollweide Step8: Orthographic Step9: Robinson Step10: Stereographic Step11: TransverseMercator Step12: UTM Step13: RotatedPole Step14: OSGB Step15: EuroPP Step16: Geostationary Step17: Gnomonic Step18: NorthPolarStereo Step19: OSNI Step20: SouthPolarStereo
15,284
<ASSISTANT_TASK:> Python Code: # Run this cell, but please don't change it. import numpy as np import math from datascience import * # These lines set up the plotting functionality and formatting. import matplotlib matplotlib.use('Agg', warn=False) %matplotlib inline import matplotlib.pyplot as plots plots.style.use('fivethirtyeight') # These lines load the tests. from client.api.assignment import load_assignment tests = load_assignment('project1.ok') # Run this cell, but please don't change it. districts = Map.read_geojson('water_districts.geojson') zips = Map.read_geojson('ca_zips.geojson.gz') usage_raw = Table.read_table('water_usage.csv', dtype={'pwsid': str}) income_raw = Table.read_table('ca_income_by_zip.csv', dtype={'ZIP': str}).drop('STATEFIPS', 'STATE', 'agi_stub') wd_vs_zip = Table.read_table('wd_vs_zip.csv', dtype={'PWSID': str, 'ZIP': str}).set_format(make_array(2, 3), PercentFormatter) districts.format(width=400, height=200) district_table = Table.from_records(districts.features) district_table.show(3) # Fill in the next line so the last line draws a map of those two districts. alameda_and_east_bay = ... Map(alameda_and_east_bay, height=300, width=300) _ = tests.grade('q11') income_raw income_by_zipcode = ... income_by_zipcode _ = tests.grade('q21') ... ... income_by_zipcode _ = tests.grade('q22') income = Table().with_columns( ... ... ... ... ) income.set_format('total income ($)', NumberFormatter(0)).show(5) _ = tests.grade('q23') income = ... _ = tests.grade('q24') # Our solution took several lines of code. average_income = ... average_income _ = tests.grade('q25') avg_total = ... avg_total # Write code to make a scatter plot here. ... # Build and display a table with two rows: # 1) incomes of returns in ZIP codes with a greater-than-average proportion of farmers # 2) incomes of returns in other ZIP codes # Write code to draw a map of only the high-income ZIP codes. # We have filled in some of it and suggested names for variables # you might want to define. zip_features = Table.from_records(zips.features) high_average_zips = ... high_zips_with_region = ... Map(high_zips_with_region.column('feature'), width=400, height=300) # Run this cell to create the usage table. usage_raw.set_format(4, NumberFormatter) max_pop = usage_raw.select(0, 'population').group(0, max).relabeled(1, 'Population') avg_water = usage_raw.select(0, 'res_gpcd').group(0, np.mean).relabeled(1, 'Water') usage = max_pop.join('pwsid', avg_water).relabeled(0, 'PWSID') usage # We have filled in the call to districts.color(...). Set per_capita_usage # to an appropriate table so that a map of all the water districts is # displayed. per_capita_usage = ... districts.color(per_capita_usage, key_on='feature.properties.PWSID') _ = tests.grade('q31') wd_vs_zip.show(5) def district_for_zip(zip_code): zip_code = str(zip_code) # Ensure that the ZIP code is a string, not an integer districts = ... at_least_half = ... if at_least_half: ... else: return 'No District' district_for_zip(94709) _ = tests.grade('q33') zip_pwsids = income.apply(district_for_zip, 'ZIP') income_with_pwsid = income.with_column('PWSID', zip_pwsids).where('PWSID', are.not_equal_to("No District")) income_with_pwsid.set_format(2, NumberFormatter(0)).show(5) district_income = ... district_data = ... district_data.set_format(make_array('Population', 'Water', 'Income'), NumberFormatter(0)) _ = tests.grade('q34') bay_districts = Table.read_table('bay_districts.csv') bay_water_vs_income = ... top_10 = ... ... # For your convenience, you can run this cell to run all the tests at once! import os _ = [tests.grade(q[:-3]) for q in os.listdir("tests") if q.startswith('q')] # Your extensions here (completely optional) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: First, load the data. Loading may take some time. Step2: Part 1 Step3: A Map is a collection of regions and other features such as points and markers, each of which has a string id and various properties. You can view the features of the districts map as a table using Table.from_records. Step4: To display a Map containing only two features from the district_table, call Map on an array containing those two features from the feature column. Step5: Hint Step6: Some observations Step7: Your income_by_zipcode table probably has column names like N1 sum, which looks a little weird. Step8: Question 2.3. Step9: Question 2.4. All ZIP codes with less than 100 returns (or some other special conditions) are grouped together into one ZIP code with a special code. Remove the row for that ZIP code from the income table. Step10: Because each ZIP code has a different number of people, computing the average income across several ZIP codes requires some care. This will come up several times in this project. Here is a simple example Step11: Question 2.6. Among all California tax returns that include a total income amount, what is the average total income? Express the answer in dollars as an int rounded to the nearest dollar. Step12: Farming Step13: Question 2.8. From the graph, can you say whether ZIP codes with more farmers typically have lower or higher average income than ZIP codes with few or no farmers? Can you say how much lower or higher? Step14: Write your answer here, replacing this text. Step15: Write your answer here, replacing this text. Step16: Question 3.1. Draw a map of the water districts, colored by the per capita water usage in each district. Step17: Question 3.2. Based on the map above, which part of California appears to use more water per person Step18: Question 3.3. Complete the district_for_zip function that takes a ZIP code as its argument. It returns the PWSID with the largest value of ZIP in District for that zip_code, if that value is at least 50%. Otherwise, it returns the string 'No District'. Step19: This function can be used to associate each ZIP code in the income table with a PWSID and discard ZIP codes that do not lie (mostly) in a water district. Step20: Question 3.4. Create a table called district_data with one row per PWSID and the following columns Step21: Question 3.5. The bay_districts table gives the names of all water districts in the San Francisco Bay Area. Is there an association between water usage and income among Bay Area water districts? Use the tables you have created to compare water usage between the 10 Bay Area water districts with the highest average income and the rest of the Bay Area districts, then describe the association. Do not include any districts in your analysis for which you do not have income information. Step22: Complete this one-sentence conclusion Step23: If you want, draw some more maps below.
15,285
<ASSISTANT_TASK:> Python Code: data_dir = './data' # FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe" data_dir = '/input' DON'T MODIFY ANYTHING IN THIS CELL import helper helper.download_extract('mnist', data_dir) helper.download_extract('celeba', data_dir) show_n_images = 25 DON'T MODIFY ANYTHING IN THIS CELL %matplotlib inline import os from glob import glob from matplotlib import pyplot mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L') pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray') show_n_images = 25 DON'T MODIFY ANYTHING IN THIS CELL mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB') pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB')) DON'T MODIFY ANYTHING IN THIS CELL from distutils.version import LooseVersion import warnings import tensorflow as tf # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer. You are using {}'.format(tf.__version__) print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) import problem_unittests as tests def model_inputs(image_width, image_height, image_channels, z_dim): Create the model inputs :param image_width: The input image width :param image_height: The input image height :param image_channels: The number of image channels :param z_dim: The dimension of Z :return: Tuple of (tensor of real input images, tensor of z data, learning rate) # TODO: Implement Function inputs_real = tf.placeholder(tf.float32, shape=(None, image_width, image_height, image_channels), name='input_real') inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z') learning_rate = tf.placeholder(tf.float32, name='learning_rate') return inputs_real, inputs_z, learning_rate DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_model_inputs(model_inputs) def discriminator(images, reuse=False): Create the discriminator network :param image: Tensor of input image(s) :param reuse: Boolean if the weights should be reused :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator) alpha = 0.2 keep_prob=0.8 with tf.variable_scope('discriminator', reuse=reuse): # using 4 layer network as in DCGAN Paper # Conv 1 conv1 = tf.layers.conv2d(images, 64, 5, 2, 'SAME', kernel_initializer=tf.contrib.layers.xavier_initializer()) lrelu1 = tf.maximum(alpha * conv1, conv1) # Conv 2 conv2 = tf.layers.conv2d(lrelu1, 128, 5, 2, 'SAME', kernel_initializer=tf.contrib.layers.xavier_initializer()) batch_norm2 = tf.layers.batch_normalization(conv2, training=True) lrelu2 = tf.maximum(alpha * batch_norm2, batch_norm2) drop2 = tf.nn.dropout(lrelu2, keep_prob=keep_prob) # Conv 3 conv3 = tf.layers.conv2d(drop2, 256, 5, 1, 'SAME', kernel_initializer=tf.contrib.layers.xavier_initializer()) batch_norm3 = tf.layers.batch_normalization(conv3, training=True) lrelu3 = tf.maximum(alpha * batch_norm3, batch_norm3) drop3 = tf.nn.dropout(lrelu3, keep_prob=keep_prob) # Conv 4 conv4 = tf.layers.conv2d(drop3, 512, 5, 1, 'SAME', kernel_initializer=tf.contrib.layers.xavier_initializer()) batch_norm4 = tf.layers.batch_normalization(conv4, training=True) lrelu4 = tf.maximum(alpha * batch_norm4, batch_norm4) drop4 = tf.nn.dropout(lrelu4, keep_prob=keep_prob) # Flatten flat = tf.reshape(drop4, (-1, 7*7*512)) # Logits logits = tf.layers.dense(flat, 1) # Output out = tf.sigmoid(logits) return out, logits DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_discriminator(discriminator, tf) def generator(z, out_channel_dim, is_train=True): Create the generator network :param z: Input z :param out_channel_dim: The number of channels in the output image :param is_train: Boolean if generator is being used for training :return: The tensor output of the generator alpha = 0.2 keep_prob=0.8 with tf.variable_scope('generator', reuse=False if is_train==True else True): # Fully connected fc1 = tf.layers.dense(z, 7*7*512) fc1 = tf.reshape(fc1, (-1, 7, 7, 512)) fc1 = tf.maximum(alpha*fc1, fc1) # Starting Conv Transpose Stack deconv2 = tf.layers.conv2d_transpose(fc1, 256, 3, 1, 'SAME', kernel_initializer=tf.contrib.layers.xavier_initializer()) batch_norm2 = tf.layers.batch_normalization(deconv2, training=is_train) lrelu2 = tf.maximum(alpha * batch_norm2, batch_norm2) drop2 = tf.nn.dropout(lrelu2, keep_prob=keep_prob) deconv3 = tf.layers.conv2d_transpose(drop2, 128, 3, 1, 'SAME', kernel_initializer=tf.contrib.layers.xavier_initializer()) batch_norm3 = tf.layers.batch_normalization(deconv3, training=is_train) lrelu3 = tf.maximum(alpha * batch_norm3, batch_norm3) drop3 = tf.nn.dropout(lrelu3, keep_prob=keep_prob) deconv4 = tf.layers.conv2d_transpose(drop3, 64, 3, 2, 'SAME', kernel_initializer=tf.contrib.layers.xavier_initializer()) batch_norm4 = tf.layers.batch_normalization(deconv4, training=is_train) lrelu4 = tf.maximum(alpha * batch_norm4, batch_norm4) drop4 = tf.nn.dropout(lrelu4, keep_prob=keep_prob) # Logits logits = tf.layers.conv2d_transpose(drop4, out_channel_dim, 3, 2, 'SAME', kernel_initializer=tf.contrib.layers.xavier_initializer()) # Output out = tf.tanh(logits) return out DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_generator(generator, tf) def model_loss(input_real, input_z, out_channel_dim): Get the loss for the discriminator and generator :param input_real: Images from the real dataset :param input_z: Z input :param out_channel_dim: The number of channels in the output image :return: A tuple of (discriminator loss, generator loss) g_model = generator(input_z, out_channel_dim) d_model_real, d_logits_real = discriminator(input_real) d_model_fake, d_logits_fake = discriminator(g_model, reuse=True) d_loss_real = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real) * 0.9) ) d_loss_fake = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)) ) d_loss = d_loss_real + d_loss_fake g_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)) ) return d_loss, g_loss DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_model_loss(model_loss) def model_opt(d_loss, g_loss, learning_rate, beta1): Get optimization operations :param d_loss: Discriminator loss Tensor :param g_loss: Generator loss Tensor :param learning_rate: Learning Rate Placeholder :param beta1: The exponential decay rate for the 1st moment in the optimizer :return: A tuple of (discriminator training operation, generator training operation) t_vars = tf.trainable_variables() d_vars = [var for var in t_vars if var.name.startswith('discriminator')] g_vars = [var for var in t_vars if var.name.startswith('generator')] # Optimize d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars) with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope='generator')): g_train_opt = tf.train.AdamOptimizer(learning_rate = learning_rate,beta1 = beta1).minimize(g_loss, var_list = g_vars) return d_train_opt, g_train_opt DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_model_opt(model_opt, tf) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode): Show example output for the generator :param sess: TensorFlow session :param n_images: Number of Images to display :param input_z: Input Z Tensor :param out_channel_dim: The number of channels in the output image :param image_mode: The mode to use for images ("RGB" or "L") cmap = None if image_mode == 'RGB' else 'gray' z_dim = input_z.get_shape().as_list()[-1] example_z = np.random.uniform(-1, 1, size=[n_images, z_dim]) samples = sess.run( generator(input_z, out_channel_dim, False), feed_dict={input_z: example_z}) images_grid = helper.images_square_grid(samples, image_mode) pyplot.imshow(images_grid, cmap=cmap) pyplot.show() def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode): Train the GAN :param epoch_count: Number of epochs :param batch_size: Batch Size :param z_dim: Z dimension :param learning_rate: Learning Rate :param beta1: The exponential decay rate for the 1st moment in the optimizer :param get_batches: Function to get batches :param data_shape: Shape of the data :param data_image_mode: The image mode to use for images ("RGB" or "L") tf.reset_default_graph() input_real, input_z, _ = model_inputs(data_shape[1], data_shape[2], data_shape[3], z_dim) d_loss, g_loss = model_loss(input_real, input_z, data_shape[3]) d_opt, g_opt = model_opt(d_loss, g_loss, learning_rate, beta1) steps = 0 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(epoch_count): for batch_images in get_batches(batch_size): batch_images = batch_images * 2 steps += 1 batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim)) _ = sess.run(d_opt, feed_dict={input_real: batch_images, input_z: batch_z}) _ = sess.run(g_opt, feed_dict={input_z: batch_z}) if steps % 100 == 0: train_loss_d = d_loss.eval({input_z: batch_z, input_real: batch_images}) train_loss_g = g_loss.eval({input_z: batch_z}) print("Epoch {}/{}...".format(epoch_i+1, epochs), "Discriminator Loss: {:.4f}...".format(train_loss_d), "Generator Loss: {:.4f}".format(train_loss_g)) _ = show_generator_output(sess, 1, input_z, data_shape[3], data_image_mode) batch_size = 32 z_dim = 100 learning_rate = 0.0002 beta1 = 0.5 DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE epochs = 2 mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg'))) with tf.Graph().as_default(): train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches, mnist_dataset.shape, mnist_dataset.image_mode) batch_size = 64 z_dim = 100 learning_rate = 0.0002 beta1 = 0.5 DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE epochs = 1 celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))) with tf.Graph().as_default(): train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches, celeba_dataset.shape, celeba_dataset.image_mode) print("Done") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Face Generation Step3: Explore the Data Step5: CelebA Step7: Preprocess the Data Step10: Input Step13: Discriminator Step16: Generator Step19: Loss Step22: Optimization Step25: Neural Network Training Step27: Train Step29: MNIST Step31: CelebA Step32: Submitting This Project
15,286
<ASSISTANT_TASK:> Python Code: import re from time import time import string import numpy as np import pandas as pd import matplotlib.pyplot as plt from pprint import pprint #Sklearn Imports from sklearn import metrics from sklearn.datasets import fetch_20newsgroups from sklearn import preprocessing from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer, TfidfTransformer from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import GridSearchCV from sklearn.metrics import confusion_matrix, precision_recall_curve, roc_auc_score, auc from nltk import PorterStemmer from nltk.corpus import stopwords from nltk.tokenize import sent_tokenize, word_tokenize import nltk nltk.download('stopwords') #download the latest stopwords all_newsgroups= fetch_20newsgroups() pprint(list(all_newsgroups.target_names)) cats = ['sci.med' , 'rec.motorcycles'] newsgroups_train = fetch_20newsgroups(subset='train', categories=cats, remove=('headers', 'footers', 'quotes')) newsgroups_test = fetch_20newsgroups(subset='test', categories=cats, remove=('headers', 'footers', 'quotes')) print("Categories to classify\n-----------------------") print(list(newsgroups_train.target_names)) print("TRAIN DATA\n---------------") print("Data Type:", type(newsgroups_train)) print("%d documents" % len(newsgroups_train.filenames)) print("%d categories" % len(newsgroups_train.target_names)) print("X shape :", newsgroups_train.filenames.shape) print("Y shape :",newsgroups_train.target.shape) print("Y head :", newsgroups_train.target[:10]) print("TEST DATA\n---------------") print("Data Type:", type(newsgroups_test)) print("%d documents" % len(newsgroups_test.filenames)) print("%d categories" % len(newsgroups_test.target_names)) print("X shape :", newsgroups_test.filenames.shape) print("Y shape :",newsgroups_test.target.shape) print("Y head :", newsgroups_test.target[:10]) print(newsgroups_train.data[0]) print(newsgroups_test.data[0]) print(type(newsgroups_test.data)) print(type(newsgroups_test.data[0])) train_labels = newsgroups_train.target #0, 1 array #print(train_labels) test_labels = newsgroups_test.target #print(test_labels) RE_PREPROCESS = r'\W+|\d+' #the regular expressions that matches all non-characters #train_corpus = np.array( [re.sub(RE_PREPROCESS, ' ', text).lower() for text in df_train.jobDescription.values]) #test_corpus = np.array( [re.sub(RE_PREPROCESS, ' ', text).lower() for text in df_test.jobDescription.values]) labels = np.append(train_labels, test_labels) vectorizer = TfidfVectorizer() vectors_train = vectorizer.fit_transform(newsgroups_train.data) vectors_train.shape vectors_train.nnz / float(vectors_train.shape[0]) vectors_test = vectorizer.transform(newsgroups_test.data) clf = MultinomialNB(alpha=.01) clf.fit(vectors_train, newsgroups_train.target) y_true = newsgroups_test.target y_pred = clf.predict(vectors_test) metrics.f1_score(y_true, y_pred, average='macro') cm = confusion_matrix(y_true, y_pred) def print_cm(cm, labels, hide_zeroes=False, hide_diagonal=False, hide_threshold=None): pretty print for confusion matrixes columnwidth = max([len(x) for x in labels] + [5]) # 5 is value length empty_cell = " " * columnwidth # Print header print(" " + empty_cell, end=" ") for label in labels: print("%{0}s".format(columnwidth) % label, end=" ") print() # Print rows for i, label1 in enumerate(labels): print(" %{0}s".format(columnwidth) % label1, end=" ") for j in range(len(labels)): cell = "%{0}.1f".format(columnwidth) % cm[i, j] if hide_zeroes: cell = cell if float(cm[i, j]) != 0 else empty_cell if hide_diagonal: cell = cell if i != j else empty_cell if hide_threshold: cell = cell if cm[i, j] > hide_threshold else empty_cell print(cell, end=" ") print() print_cm(cm, labels = ['Automobiles', 'Medical']) pd.crosstab(y_true, y_pred, rownames=['True'], colnames=['Predicted'], margins=True) def plot_precision_recall(y_true,y_score): Plot a precision recall curve Parameters ---------- y_true: ls ground truth labels y_score: ls score output from model precision_curve, recall_curve, pr_thresholds = precision_recall_curve(y_true,y_score[:,1]) plt.plot(recall_curve, precision_curve) plt.xlabel('Recall') plt.ylabel('Precision') auc_val = auc(recall_curve,precision_curve) print('AUC-PR: {0:1f}'.format(auc_val)) plt.show() plt.clf() y_score = clf.predict_proba(vectors_test) plot_precision_recall(y_true, y_score) #Params - NOT tuned ANALYZER = "word" #unit of features are single words rather then phrases of words STRIP_ACCENTS = 'unicode' TOKENIZER = None MAX_DF = (1.0) # Exclude words that have a frequency greater than the threshold STOP_WORDS = (stopwords.words('english'), None) #Params - TUNED NGRAM_RANGE = ((0,1), (0,2)) #Range for pharases of words MIN_DF = (0, 0.01) # Exclude words that have a frequency less than the threshold ALPHA = (0.01, 0.1, 1) pipeline = Pipeline([('tfidf', TfidfVectorizer()), ('clf', MultinomialNB())]) # uncommenting more parameters will give better exploring power but will # increase processing time in a combinatorial way parameters = { 'tfidf__ngram_range':NGRAM_RANGE, 'tfidf__min_df':MIN_DF, 'clf__alpha': ALPHA, } def optimize_pipeline(pipeline): # multiprocessing requires the fork to happen in a __main__ protected # block # find the best parameters for both the feature extraction and the # classifier grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=True) print("Performing grid search...") print("pipeline:", [name for name, _ in pipeline.steps]) print("parameters:") pprint(parameters) t0 = time() grid_search.fit(newsgroups_train.data, newsgroups_train.target) print("done in %0.3fs" % (time() - t0)) print() print("Best score: %0.3f" % grid_search.best_score_) print("Best parameters set:") best_parameters = grid_search.best_estimator_.get_params() for param_name in sorted(parameters.keys()): print("\t%s: %r" % (param_name, best_parameters[param_name])) optimize_pipeline(pipeline) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load Dataset Step2: Create Train and Test Data [from categories-medical and automobiles] Step3: Explore the data Step4: Pre-process Data Step5: Transform Data (Vectorize) Step6: There are 18000+ features for each document. And on average, 87 out of 18000 features are non-zeros. This is a sparse matrix Step7: Evaluate Classifier Step8: Interpretation Step10: Pretty Print Confusion Matrix Step12: Interpretation Step13: Interpretation
15,287
<ASSISTANT_TASK:> Python Code: %matplotlib inline import time import pylab import numpy as np import pandas as pd import pycupid.locations people = pd.read_json('/Users/ajmendez/data/okcupid/random.json') print('Scraping archive found {:,d} random people'.format(len(people))) locations = people['location'].astype(unicode)#.replace(r'\s+', np.nan, regex=True) isgood = (locations.str.extract((u'(\u2026)')).isnull()) & (locations.str.len() > 0) noriginal = len(locations.unique()) unique_locations = locations[isgood].unique() nlocations = len(unique_locations) print('There are a total of {:,d} unique locations and {:,d} good ones'.format(noriginal, nlocations)) print(' > missing locations: {:0.1f}%'.format((noriginal-nlocations)*100.0/noriginal)) print(' > missing people: {:0.1f}%'.format((len(locations)-len(np.where(isgood)[0]))*100.0/len(locations))) # does not seem to pickup the lat/lon notation from the old db location_map = pd.read_json('/Users/ajmendez/data/okcupid/location_map.json', orient='index') location_map.columns = ['lat', 'lon'] print('Location cache contains {:,d} locations'.format(len(location_map))) # load v2: location_map = pd.read_json('/Users/ajmendez/data/okcupid/locations_v2.json', orient='index') geonames = pycupid.locations.getGN() inew = 0 for i, location in enumerate(unique_locations): if location in location_map.index: continue print u'Getting location: {}'.format(location) try: loc, (lat, lon) = geonames.geocode(location.encode('utf8')) except Exception as e: print u' > Failed: {}'.format(location) # raise e # too many loc* names! location_map.loc[location] = [lat,lon] inew += 1 # give the API a bit of a break time.sleep(0.2) if inew > 1000: break print len(location_map) location_map.to_json('/Users/ajmendez/data/okcupid/locations_v2.json', orient='index') finished = [] for i, location in enumerate(location_map.index): if location in finished: continue tmp = location_map.loc[location] isloc = (locations == location) people.loc[isloc, 'lat'] = tmp['lat'] people.loc[isloc, 'lon'] = tmp['lon'] people.loc[isloc, 'nloc'] = isloc.sum() finished.append(location) if (i%1000 == 0): print i, # better plots later, this is just a test people.plot('lon', 'lat', kind='scatter', s=2, lw=0, alpha=0.1) people.to_csv('/Users/ajmendez/data/okcupid/random_v2.csv', encoding='utf-8') people = pd.read_csv('/Users/ajmendez/data/okcupid/random_v2.csv') tmp = people['username'].str.extract((u'(\d+)')) people['username_number'] = tmp.apply(lambda x: int(x) if isinstance(x, (str, unicode)) else np.nan) people['username_nlength'] = tmp.apply(lambda x: len(x) if isinstance(x, (str,unicode)) else 0) people.to_csv('/Users/ajmendez/data/okcupid/random_v3.csv', encoding='utf-8') names = ['dinosaur', 'saur','saurus', 'dino','jurassic', 'rex', 'sarus', 'pterodactyl', 'archaeopter', 'pteranod', 'pterodact'] people['hasdino'] = people['username'].str.lower().str.extract((u'({})'.format('|'.join(names)))).notnull() people.to_csv('/Users/ajmendez/data/okcupid/random_v4.csv', encoding='utf-8') people = pd.read_csv('/Users/ajmendez/data/okcupid/random_v2.csv') people.to_json('/Users/ajmendez/data/okcupid/random_v2.json', orient='index') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Feature Step2: Geolocation APIs have hourly limits, so this was originally run using a cron job nightly to build up a large map of locations to (lat/lon) Step3: User Table Step4: Feature Step5: Feature Step6: Write as json for archive tools
15,288
<ASSISTANT_TASK:> Python Code: from lolcrawler_util import read_key, get_summoner_info api_key = read_key() name = 'Doublelift' summoner = get_summoner_info(api_key, name) usr_id = summoner[name.lower()]['id'] print usr_id from lolcrawler_util import get_matchlist_by_summoner matchlist = get_matchlist_by_summoner(usr_id, api_key, rankedQueues='TEAM_BUILDER_DRAFT_RANKED_5x5', seasons='SEASON2016') print len(matchlist['matches']) %matplotlib inline from collections import Counter import numpy as np import matplotlib.pyplot as plt role_cnt = Counter() lane_cnt = Counter() for match in matchlist['matches']: role_cnt[match['role']] += 1 lane_cnt[match['lane']] += 1 fig = plt.figure() ax1 = fig.add_subplot(121) indexes = np.arange(len(role_cnt.keys())) width = 1 ax1.bar(indexes, role_cnt.values(), width) plt.xticks(indexes + width * 0.5, role_cnt.keys(), rotation=-30) plt.xlabel('Role Type') plt.ylabel('Counts') plt.title('Role Type of Doublelift in S6') plt.grid(True) ax2 = fig.add_subplot(122) indexes = np.arange(len(lane_cnt.keys())) width = 1 ax2.bar(indexes, lane_cnt.values(), width) plt.xticks(indexes + width * 0.5, lane_cnt.keys()) plt.xlabel('Lane Type') plt.title('Lane Type of Doublelift in S6') plt.grid(True) plt.show() import os import pickle path = os.path.join(os.path.dirname('getMatchList.ipynb'), 'data') f = open(os.path.join(path, 'Doublelift_TEAM_BUILDER_DRAFT_RANKED_5x5_SEASON2016.pickle'), 'r') doublelift_history = pickle.load(f) f.close() path = os.path.join(os.path.dirname('getMatchList.ipynb'), 'data') f = open(os.path.join(path, 'PraY8D_TEAM_BUILDER_DRAFT_RANKED_5x5_SEASON2016.pickle'), 'r') pray_history = pickle.load(f) f.close() fig = plt.figure(figsize=(12, 15)) ax1 = fig.add_subplot(421) kda = np.divide(np.array(doublelift_history.kill, dtype=np.float32) + np.array(doublelift_history.assist, dtype=np.float32), (np.array(doublelift_history.death, dtype=np.float32)+1)) n, bins, patches = plt.hist(kda, 20, facecolor='green', alpha=0.75) plt.xlabel('KDA') plt.ylabel('Counts') plt.title('Stats of Doublelift in Season 2016') plt.axis([0, 25, 0, 80]) plt.grid(True) ax2 = fig.add_subplot(423) n, bins, patches = plt.hist(doublelift_history.gold, 20, facecolor='green', alpha=0.75) plt.xlabel('Gold') plt.ylabel('Counts') plt.axis([0, 35000, 0, 60]) plt.grid(True) ax3 = fig.add_subplot(425) n, bins, patches = plt.hist(doublelift_history.damage, 20, facecolor='green', alpha=0.75) plt.xlabel('Damage Dealt') plt.ylabel('Counts') plt.axis([0, 100000, 0, 60]) plt.grid(True) ax4 = fig.add_subplot(427) n, bins, patches = plt.hist(doublelift_history.damage_taken, 20, facecolor='green', alpha=0.75) plt.xlabel('Damage Taken') plt.ylabel('Counts') plt.axis([0, 60000, 0, 60]) plt.grid(True) ax1 = fig.add_subplot(422) kda = np.divide(np.array(pray_history.kill, dtype=np.float32)+ np.array(pray_history.assist, dtype=np.float32), (np.array(pray_history.death, dtype=np.float32)+1)) n, bins, patches = plt.hist(kda, 20, facecolor='blue', alpha=0.75) plt.xlabel('KDA') plt.ylabel('Counts') plt.title('Stats of Pray in Season 2016') plt.axis([0, 25, 0, 80]) plt.grid(True) ax2 = fig.add_subplot(424) n, bins, patches = plt.hist(pray_history.gold, 20, facecolor='blue', alpha=0.75) plt.xlabel('Gold') plt.ylabel('Counts') plt.axis([0, 35000, 0, 60]) plt.grid(True) ax3 = fig.add_subplot(426) n, bins, patches = plt.hist(pray_history.damage, 20, facecolor='blue', alpha=0.75) plt.xlabel('Damage Dealt') plt.ylabel('Counts') plt.axis([0, 100000, 0, 60]) plt.grid(True) ax4 = fig.add_subplot(428) n, bins, patches = plt.hist(pray_history.damage_taken, 20, facecolor='blue', alpha=0.75) plt.xlabel('Damage Taken') plt.ylabel('Counts') plt.axis([0, 60000, 0, 60]) plt.grid(True) plt.suptitle('Stats Comparison Between Doublelift and Pray in Season 2016') plt.show() fig = plt.figure(figsize=(6, 5)) ax = fig.add_subplot(111) sc1 = plt.scatter(doublelift_history.gold, doublelift_history.damage, alpha=0.5, color='green') sc2 = plt.scatter(pray_history.gold, pray_history.damage, alpha=0.5, color='blue') plt.xlabel('Gold') plt.ylabel('Damage') plt.title('Gold to Damage Comparison') plt.legend((sc1, sc2), ('Doublelift', 'Pray'), scatterpoints=1, loc='upper left') plt.grid(True) ax.set_xlim(xmin=0) ax.set_ylim(ymin=0) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Ok, we get his id now, now we have to get his match history. Let's find all his matches in 2016 season and team builder draft 5v5 rank queue. Step2: 381 games, that almost the total number of games I've played in NA server. Then let's try to analyze those matches. Step3: Ok, he likes to play ad carry in bottom lane. Just as expected. Step4: Hmm... Looks pretty!
15,289
<ASSISTANT_TASK:> Python Code: from __future__ import print_function %matplotlib inline from sklearn.datasets import load_digits from matplotlib import pyplot as plt import numpy as np np.random.seed(42) # for reproducibility digits = load_digits() X = digits.data y = digits.target zeroes = [X[i] for i in range(len(y)) if y[i] == 0] # all 64-dim lists with label '0' ones = [X[i] for i in range(len(y)) if y[i] == 1] # all 64-dim lists with label '1' both = zeroes + ones labels = [0] * len(zeroes) + [1] * len(ones) from sklearn.linear_model import LogisticRegression clf = LogisticRegression() # clf is code speak for 'classifier' clf.fit(X=both, y=labels) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(both, labels, test_size=0.3) clf = LogisticRegression() clf.fit(X_train, y_train) clf.score(X_test, y_test) clf.predict(X_test) def print_proba_table(prob_list, stride=1): mnist_classes = [i for i in range(len(prob_list[0]))] print("Class:", *mnist_classes, sep="\t") print("index", *["---" for i in range(len(mnist_classes))], sep="\t") counter = 0 for prob in prob_list[::stride]: print(counter*stride, *[round(prob[i], 3) for i in range(len(mnist_classes))], sep="\t") counter += 1 print_proba_table(clf.predict_proba(X_test), stride=4) from sklearn.decomposition import PCA pca = PCA(2) Xproj = pca.fit_transform(X) plt.scatter(Xproj.T[0], Xproj.T[1], c=y, alpha=0.5) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) clf = LogisticRegression() clf.fit(X_train, y_train) clf.score(X_test, y_test) print_proba_table(clf.predict_proba(X_test), stride=10) uncertain_indices = [] prob = clf.predict_proba(X_test) for i in range(len(prob)): # number of classes with > 0.45 confidence contender_count = sum([1 if p > 0.45 else 0 for p in prob[i]]) if contender_count == 2: uncertain_indices.append(i) f, ax = plt.subplots(5, 3, sharex=False, sharey=True) f.set_size_inches(9, 15) predictions = clf.predict(X_test) for i in range(5): for j in range(3): ax[i, j].set_xlabel(r"$\^y = $"+str(predictions[uncertain_indices[3*i + j]]) + r", $y = $"+str(y_test[uncertain_indices[3*i+j]]), size='large') ax[i, j].imshow(X_test[uncertain_indices[3*i + j]].reshape(8, 8), cmap='gray', interpolation='none') f.tight_layout() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We often use $\boldsymbol{X}$ to represent a dataset of input vectors. The $i^{th}$ input vector in $X$ is notated $X_i$, though often times when iterating through our dataset (like in a summation) we will call our datapoints $x \in X$ and write the the $i^{th}$ input vector as $x^{(i)}$. The $j^{th}$ component of the $i^{th}$ input vector is written $x^{(i)}_j$. Step2: Supervised learning is an area of study within machine learning that entails passing an input vector into a model and outputting a label. Supervised learning is further broken down into classification tasks, in which the label $y$ is taken from some finite set of objects like {red, green blue} or {0, 1, 2, ..., 9} and regression tasks, in which the label $y$ is taken from an infinite set, usually the set of real numbers $\mathbb{R}$. We do this by training our model on $X$, given the correct labels $y$. When we train our model, our model is learning a function that maps from input vectors $x$ to output labels $y$ - hence the name machine learning. Step3: A lot just happened in those three short lines. Let's step through it line by line Step4: Amazing! Our predictor was able to predict the labels of the test set with 100% accuracy! Step5: clf.predict tells us the actual predictions made on the test set. Step6: clf.predict_proba tells us how confident our predictor is for each label that that is the correct label for the input. The above table, along with the score, tells us that this was a very easy classification task for our predictor. Step7: Here's a 2D projection of the entire digits dataset using PCA, yikes! By the way, PCA is a linear dimensionality reduction technique, so it gives us a rough idea of what a linear classifier like logistic regression has to deal with. There also exist non-linear dimensionality reduction techniques, which let you project on non-linear manifolds like spheres, instead of linear manifolds like hyperplanes. Step8: Not so easy now, is it? But is 94.8% accuracy good "enough"? Depends on your application. Step9: From this table we can tell that for a good portion of our digits our classifier had very high confidence in their class label, even with 10 different classes to choose from. But some digits were able to steal at least a tenth of a percent of confidence from our predictor across four different digits. And from clf.score we know that our predictor got roughly one digit wrong for every 20 digits predicted.
15,290
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt import sys print('Python version:') print(sys.version) print('Numpy version:') print(np.__version__) import sklearn print('Sklearn version:') print(sklearn.__version__) #This is a code cell #Jupyter allows you to run code within the browser #try running this cell x = 5+15+1000 print(x) print(np.sum(np.arange(1,21))) x = np.arange(0,2*np.pi,2*np.pi/80.0) y = np.sin(x) plt.plot(x,y) n = 2 # Number of periods x = np.arange(0,n*2*np.pi,n*2*np.pi/(80.0*n)) y = np.sin(x) plt.plot(x,y) l = [] #creating an empty list print('Empty list:') print(l) l.append(5) #appending 5 to the end of the list print('List containing 5:') print(l) l = [1,2,3,'hello','world'] #creating a list containing 5 items print('List with items:') print(l) l.extend([4,5,6]) #appending elements from another list to l print('List with more items:') print(l) print('Printing fourth element in list:') print(l[3]) #counting starts at 0 print('Printing all elements up until third element in list:') print(l[:3]) print('Print the last 3 elements in list:') print(l[-3:]) d = {} #creating empty dictionary print('Empty dictionary:') print(d) d['author'] = 'Shakespeare' #adding an item to the dictionary print('Dictionary with one element') print(d) #adding more items: d['year'] = 1596 d['title'] = 'The merchant of Venice' #Accessing items in dictionary: print_string = d['title'] + ' was written by ' + d['author'] + ' in the year ' + str(d['year']) print(print_string) list_of_numbers = [1.,2.,3.,4.,5.,4.,3.,2.,1.] incremented_list_of_numbers = [] for i in range(len(list_of_numbers)): number = list_of_numbers[i] incremented_list_of_numbers.append(number+1) print('Incremented list:') print(incremented_list_of_numbers) #More elegantly incremented_list_of_numbers2 = [] for number in list_of_numbers: incremented_list_of_numbers2.append(number+1) print('Second incremented list:') print(incremented_list_of_numbers2) #We can express the for-loop above also so-called in-line: #Most elegantly incremented_list_of_numbers3 = [number + 1 for number in list_of_numbers] print('Third incremented list:') print(incremented_list_of_numbers3) #looping over dictionaries for key in d: value = d[key] print(key,value) # Task #4: mean_of_numbers = 0. for i in range(len(list_of_numbers)): number = list_of_numbers[i] mean_of_numbers += number mean_of_numbers = mean_of_numbers/len(list_of_numbers) print("The mean with the first method is:",mean_of_numbers) # Task #5: print([n**2 for n in list_of_numbers]) # Task #6: print([k for k in d]) # Task #7: print([d[k] for k in d]) f = open('testdata.txt') parsed_lines = [] for line in f: l = line.split(',') #create a list by splitting the string line at every ',' l = [float(x) for x in l] #in-line for-loop that casts strings to floats parsed_lines.append(l) plt.plot(parsed_lines[0]) plt.imshow(np.array(parsed_lines).T) data_matrix = np.array(parsed_lines) print(data_matrix[:12,:10]) #print the 10 first columns of the 12 first rows plt.plot(data_matrix[0,:] - data_matrix[-1,:]) #plots the difference between the first and last row print(data_matrix.shape) #shows the dimensions of the data_matrix, 200 rows, 80 columns # Task #8 plt.figure() plt.plot(data_matrix[25,:]) # Task #9 plt.figure() plt.plot(data_matrix[:,25]) plt.plot(np.mean(data_matrix, axis=0)) #mean row plt.plot(np.mean(data_matrix, axis=1)) #mean column # Task #10 plt.figure() plt.plot(np.max(data_matrix,axis=1)) # Task #11 plt.figure() plt.plot(np.min(data_matrix,axis=0)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Short Introduction to Python and Jupyter Step2: Task #3 [10%] Step3: Plotting Step4: Task #4 [10%] Step5: Data structures Step6: Accessing data in list Step7: Dictionaries Step8: Loops Step9: Quick exercises Step10: Loading data Step11: Numpy arrays Step12: Quick exercises Step13: Broadcasting over axis Step14: Quick exercises
15,291
<ASSISTANT_TASK:> Python Code: labVersion = 'cs190_week4_v_1_3' # Data for manual OHE # Note: the first data point does not include any value for the optional third feature sampleOne = [(0, 'mouse'), (1, 'black')] sampleTwo = [(0, 'cat'), (1, 'tabby'), (2, 'mouse')] sampleThree = [(0, 'bear'), (1, 'black'), (2, 'salmon')] sampleDataRDD = sc.parallelize([sampleOne, sampleTwo, sampleThree]) # TODO: Replace <FILL IN> with appropriate code sampleOHEDictManual = {} sampleOHEDictManual[(0,'bear')] = 0 sampleOHEDictManual[(0,'cat')] = 1 sampleOHEDictManual[(0,'mouse')] = 2 sampleOHEDictManual[(1,'black')] = 3 sampleOHEDictManual[(1,'tabby')] = 4 sampleOHEDictManual[(2,'mouse')] = 5 sampleOHEDictManual[(2,'salmon')] = 6 # TEST One-hot-encoding (1a) from test_helper import Test Test.assertEqualsHashed(sampleOHEDictManual[(0,'bear')], 'b6589fc6ab0dc82cf12099d1c2d40ab994e8410c', "incorrect value for sampleOHEDictManual[(0,'bear')]") Test.assertEqualsHashed(sampleOHEDictManual[(0,'cat')], '356a192b7913b04c54574d18c28d46e6395428ab', "incorrect value for sampleOHEDictManual[(0,'cat')]") Test.assertEqualsHashed(sampleOHEDictManual[(0,'mouse')], 'da4b9237bacccdf19c0760cab7aec4a8359010b0', "incorrect value for sampleOHEDictManual[(0,'mouse')]") Test.assertEqualsHashed(sampleOHEDictManual[(1,'black')], '77de68daecd823babbb58edb1c8e14d7106e83bb', "incorrect value for sampleOHEDictManual[(1,'black')]") Test.assertEqualsHashed(sampleOHEDictManual[(1,'tabby')], '1b6453892473a467d07372d45eb05abc2031647a', "incorrect value for sampleOHEDictManual[(1,'tabby')]") Test.assertEqualsHashed(sampleOHEDictManual[(2,'mouse')], 'ac3478d69a3c81fa62e60f5c3696165a4e5e6ac4', "incorrect value for sampleOHEDictManual[(2,'mouse')]") Test.assertEqualsHashed(sampleOHEDictManual[(2,'salmon')], 'c1dfd96eea8cc2b62785275bca38ac261256e278', "incorrect value for sampleOHEDictManual[(2,'salmon')]") Test.assertEquals(len(sampleOHEDictManual.keys()), 7, 'incorrect number of keys in sampleOHEDictManual') import numpy as np from pyspark.mllib.linalg import SparseVector # TODO: Replace <FILL IN> with appropriate code aDense = np.array([0., 3., 0., 4.]) aSparse = SparseVector(aDense.size, range(aDense.size), aDense) bDense = np.array([0., 0., 0., 1.]) bSparse = SparseVector(bDense.size, range(bDense.size), bDense) w = np.array([0.4, 3.1, -1.4, -.5]) print aDense.dot(w) print aSparse.dot(w) print bDense.dot(w) print bSparse.dot(w) # TEST Sparse Vectors (1b) Test.assertTrue(isinstance(aSparse, SparseVector), 'aSparse needs to be an instance of SparseVector') Test.assertTrue(isinstance(bSparse, SparseVector), 'aSparse needs to be an instance of SparseVector') Test.assertTrue(aDense.dot(w) == aSparse.dot(w), 'dot product of aDense and w should equal dot product of aSparse and w') Test.assertTrue(bDense.dot(w) == bSparse.dot(w), 'dot product of bDense and w should equal dot product of bSparse and w') # Reminder of the sample features # sampleOne = [(0, 'mouse'), (1, 'black')] # sampleTwo = [(0, 'cat'), (1, 'tabby'), (2, 'mouse')] # sampleThree = [(0, 'bear'), (1, 'black'), (2, 'salmon')] # TODO: Replace <FILL IN> with appropriate code sampleOneOHEFeatManual = SparseVector(7, [(2, 1), (3, 1)]) sampleTwoOHEFeatManual = SparseVector(7, [(1, 1), (4, 1), (5,1)]) sampleThreeOHEFeatManual = SparseVector(7, [(0, 1), (3, 1), (6,1)]) # TEST OHE Features as sparse vectors (1c) Test.assertTrue(isinstance(sampleOneOHEFeatManual, SparseVector), 'sampleOneOHEFeatManual needs to be a SparseVector') Test.assertTrue(isinstance(sampleTwoOHEFeatManual, SparseVector), 'sampleTwoOHEFeatManual needs to be a SparseVector') Test.assertTrue(isinstance(sampleThreeOHEFeatManual, SparseVector), 'sampleThreeOHEFeatManual needs to be a SparseVector') Test.assertEqualsHashed(sampleOneOHEFeatManual, 'ecc00223d141b7bd0913d52377cee2cf5783abd6', 'incorrect value for sampleOneOHEFeatManual') Test.assertEqualsHashed(sampleTwoOHEFeatManual, '26b023f4109e3b8ab32241938e2e9b9e9d62720a', 'incorrect value for sampleTwoOHEFeatManual') Test.assertEqualsHashed(sampleThreeOHEFeatManual, 'c04134fd603ae115395b29dcabe9d0c66fbdc8a7', 'incorrect value for sampleThreeOHEFeatManual') # TODO: Replace <FILL IN> with appropriate code def oneHotEncoding(rawFeats, OHEDict, numOHEFeats): Produce a one-hot-encoding from a list of features and an OHE dictionary. Note: You should ensure that the indices used to create a SparseVector are sorted. Args: rawFeats (list of (int, str)): The features corresponding to a single observation. Each feature consists of a tuple of featureID and the feature's value. (e.g. sampleOne) OHEDict (dict): A mapping of (featureID, value) to unique integer. numOHEFeats (int): The total number of unique OHE features (combinations of featureID and value). Returns: SparseVector: A SparseVector of length numOHEFeats with indicies equal to the unique identifiers for the (featureID, value) combinations that occur in the observation and with values equal to 1.0. OHE = [] for rawFeat in rawFeats: OHE.append((OHEDict[rawFeat], 1.0)) return SparseVector(numOHEFeats, OHE) # Calculate the number of features in sampleOHEDictManual numSampleOHEFeats = len(sampleOHEDictManual) # Run oneHotEnoding on sampleOne sampleOneOHEFeat = oneHotEncoding(sampleOne, sampleOHEDictManual, numSampleOHEFeats) print sampleOneOHEFeat # TEST Define an OHE Function (1d) Test.assertTrue(sampleOneOHEFeat == sampleOneOHEFeatManual, 'sampleOneOHEFeat should equal sampleOneOHEFeatManual') Test.assertEquals(sampleOneOHEFeat, SparseVector(7, [2,3], [1.0,1.0]), 'incorrect value for sampleOneOHEFeat') Test.assertEquals(oneHotEncoding([(1, 'black'), (0, 'mouse')], sampleOHEDictManual, numSampleOHEFeats), SparseVector(7, [2,3], [1.0,1.0]), 'incorrect definition for oneHotEncoding') # TODO: Replace <FILL IN> with appropriate code sampleOHEData = sampleDataRDD.map(lambda x: oneHotEncoding(x, sampleOHEDictManual, len(sampleOHEDictManual))) print sampleOHEData.collect() # TEST Apply OHE to a dataset (1e) sampleOHEDataValues = sampleOHEData.collect() Test.assertTrue(len(sampleOHEDataValues) == 3, 'sampleOHEData should have three elements') Test.assertEquals(sampleOHEDataValues[0], SparseVector(7, {2: 1.0, 3: 1.0}), 'incorrect OHE for first sample') Test.assertEquals(sampleOHEDataValues[1], SparseVector(7, {1: 1.0, 4: 1.0, 5: 1.0}), 'incorrect OHE for second sample') Test.assertEquals(sampleOHEDataValues[2], SparseVector(7, {0: 1.0, 3: 1.0, 6: 1.0}), 'incorrect OHE for third sample') # TODO: Replace <FILL IN> with appropriate code sampleDistinctFeats = (sampleDataRDD .flatMap(lambda x: x) .distinct()) # TEST Pair RDD of (featureID, category) (2a) Test.assertEquals(sorted(sampleDistinctFeats.collect()), [(0, 'bear'), (0, 'cat'), (0, 'mouse'), (1, 'black'), (1, 'tabby'), (2, 'mouse'), (2, 'salmon')], 'incorrect value for sampleDistinctFeats') # TODO: Replace <FILL IN> with appropriate code sampleOHEDict = (sampleDistinctFeats .zipWithIndex() .collectAsMap()) print sampleOHEDict # TEST OHE Dictionary from distinct features (2b) Test.assertEquals(sorted(sampleOHEDict.keys()), [(0, 'bear'), (0, 'cat'), (0, 'mouse'), (1, 'black'), (1, 'tabby'), (2, 'mouse'), (2, 'salmon')], 'sampleOHEDict has unexpected keys') Test.assertEquals(sorted(sampleOHEDict.values()), range(7), 'sampleOHEDict has unexpected values') # TODO: Replace <FILL IN> with appropriate code def createOneHotDict(inputData): Creates a one-hot-encoder dictionary based on the input data. Args: inputData (RDD of lists of (int, str)): An RDD of observations where each observation is made up of a list of (featureID, value) tuples. Returns: dict: A dictionary where the keys are (featureID, value) tuples and map to values that are unique integers. return (inputData .flatMap(lambda x: x) .distinct() .zipWithIndex() .collectAsMap()) sampleOHEDictAuto = createOneHotDict(sampleDataRDD) print sampleOHEDictAuto # TEST Automated creation of an OHE dictionary (2c) Test.assertEquals(sorted(sampleOHEDictAuto.keys()), [(0, 'bear'), (0, 'cat'), (0, 'mouse'), (1, 'black'), (1, 'tabby'), (2, 'mouse'), (2, 'salmon')], 'sampleOHEDictAuto has unexpected keys') Test.assertEquals(sorted(sampleOHEDictAuto.values()), range(7), 'sampleOHEDictAuto has unexpected values') # Run this code to view Criteo's agreement from IPython.lib.display import IFrame IFrame("http://labs.criteo.com/downloads/2014-kaggle-display-advertising-challenge-dataset/", 600, 350) # TODO: Replace <FILL IN> with appropriate code # Just replace <FILL IN> with the url for dac_sample.tar.gz import glob import os.path import tarfile import urllib import urlparse # Paste url, url should end with: dac_sample.tar.gz url = '<FILL IN>' url = url.strip() baseDir = os.path.join('data') inputPath = os.path.join('cs190', 'dac_sample.txt') fileName = os.path.join(baseDir, inputPath) inputDir = os.path.split(fileName)[0] def extractTar(check = False): # Find the zipped archive and extract the dataset tars = glob.glob('dac_sample*.tar.gz*') if check and len(tars) == 0: return False if len(tars) > 0: try: tarFile = tarfile.open(tars[0]) except tarfile.ReadError: if not check: print 'Unable to open tar.gz file. Check your URL.' return False tarFile.extract('dac_sample.txt', path=inputDir) print 'Successfully extracted: dac_sample.txt' return True else: print 'You need to retry the download with the correct url.' print ('Alternatively, you can upload the dac_sample.tar.gz file to your Jupyter root ' + 'directory') return False if os.path.isfile(fileName): print 'File is already available. Nothing to do.' elif extractTar(check = True): print 'tar.gz file was already available.' elif not url.endswith('dac_sample.tar.gz'): print 'Check your download url. Are you downloading the Sample dataset?' else: # Download the file and store it in the same directory as this notebook try: urllib.urlretrieve(url, os.path.basename(urlparse.urlsplit(url).path)) except IOError: print 'Unable to download and store: {0}'.format(url) extractTar() import os.path baseDir = os.path.join('data') inputPath = os.path.join('cs190', 'dac_sample.txt') fileName = os.path.join(baseDir, inputPath) if os.path.isfile(fileName): rawData = (sc .textFile(fileName, 2) .map(lambda x: x.replace('\t', ','))) # work with either ',' or '\t' separated data print rawData.take(1) # TODO: Replace <FILL IN> with appropriate code weights = [.8, .1, .1] seed = 42 # Use randomSplit with weights and seed rawTrainData, rawValidationData, rawTestData = rawData.randomSplit(weights, seed) # Cache the data rawTrainData.cache() rawValidationData.cache() rawTestData.cache() nTrain = rawTrainData.count() nVal = rawValidationData.count() nTest = rawTestData.count() print nTrain, nVal, nTest, nTrain + nVal + nTest print rawData.take(1) # TEST Loading and splitting the data (3a) Test.assertTrue(all([rawTrainData.is_cached, rawValidationData.is_cached, rawTestData.is_cached]), 'you must cache the split data') Test.assertEquals(nTrain, 79911, 'incorrect value for nTrain') Test.assertEquals(nVal, 10075, 'incorrect value for nVal') Test.assertEquals(nTest, 10014, 'incorrect value for nTest') # TODO: Replace <FILL IN> with appropriate code def parsePoint(point): Converts a comma separated string into a list of (featureID, value) tuples. Note: featureIDs should start at 0 and increase to the number of features - 1. Args: point (str): A comma separated string where the first value is the label and the rest are features. Returns: list: A list of (featureID, value) tuples. out = [] values = point.split(',')[1:] for i in range(len(values)): out.append((i, values[i])) return out parsedTrainFeat = rawTrainData.map(parsePoint) numCategories = (parsedTrainFeat .flatMap(lambda x: x) .distinct() .map(lambda x: (x[0], 1)) .reduceByKey(lambda x, y: x + y) .sortByKey() .collect()) print numCategories[2][1] # TEST Extract features (3b) Test.assertEquals(numCategories[2][1], 855, 'incorrect implementation of parsePoint') Test.assertEquals(numCategories[32][1], 4, 'incorrect implementation of parsePoint') # TODO: Replace <FILL IN> with appropriate code ctrOHEDict = createOneHotDict(parsedTrainFeat) numCtrOHEFeats = len(ctrOHEDict.keys()) print numCtrOHEFeats print ctrOHEDict[(0, '')] # TEST Create an OHE dictionary from the dataset (3c) Test.assertEquals(numCtrOHEFeats, 233286, 'incorrect number of features in ctrOHEDict') Test.assertTrue((0, '') in ctrOHEDict, 'incorrect features in ctrOHEDict') from pyspark.mllib.regression import LabeledPoint # TODO: Replace <FILL IN> with appropriate code def parseOHEPoint(point, OHEDict, numOHEFeats): Obtain the label and feature vector for this raw observation. Note: You must use the function `oneHotEncoding` in this implementation or later portions of this lab may not function as expected. Args: point (str): A comma separated string where the first value is the label and the rest are features. OHEDict (dict of (int, str) to int): Mapping of (featureID, value) to unique integer. numOHEFeats (int): The number of unique features in the training dataset. Returns: LabeledPoint: Contains the label for the observation and the one-hot-encoding of the raw features based on the provided OHE dictionary. label = point.split(',', 1)[0] features = parsePoint(point) OHEfeatures = oneHotEncoding(features, OHEDict, numOHEFeats) return LabeledPoint(label, OHEfeatures) OHETrainData = rawTrainData.map(lambda point: parseOHEPoint(point, ctrOHEDict, numCtrOHEFeats)) OHETrainData.cache() print OHETrainData.take(1) # Check that oneHotEncoding function was used in parseOHEPoint backupOneHot = oneHotEncoding oneHotEncoding = None withOneHot = False try: parseOHEPoint(rawTrainData.take(1)[0], ctrOHEDict, numCtrOHEFeats) except TypeError: withOneHot = True oneHotEncoding = backupOneHot # TEST Apply OHE to the dataset (3d) numNZ = sum(parsedTrainFeat.map(lambda x: len(x)).take(5)) numNZAlt = sum(OHETrainData.map(lambda lp: len(lp.features.indices)).take(5)) Test.assertEquals(numNZ, numNZAlt, 'incorrect implementation of parseOHEPoint') Test.assertTrue(withOneHot, 'oneHotEncoding not present in parseOHEPoint') def bucketFeatByCount(featCount): Bucket the counts by powers of two. for i in range(11): size = 2 ** i if featCount <= size: return size return -1 featCounts = (OHETrainData .flatMap(lambda lp: lp.features.indices) .map(lambda x: (x, 1)) .reduceByKey(lambda x, y: x + y)) featCountsBuckets = (featCounts .map(lambda x: (bucketFeatByCount(x[1]), 1)) .filter(lambda (k, v): k != -1) .reduceByKey(lambda x, y: x + y) .collect()) print featCountsBuckets import matplotlib.pyplot as plt x, y = zip(*featCountsBuckets) x, y = np.log(x), np.log(y) def preparePlot(xticks, yticks, figsize=(10.5, 6), hideLabels=False, gridColor='#999999', gridWidth=1.0): Template for generating the plot layout. plt.close() fig, ax = plt.subplots(figsize=figsize, facecolor='white', edgecolor='white') ax.axes.tick_params(labelcolor='#999999', labelsize='10') for axis, ticks in [(ax.get_xaxis(), xticks), (ax.get_yaxis(), yticks)]: axis.set_ticks_position('none') axis.set_ticks(ticks) axis.label.set_color('#999999') if hideLabels: axis.set_ticklabels([]) plt.grid(color=gridColor, linewidth=gridWidth, linestyle='-') map(lambda position: ax.spines[position].set_visible(False), ['bottom', 'top', 'left', 'right']) return fig, ax # generate layout and plot data fig, ax = preparePlot(np.arange(0, 10, 1), np.arange(4, 14, 2)) ax.set_xlabel(r'$\log_e(bucketSize)$'), ax.set_ylabel(r'$\log_e(countInBucket)$') plt.scatter(x, y, s=14**2, c='#d6ebf2', edgecolors='#8cbfd0', alpha=0.75) pass # TODO: Replace <FILL IN> with appropriate code def oneHotEncoding(rawFeats, OHEDict, numOHEFeats): Produce a one-hot-encoding from a list of features and an OHE dictionary. Note: If a (featureID, value) tuple doesn't have a corresponding key in OHEDict it should be ignored. Args: rawFeats (list of (int, str)): The features corresponding to a single observation. Each feature consists of a tuple of featureID and the feature's value. (e.g. sampleOne) OHEDict (dict): A mapping of (featureID, value) to unique integer. numOHEFeats (int): The total number of unique OHE features (combinations of featureID and value). Returns: SparseVector: A SparseVector of length numOHEFeats with indicies equal to the unique identifiers for the (featureID, value) combinations that occur in the observation and with values equal to 1.0. OHE = [] for rawFeat in rawFeats: if rawFeat in OHEDict: OHE.append((OHEDict[rawFeat], 1.0)) return SparseVector(numOHEFeats, OHE) OHEValidationData = rawValidationData.map(lambda point: parseOHEPoint(point, ctrOHEDict, numCtrOHEFeats)) OHEValidationData.cache() print OHEValidationData.take(1) # TEST Handling unseen features (3e) numNZVal = (OHEValidationData .map(lambda lp: len(lp.features.indices)) .sum()) Test.assertEquals(numNZVal, 372080, 'incorrect number of features') from pyspark.mllib.classification import LogisticRegressionWithSGD # fixed hyperparameters numIters = 50 stepSize = 10. regParam = 1e-6 regType = 'l2' includeIntercept = True # TODO: Replace <FILL IN> with appropriate code model0 = LogisticRegressionWithSGD.train(OHETrainData, numIters, stepSize, regParam = regParam, regType = regType, intercept = includeIntercept) sortedWeights = sorted(model0.weights) print sortedWeights[:5], model0.intercept # TEST Logistic regression (4a) Test.assertTrue(np.allclose(model0.intercept, 0.56455084025), 'incorrect value for model0.intercept') Test.assertTrue(np.allclose(sortedWeights[0:5], [-0.45899236853575609, -0.37973707648623956, -0.36996558266753304, -0.36934962879928263, -0.32697945415010637]), 'incorrect value for model0.weights') # TODO: Replace <FILL IN> with appropriate code from math import log def computeLogLoss(p, y): Calculates the value of log loss for a given probabilty and label. Note: log(0) is undefined, so when p is 0 we need to add a small value (epsilon) to it and when p is 1 we need to subtract a small value (epsilon) from it. Args: p (float): A probabilty between 0 and 1. y (int): A label. Takes on the values 0 and 1. Returns: float: The log loss value. epsilon = 10e-12 if y == 1: logLoss = -log(p + epsilon) else: logLoss = -log(1 - p + epsilon) return logLoss print computeLogLoss(.5, 1) print computeLogLoss(.5, 0) print computeLogLoss(.99, 1) print computeLogLoss(.99, 0) print computeLogLoss(.01, 1) print computeLogLoss(.01, 0) print computeLogLoss(0, 1) print computeLogLoss(1, 1) print computeLogLoss(1, 0) # TEST Log loss (4b) Test.assertTrue(np.allclose([computeLogLoss(.5, 1), computeLogLoss(.01, 0), computeLogLoss(.01, 1)], [0.69314718056, 0.0100503358535, 4.60517018599]), 'computeLogLoss is not correct') Test.assertTrue(np.allclose([computeLogLoss(0, 1), computeLogLoss(1, 1), computeLogLoss(1, 0)], [25.3284360229, 1.00000008275e-11, 25.3284360229]), 'computeLogLoss needs to bound p away from 0 and 1 by epsilon') # TODO: Replace <FILL IN> with appropriate code # Note that our dataset has a very high click-through rate by design # In practice click-through rate can be one to two orders of magnitude lower classOneFracTrain = OHETrainData.map(lambda x: x.label).mean() print classOneFracTrain logLossTrBase = OHETrainData.map(lambda x: computeLogLoss(classOneFracTrain, x.label)).mean() print 'Baseline Train Logloss = {0:.3f}\n'.format(logLossTrBase) # TEST Baseline log loss (4c) Test.assertTrue(np.allclose(classOneFracTrain, 0.22717773523), 'incorrect value for classOneFracTrain') Test.assertTrue(np.allclose(logLossTrBase, 0.535844), 'incorrect value for logLossTrBase') # TODO: Replace <FILL IN> with appropriate code from math import exp # exp(-t) = e^-t def getP(x, w, intercept): Calculate the probability for an observation given a set of weights and intercept. Note: We'll bound our raw prediction between 20 and -20 for numerical purposes. Args: x (SparseVector): A vector with values of 1.0 for features that exist in this observation and 0.0 otherwise. w (DenseVector): A vector of weights (betas) for the model. intercept (float): The model's intercept. Returns: float: A probability between 0 and 1. rawPrediction = x.dot(w) + intercept # Bound the raw prediction value rawPrediction = min(rawPrediction, 20) rawPrediction = max(rawPrediction, -20) return 1.0/(1.0 + exp(-rawPrediction)) trainingPredictions = OHETrainData.map(lambda x: getP(x.features, model0.weights, model0.intercept)) print trainingPredictions.take(5) # TEST Predicted probability (4d) Test.assertTrue(np.allclose(trainingPredictions.sum(), 18135.4834348), 'incorrect value for trainingPredictions') # TODO: Replace <FILL IN> with appropriate code def evaluateResults(model, data): Calculates the log loss for the data given the model. Args: model (LogisticRegressionModel): A trained logistic regression model. data (RDD of LabeledPoint): Labels and features for each observation. Returns: float: Log loss for the data. def evaluateResult(model, point): # Calculates the log loss for the individual data points given the model. prob = getP(point.features, model.weights, model.intercept) return computeLogLoss(prob, point.label) return data.map(lambda x: evaluateResult(model, x)).mean() logLossTrLR0 = evaluateResults(model0, OHETrainData) print ('OHE Features Train Logloss:\n\tBaseline = {0:.3f}\n\tLogReg = {1:.3f}' .format(logLossTrBase, logLossTrLR0)) # TEST Evaluate the model (4e) Test.assertTrue(np.allclose(logLossTrLR0, 0.456903), 'incorrect value for logLossTrLR0') # TODO: Replace <FILL IN> with appropriate code logLossValBase = OHEValidationData.map(lambda x: computeLogLoss(classOneFracTrain, x.label)).mean() logLossValLR0 = evaluateResults(model0, OHEValidationData) print ('OHE Features Validation Logloss:\n\tBaseline = {0:.3f}\n\tLogReg = {1:.3f}' .format(logLossValBase, logLossValLR0)) # TEST Validation log loss (4f) Test.assertTrue(np.allclose(logLossValBase, 0.527603), 'incorrect value for logLossValBase') Test.assertTrue(np.allclose(logLossValLR0, 0.456957), 'incorrect value for logLossValLR0') labelsAndScores = OHEValidationData.map(lambda lp: (lp.label, getP(lp.features, model0.weights, model0.intercept))) labelsAndWeights = labelsAndScores.collect() labelsAndWeights.sort(key=lambda (k, v): v, reverse=True) labelsByWeight = np.array([k for (k, v) in labelsAndWeights]) length = labelsByWeight.size truePositives = labelsByWeight.cumsum() numPositive = truePositives[-1] falsePositives = np.arange(1.0, length + 1, 1.) - truePositives truePositiveRate = truePositives / numPositive falsePositiveRate = falsePositives / (length - numPositive) # Generate layout and plot data fig, ax = preparePlot(np.arange(0., 1.1, 0.1), np.arange(0., 1.1, 0.1)) ax.set_xlim(-.05, 1.05), ax.set_ylim(-.05, 1.05) ax.set_ylabel('True Positive Rate (Sensitivity)') ax.set_xlabel('False Positive Rate (1 - Specificity)') plt.plot(falsePositiveRate, truePositiveRate, color='#8cbfd0', linestyle='-', linewidth=3.) plt.plot((0., 1.), (0., 1.), linestyle='--', color='#d6ebf2', linewidth=2.) # Baseline model pass from collections import defaultdict import hashlib def hashFunction(numBuckets, rawFeats, printMapping=False): Calculate a feature dictionary for an observation's features based on hashing. Note: Use printMapping=True for debug purposes and to better understand how the hashing works. Args: numBuckets (int): Number of buckets to use as features. rawFeats (list of (int, str)): A list of features for an observation. Represented as (featureID, value) tuples. printMapping (bool, optional): If true, the mappings of featureString to index will be printed. Returns: dict of int to float: The keys will be integers which represent the buckets that the features have been hashed to. The value for a given key will contain the count of the (featureID, value) tuples that have hashed to that key. mapping = {} for ind, category in rawFeats: featureString = category + str(ind) mapping[featureString] = int(int(hashlib.md5(featureString).hexdigest(), 16) % numBuckets) if(printMapping): print mapping sparseFeatures = defaultdict(float) for bucket in mapping.values(): sparseFeatures[bucket] += 1.0 return dict(sparseFeatures) # Reminder of the sample values: # sampleOne = [(0, 'mouse'), (1, 'black')] # sampleTwo = [(0, 'cat'), (1, 'tabby'), (2, 'mouse')] # sampleThree = [(0, 'bear'), (1, 'black'), (2, 'salmon')] # TODO: Replace <FILL IN> with appropriate code # Use four buckets sampOneFourBuckets = hashFunction(4, sampleOne, True) sampTwoFourBuckets = hashFunction(4, sampleTwo, True) sampThreeFourBuckets = hashFunction(4, sampleThree, True) # Use one hundred buckets sampOneHundredBuckets = hashFunction(100, sampleOne, True) sampTwoHundredBuckets = hashFunction(100, sampleTwo, True) sampThreeHundredBuckets = hashFunction(100, sampleThree, True) print '\t\t 4 Buckets \t\t\t 100 Buckets' print 'SampleOne:\t {0}\t\t {1}'.format(sampOneFourBuckets, sampOneHundredBuckets) print 'SampleTwo:\t {0}\t\t {1}'.format(sampTwoFourBuckets, sampTwoHundredBuckets) print 'SampleThree:\t {0}\t {1}'.format(sampThreeFourBuckets, sampThreeHundredBuckets) # TEST Hash function (5a) Test.assertEquals(sampOneFourBuckets, {2: 1.0, 3: 1.0}, 'incorrect value for sampOneFourBuckets') Test.assertEquals(sampThreeHundredBuckets, {72: 1.0, 5: 1.0, 14: 1.0}, 'incorrect value for sampThreeHundredBuckets') # TODO: Replace <FILL IN> with appropriate code def parseHashPoint(point, numBuckets): Create a LabeledPoint for this observation using hashing. Args: point (str): A comma separated string where the first value is the label and the rest are features. numBuckets: The number of buckets to hash to. Returns: LabeledPoint: A LabeledPoint with a label (0.0 or 1.0) and a SparseVector of hashed features. label = point.split(',', 1)[0] features = parsePoint(point) hashfeatures = SparseVector(numBuckets, hashFunction(numBuckets, features)) return LabeledPoint(label, hashfeatures) numBucketsCTR = 2 ** 15 hashTrainData = rawTrainData.map(lambda x: parseHashPoint(x, numBucketsCTR)) hashTrainData.cache() hashValidationData = rawValidationData.map(lambda x: parseHashPoint(x, numBucketsCTR)) hashValidationData.cache() hashTestData = rawTestData.map(lambda x: parseHashPoint(x, numBucketsCTR)) hashTestData.cache() print hashTrainData.take(1) # TEST Creating hashed features (5b) hashTrainDataFeatureSum = sum(hashTrainData .map(lambda lp: len(lp.features.indices)) .take(20)) hashTrainDataLabelSum = sum(hashTrainData .map(lambda lp: lp.label) .take(100)) hashValidationDataFeatureSum = sum(hashValidationData .map(lambda lp: len(lp.features.indices)) .take(20)) hashValidationDataLabelSum = sum(hashValidationData .map(lambda lp: lp.label) .take(100)) hashTestDataFeatureSum = sum(hashTestData .map(lambda lp: len(lp.features.indices)) .take(20)) hashTestDataLabelSum = sum(hashTestData .map(lambda lp: lp.label) .take(100)) Test.assertEquals(hashTrainDataFeatureSum, 772, 'incorrect number of features in hashTrainData') Test.assertEquals(hashTrainDataLabelSum, 24.0, 'incorrect labels in hashTrainData') Test.assertEquals(hashValidationDataFeatureSum, 776, 'incorrect number of features in hashValidationData') Test.assertEquals(hashValidationDataLabelSum, 16.0, 'incorrect labels in hashValidationData') Test.assertEquals(hashTestDataFeatureSum, 774, 'incorrect number of features in hashTestData') Test.assertEquals(hashTestDataLabelSum, 23.0, 'incorrect labels in hashTestData') # TODO: Replace <FILL IN> with appropriate code def computeSparsity(data, d, n): Calculates the average sparsity for the features in an RDD of LabeledPoints. Args: data (RDD of LabeledPoint): The LabeledPoints to use in the sparsity calculation. d (int): The total number of features. n (int): The number of observations in the RDD. Returns: float: The average of the ratio of features in a point to total features. return data.map(lambda x: len(x.features.indices) / float(d)).mean() averageSparsityHash = computeSparsity(hashTrainData, numBucketsCTR, nTrain) averageSparsityOHE = computeSparsity(OHETrainData, numCtrOHEFeats, nTrain) print 'Average OHE Sparsity: {0:.7e}'.format(averageSparsityOHE) print 'Average Hash Sparsity: {0:.7e}'.format(averageSparsityHash) # TEST Sparsity (5c) Test.assertTrue(np.allclose(averageSparsityOHE, 1.6717677e-04), 'incorrect value for averageSparsityOHE') Test.assertTrue(np.allclose(averageSparsityHash, 1.1805561e-03), 'incorrect value for averageSparsityHash') numIters = 500 regType = 'l2' includeIntercept = True # Initialize variables using values from initial model training bestModel = None bestLogLoss = 1e10 # TODO: Replace <FILL IN> with appropriate code stepSizes = [1, 10] regParams = [1e-6, 1e-3] for stepSize in stepSizes: for regParam in regParams: model = (LogisticRegressionWithSGD .train(hashTrainData, numIters, stepSize, regParam=regParam, regType=regType, intercept=includeIntercept)) logLossVa = evaluateResults(model, hashValidationData) print ('\tstepSize = {0:.1f}, regParam = {1:.0e}: logloss = {2:.3f}' .format(stepSize, regParam, logLossVa)) if (logLossVa < bestLogLoss): bestModel = model bestLogLoss = logLossVa print ('Hashed Features Validation Logloss:\n\tBaseline = {0:.3f}\n\tLogReg = {1:.3f}' .format(logLossValBase, bestLogLoss)) # TEST Logistic model with hashed features (5d) Test.assertTrue(np.allclose(bestLogLoss, 0.4481683608), 'incorrect value for bestLogLoss') from matplotlib.colors import LinearSegmentedColormap # Saved parameters and results. Eliminate the time required to run 36 models stepSizes = [3, 6, 9, 12, 15, 18] regParams = [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2] logLoss = np.array([[ 0.45808431, 0.45808493, 0.45809113, 0.45815333, 0.45879221, 0.46556321], [ 0.45188196, 0.45188306, 0.4518941, 0.4520051, 0.45316284, 0.46396068], [ 0.44886478, 0.44886613, 0.44887974, 0.44902096, 0.4505614, 0.46371153], [ 0.44706645, 0.4470698, 0.44708102, 0.44724251, 0.44905525, 0.46366507], [ 0.44588848, 0.44589365, 0.44590568, 0.44606631, 0.44807106, 0.46365589], [ 0.44508948, 0.44509474, 0.44510274, 0.44525007, 0.44738317, 0.46365405]]) numRows, numCols = len(stepSizes), len(regParams) logLoss = np.array(logLoss) logLoss.shape = (numRows, numCols) fig, ax = preparePlot(np.arange(0, numCols, 1), np.arange(0, numRows, 1), figsize=(8, 7), hideLabels=True, gridWidth=0.) ax.set_xticklabels(regParams), ax.set_yticklabels(stepSizes) ax.set_xlabel('Regularization Parameter'), ax.set_ylabel('Step Size') colors = LinearSegmentedColormap.from_list('blue', ['#0022ff', '#000055'], gamma=.2) image = plt.imshow(logLoss,interpolation='nearest', aspect='auto', cmap = colors) pass # TODO: Replace <FILL IN> with appropriate code # Log loss for the best model from (5d) logLossTest = evaluateResults(bestModel, hashTestData) # Log loss for the baseline model logLossTestBaseline = hashTestData.map(lambda x: computeLogLoss(classOneFracTrain, x.label)).mean() print ('Hashed Features Test Log Loss:\n\tBaseline = {0:.3f}\n\tLogReg = {1:.3f}' .format(logLossTestBaseline, logLossTest)) # TEST Evaluate on the test set (5e) Test.assertTrue(np.allclose(logLossTestBaseline, 0.537438), 'incorrect value for logLossTestBaseline') Test.assertTrue(np.allclose(logLossTest, 0.455616931), 'incorrect value for logLossTest') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Part 1 Step2: (1b) Sparse vectors Step3: (1c) OHE features as sparse vectors Step5: (1d) Define a OHE function Step6: (1e) Apply OHE to a dataset Step7: Part 2 Step8: (2b) OHE Dictionary from distinct features Step10: (2c) Automated creation of an OHE dictionary Step11: Part 3 Step12: (3a) Loading and splitting the data Step14: (3b) Extract features Step15: (3c) Create an OHE dictionary from the dataset Step17: (3d) Apply OHE to the dataset Step20: Visualization 1 Step22: (3e) Handling unseen features Step23: Part 4 Step25: (4b) Log loss Step26: (4c) Baseline log loss Step28: (4d) Predicted probability Step30: (4e) Evaluate the model Step31: (4f) Validation log loss Step32: Visualization 2 Step34: Part 5 Step36: (5b) Creating hashed features Step38: (5c) Sparsity Step39: (5d) Logistic model with hashed features Step40: Visualization 3 Step41: (5e) Evaluate on the test set
15,292
<ASSISTANT_TASK:> Python Code: %matplotlib inline %load_ext gremlin import asyncio import aiogremlin import networkx as nx g = nx.scale_free_graph(10) nx.draw_networkx(g) @asyncio.coroutine def stream(gc): results = [] resp = yield from gc.submit("x + x", bindings={"x": 1}) while True: result = yield from resp.stream.read() if result is None: break results.append(result) return results loop = asyncio.get_event_loop() gc = aiogremlin.GremlinClient() results = loop.run_until_complete(stream(gc)) results loop.run_until_complete(gc.close()) # Explicitly close client!!! %%gremlin graph = TinkerFactory.createModern() g = graph.traversal(standard()) g.V().has('name','marko').out('knows').values('name') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: What's a graph? Step2: Graphs are everywhere these days! Step4: ipython-gremlin
15,293
<ASSISTANT_TASK:> Python Code: %run "../Functions/1. Google form analysis.ipynb" %run "../Functions/4. User comparison.ipynb" #getAllResponders() setAnswerTemporalities(gform) # small sample #allData = getAllUserVectorData( getAllUsers( rmdf152 )[:10] ) # complete set #allData = getAllUserVectorData( getAllUsers( rmdf152 ) ) # subjects who answered the gform allData = getAllUserVectorData( getAllResponders() ) # 10 subjects who answered the gform #allData = getAllUserVectorData( getAllResponders()[:10] ) efficiencies = allData.loc['efficiency'].sort_values() efficiencies.index = range(0, len(allData.columns)) efficiencies.plot(title = 'efficiency') efficiencies2 = allData.loc['efficiency'].sort_values() efficiencies2 = efficiencies2[efficiencies2 != 0] efficiencies2.index = range(0, len(efficiencies2)) efficiencies2 = np.log(efficiencies2) efficiencies2.plot(title = 'efficiency log') maxChapter = allData.loc['maxChapter'].sort_values() maxChapter.index = range(0, len(allData.columns)) maxChapter.plot(title = 'maxChapter') len(allData.columns) userIds = getAllResponders() _source = correctAnswers # _source is used as correction source, if we want to include answers to these questions #def getAllUserVectorData( userIds, _source = [] ): # result isInitialized = False allData = [] f = FloatProgress(min=0, max=len(userIds)) display(f) for userId in userIds: #print(str(userId)) f.value += 1 if not isInitialized: isInitialized = True allData = getUserDataVector(userId, _source = _source) else: allData = pd.concat([allData, getUserDataVector(userId, _source = _source)], axis=1) #print('done') allData userId methods = ['pearson', 'kendall', 'spearman'] _allUserVectorData = allData.T _method = methods[0] _title='RedMetrics Correlations' _abs=True _clustered=False _figsize = (20,20) #def plotAllUserVectorDataCorrelationMatrix( # _allUserVectorData, # _method = methods[0], # _title='RedMetrics Correlations', # _abs=False, # _clustered=False, # _figsize = (20,20) #): _progress = FloatProgress(min=0, max=3) display(_progress) # computation of correlation matrix _m = _method if(not (_method in methods)): _m = methods[0] _correlation = _allUserVectorData.astype(float).corr(_m) _progress.value += 1 if(_abs): _correlation = _correlation.abs() _progress.value += 1 # plot if(_clustered): sns.clustermap(_correlation,cmap=plt.cm.jet,square=True,figsize=_figsize) else: _fig = plt.figure(figsize=_figsize) _ax = plt.subplot(111) _ax.set_title(_title) sns.heatmap(_correlation,ax=_ax,cmap=plt.cm.jet,square=True) _progress.value += 1 gform['Temporality'].unique() allData.loc['scoreundefined'].dropna() getAllUsers(rmdf152)[:10] len(getAllUsers(rmdf152)) userSessionsRelevantColumns = ['customData.localplayerguid', 'sessionId'] userSessions = rmdf152[rmdf152['type']=='start'].loc[:,userSessionsRelevantColumns] userSessions = userSessions.rename(index=str, columns={'customData.localplayerguid': 'userId'}) userSessions.head() #groupedUserSessions = userSessions.groupby('customData.localplayerguid') #groupedUserSessions.head() #groupedUserSessions.describe().head() checkpointsRelevantColumns = ['sessionId', 'customData.localplayerguid', 'type', 'section', 'userTime'] checkpoints = rmdf152.loc[:, checkpointsRelevantColumns] checkpoints = checkpoints[checkpoints['type']=='reach'].loc[:,['section','sessionId','userTime']] checkpoints = checkpoints[checkpoints['section'].str.startswith('tutorial', na=False)] #checkpoints = checkpoints.groupby("sessionId") #checkpoints = checkpoints.max() checkpoints.head() #assembled = userSessions.combine_first(checkpoints) assembled = pd.merge(userSessions, checkpoints, on='sessionId', how='outer') assembled.head() userSections = assembled.drop('sessionId', 1) userSections.head() userSections = userSections.dropna() userSections.head() checkpoints = userSections.groupby("userId") checkpoints = checkpoints.max() checkpoints.head() #userTimedSections = userSections.groupby("userId").agg({ "userTime": np.min }) #userTimedSections = userSections.groupby("userId") userTimes = userSections.groupby("userId").agg({ "userTime": [np.min, np.max] }) userTimes["duration"] = pd.to_datetime(userTimes["userTime"]["amax"]) - pd.to_datetime(userTimes["userTime"]["amin"]) userTimes["duration"] = userTimes["duration"].map(lambda x: np.timedelta64(x, 's')) userTimes = userTimes.sort_values(by=['duration'], ascending=[False]) userTimes.head() sessionCount = 1 _rmDF = rmdf152 sample = gform before = False after = True gfMode = False rmMode = True #def getAllUserVectorDataCustom(before, after, gfMode = False, rmMode = True, sessionCount = 1, _rmDF = rmdf152) userIds = [] if (before and after): userIds = getSurveysOfUsersWhoAnsweredBoth(sample, gfMode = gfMode, rmMode = rmMode) elif before: if rmMode: userIds = getRMBefores(sample) else: userIds = getGFBefores(sample) elif after: if rmMode: userIds = getRMAfters(sample) else: userIds = getGFormAfters(sample) if(len(userIds) > 0): userIds = userIds[localplayerguidkey] allUserVectorData = getAllUserVectorData(userIds, _rmDF = _rmDF) allUserVectorData = allUserVectorData.T result = allUserVectorData[allUserVectorData['sessionsCount'] == sessionCount].T else: print("no matching user") result = [] result getAllUserVectorDataCustom(False, True) userIdsBoth = getSurveysOfUsersWhoAnsweredBoth(gform, gfMode = True, rmMode = True)[localplayerguidkey] allUserVectorData = getAllUserVectorData(userIdsBoth) allUserVectorData = allUserVectorData.T allUserVectorData[allUserVectorData['sessionsCount'] == 1] testUser = "3685a015-fa97-4457-ad73-da1c50210fe1" def getScoreFromBinarized(binarizedAnswers): gformIndices = binarizedAnswers.index.map(lambda s: int(s.split(correctionsColumnNameStem)[1])) return pd.Series(np.dot(binarizedAnswers, np.ones(binarizedAnswers.shape[1])), index=gform.loc[gformIndices, localplayerguidkey]) #allResponders = getAllResponders() #gf_both = getSurveysOfUsersWhoAnsweredBoth(gform, gfMode = True, rmMode = False) rm_both = getSurveysOfUsersWhoAnsweredBoth(gform, gfMode = False, rmMode = True) #gfrm_both = getSurveysOfUsersWhoAnsweredBoth(gform, gfMode = True, rmMode = True) sciBinarizedBefore = getAllBinarized(_form = getRMBefores(rm_both)) sciBinarizedAfter = getAllBinarized(_form = getRMAfters(rm_both)) scoresBefore = getScoreFromBinarized(sciBinarizedBefore) scoresAfter = getScoreFromBinarized(sciBinarizedAfter) medianBefore = np.median(scoresBefore) medianAfter = np.median(scoresAfter) maxScore = sciBinarizedBefore.shape[1] indicators = pd.DataFrame() indicators['before'] = scoresBefore indicators['after'] = scoresAfter indicators['delta'] = scoresAfter - scoresBefore indicators['maxPotentialDelta'] = maxScore - scoresBefore for index in indicators['maxPotentialDelta'].index: if (indicators.loc[index, 'maxPotentialDelta'] == 0): indicators.loc[index, 'maxPotentialDelta'] = 1 indicators['relativeBefore'] = scoresBefore / medianBefore indicators['relativeAfter'] = scoresAfter / medianBefore indicators['relativeDelta'] = indicators['delta'] / medianBefore indicators['realizedPotential'] = indicators['delta'] / indicators['maxPotentialDelta'] indicators['increaseRatio'] = indicators['before'] for index in indicators['increaseRatio'].index: if (indicators.loc[index, 'increaseRatio'] == 0): indicators.loc[index, 'increaseRatio'] = 1 indicators['increaseRatio'] = indicators['delta'] / indicators['increaseRatio'] indicators (min(indicators['relativeBefore']), max(indicators['relativeBefore'])),\ (min(indicators['relativeDelta']), max(indicators['relativeDelta'])),\ medianBefore,\ np.median(indicators['relativeBefore']),\ np.median(indicators['relativeDelta'])\ indicatorX = 'relativeBefore' indicatorY = 'relativeDelta' def scatterPlotIndicators(indicatorX, indicatorY): print(indicatorX + ' range: ' + str((min(indicators[indicatorX]), max(indicators[indicatorX])))) print(indicatorY + ' range: ' + str((min(indicators[indicatorY]), max(indicators[indicatorY])))) print(indicatorX + ' median: ' + str(np.median(indicators[indicatorX]))) print(indicatorY + ' median: ' + str(np.median(indicators[indicatorY]))) fig = plt.figure() ax1 = fig.add_subplot(111) ax1.scatter(indicators[indicatorX], indicators[indicatorY]) plt.xlabel(indicatorX) plt.ylabel(indicatorY) # vertical line plt.plot( [np.median(indicators[indicatorX]), np.median(indicators[indicatorX])],\ [min(indicators[indicatorY]), max(indicators[indicatorY])],\ 'k-', lw=2) # horizontal line plt.plot( [min(indicators[indicatorX]), max(indicators[indicatorX])],\ [np.median(indicators[indicatorY]), np.median(indicators[indicatorY])],\ 'k-', lw=2) indicators.columns scatterPlotIndicators('relativeBefore', 'relativeDelta') scatterPlotIndicators('relativeBefore', 'realizedPotential') scatterPlotIndicators('relativeBefore', 'increaseRatio') scatterPlotIndicators('relativeBefore', 'relativeAfter') scatterPlotIndicators('maxPotentialDelta', 'realizedPotential') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Data vectors of users Step2: getAllUserVectorData Step3: Correlation Matrix Step4: List of users and their sessions Step5: List of sessions with their checkpoints achievements Step6: Assembly of both Step7: Time analysis Step8: TODO Step9: user progress classification
15,294
<ASSISTANT_TASK:> Python Code: import github3 import json from os.path import join import pprint import requests from urllib.parse import urljoin TOKEN='' gh = github3.login(token=TOKEN) type(gh) url = 'https://api.github.com/orgs/jupyterhub/repos' response = requests.get(url) if response.status_code != 200: # This means something went wrong. raise ApiError('GET /orgs/ {}'.format(resp.status_code)) repos = response.json() pprint.pprint(repos) print('The total number of repos in the organization is {}'.format(len(repos))) # print repos print('{0:30s} {1:20s}\n'.format('Repository name', 'open_issues_count')) for num in range(0, len(repos)): print('{0:30s} {1:4d}\n'.format(repos[num]['name'], repos[num]['open_issues_count'])) for num in range(0, len(repos)): print('{0:30s} {1:50s}\n'.format(repos[num]['name'], repos[num]['description'])) print('{0:30s} {1:20s}\n'.format('Repository name', 'open_issues_count')) for num in range(0, len(repos)): print('{0:30s} {1:4d} {2:20s}\n'.format(repos[num]['name'], repos[num]['open_issues_count'], repos[num]['description'])) def get_issues(my_org, my_repo): for issue in gh.iter_repo_issues(owner=my_org, repository=my_repo): print(issue.number, issue.title) my_org = 'jupyterhub' my_repo = 'configurable-http-proxy' get_issues(my_org, my_repo) my_org = 'jupyterhub' my_repo = 'jupyterhub' get_issues(my_org, my_repo) subgroup={'authenticators':['oauthenticator', 'ldapauthenticator'], 'spawners':['dockerspawner', 'sudospawner', 'kubespawner', 'batchspawner', 'wrapspawner', 'systemdspawner'], 'deployments':['jupyterhub-deploy-docker', 'jupyterhub-deploy-teaching', 'jupyterhub-deploy-hpc', 'jupyterhub-example-kerberos'], 'fundamentals':['jupyterhub', 'configurable-http-proxy', 'hubshare', 'jupyterhub-labextension'], 'community':['jupyterhub-tutorial', 'jupyterhub-2016-workshop'], } print(subgroup['authenticators']) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: GitHub Authorization Step2: Basic API request Step3: Issues in an organization's repos
15,295
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt #We might need this #First, let us load the data #Catalog from HSC cat_hsc = np.loadtxt('./Catalog_HSC.csv') x_hsc = cat_hsc[:,0] y_hsc = cat_hsc[:,1] #Catalog from HST cat_hst = np.loadtxt('./Catalog_HST.csv') x_hst = cat_hst[:,0] y_hst = cat_hst[:,1] #First, check the number of stars in each survey: ns_hst = #fill in ns_hsc = #... #Print the result print() #This is a graphic representation of our data content: %matplotlib qt plt.title('star catalogs in COSMOS') plt.plot(x_hsc, y_hsc, 'or', label = 'hsc catalog') plt.plot(x_hst, y_hst, 'ob', label = 'hst catalog') plt.legend() plt.xlabel('ra') plt.ylabel('dec') plt.show() def distance(point1, point2): ''' Returns the distance between two points with coordinates (x,y). Parameters ---------- point1: list 2D coordinates of a point point2: list 2D coordinates of a point Returns ------- d: float the distance between point1 and point2 ''' return point1 = [x_hst[0], y_hst[0]] point2 = [x_hsc[0], y_hsc[0]] print(distance(point1, point2)) # Answer should be 0.6648994838877168 def point_to_points_distance(point, coordinates): ''' Returns the distance between one point and all the points in coordinates. Parameters ---------- point: list 2D coordinates of a point coordinates: list set of N 2D coordinates stored in a list with shape Nx2 Returns ------- d: list the distance between point and each point in coordinates in an array with size N ''' #Declaring an empty list d = [] for c in coordinates: # for each point in coordinates, take the distance to point and concatenate it to d d.append(distance(point, c)) #make d a numpy array and return it return np.array(d) coords = np.concatenate((x_hsc[:10,None], y_hsc[:10,None]), axis = 1) print(point_to_points_distance(point1, coords)) # The answer should look like [0.66489948 0.4628197 0.39672485 0.43854084 0.32165335 0.30223269 # 0.65765909 0.65411548 0.6474303 0.79301678] def your_function(coord1, coord2): # Choose an adequate name for your function ''' Returns the distance between points in two sets of coordinates. Parameters coord1: array array of size Nx2 that contains the [x, y] positions of a catalog coord2: array array of size Mx2 that contains the [x, y] positions of a catalog Returns dist: array array of size NxM that contains the euclidean distances between points in the two datasets ''' return # In order not to spend the whole evening here, let us reduce the dataset size: #Select stars in hsc in the frame: 150.0<x<150.1 and 2.0<y<2.1 loc_hsc = #please fill these x_hsc_exp = x_hsc[loc_hsc] y_hsc_exp = y_hsc[loc_hsc] loc_hst = #And that x_hst_exp = x_hst[loc_hst] y_hst_exp = y_hst[loc_hst] #Once you are done with the exercise, feel free to try with larger selections to see how it impacts computation time import distances as dt # Insert the names of your functions in the following array: methods = [your_function, dt.double_loop, dt.with_indices, dt.one_loop, dt.one_loop_reverse, dt.scipy_version, dt.newaxis_magic] #An empty variable to store computation time timers = [] # Making sets of coordinates of size Nx2 to feed your functions with the right format c2 = np.concatenate((x_hst_exp[:,None], y_hst_exp[:,None]), axis = 1) c1 = np.concatenate((x_hsc_exp[:,None], y_hsc_exp[:,None]), axis = 1) for f in methods: print(f.__name__) r = %timeit -o f(c1, c2) timers.append(r) #View the results: plt.figure(figsize=(10,6)) plt.bar(np.arange(len(methods)), [r.best*1000 for r in timers], log=True) # Set log to True for logarithmic scale plt.xticks(np.arange(len(methods))+0.2, [f.__name__ for f in methods], rotation=30) plt.xlabel('Method') plt.ylabel('Time (ms)') plt.yscale('log') plt.show() #Let us compute the distances as we did before, but this time, with the whole dataset. #Of course, a fast method is to be prefered c1 = #Please fill these. Same as before but with all the dataset c2 = # def get_match(coord_ref, coord2, rad): ''' matches coordinates of stars between two datasets and computes the distance between the position of the stars in the 2 datasets Parameters coord_ref: numpy array (Nx2) coordinates (ra, dec) of stars in a FoV from a given dataset coord2: numpy array (Mx2) coordinates (ra dec) of stars in the same FoV in an other dataset rad: float radius (deg) around stars in coord_ref where to find a corresponding star in coord2 Returns modulus:numpy array (N') containing the distance between matching stars v_coord: numpy array(N',2) coordinates in the coord_ref set of matching stars ''' #Declare two empty arrays to store the coordinates and distances. #... s = np.size(coord_ref[:,0])#This is just for representation print('number of points in reference catalog: {0}'.format(s)) #for each star in coord_ref for i,c in enumerate(coord_ref): #This is just here to keep track of the algorithm's progression if i % 3000 == 0: print('point number {0} out of {1}'.format(i, s)) #compute the distance from c to all stars in coord2 r = #... #Find the closest star from coord 2 to c loc = #... #Make sure that there is only one star matching (it can happen that 2 match) #Here I just arbitrarily pick one, but you can find a way to discard these stars if np.size(loc) > 1: loc = loc[0] #record the distance between matching stars rmin = #... #Check whether the closest distance is smaller than rad if #...: #if yes, place the coordinates and the distance in an array #... tip: use append() return #... # Use your function coord , r = get_match(c1, c2, 0.3/3600.) #Spatial distribution of distances plt.title('distribution of distances accross the FoV') #... #Global representation #... <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Check that the loaded data are consistent with what we expect Step2: To begin with, let's write a function that returns the algebraic distance between two points Step3: Now let's test it by comparing the distance between the first point of each dataset. Step4: Let's take it one step further and compare the distance between one point and a set of points Step5: Let's test it on the first 10 points in the HSC catalog and the first point of the HST catalog Step6: Now let's get to work. We would like to associate stars in one survey to their conterpart (if it exists) in the other survey. We will start by comparing the positions between each point of one survey to the position of each point in the other survey. Step7: Now, let us take a look at the computation times Step8: Identifying matching stars (optional) Step9: Now I would like to have a representation for the work we have done that informs me about what is in my datasets. Namely, what is the error on star positions between the two datasets? We would like to have a global view of this error but also an impression of the error as a function of the position on the field. For the latter, I suggest you use the 'scatter' function from matplotlib.
15,296
<ASSISTANT_TASK:> Python Code: import numpy as np import kwant %run matplotlib_setup.ipy from matplotlib import pyplot lat = kwant.lattice.square() def make_lead_x(W=10, t=1): syst = kwant.Builder(kwant.TranslationalSymmetry([-1, 0])) syst[(lat(0, y) for y in range(W))] = 4 * t syst[lat.neighbors()] = -t return syst def make_wire_with_flat_potential(W=10, L=2, t=1): def onsite(s, V): return (4 - V) * t # Construct the scattering region. sr = kwant.Builder() sr[(lat(x, y) for x in range(L) for y in range(W))] = onsite sr[lat.neighbors()] = -t # Build and attach lead from both sides. lead = make_lead_x(W, t) sr.attach_lead(lead) sr.attach_lead(lead.reversed()) return sr def plot_transmission(syst, energy, params): # Compute conductance trans = [] for param in params: smatrix = kwant.smatrix(syst, energy, args=[param]) trans.append(smatrix.transmission(1, 0)) pyplot.plot(params, trans) _syst = make_wire_with_flat_potential() kwant.plot(_syst) _syst = _syst.finalized() kwant.plotter.bands(_syst.leads[0]) plot_transmission(_syst, 1, np.linspace(-2, 0, 51)) from math import atan2, pi, sqrt def rectangular_gate_pot(distance, left, right, bottom, top): Compute the potential of a rectangular gate. The gate hovers at the given distance over the plane where the potential is evaluated. Based on J. Appl. Phys. 77, 4504 (1995) http://dx.doi.org/10.1063/1.359446 d, l, r, b, t = distance, left, right, bottom, top def g(u, v): return atan2(u * v, d * sqrt(u**2 + v**2 + d**2)) / (2 * pi) def func(x, y, voltage): return voltage * (g(x-l, y-b) + g(x-l, t-y) + g(r-x, y-b) + g(r-x, t-y)) return func _gate1 = rectangular_gate_pot(10, 20, 50, -50, 15) _gate2 = rectangular_gate_pot(10, 20, 50, 25, 90) def qpc_potential(site, V): x, y = site.pos return _gate1(x, y, V) + _gate2(x, y, V) def make_barrier(pot, W=40, L=70, t=1): def onsite(*args): return 4 * t - pot(*args) # Construct the scattering region. sr = kwant.Builder() sr[(lat(x, y) for x in range(L) for y in range(W))] = onsite sr[lat.neighbors()] = -t # Build and attach lead from both sides. lead = make_lead_x(W, t) sr.attach_lead(lead) sr.attach_lead(lead.reversed()) return sr qpc = make_barrier(qpc_potential) kwant.plot(qpc); kwant.plotter.map(qpc, lambda s: qpc_potential(s, 1)); fqpc = qpc.finalized() kwant.plotter.bands(fqpc.leads[0]); plot_transmission(fqpc, 0.3, np.linspace(-1, 0, 101)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: "MOSFET" toy model Step2: The next one is slightly modified Step3: The following function also needs to be modified slightly Step4: Let's put the above functions to some use Step6: Your turn! Step7: The function below is almost like make_wire_with_flat_potential. The difference is that it can be tuned to use a general potential using its first parameter. Step8: Let's construct the system and plot the potential. The lambda expression is used to fix the gate voltage to a particular value. Step9: To get an idea of the involved energy scales it's useful to plot the band structure Step10: Finally, let's plot transmission as a function of the gate voltage. We see the hallmark of the QPC
15,297
<ASSISTANT_TASK:> Python Code: from configparser import ConfigParser from os.path import join from os import pardir config = ConfigParser() config.read(join(pardir,'src','credentials.ini')) APP_KEY = config['twitter']['app_key'] APP_SECRET = config['twitter']['app_secret'] OAUTH_TOKEN = config['twitter']['oauth_token'] OAUTH_TOKEN_SECRET = config['twitter']['oauth_token_secret'] from twitter import oauth, Twitter, TwitterHTTPError auth = oauth.OAuth(OAUTH_TOKEN, OAUTH_TOKEN_SECRET, APP_KEY, APP_SECRET) twitter_api = Twitter(auth=auth) twitter_api.retry = True brogrammers = ['jakevdp', 'rasbt', 'GaelVaroquaux', 'amuellerml', 'fperez_org', 'fpedregosa', 'ogrisel', 'dontusethiscode', 'randal_olson', 'tdhopper' ] sisgrammers = ['pkafei', 'LorenaABarba', 'jessicamckellar', 'heddle317', 'diana_clarke', 'wholemilk', 'spang', 'cecilycarver', 'juliaelman', 'b0rk'] brotweets = [] for bro in brogrammers: brotweets.extend(twitter_api.statuses.user_timeline(screen_name=bro, count=100)) sistweets = [] for sis in sisgrammers: sistweets.extend(twitter_api.statuses.user_timeline(screen_name=sis, count=100)) import re def clean_tweet(tweet): Simplest preprocess. Convert a tweet to lowercarse and replace URLs and @username by a generic token Args: tweet (str): Tweet to clean. Returns: str: Preprocessed tweet tweet = tweet.lower() # Remove URL and replace them with a token URL_REGEX = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+' tweet = re.sub(URL_REGEX, '<url>', tweet, flags=re.MULTILINE) # Remove usernames and replace them with a token tweet = re.sub("@([A-Za-z0-9_]+)", "<user>", tweet) # Remove repeated spaces tweet = re.sub(r"\s{2,}", " ", tweet) # If a character is repeated more than 4 time, keep only 3 repetitions. tweet = re.sub(r'(.)\1{4,}', r'\1\1\1', tweet) return tweet import pandas as pd dataset = [] # Gather the text for tweet in brotweets: cleaned_tweet = clean_tweet(tweet['text']) dataset.append({'id': tweet['id'], 'text': cleaned_tweet, 'class': 0}) for tweet in sistweets: cleaned_tweet = clean_tweet(tweet['text']) dataset.append({'id': tweet['id'], 'text': cleaned_tweet, 'class': 1}) pd_dataset = pd.DataFrame(dataset) pd_dataset.head() pd_dataset.to_csv('../corpora/full_dataset.csv') pd_dataset[['class', 'id']].to_csv('../corpora/ep16.csv') import pandas as pd DATASET_PATH = "../corpora/full_dataset.csv" pd_dataset = pd.DataFrame.from_csv(DATASET_PATH) pd_dataset.head() import nltk.data #nltk.download() from nltk.tokenize import TweetTokenizer, word_tokenize from nltk.corpus import stopwords from collections import Counter import re import scipy.stats as stats print(', '.join(stopwords.words('english')[:20])) def get_vocabulary(corpus, tokenizer): Get the vocabulary of a dataset. Get a vocabulary of a set of tweets after removing stopwords, non letters, and replacing each number by the token <number> Args: corpus (list of tweets): A list of tweets. tokenizer (function): tokenizer function. To get the tokens of each tweet. Returns: Counter: Vocabulary with the frequency of each word in it. stop_words = stopwords.words('english') # Remove puntuation marks no_punks = [re.sub(r'\W', ' ', tweet) for tweet in corpus] # Tokenize and remove stop words clean_tokens = [] for tweet in no_punks: # Replace different numbers with a token tweet = re.sub(r"\.\d+\s*", ".<number> ", tweet) tweet = re.sub(r"\d+\s*", " <number> ", tweet) tokens = tokenizer(tweet) tokens = [token for token in tokens if token not in stop_words] clean_tokens.extend(tokens) # Build the vocabulary return Counter(clean_tokens) tknzr = TweetTokenizer() brotweets = pd_dataset[pd_dataset['class'] == 0]['text'].tolist() sistweets = pd_dataset[pd_dataset['class'] == 1]['text'].tolist() brocabulary = get_vocabulary(brotweets, tknzr.tokenize) siscabulary = get_vocabulary(sistweets, tknzr.tokenize) brocabulary.most_common(10) siscabulary.most_common(10) from bokeh.plotting import figure, show, vplot, ColumnDataSource from bokeh.io import output_notebook from bokeh.models import HoverTool output_notebook() MOST_COMMON = 50 mc_brocavulary = brocabulary.most_common(int(MOST_COMMON/2)) mc_siscavulary = siscabulary.most_common(int(MOST_COMMON/2)) fr_brocavulary, fr_siscavulary = [], [] most_common_words = mc_brocavulary + mc_siscavulary words = list(set(word for word, _ in most_common_words)) for word in words: if word in brocabulary: fr_brocavulary.append(brocabulary[word]) else: fr_brocavulary.append(0) if word in siscabulary: fr_siscavulary.append(siscabulary[word]) else: fr_siscavulary.append(0) import numpy as np range_words=list(range(1,len(words)+1)) source = ColumnDataSource(data=dict(range_words=range_words, words=words, freq_true=fr_brocavulary, freq_false=fr_siscavulary)) hover = HoverTool() hover.point_policy = "follow_mouse" hover = HoverTool( tooltips=[ ("words", "@words"), ] ) TOOLS="pan,wheel_zoom,box_zoom,reset,save" p = figure(title = "Vocabulary gender", x_range=words, tools=[TOOLS, hover]) p.xaxis.axis_label = 'Words' p.yaxis.axis_label = 'Frequency' p.circle('range_words', 'freq_true', source=source, fill_alpha=0.2, size=10, color="navy") p.circle('range_words', 'freq_false', source=source, fill_alpha=0.2, size=10, color='red') p.xaxis.major_label_orientation = np.pi/4 show(p) tweet_lens_bro = [len(tweet) for tweet in brotweets] hist_bro, edges_bro = np.histogram(tweet_lens_bro, density=True, bins=20) tweet_lens_bro.sort() tweet_lens_sis = [len(tweet) for tweet in sistweets] hist_sis, edges_sis = np.histogram(tweet_lens_sis, density=True, bins=20) tweet_lens_sis.sort() p = figure(title="") p.quad(top=hist_bro, bottom=0, left=edges_bro[:-1], right=edges_bro[1:], fill_color="navy", line_color="#033649", fill_alpha=0.3) p.quad(top=hist_sis, bottom=0, left=edges_sis[:-1], right=edges_sis[1:], fill_color="red", line_color="#033649", fill_alpha=0.3) sigma = np.std(tweet_lens_bro) mu = np.mean(tweet_lens_bro) pdf = stats.norm.pdf(tweet_lens_bro, mu, sigma) p.line(tweet_lens_bro, pdf, line_color="navy", line_width=6, alpha=0.7, legend="PDF") sigma = np.std(tweet_lens_sis) mu = np.mean(tweet_lens_sis) pdf = stats.norm.pdf(tweet_lens_sis, mu, sigma) p.line(tweet_lens_sis, pdf, line_color="red", line_width=6, alpha=0.7, legend="PDF") p.xaxis.axis_label = 'len(tweets)' p.yaxis.axis_label = '# tweets' show(p) from sklearn import cross_validation X = pd_dataset['text'].tolist() y = pd_dataset['class'].tolist() X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.4, random_state=0) print("Examples in train: {}".format(len(X_train))) print("Examples in test: {}".format(len(X_test))) from sklearn.feature_extraction.text import CountVectorizer vectorizer = CountVectorizer(analyzer = "word", tokenizer = None, preprocessor = None, stop_words = None, ngram_range=(1, 1), max_features = 5000) # Fit the train BOW_train = vectorizer.fit_transform(X_train) BOW_train = BOW_train.toarray() # Transform the test BOW_test = vectorizer.transform(X_test) BOW_test = BOW_test.toarray() print('Train: {{0|1}}^({}x{})'.format(BOW_train.shape[0], BOW_train.shape[1])) print('Test: {{0|1}}^({}x{})'.format(BOW_test.shape[0], BOW_test.shape[1])) vocab = vectorizer.get_feature_names() print('\nVOCABULARY EXTRACT: {}'.format(', '.join(vocab[500:600]))) np.set_printoptions(threshold=np.nan) print('\nTWEET REPRESENTATION: {}'.format(BOW_train[0])) from os.path import join import numpy as np def load_glove_dict(glove_filepath): Build a dictionary with GloVe values. Read the GloVe resource and build a dictionary where the key is the word and the value its GloVe representation Args: glove_filepath (str): Path where the GloVe resource is. Returns: dict: Dictionary with GloVe data. glove_embeddings = {} # TODO: check if the filepath exists with open(glove_filepath) as glove_file: for line in glove_file: split_line = line.split() word, vector = split_line[0], np.asarray(split_line[1:]) glove_embeddings[word] = vector return glove_embeddings GLOVE_PATH = '../../../resources/GloVe/twitter_dataset' embedding_size = '25' glove_file = join(GLOVE_PATH, 'glove.twitter.27B.' + embedding_size + 'd.txt') glove_25 = load_glove_dict(glove_file) embedding_size = '100' glove_file = join(GLOVE_PATH, 'glove.twitter.27B.' + embedding_size + 'd.txt') glove_100 = load_glove_dict(glove_file) def get_most_common_vocab(most_common, vocabulary): Get the most common words in a vocabulary Args: most_common (int): Number of most common word that want to be retrieved. vocabulary (Counter): Vocabulary with words and frequencies of each word. Returns: set: set of most common words in this vocabulary. most_common_words = vocabulary.most_common(int(most_common)) return set(word for word, _ in most_common_words) def get_words_to_plot(most_common, vocabulary, dictionary): words_to_plot = {} unseen_words = [] for word in get_most_common_vocab(most_common, vocabulary): if word in dictionary: words_to_plot[word] = dictionary[word] else: unseen_words.append(word) return words_to_plot, unseen_words from sklearn.manifold import TSNE def plot_tsne(dictionary, most_common): tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) words_to_plot_bros, unseen_words_bros = get_words_to_plot(most_common, brocabulary, dictionary) words_to_plot_sis, unseen_words_sis = get_words_to_plot(most_common, siscabulary, dictionary) low_dim_embs_bros = tsne.fit_transform(list(words_to_plot_bros.values())) low_dim_embs_sis = tsne.fit_transform(list(words_to_plot_sis.values())) words_bros = list(words_to_plot_bros.keys()) range_words_bros=list(range(1,len(words_bros)+1)) source_bros = ColumnDataSource(data=dict(range_words=range_words_bros, words_bros=words_bros, x=low_dim_embs_bros[:,0], y=low_dim_embs_bros[:,1])) words_sis = list(words_to_plot_sis.keys()) range_words_sis = list(range(1,len(words_sis)+1)) source_sis = ColumnDataSource(data=dict(range_words=range_words_sis, words_sis=words_sis, x=low_dim_embs_sis[:,0], y=low_dim_embs_sis[:,1])) hover = HoverTool() hover.point_policy = "follow_mouse" hover = HoverTool( tooltips=[ ("words_bros", "@words_bros"), ("words_sis", "@words_sis"), ] ) TOOLS="pan,wheel_zoom,box_zoom,reset,save" p = figure(title = "Word visualization", tools=[TOOLS, hover]) p.circle('x', 'y', source=source_bros, fill_alpha=0.2, size=10, color='navy') p.circle('x', 'y', source=source_sis, fill_alpha=0.2, size=10, color='red') show(p) return set(unseen_words_bros + unseen_words_sis) unseen_words = plot_tsne(glove_100, 1000) print(', '.join(unseen_words)) def tokenize_dataset(tokenizer, dataset): tokenize_dataset = [] for tweet in dataset: # Replace different numbers with a token tweet = re.sub(r"\.\d+\s*", ".<number> ", tweet) tweet = re.sub(r"\d+\s*", " <number> ", tweet) tokens = tokenizer(tweet) tokenize_dataset.append(tokens) return tokenize_dataset X_train_tokenized = tokenize_dataset(TweetTokenizer().tokenize, X_train) X_test_tokenized = tokenize_dataset(TweetTokenizer().tokenize, X_test) def get_embeddings(dataset, dictionary, embedding_size): X_emebeddings = [] for tweet in dataset: tweet_embeddings = [] for word in tweet: if word in dictionary: tweet_embeddings.append(dictionary[word]) if not tweet_embeddings: tweet_embeddings.append(np.zeros(embedding_size)) # Each tweet would have a different number of words and ML techniques requiere fixed inputs. X_emebeddings.append(np.mean(np.asarray(tweet_embeddings, dtype=np.float32), axis=0)) return X_emebeddings X_train_GloVe = get_embeddings(X_train_tokenized, glove_100, 100) X_test_GloVe = get_embeddings(X_test_tokenized, glove_100, 100) from gensim.models import word2vec # Initialize and train the model (this will take some time) model = word2vec.Word2Vec(X_train_tokenized, workers = 4, size = 100, min_count = 1, # How many times a word should appear to be taken into account window = 5, sample = 1e-3 , # Downsample setting for frequent words batch_words = 100) # Batches of examples passed to worker threads # This model won't be updated model.init_sims(replace=True) model_name = "word2vec" model.save(model_name) model.syn0.shape _ = plot_tsne(model, 1000) model.most_similar("python") X_train_word2vec = get_embeddings(X_train_tokenized, model, 100) X_test_word2vec = get_embeddings(X_test_tokenized, model, 100) from sklearn import svm from sklearn.metrics import classification_report, roc_curve, auc clf = svm.SVC() clf.fit(BOW_train, y_train) predicction_BOW = clf.predict(BOW_test) target_names = ['Bros', 'Sis'] print(classification_report(y_test, predicction_BOW, target_names=target_names)) clf = svm.SVC() clf.fit(X_train_GloVe, y_train) predicction_GloVe = clf.predict(X_test_GloVe) print(classification_report(y_test, predicction_GloVe, target_names=target_names)) clf = svm.SVC() clf.fit(X_train_word2vec, y_train) predicction_word2vec = clf.predict(X_test_word2vec) print(classification_report(y_test, predicction_word2vec, target_names=target_names)) false_positive_rate_bow, true_positive_rate_bow, _ = roc_curve(y_test, predicction_BOW) roc_auc_bow = auc(false_positive_rate_bow, true_positive_rate_bow) false_positive_rate_glove, true_positive_rate_glove, _ = roc_curve(y_test, predicction_GloVe) roc_auc_glove = auc(false_positive_rate_glove, true_positive_rate_glove) false_positive_rate_w2v, true_positive_rate_w2v, _ = roc_curve(y_test, predicction_word2vec) roc_auc_w2v = auc(false_positive_rate_w2v, true_positive_rate_w2v) from bokeh.palettes import Spectral6 p = figure(title="Receiver Operating Characteristic", tools=TOOLS) p.line(false_positive_rate_bow, true_positive_rate_bow, legend='BoW ROC curve (area = {:.2f})'.format(roc_auc_bow), line_color="green", line_width=2) p.line(false_positive_rate_glove, true_positive_rate_glove, legend='GloVE ROC curve (area = {:.2f})'.format(roc_auc_glove), line_color="blue", line_width=2) p.line(false_positive_rate_w2v, true_positive_rate_w2v, legend='W2V ROC curve (area = {:.2f})'.format(roc_auc_w2v), line_color="yellow", line_width=2) p.line([0.0, 1.0], [0.0, 1.05], legend='Guessing', line_color="gray", line_width=2, line_dash=(4, 4)) p.xaxis.axis_label = 'False Positive Rate' p.yaxis.axis_label = 'True Positive Rate' p.legend.location = 'bottom_right' show(p) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Full disclaimer Step3: 2.2. Clean your data Step4: 2.3. Share your data Step6: 2.4. Study your data Step7: 2.5. Split your data in train and test Step8: 3. In the beginning we had a bag of words (or maybe the set) Step11: 4. Word embeddings Step12: 4.2. But I want to train word embeddings with my own data! Step13: 5. Now fight!
15,298
<ASSISTANT_TASK:> Python Code: import json import numpy as np import pandas as pd import xgboost as xgb import tensorflow as tf from sklearn.utils import shuffle from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from google.cloud import bigquery from google.colab import auth auth.authenticate_user() # Note: this query may take a few minutes to run %%bigquery df --project your-cloud-project SELECT arr_delay, carrier, origin, dest, dep_delay, taxi_out, distance FROM `cloud-training-demos.flights.tzcorr` WHERE extract(year from fl_date) = 2015 ORDER BY fl_date ASC LIMIT 300000 df = df.dropna() df = shuffle(df, random_state=2) df.head() # Only include origins and destinations that occur frequently in the dataset df = df[df['origin'].map(df['origin'].value_counts()) > 500] df = df[df['dest'].map(df['dest'].value_counts()) > 500] df = pd.get_dummies(df, columns=['carrier', 'origin', 'dest']) # Create a boolean column to indicate whether flight was > 30 mins delayed df.loc[df['arr_delay'] >= 30, 'arr_delay_bool'] = 1 df.loc[df['arr_delay'] < 30, 'arr_delay_bool'] = 0 df['arr_delay_bool'].value_counts() classify_model_labels = df['arr_delay_bool'] classify_model_data = df.drop(columns=['arr_delay', 'arr_delay_bool']) x,y = classify_model_data,classify_model_labels x_train,x_test,y_train,y_test = train_test_split(x,y) model = xgb.XGBRegressor( objective='reg:logistic' ) # Given the dataset size, this may take 1-2 minutes to run model.fit(x_train, y_train) y_pred = model.predict(x_test) acc = accuracy_score(y_test, np.round(y_pred)) print(acc) # Save the model model.save_model('model.bst') # Set your cloud project PROJECT = 'your-cloud-project' !gcloud config set project $PROJECT BUCKET = PROJECT + '_flight_model_bucket' # Create a bucket if you don't have one # You only need to run this once !gsutil mb gs://$BUCKET !gsutil cp 'model.bst' gs://$BUCKET # Create the model resource !gcloud ai-platform models create flight_delay_prediction # Create the version !gcloud ai-platform versions create 'v1' \ --model 'flight_delay_prediction' \ --origin gs://$BUCKET \ --runtime-version=1.15 \ --framework 'XGBOOST' \ --python-version=3.7 # Get a prediction on the first example from our test set !rm input.json num_examples = 10 with open('input.json', 'a') as f: for i in range(num_examples): f.write(str(x_test.iloc[i].values.tolist())) f.write('\n') !cat input.json # Make a prediction to the deployed model !gcloud ai-platform predict --model 'flight_delay_prediction' --version \ 'v1' --json-instances 'input.json' # Compare this with actual values print(y_test.iloc[:5]) tf_model = tf.keras.Sequential([ tf.keras.layers.Dense(32, activation='relu', input_shape=[len(x_train.iloc[0])]), tf.keras.layers.Dense(32, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) tf_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) tf_model.fit(x_train, y_train, epochs=10, validation_split=0.1) metrics = tf_model.evaluate(x_test, y_test) print(metrics) tf_model_path = 'gs://' + BUCKET + '/tf' tf_model.save(tf_model_path, save_format='tf') !gcloud ai-platform versions create 'v2' \ --model 'flight_delay_prediction' \ --origin $tf_model_path \ --runtime-version=2.1 \ --framework 'TENSORFLOW' \ --python-version=3.7 # Make a prediction to the new version !gcloud ai-platform predict --model 'flight_delay_prediction' --version \ 'v2' --json-instances 'input.json' regression_model_labels = df['arr_delay'] regression_model_data = df.drop(columns=['arr_delay', 'arr_delay_bool']) x,y = regression_model_data,regression_model_labels x_train,x_test,y_train,y_test = train_test_split(x,y) model = xgb.XGBRegressor( objective='reg:linear' ) # This will take 1-2 minutes to run model.fit(x_train, y_train) y_pred = model.predict(x_test) for i,val in enumerate(y_pred[:10]): print(val) print(y_test.iloc[i]) print() model.save_model('model.bst') !gsutil cp model.bst gs://$BUCKET/regression/ !gcloud ai-platform models create 'flights_regression' # Create the version !gcloud ai-platform versions create 'v1' \ --model 'flights_regression' \ --origin gs://$BUCKET/regression \ --runtime-version=1.15 \ --framework 'XGBOOST' \ --python-version=3.7 !gcloud ai-platform predict --model 'flighs_regression' --version \ 'v1' --json-instances 'input.json' <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Download and preprocess data Step2: In the following cell, replace your-cloud-project with the name of your GCP project. Step3: Model version #1 Step4: Deploying classification model to AI Platform Step5: Model version #2 Step6: Note that accuracy will be similar to the XGBoost model. We're just using this to demonstrate how training a model with a different framework could be deployed as a new version. Step7: Next we'll deploy the updated TF model to AI Platform as a v2. Step8: Alternative
15,299
<ASSISTANT_TASK:> Python Code: # Load required packages from sklearn import datasets from sklearn.model_selection import GridSearchCV, cross_val_score from sklearn.preprocessing import StandardScaler import numpy as np from sklearn.svm import SVC # Load the data dataset = datasets.load_breast_cancer() # Create X from the features X = dataset.data # Create y from the target y = dataset.target # Create a scaler object sc = StandardScaler() # Fit the scaler to the feature data and transform X_std = sc.fit_transform(X) # Create a list of 10 candidate values for the C parameter C_candidates = dict(C=np.logspace(-4, 4, 10)) # Create a gridsearch object with the support vector classifier and the C value candidates clf = GridSearchCV(estimator=SVC(), param_grid=C_candidates) # Fit the cross validated grid search on the data clf.fit(X_std, y) # Show the best value for C clf.best_estimator_.C cross_val_score(clf, X_std, y) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Get Data Step2: Standardize Data Step3: Create Inner Cross Validation (For Parameter Tuning) Step4: The code below isn't necessary for parameter tuning using nested cross validation, however to demonstrate that our inner cross validation grid search can find the best value for the parameter C, we will run it once here Step5: Create Outer Cross Validation (For Model Evaluation)