Unnamed: 0
int64
0
15.9k
cleaned_code
stringlengths
67
124k
cleaned_prompt
stringlengths
168
30.3k
15,600
<ASSISTANT_TASK:> Python Code: import numpy as np p = np.poly1d([6., 1., -2.]) p(0), p(1), p(10) p.order p.roots # Comprobando las raíces p(p.roots) np.poly1d([2.,-3.,7.]).roots import matplotlib.pyplot as plt xvalues = np.linspace(-10.,10.,100) plt.plot(xvalues, p(xvalues), '-') plt.show() y = p(xvalues) + np.random.randn(xvalues.size)*p(xvalues).std()/2 # Intentar ajustar un polinomio de grado 3 np.polyfit(xvalues,y,deg=3) # Intentar ajustar un polinomio de grado 2 p3 = np.poly1d( np.polyfit(xvalues,y,deg=2) ) p3 plt.plot(xvalues, y, 'xr', xvalues, p3(xvalues), '-b') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: La clase poly1D representa polinomios unidimensionales con base en sus coeficientes. Sea el polinomio Step2: Se puede evaluar el valor de $p(x)$ Step3: Se puede determinar el orden del polinomio con Step4: y sus raíces Step5: Y que tal el polinomio con raíces complejas $p2(x) = 2 x^2 -3 x +7$ Step6: Se puede obtener la gráfica del polinomio Step7: Ajuste de curvas mediante polinomios Step8: Teniendo un conjunto de values x,y se puede determinar el polimonio que mejor se ajusta Step9: Obtener la gráfica de las observaciones y del polinomio de mejor ajuste
15,601
<ASSISTANT_TASK:> Python Code: # Run some setup code for this notebook. import random import numpy as np from cs231n.data_utils import load_CIFAR10 import matplotlib.pyplot as plt from __future__ import print_function # This is a bit of magic to make matplotlib figures appear inline in the notebook # rather than in a new window. %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # Some more magic so that the notebook will reload external python modules; # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython %load_ext autoreload %autoreload 2 # Load the raw CIFAR-10 data. cifar10_dir = 'cs231n/datasets/cifar-10-batches-py' X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) # As a sanity check, we print out the size of the training and test data. print('Training data shape: ', X_train.shape) print('Training labels shape: ', y_train.shape) print('Test data shape: ', X_test.shape) print('Test labels shape: ', y_test.shape) # Visualize some examples from the dataset. # We show a few examples of training images from each class. classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] num_classes = len(classes) samples_per_class = 7 for y, cls in enumerate(classes): idxs = np.flatnonzero(y_train == y) idxs = np.random.choice(idxs, samples_per_class, replace=False) for i, idx in enumerate(idxs): plt_idx = i * num_classes + y + 1 plt.subplot(samples_per_class, num_classes, plt_idx) plt.imshow(X_train[idx].astype('uint8')) plt.axis('off') if i == 0: plt.title(cls) plt.show() # Subsample the data for more efficient code execution in this exercise num_training = 5000 mask = list(range(num_training)) X_train = X_train[mask] y_train = y_train[mask] num_test = 500 mask = list(range(num_test)) X_test = X_test[mask] y_test = y_test[mask] # Reshape the image data into rows X_train = np.reshape(X_train, (X_train.shape[0], -1)) X_test = np.reshape(X_test, (X_test.shape[0], -1)) print(X_train.shape, X_test.shape) from cs231n.classifiers import KNearestNeighbor # Create a kNN classifier instance. # Remember that training a kNN classifier is a noop: # the Classifier simply remembers the data and does no further processing classifier = KNearestNeighbor() classifier.train(X_train, y_train) # Open cs231n/classifiers/k_nearest_neighbor.py and implement # compute_distances_two_loops. # Test your implementation: dists = classifier.compute_distances_two_loops(X_test) print(dists.shape) # We can visualize the distance matrix: each row is a single test example and # its distances to training examples plt.imshow(dists, interpolation='none') plt.show() # Now implement the function predict_labels and run the code below: # We use k = 1 (which is Nearest Neighbor). y_test_pred = classifier.predict_labels(dists, k=1) # Compute and print the fraction of correctly predicted examples num_correct = np.sum(y_test_pred == y_test) accuracy = float(num_correct) / num_test print('Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy)) y_test_pred = classifier.predict_labels(dists, k=5) num_correct = np.sum(y_test_pred == y_test) accuracy = float(num_correct) / num_test print('Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy)) # Now lets speed up distance matrix computation by using partial vectorization # with one loop. Implement the function compute_distances_one_loop and run the # code below: dists_one = classifier.compute_distances_one_loop(X_test) # To ensure that our vectorized implementation is correct, we make sure that it # agrees with the naive implementation. There are many ways to decide whether # two matrices are similar; one of the simplest is the Frobenius norm. In case # you haven't seen it before, the Frobenius norm of two matrices is the square # root of the squared sum of differences of all elements; in other words, reshape # the matrices into vectors and compute the Euclidean distance between them. difference = np.linalg.norm(dists - dists_one, ord='fro') print('Difference was: %f' % (difference, )) if difference < 0.001: print('Good! The distance matrices are the same') else: print('Uh-oh! The distance matrices are different') # Now implement the fully vectorized version inside compute_distances_no_loops # and run the code dists_two = classifier.compute_distances_no_loops(X_test) # check that the distance matrix agrees with the one we computed before: difference = np.linalg.norm(dists - dists_two, ord='fro') print('Difference was: %f' % (difference, )) if difference < 0.001: print('Good! The distance matrices are the same') else: print('Uh-oh! The distance matrices are different') # Let's compare how fast the implementations are def time_function(f, *args): Call a function f with args and return the time (in seconds) that it took to execute. import time tic = time.time() f(*args) toc = time.time() return toc - tic two_loop_time = time_function(classifier.compute_distances_two_loops, X_test) print('Two loop version took %f seconds' % two_loop_time) one_loop_time = time_function(classifier.compute_distances_one_loop, X_test) print('One loop version took %f seconds' % one_loop_time) no_loop_time = time_function(classifier.compute_distances_no_loops, X_test) print('No loop version took %f seconds' % no_loop_time) # you should see significantly faster performance with the fully vectorized implementation num_folds = 5 k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100] X_train_folds = [] y_train_folds = [] ################################################################################ # TODO: # # Split up the training data into folds. After splitting, X_train_folds and # # y_train_folds should each be lists of length num_folds, where # # y_train_folds[i] is the label vector for the points in X_train_folds[i]. # # Hint: Look up the numpy array_split function. # ################################################################################ X_train_folds = np.array_split(X_train, num_folds, axis=0) y_train_folds = np.array_split(y_train, num_folds, axis=0) ################################################################################ # END OF YOUR CODE # ################################################################################ # A dictionary holding the accuracies for different values of k that we find # when running cross-validation. After running cross-validation, # k_to_accuracies[k] should be a list of length num_folds giving the different # accuracy values that we found when using that value of k. k_to_accuracies = {} ################################################################################ # TODO: # # Perform k-fold cross validation to find the best value of k. For each # # possible value of k, run the k-nearest-neighbor algorithm num_folds times, # # where in each case you use all but one of the folds as training data and the # # last fold as a validation set. Store the accuracies for all fold and all # # values of k in the k_to_accuracies dictionary. # ################################################################################ for k in k_choices: k_to_accuracies[k] = [] for i in xrange(num_folds): Xtr = np.delete(X_train_folds, i, axis=0).reshape(-1, X_train.shape[1]) ytr = np.delete(y_train_folds, i, axis=0).reshape(-1, 1) Xval = X_train_folds[i] yval = y_train_folds[i] classifier.train(Xtr, ytr) yval_predict = classifier.predict(Xval, k) k_to_accuracies[k].append(np.mean(yval_predict == yval)) ################################################################################ # END OF YOUR CODE # ################################################################################ # Print out the computed accuracies for k in sorted(k_to_accuracies): for accuracy in k_to_accuracies[k]: print('k = %d, accuracy = %f' % (k, accuracy)) # plot the raw observations for k in k_choices: accuracies = k_to_accuracies[k] plt.scatter([k] * len(accuracies), accuracies) # plot the trend line with error bars that correspond to standard deviation accuracies_mean = np.array([np.mean(v) for k,v in sorted(k_to_accuracies.items())]) accuracies_std = np.array([np.std(v) for k,v in sorted(k_to_accuracies.items())]) plt.errorbar(k_choices, accuracies_mean, yerr=accuracies_std) plt.title('Cross-validation on k') plt.xlabel('k') plt.ylabel('Cross-validation accuracy') plt.show() # Based on the cross-validation results above, choose the best value for k, # retrain the classifier using all the training data, and test it on the test # data. You should be able to get above 28% accuracy on the test data. best_k = 10 classifier = KNearestNeighbor() classifier.train(X_train, y_train) y_test_pred = classifier.predict(X_test, k=best_k) # Compute and display the accuracy num_correct = np.sum(y_test_pred == y_test) accuracy = float(num_correct) / num_test print('Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We would now like to classify the test data with the kNN classifier. Recall that we can break down this process into two steps Step2: Inline Question #1 Step3: You should expect to see approximately 27% accuracy. Now lets try out a larger k, say k = 5 Step5: You should expect to see a slightly better performance than with k = 1. Step6: Cross-validation
15,602
<ASSISTANT_TASK:> Python Code: DON'T MODIFY ANYTHING IN THIS CELL import helper import problem_unittests as tests source_path = 'data/small_vocab_en' target_path = 'data/small_vocab_fr' source_text = helper.load_data(source_path) target_text = helper.load_data(target_path) view_sentence_range = (0, 10) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np print('Dataset Stats') print('Roughly the number of unique words: {}'.format(len({word: None for word in source_text.split()}))) sentences = source_text.split('\n') word_counts = [len(sentence.split()) for sentence in sentences] print('Number of sentences: {}'.format(len(sentences))) print('Average number of words in a sentence: {}'.format(np.average(word_counts))) print() print('English sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(source_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) print() print('French sentences {} to {}:'.format(*view_sentence_range)) print('\n'.join(target_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]])) def text_to_ids(source_text, target_text, source_vocab_to_int, target_vocab_to_int): Convert source and target text to proper word ids :param source_text: String that contains all the source text. :param target_text: String that contains all the target text. :param source_vocab_to_int: Dictionary to go from the source words to an id :param target_vocab_to_int: Dictionary to go from the target words to an id :return: A tuple of lists (source_id_text, target_id_text) # TODO: Implement Function return None, None DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_text_to_ids(text_to_ids) DON'T MODIFY ANYTHING IN THIS CELL helper.preprocess_and_save_data(source_path, target_path, text_to_ids) DON'T MODIFY ANYTHING IN THIS CELL import numpy as np import helper (source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess() DON'T MODIFY ANYTHING IN THIS CELL from distutils.version import LooseVersion import warnings import tensorflow as tf from tensorflow.python.layers.core import Dense # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion('1.1'), 'Please use TensorFlow version 1.1 or newer' print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) def model_inputs(): Create TF Placeholders for input, targets, learning rate, and lengths of source and target sequences. :return: Tuple (input, targets, learning rate, keep probability, target sequence length, max target sequence length, source sequence length) # TODO: Implement Function return None, None, None, None, None, None, None DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_model_inputs(model_inputs) def process_decoder_input(target_data, target_vocab_to_int, batch_size): Preprocess target data for encoding :param target_data: Target Placehoder :param target_vocab_to_int: Dictionary to go from the target words to an id :param batch_size: Batch Size :return: Preprocessed target data # TODO: Implement Function return None DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_process_encoding_input(process_decoder_input) from imp import reload reload(tests) def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, source_sequence_length, source_vocab_size, encoding_embedding_size): Create encoding layer :param rnn_inputs: Inputs for the RNN :param rnn_size: RNN Size :param num_layers: Number of layers :param keep_prob: Dropout keep probability :param source_sequence_length: a list of the lengths of each sequence in the batch :param source_vocab_size: vocabulary size of source data :param encoding_embedding_size: embedding size of source data :return: tuple (RNN output, RNN state) # TODO: Implement Function return None, None DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_encoding_layer(encoding_layer) def decoding_layer_train(encoder_state, dec_cell, dec_embed_input, target_sequence_length, max_summary_length, output_layer, keep_prob): Create a decoding layer for training :param encoder_state: Encoder State :param dec_cell: Decoder RNN Cell :param dec_embed_input: Decoder embedded input :param target_sequence_length: The lengths of each sequence in the target batch :param max_summary_length: The length of the longest sequence in the batch :param output_layer: Function to apply the output layer :param keep_prob: Dropout keep probability :return: BasicDecoderOutput containing training logits and sample_id # TODO: Implement Function return None DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer_train(decoding_layer_train) def decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, max_target_sequence_length, vocab_size, output_layer, batch_size, keep_prob): Create a decoding layer for inference :param encoder_state: Encoder state :param dec_cell: Decoder RNN Cell :param dec_embeddings: Decoder embeddings :param start_of_sequence_id: GO ID :param end_of_sequence_id: EOS Id :param max_target_sequence_length: Maximum length of target sequences :param vocab_size: Size of decoder/target vocabulary :param decoding_scope: TenorFlow Variable Scope for decoding :param output_layer: Function to apply the output layer :param batch_size: Batch size :param keep_prob: Dropout keep probability :return: BasicDecoderOutput containing inference logits and sample_id # TODO: Implement Function return None DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer_infer(decoding_layer_infer) def decoding_layer(dec_input, encoder_state, target_sequence_length, max_target_sequence_length, rnn_size, num_layers, target_vocab_to_int, target_vocab_size, batch_size, keep_prob, decoding_embedding_size): Create decoding layer :param dec_input: Decoder input :param encoder_state: Encoder state :param target_sequence_length: The lengths of each sequence in the target batch :param max_target_sequence_length: Maximum length of target sequences :param rnn_size: RNN Size :param num_layers: Number of layers :param target_vocab_to_int: Dictionary to go from the target words to an id :param target_vocab_size: Size of target vocabulary :param batch_size: The size of the batch :param keep_prob: Dropout keep probability :param decoding_embedding_size: Decoding embedding size :return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput) # TODO: Implement Function return None, None DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_decoding_layer(decoding_layer) def seq2seq_model(input_data, target_data, keep_prob, batch_size, source_sequence_length, target_sequence_length, max_target_sentence_length, source_vocab_size, target_vocab_size, enc_embedding_size, dec_embedding_size, rnn_size, num_layers, target_vocab_to_int): Build the Sequence-to-Sequence part of the neural network :param input_data: Input placeholder :param target_data: Target placeholder :param keep_prob: Dropout keep probability placeholder :param batch_size: Batch Size :param source_sequence_length: Sequence Lengths of source sequences in the batch :param target_sequence_length: Sequence Lengths of target sequences in the batch :param source_vocab_size: Source vocabulary size :param target_vocab_size: Target vocabulary size :param enc_embedding_size: Decoder embedding size :param dec_embedding_size: Encoder embedding size :param rnn_size: RNN Size :param num_layers: Number of layers :param target_vocab_to_int: Dictionary to go from the target words to an id :return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput) # TODO: Implement Function return None, None DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_seq2seq_model(seq2seq_model) # Number of Epochs epochs = None # Batch Size batch_size = None # RNN Size rnn_size = None # Number of Layers num_layers = None # Embedding Size encoding_embedding_size = None decoding_embedding_size = None # Learning Rate learning_rate = None # Dropout Keep Probability keep_probability = None display_step = None DON'T MODIFY ANYTHING IN THIS CELL save_path = 'checkpoints/dev' (source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess() max_target_sentence_length = max([len(sentence) for sentence in source_int_text]) train_graph = tf.Graph() with train_graph.as_default(): input_data, targets, lr, keep_prob, target_sequence_length, max_target_sequence_length, source_sequence_length = model_inputs() #sequence_length = tf.placeholder_with_default(max_target_sentence_length, None, name='sequence_length') input_shape = tf.shape(input_data) train_logits, inference_logits = seq2seq_model(tf.reverse(input_data, [-1]), targets, keep_prob, batch_size, source_sequence_length, target_sequence_length, max_target_sequence_length, len(source_vocab_to_int), len(target_vocab_to_int), encoding_embedding_size, decoding_embedding_size, rnn_size, num_layers, target_vocab_to_int) training_logits = tf.identity(train_logits.rnn_output, name='logits') inference_logits = tf.identity(inference_logits.sample_id, name='predictions') masks = tf.sequence_mask(target_sequence_length, max_target_sequence_length, dtype=tf.float32, name='masks') with tf.name_scope("optimization"): # Loss function cost = tf.contrib.seq2seq.sequence_loss( training_logits, targets, masks) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) DON'T MODIFY ANYTHING IN THIS CELL def pad_sentence_batch(sentence_batch, pad_int): Pad sentences with <PAD> so that each sentence of a batch has the same length max_sentence = max([len(sentence) for sentence in sentence_batch]) return [sentence + [pad_int] * (max_sentence - len(sentence)) for sentence in sentence_batch] def get_batches(sources, targets, batch_size, source_pad_int, target_pad_int): Batch targets, sources, and the lengths of their sentences together for batch_i in range(0, len(sources)//batch_size): start_i = batch_i * batch_size # Slice the right amount for the batch sources_batch = sources[start_i:start_i + batch_size] targets_batch = targets[start_i:start_i + batch_size] # Pad pad_sources_batch = np.array(pad_sentence_batch(sources_batch, source_pad_int)) pad_targets_batch = np.array(pad_sentence_batch(targets_batch, target_pad_int)) # Need the lengths for the _lengths parameters pad_targets_lengths = [] for target in pad_targets_batch: pad_targets_lengths.append(len(target)) pad_source_lengths = [] for source in pad_sources_batch: pad_source_lengths.append(len(source)) yield pad_sources_batch, pad_targets_batch, pad_source_lengths, pad_targets_lengths DON'T MODIFY ANYTHING IN THIS CELL def get_accuracy(target, logits): Calculate accuracy max_seq = max(target.shape[1], logits.shape[1]) if max_seq - target.shape[1]: target = np.pad( target, [(0,0),(0,max_seq - target.shape[1])], 'constant') if max_seq - logits.shape[1]: logits = np.pad( logits, [(0,0),(0,max_seq - logits.shape[1])], 'constant') return np.mean(np.equal(target, logits)) # Split data to training and validation sets train_source = source_int_text[batch_size:] train_target = target_int_text[batch_size:] valid_source = source_int_text[:batch_size] valid_target = target_int_text[:batch_size] (valid_sources_batch, valid_targets_batch, valid_sources_lengths, valid_targets_lengths ) = next(get_batches(valid_source, valid_target, batch_size, source_vocab_to_int['<PAD>'], target_vocab_to_int['<PAD>'])) with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(epochs): for batch_i, (source_batch, target_batch, sources_lengths, targets_lengths) in enumerate( get_batches(train_source, train_target, batch_size, source_vocab_to_int['<PAD>'], target_vocab_to_int['<PAD>'])): _, loss = sess.run( [train_op, cost], {input_data: source_batch, targets: target_batch, lr: learning_rate, target_sequence_length: targets_lengths, source_sequence_length: sources_lengths, keep_prob: keep_probability}) if batch_i % display_step == 0 and batch_i > 0: batch_train_logits = sess.run( inference_logits, {input_data: source_batch, source_sequence_length: sources_lengths, target_sequence_length: targets_lengths, keep_prob: 1.0}) batch_valid_logits = sess.run( inference_logits, {input_data: valid_sources_batch, source_sequence_length: valid_sources_lengths, target_sequence_length: valid_targets_lengths, keep_prob: 1.0}) train_acc = get_accuracy(target_batch, batch_train_logits) valid_acc = get_accuracy(valid_targets_batch, batch_valid_logits) print('Epoch {:>3} Batch {:>4}/{} - Train Accuracy: {:>6.4f}, Validation Accuracy: {:>6.4f}, Loss: {:>6.4f}' .format(epoch_i, batch_i, len(source_int_text) // batch_size, train_acc, valid_acc, loss)) # Save Model saver = tf.train.Saver() saver.save(sess, save_path) print('Model Trained and Saved') DON'T MODIFY ANYTHING IN THIS CELL # Save parameters for checkpoint helper.save_params(save_path) DON'T MODIFY ANYTHING IN THIS CELL import tensorflow as tf import numpy as np import helper import problem_unittests as tests _, (source_vocab_to_int, target_vocab_to_int), (source_int_to_vocab, target_int_to_vocab) = helper.load_preprocess() load_path = helper.load_params() def sentence_to_seq(sentence, vocab_to_int): Convert a sentence to a sequence of ids :param sentence: String :param vocab_to_int: Dictionary to go from the words to an id :return: List of word ids # TODO: Implement Function return None DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE tests.test_sentence_to_seq(sentence_to_seq) translate_sentence = 'he saw a old yellow truck .' DON'T MODIFY ANYTHING IN THIS CELL translate_sentence = sentence_to_seq(translate_sentence, source_vocab_to_int) loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load saved model loader = tf.train.import_meta_graph(load_path + '.meta') loader.restore(sess, load_path) input_data = loaded_graph.get_tensor_by_name('input:0') logits = loaded_graph.get_tensor_by_name('predictions:0') target_sequence_length = loaded_graph.get_tensor_by_name('target_sequence_length:0') source_sequence_length = loaded_graph.get_tensor_by_name('source_sequence_length:0') keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0') translate_logits = sess.run(logits, {input_data: [translate_sentence]*batch_size, target_sequence_length: [len(translate_sentence)*2]*batch_size, source_sequence_length: [len(translate_sentence)]*batch_size, keep_prob: 1.0})[0] print('Input') print(' Word Ids: {}'.format([i for i in translate_sentence])) print(' English Words: {}'.format([source_int_to_vocab[i] for i in translate_sentence])) print('\nPrediction') print(' Word Ids: {}'.format([i for i in translate_logits])) print(' French Words: {}'.format(" ".join([target_int_to_vocab[i] for i in translate_logits]))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Language Translation Step3: Explore the Data Step6: Implement Preprocessing Function Step8: Preprocess all the data and save it Step10: Check Point Step12: Check the Version of TensorFlow and Access to GPU Step15: Build the Neural Network Step18: Process Decoder Input Step21: Encoding Step24: Decoding - Training Step27: Decoding - Inference Step30: Build the Decoding Layer Step33: Build the Neural Network Step34: Neural Network Training Step36: Build the Graph Step40: Batch and pad the source and target sequences Step43: Train Step45: Save Parameters Step47: Checkpoint Step50: Sentence to Sequence Step52: Translate
15,603
<ASSISTANT_TASK:> Python Code: debug_flag = False import datetime import glob import logging import lxml import os import six import xml import xmltodict import zipfile # paper identifier paper_identifier = "Newsday" archive_identifier = "Newsday_20171006230211_00001" # source source_paper_folder = "/mnt/hgfs/projects/phd/proquest_hnp/proquest_hnp/data" source_paper_path = "{}/{}".format( source_paper_folder, paper_identifier ) # uncompressed uncompressed_paper_folder = "/mnt/hgfs/projects/phd/proquest_hnp/uncompressed" uncompressed_paper_path = "{}/{}".format( uncompressed_paper_folder, paper_identifier ) # make sure an identifier is set before you make a path here. if ( ( archive_identifier is not None ) and ( archive_identifier != "" ) ): # identifier is set. source_archive_file = "{}.zip".format( archive_identifier ) source_archive_path = "{}/{}".format( source_paper_path, source_archive_file ) uncompressed_archive_path = "{}/{}".format( uncompressed_paper_path, archive_identifier ) #-- END check to see if archive_identifier present. --# %pwd # current working folder current_working_folder = "/home/jonathanmorgan/work/django/research/work/phd_work/data/article_loading/proquest_hnp/{}".format( paper_identifier ) current_datetime = datetime.datetime.now() current_date_string = current_datetime.strftime( "%Y-%m-%d-%H-%M-%S" ) logging_file_name = "{}/research-data_load-{}-{}.log.txt".format( current_working_folder, paper_identifier, current_date_string ) logging.basicConfig( level = logging.DEBUG, format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', filename = logging_file_name, filemode = 'w' # set to 'a' if you want to append, rather than overwrite each time. ) # init django django_init_folder = "/home/jonathanmorgan/work/django/research/work/phd_work" django_init_path = "django_init.py" if( ( django_init_folder is not None ) and ( django_init_folder != "" ) ): # add folder to front of path. django_init_path = "{}/{}".format( django_init_folder, django_init_path ) #-- END check to see if django_init folder. --# %run $django_init_path # context_text imports from context_text.article_coding.article_coding import ArticleCoder from context_text.article_coding.article_coding import ArticleCoding from context_text.article_coding.open_calais_v2.open_calais_v2_article_coder import OpenCalaisV2ArticleCoder from context_text.collectors.newsbank.newspapers.GRPB import GRPB from context_text.collectors.newsbank.newspapers.DTNB import DTNB from context_text.models import Article from context_text.models import Article_Subject from context_text.models import Newspaper from context_text.shared.context_text_base import ContextTextBase # context_text_proquest_hnp from context_text_proquest_hnp.proquest_hnp_newspaper_helper import ProquestHNPNewspaperHelper # python_utilities from python_utilities.logging.logging_helper import LoggingHelper # init my_logging_helper = LoggingHelper() my_logging_helper.set_logger_name( "proquest_hnp-article-loading-{}".format( paper_identifier ) ) log_message = None my_paper = ProquestHNPNewspaperHelper() paper_instance = my_paper.initialize_from_database( paper_identifier ) my_paper.source_all_papers_folder = source_paper_folder my_paper.destination_all_papers_folder = uncompressed_paper_folder print( my_paper ) print( paper_instance ) my_paper = ProquestHNPNewspaperHelper() my_paper.paper_identifier = paper_identifier my_paper.source_all_papers_folder = source_paper_folder my_paper.source_paper_path = source_paper_path my_paper.destination_all_papers_folder = uncompressed_paper_folder my_paper.destination_paper_path = uncompressed_paper_path my_paper.paper_start_year = 1940 my_paper.paper_end_year = 1989 my_newspaper = Newspaper.objects.get( id = 7 ) my_paper.newspaper = my_newspaper phnp_newspaper_instance = my_paper.create_PHNP_newspaper() print( phnp_newspaper_instance ) # create folder to hold the results of decompressing paper's zip files. did_uncomp_paper_folder_exist = my_paper.make_dest_paper_folder() # decompress the files my_paper.uncompress_paper_zip_files() %cd $uncompressed_paper_path %ls # loop over files in the current archive folder path. object_type_to_count_map = my_paper.process_archive_object_types( uncompressed_archive_path ) xml_folder_list = glob.glob( "{}/*".format( uncompressed_paper_path ) ) print( "folder_list: {}".format( xml_folder_list ) ) # build map of all object types for a paper to the overall counts of each paper_object_type_to_count_map = my_paper.process_paper_object_types() news_object_type_list = [] news_object_type_list.append( 'Article|Feature' ) news_object_type_list.append( 'Feature|Article' ) news_object_type_list.append( 'F|r|o|n|t| |P|a|g|e|/|C|o|v|e|r| |S|t|o|r|y' ) # get list of all object types master_object_type_list = my_paper.get_all_object_types() print( "Object Types: {}".format( master_object_type_list ) ) # directory to work in. uncompressed_archive_folder = "Newsday_20171006231925_00050" uncompressed_archive_path = "{}/{}".format( uncompressed_paper_path, uncompressed_archive_folder ) print( 'Uncompressed archive folder: {}'.format( uncompressed_archive_path ) ) # build map of file types to lists of files of that type in specified folder. object_type_to_file_path_map = my_paper.map_archive_folder_files_to_types( uncompressed_archive_path ) # which types do we want to preview? #types_to_output = news_object_type_list types_to_output = [ "Advertisement|Classified Advertisement" ] types_to_output = [ "A|d|v|e|r|t|i|s|e|m|e|n|t" ] types_to_output = [ 'Advertisement|Classified Advertisement' ] types_to_output = [ 'Article|Feature' ] types_to_output = [ 'B|i|r|t|h| |N|o|t|i|c|e' ] types_to_output = [ 'Classified Advertisement|Advertisement' ] types_to_output = [ 'Commentary|Editorial' ] types_to_output = [ 'Correspondence|Letter to the Editor' ] types_to_output = [ 'C|r|e|d|i|t|/|A|c|k|n|o|w|l|e|d|g|e|m|e|n|t' ] types_to_output = [ 'E|d|i|t|o|r|i|a|l| |C|a|r|t|o|o|n|/|C|o|m|i|c' ] types_to_output = [ 'Editorial|Commentary' ] types_to_output = [ 'Feature|Article' ] types_to_output = [ 'Front Matter|Table of Contents' ] types_to_output = [ 'F|r|o|n|t| |P|a|g|e|/|C|o|v|e|r| |S|t|o|r|y' ] types_to_output = [ 'G|e|n|e|r|a|l| |I|n|f|o|r|m|a|t|i|o|n' ] types_to_output = [ 'I|l|l|u|s|t|r|a|t|i|o|n' ] types_to_output = [ 'I|m|a|g|e|/|P|h|o|t|o|g|r|a|p|h' ] types_to_output = [ 'Legal Notice|News' ] types_to_output = [ 'Letter to the Editor|Correspondence' ] types_to_output = [ 'Marriage Announcement|News' ] types_to_output = [ 'N|e|w|s' ] types_to_output = [ 'News|Legal Notice' ] types_to_output = [ 'News|Marriage Announcement' ] types_to_output = [ 'News|Military/War News' ] types_to_output = [ 'O|b|i|t|u|a|r|y' ] types_to_output = [ 'R|e|v|i|e|w' ] types_to_output = [ 'S|t|o|c|k| |Q|u|o|t|e' ] types_to_output = [ 'Table of Contents|Front Matter' ] types_to_output = [ 'Table Of Contents|Front Matter' ] types_to_output = [ 'U|n|d|e|f|i|n|e|d' ] # declare variables xml_file_path_list = None xml_file_path_count = None xml_file_path_example_list = None xml_file_path = None xml_file = None xml_dict = None xml_string = None # loop over types for object_type in types_to_output: # print type and count xml_file_path_list = object_type_to_file_path_map.get( object_type, [] ) xml_file_path_count = len( xml_file_path_list ) xml_file_path_example_list = xml_file_path_list[ : 10 ] print( "\n- {} - {} files:".format( object_type, xml_file_path_count ) ) for xml_file_path in xml_file_path_example_list: print( "----> {}".format( xml_file_path ) ) # try to parse the file with open( xml_file_path ) as xml_file: # parse XML xml_dict = xmltodict.parse( xml_file.read() ) #-- END with open( xml_file_path ) as xml_file: --# # pretty-print xml_string = xmltodict.unparse( xml_dict, pretty = True ) # output print( xml_string ) #-- END loop over example file paths. --# #-- END loop over object types. --# # directory to work in. uncompressed_archive_folder = "Newsday_20171006231925_00050" uncompressed_archive_path = "{}/{}".format( uncompressed_paper_path, uncompressed_archive_folder ) print( 'Uncompressed archive folder: {}'.format( uncompressed_archive_path ) ) # build map of file types to lists of files of that type in specified folder. object_type_to_file_path_map = my_paper.map_archive_folder_files_to_types( uncompressed_archive_path ) # which types do we want to preview? types_to_output = news_object_type_list # declare variables xml_file_path_list = None xml_file_path_count = None xml_file_path_example_list = None xml_file_path = None xml_file = None xml_dict = None xml_string = None # loop over types for object_type in types_to_output: # print type and count xml_file_path_list = object_type_to_file_path_map.get( object_type, [] ) xml_file_path_count = len( xml_file_path_list ) xml_file_path_example_list = xml_file_path_list[ : 10 ] print( "\n- {} - {} files:".format( object_type, xml_file_path_count ) ) for xml_file_path in xml_file_path_example_list: print( "----> {}".format( xml_file_path ) ) # try to parse the file with open( xml_file_path ) as xml_file: # parse XML xml_dict = xmltodict.parse( xml_file.read() ) #-- END with open( xml_file_path ) as xml_file: --# # pretty-print xml_string = xmltodict.unparse( xml_dict, pretty = True ) # output print( xml_string ) #-- END loop over example file paths. --# #-- END loop over object types. --# <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Setup - Imports Step2: Setup - working folder paths Step3: Setup - logging Step4: Setup - virtualenv jupyter kernel Step5: Setup - Initialize LoggingHelper Step6: Setup - initialize ProquestHNPNewspaper Step7: set up manually Step8: If desired, add to database. Step9: Find articles to be loaded Step10: For each *.zip file in the paper's source folder Step11: Work with uncompressed files Step12: parse and load XML files Step13: Processing 5752 files in /mnt/hgfs/projects/phd/proquest_hnp/uncompressed/BostonGlobe/BG_20171002210239_00001 Step14: Example output Step15: explore all known object types Step16: files in archive Newsday_20171006231925_00050 - 1989
15,604
<ASSISTANT_TASK:> Python Code: from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn.pipeline import Pipeline from sklearn.cross_validation import cross_val_score n_samples = 1000 np.random.seed(0) X = np.sort(np.random.rand(n_samples)) y = np.cos(1.5 * np.pi * X) + np.random.randn(n_samples) * 0.1 X = X[:, np.newaxis] K = 100 def cv_mse(degree): polynomial_features = PolynomialFeatures(degree=degree) linear_regression = LinearRegression() model = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) scores = -cross_val_score(model, X, y, "mean_squared_error", cv=K) return scores scores1 = cv_mse(3) sns.distplot(scores1) print(scores1.mean(), scores1.std()) D = 9 degrees = 2**np.arange(D) all_scores = np.zeros((K, D)) for i, d in enumerate(degrees): scores = cv_mse(d) all_scores[:, i] = scores df = pd.DataFrame(-np.log(all_scores), columns=degrees) df.describe() df.mean().plot(kind="bar", rot=0, yerr=df.std()) plt.show() from sklearn.datasets import load_diabetes from sklearn.linear_model import Lasso from sklearn.cross_validation import cross_val_score data = load_diabetes() X = data.data[:200] y = data.target[:200] model = Lasso() alphas = np.logspace(-4, -.5, 50) scores = list() for alpha in alphas: model.alpha = alpha this_scores = cross_val_score(model, X, y, "mean_squared_error", cv=5) scores.append(np.mean(this_scores)) plt.semilogx(alphas, scores) plt.ylabel('CV score') plt.xlabel('alpha') plt.axhline(np.max(scores), linestyle=':') plt.show() from sklearn.linear_model import LassoCV alphas = np.logspace(-4, -.5, 50) lasso_cv = LassoCV(alphas=alphas, cv=5) lasso_cv.fit(X, y) print(lasso_cv.alpha_ ) scores = -lasso_cv.mse_path_.mean(axis=1) plt.semilogx(lasso_cv.alphas_, scores) plt.axhline(np.max(scores), linestyle=':') plt.axvline(lasso_cv.alpha_ , linestyle=':') plt.ylabel('CV score') plt.xlabel('alpha') plt.show() from sklearn.linear_model import LassoCV alphas = np.logspace(-4, -.5, 50) lasso_cv = LassoCV(alphas=alphas, cv=5) lasso_cv.fit(X, y) scores = -lasso_cv.mse_path_.mean(axis=1) scores_std = lasso_cv.mse_path_.std(axis=1) scores_std1 = scores + scores_std / np.sqrt(len(lasso_cv.mse_path_)) scores_std2 = scores - scores_std / np.sqrt(len(lasso_cv.mse_path_)) alpha_1se = lasso_cv.alphas_[np.argmax(scores_std1 > np.max(scores))] print(alpha_1se) plt.semilogx(lasso_cv.alphas_, scores) plt.semilogx(lasso_cv.alphas_, scores_std1, 'o-') plt.semilogx(lasso_cv.alphas_, scores_std2, 'o-') plt.axhline(np.max(scores), linestyle=':') plt.axvline(lasso_cv.alpha_ , linestyle=':') plt.axvline(alpha_1se, linestyle=':') plt.ylabel('CV score') plt.xlabel('alpha') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 정규화 하이퍼 모수 최적화 Step2: One Standard Error Rule
15,605
<ASSISTANT_TASK:> Python Code: from rmtk.vulnerability.derivation_fragility.equivalent_linearization.miranda_2000_firm_soils import miranda_2000_firm_soils from rmtk.vulnerability.common import utils %matplotlib inline capacity_curves_file = "../../../../../../rmtk_data/capacity_curves_Sa-Sd.csv" capacity_curves = utils.read_capacity_curves(capacity_curves_file) utils.plot_capacity_curves(capacity_curves) gmrs_folder = '../../../../../../rmtk_data/accelerograms' minT, maxT = 0.01, 2.00 gmrs = utils.read_gmrs(gmrs_folder) #utils.plot_response_spectra(gmrs, minT, maxT) damage_model_file = "../../../../../../rmtk_data/damage_model.csv" damage_model = utils.read_damage_model(damage_model_file) damping_ratio = 0.05 PDM, Sds = miranda_2000_firm_soils.calculate_fragility(capacity_curves, gmrs, damage_model, damping_ratio) IMT = "Sa" period = 2.0 regression_method = "least squares" fragility_model = utils.calculate_mean_fragility(gmrs, PDM, period, damping_ratio, IMT, damage_model, regression_method) minIML, maxIML = 0.01, 2.00 utils.plot_fragility_model(fragility_model, minIML, maxIML) taxonomy = "RC" output_type = "csv" output_path = "../../../../../../rmtk_data/output/" utils.save_mean_fragility(taxonomy, fragility_model, minIML, maxIML, output_type, output_path) cons_model_file = "../../../../../../rmtk_data/cons_model.csv" imls = [0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 1.20, 1.40, 1.60, 1.80, 2.00] distribution_type = "lognormal" cons_model = utils.read_consequence_model(cons_model_file) vulnerability_model = utils.convert_fragility_vulnerability(fragility_model, cons_model, imls, distribution_type) utils.plot_vulnerability_model(vulnerability_model) taxonomy = "RC" output_type = "nrml" output_path = "../../../../../../rmtk_data/output/" utils.save_vulnerability(taxonomy, vulnerability_model, output_type, output_path) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load capacity curves Step2: Load ground motion records Step3: Load damage state thresholds Step4: Obtain the damage probability matrix Step5: Fit lognormal CDF fragility curves Step6: Plot fragility functions Step7: Save fragility functions Step8: Obtain vulnerability function Step9: Plot vulnerability function Step10: Save vulnerability function
15,606
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import os import matplotlib.pyplot as plt import pastas as ps ps.set_log_level("ERROR") %matplotlib inline # This notebook has been developed using Pastas version 0.9.9 and Python 3.7 print("Pastas version: {}".format(ps.__version__)) print("Pandas version: {}".format(pd.__version__)) print("Numpy version: {}".format(np.__version__)) print("Python version: {}".format(os.sys.version)) obs = pd.read_csv('obs.csv', index_col='Date', parse_dates=True) * 0.3048 rain = pd.read_csv('rain.csv', index_col='Date', parse_dates=True) * 0.3048 rain = rain.asfreq("D", fill_value=0.0) # There are some nan-values present evap = pd.read_csv('evap.csv', index_col='Date', parse_dates=True) * 0.3048 ml = ps.Model(obs.loc[::14], name='Kingstown') rm = ps.RechargeModel(rain, evap, name='recharge', rfunc=ps.Gamma) ml.add_stressmodel(rm) ml.solve(tmax="2014"); # Print some information on the model fit for the validation period print("\nThe R2 and the RMSE in the validation period are ", ml.stats.rsq(tmin="2015", tmax="2019").round(2), "and", ml.stats.rmse(tmin="2015", tmax="2019").round(2), ", respectively.") ml.plots.results(tmax="2018"); ml.plots.diagnostics() # Set matplotlib params to create publication figures params = { 'axes.labelsize': 18, 'axes.grid': True, 'font.size': 16, 'font.family': 'serif', 'legend.fontsize': 16, 'xtick.labelsize': 16, 'ytick.labelsize': 16, 'text.usetex': False, 'figure.figsize': [8.2, 5], 'lines.linewidth' : 2 } plt.rcParams.update(params) # Save figures or not savefig = True figpath = "figures" if not os.path.exists(figpath): os.mkdir(figpath) rfunc = ps.Gamma(cutoff=0.999) p = [100, 1.5, 15] b = np.append(0, rfunc.block(p)) s = rfunc.step(p) rfunc2 = ps.Hantush(cutoff=0.999) p2 = [-100, 4, 15] b2 = np.append(0, rfunc2.block(p2)) s2 = rfunc2.step(p2) # Make a figure of the step and block response fig, [ax1, ax2] = plt.subplots(1, 2, sharex=True, figsize=(8, 4)) ax1.plot(b) ax1.plot(b2) ax1.set_ylabel("block response") ax1.set_xlabel("days") ax1.legend(["Gamma", "Hantush"], handlelength=1.3) ax1.axhline(0.0, linestyle="--", c="k") ax2.plot(s) ax2.plot(s2) ax2.set_xlim(0,100) ax2.set_ylim(-105, 105) ax2.set_ylabel("step response") ax2.set_xlabel("days") ax2.axhline(0.0, linestyle="--", c="k") ax2.annotate('', xy=(95, 100), xytext=(95, 0), arrowprops={'arrowstyle': '<->'}) ax2.annotate('A', xy=(95, 100), xytext=(85, 50)) ax2.annotate('', xy=(95, -100), xytext=(95, 0), arrowprops={'arrowstyle': '<->'}) ax2.annotate('A', xy=(95, 100), xytext=(85, -50)) plt.tight_layout() if savefig: path = os.path.join(figpath, "impuls_step_response.eps") plt.savefig(path, dpi=300, bbox_inches="tight") fig, [ax1, ax2, ax3] = plt.subplots(3,1, sharex=True, figsize=(8, 7)) ax1.plot(obs, 'k.',label='obs', markersize=2) ax1.set_ylabel('head (m)', labelpad=0) ax1.set_yticks([-4, -3, -2]) plot_rain = ax2.plot(rain * 1000, color='k', label='prec', linewidth=1) ax2.set_ylabel('rain (mm/d)', labelpad=-5) ax2.set_xlabel('Date'); ax2.set_ylim([0,150]) ax2.set_yticks(np.arange(0, 151, 50)) plot_evap = ax3.plot(evap * 1000,'k', label='evap', linewidth=1) ax3.set_ylabel('evap (mm/d)') ax3.tick_params('y') ax3.set_ylim([0,8]) plt.xlim(['2003','2019']) plt.xticks([str(x) for x in np.arange(2004, 2019, 2)], rotation=0, horizontalalignment='center') ax2.set_xlabel("") ax3.set_xlabel("year") if savefig: path = os.path.join(figpath, "data_example_1.eps") plt.savefig(path, bbox_inches='tight', dpi=300) # Create the main plot fig, ax = plt.subplots(figsize=(16,5)) ax.plot(obs, marker=".", c="grey", linestyle=" ") ax.plot(obs.loc[:"2013":14], marker="x", markersize=7, c="C3", linestyle=" ", mew=2) ax.plot(ml.simulate(tmax="2019"), c="k") plt.ylabel('head (m)') plt.xlabel('year') plt.title("") plt.xticks([str(x) for x in np.arange(2004, 2019, 2)], rotation=0, horizontalalignment='center') plt.xlim('2003', '2019') plt.ylim(-4.7, -1.6) plt.yticks(np.arange(-4, -1, 1)) # Create the arrows indicating the calibration and validation period ax.annotate("calibration period", xy=("2003-01-01", -4.6), xycoords='data', xytext=(300, 0), textcoords='offset points', arrowprops=dict(arrowstyle="->"), va="center", ha="center") ax.annotate("", xy=("2014-01-01", -4.6), xycoords='data', xytext=(-230, 0), textcoords='offset points', arrowprops=dict(arrowstyle="->"), va="center", ha="center") ax.annotate("validation", xy=("2014-01-01", -4.6), xycoords='data', xytext=(150, 0), textcoords='offset points', arrowprops=dict(arrowstyle="->"), va="center", ha="center") ax.annotate("", xy=("2019-01-01", -4.6), xycoords='data', xytext=(-85, 0), textcoords='offset points', arrowprops=dict(arrowstyle="->"), va="center", ha="center") plt.legend(["observed head", "used for calibration","simulated head"], loc=2, numpoints=3) # Create the inset plot with the step response ax2 = plt.axes([0.66, 0.65, 0.22, 0.2]) s = ml.get_step_response("recharge") ax2.plot(s, c="k") ax2.set_ylabel("response") ax2.set_xlabel("days", labelpad=-15) ax2.set_xlim(0, s.index.size) ax2.set_xticks([0, 300]) if savefig: path = os.path.join(figpath, "results.eps") plt.savefig(path, bbox_inches='tight', dpi=300) from matplotlib.font_manager import FontProperties font = FontProperties() #font.set_size(10) font.set_weight('normal') font.set_family('monospace') font.set_name("courier new") plt.text(-1, -1, str(ml.fit_report()), fontproperties=font) plt.axis('off') plt.tight_layout() if savefig: path = os.path.join(figpath, "fit_report.eps") plt.savefig(path, bbox_inches='tight', dpi=600) fig, ax1 = plt.subplots(1,1, figsize=(8, 3)) ml.residuals(tmax="2019").plot(ax=ax1, c="k") ml.noise(tmax="2019").plot(ax=ax1, c="C0") plt.xticks([str(x) for x in np.arange(2004, 2019, 2)], rotation=0, horizontalalignment='center') ax1.set_ylabel('(m)') ax1.set_xlabel('year') ax1.legend(["residuals", "noise"], ncol=2) if savefig: path = os.path.join(figpath, "residuals.eps") plt.savefig(path, bbox_inches='tight', dpi=300) fig, ax2 = plt.subplots(1,1, figsize=(9, 2)) n =ml.noise() conf = 1.96 / np.sqrt(n.index.size) acf = ps.stats.acf(n) ax2.axhline(conf, linestyle='--', color="dimgray") ax2.axhline(-conf, linestyle='--', color="dimgray") ax2.stem(acf.index, acf.values) ax2.set_ylabel('ACF (-)') ax2.set_xlabel('lag (days)') plt.xlim(0, 370) plt.ylim(-0.25, 0.25) plt.legend(["95% confidence interval"]) if savefig: path = os.path.join(figpath, "acf.eps") plt.savefig(path, bbox_inches='tight', dpi=300) h, test = ps.stats.ljung_box(ml.noise()) print("The hypothesis that there is significant autocorrelation is:", h) test <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Step 2. Reading the time series Step2: Step 3. Creating the model Step3: Step 4. Adding stress models Step4: Step 5. Solving the model Step5: Step 6. Visualizing the results Step6: 7. Diagnosing the noise series Step7: Make plots for publication Step8: Make a plot of the impulse and step response for the Gamma and Hantush functions Step9: Make a plot of the stresses used in the model Step10: Make a custom figure of the model fit and the estimated step response Step11: Make a figure of the fit report Step12: Make a Figure of the noise, residuals and autocorrelation
15,607
<ASSISTANT_TASK:> Python Code: odds = [1, 3, 5, 7] print('odds are:', odds) print('first element:', odds[0]) print('last element:', odds[3]) print('"-1" element:', odds[-1]) odds[0] = 10 print('first element:', odds[0]) salsa = ['peppers', 'onions', 'cilantro', 'tomatoes'] my_salsa = salsa salsa[0] = 'hot peppers' salsa = ['peppers', 'onions', 'cilantro', 'tomatoes'] my_salsa = list(salsa) salsa[0] = 'hot peppers' x = [['pepper', 'zucchini', 'onion'], ['cabbage', 'lettuce', 'garlic'], ['apple', 'pear', 'banana']] my_list = ["banana", 10, 35, "orange"] my_list.pop() my_list.append("orange") my_list odds = [1, 3, 5, 7] primes = odds primes.append(2) primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] subset = primes[0:12:3] print('subset', subset) beatles = "In an octopus's garden in the shade" counts = [2, 4, 6, 8, 10] repeats = counts * 2 print(repeats) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We can access elements of a list using indices – numbered positions of elements in the list. These positions are numbered starting at 0, so the first element has an index of 0. Step2: Note that the elements of lists, like arrays are "mutable" or changeable after they are defined Step3: Exercise 1 Step4: If you print out the above what do you get for the salsa recipie? How does this compare to the below, similar operation? Step5: Can you explain the difference in outputs? Step6: Here is an example of how nested indexing works visually Step7: While modifying in place, it is useful to remember that Python treats lists in a slightly counter-intuitive way. Step8: Exercise 4 Step9: Notice that the slice taken begins with the first entry in the range, followed by entries taken at equally-spaced intervals (the steps) thereafter. Step10: Exercise 5
15,608
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np from itertools import product from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection import matplotlib.pyplot as plt %matplotlib notebook # Illustrating the use of itertools product for ix,value in enumerate(product(range(2), repeat=3)): print(ix, value) type(value[0]) def naming(y, yhat, s): if y == 0 and yhat == 0 and s == 0: return (y, yhat, s, 'TN0') if y == 0 and yhat == 0 and s == 1: return (y, yhat, s, 'TN1') if y == 0 and yhat == 1 and s == 0: return (y, yhat, s, 'A') if y == 0 and yhat == 1 and s == 1: return (y, yhat, s, 'C') if y == 1 and yhat == 0 and s == 0: return (y, yhat, s, 'D') if y == 1 and yhat == 0 and s == 1: return (y, yhat, s, 'B') if y == 1 and yhat == 1 and s == 0: return (y, yhat, s, 'TP0') if y == 1 and yhat == 1 and s == 1: return (y, yhat, s, 'TP1') def name2position(variables): ix_y = np.where(np.array(variables) == 'Y')[0][0] ix_yhat = np.where(np.array(variables) == 'Yhat')[0][0] ix_s = np.where(np.array(variables) == 'S')[0][0] return (ix_y, ix_yhat, ix_s) #variables = ['S', 'Yhat', 'Y', 'condition'] variables = ['Y', 'Yhat', 'S', 'condition'] ix_y, ix_yhat, ix_s = name2position(variables) all_possibilities = pd.DataFrame(index=range(8), columns=variables, dtype='int') for ix, value in enumerate(product([0,1], repeat=len(variables)-1)): all_possibilities.iloc[ix] = naming(value[ix_y], value[ix_yhat], value[ix_s]) # Bug in pandas, creates a dataframe of floats. Workaround. for col in all_possibilities.columns[:-1]: all_possibilities[col] = pd.to_numeric(all_possibilities[col], downcast='integer') all_possibilities def plot_cube(ax, cube_definition): From https://stackoverflow.com/questions/44881885/python-draw-3d-cube cube_definition_array = [ np.array(list(item)) for item in cube_definition ] points = [] points += cube_definition_array vectors = [ cube_definition_array[1] - cube_definition_array[0], cube_definition_array[2] - cube_definition_array[0], cube_definition_array[3] - cube_definition_array[0] ] points += [cube_definition_array[0] + vectors[0] + vectors[1]] points += [cube_definition_array[0] + vectors[0] + vectors[2]] points += [cube_definition_array[0] + vectors[1] + vectors[2]] points += [cube_definition_array[0] + vectors[0] + vectors[1] + vectors[2]] points = np.array(points) edges = [ [points[0], points[3], points[5], points[1]], [points[1], points[5], points[7], points[4]], [points[4], points[2], points[6], points[7]], [points[2], points[6], points[3], points[0]], [points[0], points[2], points[4], points[1]], [points[3], points[6], points[7], points[5]] ] faces = Poly3DCollection(edges, linewidths=1, edgecolors='k') faces.set_facecolor((0,0,1,0.1)) ax.add_collection3d(faces) # Plot the points themselves to force the scaling of the axes ax.scatter(points[:,0], points[:,1], points[:,2], s=50) ax.set_aspect('equal') ax.set_xlabel(variables[ix_s]) ax.set_ylabel(variables[ix_yhat]) ax.set_zlabel(variables[ix_y]) ax.grid(False) return cube_definition = [ (0,0,0), (0,1,0), (1,0,0), (0,0,1) ] fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111, projection='3d') plot_cube(ax, cube_definition) for ix, row in all_possibilities.iterrows(): ax.text(row[ix_s], row[ix_yhat], row[ix_y], row[3], size=30) fig = plt.figure(figsize=(6,6)) ax = fig.add_subplot(111) ax.plot([0,0,1,1], [0,1,0,1], 'bo') ax.set_xlabel('FN -- FP') ax.set_ylabel('favouritism') ax.text(0, 0, naming(1, 0, 0)[3], size=30) ax.text(0, 1, naming(1, 0, 1)[3], size=30) ax.text(1, 0, naming(0, 1, 0)[3], size=30) ax.text(1, 1, naming(0, 1, 1)[3], size=30) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Explaination of the conditions Step3: Studying the trade off
15,609
<ASSISTANT_TASK:> Python Code: mu = pymc.Uniform('mu', 0, 1e5) deaths = pymc.Poisson('deaths', mu = 2.0*mu, observed=True, value=[3]) model = pymc.MCMC((mu, deaths)) model.sample(10000, burn=100, burn_till_tuned=True) print(model.summary()) pymc.Matplot.plot(model) mu = pymc.Gamma('mu', 3.0, 5.0) deaths = pymc.Poisson('deaths', mu = 2.0*mu, observed=True, value=[3]) model = pymc.MCMC((mu, deaths)) model.sample(10000, burn=100, burn_till_tuned=True) print(model.summary()) pymc.Matplot.plot(model) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This does not match the example very well. The example is centered around 0.9
15,610
<ASSISTANT_TASK:> Python Code: %matplotlib inline %config InlineBackend.figure_format = 'retina' import numpy as np import pandas as pd import matplotlib.pyplot as plt data_path = 'Bike-Sharing-Dataset/hour.csv' rides = pd.read_csv(data_path) rides.head() rides[:24*10].plot(x='dteday', y='cnt') dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday'] for each in dummy_fields: dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False) rides = pd.concat([rides, dummies], axis=1) fields_to_drop = ['instant', 'dteday', 'season', 'weathersit', 'weekday', 'atemp', 'mnth', 'workingday', 'hr'] data = rides.drop(fields_to_drop, axis=1) data.head() quant_features = ['casual', 'registered', 'cnt', 'temp', 'hum', 'windspeed'] # Store scalings in a dictionary so we can convert back later scaled_features = {} for each in quant_features: mean, std = data[each].mean(), data[each].std() scaled_features[each] = [mean, std] data.loc[:, each] = (data[each] - mean)/std # Save data for approximately the last 21 days test_data = data[-21*24:] # Now remove the test data from the data set data = data[:-21*24] # Separate the data into features and targets target_fields = ['cnt', 'casual', 'registered'] features, targets = data.drop(target_fields, axis=1), data[target_fields] test_features, test_targets = test_data.drop(target_fields, axis=1), test_data[target_fields] # Hold out the last 60 days or so of the remaining data as a validation set train_features, train_targets = features[:-60*24], targets[:-60*24] val_features, val_targets = features[-60*24:], targets[-60*24:] class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Set number of nodes in input, hidden and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Initialize weights self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes**-0.5, (self.input_nodes, self.hidden_nodes)) self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes**-0.5, (self.hidden_nodes, self.output_nodes)) self.lr = learning_rate #### TODO: Set self.activation_function to your implemented sigmoid function #### # # Note: in Python, you can define a function with a lambda expression, # as shown below. self.activation_function = lambda x : 0 # Replace 0 with your sigmoid calculation. ### If the lambda code above is not something you're familiar with, # You can uncomment out the following three lines and put your # implementation there instead. # def sigmoid(x): return 1 / (1 + np.exp(-x)) # Replace 0 with your sigmoid calculation here self.activation_function = sigmoid def train(self, features, targets): ''' Train the network on batch of features and targets. Arguments --------- features: 2D array, each row is one data record, each column is a feature targets: 1D array of target values ''' n_records = features.shape[0] delta_weights_i_h = np.zeros(self.weights_input_to_hidden.shape) delta_weights_h_o = np.zeros(self.weights_hidden_to_output.shape) for X, y in zip(features, targets): #### Implement the forward pass here #### ### Forward pass ### # TODO: Hidden layer - Replace these values with your calculations. hidden_inputs = X @ self.weights_input_to_hidden # signals into hidden layer hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer # TODO: Output layer - Replace these values with your calculations. final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer final_outputs = final_inputs # signals from final output layer #### Implement the backward pass here #### ### Backward pass ### # TODO: Output error - Replace this value with your calculations. error = y - final_outputs # Output layer error is the difference between desired target and actual output. # TODO: Backpropagated error terms - Replace these values with your calculations. # slope of the f(x) = x is 1, so the delta of ouput layer is error itself output_error_term = error * 1 # TODO: Calculate the hidden layer's contribution to the error # error back-progogate to hidden layer hidden_error = output_error_term * self.weights_hidden_to_output #hidden_outputs = hidden_outputs[:,None] # align the shape of hidden_error hidden_error = hidden_error.T # error_delta_hidden_node = Weight_hidden_node * error_delata_output * partial_derivative_of_hidden_output hidden_error_term = hidden_error * (hidden_outputs * (1 - hidden_outputs)) # Weight step (hidden to output) delta_weights_h_o += output_error_term * hidden_outputs[:,None] # Weight step (input to hidden) delta_weights_i_h += hidden_error_term * X[:,None] # TODO: Update the weights - Replace these values with your calculations. self.weights_hidden_to_output += self.lr * delta_weights_h_o / n_records # update hidden-to-output weights with gradient descent step self.weights_input_to_hidden += self.lr * delta_weights_i_h / n_records # update input-to-hidden weights with gradient descent step #self.weights_input_to_hidden.plot() #print('self.weights_hidden_to_output') #print(self.weights_hidden_to_output) #print('self.weights_input_to_hidden') #print(self.weights_input_to_hidden) #print('-------------------------------') def run(self, features): ''' Run a forward pass through the network with input features Arguments --------- features: 1D array of feature values ''' #### Implement the forward pass here #### # TODO: Hidden layer - replace these values with the appropriate calculations. hidden_inputs = np.dot(features, self.weights_input_to_hidden) # signals into hidden layer hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer # TODO: Output layer - Replace these values with the appropriate calculations. final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer final_outputs = final_inputs # signals from final output layer return final_outputs def MSE(y, Y): return np.mean((y-Y)**2) import unittest inputs = np.array([[0.5, -0.2, 0.1]]) targets = np.array([[0.4]]) test_w_i_h = np.array([[0.1, -0.2], [0.4, 0.5], [-0.3, 0.2]]) test_w_h_o = np.array([[0.3], [-0.1]]) class TestMethods(unittest.TestCase): ########## # Unit tests for data loading ########## def test_data_path(self): # Test that file path to dataset has been unaltered self.assertTrue(data_path.lower() == 'bike-sharing-dataset/hour.csv') def test_data_loaded(self): # Test that data frame loaded self.assertTrue(isinstance(rides, pd.DataFrame)) ########## # Unit tests for network functionality ########## def test_activation(self): network = NeuralNetwork(3, 2, 1, 0.5) # Test that the activation function is a sigmoid self.assertTrue(np.all(network.activation_function(0.5) == 1/(1+np.exp(-0.5)))) def test_train(self): # Test that weights are updated correctly on training network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() network.train(inputs, targets) self.assertTrue(np.allclose(network.weights_hidden_to_output, np.array([[ 0.37275328], [-0.03172939]]))) self.assertTrue(np.allclose(network.weights_input_to_hidden, np.array([[ 0.10562014, -0.20185996], [0.39775194, 0.50074398], [-0.29887597, 0.19962801]]))) def test_run(self): # Test correctness of run method network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() self.assertTrue(np.allclose(network.run(inputs), 0.09998924)) suite = unittest.TestLoader().loadTestsFromModule(TestMethods()) unittest.TextTestRunner().run(suite) import sys ### Set the hyperparameters here ### iterations = 2000 learning_rate = 0.5 hidden_nodes = 9 output_nodes = 1 N_i = train_features.shape[1] network = NeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate) losses = {'train':[], 'validation':[]} for ii in range(iterations): # Go through a random batch of 128 records from the training data set batch = np.random.choice(train_features.index, size=128) X, y = train_features.ix[batch].values, train_targets.ix[batch]['cnt'] network.train(X, y) # Printing out the training progress train_loss = MSE(network.run(train_features).T, train_targets['cnt'].values) val_loss = MSE(network.run(val_features).T, val_targets['cnt'].values) sys.stdout.write("\rProgress: {:2.1f}".format(100 * ii/float(iterations)) \ + "% ... Training loss: " + str(train_loss)[:5] \ + " ... Validation loss: " + str(val_loss)[:5]) sys.stdout.flush() losses['train'].append(train_loss) losses['validation'].append(val_loss) plt.plot(losses['train'], label='Training loss') plt.plot(losses['validation'], label='Validation loss') plt.legend() _ = plt.ylim() fig, ax = plt.subplots(figsize=(8,4)) mean, std = scaled_features['cnt'] predictions = network.run(test_features).T*std + mean ax.plot(predictions[0], label='Prediction') ax.plot((test_targets['cnt']*std + mean).values, label='Data') ax.set_xlim(right=len(predictions)) ax.legend() dates = pd.to_datetime(rides.ix[test_data.index]['dteday']) dates = dates.apply(lambda d: d.strftime('%b %d')) ax.set_xticks(np.arange(len(dates))[12::24]) _ = ax.set_xticklabels(dates[12::24], rotation=45) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load and prepare the data Step2: Checking out the data Step3: Dummy variables Step4: Scaling target variables Step5: Splitting the data into training, testing, and validation sets Step6: We'll split the data into two sets, one for training and one for validating as the network is being trained. Since this is time series data, we'll train on historical data, then try to predict on future data (the validation set). Step7: Time to build the network Step8: Unit tests Step9: Training the network Step10: Check out your predictions
15,611
<ASSISTANT_TASK:> Python Code: %matplotlib inline # sanity check for python setup import sys print(sys.executable) print(sys.path) import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans from sklearn import datasets np.random.seed(5) centers=[[1,1],[-1,-1],[1,-1]] iris=datasets.load_iris() X=iris.data y=iris.target estimators = {'k_means_iris_3': KMeans(n_clusters=3), 'k_means_iris_8':KMeans(n_clusters=8), 'k_means_iris_bad_init': KMeans(n_clusters=3, n_init=1,init='random')} fignum = 1 for name, est in estimators.items(): fig = plt.figure(fignum, figsize=(4,3)) plt.clf() ax=Axes3D(fig,rect=[0,0,.95,1],elev=48,azim=134) plt.cla() est.fit(X) labels=est.labels_ ax.scatter(X[:,3],X[:,0],X[:,2],c=labels.astype(np.float)) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') fignum=fignum+1 # Plot the ground truth fig=plt.figure(fignum,figsize=(4,3)) plt.clf() ax=Axes3D(fig,rect=[0,0,.95,1],elev=48,azim=134) plt.cla() for name,label in [('Setosa',0),('Versicolour',1),('Virginica',2)]: ax.text3D(X[y==label,3].mean(), X[y==label,0].mean()+1.5, X[y==label,2].mean(),name, horizontalalignment='center', bbox=dict(alpha=.5,edgecolor='w',facecolor='w')) # Reorder the labels to have colors matching the cluster results # y = np.choose(y,[1,2,0]).astype(np.float) yint=np.choose(y, [1,2,0])#.astype(np.float) ax.scatter(X[:,3],X[:,0],X[:,2],c=yint) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') plt.show() import pandas as pd print(type(X)) print(type(y)) print(X.shape) print(y.shape) print(pd.DataFrame(y).iloc[:,0].unique()) from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=5) knn.fit(X,y) y_pred=knn.predict(X) # compute classification accuracy for the logistic regression model from sklearn import metrics print(metrics.accuracy_score(y,y_pred)) ### 1c. KNN (K=1) knn = KNeighborsClassifier(n_neighbors=1) knn.fit(X,y) y_pred=knn.predict(X) print(metrics.accuracy_score(y,y_pred)) # STEP 1: split X and y into training and testing sets from sklearn.cross_validation import train_test_split X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.4,random_state=4) knn=KNeighborsClassifier(n_neighbors=5) knn.fit(X_train,y_train) y_pred=knn.predict(X_test) print(metrics.accuracy_score(y_test,y_pred)) knn=KNeighborsClassifier(n_neighbors=1) knn.fit(X_train,y_train) y_pred=knn.predict(X_test) print(metrics.accuracy_score(y_test,y_pred)) # try K=1 through K=25 and record testing accuracy k_range=range(1,26) # We can create Python dictionary using [] or dict() scores=[] # We use a loop through the range 1 to 26 # We append the scores in the dictionary for k in k_range: knn=KNeighborsClassifier(n_neighbors=k) knn.fit(X_train,y_train) y_pred=knn.predict(X_test) scores.append(metrics.accuracy_score(y_test,y_pred)) print(scores) # import Matplotlib (scientific plotting library) #import matplotlib.pyplot as plt # allow plots to appear within the notebook #%matplotlib inline # plot the relationship between $K$ and testing accuracy # plt.plot(x_axis,y_axis) plt.plot(k_range,scores) plt.xlabel('Value of K for KNN') plt.ylabel('Testing Accuracy') print(pd.DataFrame(X).describe()) print(pd.DataFrame(X).head()) pd.DataFrame(X).head(10) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1b. KNN (K=5) Step2: 2. Evaluation procedure 2 - Train/test split
15,612
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt import numpy as np from scipy.spatial import cKDTree from scipy.spatial.distance import cdist from metpy.gridding.gridding_functions import calc_kappa from metpy.gridding.interpolation import barnes_point, cressman_point from metpy.gridding.triangles import dist_2 plt.rcParams['figure.figsize'] = (15, 10) def draw_circle(x, y, r, m, label): nx = x + r * np.cos(np.deg2rad(list(range(360)))) ny = y + r * np.sin(np.deg2rad(list(range(360)))) plt.plot(nx, ny, m, label=label) np.random.seed(100) pts = np.random.randint(0, 100, (10, 2)) xp = pts[:, 0] yp = pts[:, 1] zp = xp * xp / 1000 sim_gridx = [30, 60] sim_gridy = [30, 60] grid_points = np.array(list(zip(sim_gridx, sim_gridy))) radius = 40 obs_tree = cKDTree(list(zip(xp, yp))) indices = obs_tree.query_ball_point(grid_points, r=radius) x1, y1 = obs_tree.data[indices[0]].T cress_dist = dist_2(sim_gridx[0], sim_gridy[0], x1, y1) cress_obs = zp[indices[0]] cress_val = cressman_point(cress_dist, cress_obs, radius) x2, y2 = obs_tree.data[indices[1]].T barnes_dist = dist_2(sim_gridx[1], sim_gridy[1], x2, y2) barnes_obs = zp[indices[1]] ave_spacing = np.mean((cdist(list(zip(xp, yp)), list(zip(xp, yp))))) kappa = calc_kappa(ave_spacing) barnes_val = barnes_point(barnes_dist, barnes_obs, kappa) for i, zval in enumerate(zp): plt.plot(pts[i, 0], pts[i, 1], '.') plt.annotate(str(zval) + ' F', xy=(pts[i, 0] + 2, pts[i, 1])) plt.plot(sim_gridx, sim_gridy, '+', markersize=10) plt.plot(x1, y1, 'ko', fillstyle='none', markersize=10, label='grid 0 matches') plt.plot(x2, y2, 'ks', fillstyle='none', markersize=10, label='grid 1 matches') draw_circle(sim_gridx[0], sim_gridy[0], m='k-', r=radius, label='grid 0 radius') draw_circle(sim_gridx[1], sim_gridy[1], m='b-', r=radius, label='grid 1 radius') plt.annotate('grid 0: cressman {:.3f}'.format(cress_val), xy=(sim_gridx[0] + 2, sim_gridy[0])) plt.annotate('grid 1: barnes {:.3f}'.format(barnes_val), xy=(sim_gridx[1] + 2, sim_gridy[1])) plt.axes().set_aspect('equal', 'datalim') plt.legend() plt.annotate('grid 0: ({}, {})'.format(sim_gridx[0], sim_gridy[0]), xy=(sim_gridx[0] + 2, sim_gridy[0])) plt.plot(sim_gridx[0], sim_gridy[0], '+', markersize=10) mx, my = obs_tree.data[indices[0]].T mz = zp[indices[0]] for x, y, z in zip(mx, my, mz): d = np.sqrt((sim_gridx[0] - x)**2 + (y - sim_gridy[0])**2) plt.plot([sim_gridx[0], x], [sim_gridy[0], y], '--') xave = np.mean([sim_gridx[0], x]) yave = np.mean([sim_gridy[0], y]) plt.annotate('distance: {}'.format(d), xy=(xave, yave)) plt.annotate('({}, {}) : {} F'.format(x, y, z), xy=(x, y)) plt.xlim(0, 80) plt.ylim(0, 80) plt.axes().set_aspect('equal', 'datalim') dists = np.array([22.803508502, 7.21110255093, 31.304951685, 33.5410196625]) values = np.array([0.064, 1.156, 3.364, 0.225]) cres_weights = (radius * radius - dists * dists) / (radius * radius + dists * dists) total_weights = np.sum(cres_weights) proportion = cres_weights / total_weights value = values * proportion val = cressman_point(cress_dist, cress_obs, radius) print('Manual cressman value for grid 1:\t', np.sum(value)) print('Metpy cressman value for grid 1:\t', val) plt.annotate('grid 1: ({}, {})'.format(sim_gridx[1], sim_gridy[1]), xy=(sim_gridx[1] + 2, sim_gridy[1])) plt.plot(sim_gridx[1], sim_gridy[1], '+', markersize=10) mx, my = obs_tree.data[indices[1]].T mz = zp[indices[1]] for x, y, z in zip(mx, my, mz): d = np.sqrt((sim_gridx[1] - x)**2 + (y - sim_gridy[1])**2) plt.plot([sim_gridx[1], x], [sim_gridy[1], y], '--') xave = np.mean([sim_gridx[1], x]) yave = np.mean([sim_gridy[1], y]) plt.annotate('distance: {}'.format(d), xy=(xave, yave)) plt.annotate('({}, {}) : {} F'.format(x, y, z), xy=(x, y)) plt.xlim(40, 80) plt.ylim(40, 100) plt.axes().set_aspect('equal', 'datalim') dists = np.array([9.21954445729, 22.4722050542, 27.892651362, 38.8329756779]) values = np.array([2.809, 6.241, 4.489, 2.704]) weights = np.exp(-dists**2 / kappa) total_weights = np.sum(weights) value = np.sum(values * (weights / total_weights)) print('Manual barnes value:\t', value) print('Metpy barnes value:\t', barnes_point(barnes_dist, barnes_obs, kappa)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Generate random x and y coordinates, and observation values proportional to x * y. Step2: Set up a cKDTree object and query all of the observations within "radius" of each grid point. Step3: For grid 0, we will use Cressman to interpolate its value. Step4: For grid 1, we will use barnes to interpolate its value. Step5: Plot all of the affiliated information and interpolation values. Step6: For each point, we will do a manual check of the interpolation values by doing a step by Step7: Step through the cressman calculations. Step8: Now repeat for grid 1, except use barnes interpolation. Step9: Step through barnes calculations.
15,613
<ASSISTANT_TASK:> Python Code: %pylab notebook VB = 120.0 # Battery voltage (V) r = 0.3 # Resistance (ohms) l = 1.0 # Bar length (m) B = 0.6 # Flux density (T) F = arange(0,51,10) # Force (N) F # Lets print the variable to check. # Can you exaplain why "arange(0,50,10)" gives not the array below? i = F / (l * B) # Current (A) eind = VB - i * r # Induced voltage (V) v_bar = eind / (l * B); # Velocity (m/s) plot(F, v_bar); rc('text', usetex=True) # enable LaTeX commands for plot title(r'\textbf{Plot of velocity versus applied force}') xlabel(r'\textbf{Force (N)}') ylabel(r'\textbf{Velocity (m/s)}') axis([0, 50, 0, 200]) grid() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Define all the parameters Step2: Select the forces to apply to the bar Step3: Calculate the currents flowing in the motor Step4: Calculate the induced voltages on the bar Step5: Calculate the velocities of the bar Step6: Plot the velocity of the bar versus force
15,614
<ASSISTANT_TASK:> Python Code: # local from fludashboard.libs.flu_data import prepare_keys_name import matplotlib.pyplot as plt import pandas as pd import numpy as np df_hist = pd.read_csv('../data/historical_estimated_values.csv', encoding='utf-8') df_inci = pd.read_csv('../data/current_estimated_values.csv', encoding='utf-8') df_typi = pd.read_csv('../data/mem-typical.csv', encoding='utf-8') df_thre = pd.read_csv('../data/mem-report.csv', encoding='utf-8') prepare_keys_name(df_hist) prepare_keys_name(df_inci) prepare_keys_name(df_typi) prepare_keys_name(df_thre) level_dict = { 'L0': 'Baixa', 'L1': 'Epidêmica', 'L2': 'Alta', 'L3': 'Muito alta' } df_inci.columns df_inci.head(5) df_typi.head(5) df_thre.tail(5) k = ['epiyear', 'epiweek', 'base_epiyear', 'base_epiweek'] df_inci2017 = df_inci[ (df_inci.epiyear == 2017) & # (df_inci.epiweek >= 15) & (df_inci.dado == 'srag') & (df_inci.escala == 'incidência') & (df_inci.uf == 'BR') ].copy() df_inci2017.sort_values(['epiyear', 'epiweek'], inplace=True) df_inci_chart = df_inci2017.copy() df_inci_chart.index = df_inci_chart.epiweek k = ['epiyear', 'epiweek', 'base_epiyear', 'base_epiweek'] df_hist2017 = df_hist[ (df_hist.base_epiyear == 2017) & (df_hist.base_epiweek == 23) & (df_hist.dado == 'srag') & (df_hist.escala == 'incidência') & (df_hist.uf == 'BR') ].copy() df_hist2017.sort_values(['epiyear', 'epiweek'], inplace=True) df_hist_chart = df_hist2017.copy() df_hist_chart.index = df_hist_chart.epiweek # 50% estimated cases df_inci_chart[['srag', '50%', '2.5%', '97.5%']].plot() plt.title('Incidence') plt.grid(True) plt.show() df_hist_chart[['srag', '50%', '2.5%', '97.5%']].plot() plt.title('Historial') plt.grid(True) plt.show() df_hist2017['estimated_cases'] = df_hist2017['50%'] df = pd.merge( df_inci2017[['epiweek', 'srag', '2.5%', '97.5%']], df_hist2017[['epiweek', 'estimated_cases']], on='epiweek', how='outer' ) df.set_index('epiweek', inplace=True) df.plot() plt.grid(True) plt.title('Incidence X Historial') plt.show() df_hist[ (df_hist.base_epiyear == 2017) & (df_hist.dado == 'srag') & (df_hist.escala == 'incidência') & (df_hist.uf == 'BR') ].base_epiweek.unique() # First, last keep only stable weeksfor notification curve: df_inci2017.loc[(df_inci2017.situation != 'stable'), 'srag'] = np.nan # Adapt historical dataset: df_hist.sort_values(['epiyear', 'epiweek'], inplace=True) df_hist['estimated_cases'] = df_hist['50%'] # User selected week: y = 2017 w = 23 def week_data(y, w): df_week_inci = df_inci2017[(df_inci2017.epiweek <= w)] df_week_hist = df_hist[ (df_hist.base_epiyear == y) & (df_hist.base_epiweek == w) & (df_hist.dado == 'srag') & (df_hist.escala == 'incidência') & (df_hist.uf == 'BR') ].copy() df = pd.merge( df_week_inci[['epiweek', 'srag']], df_week_hist[['epiweek', 'estimated_cases', '2.5%', '97.5%']], on='epiweek', how='outer' ) df.set_index('epiweek', inplace=True) return df df = week_data(y, w) df.plot() plt.grid(True) plt.show() w = 28 df = week_data(y, w) df.plot() plt.grid(True) plt.show() w = 33 df = week_data(y, w) df.plot() plt.grid(True) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: In this example, we show the current year incidence up to given week.<br> Step2: UF Step3: Entries with dfthresholds['se típica do inicio do surto'] = NaN have activity too low for proper epidemic threshold definition Step4: Displaying data for user selected week w<a name="_historical data display"></a>
15,615
<ASSISTANT_TASK:> Python Code: from deriva.core import ErmrestCatalog, get_credential scheme = 'https' hostname = 'dev.facebase.org' catalog_number = 1 credential = get_credential(hostname) assert scheme == 'http' or scheme == 'https', "Invalid http scheme used." assert isinstance(hostname, str), "Hostname not set." assert isinstance(catalog_number, int), "Invalid catalog number" catalog = ErmrestCatalog(scheme, hostname, catalog_number, credential) pb = catalog.getPathBuilder() dataset = pb.isa.dataset dataset new_entity = { 'title': 'A test dataset by derivapy', 'description': 'This was created by the deriva-py API.', 'project': 311 } entities = dataset.insert([new_entity], defaults={'id', 'accession'}) list(entities) entities[0]['description'] = 'A test dataset that was updated by derivapy' updated_entities = dataset.update(entities) list(updated_entities) entities[0]['description'] = 'Yet another update using derivapy' entities[0]['title'] = 'And a title change' updated_entities = dataset.update(entities, [dataset.id], [dataset.description, 'title']) list(updated_entities) path = dataset.filter(dataset.RID == entities[0]['RID']) path.delete() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This example uses a development server with a throw away catalog. You will not have sufficient permissions to be able to run this example. This notebook is for documentation purpose only. Step2: Use DERIVA-Auth to get a credential or use None if your catalog allows anonymous access. Step3: Now, connect to your catalog and the pathbuilder interface for the catalog. Step4: For this example, we will create or modify entities of the "Dataset" table of a catalog that uses the FaceBase data model. Step5: Insert example Step6: The insert operation returns the inserted entities, which now have any system generated attributes filled in. Step7: Update example Step8: Similar to the insert operation, the update operation also returns the updated entities. Notice that the system-managed 'RMT' (Row Modified Timestamp) attribute has been update too. Step9: Update with custom correlation and targets specified Step10: Delete example Step11: On successful delete, no content will be returned.
15,616
<ASSISTANT_TASK:> Python Code: # Authors: Denis Engemann <denis.engemann@gmail.com> # Jona Sassenhagen <jona.sassenhagen@gmail.com> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable import mne from mne.stats import spatio_temporal_cluster_test from mne.datasets import sample from mne.channels import find_ch_connectivity from mne.viz import plot_compare_evokeds print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' event_id = {'Aud/L': 1, 'Aud/R': 2, 'Vis/L': 3, 'Vis/R': 4} tmin = -0.2 tmax = 0.5 # Setup for reading the raw data raw = mne.io.read_raw_fif(raw_fname, preload=True) raw.filter(1, 30, fir_design='firwin') events = mne.read_events(event_fname) picks = mne.pick_types(raw.info, meg='mag', eog=True) reject = dict(mag=4e-12, eog=150e-6) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=None, reject=reject, preload=True) epochs.drop_channels(['EOG 061']) epochs.equalize_event_counts(event_id) X = [epochs[k].get_data() for k in event_id] # as 3D matrix X = [np.transpose(x, (0, 2, 1)) for x in X] # transpose for clustering connectivity, ch_names = find_ch_connectivity(epochs.info, ch_type='mag') print(type(connectivity)) # it's a sparse matrix! plt.imshow(connectivity.toarray(), cmap='gray', origin='lower', interpolation='nearest') plt.xlabel('{} Magnetometers'.format(len(ch_names))) plt.ylabel('{} Magnetometers'.format(len(ch_names))) plt.title('Between-sensor adjacency') # set cluster threshold threshold = 50.0 # very high, but the test is quite sensitive on this data # set family-wise p-value p_accept = 0.01 cluster_stats = spatio_temporal_cluster_test(X, n_permutations=1000, threshold=threshold, tail=1, n_jobs=1, buffer_size=None, connectivity=connectivity) T_obs, clusters, p_values, _ = cluster_stats good_cluster_inds = np.where(p_values < p_accept)[0] # configure variables for visualization colors = {"Aud": "crimson", "Vis": 'steelblue'} linestyles = {"L": '-', "R": '--'} # organize data for plotting evokeds = {cond: epochs[cond].average() for cond in event_id} # loop over clusters for i_clu, clu_idx in enumerate(good_cluster_inds): # unpack cluster information, get unique indices time_inds, space_inds = np.squeeze(clusters[clu_idx]) ch_inds = np.unique(space_inds) time_inds = np.unique(time_inds) # get topography for F stat f_map = T_obs[time_inds, ...].mean(axis=0) # get signals at the sensors contributing to the cluster sig_times = epochs.times[time_inds] # create spatial mask mask = np.zeros((f_map.shape[0], 1), dtype=bool) mask[ch_inds, :] = True # initialize figure fig, ax_topo = plt.subplots(1, 1, figsize=(10, 3)) # plot average test statistic and mark significant sensors f_evoked = mne.EvokedArray(f_map[:, np.newaxis], epochs.info, tmin=0) f_evoked.plot_topomap(times=0, mask=mask, axes=ax_topo, cmap='Reds', vmin=np.min, vmax=np.max, show=False, colorbar=False, mask_params=dict(markersize=10)) image = ax_topo.images[0] # create additional axes (for ERF and colorbar) divider = make_axes_locatable(ax_topo) # add axes for colorbar ax_colorbar = divider.append_axes('right', size='5%', pad=0.05) plt.colorbar(image, cax=ax_colorbar) ax_topo.set_xlabel( 'Averaged F-map ({:0.3f} - {:0.3f} s)'.format(*sig_times[[0, -1]])) # add new axis for time courses and plot time courses ax_signals = divider.append_axes('right', size='300%', pad=1.2) title = 'Cluster #{0}, {1} sensor'.format(i_clu + 1, len(ch_inds)) if len(ch_inds) > 1: title += "s (mean)" plot_compare_evokeds(evokeds, title=title, picks=ch_inds, axes=ax_signals, colors=colors, linestyles=linestyles, show=False, split_legend=True, truncate_yaxis='auto') # plot temporal cluster extent ymin, ymax = ax_signals.get_ylim() ax_signals.fill_betweenx((ymin, ymax), sig_times[0], sig_times[-1], color='orange', alpha=0.3) # clean up viz mne.viz.tight_layout(fig=fig) fig.subplots_adjust(bottom=.05) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Set parameters Step2: Read epochs for the channel of interest Step3: Find the FieldTrip neighbor definition to setup sensor connectivity Step4: Compute permutation statistic Step5: Note. The same functions work with source estimate. The only differences
15,617
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib import numpy as np import matplotlib.pyplot as plt class Plan: pass # Plan 1 = Cigna HDHP/HSA p1 = Plan() p1.family_deductible = 4000.00 # Same deductible for both family and individual p1.individual_deductible = 4000.00 p1.family_oopmax = 6000.00 # Same out-of-pocket max for family and individual p1.individual_oopmax = 6000.00 p1.premium_monthly = 48*2 # price/pay period * 2 pay periods/month p1.hsa_contribution = 2400.00 p1.coinsurance_rate = 0.1 # Plan 2 = Cigna PPO $1000 p2 = Plan() p2.family_deductible = 2000.00 p2.individual_deductible = 1000.00 p2.family_oopmax = 8000.00 p2.individual_oopmax = 4000.00 p2.premium_monthly = 48*2 # price/pay period * 2 pay periods/month p2.hsa_contribution = 0.0 p2.coinsurance_rate = 0.2 # Plan 3 = Cigna PPO $500 p3 = Plan() p3.family_deductible = 1000.00 p3.individual_deductible = 500.00 p3.family_oopmax = 7000.00 p3.individual_oopmax = 3500.00 p3.premium_monthly = 113*2 # price/pay period * 2 pay periods/month p3.hsa_contribution = 0.0 p3.coinsurance_rate = 0.1 # For the purposes of this estimation, we are assuming the deductible # is always larger than the HSA contribution amount def apply_deductible_and_hsa(cost, deductible, hsa): cost_to_you = 0 cost_remaining = 0 # Apply HSA deductible_minus_hsa = deductible - hsa if cost <= hsa: cost_to_you = 0 cost_remaining = 0 elif cost <= deductible: cost_to_you = cost - hsa cost_remaining = 0 elif cost > deductible: cost_to_you = deductible_minus_hsa cost_remaining = cost - deductible return (cost_to_you, cost_remaining) def apply_coinsurance(cost, coinsurance_rate): return cost * coinsurance_rate def apply_oopmax(cost, oopmax): if cost >= oopmax: return oopmax else: return cost def setup_graph(title='', x_label='', y_label='', fig_size=None): fig = plt.figure() if fig_size != None: fig.set_size_inches(fig_size[0], fig_size[1]) ax = fig.add_subplot(111) ax.set_title(title) ax.set_xlabel(x_label) ax.set_ylabel(y_label) def individual_cost(plan, gross_cost): (cost_to_you, cost_remaining) = apply_deductible_and_hsa(gross_cost, plan.individual_deductible, plan.hsa_contribution) cost_to_you += apply_coinsurance(cost_remaining, plan.coinsurance_rate) cost_to_you = apply_oopmax(cost_to_you, plan.individual_oopmax) # Apply yearly premiums - note that the out-of-pocket max doesn't include # the premiums; thus, we apply them after applying out-of-pocket max. cost_to_you += (plan.premium_monthly * 12) return cost_to_you def family_cost(plan, gross_cost): (cost_to_you, cost_remaining) = apply_deductible_and_hsa(gross_cost, plan.family_deductible, plan.hsa_contribution) cost_to_you += apply_coinsurance(cost_remaining, plan.coinsurance_rate) cost_to_you = apply_oopmax(cost_to_you, plan.family_oopmax) # Apply yearly premiums - note that the out-of-pocket max doesn't include # the premiums; thus, we apply them after applying out-of-pocket max. cost_to_you += (plan.premium_monthly * 12) return cost_to_you # Should be the monthly premium times 12 (to make up the yearly premium). family_cost(p1, 0) p1.premium_monthly * 12.0 family_cost(p2, 0) p2.premium_monthly * 12.0 family_cost(p3, 0) p3.premium_monthly * 12.0 # Should be monthly premium times 12 family_cost(p1, 2400) == p1.premium_monthly * 12 (p1.premium_monthly * 12) + \ (p1.family_deductible - p1.hsa_contribution) + \ (6000 - p1.family_deductible) * p1.coinsurance_rate family_cost(p1, 6000) # Calculate costs gross_costs = range(0, 70000) p1_costs = [family_cost(p1, cost) for cost in gross_costs] p2_costs = [family_cost(p2, cost) for cost in gross_costs] p3_costs = [family_cost(p3, cost) for cost in gross_costs] # Do graph setup_graph(title='Family costs', x_label='Gross cost', y_label='Cost to you', fig_size=(12,7)) ax = plt.subplot(1,1,1) p1_graph, = ax.plot(gross_costs, p1_costs, label="Cigna HDHP/HSA") p2_graph, = ax.plot(gross_costs, p2_costs, label="Cigna PPO $1000") p3_graph, = ax.plot(gross_costs, p3_costs, label="Cigna PPO $500") handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels, loc='upper left') plt.show() # Calculate costs gross_costs = range(0, 50000) p1_costs = [individual_cost(p1, cost) for cost in gross_costs] p2_costs = [individual_cost(p2, cost) for cost in gross_costs] p3_costs = [individual_cost(p3, cost) for cost in gross_costs] # Do graph setup_graph(title='Individual costs', x_label='Gross cost', y_label='Cost to you', fig_size=(12,7)) ax = plt.subplot(1,1,1) p1_graph, = ax.plot(gross_costs, p1_costs, label="Cigna HDHP/HSA") p2_graph, = ax.plot(gross_costs, p2_costs, label="Cigna PPO $1000") p3_graph, = ax.plot(gross_costs, p3_costs, label="Cigna PPO $500") handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels, loc='upper left') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Helper functions Step2: Plan cost functions Step3: Sanity Tests Step4: Cost less than HSA Step5: Cost greater than HSA and deductible Step6: Family Cost graph Step7: Individual Cost
15,618
<ASSISTANT_TASK:> Python Code: #!pip install -I "phoebe>=2.3,<2.4" import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_binary() b.add_dataset('lc', dataset='lc01') b.add_dataset('mesh', times=[0], columns=['intensities*']) print(b['gravb_bol']) print(b['gravb_bol@primary']) print(b.run_checks()) b['teff@primary'] = 8500 b['gravb_bol@primary'] = 0.8 print(b.run_checks()) b['teff@primary'] = 7000 b['gravb_bol@primary'] = 0.2 print(b.run_checks()) b['teff@primary'] = 6000 b['gravb_bol@primary'] = 1.0 print(b.run_checks()) b['teff@primary'] = 6000 b['gravb_bol@primary'] = 0.32 b.run_compute(model='gravb_bol_32') afig, mplfig = b['primary@mesh01@gravb_bol_32'].plot(fc='intensities', ec='None', show=True) b['gravb_bol@primary'] = 1.0 b.run_compute(model='gravb_bol_10') afig, mplfig = b['primary@mesh01@gravb_bol_10'].plot(fc='intensities', ec='None', show=True) np.nanmax((b.get_value('intensities', component='primary', model='gravb_bol_32') - b.get_value('intensities', component='primary', model='gravb_bol_10'))/b.get_value('intensities', component='primary', model='gravb_bol_10')) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As always, let's do imports and initialize a logger and a new bundle. Step2: Relevant Parameters Step3: If you have a logger enabled, PHOEBE will print a warning if the value of gravb_bol is outside the "suggested" ranges. Note that this is strictly a warning, and will never turn into an error at b.run_compute(). Step4: Influence on Intensities Step5: Comparing these two plots, it is essentially impossible to notice any difference between the two models. But if we compare the intensities directly, we can see that there is a subtle difference, with a maximum difference of about 3%.
15,619
<ASSISTANT_TASK:> Python Code: import numpy as np A = np.array([[1,1,1], [3,1,2], [2,3,4]]) b = np.array([6, 11, 20]) A b x = np.linalg.solve(A, b) x A = np.matrix([[1,1,1], [3,1,2], [2,3,4]]) A np.linalg.inv(A) A = np.matrix([[1,2,2],[2,4,1],[3,6,4]]) A np.linalg.matrix_rank(A) A = np.matrix([[1,2,3], [4,5,6], [7,8,9]]) A A.transpose() A.T <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Gaussian Elimination Step2: Gaussian-Jordan Elimination Step3: Column space Step4: Projection Matrix
15,620
<ASSISTANT_TASK:> Python Code: some_digits = X[36001] some_digits_img = some_digits.reshape(28, 28) plt.imshow(some_digits_img, cmap=matplotlib.cm.binary, interpolation='Nearest') plt.axis("off") plt.show() ### checking out its label y[36001] # MNIST dataset is already split into train(first 60000) and test(last 10000) X_train, y_train, X_test, y_test = X[:60000], y[:60000], X[60000:], y[60000:] # let's suffle these train set to avoid any bias for algo suffled_indices = np.random.permutation(60000) X_train, y_train = X_train[suffled_indices], y_train[suffled_indices] # converting the target into binary info, Foy 5 y_train_5 = (y_train==5) y_test_5 = (y_test==5) sgd_clf = SGDClassifier(random_state=142) sgd_clf.fit(X_train, y_train_5) sgd_clf.predict([some_digits]) from sklearn.model_selection import StratifiedShuffleSplit skfolds = StratifiedShuffleSplit(n_splits=3, random_state=42) for train_index, test_index in skfolds.split(X_train, y_train_5): # creating classified object clone_clf = SGDClassifier(random_state=42) # splitting the data into train n test X_train_folds = X_train[train_index] y_train_folds = y_train_5[train_index] X_test_folds = X_train[test_index] y_test_folds = y_train_5[test_index] # fitting the data clone_clf.fit(X_train_folds, y_train_folds) y_pred = clone_clf.predict(X_test_folds) print(np.mean(y_pred==y_test_folds), end=' ') from sklearn.model_selection import cross_val_score cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy") from sklearn.base import BaseEstimator class Never5Classifier(BaseEstimator): def fit(self, X, y=None): pass def predict(self, X): return np.zeros((len(X), 1), dtype=bool) never_5_clf = Never5Classifier() cross_val_score(never_5_clf, X_train, y_train_5, cv=3, scoring="accuracy") # being a image is 5 accuracy print(np.mean(y_train_5)) # which means not 5 is print(1-np.mean(y_train_5)) from sklearn.model_selection import cross_val_predict from sklearn.metrics import confusion_matrix y_pred_5 = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3) confusion_matrix(y_train_5, y_pred_5) from sklearn.metrics import precision_score, recall_score print("precision score: ", precision_score(y_train_5, y_pred_5)) print("recall score: ", recall_score(y_train_5, y_pred_5)) from sklearn.metrics import f1_score print("f1-score: ", f1_score(y_train_5, y_pred_5)) y_score = sgd_clf.decision_function([some_digits]) y_score threshold = 0 y_pred = (y_score>threshold) y_pred # let's increase the threshold threshold = 200000 y_pred = (y_score>threshold) y_pred # as we increase the threshold, recall is decresing , let's check the same for all the values print(X_train.shape, y_train_5.shape) print(y_train_5[:3]) y_pred_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv = 3, method='decision_function') y_pred_scores=y_pred_scores[:,1] print(y_pred_scores[:3]) y_pred = (y_pred_scores>threshold) np.mean(y_pred) # TRUE accuracy from sklearn.metrics import precision_recall_curve print(y_train_5.shape, y_pred_scores.shape) precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_pred_scores) y_pred_scores[:3] def plot_precision_recall_vs_threshold(precisions, recalls, thresholds): plt.figure(figsize=(10,8)) plt.plot(thresholds, precisions[:-1], "b--", label="Precision", linewidth=2) plt.plot(thresholds, recalls[:-1], "g-", label="Recall", linewidth=2) plt.xlabel("Threshold") plt.legend(loc="upper left") plt.ylim([-0.1, 1.1]) plt.grid(True) plot_precision_recall_vs_threshold(precisions, recalls, thresholds) plt.show() def plot_precision_vs_recall(precisions, recalls): plt.figure(figsize=(10,8)) plt.plot(recalls[:-1], precisions[:-1], "b-", linewidth=2) plt.xlabel("recall") plt.ylabel("precision") plt.legend(loc="upper left") plt.ylim([-0.1, 1.1]) plt.grid(True, which='major') plot_precision_vs_recall(precisions, recalls) plt.show() y_train_pred_90 = (y_pred_scores > 70000) print("Precision: ", precision_score(y_train_5, y_train_pred_90)) print("Recall: ", recall_score(y_train_5, y_train_pred_90)) from sklearn.metrics import roc_curve fpr, tpr, thresholds = roc_curve(y_train_5, y_pred_scores) def plot_roc_curve(fpr, tpr, label=None, figno=1): plt.figure(figno, figsize=(10, 8)) plt.plot(fpr, tpr, linewidth=2, label=label) plt.plot([0, 1], [0, 1], 'k--') plt.axis([-0.1, 1.1, -0.1, 1.1]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.grid(True) plt.legend(loc='lower right') plot_roc_curve(fpr, tpr) plt.show() from sklearn.metrics import roc_auc_score roc_auc_score(y_train_5, y_pred_scores) from sklearn.ensemble import RandomForestClassifier rf_clf = RandomForestClassifier(random_state=142) y_pred_prob = cross_val_predict(rf_clf, X_train, y_train_5, method='predict_proba', cv=3) y_pred_prob[:3] # But to plot a ROC curve, you need scores, not probabilities. # A simple solution is to use the positive class’s probability as the score: y_forest_scores = y_pred_prob[:,-1] fpr_forest, tpr_forest, thresholds_forest = roc_curve(y_train_5,y_forest_scores) plot_roc_curve(fpr_forest, tpr_forest, label='RandomForest') plot_roc_curve(fpr, tpr, label='SGD') roc_auc_score(y_train_5, y_forest_scores) sgdm_clf = SGDClassifier(random_state=142) sgdm_clf.fit(X_train, y_train) sgdm_clf.predict([some_digits]) sgdm_clf.decision_function([some_digits]) argmax = np.argmax(sgdm_clf.decision_function([some_digits])) argmax sgdm_clf.classes_[argmax] from sklearn.multiclass import OneVsOneClassifier, OneVsRestClassifier ovo_clf = OneVsOneClassifier(SGDClassifier(random_state=142)) ovo_clf.fit(X_train, y_train) ovo_clf.classes_ len(ovo_clf.estimators_) # there are 45 estimator y_pred_ovo = cross_val_predict(ovo_clf, X_train, y_train, cv=5) cm=confusion_matrix(y_train, y_pred_ovo) plt.matshow(cm, cmap=plt.cm.gray) # normalizing the confusion matrix row_sums = cm.sum(axis=1, keepdims=True) norm_conf_mx = cm / row_sums np.fill_diagonal(norm_conf_mx,0) plt.matshow(norm_conf_mx, cmap=plt.cm.gray) plt.show() def plot_digits() cl_a, cl_b = 3, 5 X_aa = X_train[(y_train == cl_a) & (y_pred == cl_a)] X_ab = X_train[(y_train == cl_a) & (y_pred == cl_b)] X_ba = X_train[(y_train == cl_b) & (y_pred == cl_a)] X_bb = X_train[(y_train == cl_b) & (y_pred == cl_b)] plt.figure(figsize=(8,8)) plt.subplot(221); plot_digits(X_aa[:25], images_per_row=5) plt.subplot(222); plot_digits(X_ab[:25], images_per_row=5) plt.subplot(223); plot_digits(X_ba[:25], images_per_row=5) plt.subplot(224); plot_digits(X_bb[:25], images_per_row=5) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's try to train a BINARY classification Step2: A good place to start is with a Stochastic Gradient Descent (SGD) classifier, using Scikit-Learn’s SGDClassifier class. This classifier has the advantage of being capable of handling very large datasets efficiently. This is in part because SGD deals with training instances independently, one at a time (which also makes SGD well suited for online learning) Step3: Measuring the Accuracy Step4: Now using CV Step5: As we can see accuract is above 90% in all cases, it seems weird, let's check the base estimate Step6: base classifier gives 90% accuracy bacause our data is skewed towards "Not 5" category Step7: Confusion Matrix Step8: Precision and Recall Step9: F1 Score Step10: There is always a trade off between precision and recall and it denepeds on the threshold value which help to decide whether it is a positive value or negative. Scikit-Learn does not let you set the threshold directly, but it does give you access to the decision scores Step11: Precision Recall Curve Step12: You can see that precision really starts to fall sharply around 80% recall. You will probably want to Step13: The ROC Curve Step14: Once again there is a tradeoff Step15: Since the ROC curve is so similar to the precision/recall (or PR) curve, you may wonder how to decide which one to use. As a Step16: MultiClass Classification Step17: If you want to force ScikitLearn to use one-versus-one or one-versus-all, you can use the
15,621
<ASSISTANT_TASK:> Python Code: import numpy as np import PIL.Image im = PIL.Image.open("/Users/valeriaalvarez/Documents/rh.jpeg") col,row = im.size A = np.zeros((row*col, 5)) pixels = im.load() print(pixels[187,250]) for i in range(col): for j in range(row): #print("i=%d, j=%d" % (i,j)) r,g,b = pixels[i,j] radiohead[i*col + j,:] = r,g,b,i,j im im.size print(radiohead) radiohead.shape import numpy as np RH = np.linalg U, s, Vh = RH.svd(radiohead, full_matrices=False) assert np.allclose(radiohead, np.dot(U, np.dot(np.diag(s), Vh))) R_H = np.dot(np.dot(U, np.diag(s)), Vh) print(np.std(radiohead), np.std(R_H), np.std(radiohead - R_H)) U s s.shape Vh import scipy.linalg as sc S = sc.diagsvd(s, 5, 5) S U @ S @ Vh # otra forma de hacer la verificación rd_head=dot(U, np.dot(np.diag(s), Vh)) rd_head from scipy import * from pylab import * img = imread("/Users/valeriaalvarez/Documents/rh.jpeg")[:,:,0] gray() figure(1) imshow(img) m,n = img.shape m,n U,s,Vt = svd(img) Vt.shape s.shape S = resize(s,[m,1])*eye(m,n) S S.shape m,n = img.shape U,s,Vt = svd(img) S = resize(s,[m,1])*eye(m,n) k = 5 imshow(dot(U[:,1:k],dot(S[1:k,1:k],Vt[1:k,:]))) show() k = 10 imshow(dot(U[:,1:k],dot(S[1:k,1:k],Vt[1:k,:]))) show() k = 25 imshow(dot(U[:,1:k],dot(S[1:k,1:k],Vt[1:k,:]))) show() from numpy import * import numpy as np def gen_mat(i,j): A = floor(random.rand(i,j)*20-0) # se está haciendo una matriz aleatoria de 4x4 b = floor(random.rand(j,1)*20-0) # este es el vector de resultados b return A,b A,b= gen_mat(4,4) A b #Esto sólo sirve para matrices cuadradas. def Inversa(A): if((A.shape[0] == A.shape[1])): U,s,V=np.linalg.svd(A) Inversa = np.dot(np.dot(V.T,linalg.inv(diag(s))),U.T) return Inversa else: return "La Matriz no es cuadrada, calcula la pseudoinversa" w=Inversa(A) w m,n=A.shape m,n U, s, V = np.linalg.svd(A) s U.shape V.shape S=eye(m,n) S S = resize(s,[m,1])*eye(m,n) S Sigma = np.zeros([U.shape[1],V.shape[0]]) Sigma def P_Inversa(A): import numpy as np if isinstance(A, np.ndarray): U, s, V = np.linalg.svd(A) m,n=A.shape S = resize(s,[m,1])*eye(m,n) for i in range(S.shape[0]): for j in range(S.shape[1]): if (i == j): if (s[i] == 0): S[i,j] == 0 else: S[i,j] = 1/s[i] P_Inversa = np.dot(np.dot(V.T,S.T),U.T) return(P_Inversa) else: return "Errores en la especificación" A_I=P_Inversa(A) A_I B = np.linalg.pinv(A) np.allclose(A, np.dot(A, np.dot(B, A))) B def Solucion(A,b): import numpy as np if isinstance(A, np.ndarray): if isinstance(b, np.ndarray): if((A.shape[1] == b.shape[0])):#la matriz y el vector son compatibles if((A.shape[0] == A.shape[1])): A_inv=Inversa(A) x_sol = np.dot(A_inv,b) else: A_inv=P_Inversa(A) x_sol = np.dot(A_inv.T,b) return(x_sol) else: return "A y b son incompatibles" else: return "Problemas con b" else: return "Problemas con A" x = Solucion(A,b) x import numpy as np A1 =np.array([[1,1],[0,0]]) A1 b1=np.array([[1],[1]]) b1 x1 = Solucion(A1,b1) x1 d=np.linalg.det(A1) d def Solucion(A,b): import numpy as np import warnings if isinstance(A, np.ndarray): if isinstance(b, np.ndarray): if((A.shape[1] == b.shape[0])):#la matriz y el vector son compatibles if((A.shape[0] == A.shape[1]) and np.linalg.det(A) != 0): A_inv=Inversa(A) x_sol = np.dot(A_inv,b) return(x_sol) elif (np.linalg.det(A)==0): A_inv=P_Inversa(A) x_sol = np.dot(A_inv.T,b) print(x_sol) print("La Matriz A es singular") else: A_inv=P_Inversa(A) x_sol = np.dot(A_inv.T,b) return(x_sol) else: return "A y b son incompatibles" else: return "Problemas con b" else: return "Problemas con A" x1 = Solucion(A1,b1) x1 b2=np.array([[1],[2]]) x2 = Solucion(A1,b2) x2 b3=np.array([[1],[0]]) x3 = Solucion(A1,b3) x3 A2 =np.array([[1,1],[0,1e-32]]) A2 x4 = Solucion(A2,b1) x4 x5 = Solucion(A2,b2) x5 x6 = Solucion(A2,b3) x6 b4=np.array([[5],[7]]) x7 = Solucion(A1,b4) x7 x8 = Solucion(A2,b4) x8 b5=np.array([[5],[1e-13]]) x9 = Solucion(A1,b5) x9 x10 = Solucion(A2,b5) x10 import numpy as np from pandas import DataFrame import pandas as pd import os tabla = pd.read_csv("/Users/valeriaalvarez/Documents/tarea2.csv") tabla df=pd.DataFrame(tabla) df import statsmodels.formula.api as sm result = sm.ols(formula="sat_score ~ study_hours", data=df).fit() print (result.params) study_hours=tabla["study_hours"] sat_score=tabla["sat_score"] Suma_study_hours = sum(study_hours) Suma_sat_score = sum(sat_score) Suma_hours_score = sum(study_hours*sat_score) Suma_hours_2 = sum(study_hours**2) Suma_score_2 = sum(sat_score**2) obs = len(study_hours) Alpha = Suma_sat_score/obs - (Beta*Suma_study_hours)/obs Alpha Beta = (obs*Suma_hours_score - Suma_study_hours*Suma_sat_score)/(obs*Suma_hours_2 - Suma_study_hours**2) Beta def mco(b0, b1, X): rows = len(X) sat_score_e1 = np.array([b0 + b1*X[i] for i in range(rows)]) return(sat_score_e1) sat_score_e1=mco(Alpha, Beta, study_hours) sat_score_e1 len(df["study_hours"]) col_b0 = [1 for i in range(len(x))] X_m = np.array([col_b0,df["study_hours"]]) X_m parametros = np.array([Alpha,Beta]) sat_score_e2=np.dot(X_m.T,parametros) sat_score_e2 np.linalg.pinv((X_m).dot(X_m.T)).dot(X_m).dot(sat_score) import matplotlib.pyplot as plt plt.subplot(223) plt.scatter(study_hours, sat_score_e1, label="pronosticado") plt.scatter(study_hours, sat_score, label="observado") plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.ylabel('sat score') plt.xlabel('study hours') plt.title('Ajuste Modelo') print(plt.show()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: - Realizar la descomposición SVD Step2: - Verificar la descomposición SVD Step3: con el método anterior, no logré imprimir la imagen con el imshow Step4: ¿Qué tiene que ver este proyecto con compresión de imágenes? Step5: Comprobación de que el proceso anterior sale correctamente. Step6: Para obtener la solución para cualquier matriz, hay que juntar las 2 funciones anteriores Step7: Jugar con el sistema Ax=b donde A = [[1,1],[0,0]] y b puede tomar distintos valores. Step8: Al hacer el ejercicio con A1 = [[1,1],[0,0]] y b=([[1],[1]]), se obtiene un error de que el sistema no se puede resolver porque A es una matriz singular, las columnas de A son iguales por lo que su determinante es igual a 0. Para evitar este error y que se resuelva por la pseudoinversa, se mete la condición del determinante en la función. Step9: Se vuelve a correr el ejercicio con las modificaciones al código Step10: Se prueba con vectores b diferentes Step11: Las soluciones parecen ser de la forma [x,0] Step12: Al cambiar la entrada [2,2] de la matriz A original de 0 a 1-e32 y correr para diferentes valores de b, se observa que el resultado esta determinado por la elección de b[2,1] sin importar el valor de b[1,1]. En este caso las soluciones parecen ser de la forma [-x,x] donde x=b[2,1]. Step13: Programar un script que lea el archivo study_vs_sat.csv y lo almacene como un dataframe en pandas. Step14: Plantear un problema de optimización que intente hacer una aproximación de la forma Step15: Plantear como un problema de optimización que intente hacer una aproximación de la forma <code>sat_score ~ alpha + beta*study_hours minimizando la suma de los errores de predicción al cuadrado. Pueden consultar este link https Step16: Programar una función que reciba valores de alpha, beta y el vector sat_score y devuelva un vector array de numpy de predicciones alpha + beta*study_hours_i, con un valor por cada individuo Step17: Definir un numpy array X de dos columnas, la primera con unos en todas sus entradas y la segunda con la variable study_hours. Observen que X[alpha,beta] devuelve alpha + betastudy_hours_i en cada entrada y que entonces el problema se vuelve sat_score ~ X*[alpha,beta]. Step18: Calcular la pseudoinversa B=(X^TX)^(-1)X^T*sat_score para obtener alpha y beta soluciones Step19: Comparar la solución para obtener los parámetros anteriormente planteada y la que se obtienen al hacel la multiplicación de matrices directa.
15,622
<ASSISTANT_TASK:> Python Code: %matplotlib inline import math, sys, os, numpy as np import torch from matplotlib import pyplot as plt, rcParams, animation, rc from ipywidgets import interact, interactive, fixed from ipywidgets.widgets import * rc('animation', html='html5') rcParams['figure.figsize'] = 3, 3 %precision 4 np.set_printoptions(precision=4, linewidth=100) # Generating fake data def lin(a,b,x): return a*x+b def gen_fake_data(n, a, b): x = s = np.random.uniform(0,1,n) y = lin(a,b,x) + 0.1 * np.random.normal(0,3,n) return x, y x, y = gen_fake_data(50, 3., 8.) plt.scatter(x,y, s=8); plt.xlabel("x"); plt.ylabel("y"); def mean_square_error(y_hat, y): return np.power(y_hat - y, 2).mean() # say our prediction is a=10, b=5; computing our error: y_hat = lin(10,5,x) mean_square_error(y_hat, y) # generate some more data x, y = gen_fake_data(10000, 3., 8.) print(x.shape, y.shape) dtype = torch.cuda.FloatTensor # from NumPy to PyTorch x = torch.from_numpy(x) y = torch.from_numpy(y) from torch.autograd import Variable # Create random Tensors to hold x and y, and wrap them in Variables. # Setting requires_grad=False indicates that we don't need to compute gradients # wrt to these Variables. x = Variable(x.type(dtype), requires_grad=False) y = Variable(y.type(dtype), requires_grad=False) # Create random Tensors for weights a and b, ard wrap them in Variables. # Setting requires_grad+True indicates that we want to compute gradients wrt # these Variables. a = Variable(torch.randn(1).type(dtype), requires_grad=True) b = Variable(torch.randn(1).type(dtype), requires_grad=True) a.grad = Variable(dtype(a.size()).zero_()) b.grad = Variable(dtype(b.size()).zero_()) a, b learning_rate = 1e-3 for t in range(10000): # Forward pass: copmute predicted y using operatiosn on Variables y_pred = x * a + b loss = (y_pred - y).pow(2).mean() if t % 1000 == 0: print(loss.data) # Manually zero the gradients a.grad.data.zero_() b.grad.data.zero_() # Computes the gradient of loss wrt all Variables with requires_grad=True # After this call a.grad and b.grad will be Variables holding the gradient # of the loss wrt a and b respectively. loss.backward() # Update a and b using gradient descent; a.data and b.data are Tensors, # a.grad and b.grad are Variables and a.grad.data and b.grad.data are # Tensors. a.data -= learning_rate * a.grad.data b.data -= learning_rate * b.grad.data print(a, b) x, y = gen_fake_data(50, 3., 8.) def sse(y,y_pred): return ((y-y_pred)**2).sum() def loss(y,a,b,x): return sse(y, lin(a,b,x)) def avg_loss(y,a,b,x): return np.sqrt(loss(y,a,b,x)/y.shape[0]) a_guess = -1. b_guess = 1. avg_loss(y, a_guess, b_guess, x) lr = 0.01 def upd(): global a_guess, b_guess y_pred = lin(a_guess, b_guess, x) dydb = 2 * (y_pred - y) dyda = x * dydb a_guess -= lr * dyda.mean() b_guess -= lr * dydb.mean() fig = plt.figure(dpi=100, figsize=(5,4)) plt.scatter(x,y) line, = plt.plot(x, lin(a_guess, b_guess, x)) plt.close() def animate(i): line.set_ydata(lin(a_guess, b_guess, x)) for i in range(30): upd() return line, ani = animation.FuncAnimation(fig, animate, np.arange(0, 40), interval=100) ani <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Components of Learning Step2: You want to find parameters (weights) a and b such that you minimize the error btwn the points and the line a * x + b. Note that a and b are unknown. For a regression problem, the most common error function or loss function is the mean squared error. Step3: Gradient Descent Step4: Stochasting Gradient Descent (SGD)
15,623
<ASSISTANT_TASK:> Python Code: % matplotlib inline import os import numpy as np import nibabel as nib from nipy.labs.utils.simul_multisubject_fmri_dataset import surrogate_3d_dataset import nipy.algorithms.statistics.rft as rft from __future__ import print_function, division import math import matplotlib.pyplot as plt import palettable.colorbrewer as cb from nipype.interfaces import fsl import pandas as pd import nipy.algorithms.statistics.intvol as intvol from matplotlib import colors import scipy.stats as stats smooth_FWHM = 3 smooth_sd = smooth_FWHM/(2*math.sqrt(2*math.log(2))) data = surrogate_3d_dataset(n_subj=1,sk=smooth_sd,shape=(500,500,500),noise_level=1) plt.figure(figsize=(6,4)) plt.imshow(data[1:20,1:20,1]) plt.colorbar() plt.show() minimum = data.min() newdata = data - minimum #little trick because fsl.model.Cluster ignores negative values img=nib.Nifti1Image(newdata,np.eye(4)) img.to_filename("files/RF.nii.gz") cl=fsl.model.Cluster() cl.inputs.threshold = 0 cl.inputs.in_file="files/RF.nii.gz" cl.inputs.out_localmax_txt_file="files/locmax.txt" cl.inputs.num_maxima=1000000 cl.inputs.connectivity=26 cl.inputs.terminal_output='none' cl.run() peaks = pd.read_csv("files/locmax.txt",sep="\t").drop('Unnamed: 5',1) peaks.Value = peaks.Value + minimum peaks[:5] len(peaks) col=cb.qualitative.Set1_8.mpl_colors plt.figure(figsize=(6,3)) ax=plt.subplot(111) ax.hist(peaks.Value,40,normed=1,facecolor=col[0],alpha=0.75,lw=0) ax.set_xlim([-1,5]) plt.show() def nulprobdens(exc,peaks): v = exc u = peaks - v f0 = (2+(u+v)**2)*(u+v)*np.exp(-(u+v)**2/2)/(v**2*np.exp(-v**2/2)) return f0 fig,axs=plt.subplots(1,5,figsize=(13,3)) fig.subplots_adjust(hspace = .5, wspace=0.3) axs=axs.ravel() thresholds=[2,2.5,3,3.5,4] bins=np.arange(2,5,0.5) x=np.arange(2,10,0.0001) twocol=cb.qualitative.Paired_10.mpl_colors for i in range(5): thr=thresholds[i] axs[i].hist(peaks.Value[peaks.Value>thr],lw=0,facecolor=twocol[i*2-2],normed=True,bins=np.arange(thr,5,0.1)) axs[i].set_xlim([thr,5]) axs[i].set_ylim([0,3]) xn = x[x>thr] yn = nulprobdens(thr,xn) axs[i].plot(xn,yn,color=twocol[i*2-1],lw=3) axs[i].set_title("threshold:"+str(thr)) axs[i].set_xticks(np.arange(thr,5,0.5)) axs[i].set_yticks([1,2]) plt.show() fig,axs=plt.subplots(1,4,figsize=(13,7)) fig.subplots_adjust(hspace = .1, wspace=0.1) axs=axs.ravel() thresholds=np.arange(0,4,1) cmap = colors.ListedColormap(['white', 'black']) bounds=[0,0.5,1] norm = colors.BoundaryNorm(bounds, cmap.N) for t in range(len(thresholds)): mask = np.zeros(shape=data.shape,dtype=np.intp) mask[data>thresholds[t]]=1 axs[t].imshow(mask[1:200,1:200,20],cmap=cmap,norm=norm) axs[t].set_title("threshold:"+str(thresholds[t])) axs[t].patch.set_visible(False) axs[t].axis('off') EulerDens = [] EulerDensInv = [] urange = np.arange(-4,4,0.3) for t in urange: mask = np.zeros(shape=data.shape,dtype=np.intp) mask[data>t]=1 EulerDens.append(intvol.EC3d(mask)) mask2 = 1-mask EulerDensInv.append(intvol.EC3d(mask2)) sumpeak = [] for t in urange: sumpeak.append(sum(peaks.Value>t)) plt.figure(figsize=(7,5)) plt.plot(urange,EulerDens,color=col[1],lw=3,label="observed Euler Characteristic") plt.plot(urange,EulerDensInv,color=col[2],lw=3,label="observed inverse Euler Characteristic") plt.plot(urange,sumpeak,color=col[3],lw=3,label="Number of peaks") plt.legend(loc="upper right",frameon=False) plt.ylim([-600000,1200000]) plt.show() smoothnesses = [0,3,6,9] minima = [] for sm in range(len(smoothnesses)): smooth_FWHM = smoothnesses[sm] smooth_sd = smooth_FWHM/(2*math.sqrt(2*math.log(2))) data = surrogate_3d_dataset(n_subj=1,sk=smooth_sd,shape=(500,500,500),noise_level=1) minimum = data.min() newdata = data - minimum #little trick because fsl.model.Cluster ignores negative values minima.append(minimum) img=nib.Nifti1Image(newdata,np.eye(4)) img.to_filename(os.path.join("files/RF_"+str(sm)+".nii.gz")) cl=fsl.model.Cluster() cl.inputs.threshold = 0 cl.inputs.in_file=os.path.join("files/RF_"+str(sm)+".nii.gz") cl.inputs.out_localmax_txt_file=os.path.join("files/locmax_"+str(sm)+".txt") cl.inputs.num_maxima=10000000 cl.inputs.connectivity=26 cl.inputs.terminal_output='none' cl.run() col=cb.qualitative.Set1_8.mpl_colors+cb.qualitative.Set2_8.mpl_colors plt.figure(figsize=(10,5)) ax=plt.subplot(111) for sm in range(len(smoothnesses)): file = os.path.join("files/RF_"+str(sm)+".nii.gz") tvals = nib.load(file).get_data().astype('float64')+minima[sm] values, base = np.histogram(tvals,100,normed=1) ax.plot(base[:-1],values,label="smoothness: "+str(smoothnesses[sm]),color=col[sm],lw=2) ax.set_xlim([-4,4]) ax.set_ylim([0,0.5]) ax.legend(loc="lower right",frameon=False) ax.set_title("distribution of peak heights for different smoothing kernels (FWHM)") plt.show() all = [] for sm in range(len(smoothnesses)): peaks = pd.read_csv(os.path.join("files/locmax_"+str(sm)+".txt"),sep="\t").drop('Unnamed: 5',1).Value peaks = peaks + minima[sm] all.append(peaks) col=cb.qualitative.Set1_8.mpl_colors+cb.qualitative.Set2_8.mpl_colors plt.figure(figsize=(10,5)) ax=plt.subplot(111) for sm in range(len(smoothnesses)): values, base = np.histogram(all[sm],30,normed=1) ax.plot(base[:-1],values,label="smoothness: "+str(smoothnesses[sm]),color=col[sm],lw=2) ax.set_xlim([-1,5]) ax.set_ylim([0,1.2]) ax.legend(loc="lower right",frameon=False) ax.set_title("distribution of peak heights for different smoothing kernels (FWHM)") plt.show() # random sample smplm = [] for i in range(100000): smpl = np.random.standard_normal((n,)) smplm.append(max(smpl)) # distribution xm = np.arange(-1,5,0.001) ym = n*stats.norm.cdf(xm)**(n-1)*stats.norm.pdf(xm) # histogram twocol=cb.qualitative.Paired_10.mpl_colors plt.figure(figsize=(6,3)) ax=plt.subplot(111) ax.hist(smplm,100,normed=1,facecolor=twocol[0],alpha=0.75,lw=0) ax.plot(xm,ym,color=twocol[1],lw=3) ax.set_xlim([-1,5]) plt.show() n = (500**3)/len(all[1]) n # distribution of a maximum xm = np.arange(-1,5,0.001) ym = n*stats.norm.cdf(xm)**(n-1)*stats.norm.pdf(xm) # histogram twocol=cb.qualitative.Paired_10.mpl_colors plt.figure(figsize=(6,3)) ax=plt.subplot(111) ax.hist(all[1],100,normed=1,facecolor=twocol[0],alpha=0.75,lw=0) ax.plot(xm,ym,color=twocol[1],lw=3) ax.set_xlim([-1,5]) plt.show() # random sample smplmc = [] n = 2 mean = [0,0] r = 0.2 cov = [[1,r],[r,1]] for i in range(100000): smpl = np.random.multivariate_normal(mean,cov,int(n/n)) smplmc.append(np.max(smpl)) # distribution xmc = np.arange(-2,3,0.001) corf = (1-r)/np.sqrt(1-r**2) ymc = n*stats.norm.cdf(corf*xmc)**(n-1)*stats.norm.pdf(xmc) # histogram twocol=cb.qualitative.Paired_10.mpl_colors plt.figure(figsize=(6,3)) ax=plt.subplot(111) ax.hist(smplmc,100,normed=1,facecolor=twocol[2],alpha=0.75,lw=0) ax.plot(xmc,ymc,color=twocol[3],lw=3) ax.set_xlim([-1,5]) plt.show() # random sample smplmc = [] n = 10 mean = np.array([0,0,0,0,0,0,0,0,0,0]) r = 0.5 cov = np.array([[1,r,r,r,r,r,r,r,r,r], [r,1,r,r,r,r,r,r,r,r], [r,r,1,r,r,r,r,r,r,r], [r,r,r,1,r,r,r,r,r,r], [r,r,r,r,1,r,r,r,r,r], [r,r,r,r,r,1,r,r,r,r], [r,r,r,r,r,r,1,r,r,r], [r,r,r,r,r,r,r,1,r,r], [r,r,r,r,r,r,r,r,1,r], [r,r,r,r,r,r,r,r,r,1] ]) for i in range(100): smpl = np.random.multivariate_normal(mean,cov,int(n/n)) smplmc.append(np.max(smpl)) # distribution (just max of gaussian normal) xm = np.arange(-1,5,0.001) corf = (1-r)/np.sqrt(1-r**2) ym = n*stats.norm.cdf(xm)**(n-1)*stats.norm.pdf(xm) # histogram twocol=cb.qualitative.Paired_10.mpl_colors plt.figure(figsize=(6,3)) ax=plt.subplot(111) ax.hist(smplm,100,normed=1,facecolor=twocol[0],alpha=0.75,lw=0) ax.plot(xm,ym,color=twocol[1],lw=3) ax.set_xlim([-1,5]) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Simulate very large RF Step2: Show part of the RF (20x20x1) Step3: Save RF Step4: Run fsl cluster to extract local maxima Step5: Read and print top of file with peaks , print total number of peaks. Step6: Plot histogram local maxima Step7: 2. First approach Step8: Compute density function over a range with different excursion thresholds Step9: In this figure, we see the observed tail distribution of the local maxima (light colored) in our simulated data. The thick line represents the theoretical distribution of the local maxima above a certain threshold. It is only a good approximation for really high thresholds. Step10: Now we'll look at the number of peaks and the Euler Characteristic against the threshold. Step11: In this plot we can indeed see that the Euler Characteristic gives the number of peaks, but only above a certain threshold that is high enough. Below these higher thresholds, is gives # peaks - # holes. Is there a way to estimate the number of holes in the presence of peaks using the EC? I don't think so, it's the exact same problem as the number of paeks in the presence of holes? Therefore the Euler Characteristic cannot give us information for lower thresholds. Step12: Look at the distribution of the voxels? Step13: So how about the distribution of the maximum of a sample of these distributions? Step14: As expected, from a certain smoothness (3 x voxel size), the distribution remains the same. Step15: Now can we just state that the peaks in our unsmoothed random field is the maxima of a sample? Step16: Show histogram of peaks of uncorrected field with the distribution of maximum of a sample of size n. Step17: Ok, I'm stuck.
15,624
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation fig = plt.figure() ax = fig.add_subplot(111) N = 10 x = np.random.rand(N) y = np.random.rand(N) z = np.random.rand(N) circles, triangles, dots = ax.plot(x, 'ro', y, 'g^', z, 'b.') ax.set_ylim(0,1) plt.axis('off') def update(data): circles.set_ydata(data[0]) triangles.set_ydata(data[1]) return circles, triangles def generate(): while True: yield np.random.rand(2, N) anim = animation.FuncAnimation(fig, update, generate, interval=500) plt.show() from mpl_toolkits.mplot3d import axes3d from matplotlib import cm fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # 使用meshgrid函数创建二维的坐标网络 u = np.linspace(-1,1,100) x, y = np.meshgrid(u, u) z = x**2 + y**2 # 指定行和列的步幅,以及绘制曲面所用的色彩表(color map) ax.plot_surface(x, y, z, rstride=4, cstride=4, cmap=cm.rainbow_r) plt.show() x fig = plt.figure(figsize=(3,5)) ax1 = fig.add_subplot(211) ax2 = fig.add_subplot(212) u = np.linspace(-1, 1, 100) x, y = np.meshgrid(u, u) z = x**2 + y**2 ax1.contour(x, y, z) ax2.contourf(x, y, z) plt.show() fig = plt.figure() ax = fig.gca(projection='3d') X, Y, Z = axes3d.get_test_data(0.05) ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3, cmap=cm.winter_r) # 绘制等高线 cset = ax.contourf(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm) cset = ax.contourf(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm) cset = ax.contourf(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm) ax.set_xlabel('X') ax.set_xlim(-40, 40) ax.set_ylabel('Y') ax.set_ylim(-40, 40) ax.set_zlabel('Z') ax.set_zlim(-100, 100) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. 动画 Step2: 2. 三维绘图 Step3: 3. 绘制等高线图 Step4: 4. 结合三维绘图和等高线图
15,625
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np import matplotlib.pyplot as plt s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e']) s s = pd.Series([1,3,5,np.nan,6,8]) s d = {'a' : 0., 'b' : 1., 'c' : 2.} pd.Series(d) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 数据结构 Step2: From dict
15,626
<ASSISTANT_TASK:> Python Code: !pip install git+https://github.com/biothings/biothings_explorer#egg=biothings_explorer # import modules from biothings_explorer from biothings_explorer.hint import Hint from biothings_explorer.user_query_dispatcher import FindConnection from biothings_explorer.hint import Hint ht = Hint() parkDis = ht.query("Parkinson disease")['DiseaseOrPhenotypicFeature'][0] parkDis from biothings_explorer.user_query_dispatcher import FindConnection fc = FindConnection(input_obj=parkDis, output_obj='ChemicalSubstance', intermediate_nodes=['Gene']) fc.connect(verbose=True) df = fc.display_table_view() dfFilt = df.loc[df['output_name'].notnull()].query('pred1 == "causedBy" and pred2 == "targetedBy"') dfFilt dfFiltUnique = dfFilt[["input","node1_name","output_name"]].drop_duplicates() dfFiltUnique import pandas as pd pd.set_option('display.max_rows', 500) pd.set_option('display.max_colwidth', 2000) print("Num genes: "+str(len(dfFiltUnique["node1_name"].value_counts()))+"\n") print(dfFiltUnique["node1_name"].value_counts()) knownPDgenes = dfFilt[dfFilt["node1_name"].isin(["LRRK2","COMT","DRD2","SNCA"])][["input","node1_name","output_name"]].drop_duplicates().sort_values("node1_name") compounds = knownPDgenes.groupby(['node1_name'])['output_name'].apply(','.join) count = knownPDgenes.groupby(['node1_name'])['output_name'].count() result = pd.DataFrame({ 'count': count, 'compounds': compounds } ) result dfFilt.query('node1_name == "LCN2"')[["output_id","output_name"]].drop_duplicates() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Then import the relevant modules Step2: Step 1 Step3: Step 2 Step4: The df object contains the full output from BioThings Explorer. Each row shows one path that joins the input node (Parkinson's disease) to an intermediate node (a gene or protein) to an ending node (a chemical compound). The data frame includes a set of columns with additional details on each node and edge (including human-readable labels, identifiers, and sources). Let's remove all examples where the output_name (the compound label) is None, and specifically focus on paths with specific mechanistic predicates causedBy and targetedBy. Step5: Let's examine how many unique Parkinsons - GENE - DRUG paths there are Step6: Results Step7: Within this list, we found a number of genes associated with therapies for Parkinson's Disease that are either approved or in development, including DRD2, COMT, LRRK2, and SNCA. We can also view the many chemical compounds that are known to modulate those genes using the query below Step8: The other genes in that list all have some link to Parkinson's Disease and have known chemical modulators. In some cases, these genes reflect relatively recent findings that may represent novel therapeutic candidates. For example, BTE found a link between the gene LCN2 and Parkinson's Disease based on both on upregulation in the brains of PD patients, and based on genetic evidence in mouse models (PMID
15,627
<ASSISTANT_TASK:> Python Code: %matplotlib inline from sympy.interactive import printing printing.init_printing() from frame import * import sympy as sp import numpy as np import scipy.sparse as sparse import scipy.sparse.linalg as linalg class Frame_Buckling(LinearFrame): def N_local_stress(self,element): Returns the normal forces of an element. Ke= self.K_local() Ue= self.U_e_local_coord(element) F=Ke*Ue N_local = F[3] return N_local def N_local_stress_tot(self): Returns the normal force of all elements. Ns=[self.N_local_stress(e)for e in range (self.nelements)] return Ns def G_local(self): Returns the global geometric stiffness matrix L = sp.Symbol('L') s = sp.Symbol('s') S=self.S() Ge=sp.Matrix([[sp.integrate(S[1,i_local].diff(s)*S[1,j_local].diff(s),(s,0,L) )for i_local in range(6)] for j_local in range(6)]) return Ge def G_local_rotated(self): Gives the analytical expression the local geometric stiffness matrix in the global coordinate system as a function of the orientation angle alpha alpha = sp.Symbol("alpha") R = self.rotation_matrix(alpha) Ge = R.transpose()*self.G_local()*R return Ge def assemble_G(self): Returns the global stiffness matrix Ge = self.G_local_rotated() G = np.zeros([self.ndof,self.ndof]) N0=self.N_local_stress_tot() for e in range(self.nelements): Gen = -N0[e].subs({'EI': self.EI[e], 'ES': self.ES[e], 'L': self.Ls[e], 'alpha': self.angles[e]})*Ge.subs({'EI': self.EI[e], 'ES': self.ES[e], 'L': self.Ls[e], 'alpha': self.angles[e]}) for i_local in range(6): for j_local in range(6): G[self.dof_map(e, i_local),self.dof_map(e, j_local)] += Gen[i_local,j_local] return G def bc_apply_G(self,G,blocked_dof): for (dof) in enumerate(blocked_dof): Gbc = G Gbc[dof, :] = 0 Gbc[:, dof] = 0 Gbc[dof, dof] = 1 return Gbc def full_power_method(A, niterations_max=50, tol=1e-15): xn = np.zeros((len(A), niterations_max+1)) xn[:, 0] = np.ones((len(A),)) + 1e-7*np.random.rand(len(A)) rn = np.ones((niterations_max+1,)) for k in range(niterations_max): xn[:,k] = xn[:,k] / np.linalg.norm(xn[:,k]) xn[:,k+1] = np.dot(A, xn[:,k]) rn[k+1] = np.sum(xn[:,k+1])/np.sum(xn[:,k]) if (abs(rn[k+1]-rn[k]) < tol): break if k < niterations_max: rn[k+2:] = rn[k+1] # This ensures the later values are set to something sensible. return (rn[k+1], rn, xn[:,k+1]/ np.linalg.norm(xn[:,k+1])) def inverse_power_method(A, niterations_max=50, tol=1e-15): xn = np.zeros((len(A), niterations_max+1)) xn[:, 0] = np.ones((len(A),)) + 1e-7*np.random.rand(len(A)) rn = np.ones((niterations_max+1,)) for k in range(niterations_max): xn[:,k] = xn[:,k] / np.linalg.norm(xn[:,k]) xn[:,k+1] = np.linalg.solve(A, xn[:,k]) rn[k+1] = np.sum(xn[:,k+1])/np.sum(xn[:,k]) if (abs(rn[k+1]-rn[k]) < tol): break if k < niterations_max: rn[k+2:] = rn[k+1] # This ensures the later values are set to something sensible. return (1.0/rn[k+1], 1.0/rn, xn[:,k+1]/ np.linalg.norm(xn[:,k+1])) E=1.3 #en MPa h=7.5 #en mm b=20. #en mm Lx=55. #en mm Lyh=60. #en mm Lyb=45. #en mm I=b*(h**3)/12 #en mm^4 S=b*h #en mm^2 eps=10**(-3) g=9.81 #en m.s^(-2) m=1 #en kg n_elements = 10 xnodes = np.linspace(0,1000,n_elements + 1) ynodes = np.linspace(0,0,n_elements + 1) nodes = np.array([xnodes,ynodes]).transpose() n_nodes = xnodes.size elements=np.array([[0,1],[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],[7,8],[8,9],[9,10]]) frame= Frame_Buckling(nodes,elements) frame.plot_with_label() ne = frame.nelements ndof = frame.ndof EI = np.ones(ne)*E*I ES = np.ones(ne)*E*S f_x = 0*np.ones(ne) f_y = 0*np.ones(ne) frame.set_distributed_loads(f_x, f_y) frame.set_stiffness(EI, ES) blocked_dof = np.array([0, 1, ndof-2]) bc_values = np.array([0, 0, 0]) K = frame.assemble_K() F=frame.assemble_F() #F[12]=F[12]-.5*EI[0]*np.pi**2 F[ndof-3]=F[ndof-3]-1. Kbc, Fbc = frame.bc_apply(K, F, blocked_dof, bc_values) Usol = np.linalg.solve(Kbc,Fbc) Usol frame.set_displacement(Usol) frame.plot_with_label() frame.plot_displaced() Gbc=frame.assemble_G() G=frame.bc_apply_G(Gbc,blocked_dof) Ks = sparse.csr_matrix(K) Gs = sparse.csr_matrix(G) val, vect = linalg.eigsh(Ks, 5, Gs, which = 'LA', sigma =4.) print(val) frame.set_displacement(10*vect[:,0]) frame.plot_with_label() frame.plot_displaced() E*I*np.pi**2/1000**2 E=1.3 #en MPa h=7.5 #en mm b=20. #en mm Lx=55. #en mm Lyh=60. #en mm Lyb=45. #en mm I=b*(h**3)/12 #en mm^4 S=b*h #en mm^2 eps=10**(-3) g=9.81 #en m.s^(-2) m=0.05 #en kg nodes= np.array([[0.,0.],[0.,Lyb],[0.,Lyh+Lyb],[Lx/2,Lyh+Lyb],[Lx,Lyh+Lyb],[Lx,Lyb],[Lx,0.]]) elements=np.array([[0,1],[1,5],[1,2],[2,3],[3,4],[4,5],[5,6]]) frame= Frame_Buckling(nodes,elements) frame.plot_with_label() ne = frame.nelements ndof = frame.ndof EI = np.ones(ne)*E*I ES = np.ones(ne)*E*S EI[1]=100*E*I;EI[3]=100*E*I;EI[4]=100*E*I ES[1]=100*E*S;ES[3]=100*E*S;ES[4]=100*E*S f_x = 0*np.ones(7) f_y = 0*np.ones(7) frame.set_distributed_loads(f_x, f_y) frame.set_stiffness(EI, ES) blocked_dof = np.array([0, 1, 2, ndof-3, ndof-2, ndof-1]) bc_values = np.array([0, 0, 0, 0, 0, 0]) K = frame.assemble_K() F=frame.assemble_F() #F[10]=F[10]-.5*EI[0]*np.pi**2/(Lyb+Lyh)**2 F[10]=F[10]-1. Kbc, Fbc = frame.bc_apply(K, F, blocked_dof, bc_values) Usol = np.linalg.solve(Kbc,Fbc) Usol frame.set_displacement(Usol) Ge=frame.N_local_stress_tot() Gbc=frame.assemble_G() G=frame.bc_apply_G(Gbc,blocked_dof) Ks = sparse.csr_matrix(K) Gs = sparse.csr_matrix(G) val, vect = linalg.eigsh(Ks, 3, Gs, which = 'LA', sigma = 3.) print(val) print(vect[:,0]) frame.set_displacement(1*vect[:,0]) frame.plot_with_label() frame.plot_displaced() nodes= np.array([[0.,0.],[0.,Lyb],[0.,Lyh+Lyb],[Lx/2,Lyh+Lyb],[Lx,Lyh+Lyb],[Lx,Lyb],[Lx/2,Lyh/2+Lyb],[Lx,0.]]) elements=np.array([[0,1],[1,5],[1,2],[2,3],[3,4],[4,5],[1,6],[2,6],[4,6],[5,6],[5,7]]) frame= Frame_Buckling(nodes,elements) frame.plot_with_label() ne = frame.nelements ndof = frame.ndof EI = np.ones(ne)*E*I ES = np.ones(ne)*E*S EI[1]=100*E*I;EI[3]=100*E*I;EI[4]=100*E*I ES[1]=100*E*S;ES[3]=100*E*S;ES[4]=100*E*S f_x = 0*np.ones(ne) f_y = 0*np.ones(ne) frame.set_distributed_loads(f_x, f_y) frame.set_stiffness(EI, ES) blocked_dof = np.array([0, 1, 2, ndof-3, ndof-2, ndof-1]) bc_values = np.array([0, 0, 0, 0, 0, 0]) K = frame.assemble_K() F=frame.assemble_F() #F[10]=F[10]-.5*EI[0]*np.pi**2/(Lyb+Lyh)**2 F[10]=F[10]-1. Kbc, Fbc = frame.bc_apply(K, F, blocked_dof, bc_values) Usol = np.linalg.solve(Kbc,Fbc) frame.set_displacement(Usol) Gbc=frame.assemble_G() G=frame.bc_apply_G(Gbc,blocked_dof) Ks = sparse.csr_matrix(K) Gs = sparse.csr_matrix(G) val, vect = linalg.eigsh(Ks, 3, Gs, which = 'LA', sigma =4.) print(val) print(vect[:,1]) frame.set_displacement(1*vect[:,0]) frame.plot_with_label() frame.plot_displaced() nodes= np.array([[0.,0.],[0.,Lyb],[0.,Lyh+Lyb],[Lx/2,Lyh+Lyb],[Lx,Lyh+Lyb],[Lx,Lyb],[Lx,0.]]) elements=np.array([[0,1],[1,5],[1,2],[2,3],[3,4],[4,5],[5,6]]) frame= Frame_Buckling(nodes,elements) frame.plot_with_label() ne = frame.nelements ndof = frame.ndof EI = np.ones(ne)*E*I ES = np.ones(ne)*E*S f_x = 0*np.ones(7) f_y = 0*np.ones(7) frame.set_distributed_loads(f_x, f_y) frame.set_stiffness(EI, ES) blocked_dof = np.array([0, 1, 2, ndof-3, ndof-2, ndof-1]) bc_values = np.array([0, 0, 0, 0, 0, 0]) K = frame.assemble_K() F=frame.assemble_F() #F[7]=F[7]-.5*EI[0]*np.pi**2/(Lyb+Lyh)**2 #F[13]=F[13]-.5*EI[0]*np.pi**2/(Lyb+Lyh)**2 F[7]=F[7]-1. F[13]=F[13]-1. Kbc, Fbc = frame.bc_apply(K, F, blocked_dof, bc_values) Usol = np.linalg.solve(Kbc,Fbc) Usol frame.set_displacement(Usol) Gbc=frame.assemble_G() G=frame.bc_apply_G(Gbc,blocked_dof) Ks = sparse.csr_matrix(K) Gs = sparse.csr_matrix(G) val, vect = linalg.eigsh(Ks, 6, Gs, which = 'LA', sigma =1.2) print(val) print(vect[:,0]) frame.set_displacement(1*vect[:,0]) frame.plot_with_label() frame.plot_displaced() nodes= np.array([[0.,0.],[0.,Lyb],[0.,Lyh+Lyb],[Lx/2,Lyh+Lyb],[Lx,Lyh+Lyb],[Lx,Lyb],[Lx,0.]]) elements=np.array([[0,1],[1,5],[1,2],[2,3],[3,4],[4,5],[2,5],[0,5],[5,6]]) frame= Frame_Buckling(nodes,elements) frame.plot_with_label() ne = frame.nelements ndof = frame.ndof EI = np.ones(ne)*E*I ES = np.ones(ne)*E*S f_x = 0*np.ones(ne) f_y = 0*np.ones(ne) frame.set_distributed_loads(f_x, f_y) frame.set_stiffness(EI, ES) blocked_dof = np.array([0, 1, 2, ndof-3, ndof-2, ndof-1]) bc_values = np.array([0, 0, 0, 0, 0, 0]) K = frame.assemble_K() F=frame.assemble_F() #F[7]=F[7]-.5*EI[0]*np.pi**2/(Lyb+Lyh)**2 #F[13]=F[13]-.5*EI[0]*np.pi**2/(Lyb+Lyh)**2 F[10]=F[10]-1. Kbc, Fbc = frame.bc_apply(K, F, blocked_dof, bc_values) Usol = np.linalg.solve(Kbc,Fbc) Usol frame.set_displacement(Usol) Gbc=frame.assemble_G() G=frame.bc_apply_G(Gbc,blocked_dof) Ks = sparse.csr_matrix(K) Gs = sparse.csr_matrix(G) val, vect = linalg.eigsh(Ks, 3, Gs, which = 'LA', sigma =9.) print(val) frame.set_displacement(1*vect[:,0]) frame.plot_with_label() frame.plot_displaced() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step5: Project on frame buckling Step6: Essai sur exercice 2 Step7: Essai sur d'autres structures Step8: Structure avec deux forces et sans étage renforcé Step9: Structure croisée
15,628
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt from scipy.integrate import odeint # This is the numerical solver def rhs(Y,t,omega): # this is the function of the right hand side of the ODE y,ydot = Y return ydot,-omega*omega*y t_arr=np.linspace(0,2*np.pi,101) y_init =[1,0] omega = 2.0 y_arr=odeint(rhs,y_init,t_arr, args=(omega,)) y,ydot = y_arr[:,0],y_arr[:,1] plt.ion() plt.plot(t_arr,y,t_arr,ydot) # Let's draw a phase portrait, plotting y and ydot together plt.plot(y,ydot) plt.title("Solution curve when omega = %4g" % omega) plt.xlabel("y values") plt.ylabel("ydot values") t_arr=np.linspace(0,2*np.pi,101) y_init =[1,0] omega = 2.0 y_exact = y_init[0]*np.cos(omega*t_arr) + y_init[1]*np.sin(omega*t_arr)/omega ydot_exact = -omega*y_init[0]*np.sin(omega*t_arr) + y_init[1]*np.cos(omega*t_arr) y_arr=odeint(rhs,y_init,t_arr, args=(omega,)) y,ydot = y_arr[:,0],y_arr[:,1] plt.plot(t_arr,y,t_arr,y_exact) # We plot the difference plt.plot(t_arr,y-y_exact) numsteps=1000001 # adjust this parameter y_init =[1,0] omega = 2.0 t_arr=np.linspace(0,2*np.pi,numsteps) y_exact = y_init[0]*np.cos(omega*t_arr) + y_init[1]*np.sin(omega*t_arr)/omega ydot_exact = -omega*y_init[0]*np.sin(omega*t_arr) + y_init[1]*np.cos(omega*t_arr) y_arr=odeint(rhs,y_init,t_arr, args=(omega,)) y,ydot = y_arr[:,0],y_arr[:,1] plt.plot(t_arr,y-y_exact) numsteps=100001 # adjust this parameter y_init =[1,0] omega = 2.0 t_arr=np.linspace(0,2*1000*np.pi,numsteps) y_exact = y_init[0]*np.cos(omega*t_arr) + y_init[1]*np.sin(omega*t_arr)/omega ydot_exact = -omega*y_init[0]*np.sin(omega*t_arr) + y_init[1]*np.cos(omega*t_arr) y_arr=odeint(rhs,y_init,t_arr, args=(omega,)) y,ydot = y_arr[:,0],y_arr[:,1] plt.plot(t_arr,y-y_exact) p1=np.size(t_arr)-1 p0=p1-100 plt.plot(t_arr[p0:p1],y[p0:p1],t_arr[p0:p1],y_exact[p0:p1]) plt.plot(t_arr[p0:p1],y[p0:p1]-y_exact[p0:p1]) plt.plot(t_arr[p0:p1],y_exact[p0:p1],t_arr[p0:p1],3000*(y[p0:p1]-y_exact[p0:p1])) def rhsSIN(Y,t,omega): # this is the function of the right hand side of the ODE y,ydot = Y return ydot,-omega*omega*np.sin(y) omega = .1 # basic frequency epsilon = .5 # initial displacement, in radians t_arr=np.linspace(0,2*100*np.pi,1001) y_init =[epsilon,0] # we first set up the exact solution for the linear oscillator y_exact = y_init[0]*np.cos(omega*t_arr) + y_init[1]*np.sin(omega*t_arr)/omega ydot_exact = -omega*y_init[0]*np.sin(omega*t_arr) + y_init[1]*np.cos(omega*t_arr) y_arr=odeint(rhsSIN,y_init,t_arr, args=(omega,)) y,ydot = y_arr[:,0],y_arr[:,1] plt.ion() plt.plot(t_arr,y,t_arr,y_exact) def rhsLZ(u,t,beta,rho,sigma): x,y,z = u return [sigma*(y-x), rho*x-y-x*z, x*y-beta*z] sigma = 10.0 beta = 8.0/3.0 rho1 = 29.0 rho2 = 28.8 # two close values for rho give two very different curves u01=[1.0,1.0,1.0] u02=[1.0,1.0,1.0] t=np.linspace(0.0,50.0,10001) u1=odeint(rhsLZ,u01,t,args=(beta,rho1,sigma)) u2=odeint(rhsLZ,u02,t,args=(beta,rho2,sigma)) x1,y1,z1=u1[:,0],u1[:,1],u1[:,2] x2,y2,z2=u2[:,0],u2[:,1],u2[:,2] from mpl_toolkits.mplot3d import Axes3D plt.ion() fig=plt.figure() ax=Axes3D(fig) ax.plot(x1,y1,z1,'b-') ax.plot(x2,y2,z2,'r:') ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') ax.set_title('Lorenz equations with rho = %g, %g' % (rho1,rho2)) fig=plt.figure() ax=Axes3D(fig) ax.plot(x1,y1,z1) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') fig=plt.figure() ax=Axes3D(fig) ax.plot(x2,y2,z2) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') def rhsVDP(y,t,mu): return [ y[1], mu*(1-y[0]**2)*y[1] - y[0]] def jac(y,t,mu): return [ [0,1], [-2*mu*y[0]*y[1]-1, mu*(1-y[0]**2)]] mu=100 t=np.linspace(0,300,10001) y0=np.array([2.0,0.0]) y,info=odeint(rhsVDP,y0,t,args=(mu,),Dfun=jac,full_output=True) print("mu = %g, number of Jacobian calls is %d", mu, info['nje'][-1]) plt.plot(t,y) plt.plot(t,y[:,0]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We start with a second order linear equation, that has the usual harmonic oscillator solutions. Step2: Now, I would like to test how accurate this numerical code is, by comparing the exact solution with the numerical solution. The exact solution is given by the initial values of y_init, and omega, and involves cosines and sines. Step3: So, in the test I did above, we see an error that oscillates and grows with time, getting to about size 2x 10^(-7). Which is single precision accuray. Step4: Okay, I went up to one million steps, and the error only reduced to about 1.0x10^(-7). Not much of an improvement. Step5: Interesting. My little test show the error grow linearly with the length of time. In the first time, 2x10^(-7). For 10 times longer, 2x10^(-6). For 100 times longer, 2x10^(-5). And so one. Step6: Ah ha! This looks like the negative derivative of the solution, which indicates we have a phase error. Because with phase error, we see the difference Step7: Looking at the above, we see they don't quite line up. So a bit of phase error, a bit of amplitude error. Step8: With epsilon = 0.1 (radians, which is about 5.7 degrees), it is hard to see a period shift. With epsilon = 0.5 (radians, which just under 30 degrees), we clearly see a shift after ten cycles of oscillation. Step9: You should play around with the time interval (in the definition of varible t) to observe the predictable, followed by chaotic behaviour. ANd play with other parameters. Step10: Try playing with the mu parameter. mu=0 gives the harmonic oscillator. mu=10 starts giving pointy spikes. For mu big, you might want to increase the range of to values, from [0,30] to a larger interval like [0,100]. Etc.
15,629
<ASSISTANT_TASK:> Python Code: %matplotlib inline import pickle as pkl import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data') def model_inputs(real_dim, z_dim): inputs_real = tf.placeholder(tf.float32, (None, real_dim), name='input_real') inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z') return inputs_real, inputs_z def generator(z, out_dim, n_units=128, reuse=False, alpha=0.01): with tf.variable_scope('generator', reuse=reuse): # Hidden layer h1 = tf.layers.dense(z, n_units, activation=None) # Leaky ReLU h1 = tf.maximum(alpha * h1, h1) # Logits and tanh output logits = tf.layers.dense(h1, out_dim, activation=None) out = tf.tanh(logits) return out def discriminator(x, n_units=128, reuse=False, alpha=0.01): with tf.variable_scope('discriminator', reuse=reuse): # Hidden layer h1 = tf.layers.dense(x, n_units, activation=None) # Leaky ReLU h1 = tf.maximum(alpha * h1, h1) logits = tf.layers.dense(h1, 1, activation=None) out = tf.sigmoid(logits) return out, logits # Size of input image to discriminator input_size = 784 # Size of latent vector to generator z_size = 100 # Sizes of hidden layers in generator and discriminator g_hidden_size = 128 d_hidden_size = 128 # Leak factor for leaky ReLU alpha = 0.01 # Smoothing smooth = 0.1 tf.reset_default_graph() # Create our input placeholders input_real, input_z = model_inputs(input_size, z_size) # Build the model g_model = generator(input_z, input_size, n_units=g_hidden_size, alpha=alpha) # g_model is the generator output d_model_real, d_logits_real = discriminator(input_real, n_units=d_hidden_size, alpha=alpha) d_model_fake, d_logits_fake = discriminator(g_model, reuse=True, n_units=d_hidden_size, alpha=alpha) # Calculate losses d_loss_real = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_logits_real) * (1 - smooth))) d_loss_fake = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_logits_real))) d_loss = d_loss_real + d_loss_fake g_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_logits_fake))) # Optimizers learning_rate = 0.002 # Get the trainable_variables, split into G and D parts t_vars = tf.trainable_variables() g_vars = [var for var in t_vars if var.name.startswith('generator')] d_vars = [var for var in t_vars if var.name.startswith('discriminator')] d_train_opt = tf.train.AdamOptimizer(learning_rate).minimize(d_loss, var_list=d_vars) g_train_opt = tf.train.AdamOptimizer(learning_rate).minimize(g_loss, var_list=g_vars) batch_size = 100 epochs = 100 samples = [] losses = [] # Only save generator variables saver = tf.train.Saver(var_list=g_vars) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for e in range(epochs): for ii in range(mnist.train.num_examples//batch_size): batch = mnist.train.next_batch(batch_size) # Get images, reshape and rescale to pass to D batch_images = batch[0].reshape((batch_size, 784)) batch_images = batch_images*2 - 1 # Sample random noise for G batch_z = np.random.uniform(-1, 1, size=(batch_size, z_size)) # Run optimizers _ = sess.run(d_train_opt, feed_dict={input_real: batch_images, input_z: batch_z}) _ = sess.run(g_train_opt, feed_dict={input_z: batch_z}) # At the end of each epoch, get the losses and print them out train_loss_d = sess.run(d_loss, {input_z: batch_z, input_real: batch_images}) train_loss_g = g_loss.eval({input_z: batch_z}) print("Epoch {}/{}...".format(e+1, epochs), "Discriminator Loss: {:.4f}...".format(train_loss_d), "Generator Loss: {:.4f}".format(train_loss_g)) # Save losses to view after training losses.append((train_loss_d, train_loss_g)) # Sample from generator as we're training for viewing afterwards sample_z = np.random.uniform(-1, 1, size=(16, z_size)) gen_samples = sess.run( generator(input_z, input_size, reuse=True), feed_dict={input_z: sample_z}) samples.append(gen_samples) saver.save(sess, './checkpoints/generator.ckpt') # Save training generator samples with open('train_samples.pkl', 'wb') as f: pkl.dump(samples, f) fig, ax = plt.subplots() losses = np.array(losses) plt.plot(losses.T[0], label='Discriminator') plt.plot(losses.T[1], label='Generator') plt.title("Training Losses") plt.legend() def view_samples(epoch, samples): fig, axes = plt.subplots(figsize=(7,7), nrows=4, ncols=4, sharey=True, sharex=True) for ax, img in zip(axes.flatten(), samples[epoch]): ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) im = ax.imshow(img.reshape((28,28)), cmap='Greys_r') return fig, axes # Load samples from generator taken while training with open('train_samples.pkl', 'rb') as f: samples = pkl.load(f) _ = view_samples(-1, samples) rows, cols = 10, 6 fig, axes = plt.subplots(figsize=(7,12), nrows=rows, ncols=cols, sharex=True, sharey=True) for sample, ax_row in zip(samples[::int(len(samples)/rows)], axes): for img, ax in zip(sample[::int(len(sample)/cols)], ax_row): ax.imshow(img.reshape((28,28)), cmap='Greys_r') ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) saver = tf.train.Saver(var_list=g_vars) with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint('checkpoints')) sample_z = np.random.uniform(-1, 1, size=(16, z_size)) gen_samples = sess.run( generator(input_z, input_size, reuse=True), feed_dict={input_z: sample_z}) _ = view_samples(0, [gen_samples]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Model Inputs Step2: Generator network Step3: Discriminator Step4: Hyperparameters Step5: Build network Step6: Discriminator and Generator Losses Step7: Optimizers Step8: Training Step9: Training loss Step10: Generator samples from training Step11: These are samples from the final training epoch. You can see the generator is able to reproduce numbers like 1, 7, 3, 2. Since this is just a sample, it isn't representative of the full range of images this generator can make. Step12: Below I'm showing the generated images as the network was training, every 10 epochs. With bonus optical illusion! Step13: It starts out as all noise. Then it learns to make only the center white and the rest black. You can start to see some number like structures appear out of the noise like 1s and 9s.
15,630
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd titanic_data = pd.read_csv('train.csv') titanic_data.head(5) titanic_data.info() titanic_data.Age = titanic_data.Age.fillna(np.mean(titanic_data.Age)) titanic_data.info() survivors = titanic_data[titanic_data.Survived == 1] survivor_prob = (len(survivors) / len(titanic_data)) print("There is a " + str(survivor_prob) + " percent chance of survival.") male_passenger = titanic_data[titanic_data.Sex == 'male'] prob_male = (len(male_passenger) / len(titanic_data)) print("There is a " + str(prob_male) + " percent probability that a passenger was male.") c_port = survivors[survivors.Embarked == 'C'] prob_c = (len(c_port) / len(survivors)) print("There is a " + str(prob_c) + " percent probability that a survivor was from Cherbourg.") import matplotlib.pyplot as plt %matplotlib inline all_ages = [] age_mean = np.mean(titanic_data.Age) for i, k in enumerate(titanic_data.Age): if round(k, 3) != round(age_mean, 3): all_ages.append(k) H, edges = np.histogram(all_ages, bins=25) ax = plt.subplot(111) ax.bar(edges[:-1], H / float(sum(H)), width=edges[1] - edges[0]) ax.set_xlabel("Passenger Age") ax.set_ylabel("Frequency of Being on Board") ax.minorticks_on() plt.show() less_then_ten = [] for i in all_ages: if i < 10: less_then_ten.append(i) prob_less_then_ten = (len(less_then_ten) / len(all_ages)) print("There is a " + str(round(prob_less_then_ten, 3)) + " probabililty that a passenger was less then 10 year old.") from scipy.stats import binom binom.pmf(42, 100, survivor_prob) 1 - binom.cdf(42, 100, survivor_prob) from scipy.stats import ttest_ind survivors_male = survivors[(survivors.Sex == 'male') & (round(survivors.Age,3) != round(age_mean, 3)) ] survivors_female = survivors[(survivors.Sex == 'female') & (round(survivors.Age, 3) != round(age_mean, 3))] t_stat, p_value = ttest_ind(survivors_male.Age, survivors_female.Age) print("Results:\n\tt-statistic: %.5f\n\tp-value: %.5f" % (t_stat, p_value)) plt.figure(figsize=(10, 4)) opacity = 0.5 plt.hist(survivors_male.Age, bins=np.arange(0, 90, 5), alpha=opacity, label="Males") plt.hist(survivors_female.Age, bins=np.arange(0, 90, 5), alpha=opacity, label="Females") plt.legend() plt.title("Age Distribution of Female and Male Survivors") plt.xlabel("Ages") plt.ylabel("Survival") plt.show() from scipy.stats import ttest_ind fare_from_q = titanic_data[titanic_data.Embarked == 'Q'] fare_from_c = titanic_data[titanic_data.Embarked == 'C'] t_stat, p_value = ttest_ind(fare_from_q.Fare, fare_from_c.Fare) print("Results:\n\tt-statistic: %.5f\n\tp-value: %g" % (t_stat, p_value)) plt.figure(figsize=(10, 4)) opacity = 0.5 plt.hist(fare_from_q.Fare, bins=np.arange(0, 90, 5), alpha=opacity, label="Queenstown") plt.hist(fare_from_c.Fare, bins=np.arange(0, 90, 5), alpha=opacity, label="Cherbourg") plt.legend() plt.title("Fare Distribution from Queenstown to Cherbourg") plt.xlabel("Fare Price") plt.ylabel("Number of Passengers") plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Cleaning and filling data Step2: Filling all NaN ages with the mean of all the ages and confirming with .info() method. We later compensate for this with a functions that remove the mean. This will be pointed out with a 'COMPENSATION Step3: Question 1 Step4: Question 2 Step5: Our second choice of question is to find the probablity that a survivor was from Cherbourg. Step6: Question 3 Step7: Question 4 Step8: Question 5 Step9: There is a 0.0613 probability that exactly 42 passenger survive out of 100. See above 'Out' for a more precise probability. Step10: There is a 0.198 probability that at least 42 of those 100 passenger survive. See above 'Out' for a more precise probability. Step11: There is no significance between the age of female and male survivors. This is because the p-value is greater than 0.05. Step12: Question 7 Step13: There is statistical difference in the fares paid between the passengers at Queentown and Cherboug. This is indicated by the p-value that is less than 0.01.
15,631
<ASSISTANT_TASK:> Python Code: import pkg_resources import sys import os import time from urllib.request import urlretrieve import indra.util.get_version import indra.java_vm # make sure INDRA is in charge of the JVM import pybel import pybel_tools from pybel_tools.visualization import to_jupyter %%bash java -showversion 2>&1 | head -n 4 %%bash locale print(sys.version) print(time.asctime()) os.environ['CLASSPATH'] pybel.utils.get_version() pybel_tools.utils.get_version() pkg_resources.get_distribution("jnius-indra").version indra.util.get_version.get_version() apoptosis_url = 'https://www.wikipathways.org//wpi/wpi.php?action=downloadFile&type=owl&pwTitle=Pathway:WP254&oldid=95107' apoptosis_path = os.path.join(os.path.expanduser('~'), 'Downloads', 'WP254_95107.owl') if not os.path.exists(apoptosis_path): urlretrieve(apoptosis_url, apoptosis_path) graph = pybel.from_biopax(apoptosis_path) to_jupyter(graph) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Environment Step2: Dependencies Step3: Data Step4: Conversion
15,632
<ASSISTANT_TASK:> Python Code: # the output of plotting commands is displayed inline within frontends, # directly below the code cell that produced it %matplotlib inline from time import time # this python library provides generic shallow (copy) and deep copy (deepcopy) operations from copy import deepcopy # import from Ocelot main modules and functions from ocelot import * # import from Ocelot graphical modules from ocelot.gui.accelerator import * # import injector lattice from ocelot.test.workshop.injector_lattice import * # load beam distribution # this function convert Astra beam distribution to Ocelot format - ParticleArray. ParticleArray is designed for tracking. # in order to work with converters we have to import specific module from ocelot.adaptors from ocelot.adaptors.astra2ocelot import * phi1=18.7268 V1=18.50662e-3/np.cos(phi1*pi/180) C_A1_1_1_I1.v = V1; C_A1_1_1_I1.phi = phi1 C_A1_1_2_I1.v = V1; C_A1_1_2_I1.phi = phi1 C_A1_1_3_I1.v = V1; C_A1_1_3_I1.phi = phi1 C_A1_1_4_I1.v = V1; C_A1_1_4_I1.phi = phi1 C_A1_1_5_I1.v = V1; C_A1_1_5_I1.phi = phi1 C_A1_1_6_I1.v = V1; C_A1_1_6_I1.phi = phi1 C_A1_1_7_I1.v = V1; C_A1_1_7_I1.phi = phi1 C_A1_1_8_I1.v = V1; C_A1_1_8_I1.phi = phi1 phi13=180 V13=-20.2E-3/8/np.cos(phi13*pi/180) C3_AH1_1_1_I1.v=V13; C3_AH1_1_1_I1.phi=phi13 C3_AH1_1_2_I1.v=V13; C3_AH1_1_2_I1.phi=phi13 C3_AH1_1_3_I1.v=V13; C3_AH1_1_3_I1.phi=phi13 C3_AH1_1_4_I1.v=V13; C3_AH1_1_4_I1.phi=phi13 C3_AH1_1_5_I1.v=V13; C3_AH1_1_5_I1.phi=phi13 C3_AH1_1_6_I1.v=V13; C3_AH1_1_6_I1.phi=phi13 C3_AH1_1_7_I1.v=V13; C3_AH1_1_7_I1.phi=phi13 C3_AH1_1_8_I1.v=V13; C3_AH1_1_8_I1.phi=phi13 p_array_init = astraBeam2particleArray(filename='beam_6MeV.ast') bins_start, hist_start = get_current(p_array_init, charge=p_array_init.q_array[0], num_bins=200) plt.title("current: end") plt.plot(bins_start*1000, hist_start) plt.xlabel("s, mm") plt.ylabel("I, A") plt.grid(True) plt.show() # initialization of tracking method method = MethodTM() # for second order tracking we have to choose SecondTM method.global_method = SecondTM # for first order tracking uncomment next line # method.global_method = TransferMap # we will start simulation from point 3.2 from the gun. For this purpose marker was created (start_sim=Marker()) # and placed in 3.2 m after gun # Q_38_I1 is quadrupole between RF cavities 1.3 GHz and 3.9 GHz # C3_AH1_1_8_I1 is the last section of the 3.9 GHz cavity lat = MagneticLattice(cell, start=start_sim, stop=Q_38_I1, method=method) sc1 = SpaceCharge() sc1.nmesh_xyz = [63, 63, 63] sc1.low_order_kick = False sc1.step = 1 sc5 = SpaceCharge() sc5.nmesh_xyz = [63, 63, 63] sc5.step = 5 sc5.low_order_kick = False navi = Navigator(lat) # add physics processes from the first element to the last of the lattice navi.add_physics_proc(sc1, lat.sequence[0], C_A1_1_2_I1) navi.add_physics_proc(sc5, C_A1_1_2_I1, lat.sequence[-1]) # definiing of unit step in [m] navi.unit_step = 0.02 # deep copy of the initial beam distribution p_array = deepcopy(p_array_init) start = time() tws_track, p_array = track(lat, p_array, navi) print("time exec: ", time() - start, "sec") # you can change top_plot argument, for example top_plot=["alpha_x", "alpha_y"] plot_opt_func(lat, tws_track, top_plot=["E"], fig_name=0, legend=False) plt.show() sa, bx_sc, by_sc, bx_wo_sc, by_wo_sc = np.loadtxt("astra_sim.txt", usecols=(0, 1, 2, 3, 4), unpack=True) s = [tw.s for tw in tws_track] bx = [tw.beta_x for tw in tws_track] by = [tw.beta_y for tw in tws_track] ax = plot_API(lat, legend=False) ax.plot(s, bx, "r", label="Ocelot, bx") ax.plot(sa-3.2, bx_sc, "b-",label="ASTRA, bx") ax.plot(s, by, "r", label="Ocelot, by") ax.plot(sa-3.2, by_sc, "b-",label="ASTRA, by") ax.legend() plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Change RF parameters for the comparison with ASTRA Step2: Initializing SpaceCharge Step3: Comparison with ASTRA
15,633
<ASSISTANT_TASK:> Python Code: def print_full(x): pd.set_option('display.max_rows', len(x)) print(x) pd.reset_option('display.max_rows') def get_energy(): import pandas as pd import numpy as np energy = pd.read_excel('Energy Indicators.xls', skiprows=16, skip_footer=38, usecols=range(2,6), names=['Country', 'Energy Supply', 'Energy Supply per Capita', '% Renewable']) energy.drop(energy.index[0], inplace=True) energy.replace('...', np.nan, inplace=True) energy['Energy Supply'] = energy['Energy Supply'] * 1000000 energy['Country'] = energy['Country'].str.replace('\d+', '') energy['Country'] = energy['Country'].str.replace(r"\s\(.*\)","") di = {"Republic of Korea": "South Korea", "United States of America": "United States", "United Kingdom of Great Britain and Northern Ireland": "United Kingdom", "China, Hong Kong Special Administrative Region": "Hong Kong"} energy["Country"].replace(di, inplace=True) return energy def get_gdp(): import pandas as pd import numpy as np GDP = pd.read_csv('world_bank.csv', header=4, usecols=['Country Name', 'Country Code', 'Indicator Code', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014','2015']) di = {"Korea, Rep.": "South Korea", "Iran, Islamic Rep.": "Iran", "Hong Kong SAR, China": "Hong Kong"} GDP["Country Name"].replace(di, inplace=True) GDP.rename(columns={'Country Name':'Country'}, inplace=True) return GDP def get_ScimEn(): import pandas as pd import numpy as np ScimEn = pd.read_excel('scimagojr-3.xlsx') return ScimEn def answer_one(): import pandas as pd import numpy as np energy = get_energy() GDP = get_gdp() ScimEn = get_ScimEn() base = pd.merge(ScimEn.head(16), energy, how='inner') answer = pd.merge(base, GDP) answer.set_index('Country', inplace=True) del answer['Country Code'] del answer['Indicator Code'] return answer answer_one() %%HTML <svg width="800" height="300"> <circle cx="150" cy="180" r="80" fill-opacity="0.2" stroke="black" stroke-width="2" fill="blue" /> <circle cx="200" cy="100" r="80" fill-opacity="0.2" stroke="black" stroke-width="2" fill="red" /> <circle cx="100" cy="100" r="80" fill-opacity="0.2" stroke="black" stroke-width="2" fill="green" /> <line x1="150" y1="125" x2="300" y2="150" stroke="black" stroke-width="2" fill="black" stroke-dasharray="5,3"/> <text x="300" y="165" font-family="Verdana" font-size="35">Everything but this!</text> </svg> def answer_two(): #227 import pandas as pd import numpy as np energy = get_energy() GDP = get_gdp() ScimEn = get_ScimEn() base = pd.merge(ScimEn, energy, how='inner') answer = pd.merge(base, GDP, how='inner') base1 = pd.merge(ScimEn, energy, how='outer') answer1 = pd.merge(base, GDP, how='outer') return (len(answer1) - len(answer)) def answer_three(): Top15 = answer_one() Top15['avgGDP'] = Top15[['2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015']].mean(axis=1) return Top15['avgGDP'].sort_values(ascending=False) def answer_four(): Top15 = answer_one() answer = Top15['2015'].iloc[3] - Top15['2006'].iloc[3] return answer answer_four() def answer_five(): Top15 = answer_one() return Top15['Energy Supply per Capita'].mean() def answer_six(): Top15 = answer_one() answer = (Top15['% Renewable'].idxmax(), Top15['% Renewable'].max()) return answer answer_six() def answer_seven(): Top15 = answer_one() Top15['Cita_ratio'] = Top15['Self-citations']/Top15['Citations'] answer = (Top15['Cita_ratio'].idxmax(), Top15['Cita_ratio'].max()) return answer answer_seven() def answer_eight(): Top15 = answer_one() Top15['Pop_est'] = Top15['Energy Supply']/Top15['Energy Supply per Capita'] answer = Top15['Pop_est'].sort_values(ascending=False) return answer.index[2] answer_eight() def answer_nine(): Top15 = answer_one() Top15['Pop_est'] = Top15['Energy Supply']/Top15['Energy Supply per Capita'] Top15['Est_cite_doc'] = Top15['Citable documents']/Top15['Pop_est'] answer = Top15.corr().iloc[8,-1] return answer answer_nine() # #plot9() # Be sure to comment out plot9() before submitting the assignment! def answer_ten(): import pandas as pd import numpy as np Top15 = answer_one() Top15['HighRenew'] = np.where(Top15['% Renewable'] >= (Top15['% Renewable'].median()), 1, 0) return Top15['HighRenew'] answer_ten() #df = df.set_index('STNAME').groupby(level=0)['CENSUS2010POP'].agg({'avg': np.average}) #pd.cut(df['avg'],5, labels =['Tiny', 'Small', 'Medium', 'Large', 'Heouge'] ) def answer_eleven(): Top15 = answer_one() return "ANSWER" def answer_twelve(): Top15 = answer_one() return "ANSWER" def answer_thirteen(): Top15 = answer_one() Top15['PopEst'] = Top15['Energy Supply']/Top15['Energy Supply per Capita'] answer = Top15['PopEst'].sort_values(ascending=False) PopEst = answer.map('{:,}'.format) return PopEst #answer.astype('str') answer_thirteen() def plot_optional(): import matplotlib as plt %matplotlib inline Top15 = answer_one() ax = Top15.plot(x='Rank', y='% Renewable', kind='scatter', c=['#e41a1c','#377eb8','#e41a1c','#4daf4a','#4daf4a','#377eb8','#4daf4a','#e41a1c', '#4daf4a','#e41a1c','#4daf4a','#4daf4a','#e41a1c','#dede00','#ff7f00'], xticks=range(1,16), s=6*Top15['2014']/10**10, alpha=.75, figsize=[16,6]); for i, txt in enumerate(Top15.index): ax.annotate(txt, [Top15['Rank'][i], Top15['% Renewable'][i]], ha='center') print("This is an example of a visualization that can be created to help understand the data. \ This is a bubble chart showing % Renewable vs. Rank. The size of the bubble corresponds to the countries' \ 2014 GDP, and the color corresponds to the continent.") #plot_optional() # Be sure to comment out plot_optional() before submitting the assignment! <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Question 2 (6.6%) Step2: <br> Step3: Question 4 (6.6%) Step4: Question 5 (6.6%) Step5: Question 6 (6.6%) Step6: Question 7 (6.6%) Step7: Question 8 (6.6%) Step8: Question 9 (6.6%) Step9: Question 10 (6.6%) Step10: Question 11 (6.6%) Step11: Question 12 (6.6%) Step12: Question 13 (6.6%) Step13: Optional
15,634
<ASSISTANT_TASK:> Python Code: # Preview first 5 edges list(g.edges(data=True))[0:5] # Preview first 10 nodes list(g.nodes(data=True))[0:10] ## Summary Stats print('# of edges: {}'.format(g.number_of_edges())) print('# of nodes: {}'.format(g.number_of_nodes())) # Define node positions data structure (dict) for plotting node_positions = {node[0]: (node[1]['X'], -node[1]['Y']) for node in g.nodes(data=True)} # Preview of node_positions with a bit of hack (there is no head/slice method for dictionaries). dict(list(node_positions.items())[0:5]) # Define data structure (list) of edge colors for plotting edge_colors = [e[2]['attr_dict']['color'] for e in g.edges(data=True)] # Preview first 10 edge_colors[0:10] plt.figure(figsize=(8, 6)) nx.draw(g, pos=node_positions, edge_color=edge_colors, node_size=10, node_color='black') plt.title('Graph Representation of Sleeping Giant Trail Map', size=15) plt.show() list(g.nodes(data=True)) # Calculate list of nodes with odd degree nodes_odd_degree = [v for v, d in g.degree() if d % 2 ==1] # Preview (nodes_odd_degree[0:5]) print('Number of nodes of odd degree: {}'.format(len(nodes_odd_degree))) print('Number of total nodes: {}'.format(len(g.nodes()))) # Compute all pairs of odd nodes. in a list of tuples odd_node_pairs = list(itertools.combinations(nodes_odd_degree, 2)) # Preview pairs of odd degree nodes odd_node_pairs[0:10] print('Number of pairs: {}'.format(len(odd_node_pairs))) def get_shortest_paths_distances(graph, pairs, edge_weight_name): Compute shortest distance between each pair of nodes in a graph. Return a dictionary keyed on node pairs (tuples). distances = {} for pair in pairs: distances[pair] = nx.dijkstra_path_length(graph, pair[0], pair[1], weight=edge_weight_name) return distances # Compute shortest paths. Return a dictionary with node pairs keys and a single value equal to shortest path distance. odd_node_pairs_shortest_paths = get_shortest_paths_distances(g, odd_node_pairs, 'distance') # Preview with a bit of hack (there is no head/slice method for dictionaries). dict(list(odd_node_pairs_shortest_paths.items())[0:10]) def create_complete_graph(pair_weights, flip_weights=True): Create a completely connected graph using a list of vertex pairs and the shortest path distances between them Parameters: pair_weights: list[tuple] from the output of get_shortest_paths_distances flip_weights: Boolean. Should we negate the edge attribute in pair_weights? g = nx.Graph() for k, v in pair_weights.items(): wt_i = - v if flip_weights else v g.add_edge(k[0], k[1], attr_dict={'distance': v, 'weight': wt_i}) return g # Generate the complete graph g_odd_complete = create_complete_graph(odd_node_pairs_shortest_paths, flip_weights=True) # Counts print('Number of nodes: {}'.format(len(g_odd_complete.nodes()))) print('Number of edges: {}'.format(len(g_odd_complete.edges()))) # Plot the complete graph of odd-degree nodes plt.figure(figsize=(8, 6)) pos_random = nx.random_layout(g_odd_complete) nx.draw_networkx_nodes(g_odd_complete, node_positions, node_size=20, node_color="red") nx.draw_networkx_edges(g_odd_complete, node_positions, alpha=0.1) plt.axis('off') plt.title('Complete Graph of Odd-degree Nodes') plt.show() # Compute min weight matching. # Note: max_weight_matching uses the 'weight' attribute by default as the attribute to maximize. odd_matching_dupes = nx.algorithms.max_weight_matching(g_odd_complete, True) print('Number of edges in matching: {}'.format(len(odd_matching_dupes))) odd_matching_dupes list(odd_matching_dupes) # Convert matching to list of deduped tuples odd_matching = list(odd_matching_dupes) # Counts print('Number of edges in matching (deduped): {}'.format(len(odd_matching))) plt.figure(figsize=(8, 6)) # Plot the complete graph of odd-degree nodes nx.draw(g_odd_complete, pos=node_positions, node_size=20, alpha=0.05) # Create a new graph to overlay on g_odd_complete with just the edges from the min weight matching g_odd_complete_min_edges = nx.Graph(odd_matching) nx.draw(g_odd_complete_min_edges, pos=node_positions, node_size=20, edge_color='blue', node_color='red') plt.title('Min Weight Matching on Complete Graph') plt.show() plt.figure(figsize=(8, 6)) # Plot the original trail map graph nx.draw(g, pos=node_positions, node_size=20, alpha=0.1, node_color='black') # Plot graph to overlay with just the edges from the min weight matching nx.draw(g_odd_complete_min_edges, pos=node_positions, node_size=20, alpha=1, node_color='red', edge_color='blue') plt.title('Min Weight Matching on Orginal Graph') plt.show() def add_augmenting_path_to_graph(graph, min_weight_pairs): Add the min weight matching edges to the original graph Parameters: graph: NetworkX graph (original graph from trailmap) min_weight_pairs: list[tuples] of node pairs from min weight matching Returns: augmented NetworkX graph # We need to make the augmented graph a MultiGraph so we can add parallel edges graph_aug = nx.MultiGraph(graph.copy()) for pair in min_weight_pairs: graph_aug.add_edge(pair[0], pair[1], attr_dict={'distance': nx.dijkstra_path_length(graph, pair[0], pair[1]), 'trail': 'augmented'} ) return graph_aug # Create augmented graph: add the min weight matching edges to g g_aug = add_augmenting_path_to_graph(g, odd_matching) # Counts print('Number of edges in original graph: {}'.format(len(g.edges()))) print('Number of edges in augmented graph: {}'.format(len(g_aug.edges()))) naive_euler_circuit = list(nx.eulerian_circuit(g_aug, source='b_end_east')) print('Length of eulerian circuit: {}'.format(len(naive_euler_circuit))) naive_euler_circuit[0:10] def create_eulerian_circuit(graph_augmented, graph_original, starting_node=None): Create the eulerian path using only edges from the original graph. euler_circuit = [] naive_circuit = list(nx.eulerian_circuit(graph_augmented, source=starting_node)) for edge in naive_circuit: edge_data = graph_augmented.get_edge_data(edge[0], edge[1]) #print(edge_data[0]) if edge_data[0]['attr_dict']['trail'] != 'augmented': # If `edge` exists in original graph, grab the edge attributes and add to eulerian circuit. edge_att = graph_original[edge[0]][edge[1]] euler_circuit.append((edge[0], edge[1], edge_att)) else: aug_path = nx.shortest_path(graph_original, edge[0], edge[1], weight='distance') aug_path_pairs = list(zip(aug_path[:-1], aug_path[1:])) print('Filling in edges for augmented edge: {}'.format(edge)) print('Augmenting path: {}'.format(' => '.join(aug_path))) print('Augmenting path pairs: {}\n'.format(aug_path_pairs)) # If `edge` does not exist in original graph, find the shortest path between its nodes and # add the edge attributes for each link in the shortest path. for edge_aug in aug_path_pairs: edge_aug_att = graph_original[edge_aug[0]][edge_aug[1]] euler_circuit.append((edge_aug[0], edge_aug[1], edge_aug_att)) return euler_circuit # Create the Eulerian circuit euler_circuit = create_eulerian_circuit(g_aug, g, 'b_end_east') print('Length of Eulerian circuit: {}'.format(len(euler_circuit))) ## CPP Solution # Preview first 20 directions of CPP solution for i, edge in enumerate(euler_circuit[0:20]): print(i, edge) # Computing some stats total_mileage_of_circuit = sum([edge[2]['attr_dict']['distance'] for edge in euler_circuit]) total_mileage_on_orig_trail_map = sum(nx.get_edge_attributes(g, 'distance').values()) _vcn = pd.value_counts(pd.value_counts([(e[0]) for e in euler_circuit]), sort=False) node_visits = pd.DataFrame({'n_visits': _vcn.index, 'n_nodes': _vcn.values}) _vce = pd.value_counts(pd.value_counts([sorted(e)[0] + sorted(e)[1] for e in nx.MultiDiGraph(euler_circuit).edges()])) edge_visits = pd.DataFrame({'n_visits': _vce.index, 'n_edges': _vce.values}) # Printing stats print('Mileage of circuit: {0:.2f}'.format(total_mileage_of_circuit)) print('Mileage on original trail map: {0:.2f}'.format(total_mileage_on_orig_trail_map)) print('Mileage retracing edges: {0:.2f}'.format(total_mileage_of_circuit-total_mileage_on_orig_trail_map)) #print('Percent of mileage retraced: {0:.2f}%\n'.format((1-total_mileage_of_circuit/total_mileage_on_orig_trail_map)*-100)) print('Number of edges in circuit: {}'.format(len(euler_circuit))) print('Number of edges in original graph: {}'.format(len(g.edges()))) print('Number of nodes in original graph: {}\n'.format(len(g.nodes()))) print('Number of edges traversed more than once: {}\n'.format(len(euler_circuit)-len(g.edges()))) print('Number of times visiting each node:') print(node_visits.to_string(index=False)) print('\nNumber of times visiting each edge:') print(edge_visits.to_string(index=False)) def create_cpp_edgelist(euler_circuit): Create the edgelist without parallel edge for the visualization Combine duplicate edges and keep track of their sequence and # of walks Parameters: euler_circuit: list[tuple] from create_eulerian_circuit cpp_edgelist = {} for i, e in enumerate(euler_circuit): edge = frozenset([e[0], e[1]]) if edge in cpp_edgelist: cpp_edgelist[edge][2]['sequence'] += ', ' + str(i) cpp_edgelist[edge][2]['visits'] += 1 else: cpp_edgelist[edge] = e cpp_edgelist[edge][2]['sequence'] = str(i) cpp_edgelist[edge][2]['visits'] = 1 return list(cpp_edgelist.values()) cpp_edgelist = create_cpp_edgelist(euler_circuit) print('Number of edges in CPP edge list: {}'.format(len(cpp_edgelist))) cpp_edgelist[0:3] g_cpp = nx.Graph(cpp_edgelist) plt.figure(figsize=(14, 10)) visit_colors = {1:'lightgray', 2:'blue', 3: 'red', 4 : 'black', 5 : 'green'} edge_colors = [visit_colors[e[2]['visits']] for e in g_cpp.edges(data=True)] node_colors = ['red' if node in nodes_odd_degree else 'lightgray' for node in g_cpp.nodes()] nx.draw_networkx(g_cpp, pos=node_positions, node_size=20, node_color=node_colors, edge_color=edge_colors, with_labels=False) plt.axis('off') plt.show() plt.figure(figsize=(14, 10)) edge_colors = [e[2]['attr_dict']['color'] for e in g_cpp.edges(data=True)] nx.draw_networkx(g_cpp, pos=node_positions, node_size=10, node_color='black', edge_color=edge_colors, with_labels=False, alpha=0.5) bbox = {'ec':[1,1,1,0], 'fc':[1,1,1,0]} # hack to label edges over line (rather than breaking up line) edge_labels = nx.get_edge_attributes(g_cpp, 'sequence') nx.draw_networkx_edge_labels(g_cpp, pos=node_positions, edge_labels=edge_labels, bbox=bbox, font_size=6) plt.axis('off') plt.show() visit_colors = {1:'lightgray', 2:'blue', 3: 'red', 4 : 'black', 5 : 'green'} edge_cnter = {} g_i_edge_colors = [] for i, e in enumerate(euler_circuit, start=1): edge = frozenset([e[0], e[1]]) if edge in edge_cnter: edge_cnter[edge] += 1 else: edge_cnter[edge] = 1 # Full graph (faded in background) nx.draw_networkx(g_cpp, pos=node_positions, node_size=6, node_color='gray', with_labels=False, alpha=0.07) # Edges walked as of iteration i euler_circuit_i = copy.deepcopy(euler_circuit[0:i]) for i in range(len(euler_circuit_i)): edge_i = frozenset([euler_circuit_i[i][0], euler_circuit_i[i][1]]) euler_circuit_i[i][2]['visits_i'] = edge_cnter[edge_i] g_i = nx.Graph(euler_circuit_i) g_i_edge_colors = [visit_colors[e[2]['visits_i']] for e in g_i.edges(data=True)] nx.draw_networkx_nodes(g_i, pos=node_positions, node_size=6, alpha=0.6, node_color='lightgray', with_labels=False, linewidths=0.1) nx.draw_networkx_edges(g_i, pos=node_positions, edge_color=g_i_edge_colors, alpha=0.8) plt.axis('off') plt.savefig('img{}.png'.format(i), dpi=120, bbox_inches='tight') plt.close() import glob import numpy as np import imageio import os def make_circuit_video(image_path, movie_filename, fps=7): # sorting filenames in order filenames = glob.glob(image_path + 'img*.png') filenames_sort_indices = np.argsort([int(os.path.basename(filename).split('.')[0][3:]) for filename in filenames]) filenames = [filenames[i] for i in filenames_sort_indices] # make movie with imageio.get_writer(movie_filename, mode='I', fps=fps) as writer: for filename in filenames: image = imageio.imread(filename) writer.append_data(image) make_circuit_video('', 'cpp_route_animation.gif', fps=3) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Nodes Step2: Visualize Step3: Colors Step4: Solving the Chinese Postman Problem is quite simple conceptually Step6: CPP Step 2 Step8: Step 2.3 Step9: For a visual prop, the fully connected graph of odd degree node pairs is plotted below. Note that you preserve the X, Y coordinates of each node, but the edges do not necessarily represent actual trails. For example, two nodes could be connected by a single edge in this graph, but the shortest path between them could be 5 hops through even degree nodes (not shown here). Step10: Step 2.4 Step11: The matching output (odd_matching_dupes) is a dictionary. Although there are 36 edges in this matching, you only want 18. Each edge-pair occurs twice (once with node 1 as the key and a second time with node 2 as the key of the dictionary). Step12: To illustrate how this fits in with the original graph, you plot the same min weight pairs (blue lines), but over the trail map (faded) instead of the complete graph. Again, note that the blue lines are the bushwhacking route (as the crow flies edges, not actual trails). You still have a little bit of work to do to find the edges that comprise the shortest route between each pair in Step 3. Step14: Step 2.5 Step15: CPP Step 3 Step17: Correct Circuit Step18: Stats Step20: Create CPP Graph
15,635
<ASSISTANT_TASK:> Python Code: permutation = np.random.permutation(len(iris_target)) iris_data = np.take(iris_data, permutation, axis=0) iris_target = np.take(iris_target, permutation) # Function to plot data def plot_data(colors, names, data, target): plt.figure(figsize=(8, 8)) N = len(names) for color, i, target_name in zip(colors, list(range(N)), names): plt.scatter(data[target == i, 0], data[target == i, 1], color=color, lw=2, label=target_name) plt.title("Incremental PCA of iris dataset") plt.show() ipca = IncrementalPCA(n_components=2) # Colors used in the plot. Each color represents a target. colors = ['navy', 'turquoise', 'darkorange'] WINDOW_SIZE = 50 for step_number in range(3): data = iris_data[ WINDOW_SIZE*step_number: WINDOW_SIZE*(step_number+1), :] iris_data_principal_components = ipca.partial_fit(data) transformed_data = iris_data_principal_components.transform( iris_data[:WINDOW_SIZE*(step_number+1)]) target = iris_target[:WINDOW_SIZE*(step_number+1)] plot_data(colors, iris_names, transformed_data, target) import sys sys.path.append("../") from IoTPy.core.stream import Stream, StreamArray, run from IoTPy.agent_types.merge import merge_window, zip_stream from IoTPy.core.helper_control import _multivalue from IoTPy.helper_functions.recent_values import recent_values ipca = IncrementalPCA(n_components=2) data_stream = StreamArray(name='data_stream', dimension=4, dtype=float) target_stream = StreamArray(name='target_stream', dtype=int) transformed_stream = StreamArray(name='transformed_stream', dimension=2, dtype=float) def f(windows, state): data, target = windows saved_data, saved_target = state iris_data_principal_components = ipca.partial_fit(data) saved_data = (data if saved_data is None else np.concatenate((saved_data, data), axis=0)) saved_target = (target if saved_target is None else np.concatenate((saved_target, target), axis=0)) next_state = saved_data, saved_target transformed_data = iris_data_principal_components.transform( saved_data) output_data = iris_data_principal_components.transform(data) plot_data(colors, iris_names, transformed_data, saved_target) return _multivalue(output_data), next_state merge_window(func=f, in_streams=[data_stream, target_stream], out_stream=transformed_stream, state=(None, None), window_size=50, step_size=50) #file_stream = StreamArray(name='file_stream', dimension=3, dtype=float) file_stream = Stream(name='file_stream') zip_stream([transformed_stream, target_stream], file_stream) data_stream.extend(iris_data) target_stream.extend(iris_target) run() print (recent_values(file_stream)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create an incremental PCA object Step2: IoTPy
15,636
<ASSISTANT_TASK:> Python Code: # A bit of setup import numpy as np import matplotlib.pyplot as plt from cs231n.classifiers.neural_net import TwoLayerNet %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # for auto-reloading external modules # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython %load_ext autoreload %autoreload 2 def rel_error(x, y): returns relative error return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y)))) # Create a small net and some toy data to check your implementations. # Note that we set the random seed for repeatable experiments. input_size = 4 hidden_size = 10 num_classes = 3 num_inputs = 5 def init_toy_model(): np.random.seed(0) return TwoLayerNet(input_size, hidden_size, num_classes, std=1e-1) def init_toy_data(): np.random.seed(1) X = 10 * np.random.randn(num_inputs, input_size) y = np.array([0, 1, 2, 2, 1]) return X, y net = init_toy_model() X, y = init_toy_data() scores = net.loss(X) print 'Your scores:' print scores print print 'correct scores:' correct_scores = np.asarray([ [-0.81233741, -1.27654624, -0.70335995], [-0.17129677, -1.18803311, -0.47310444], [-0.51590475, -1.01354314, -0.8504215 ], [-0.15419291, -0.48629638, -0.52901952], [-0.00618733, -0.12435261, -0.15226949]]) print correct_scores print # The difference should be very small. We get < 1e-7 print 'Difference between your scores and correct scores:' print np.sum(np.abs(scores - correct_scores)) loss, _ = net.loss(X, y, reg=0.1) correct_loss = 1.30378789133 print loss # should be very small, we get < 1e-12 print 'Difference between your loss and correct loss:' print np.sum(np.abs(loss - correct_loss)) from cs231n.gradient_check import eval_numerical_gradient # Use numeric gradient checking to check your implementation of the backward pass. # If your implementation is correct, the difference between the numeric and # analytic gradients should be less than 1e-8 for each of W1, W2, b1, and b2. loss, grads = net.loss(X, y, reg=0.1) # these should all be less than 1e-8 or so for param_name in grads: f = lambda W: net.loss(X, y, reg=0.1)[0] param_grad_num = eval_numerical_gradient(f, net.params[param_name], verbose=False) print '%s max relative error: %e' % (param_name, rel_error(param_grad_num, grads[param_name])) net = init_toy_model() stats = net.train(X, y, X, y, learning_rate=1e-1, reg=1e-5, num_iters=100, verbose=False) print 'Final training loss: ', stats['loss_history'][-1] # plot the loss history plt.plot(stats['loss_history']) plt.xlabel('iteration') plt.ylabel('training loss') plt.title('Training Loss history') plt.show() from cs231n.data_utils import load_CIFAR10 def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000): Load the CIFAR-10 dataset from disk and perform preprocessing to prepare it for the two-layer neural net classifier. These are the same steps as we used for the SVM, but condensed to a single function. # Load the raw CIFAR-10 data cifar10_dir = 'cs231n/datasets/cifar-10-batches-py' X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) # Subsample the data mask = range(num_training, num_training + num_validation) X_val = X_train[mask] y_val = y_train[mask] mask = range(num_training) X_train = X_train[mask] y_train = y_train[mask] mask = range(num_test) X_test = X_test[mask] y_test = y_test[mask] # Normalize the data: subtract the mean image mean_image = np.mean(X_train, axis=0) X_train -= mean_image X_val -= mean_image X_test -= mean_image # Reshape data to rows X_train = X_train.reshape(num_training, -1) X_val = X_val.reshape(num_validation, -1) X_test = X_test.reshape(num_test, -1) return X_train, y_train, X_val, y_val, X_test, y_test # Invoke the above function to get our data. X_train, y_train, X_val, y_val, X_test, y_test = get_CIFAR10_data() print 'Train data shape: ', X_train.shape print 'Train labels shape: ', y_train.shape print 'Validation data shape: ', X_val.shape print 'Validation labels shape: ', y_val.shape print 'Test data shape: ', X_test.shape print 'Test labels shape: ', y_test.shape input_size = 32 * 32 * 3 hidden_size = 50 num_classes = 10 net = TwoLayerNet(input_size, hidden_size, num_classes) # Train the network stats = net.train(X_train, y_train, X_val, y_val, num_iters=1000, batch_size=200, learning_rate=1e-4, learning_rate_decay=0.95, reg=0.5, verbose=True) # Predict on the validation set val_acc = (net.predict(X_val) == y_val).mean() print 'Validation accuracy: ', val_acc # Plot the loss function and train / validation accuracies plt.subplot(2, 1, 1) plt.plot(stats['loss_history']) plt.title('Loss history') plt.xlabel('Iteration') plt.ylabel('Loss') plt.subplot(2, 1, 2) plt.plot(stats['train_acc_history'], label='train') plt.plot(stats['val_acc_history'], label='val') plt.title('Classification accuracy history') plt.xlabel('Epoch') plt.ylabel('Clasification accuracy') plt.show() from cs231n.vis_utils import visualize_grid # Visualize the weights of the network def show_net_weights(net): W1 = net.params['W1'] W1 = W1.reshape(32, 32, 3, -1).transpose(3, 0, 1, 2) plt.imshow(visualize_grid(W1, padding=3).astype('uint8')) plt.gca().axis('off') plt.show() show_net_weights(net) best_net = None # store the best model into this ################################################################################# # TODO: Tune hyperparameters using the validation set. Store your best trained # # model in best_net. # # # # To help debug your network, it may help to use visualizations similar to the # # ones we used above; these visualizations will have significant qualitative # # differences from the ones we saw above for the poorly tuned network. # # # # Tweaking hyperparameters by hand can be fun, but you might find it useful to # # write code to sweep through possible combinations of hyperparameters # # automatically like we did on the previous exercises. # ################################################################################# pass ################################################################################# # END OF YOUR CODE # ################################################################################# # visualize the weights of the best network show_net_weights(best_net) test_acc = (best_net.predict(X_test) == y_test).mean() print 'Test accuracy: ', test_acc <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Implementing a Neural Network Step2: We will use the class TwoLayerNet in the file cs231n/classifiers/neural_net.py to represent instances of our network. The network parameters are stored in the instance variable self.params where keys are string parameter names and values are numpy arrays. Below, we initialize toy data and a toy model that we will use to develop your implementation. Step3: Forward pass Step4: Forward pass Step5: Backward pass Step6: Train the network Step8: Load the data Step9: Train a network Step10: Debug the training Step11: Tune your hyperparameters Step12: Run on the test set
15,637
<ASSISTANT_TASK:> Python Code: year = 2015 print(year) print(year) year = 2016 %reset print(year) import cv2 import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np # another magic function, this allows you to view plots in the notebook %matplotlib inline first = ["tags/first0.png", "tags/first1.png", "tags/first2.png", "tags/first3.png", "tags/first4.png", "tags/first5.png"] second = ["tags/second0.png", "tags/second1.png", "tags/second2.png", "tags/second3.png"] queen = ["tags/queen0.png", "tags/queen1.png", "tags/queen2.png"] mixed = [] for image_location in [first[0], second[0], queen[0]]: image = cv2.imread(image_location, 1) mixed.append(image) for image in mixed: gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) plt.figure(figsize = (27, 15)) plt.imshow(image, cmap = cm.Greys_r) for image in mixed: gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) smoothed = cv2.blur(gray_image, (25, 25)) ret, thresh = cv2.threshold(smoothed, 90, 255, cv2.THRESH_BINARY) plt.figure(figsize = (27, 15)) plt.imshow(smoothed, cmap = cm.Greys_r) plt.figure(figsize = (27, 15)) plt.imshow(thresh, cmap = cm.Greys_r) lowThreshold = 50 ratio = 3 for image in mixed: gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) smoothed = cv2.GaussianBlur(gray_image, (9, 9), 0) edges = cv2.Canny(smoothed, lowThreshold, lowThreshold * ratio, apertureSize=3) ret, thresh = cv2.threshold(edges, 100, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) drawn_image = image.copy() cv2.drawContours(drawn_image, contours, -1, (255,0,0), 3) plt.figure(figsize = (27, 15)) plt.imshow(drawn_image) for image in mixed: gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #smoothed = cv2.GaussianBlur(gray_image, (7, 7), 0) #smoothed = cv2.GaussianBlur(gray_image, (9, 9), 0) smoothed = cv2.medianBlur(gray_image, 5) #smoothed = cv2.blur(gray_image, (5,5)) edges = cv2.Laplacian(smoothed, cv2.CV_16S, ksize=3, scale=1, delta=0) edges = cv2.convertScaleAbs(edges) plt.figure(figsize = (27, 15)) plt.imshow(edges, cmap = cm.Greys_r) #ret, thresh = cv2.threshold(edges, 10, 255, cv2.THRESH_BINARY) #plt.figure(figsize = (27, 15)) #plt.imshow(thresh, cmap = cm.Greys_r) #opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_RECT,(5, 5))) #opening = cv2.dilate(opening,cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(17, 17)), 1) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) #kernel = np.ones((13,13),np.uint8) #opening = cv2.dilate(opening,cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11, 11)), 1) drawn_image = image.copy() for i, cnt in enumerate(contours): area = cv2.contourArea(contours[i]) if area > 200: cv2.drawContours(drawn_image, contours, i, (255,0,0), 5) #plt.figure(figsize = (27, 15)) #plt.imshow(image) plt.figure(figsize = (27, 15)) plt.imshow(drawn_image) print("\n") for image in mixed: grad_x = cv2.Sobel(image, cv2.CV_16S, 1, 0, ksize=3, scale=3, delta=20, borderType=cv2.BORDER_DEFAULT) grad_y = cv2.Sobel(image, cv2.CV_16S, 0, 1, ksize=3, scale=3, delta=20, borderType=cv2.BORDER_DEFAULT) abs_grad_x = cv2.convertScaleAbs(grad_x) abs_grad_y = cv2.convertScaleAbs(grad_y) edges = cv2.addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0) plt.figure(figsize = (27, 15)) plt.imshow(image, cmap = cm.Greys_r) plt.figure(figsize = (27, 15)) plt.imshow(edges, cmap = cm.Greys_r) for image in mixed: gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) smoothed = cv2.GaussianBlur(gray_image, (9, 9), 0) #smoothed = cv2.medianBlur(gray_image, 3) #smoothed = cv2.blur(gray_image, (5,5)) plt.figure(figsize = (27, 15)) plt.imshow(smoothed, cmap = cm.Greys_r) grad_x = cv2.Scharr(smoothed, cv2.CV_16S, 1, 0, scale=1.5, delta=1, borderType=cv2.BORDER_DEFAULT) grad_y = cv2.Scharr(smoothed, cv2.CV_16S, 0, 1, scale=1.5, delta=1, borderType=cv2.BORDER_DEFAULT) abs_grad_x = cv2.convertScaleAbs(grad_x) abs_grad_y = cv2.convertScaleAbs(grad_y) edges = cv2.addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0) plt.figure(figsize = (27, 15)) plt.imshow(edges, cmap = cm.Greys_r) edges = cv2.blur(edges, (11,11)) ret, thresh = cv2.threshold(edges, 140, 255, cv2.THRESH_BINARY) plt.figure(figsize = (27, 15)) plt.imshow(thresh, cmap = cm.Greys_r) opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5, 5))) contours, hierarchy = cv2.findContours(opening, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) drawn_image = image.copy() for i, cnt in enumerate(contours): area = cv2.contourArea(contours[i]) if area > 100: cv2.drawContours(drawn_image, contours, i, (255,0,0), 5) plt.figure(figsize = (27, 15)) plt.imshow(drawn_image) print("\n") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The notebook allows you to prototype code and plots quickly without having to reload data in each time. Can can be useful if you're experimenting with your data and it takes several minutes to load into Python each time. However, you have to be careful when changing variables and the order you execute cells in, otherwise you may end up with different values than you expect. Step2: Handy Notebook Tips Step3: How I've been using the notebook Step4: Read Images Step5: I now have three 4K images loaded into the notebook. So long as I do not overwrite them, or change the original variables, I no longer have to repeatedly read these images in to memory when I run my program. Step6: Canny Step7: Laplacian Step8: Sobel Step9: Scharr
15,638
<ASSISTANT_TASK:> Python Code: !pip install git+https://github.com/google/starthinker from starthinker.util.configuration import Configuration CONFIG = Configuration( project="", client={}, service={}, user="/content/user.json", verbose=True ) FIELDS = { 'auth_write':'service', # Authorization used for writing data. 'auth_read':'service', # Authorization for reading GA360. 'view':'service', # View Id 'recipe_slug':'', # Name of Google BigQuery dataset to create. } print("Parameters Set To: %s" % FIELDS) from starthinker.util.configuration import execute from starthinker.util.recipe import json_set_fields TASKS = [ { 'dataset':{ 'description':'Create a dataset for bigquery tables.', 'hour':[ 4 ], 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Credentials used for writing data.'}}, 'dataset':{'field':{'name':'recipe_slug','kind':'string','description':'Place where tables will be created in BigQuery.'}} } }, { 'bigquery':{ 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Credentials used for writing function.'}}, 'function':'Pearson Significance Test', 'to':{ 'dataset':{'field':{'name':'recipe_slug','kind':'string','order':4,'default':'','description':'Name of Google BigQuery dataset to create.'}} } } }, { 'ga':{ 'auth':{'field':{'name':'auth_read','kind':'authentication','order':1,'default':'service','description':'Authorization for reading GA360.'}}, 'kwargs':{ 'reportRequests':[ { 'viewId':{'field':{'name':'view','kind':'string','order':2,'default':'service','description':'View Id'}}, 'dateRanges':[ { 'startDate':'90daysAgo', 'endDate':'today' } ], 'dimensions':[ { 'name':'ga:userType' }, { 'name':'ga:userDefinedValue' }, { 'name':'ga:latitude' }, { 'name':'ga:longitude' } ], 'metrics':[ { 'expression':'ga:users' }, { 'expression':'ga:sessionsPerUser' }, { 'expression':'ga:bounces' }, { 'expression':'ga:timeOnPage' }, { 'expression':'ga:pageviews' } ] } ], 'useResourceQuotas':False }, 'out':{ 'bigquery':{ 'dataset':{'field':{'name':'recipe_slug','kind':'string','order':4,'default':'','description':'Name of Google BigQuery dataset to create.'}}, 'table':'GA360_KPI' } } } }, { 'bigquery':{ 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Authorization used for writing data.'}}, 'from':{ 'query':'WITH GA360_SUM AS ( SELECT A.Dimensions.userType AS User_Type, A.Dimensions.userDefinedValue AS User_Value, B.zip_code AS Zip, SUM(Metrics.users) AS Users, SUM(Metrics.sessionsPerUser) AS Sessions, SUM(Metrics.timeOnPage) AS Time_On_Site, SUM(Metrics.bounces) AS Bounces, SUM(Metrics.pageviews) AS Page_Views FROM `{dataset}.GA360_KPI` AS A JOIN `bigquery-public-data.geo_us_boundaries.zip_codes` AS B ON ST_WITHIN(ST_GEOGPOINT(A.Dimensions.longitude, A.Dimensions.latitude), B.zip_code_geom) GROUP BY 1,2,3 ) SELECT User_Type, User_Value, Zip, Users, SAFE_DIVIDE(Users, SUM(Users) OVER()) AS User_Percent, SAFE_DIVIDE(Sessions, SUM(Sessions) OVER()) AS Impression_Percent, SAFE_DIVIDE(Time_On_Site, SUM(Time_On_Site) OVER()) AS Time_On_Site_Percent, SAFE_DIVIDE(Bounces, SUM(Bounces) OVER()) AS Bounce_Percent, SAFE_DIVIDE(Page_Views, SUM(Page_Views) OVER()) AS Page_View_Percent FROM GA360_SUM ', 'parameters':{ 'dataset':{'field':{'name':'recipe_slug','kind':'string','description':'Place where tables will be created in BigQuery.'}} }, 'legacy':False }, 'to':{ 'dataset':{'field':{'name':'recipe_slug','kind':'string','description':'Place where tables will be written in BigQuery.'}}, 'view':'GA360_KPI_Normalized' } } }, { 'census':{ 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Authorization used for writing data.'}}, 'normalize':{ 'census_geography':'zip_codes', 'census_year':'2018', 'census_span':'5yr' }, 'to':{ 'dataset':{'field':{'name':'recipe_slug','kind':'string','order':4,'default':'','description':'Name of Google BigQuery dataset to create.'}}, 'type':'view' } } }, { 'census':{ 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Authorization used for writing data.'}}, 'correlate':{ 'join':'Zip', 'pass':[ 'User_Type', 'User_Value' ], 'sum':[ 'Users' ], 'correlate':[ 'User_Percent', 'Impression_Percent', 'Time_On_Site_Percent', 'Bounce_Percent', 'Page_View_Percent' ], 'dataset':{'field':{'name':'recipe_slug','kind':'string','order':4,'default':'','description':'Name of Google BigQuery dataset to create.'}}, 'table':'GA360_KPI_Normalized', 'significance':80 }, 'to':{ 'dataset':{'field':{'name':'recipe_slug','kind':'string','order':4,'default':'','description':'Name of Google BigQuery dataset to create.'}}, 'type':'view' } } } ] json_set_fields(TASKS, FIELDS) execute(CONFIG, TASKS, force=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2. Set Configuration Step2: 3. Enter GA360 Segmentology Recipe Parameters Step3: 4. Execute GA360 Segmentology
15,639
<ASSISTANT_TASK:> Python Code: # Python 2 only: print 'Hello' # Python 2 and 3: print('Hello') # Python 2 only: print 'Hello', 'Guido' # Python 2 and 3: from __future__ import print_function # (at top of module) print('Hello', 'Guido') # Python 2 only: print >> sys.stderr, 'Hello' # Python 2 and 3: from __future__ import print_function print('Hello', file=sys.stderr) # Python 2 only: print 'Hello', # Python 2 and 3: from __future__ import print_function print('Hello', end='') # Python 2 only: raise ValueError, "dodgy value" # Python 2 and 3: raise ValueError("dodgy value") # Python 2 only: traceback = sys.exc_info()[2] raise ValueError, "dodgy value", traceback # Python 3 only: raise ValueError("dodgy value").with_traceback() # Python 2 and 3: option 1 from six import reraise as raise_ # or from future.utils import raise_ traceback = sys.exc_info()[2] raise_(ValueError, "dodgy value", traceback) # Python 2 and 3: option 2 from future.utils import raise_with_traceback raise_with_traceback(ValueError("dodgy value")) # Setup: class DatabaseError(Exception): pass # Python 3 only class FileDatabase: def __init__(self, filename): try: self.file = open(filename) except IOError as exc: raise DatabaseError('failed to open') from exc # Python 2 and 3: from future.utils import raise_from class FileDatabase: def __init__(self, filename): try: self.file = open(filename) except IOError as exc: raise_from(DatabaseError('failed to open'), exc) # Testing the above: try: fd = FileDatabase('non_existent_file.txt') except Exception as e: assert isinstance(e.__cause__, IOError) # FileNotFoundError on Py3.3+ inherits from IOError # Python 2 only: try: ... except ValueError, e: ... # Python 2 and 3: try: ... except ValueError as e: ... # Python 2 only: assert 2 / 3 == 0 # Python 2 and 3: assert 2 // 3 == 0 # Python 3 only: assert 3 / 2 == 1.5 # Python 2 and 3: from __future__ import division # (at top of module) assert 3 / 2 == 1.5 # Python 2 only: a = b / c # with any types # Python 2 and 3: from past.utils import old_div a = old_div(b, c) # always same as / on Py2 # Python 2 only k = 9223372036854775808L # Python 2 and 3: k = 9223372036854775808 # Python 2 only bigint = 1L # Python 2 and 3 from builtins import int bigint = int(1) # Python 2 only: if isinstance(x, (int, long)): ... # Python 3 only: if isinstance(x, int): ... # Python 2 and 3: option 1 from builtins import int # subclass of long on Py2 if isinstance(x, int): # matches both int and long on Py2 ... # Python 2 and 3: option 2 from past.builtins import long if isinstance(x, (int, long)): ... 0644 # Python 2 only 0o644 # Python 2 and 3 `x` # Python 2 only repr(x) # Python 2 and 3 class BaseForm(object): pass class FormType(type): pass # Python 2 only: class Form(BaseForm): __metaclass__ = FormType pass # Python 3 only: class Form(BaseForm, metaclass=FormType): pass # Python 2 and 3: from six import with_metaclass # or from future.utils import with_metaclass class Form(with_metaclass(FormType, BaseForm)): pass # Python 2 only s1 = 'The Zen of Python' s2 = u'きたないのよりきれいな方がいい\n' # Python 2 and 3 s1 = u'The Zen of Python' s2 = u'きたないのよりきれいな方がいい\n' # Python 2 and 3 from __future__ import unicode_literals # at top of module s1 = 'The Zen of Python' s2 = 'きたないのよりきれいな方がいい\n' # Python 2 only s = 'This must be a byte-string' # Python 2 and 3 s = b'This must be a byte-string' # Python 2 only: for bytechar in 'byte-string with high-bit chars like \xf9': ... # Python 3 only: for myint in b'byte-string with high-bit chars like \xf9': bytechar = bytes([myint]) # Python 2 and 3: from builtins import bytes for myint in bytes(b'byte-string with high-bit chars like \xf9'): bytechar = bytes([myint]) # Python 3 only: for myint in b'byte-string with high-bit chars like \xf9': char = chr(myint) # returns a unicode string bytechar = char.encode('latin-1') # Python 2 and 3: from builtins import bytes, chr for myint in bytes(b'byte-string with high-bit chars like \xf9'): char = chr(myint) # returns a unicode string bytechar = char.encode('latin-1') # forces returning a byte str # Python 2 only: a = u'abc' b = 'def' assert (isinstance(a, basestring) and isinstance(b, basestring)) # Python 2 and 3: alternative 1 from past.builtins import basestring # pip install future a = u'abc' b = b'def' assert (isinstance(a, basestring) and isinstance(b, basestring)) # Python 2 and 3: alternative 2: refactor the code to avoid considering # byte-strings as strings. from builtins import str a = u'abc' b = b'def' c = b.decode() assert isinstance(a, str) and isinstance(c, str) # ... # Python 2 only: templates = [u"blog/blog_post_detail_%s.html" % unicode(slug)] # Python 2 and 3: alternative 1 from builtins import str templates = [u"blog/blog_post_detail_%s.html" % str(slug)] # Python 2 and 3: alternative 2 from builtins import str as text templates = [u"blog/blog_post_detail_%s.html" % text(slug)] # Python 2 only: from StringIO import StringIO # or: from cStringIO import StringIO # Python 2 and 3: from io import BytesIO # for handling byte strings from io import StringIO # for handling unicode strings # Python 2 only: import submodule2 # Python 2 and 3: from . import submodule2 # Python 2 and 3: # To make Py2 code safer (more like Py3) by preventing # implicit relative imports, you can also add this to the top: from __future__ import absolute_import heights = {'Fred': 175, 'Anne': 166, 'Joe': 192} # Python 2 only: for key in heights.iterkeys(): ... # Python 2 and 3: for key in heights: ... # Python 2 only: for value in heights.itervalues(): ... # Idiomatic Python 3 for value in heights.values(): # extra memory overhead on Py2 ... # Python 2 and 3: option 1 from builtins import dict heights = dict(Fred=175, Anne=166, Joe=192) for key in heights.values(): # efficient on Py2 and Py3 ... # Python 2 and 3: option 2 from builtins import itervalues # or from six import itervalues for key in itervalues(heights): ... # Python 2 only: for (key, value) in heights.iteritems(): ... # Python 2 and 3: option 1 for (key, value) in heights.items(): # inefficient on Py2 ... # Python 2 and 3: option 2 from future.utils import viewitems for (key, value) in viewitems(heights): # also behaves like a set ... # Python 2 and 3: option 3 from future.utils import iteritems # or from six import iteritems for (key, value) in iteritems(heights): ... # Python 2 only: keylist = heights.keys() assert isinstance(keylist, list) # Python 2 and 3: keylist = list(heights) assert isinstance(keylist, list) # Python 2 only: heights = {'Fred': 175, 'Anne': 166, 'Joe': 192} valuelist = heights.values() assert isinstance(valuelist, list) # Python 2 and 3: option 1 valuelist = list(heights.values()) # inefficient on Py2 # Python 2 and 3: option 2 from builtins import dict heights = dict(Fred=175, Anne=166, Joe=192) valuelist = list(heights.values()) # Python 2 and 3: option 3 from future.utils import listvalues valuelist = listvalues(heights) # Python 2 and 3: option 4 from future.utils import itervalues # or from six import itervalues valuelist = list(itervalues(heights)) # Python 2 and 3: option 1 itemlist = list(heights.items()) # inefficient on Py2 # Python 2 and 3: option 2 from future.utils import listitems itemlist = listitems(heights) # Python 2 and 3: option 3 from future.utils import iteritems # or from six import iteritems itemlist = list(iteritems(heights)) # Python 2 only class Upper(object): def __init__(self, iterable): self._iter = iter(iterable) def next(self): # Py2-style return self._iter.next().upper() def __iter__(self): return self itr = Upper('hello') assert itr.next() == 'H' # Py2-style assert list(itr) == list('ELLO') # Python 2 and 3: option 1 from builtins import object class Upper(object): def __init__(self, iterable): self._iter = iter(iterable) def __next__(self): # Py3-style iterator interface return next(self._iter).upper() # builtin next() function calls def __iter__(self): return self itr = Upper('hello') assert next(itr) == 'H' # compatible style assert list(itr) == list('ELLO') # Python 2 and 3: option 2 from future.utils import implements_iterator @implements_iterator class Upper(object): def __init__(self, iterable): self._iter = iter(iterable) def __next__(self): # Py3-style iterator interface return next(self._iter).upper() # builtin next() function calls def __iter__(self): return self itr = Upper('hello') assert next(itr) == 'H' assert list(itr) == list('ELLO') # Python 2 only: class MyClass(object): def __unicode__(self): return 'Unicode string: \u5b54\u5b50' def __str__(self): return unicode(self).encode('utf-8') a = MyClass() print(a) # prints encoded string # Python 2 and 3: from future.utils import python_2_unicode_compatible @python_2_unicode_compatible class MyClass(object): def __str__(self): return u'Unicode string: \u5b54\u5b50' a = MyClass() print(a) # prints string encoded as utf-8 on Py2 # Python 2 only: class AllOrNothing(object): def __init__(self, l): self.l = l def __nonzero__(self): return all(self.l) container = AllOrNothing([0, 100, 200]) assert not bool(container) # Python 2 and 3: from builtins import object class AllOrNothing(object): def __init__(self, l): self.l = l def __bool__(self): return all(self.l) container = AllOrNothing([0, 100, 200]) assert not bool(container) # Python 2 only: for i in xrange(10**8): ... # Python 2 and 3: forward-compatible from builtins import range for i in range(10**8): ... # Python 2 and 3: backward-compatible from past.builtins import xrange for i in xrange(10**8): ... # Python 2 only mylist = range(5) assert mylist == [0, 1, 2, 3, 4] # Python 2 and 3: forward-compatible: option 1 mylist = list(range(5)) # copies memory on Py2 assert mylist == [0, 1, 2, 3, 4] # Python 2 and 3: forward-compatible: option 2 from builtins import range mylist = list(range(5)) assert mylist == [0, 1, 2, 3, 4] # Python 2 and 3: option 3 from future.utils import lrange mylist = lrange(5) assert mylist == [0, 1, 2, 3, 4] # Python 2 and 3: backward compatible from past.builtins import range mylist = range(5) assert mylist == [0, 1, 2, 3, 4] # Python 2 only: mynewlist = map(f, myoldlist) assert mynewlist == [f(x) for x in myoldlist] # Python 2 and 3: option 1 # Idiomatic Py3, but inefficient on Py2 mynewlist = list(map(f, myoldlist)) assert mynewlist == [f(x) for x in myoldlist] # Python 2 and 3: option 2 from builtins import map mynewlist = list(map(f, myoldlist)) assert mynewlist == [f(x) for x in myoldlist] # Python 2 and 3: option 3 try: import itertools.imap as map except ImportError: pass mynewlist = list(map(f, myoldlist)) # inefficient on Py2 assert mynewlist == [f(x) for x in myoldlist] # Python 2 and 3: option 4 from future.utils import lmap mynewlist = lmap(f, myoldlist) assert mynewlist == [f(x) for x in myoldlist] # Python 2 and 3: option 5 from past.builtins import map mynewlist = map(f, myoldlist) assert mynewlist == [f(x) for x in myoldlist] # Python 2 only: from itertools import imap myiter = imap(func, myoldlist) assert isinstance(myiter, iter) # Python 3 only: myiter = map(func, myoldlist) assert isinstance(myiter, iter) # Python 2 and 3: option 1 from builtins import map myiter = map(func, myoldlist) assert isinstance(myiter, iter) # Python 2 and 3: option 2 try: import itertools.imap as map except ImportError: pass myiter = map(func, myoldlist) assert isinstance(myiter, iter) # Python 2 only f = open('myfile.txt') data = f.read() # as a byte string text = data.decode('utf-8') # Python 2 and 3: alternative 1 from io import open f = open('myfile.txt', 'rb') data = f.read() # as bytes text = data.decode('utf-8') # unicode, not bytes # Python 2 and 3: alternative 2 from io import open f = open('myfile.txt', encoding='utf-8') text = f.read() # unicode, not bytes # Python 2 only: assert reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) == 1+2+3+4+5 # Python 2 and 3: from functools import reduce assert reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) == 1+2+3+4+5 # Python 2 only: name = raw_input('What is your name? ') assert isinstance(name, str) # native str # Python 2 and 3: from builtins import input name = input('What is your name? ') assert isinstance(name, str) # native str on Py2 and Py3 # Python 2 only: input("Type something safe please: ") # Python 2 and 3 from builtins import input eval(input("Type something safe please: ")) # Python 2 only: f = file(pathname) # Python 2 and 3: f = open(pathname) # But preferably, use this: from io import open f = open(pathname, 'rb') # if f.read() should return bytes # or f = open(pathname, 'rt') # if f.read() should return unicode text # Python 2 only: exec 'x = 10' # Python 2 and 3: exec('x = 10') # Python 2 only: g = globals() exec 'x = 10' in g # Python 2 and 3: g = globals() exec('x = 10', g) # Python 2 only: l = locals() exec 'x = 10' in g, l # Python 2 and 3: exec('x = 10', g, l) # Python 2 only: execfile('myfile.py') # Python 2 and 3: alternative 1 from past.builtins import execfile execfile('myfile.py') # Python 2 and 3: alternative 2 exec(compile(open('myfile.py').read())) # This can sometimes cause this: # SyntaxError: function ... uses import * and bare exec ... # See https://github.com/PythonCharmers/python-future/issues/37 # Python 2 only: assert unichr(8364) == '€' # Python 3 only: assert chr(8364) == '€' # Python 2 and 3: from builtins import chr assert chr(8364) == '€' # Python 2 only: intern('mystring') # Python 3 only: from sys import intern intern('mystring') # Python 2 and 3: alternative 1 from past.builtins import intern intern('mystring') # Python 2 and 3: alternative 2 from six.moves import intern intern('mystring') # Python 2 and 3: alternative 3 from future.standard_library import install_aliases install_aliases() from sys import intern intern('mystring') # Python 2 and 3: alternative 2 try: from sys import intern except ImportError: pass intern('mystring') args = ('a', 'b') kwargs = {'kwarg1': True} # Python 2 only: apply(f, args, kwargs) # Python 2 and 3: alternative 1 f(*args, **kwargs) # Python 2 and 3: alternative 2 from past.builtins import apply apply(f, args, kwargs) # Python 2 only: assert chr(64) == b'@' assert chr(200) == b'\xc8' # Python 3 only: option 1 assert chr(64).encode('latin-1') == b'@' assert chr(0xc8).encode('latin-1') == b'\xc8' # Python 2 and 3: option 1 from builtins import chr assert chr(64).encode('latin-1') == b'@' assert chr(0xc8).encode('latin-1') == b'\xc8' # Python 3 only: option 2 assert bytes([64]) == b'@' assert bytes([0xc8]) == b'\xc8' # Python 2 and 3: option 2 from builtins import bytes assert bytes([64]) == b'@' assert bytes([0xc8]) == b'\xc8' # Python 2 only: assert cmp('a', 'b') < 0 and cmp('b', 'a') > 0 and cmp('c', 'c') == 0 # Python 2 and 3: alternative 1 from past.builtins import cmp assert cmp('a', 'b') < 0 and cmp('b', 'a') > 0 and cmp('c', 'c') == 0 # Python 2 and 3: alternative 2 cmp = lambda(x, y): (x > y) - (x < y) assert cmp('a', 'b') < 0 and cmp('b', 'a') > 0 and cmp('c', 'c') == 0 # Python 2 only: reload(mymodule) # Python 2 and 3 from imp import reload reload(mymodule) # Python 2 only import anydbm import whichdb import dbm import dumbdbm import gdbm # Python 2 and 3: alternative 1 from future import standard_library standard_library.install_aliases() import dbm import dbm.ndbm import dbm.dumb import dbm.gnu # Python 2 and 3: alternative 2 from future.moves import dbm from future.moves.dbm import dumb from future.moves.dbm import ndbm from future.moves.dbm import gnu # Python 2 and 3: alternative 3 from six.moves import dbm_gnu # (others not supported) # Python 2 only from commands import getoutput, getstatusoutput # Python 2 and 3 from future import standard_library standard_library.install_aliases() from subprocess import getoutput, getstatusoutput # Python 2.7 and above from subprocess import check_output # Python 2.6 and above: alternative 1 from future.moves.subprocess import check_output # Python 2.6 and above: alternative 2 from future import standard_library standard_library.install_aliases() from subprocess import check_output # Python 2.7 and above from collections import Counter, OrderedDict, ChainMap # Python 2.6 and above: alternative 1 from future.backports import Counter, OrderedDict, ChainMap # Python 2.6 and above: alternative 2 from future import standard_library standard_library.install_aliases() from collections import Counter, OrderedDict, ChainMap # Python 2 only from StringIO import StringIO from cStringIO import StringIO # Python 2 and 3 from io import BytesIO # and refactor StringIO() calls to BytesIO() if passing byte-strings # Python 2 only: import httplib import Cookie import cookielib import BaseHTTPServer import SimpleHTTPServer import CGIHttpServer # Python 2 and 3 (after ``pip install future``): import http.client import http.cookies import http.cookiejar import http.server # Python 2 only: import DocXMLRPCServer import SimpleXMLRPCServer # Python 2 and 3 (after ``pip install future``): import xmlrpc.server # Python 2 only: import xmlrpclib # Python 2 and 3 (after ``pip install future``): import xmlrpc.client # Python 2 and 3: from cgi import escape # Safer (Python 2 and 3, after ``pip install future``): from html import escape # Python 2 only: from htmlentitydefs import codepoint2name, entitydefs, name2codepoint # Python 2 and 3 (after ``pip install future``): from html.entities import codepoint2name, entitydefs, name2codepoint # Python 2 only: from HTMLParser import HTMLParser # Python 2 and 3 (after ``pip install future``) from html.parser import HTMLParser # Python 2 and 3 (alternative 2): from future.moves.html.parser import HTMLParser # Python 2 only: from urlparse import urlparse from urllib import urlencode from urllib2 import urlopen, Request, HTTPError # Python 3 only: from urllib.parse import urlparse, urlencode from urllib.request import urlopen, Request from urllib.error import HTTPError # Python 2 and 3: easiest option from future.standard_library import install_aliases install_aliases() from urllib.parse import urlparse, urlencode from urllib.request import urlopen, Request from urllib.error import HTTPError # Python 2 and 3: alternative 2 from future.standard_library import hooks with hooks(): from urllib.parse import urlparse, urlencode from urllib.request import urlopen, Request from urllib.error import HTTPError # Python 2 and 3: alternative 3 from future.moves.urllib.parse import urlparse, urlencode from future.moves.urllib.request import urlopen, Request from future.moves.urllib.error import HTTPError # or from six.moves.urllib.parse import urlparse, urlencode from six.moves.urllib.request import urlopen from six.moves.urllib.error import HTTPError # Python 2 and 3: alternative 4 try: from urllib.parse import urlparse, urlencode from urllib.request import urlopen, Request from urllib.error import HTTPError except ImportError: from urlparse import urlparse from urllib import urlencode from urllib2 import urlopen, Request, HTTPError # Python 2 only: import Tkinter import Dialog import FileDialog import ScrolledText import SimpleDialog import Tix import Tkconstants import Tkdnd import tkColorChooser import tkCommonDialog import tkFileDialog import tkFont import tkMessageBox import tkSimpleDialog import ttk # Python 2 and 3 (after ``pip install future``): import tkinter import tkinter.dialog import tkinter.filedialog import tkinter.scrolledtext import tkinter.simpledialog import tkinter.tix import tkinter.constants import tkinter.dnd import tkinter.colorchooser import tkinter.commondialog import tkinter.filedialog import tkinter.font import tkinter.messagebox import tkinter.simpledialog import tkinter.ttk # Python 2 only: import SocketServer # Python 2 and 3 (after ``pip install future``): import socketserver # Python 2 only: import copy_reg # Python 2 and 3 (after ``pip install future``): import copyreg # Python 2 only: from ConfigParser import ConfigParser # Python 2 and 3 (after ``pip install future``): from configparser import ConfigParser # Python 2 only: from Queue import Queue, heapq, deque # Python 2 and 3 (after ``pip install future``): from queue import Queue, heapq, deque # Python 2 only: from repr import aRepr, repr # Python 2 and 3 (after ``pip install future``): from reprlib import aRepr, repr # Python 2 only: from UserDict import UserDict from UserList import UserList from UserString import UserString # Python 3 only: from collections import UserDict, UserList, UserString # Python 2 and 3: alternative 1 from future.moves.collections import UserDict, UserList, UserString # Python 2 and 3: alternative 2 from six.moves import UserDict, UserList, UserString # Python 2 and 3: alternative 3 from future.standard_library import install_aliases install_aliases() from collections import UserDict, UserList, UserString # Python 2 only: from itertools import ifilterfalse, izip_longest # Python 3 only: from itertools import filterfalse, zip_longest # Python 2 and 3: alternative 1 from future.moves.itertools import filterfalse, zip_longest # Python 2 and 3: alternative 2 from six.moves import filterfalse, zip_longest # Python 2 and 3: alternative 3 from future.standard_library import install_aliases install_aliases() from itertools import filterfalse, zip_longest <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: To print multiple strings, import print_function to prevent Py2 from interpreting it as a tuple Step2: Raising exceptions Step3: Raising exceptions with a traceback Step4: Exception chaining (PEP 3134) Step5: Catching exceptions Step6: Division Step7: "True division" (float division) Step8: "Old division" (i.e. compatible with Py2 behaviour) Step9: Long integers Step10: To test whether a value is an integer (of any kind) Step11: Octal constants Step12: Backtick repr Step13: Metaclasses Step14: Strings and bytes Step15: The futurize and python-modernize tools do not currently offer an option to do this automatically. Step16: See http Step17: To loop over a byte-string with possible high-bit characters, obtaining each character as a byte-string of length 1 Step18: As an alternative, chr() and .encode('latin-1') can be used to convert an int into a 1-char byte string Step19: basestring Step20: unicode Step21: StringIO Step22: Imports relative to a package Step23: Dictionaries Step24: Iterating through dict keys/values/items Step25: Iterable dict values Step26: Iterable dict items Step27: dict keys/values/items as a list Step28: dict values as a list Step29: dict items as a list Step30: Custom class behaviour Step31: Custom __str__ methods Step32: Custom __nonzero__ vs __bool__ method Step33: Lists versus iterators Step34: range Step35: map Step36: imap Step37: zip, izip Step38: reduce() Step39: raw_input() Step40: input() Step41: Warning Step42: exec Step43: But note that Py3's exec() is less powerful (and less dangerous) than Py2's exec statement. Step44: unichr() Step45: intern() Step46: apply() Step47: chr() Step48: cmp() Step49: reload() Step50: Standard library Step51: commands / subprocess modules Step52: subprocess.check_output() Step53: collections Step54: StringIO module Step55: http module Step56: xmlrpc module Step57: html escaping and entities Step58: html parsing Step59: urllib module Step60: Tkinter Step61: socketserver Step62: copy_reg, copyreg Step63: configparser Step64: queue Step65: repr, reprlib Step66: UserDict, UserList, UserString Step67: itertools
15,640
<ASSISTANT_TASK:> Python Code: import time import sqlite3 as sql import os import sys sys.path.append("/Users/kurner/Documents/classroom_labs") class NoConnection(Exception): pass class SQL_DB: # a database # class level parameters backend = 'sqlite3' user_initials = 'KTU' timezone = int(time.strftime("%z", time.localtime())) target_path = "/Users/kurner/Documents/classroom_labs" # current directory db_name = os.path.join(target_path, 'glossary.db') @staticmethod def mod_date(): return time.mktime(time.gmtime()) # GMT time @classmethod def connect(cls): try: if cls.backend == 'sqlite3': cls.conn = sql.connect(cls.db_name) # connection cls.curs = cls.conn.cursor() # cursor elif cls.backend == 'mysql': # not using this, gives idea cls.conn = sql.connect(host='localhost', user='root', port='8889') cls.curs = cls.conn.cursor() except Exception: raise NoConnection @classmethod def disconnect(cls): cls.conn.close() class DBcontext: Generic parent class for connecting and disconnecting def __init__(self, db): self.db = db # references database class def __enter__(self): self.db.connect() return self # <-- for use inside with scope def __exit__(self, *stuff_happens): self.db.disconnect() if stuff_happens[0]: print("Exception raised!") print(stuff_happens) return True # <-- if considered handled, otherwise False return True class Glossary(DBcontext): Subclass with custom methods for this particular database def create_table(self): # https://www.sqlite.org/lang_droptable.html self.db.curs.execute(DROP TABLE IF EXISTS Glossary) self.db.curs.execute(CREATE TABLE Glossary (gl_term text PRIMARY KEY, gl_definition text, updated_at int, updated_by text)) def save_term(self, *the_data): query = ("INSERT INTO Glossary " "(gl_term, gl_definition, updated_at, updated_by) " "VALUES ('{}', '{}', {}, '{}')".format(*the_data)) # print(query) self.db.curs.execute(query) self.db.conn.commit() with Glossary(SQL_DB) as dbx: # <--- dbx returned by __enter__ # for testing __exit__ in case of an exception # raise NoConnection dbx.create_table() FILE = os.path.join(dbx.db.target_path, "glossary.txt") with open(FILE, 'r', encoding='UTF-8') as gloss: lines = gloss.readlines() for line in lines: if len(line.strip()) == 0: continue term, definition = line.split(":", 1) right_now = dbx.db.mod_date() dbx.save_term(term[2:].strip(), definition.strip(), right_now, dbx.db.user_initials) with Glossary(SQL_DB) as dbx: query = "SELECT gl_term, gl_definition FROM Glossary ORDER BY gl_term" dbx.db.curs.execute(query) # gets the data print("{:^80}".format("GLOSSARY OF TERMS")) print("-" * 80) print("Term |Abbreviated Definition " ) print("-" * 80) for term in dbx.db.curs.fetchmany(10): # fetchone(), fetchmany(n), fetchall() print("{:35} | {:45}".format(term[0], term[1][:45])) import chem_stuff # modify database class to point to a different database file SQL_DB.db_name = os.path.join(SQL_DB.target_path, 'periodic_table.db') class ChemContext(DBcontext): Subclass with custom methods for this particular database def create_table(self): # https://www.sqlite.org/lang_droptable.html self.db.curs.execute(DROP TABLE IF EXISTS Elements) self.db.curs.execute(CREATE TABLE Elements (elem_protons int PRIMARY KEY, elem_symbol text, elem_long_name text, elem_mass float, elem_series text, updated_at int, updated_by text)) def save_term(self, *the_data): query = ("INSERT INTO Elements " "(elem_protons, elem_symbol, elem_long_name, elem_mass, elem_series," "updated_at, updated_by) " "VALUES ({}, '{}', '{}', {}, '{}', {}, '{}')".format(*the_data)) # print(query) self.db.curs.execute(query) self.db.conn.commit() with ChemContext(SQL_DB) as dbx: dbx.create_table() FILE = os.path.join(dbx.db.target_path, "periodic_table.json") chem_stuff.load_elements(FILE) # uses imported module to read JSON for atom in chem_stuff.all_elements.values(): right_now = dbx.db.mod_date() dbx.save_term(atom.protons, atom.symbol, atom.long_name, atom.mass, atom.series, right_now, dbx.db.user_initials) with DBcontext(SQL_DB) as dbx: # <--- dbx returned by __enter__ query = ("SELECT elem_symbol, elem_long_name, elem_protons, elem_mass, elem_series" " FROM Elements ORDER BY elem_protons") dbx.db.curs.execute(query) print("{:^70}".format("PERIODIC TABLE OF THE ELEMENTS")) print("-" * 70) print("Symbol |Long Name |Protons |Mass |Series " ) print("-" * 70) for the_atom in dbx.db.curs.fetchall(): print("{:6} | {:20} | {:6} | {:5.2f} | {:15}".format(the_atom[0], the_atom[1], the_atom[2], the_atom[3], the_atom[4])) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step5: So far, this class hasn't done any work. We'll use the context manager to make the actual connection, using this DB object. Step6: In the "with scope" below, we create a new table by calling a method saved inside the context manager itself. The a text file is read in and each line gets saved to a row in the Glossary table. Again, the context manager has a method for inserting rows. Step7: We now have a resuable context that will connect and disconnect from our database. Step11: OK, that was fun. We were able to obtain a partial listing of what's in the Glossary table. Connecting and disconnecting was handled behind the scenes. Step12: To test that our data table has indeed been populated, lets connect again and run a select query. We'll be able to print the rows directly. We're not bothering with an Atom class this time, just publishing row data directly from tuples.
15,641
<ASSISTANT_TASK:> Python Code: import sys import matplotlib.pyplot as plt import datetime as dt import numpy as np from mpl_toolkits.basemap import Basemap import pandas as pd import seaborn as sns from scipy.stats.stats import pearsonr print('Python version: ', sys.version) print('Pandas version: ', pd.__version__) print('Today: ', dt.date.today()) # url1: Pakistan latitude and longitude data for map visualization of drone strikes # https://docs.google.com/spreadsheets/d/1P1TSWNwr1j-0pX022Q2iLEZd2-IGoswD08unYSvCYaU/edit#gid=9 # save as csv onto desktop path = '/Users/anna/Desktop/pakistan.csv' # read in Pakistan drone strike data df = pd.read_csv(path) # read into Python from desktop df=df.replace(to_replace=['Unreported'], value=[np.nan]) # data cleaning for NaN values df["Date"] = pd.to_datetime(df["Date"]) # change this column to datetime df["Date"]=df["Date"].dt.year # change datetimes to years # url2: More in-depth Pakistan drone strike data (casualty rates/summary tables, etc.) for plots # https://docs.google.com/spreadsheets/d/1NAfjFonM-Tn7fziqiv33HlGt09wgLZDSCP-BQaux51w/edit#gid=694046452 # save as excel file onto desktop drones=pd.read_excel('/Users/anna/Desktop/CIAdrones.xlsx', sheetname="Summary tables and casualty rates", skip_footer=25) drones["Year"]=drones["Year"].dt.year # change this column from datetimes to years drones=drones.set_index('Year') # read in drone strike summary table and set the index to year casualtyrates=pd.read_excel('/Users/anna/Desktop/CIAdrones.xlsx', sheetname="Summary tables and casualty rates", skiprows=21) casualtyrates=casualtyrates.drop([12,13,14,15,16]) casualtyrates["Year"]=casualtyrates["Year"].dt.year # change this column from datetimes to years casualtyrates=casualtyrates.set_index('Year') # read in drone strike casualty rate table and set the index to year casualtyrates=casualtyrates.dropna(axis=1) # url3: Global Terrorism data # http://www.start.umd.edu/gtd/contact/ # save as excel files onto desktop gtdto11= pd.read_excel('/Users/anna/Desktop/gtd_92to11_0616dist.xlsx') # read in Global Terrorism Data 1992-2011 pakistan=gtdto11['country_txt'] == 'Pakistan' # create a Boolean variable for country name Pakistan year=gtdto11['iyear']>2003 # create a Boolean variable for years after 2003 gtdto11count=gtdto11[pakistan & year] # create a new dataframe containing only Pakistan data and years after 2003 gtdto15=pd.read_excel('/Users/anna/Desktop/gtd_12to15_0616dist.xlsx') # read in Global Terrorism Data 2011-2015 pakistan2=gtdto15['country_txt']=='Pakistan' # create a dataframe with only Pakistan data gtdto15count=gtdto15[pakistan2] # create a series gtd=gtdto11count.append(gtdto15count, ignore_index=True) # append dataframes from 2004-2011 and 2011-2015 numgtd=gtd.groupby('iyear').count() # group global terrorism data by year and set to variable numgtd numter=numgtd['eventid'] # set new variable numter as number of terrorist attacks by year numdrones=drones['CIA Drone Strikes'] # set new variable numdrones as number of drone strikes by year numdrones=numdrones.drop(numdrones.index[[12]]) # drop year 2016 using the index chartdf=pd.concat([numter, numdrones], axis=1) # create new chart with only numter and numgtd chartdf=chartdf.dropna() # clean the chart of NaN eventid=chartdf['eventid'] chartdf['eventid']=eventid.astype(int) # convert number of terrorist attacks from float to integer sns.set_style('darkgrid') # set darkgrid style using Seaborn fig, (ax1, ax2)=plt.subplots(2, 1, figsize=(8,7)) # create figure with two axes chartdf['eventid'].plot(ax=ax2, color='r', title='Terrorist Attacks Per Year', y='Number of Attacks', kind='bar', alpha=0.6) chartdf['CIA Drone Strikes'].plot(ax=ax1, title='Drone Strikes Per Year', y="Number of Strikes", kind='bar', alpha=0.5) ax2.set_ylabel('Number of Attacks') ax1.set_ylabel('Number of Strikes') ax2.set_xlabel('Year') ax1.set_xlabel('Year') plt.tight_layout() plt.show() print('Correlation:',pearsonr(chartdf['eventid'],chartdf['CIA Drone Strikes'])) #Pearson's correlation and p value # below is a long process of converting date columns in the Global Terrorism database to datetime: year=list(gtd['iyear']) month=list(gtd['imonth']) day=list(gtd['iday']) date=(zip(year, month, day)) date=list(date) date=[str(x)for x in date] date=[x.replace(', ','-') for x in date] date=[x.replace('(', '') for x in date] date=[x.replace(')', '') for x in date] gtd['idate']=date gtd["idate"] = pd.to_datetime(gtd["idate"], format='%Y-%m-%d', errors='coerce') # change this column to datetime per2=gtd.idate.dt.to_period("M") # convert to monthly data ter2=gtd.groupby(per2) # group by month ter2=ter2.count() # count number of attacks per month termonths=ter2['eventid'] # save in new variable cia='/Users/anna/Desktop/pakistan.csv' # read in Pakistan drone strike data one more time in order to adjust "Date" cia = pd.read_csv(cia) cia["Date"] = pd.to_datetime(cia["Date"]) # change this column to datetime per=cia.Date.dt.to_period("M") # convert to monthly data cia=cia.groupby(per) #group by month cia=cia.count() #count number of strikes in each month dronemonths=cia['Strike'] # save in new variable totalmonths=pd.concat([termonths, dronemonths], axis=1) # create new dataframe for plotting totalmonths=totalmonths.dropna() # clean the data frame totalmonths=totalmonths.rename(columns={'eventid': 'Attacks', 'Strike':'Strikes'}) totalmonths.plot() plt.title('Strikes/Attacks by Month') plt.show() print('Correlation:',pearsonr(totalmonths['Attacks'],totalmonths['Strikes'])) # Pearson's correlation and p value x=np.array(numgtd.index) # create x array (years, taken from Global Terrorism Data) y=np.array(numdrones) # create y array (number of drone attacks) y=y/y.max().astype(np.float64) # normalize drone strike data on a scale of 0-1 and convert to float z=np.array(numter) # create x array (number of terrorist attacks) z=z/z.max().astype(np.float64) # normalize terrorist attack data on a scale of 0-1 and convert to float plt.figure(figsize=(15,6)) # create a figure of size 15, 6 plt.scatter(x,y, zorder=2, label="Drone Strikes") # plot x and y arrays as a scatter plot (Drone Strikes) plt.plot(x, y, zorder=1, lw=3) # connect dots with line plt.bar(x,z, color='red', alpha=0.6, label='Terrorist Attacks', align='center') # plot x and z arrays as a bar chart plt.title('Drone Strikes vs. Terrorist Attacks: Normalized', fontsize=15) plt.xlim(2003,2016) # set x upper and lower limits plt.xlabel("Year", fontsize=12) plt.ylabel("Strikes/Attacks", fontsize=12) plt.tick_params(axis='y', labelleft='off', labelright='off') # turn off y axis labels because data is normalized plt.ylim(0,1) # set y upper and lower limits plt.legend(loc='best', fontsize='large') plt.show() print('Correlation:',pearsonr(y,z)) # Pearson's correlation and p value attacks=list(chartdf['eventid']) diff=[100*(y - x)/x for x, y in zip(attacks[::1], attacks[1::1])] # percent change of terrorist attacks diff=pd.Series(diff) # turn into series diff=pd.Series.to_frame(diff) # turn into dataframe years=['2004-2005', '2005-2006', '2006-2007', '2007-2008', '2008-2009', '2009-2010', '2010-2011', '2011-2012', '2012-2013', '2013-2014', '2014-2015'] years=pd.Series(years) # convert list object to series years=pd.Series.to_frame(years) # convert series to dataframe years=years.rename(columns={0: "Year"}) diff=pd.concat([diff,years], axis=1) # create a dataframe with terrorism % change and years diff=diff.set_index('Year') diff=diff.rename(columns={0:'Percent Change of Terrorist Attacks'}) strikes=list(chartdf['CIA Drone Strikes']) dronediff=[100*(y - x)/x for x, y in zip(strikes[::1], strikes[1::1])] # percent change of terrorist attacks dronediff=pd.Series(dronediff) # turn into series dronediff=pd.Series.to_frame(dronediff) # turn into dataframe years=['2004-2005', '2005-2006', '2006-2007', '2007-2008', '2008-2009', '2009-2010', '2010-2011', '2011-2012', '2012-2013', '2013-2014', '2014-2015'] years=pd.Series(years) # convert list object to series years=pd.Series.to_frame(years) # convert series to dataframe years=years.rename(columns={0: "Year"}) dronediff=pd.concat([dronediff,years], axis=1) # create a dataframe with years and drone strike % change dronediff=dronediff.set_index('Year') dronediff=dronediff.rename(columns={0:'Percent Change of Drone Strikes'}) combined=pd.concat([dronediff, diff], axis=1) # create a dataframe with drone % change and terrorism % change combined.plot() plt.show() dcasualties=drones["Minimum people killed"] dcivilians=drones["Minimum civilians killed"] dchildren=drones['Minimum children killed'] civcas=pd.concat([dcasualties, dcivilians], axis=1) dronedeaths=pd.concat([civcas, dchildren], axis=1) dronedeaths=dronedeaths.drop([2016]) # new Dataframe for total, civilian and child casualty rates during drone strikes dronedeaths.plot.area(stacked=False) plt.title('Drone Strike Casualties') plt.ylabel("Number Killed", fontsize=12) plt.xlabel("Year") plt.ylabel("Number Killed", fontsize=12) plt.xlabel("Year") plt.title('Drone Strike Casualties') plt.show() # plot the new Dataframe casualtyrates.plot.bar() plt.title('Drone Strike Casualty Rates') plt.show() dcasualties=dcasualties.drop([2016]) # drop 2016 from casualty because it is not included in numter x=np.array(numgtd.index) # create x array (years, taken from Global Terrorism Data) y=np.array(dcasualties) # create y array (casualty rates) y=y/y.max().astype(np.float64) # normalize casualty rate data on a scale of 0-1 and convert to float z=np.array(numter) # create x array (number of terrorist attacks) z=z/z.max().astype(np.float64) # normalize terrorist attack data on a scale of 0-1 and convert to float plt.figure(figsize=(15,6)) # create a figure of size 15, 6 plt.scatter(x,y, zorder=2, label="Drone Casualties") # plot x and y arrays as a scatter plot (casualty rates) plt.plot(x, y, zorder=1, lw=3) # connect dots with line plt.bar(x,z, color='red', alpha=0.6, label='Terrorist Attacks', align='center') # plot x and z arrays as a bar chart plt.title('Drone Casualties vs. Terrorist Attacks: Normalized', fontsize=15) plt.xlim(2003.5,2015.5) # set x upper and lower limits plt.xlabel("Year", fontsize=12) plt.ylabel("Casualties/Attacks", fontsize=12) plt.tick_params(axis='y', labelleft='off', labelright='off') # turn off y axis labels because data is normalized plt.ylim(0,1) # set y upper and lower limits plt.legend(loc='best', fontsize='large') plt.show() print('Correlation:',pearsonr(y,z)) # Pearson's correlation and p value lat=df["Latitude"] long=df["Longitude"] coordinates=pd.concat([lat, long], axis=1) # new DataFrame for latitude and longitude of drone strikes lat2=gtd["latitude"] long2=gtd["longitude"] coordinates2=pd.concat([lat2, long2], axis=1) # new DataFrame for latitude and longitude of terrorist attacks fig = plt.figure(figsize=(10,5)) # create a figure with size 10,5 map = Basemap(projection='gall', # make the figure a Basemap map (Gall projection) resolution = 'h', # high image resolution, with latitude and longitude upper and lower bounds area_thresh = 0.1, llcrnrlon=60, llcrnrlat=24, urcrnrlon=80, urcrnrlat=40, lat_0=30, lon_0=70) map.drawcoastlines() map.drawcountries() map.fillcontinents(color = 'tan') map.drawmapboundary(fill_color='#f4f4f4') x,y = map(list(coordinates['Longitude']), list(coordinates['Latitude'])) # set my coordinates df as x and y values map.plot(x, y, 'ro', markersize=4) # plot my coordinates df points onto the map with point size 4 and color red plt.title('Drone Strikes 2004-2013') plt.show() fig = plt.figure(figsize=(10,5)) # create a figure with size 10,5 map = Basemap(projection='gall', # make the figure a Basemap map resolution = 'h', # high resolution, with latitude and longitude upper and lower bounds area_thresh = 0.1, llcrnrlon=60, llcrnrlat=24, urcrnrlon=80, urcrnrlat=40, lat_0=30, lon_0=70) map.drawcoastlines() map.drawcountries() map.fillcontinents(color = 'tan') map.drawmapboundary(fill_color='#f4f4f4') x,y = map(list(coordinates2['longitude']), list(coordinates2['latitude'])) # set my coordinates gtd as x and y values map.plot(x, y, 'ro', markersize=4) # plot my coordinates gtd points onto the map plt.title('Terrorist Attacks 2004-2015') plt.show() terattacks=gtd.set_index(['iyear']) ter2004=terattacks.loc[2004] # terrorist attacks in 2004 ter2015=terattacks.loc[2015] # terrorist attacks in 2015 lat2004=ter2004['latitude'] long2004=ter2004['longitude'] terfinal2004=pd.concat([lat2004, long2004], axis=1) # new Dataframe for coordinates of 2004 attacks lat2015=ter2015['latitude'] long2015=ter2015['longitude'] terfinal2015=pd.concat([lat2015, long2015], axis=1) # new Dataframe for coordinates of 2015 attackss fig = plt.figure(figsize=(10,5)) # create a figure with size 10,5 map = Basemap(projection='gall', # make the figure a Basemap map (Gall projection) resolution = 'h', # high image resolution, with latitude and longitude upper and lower bounds area_thresh = 0.1, llcrnrlon=60, llcrnrlat=24, urcrnrlon=80, urcrnrlat=40, lat_0=30, lon_0=70) map.drawcoastlines() map.drawcountries() map.fillcontinents(color = 'tan') map.drawmapboundary(fill_color='#f4f4f4') x,y = map(list(terfinal2004['longitude']), list(terfinal2004['latitude'])) # set my coordinates as x and y values map.plot(x, y, 'ro', markersize=4) # plot my coordinates 2004 points onto the map with point size 4 and color red plt.title('Terrorist Attack Locations 2004') plt.show() fig = plt.figure(figsize=(10,5)) # create a figure with size 10,5 map = Basemap(projection='gall', # make the figure a Basemap map resolution = 'h', # high resolution, with latitude and longitude upper and lower bounds area_thresh = 0.1, llcrnrlon=60, llcrnrlat=24, urcrnrlon=80, urcrnrlat=40, lat_0=30, lon_0=70) map.drawcoastlines() map.drawcountries() map.fillcontinents(color = 'tan') map.drawmapboundary(fill_color='#f4f4f4') x,y = map(list(terfinal2015['longitude']), list(terfinal2015['latitude'])) # set my coordinates as x and y values map.plot(x, y, 'ro', markersize=4) # plot my coordinates 2015 points onto the map plt.title('Terrorist Attack Locations 2015') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Reading in the Data/Data Cleaning Step2: Plot 1 Step3: Plot 2 Step4: Plot 3 Step5: Plot 4 Step6: Plot 5 Step7: Plot 6 Step8: Appendix Step9: Change of Location?
15,642
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np t = np.linspace(0, 10.0, 100) plt.plot(t, np.sin(t)) plt.xlabel('Time') plt.ylabel('Signal') plt.title('My Plot'); # supress text output f = plt.figure(figsize=(9,6)) # 9" x 6", default is 8" x 5.5" plt.plot(t, np.sin(t), 'r.'); plt.xlabel('x') plt.ylabel('y') from matplotlib import lines lines.lineStyles.keys() from matplotlib import markers markers.MarkerStyle.markers.keys() plt.plot(t, np.sin(t)*np.exp(-0.1*t),'bo') plt.xlim(-1.0, 11.0) plt.ylim(-1.0, 1.0) plt.plot(t, np.sin(t)*np.exp(-0.1*t),'bo') plt.xlim(0.0, 10.0) plt.ylim(-1.0, 1.0) plt.xticks([0,5,10], ['zero','five','10']) plt.tick_params(axis='y', direction='inout', length=10) #modifies parameters of actual tick marks plt.plot(np.random.rand(100), 'b-') plt.grid(True) plt.box(False) plt.plot(t, np.sin(t), label='sin(t)') plt.plot(t, np.cos(t), label='cos(t)') plt.xlabel('t') plt.ylabel('Signal(t)') plt.ylim(-1.5, 1.5) plt.xlim(right=12.0) plt.legend() plt.subplot(2,1,1) # 2 rows x 1 col, plot 1 plt.plot(t, np.exp(0.1*t)) plt.ylabel('Exponential') plt.subplot(2,1,2) # 2 rows x 1 col, plot 2 plt.plot(t, t**2) plt.ylabel('Quadratic') plt.xlabel('x') plt.tight_layout() # f, ax = plt.subplots(2, 2) # for i in range(2): # for j in range(2): # plt.sca(ax[i,j]) # plt.plot(np.random.rand(20)) # plt.xlabel('x') # plt.ylabel('y') # plt.tight_layout() print (year[0,99]) f, ax = plt.subplots(2, 2, sharex=True, sharey=True, figsize=(6,6)) for i in range(2): for j in range(2): plt.sca(ax[i,j]) plt.plot(np.random.rand(20)) if i==1: plt.xlabel('x') if j==0: plt.ylabel('y') plt.tight_layout() plt.plot(t, np.sin(t), marker='o', color='darkblue', linestyle='--', alpha=0.3, markersize=10) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Overview Step2: Basic plot modification Step3: Here is a list of the single character color strings Step4: To change the plot's limits, use xlim and ylim Step5: You can change the ticks along a given axis by using xticks, yticks and tick_params Step6: Box and grid Step7: Multiple series Step8: Subplots Step9: In many cases, it is easier to use the subplots function, which creates a new Figure along with an array of Axes objects that can be indexed in a rational manner Step10: The subplots function also makes it easy to pass arguments to Figure and to share axes Step11: More marker and line styling
15,643
<ASSISTANT_TASK:> Python Code: # To support both python 2 and python 3 from __future__ import division, print_function, unicode_literals # Common imports import numpy as np import os # to make this notebook's output stable across runs np.random.seed(42) # To plot pretty figures %matplotlib inline import matplotlib import matplotlib.pyplot as plt plt.rcParams['axes.labelsize'] = 14 plt.rcParams['xtick.labelsize'] = 12 plt.rcParams['ytick.labelsize'] = 12 # Where to save the figures PROJECT_ROOT_DIR = "." CHAPTER_ID = "ensembles" def image_path(fig_id): return os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID, fig_id) def save_fig(fig_id, tight_layout=True): print("Saving figure", fig_id) if tight_layout: plt.tight_layout() plt.savefig(image_path(fig_id) + ".png", format='png', dpi=300) heads_proba = 0.51 coin_tosses = (np.random.rand(10000, 10) < heads_proba).astype(np.int32) cumulative_heads_ratio = np.cumsum(coin_tosses, axis=0) / np.arange(1, 10001).reshape(-1, 1) plt.figure(figsize=(8,3.5)) plt.plot(cumulative_heads_ratio) plt.plot([0, 10000], [0.51, 0.51], "k--", linewidth=2, label="51%") plt.plot([0, 10000], [0.5, 0.5], "k-", label="50%") plt.xlabel("Number of coin tosses") plt.ylabel("Heads ratio") plt.legend(loc="lower right") plt.axis([0, 10000, 0.42, 0.58]) save_fig("law_of_large_numbers_plot") plt.show() from sklearn.model_selection import train_test_split from sklearn.datasets import make_moons X, y = make_moons(n_samples=500, noise=0.30, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC log_clf = LogisticRegression(random_state=42) rnd_clf = RandomForestClassifier(random_state=42) svm_clf = SVC(random_state=42) voting_clf = VotingClassifier( estimators=[('lr', log_clf), ('rf', rnd_clf), ('svc', svm_clf)], voting='hard') voting_clf.fit(X_train, y_train) from sklearn.metrics import accuracy_score for clf in (log_clf, rnd_clf, svm_clf, voting_clf): clf.fit(X_train, y_train) y_pred = clf.predict(X_test) print(clf.__class__.__name__, accuracy_score(y_test, y_pred)) log_clf = LogisticRegression(random_state=42) rnd_clf = RandomForestClassifier(random_state=42) svm_clf = SVC(probability=True, random_state=42) voting_clf = VotingClassifier( estimators=[('lr', log_clf), ('rf', rnd_clf), ('svc', svm_clf)], voting='soft') voting_clf.fit(X_train, y_train) from sklearn.metrics import accuracy_score for clf in (log_clf, rnd_clf, svm_clf, voting_clf): clf.fit(X_train, y_train) y_pred = clf.predict(X_test) print(clf.__class__.__name__, accuracy_score(y_test, y_pred)) from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier bag_clf = BaggingClassifier( DecisionTreeClassifier(random_state=42), n_estimators=500, max_samples=100, bootstrap=True, n_jobs=-1, random_state=42) bag_clf.fit(X_train, y_train) y_pred = bag_clf.predict(X_test) from sklearn.metrics import accuracy_score print(accuracy_score(y_test, y_pred)) tree_clf = DecisionTreeClassifier(random_state=42) tree_clf.fit(X_train, y_train) y_pred_tree = tree_clf.predict(X_test) print(accuracy_score(y_test, y_pred_tree)) from matplotlib.colors import ListedColormap def plot_decision_boundary(clf, X, y, axes=[-1.5, 2.5, -1, 1.5], alpha=0.5, contour=True): x1s = np.linspace(axes[0], axes[1], 100) x2s = np.linspace(axes[2], axes[3], 100) x1, x2 = np.meshgrid(x1s, x2s) X_new = np.c_[x1.ravel(), x2.ravel()] y_pred = clf.predict(X_new).reshape(x1.shape) custom_cmap = ListedColormap(['#fafab0','#9898ff','#a0faa0']) plt.contourf(x1, x2, y_pred, alpha=0.3, cmap=custom_cmap, linewidth=10) if contour: custom_cmap2 = ListedColormap(['#7d7d58','#4c4c7f','#507d50']) plt.contour(x1, x2, y_pred, cmap=custom_cmap2, alpha=0.8) plt.plot(X[:, 0][y==0], X[:, 1][y==0], "yo", alpha=alpha) plt.plot(X[:, 0][y==1], X[:, 1][y==1], "bs", alpha=alpha) plt.axis(axes) plt.xlabel(r"$x_1$", fontsize=18) plt.ylabel(r"$x_2$", fontsize=18, rotation=0) plt.figure(figsize=(11,4)) plt.subplot(121) plot_decision_boundary(tree_clf, X, y) plt.title("Decision Tree", fontsize=14) plt.subplot(122) plot_decision_boundary(bag_clf, X, y) plt.title("Decision Trees with Bagging", fontsize=14) save_fig("decision_tree_without_and_with_bagging_plot") plt.show() bag_clf = BaggingClassifier( DecisionTreeClassifier(splitter="random", max_leaf_nodes=16, random_state=42), n_estimators=500, max_samples=1.0, bootstrap=True, n_jobs=-1, random_state=42) bag_clf.fit(X_train, y_train) y_pred = bag_clf.predict(X_test) from sklearn.ensemble import RandomForestClassifier rnd_clf = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16, n_jobs=-1, random_state=42) rnd_clf.fit(X_train, y_train) y_pred_rf = rnd_clf.predict(X_test) np.sum(y_pred == y_pred_rf) / len(y_pred) # almost identical predictions from sklearn.datasets import load_iris iris = load_iris() rnd_clf = RandomForestClassifier(n_estimators=500, n_jobs=-1, random_state=42) rnd_clf.fit(iris["data"], iris["target"]) for name, score in zip(iris["feature_names"], rnd_clf.feature_importances_): print(name, score) rnd_clf.feature_importances_ plt.figure(figsize=(6, 4)) for i in range(15): tree_clf = DecisionTreeClassifier(max_leaf_nodes=16, random_state=42 + i) indices_with_replacement = np.random.randint(0, len(X_train), len(X_train)) tree_clf.fit(X[indices_with_replacement], y[indices_with_replacement]) plot_decision_boundary(tree_clf, X, y, axes=[-1.5, 2.5, -1, 1.5], alpha=0.02, contour=False) plt.show() bag_clf = BaggingClassifier( DecisionTreeClassifier(random_state=42), n_estimators=500, bootstrap=True, n_jobs=-1, oob_score=True, random_state=40) bag_clf.fit(X_train, y_train) bag_clf.oob_score_ bag_clf.oob_decision_function_ from sklearn.metrics import accuracy_score y_pred = bag_clf.predict(X_test) accuracy_score(y_test, y_pred) from sklearn.datasets import fetch_mldata mnist = fetch_mldata('MNIST original') rnd_clf = RandomForestClassifier(random_state=42) rnd_clf.fit(mnist["data"], mnist["target"]) def plot_digit(data): image = data.reshape(28, 28) plt.imshow(image, cmap = matplotlib.cm.hot, interpolation="nearest") plt.axis("off") plot_digit(rnd_clf.feature_importances_) cbar = plt.colorbar(ticks=[rnd_clf.feature_importances_.min(), rnd_clf.feature_importances_.max()]) cbar.ax.set_yticklabels(['Not important', 'Very important']) save_fig("mnist_feature_importance_plot") plt.show() from sklearn.ensemble import AdaBoostClassifier ada_clf = AdaBoostClassifier( DecisionTreeClassifier(max_depth=1), n_estimators=200, algorithm="SAMME.R", learning_rate=0.5, random_state=42) ada_clf.fit(X_train, y_train) plot_decision_boundary(ada_clf, X, y) m = len(X_train) plt.figure(figsize=(11, 4)) for subplot, learning_rate in ((121, 1), (122, 0.5)): sample_weights = np.ones(m) for i in range(5): plt.subplot(subplot) svm_clf = SVC(kernel="rbf", C=0.05, random_state=42) svm_clf.fit(X_train, y_train, sample_weight=sample_weights) y_pred = svm_clf.predict(X_train) sample_weights[y_pred != y_train] *= (1 + learning_rate) plot_decision_boundary(svm_clf, X, y, alpha=0.2) plt.title("learning_rate = {}".format(learning_rate), fontsize=16) plt.subplot(121) plt.text(-0.7, -0.65, "1", fontsize=14) plt.text(-0.6, -0.10, "2", fontsize=14) plt.text(-0.5, 0.10, "3", fontsize=14) plt.text(-0.4, 0.55, "4", fontsize=14) plt.text(-0.3, 0.90, "5", fontsize=14) save_fig("boosting_plot") plt.show() list(m for m in dir(ada_clf) if not m.startswith("_") and m.endswith("_")) np.random.seed(42) X = np.random.rand(100, 1) - 0.5 y = 3*X[:, 0]**2 + 0.05 * np.random.randn(100) from sklearn.tree import DecisionTreeRegressor tree_reg1 = DecisionTreeRegressor(max_depth=2, random_state=42) tree_reg1.fit(X, y) y2 = y - tree_reg1.predict(X) tree_reg2 = DecisionTreeRegressor(max_depth=2, random_state=42) tree_reg2.fit(X, y2) y3 = y2 - tree_reg2.predict(X) tree_reg3 = DecisionTreeRegressor(max_depth=2, random_state=42) tree_reg3.fit(X, y3) X_new = np.array([[0.8]]) y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3)) y_pred def plot_predictions(regressors, X, y, axes, label=None, style="r-", data_style="b.", data_label=None): x1 = np.linspace(axes[0], axes[1], 500) y_pred = sum(regressor.predict(x1.reshape(-1, 1)) for regressor in regressors) plt.plot(X[:, 0], y, data_style, label=data_label) plt.plot(x1, y_pred, style, linewidth=2, label=label) if label or data_label: plt.legend(loc="upper center", fontsize=16) plt.axis(axes) plt.figure(figsize=(11,11)) plt.subplot(321) plot_predictions([tree_reg1], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label="$h_1(x_1)$", style="g-", data_label="Training set") plt.ylabel("$y$", fontsize=16, rotation=0) plt.title("Residuals and tree predictions", fontsize=16) plt.subplot(322) plot_predictions([tree_reg1], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label="$h(x_1) = h_1(x_1)$", data_label="Training set") plt.ylabel("$y$", fontsize=16, rotation=0) plt.title("Ensemble predictions", fontsize=16) plt.subplot(323) plot_predictions([tree_reg2], X, y2, axes=[-0.5, 0.5, -0.5, 0.5], label="$h_2(x_1)$", style="g-", data_style="k+", data_label="Residuals") plt.ylabel("$y - h_1(x_1)$", fontsize=16) plt.subplot(324) plot_predictions([tree_reg1, tree_reg2], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label="$h(x_1) = h_1(x_1) + h_2(x_1)$") plt.ylabel("$y$", fontsize=16, rotation=0) plt.subplot(325) plot_predictions([tree_reg3], X, y3, axes=[-0.5, 0.5, -0.5, 0.5], label="$h_3(x_1)$", style="g-", data_style="k+") plt.ylabel("$y - h_1(x_1) - h_2(x_1)$", fontsize=16) plt.xlabel("$x_1$", fontsize=16) plt.subplot(326) plot_predictions([tree_reg1, tree_reg2, tree_reg3], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label="$h(x_1) = h_1(x_1) + h_2(x_1) + h_3(x_1)$") plt.xlabel("$x_1$", fontsize=16) plt.ylabel("$y$", fontsize=16, rotation=0) save_fig("gradient_boosting_plot") plt.show() from sklearn.ensemble import GradientBoostingRegressor gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=3, learning_rate=1.0, random_state=42) gbrt.fit(X, y) gbrt_slow = GradientBoostingRegressor(max_depth=2, n_estimators=200, learning_rate=0.1, random_state=42) gbrt_slow.fit(X, y) plt.figure(figsize=(11,4)) plt.subplot(121) plot_predictions([gbrt], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label="Ensemble predictions") plt.title("learning_rate={}, n_estimators={}".format(gbrt.learning_rate, gbrt.n_estimators), fontsize=14) plt.subplot(122) plot_predictions([gbrt_slow], X, y, axes=[-0.5, 0.5, -0.1, 0.8]) plt.title("learning_rate={}, n_estimators={}".format(gbrt_slow.learning_rate, gbrt_slow.n_estimators), fontsize=14) save_fig("gbrt_learning_rate_plot") plt.show() import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error X_train, X_val, y_train, y_val = train_test_split(X, y, random_state=49) gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=120, random_state=42) gbrt.fit(X_train, y_train) errors = [mean_squared_error(y_val, y_pred) for y_pred in gbrt.staged_predict(X_val)] bst_n_estimators = np.argmin(errors) gbrt_best = GradientBoostingRegressor(max_depth=2,n_estimators=bst_n_estimators, random_state=42) gbrt_best.fit(X_train, y_train) min_error = np.min(errors) plt.figure(figsize=(11, 4)) plt.subplot(121) plt.plot(errors, "b.-") plt.plot([bst_n_estimators, bst_n_estimators], [0, min_error], "k--") plt.plot([0, 120], [min_error, min_error], "k--") plt.plot(bst_n_estimators, min_error, "ko") plt.text(bst_n_estimators, min_error*1.2, "Minimum", ha="center", fontsize=14) plt.axis([0, 120, 0, 0.01]) plt.xlabel("Number of trees") plt.title("Validation error", fontsize=14) plt.subplot(122) plot_predictions([gbrt_best], X, y, axes=[-0.5, 0.5, -0.1, 0.8]) plt.title("Best model (%d trees)" % bst_n_estimators, fontsize=14) save_fig("early_stopping_gbrt_plot") plt.show() gbrt = GradientBoostingRegressor(max_depth=2, warm_start=True, random_state=42) min_val_error = float("inf") error_going_up = 0 for n_estimators in range(1, 120): gbrt.n_estimators = n_estimators gbrt.fit(X_train, y_train) y_pred = gbrt.predict(X_val) val_error = mean_squared_error(y_val, y_pred) if val_error < min_val_error: min_val_error = val_error error_going_up = 0 else: error_going_up += 1 if error_going_up == 5: break # early stopping print(gbrt.n_estimators) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Voting classifiers Step2: Bagging ensembles Step3: Random Forests Step4: Out-of-Bag evaluation Step5: Feature importance Step6: AdaBoost Step7: Gradient Boosting Step8: Gradient Boosting with Early stopping
15,644
<ASSISTANT_TASK:> Python Code: import nixio as nix import numpy as np import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from utils.notebook import print_stats from utils.video_player import Playback nix_file = nix.File.open('data/tracking_data.h5', nix.FileMode.ReadOnly) print_stats(nix_file.blocks) b = nix_file.blocks[0] print_stats(b.data_arrays) print_stats(b.multi_tags) video = [a for a in b.data_arrays if a.name == "video"][0] fig = plt.figure(facecolor='white', figsize=(1024 / 90, 768 / 90), dpi=90) pb = Playback(fig,video) pb.start() # get the tag linking tracking and video data tag = [t for t in b.multi_tags if t.name == "tracking"][0] fig = plt.figure(facecolor='white', figsize=(1024 / 90, 768 / 90), dpi=90) pb = Playback(fig, video, tracking_tag=tag) pb.start() fig = plt.figure(facecolor='white', figsize=(1024 / 90, 768 / 90), dpi=90) pb = Playback(fig, video, tracking_tag=tag, show_orientation=True) pb.start() nix_file.close() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Storing of video data Step2: Tracking data Step3: Addtional Information
15,645
<ASSISTANT_TASK:> Python Code: %matplotlib inline # To generate the vector fields import dolfin as df import mshr import numpy as np import plot_vtk_matplotlib as pvm # Matplotlib parameters can be tuned with rc.Params # This library has modified values. For example: # matplotlib.rcParams['font.size'] = 22 mesh = mshr.Rectangle(df.Point(-3, -3), df.Point(3, 3)) mesh = mshr.generate_mesh(mesh, 10) vspace = df.VectorFunctionSpace(mesh, 'Lagrange', degree=1, dim=2) vfunction = df.Expression(("sin(x[1])", "cos(x[0])")) vfunction = df.interpolate(vfunction, vspace) # df.plot(vfunction, interactive=True) _file = df.File('dolfin_vector_field_2d.pvd') _file << vfunction # Load our skyrmionic state vf_plot = pvm.plot_vtk_matplotlib('./dolfin_vector_field_2d000000.vtu', z_max=1, z_min=-1, ) # Extract the data from the file vf_plot.extract_data(# vtkfiletype=XMLStructuredGrid ) # Plot the y component and arrows in black vf_plot.plot_vtk(-3, 3, -3, 3, # nx=50, ny=50, v_component='vy', hsv_map='2d', # figsize=(10, 10), # savefig='hsv_map.pdf', colorbar=True, quiver_type='raw_colour', ) # Plot the y component and arrows in black vf_plot.plot_vtk(-3, 3, -3, 3, nx=50, ny=50, v_component='vx', # cmap='RdBu', interpolator='natgrid', interpolator_method='linear', # figsize=(10, 10), colorbar=True, # quiver_type='raw_colour', ) # Quiver plot vf_plot.plot_quiver(quiver_type='interpolated_cmap', x_min=-3, x_max=3, y_min=-3, y_max=3, linewidth=0.8, scale=1 / 0.06, width=0.007, alpha=0.8, v_component='vx', # pivot='tail' # savefig='vector_field.png' ) mesh = mshr.Sphere(df.Point(0, 0), 5) mesh = mshr.generate_mesh(mesh, 10) vspace = df.VectorFunctionSpace(mesh, 'Lagrange', degree=1, dim=3) vfunction = df.Expression(("sin(x[1])", "cos(x[0])", "sin(x[2])")) vfunction = df.interpolate(vfunction, vspace) # We can plot the field using Dolfin # df.plot(vfunction, interactive=True) # We can plot the mesh # df.plot(mesh, interactive=True) _file = df.File('dolfin_sphere_vector_field_3d.pvd') _file << vfunction # Load our skyrmionic state vf_plot = pvm.plot_vtk_matplotlib('./dolfin_sphere_vector_field_3d000000.vtu', z_max=0.8, z_min=-0.8) # Extract the data from the file vf_plot.extract_data() # plot the x component and arrows in black vf_plot.plot_vtk(-5, 5, -5, 5, nx=100, ny=100, v_component='vz', hsv_map='3d', # figsize=(10, 8), colorbar=True, quiver_type='raw_colour', ) # Quiver plot vf_plot.plot_quiver(quiver_type='interpolated_cmap', x_min=-5, x_max=5, y_min=-5, y_max=5, linewidth=0.8, scale=1 / 0.06, width=0.007, alpha=0.8, v_component='vz' ) vf_plot.z_min, vf_plot.z_max = 4, 5 # Quiver plot vf_plot.plot_vtk(-5, 5, -5, 5, nx=100, ny=100, v_component='vy', hsv_map='2d', colorbar=True, quiver_type=None, ) import matplotlib.pyplot as plt fig = plt.figure(figsize=(18, 6)) comps = ['vx', 'vy', 'vz'] for i in range(3): ax = fig.add_subplot(1, 3, i + 1) vf_plot.plot_quiver(quiver_type='interpolated_cmap', x_min=-5, x_max=5, y_min=-5, y_max=5, linewidth=0.8, scale=1 / 0.06, width=0.007, alpha=0.8, cmap='RdYlBu', v_component=comps[i], predefined_axis=ax, ) ax.set_title(comps[i]) # ax.axis('off') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Generate 2D Vector Field using Dolfin Step2: Now we can save the data in a VTK file. By default, Fenics saves XML files (instead of binary) using an unstructured grid, with the .vtu extension Step3: Consequently, we initialise the plotting library passing the path to the VTK file. When loading the data, we must specify the range of spatial z values from where a slice of data is going to be plotted. Step4: We now start exprimenting with the options. One of the most interesting functions is plot_vtk which shows an interpolated colormap using the data in the slice specified when extracting the information. Step5: The default option is to use a colormap for the interpolated data. We can also specify to use natgrid instead of scipy for interpolating the data. The linear method is better than the default 'nn' (natural neighbours) but still a bad approximation, compared with SciPy. Step6: We can also use a quiver plot, which can also be interpolated if necessary. Extra arguments can be passed to control the arrow definitions. The default interpolation is made with SciPy and a linear method. These options can be changed with interpolator and interpolator_method respectively. Step7: 3D Vector Field Step8: We save the data as before Step9: Now we load the function and specify a slice in the middle of the sphere Step10: If we plot the slice with a 3D HSV mapping, darker regions indicate the lower $z$ magnitudes of the vector field, while the brighter regions indicate the highest $z$ values. Step11: We can interpolate this slice and get a quiver plot from the vector field Step12: We can also redefine the range of $z$ values where the data is extracted, but this is not very accurate for a mesh in finite elements since many points are not exactly in the slice plane, thus the approximation can be bad. The quiver plot on top can be disabled making the quiver_type as None or False. Step13: Extending with Matplotlib
15,646
<ASSISTANT_TASK:> Python Code: import numpy as np from sklearn.model_selection import train_test_split from tensorflow import keras # Set up code checking from learntools.core import binder binder.bind(globals()) from learntools.deep_learning.exercise_8 import * print("Setup Complete") img_rows, img_cols = 28, 28 num_classes = 10 def prep_data(raw): y = raw[:, 0] out_y = keras.utils.to_categorical(y, num_classes) x = raw[:,1:] num_images = raw.shape[0] out_x = x.reshape(num_images, img_rows, img_cols, 1) out_x = out_x / 255 return out_x, out_y fashion_file = "../input/fashionmnist/fashion-mnist_train.csv" fashion_data = np.loadtxt(fashion_file, skiprows=1, delimiter=',') x, y = prep_data(fashion_data) from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Conv2D, Dropout batch_size = 16 fashion_model = Sequential() fashion_model.add(Conv2D(16, kernel_size=(3, 3), activation='relu', input_shape=(img_rows, img_cols, 1))) fashion_model.add(Conv2D(16, (3, 3), activation='relu')) fashion_model.add(Flatten()) fashion_model.add(Dense(128, activation='relu')) fashion_model.add(Dense(num_classes, activation='softmax')) fashion_model.compile(loss=keras.losses.categorical_crossentropy, optimizer='adam', metrics=['accuracy']) fashion_model.fit(x, y, batch_size=batch_size, epochs=3, validation_split = 0.2) fashion_model_1 = Sequential() fashion_model_1.add(Conv2D(16, kernel_size=(3, 3), activation='relu', input_shape=(img_rows, img_cols, 1))) fashion_model_1.add(Conv2D(16, (3, 3), activation='relu', strides=2)) fashion_model_1.add(Flatten()) fashion_model_1.add(Dense(128, activation='relu')) fashion_model_1.add(Dense(num_classes, activation='softmax')) fashion_model_1.compile(loss=keras.losses.categorical_crossentropy, optimizer='adam', metrics=['accuracy']) fashion_model_1.fit(x, y, batch_size=batch_size, epochs=3, validation_split = 0.2) # Check your answer q_1.check() #_COMMENT_IF(PROD)_ q_1.solution() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1) Increasing Stride Size in A Layer Step2: You have the same code in the cell below, but the model is now called fashion_model_1. Change the specification of fashion_model_1 so the second convolutional layer has a stride length of 2. Step3: For the solution, uncomment and run the cell below
15,647
<ASSISTANT_TASK:> Python Code: # change these to try this notebook out BUCKET = 'cloud-training-demos-ml' PROJECT = 'cloud-training-demos' PROJECTNUMBER = '663413318684' REGION = 'us-central1' import os os.environ['BUCKET'] = BUCKET os.environ['PROJECT'] = PROJECT os.environ['PROJECTNUMBER'] = PROJECTNUMBER os.environ['REGION'] = REGION %bash gcloud config set project $PROJECT gcloud config set compute/region $REGION %%bash if ! gsutil ls | grep -q gs://${BUCKET}/; then gsutil mb -l ${REGION} gs://${BUCKET} fi %bash # Pandas will use this privatekey to access BigQuery on our behalf. # Do NOT check in the private key into git!!! # if you get a JWT grant error when using this key, create the key via gcp web console in IAM > Service Accounts section KEYFILE=babyweight/trainer/privatekey.json if [ ! -f $KEYFILE ]; then gcloud iam service-accounts keys create \ --iam-account ${PROJECTNUMBER}-compute@developer.gserviceaccount.com \ $KEYFILE fi KEYDIR='babyweight/trainer' #%writefile babyweight/trainer/model.py # Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #%writefile -a babyweight/trainer/model.py def create_queries(): query_all = WITH with_ultrasound AS ( SELECT weight_pounds AS label, CAST(is_male AS STRING) AS is_male, mother_age, CAST(plurality AS STRING) AS plurality, gestation_weeks, FARM_FINGERPRINT(CONCAT(CAST(YEAR AS STRING), CAST(month AS STRING))) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 AND gestation_weeks > 0 AND mother_age > 0 AND plurality > 0 AND weight_pounds > 0 ), without_ultrasound AS ( SELECT weight_pounds AS label, 'Unknown' AS is_male, mother_age, IF(plurality > 1, 'Multiple', 'Single') AS plurality, gestation_weeks, FARM_FINGERPRINT(CONCAT(CAST(YEAR AS STRING), CAST(month AS STRING))) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 AND gestation_weeks > 0 AND mother_age > 0 AND plurality > 0 AND weight_pounds > 0 ), preprocessed AS ( SELECT * from with_ultrasound UNION ALL SELECT * from without_ultrasound ) SELECT label, is_male, mother_age, plurality, gestation_weeks FROM preprocessed train_query = "{} WHERE ABS(MOD(hashmonth, 4)) < 3".format(query_all) eval_query = "{} WHERE ABS(MOD(hashmonth, 4)) = 3".format(query_all) return train_query, eval_query print create_queries()[0] #%writefile -a babyweight/trainer/model.py def query_to_dataframe(query): import pandas as pd import pkgutil privatekey = pkgutil.get_data(KEYDIR, 'privatekey.json') print(privatekey[:200]) return pd.read_gbq(query, project_id=PROJECT, dialect='standard', private_key=privatekey) def create_dataframes(frac): # small dataset for testing if frac > 0 and frac < 1: sample = " AND RAND() < {}".format(frac) else: sample = "" train_query, eval_query = create_queries() train_query = "{} {}".format(train_query, sample) eval_query = "{} {}".format(eval_query, sample) train_df = query_to_dataframe(train_query) eval_df = query_to_dataframe(eval_query) return train_df, eval_df train_df, eval_df = create_dataframes(0.001) train_df.describe() eval_df.head() #%writefile -a babyweight/trainer/model.py def input_fn(indf): import copy import pandas as pd df = copy.deepcopy(indf) # one-hot encode the categorical columns df["plurality"] = df["plurality"].astype(pd.api.types.CategoricalDtype( categories=["Single","Multiple","1","2","3","4","5"])) df["is_male"] = df["is_male"].astype(pd.api.types.CategoricalDtype( categories=["Unknown","false","true"])) # features, label label = df['label'] del df['label'] features = pd.get_dummies(df) return features, label train_x, train_y = input_fn(train_df) print(train_x[:5]) print(train_y[:5]) from sklearn.ensemble import RandomForestRegressor estimator = RandomForestRegressor(max_depth=5, n_estimators=100, random_state=0) estimator.fit(train_x, train_y) import numpy as np eval_x, eval_y = input_fn(eval_df) eval_pred = estimator.predict(eval_x) print(eval_pred[1000:1005]) print(eval_y[1000:1005]) print(np.sqrt(np.mean((eval_pred-eval_y)*(eval_pred-eval_y)))) #%writefile -a babyweight/trainer/model.py def train_and_evaluate(frac, max_depth=5, n_estimators=100): import numpy as np # get data train_df, eval_df = create_dataframes(frac) train_x, train_y = input_fn(train_df) # train from sklearn.ensemble import RandomForestRegressor estimator = RandomForestRegressor(max_depth=max_depth, n_estimators=n_estimators, random_state=0) estimator.fit(train_x, train_y) # evaluate eval_x, eval_y = input_fn(eval_df) eval_pred = estimator.predict(eval_x) rmse = np.sqrt(np.mean((eval_pred-eval_y)*(eval_pred-eval_y))) print("Eval rmse={}".format(rmse)) return estimator, rmse #%writefile -a babyweight/trainer/model.py def save_model(estimator, gcspath, name): from sklearn.externals import joblib import os, subprocess, datetime model = 'model.joblib' joblib.dump(estimator, model) model_path = os.path.join(gcspath, datetime.datetime.now().strftime( 'export_%Y%m%d_%H%M%S'), model) subprocess.check_call(['gsutil', 'cp', model, model_path]) return model_path saved = save_model(estimator, 'gs://{}/babyweight/sklearn'.format(BUCKET), 'babyweight') print saved %writefile babyweight/trainer/task.py # Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import hypertune import model if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--bucket', help = 'GCS path to output.', required = True ) parser.add_argument( '--frac', help = 'Fraction of input to process', type = float, required = True ) parser.add_argument( '--maxDepth', help = 'Depth of trees', type = int, default = 5 ) parser.add_argument( '--numTrees', help = 'Number of trees', type = int, default = 100 ) parser.add_argument( '--projectId', help = 'ID (not name) of your project', required = True ) parser.add_argument( '--job-dir', help = 'output directory for model, automatically provided by gcloud', required = True ) args = parser.parse_args() arguments = args.__dict__ model.PROJECT = arguments['projectId'] model.KEYDIR = 'trainer' estimator, rmse = model.train_and_evaluate(arguments['frac'], arguments['maxDepth'], arguments['numTrees'] ) loc = model.save_model(estimator, arguments['job_dir'], 'babyweight') print("Saved model to {}".format(loc)) # this is for hyperparameter tuning hpt = hypertune.HyperTune() hpt.report_hyperparameter_tuning_metric( hyperparameter_metric_tag='rmse', metric_value=rmse, global_step=0) # done !pip freeze | grep pandas %writefile babyweight/setup.py # Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from setuptools import setup setup(name='trainer', version='1.0', description='Natality, with sklearn', url='http://github.com/GoogleCloudPlatform/training-data-analyst', author='Google', author_email='nobody@google.com', license='Apache2', packages=['trainer'], ## WARNING! Do not upload this package to PyPI ## BECAUSE it contains a private key package_data={'': ['privatekey.json']}, install_requires=[ 'pandas-gbq==0.3.0', 'urllib3', 'google-cloud-bigquery==0.29.0', 'cloudml-hypertune' ], zip_safe=False) %bash export PYTHONPATH=${PYTHONPATH}:${PWD}/babyweight python -m trainer.task \ --bucket=${BUCKET} --frac=0.001 --job-dir=gs://${BUCKET}/babyweight/sklearn --projectId $PROJECT %bash RUNTIME_VERSION="1.8" PYTHON_VERSION="2.7" JOB_NAME=babyweight_skl_$(date +"%Y%m%d_%H%M%S") JOB_DIR="gs://$BUCKET/babyweight/sklearn/${JOBNAME}" gcloud ml-engine jobs submit training $JOB_NAME \ --job-dir $JOB_DIR \ --package-path $(pwd)/babyweight/trainer \ --module-name trainer.task \ --region us-central1 \ --runtime-version=$RUNTIME_VERSION \ --python-version=$PYTHON_VERSION \ -- \ --bucket=${BUCKET} --frac=0.1 --projectId $PROJECT %bash gsutil ls gs://${BUCKET}/babyweight/sklearn/ | tail -1 %bash MODEL_NAME="babyweight" MODEL_VERSION="skl" MODEL_LOCATION=$(gsutil ls gs://${BUCKET}/babyweight/sklearn/ | tail -1) echo "Deleting and deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes" #gcloud ml-engine versions delete ${MODEL_VERSION} --model ${MODEL_NAME} #gcloud ml-engine models delete ${MODEL_NAME} #gcloud ml-engine models create ${MODEL_NAME} --regions $REGION gcloud alpha ml-engine versions create ${MODEL_VERSION} --model ${MODEL_NAME} --origin ${MODEL_LOCATION} \ --framework SCIKIT_LEARN --runtime-version 1.8 --python-version=2.7 data = [] for i in range(2): data.append([]) for col in eval_x: # convert from numpy integers to standard integers data[i].append(int(np.uint64(eval_x[col][i]).item())) print(eval_x.columns) print(json.dumps(data)) from googleapiclient import discovery from oauth2client.client import GoogleCredentials import json credentials = GoogleCredentials.get_application_default() api = discovery.build('ml', 'v1', credentials=credentials) request_data = {'instances': # [u'mother_age', u'gestation_weeks', u'is_male_Unknown', u'is_male_0', # u'is_male_1', u'plurality_Single', u'plurality_Multiple', # u'plurality_1', u'plurality_2', u'plurality_3', u'plurality_4', # u'plurality_5'] [[24, 38, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0], [34, 39, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0]] } parent = 'projects/%s/models/%s/versions/%s' % (PROJECT, 'babyweight', 'skl') response = api.projects().predict(body=request_data, name=parent).execute() print "response={0}".format(response) %writefile hyperparam.yaml trainingInput: hyperparameters: goal: MINIMIZE maxTrials: 100 maxParallelTrials: 5 hyperparameterMetricTag: rmse params: - parameterName: maxDepth type: INTEGER minValue: 2 maxValue: 8 scaleType: UNIT_LINEAR_SCALE - parameterName: numTrees type: INTEGER minValue: 50 maxValue: 150 scaleType: UNIT_LINEAR_SCALE %bash RUNTIME_VERSION="1.8" PYTHON_VERSION="2.7" JOB_NAME=babyweight_skl_$(date +"%Y%m%d_%H%M%S") JOB_DIR="gs://$BUCKET/babyweight/sklearn/${JOBNAME}" gcloud ml-engine jobs submit training $JOB_NAME \ --job-dir $JOB_DIR \ --package-path $(pwd)/babyweight/trainer \ --module-name trainer.task \ --region us-central1 \ --runtime-version=$RUNTIME_VERSION \ --python-version=$PYTHON_VERSION \ --config=hyperparam.yaml \ -- \ --bucket=${BUCKET} --frac=0.01 --projectId $PROJECT %writefile largemachine.yaml trainingInput: scaleTier: CUSTOM masterType: large_model %bash RUNTIME_VERSION="1.8" PYTHON_VERSION="2.7" JOB_NAME=babyweight_skl_$(date +"%Y%m%d_%H%M%S") JOB_DIR="gs://$BUCKET/babyweight/sklearn/${JOBNAME}" gcloud ml-engine jobs submit training $JOB_NAME \ --job-dir $JOB_DIR \ --package-path $(pwd)/babyweight/trainer \ --module-name trainer.task \ --region us-central1 \ --runtime-version=$RUNTIME_VERSION \ --python-version=$PYTHON_VERSION \ --scale-tier=CUSTOM \ --config=largemachine.yaml \ -- \ --bucket=${BUCKET} --frac=1 --projectId $PROJECT --maxDepth 8 --numTrees 90 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Exploring dataset Step3: <h2> Creating a ML dataset using BigQuery </h2> Step4: <h2> Creating a scikit-learn model using random forests </h2> Step5: Packaging up as a Python package Step6: Try out the package on a subset of the data. Step7: <h2> Training on Cloud ML Engine </h2> Step8: The training finished in 20 minutes with a RMSE of 1.05 lbs. Step9: <h2> Using the model to predict </h2> Step10: As long as you send in the data in that order, it will work Step11: Hyperparameter tuning Step12: If you go to the GCP console and click on the job, you will see the trial information start to populating, with the lowest rmse trial listed first. I got the best performance with these settings
15,648
<ASSISTANT_TASK:> Python Code: import torch from torch import nn import numpy as np import matplotlib.pyplot as plt %matplotlib inline plt.figure(figsize=(8,5)) # how many time steps/data pts are in one batch of data seq_length = 20 # generate evenly spaced data pts time_steps = np.linspace(start=0, stop=np.pi, num=seq_length + 1) data = np.sin(time_steps) # Size becomes (seq_length+1, 1), adds an input_size dimension data.resize((seq_length + 1, 1)) # Input X becomes all but the last piece of data x = data[:-1] # Target Y becomes all but the first piece of data y = data[1:] # display the data plt.plot(time_steps[1:], x, 'r.', label='input, x') plt.plot(time_steps[1:], y, 'b.', label='target, y') plt.legend(loc='best') plt.show() class RNN(nn.Module): def __init__(self, input_size, output_size, hidden_dim, n_layers): super(RNN, self).__init__() self.hidden_dim=hidden_dim # Define an RNN with specified parameters # Batch_first means that the first dim of the input and output will be the batch_size self.rnn = nn.RNN(input_size=input_size, hidden_size=hidden_dim, num_layers=n_layers, batch_first=True) # last, fully-connected layer self.fc = nn.Linear(hidden_dim, output_size) def forward(self, x, hidden): # x (batch_size, seq_length, input_size) # hidden (n_layers, batch_size, hidden_dim) # r_out (batch_size, time_step, hidden_size) batch_size = x.size(0) # Get RNN outputs r_out, hidden = self.rnn(x, hidden) # Shape output to be (batch_size*seq_length, hidden_dim) r_out = r_out.view(-1, self.hidden_dim) # Get final output output = self.fc(r_out) return output, hidden # Test that dimensions are as expected test_rnn = RNN(input_size=1, output_size=1, hidden_dim=10, n_layers=2) # Generate evenly spaced, test data pts time_steps = np.linspace(0, np.pi, seq_length) data = np.sin(time_steps) data.resize((seq_length, 1)) # Give it a batch_size of 1 as first dimension print('Input size before: ', torch.Tensor(data).size()) test_input = torch.Tensor(data).unsqueeze(0) print('Input size after: ', test_input.size()) # Test out rnn sizes test_out, test_h = test_rnn(test_input, None) print('Output size: ', test_out.size()) print('Hidden state size: ', test_h.size()) # Decide on hyperparameters input_size=1 output_size=1 hidden_dim=32 n_layers=1 # Instantiate an RNN rnn = RNN(input_size, output_size, hidden_dim, n_layers) print(rnn) # MSE loss and Adam optimizer with a learning rate of 0.01 criterion = nn.MSELoss() optimizer = torch.optim.Adam(params=rnn.parameters(), lr=0.01) # Train the RNN def train(rnn, n_steps, print_every): # Initialize the hidden state hidden = None for batch_i, step in enumerate(range(n_steps)): # Defining the training data time_steps = np.linspace(step * np.pi, (step+1)*np.pi, seq_length + 1) data = np.sin(time_steps) data.resize((seq_length + 1, 1)) # input_size=1 x = data[:-1] y = data[1:] # Convert data into Tensors # unsqueeze gives a 1, batch_size dimension x_tensor = torch.Tensor(x).unsqueeze(0) y_tensor = torch.Tensor(y) # Outputs from the rnn prediction, hidden = rnn(x_tensor, hidden) ## Representing Memory ## # Make a new variable for hidden and detach the hidden state from its history # this way, we don't backpropagate through the entire history hidden = hidden.data # Calculate the loss loss = criterion(prediction, y_tensor) # Zero gradients optimizer.zero_grad() # Perform backprop and update weights loss.backward() optimizer.step() # Display loss and predictions if batch_i % print_every == 0: print('Loss: ', loss.item()) # Plot input plt.plot(time_steps[1:], x, 'r.') # Plot predictions plt.plot(time_steps[1:], prediction.data.numpy().flatten(), 'b.') # predictions plt.show() return rnn # Train the rnn and monitor results n_steps = 75 print_every = 15 trained_rnn = train(rnn, n_steps, print_every) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Define the RNN Step2: Check the input and output dimensions Step3: Training the RNN Step4: Loss and Optimization Step5: Defining the training function
15,649
<ASSISTANT_TASK:> Python Code: from crpropa import * import numpy as np import matplotlib.pyplot as plt # define densities FER = Ferriere() NAK = Nakanishi() COR = Cordes() R = np.linspace(0, 30*kpc, 300) phi = np.linspace(0, 2*np.pi, 180) n_FER_HI = np.zeros((R.shape[0],phi.shape[0])) n_FER_HII = np.zeros((R.shape[0],phi.shape[0])) n_FER_H2 = np.zeros((R.shape[0],phi.shape[0])) n_FER_tot = np.zeros((R.shape[0],phi.shape[0])) n_FER_nucl = np.zeros((R.shape[0],phi.shape[0])) # get densitys pos = Vector3d(0.) for ir, r in enumerate(R): for ip, p in enumerate(phi): pos.x = r*np.cos(p) pos.y = r*np.sin(p) n_FER_HI[ir,ip]=FER.getHIDensity(pos) n_FER_HII[ir,ip]=FER.getHIIDensity(pos) n_FER_H2[ir,ip]=FER.getH2Density(pos) n_FER_tot[ir,ip]=FER.getDensity(pos) n_FER_nucl[ir,ip]=FER.getNucleonDensity(pos) # plot radial plt.figure() plt.plot(R/kpc, n_FER_HI.mean(axis=1)*ccm, linestyle = '--',alpha = .7, color='red', label= 'atomic hydrogyn (HI)') plt.plot(R/kpc, n_FER_HII.mean(axis=1)*ccm, linestyle = ':',alpha = .7, color='blue', label = 'ionised hydrogyn (HII)') plt.plot(R/kpc, n_FER_H2.mean(axis=1)*ccm, linestyle = '-.',alpha = .7, color='orange', label= 'molecular hydrogen (H2)') plt.plot(R/kpc, n_FER_tot.mean(axis=1)*ccm, color = 'black',alpha = .7, label = 'total density (HI + HII + H2)') plt.plot(R/kpc, n_FER_nucl.mean(axis=1)*ccm, color ='green',alpha = .7, label = 'nucleon density (HI + HII + 2*H2)') plt.xlabel('galactic Radius in kpc') plt.ylabel('density in 1/cm^-3') plt.yscale('log') plt.axis([0,30,10**-3,10**2]) plt.legend() plt.show() n_COR_R= np.zeros(R.shape) pos = Vector3d(0.) for ir, r in enumerate(R): pos.x = r n_COR_R[ir]= COR.getDensity(pos) plt.figure() plt.plot(R/kpc, n_COR_R*ccm, label = 'HII Cordes') plt.xlabel('galactic Radius in kpc') plt.ylabel('density in 1/cm^-3') plt.yscale('log') plt.axis([0,30,10**-3,10**2]) plt.legend() plt.show() n_NAK_HI = np.zeros(R.shape) n_NAK_H2 = np.zeros(R.shape) n_NAK_tot = np.zeros(R.shape) n_NAK_nucl= np.zeros(R.shape) pos = Vector3d(0.) for ir, r in enumerate(R): pos.x=r n_NAK_HI[ir]=NAK.getHIDensity(pos) n_NAK_H2[ir]=NAK.getH2Density(pos) n_NAK_tot[ir]=NAK.getDensity(pos) n_NAK_nucl[ir]=NAK.getNucleonDensity(pos) # plot radial plt.figure() plt.plot(R/kpc, n_NAK_HI*ccm, linestyle = '--',alpha = .7, color='red', label= 'atomic hydrogyn (HI)') plt.plot(R/kpc, n_NAK_H2*ccm, linestyle = '-.',alpha = .7, color='orange', label= 'molecular hydrogen (H2)') plt.plot(R/kpc, n_NAK_tot*ccm, color = 'black',alpha = .7, label = 'total density (HI + H2)') plt.plot(R/kpc, n_NAK_nucl*ccm, color ='green',alpha = .7, label = 'nucleon density (HI + 2*H2)') plt.xlabel('galactic radius in kpc') plt.ylabel('density in 1/cm^-3') plt.yscale('log') plt.axis([0,22,10**-3,10**2]) plt.legend() plt.show() DL = DensityList() FER.setIsForHII(False) FER.setIsForH2(False) DL.addDensity(FER) #only the active HI is added DL.addDensity(COR) # only the active HII is added, contains no other type NAK.setIsForHI(False) DL.addDensity(NAK) # plot types and sum of densities (along x-axis) n_DL_nucl = np.zeros(R.shape) n_DL_tot = np.zeros(R.shape) pos = Vector3d(0.) for ir, r in enumerate(R): pos.x = r n_DL_tot[ir] = DL.getDensity(pos) n_DL_nucl[ir] = DL.getDensity(pos) plt.figure() plt.plot(R/kpc, n_FER_HI[:,0]*ccm, label= 'HI Ferriere', linestyle =':',alpha = .7) plt.plot(R/kpc, n_COR_R*ccm, label = 'HII Cordes', linestyle ='-.',alpha = .7) plt.plot(R/kpc, n_NAK_H2*ccm, label='H2 Nakanishi', linestyle = '--', alpha = .7) plt.plot(R/kpc, n_DL_tot*ccm, label= 'total', linestyle='-',alpha = .7) plt.plot(R/kpc, n_DL_nucl*ccm, label ='nucleon', linestyle = (0, (3, 5, 1, 5, 1, 5)), alpha = .7) plt.yscale('log') plt.xlabel('x in kpc') plt.ylabel('density in 1/cm^3') plt.axis([0,30,10**-3,100]) plt.legend() plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Model Ferrière Step2: Model Cordes Step3: Model Nakanishi Step4: Advanced use of DensityList
15,650
<ASSISTANT_TASK:> Python Code: x = 1 y = 2 x + y x def add_numbers(x, y): return x + y add_numbers(1, 2) def add_numbers(x,y,z=None): if (z==None): return x+y else: return x+y+z print(add_numbers(1, 2)) print(add_numbers(1, 2, 3)) def add_numbers(x, y, z=None, flag=False): if (flag): print('Flag is true!') if (z==None): return x + y else: return x + y + z print(add_numbers(1, 2, flag=True)) def add_numbers(x,y): return x+y a = add_numbers a(1,2) type('This is a string') type(None) type(1) type(1.0) type(add_numbers) x = (1, 'a', 2, 'b') type(x) x = [1, 'a', 2, 'b'] type(x) x.append(3.3) print(x) for item in x: print(item) i=0 while( i != len(x) ): print(x[i]) i = i + 1 [1,2] + [3,4] [1]*3 1 in [1, 2, 3] x = 'This is a string' print(x[0]) #first character print(x[0:1]) #first character, but we have explicitly set the end character print(x[0:2]) #first two characters x[-1] x[-4:-2] x[:3] x[3:] firstname = 'Christopher' lastname = 'Brooks' print(firstname + ' ' + lastname) print(firstname*3) print('Chris' in firstname) firstname = 'Christopher Arthur Hansen Brooks'.split(' ')[0] # [0] selects the first element of the list lastname = 'Christopher Arthur Hansen Brooks'.split(' ')[-1] # [-1] selects the last element of the list print(firstname) print(lastname) 'Chris' + 2 'Chris' + str(2) x = {'Christopher Brooks': 'brooksch@umich.edu', 'Bill Gates': 'billg@microsoft.com'} x['Christopher Brooks'] # Retrieve a value by using the indexing operator x['Kevyn Collins-Thompson'] = None x['Kevyn Collins-Thompson'] for name in x: print(x[name]) for email in x.values(): print(email) for name, email in x.items(): print(name) print(email) x = ('Christopher', 'Brooks', 'brooksch@umich.edu') fname, lname, email = x fname lname x = ('Christopher', 'Brooks', 'brooksch@umich.edu', 'Ann Arbor') fname, lname, email = x print('Chris' + 2) print('Chris' + str(2)) sales_record = { 'price': 3.24, 'num_items': 4, 'person': 'Chris'} sales_statement = '{} bought {} item(s) at a price of {} each for a total of {}' print(sales_statement.format(sales_record['person'], sales_record['num_items'], sales_record['price'], sales_record['num_items']*sales_record['price'])) import csv %precision 2 with open('mpg.csv') as csvfile: mpg = list(csv.DictReader(csvfile)) mpg[:3] # The first three dictionaries in our list. len(mpg) mpg[0].keys() sum(float(d['cty']) for d in mpg) / len(mpg) sum(float(d['hwy']) for d in mpg) / len(mpg) cylinders = set(d['cyl'] for d in mpg) cylinders CtyMpgByCyl = [] for c in cylinders: # iterate over all the cylinder levels summpg = 0 cyltypecount = 0 for d in mpg: # iterate over all dictionaries if d['cyl'] == c: # if the cylinder level type matches, summpg += float(d['cty']) # add the cty mpg cyltypecount += 1 # increment the count CtyMpgByCyl.append((c, summpg / cyltypecount)) # append the tuple ('cylinder', 'avg mpg') CtyMpgByCyl.sort(key=lambda x: x[0]) CtyMpgByCyl vehicleclass = set(d['class'] for d in mpg) # what are the class types vehicleclass HwyMpgByClass = [] for t in vehicleclass: # iterate over all the vehicle classes summpg = 0 vclasscount = 0 for d in mpg: # iterate over all dictionaries if d['class'] == t: # if the cylinder amount type matches, summpg += float(d['hwy']) # add the hwy mpg vclasscount += 1 # increment the count HwyMpgByClass.append((t, summpg / vclasscount)) # append the tuple ('class', 'avg mpg') HwyMpgByClass.sort(key=lambda x: x[1]) HwyMpgByClass import datetime as dt import time as tm tm.time() dtnow = dt.datetime.fromtimestamp(tm.time()) dtnow dtnow.year, dtnow.month, dtnow.day, dtnow.hour, dtnow.minute, dtnow.second # get year, month, day, etc.from a datetime delta = dt.timedelta(days = 100) # create a timedelta of 100 days delta today = dt.date.today() today - delta # the date 100 days ago today > today-delta # compare dates class Person: department = 'School of Information' #a class variable def set_name(self, new_name): #a method self.name = new_name def set_location(self, new_location): self.location = new_location person = Person() person.set_name('Christopher Brooks') person.set_location('Ann Arbor, MI, USA') print('{} live in {} and works in the department {}'.format(person.name, person.location, person.department)) store1 = [10.00, 11.00, 12.34, 2.34] store2 = [9.00, 11.10, 12.34, 2.01] cheapest = map(min, store1, store2) cheapest for item in cheapest: print(item) my_function = lambda a, b, c : a + b my_function(1, 2, 3) my_list = [] for number in range(0, 1000): if number % 2 == 0: my_list.append(number) my_list my_list = [number for number in range(0,1000) if number % 2 == 0] my_list import numpy as np mylist = [1, 2, 3] x = np.array(mylist) x y = np.array([4, 5, 6]) y m = np.array([[7, 8, 9], [10, 11, 12]]) m m.shape n = np.arange(0, 30, 2) # start at 0 count up by 2, stop before 30 n n = n.reshape(3, 5) # reshape array to be 3x5 n o = np.linspace(0, 4, 9) # return 9 evenly spaced values from 0 to 4 o o.resize(3, 3) o np.ones((3, 2)) np.zeros((2, 3)) np.eye(3) np.diag(y) np.array([1, 2, 3] * 3) np.repeat([1, 2, 3], 3) p = np.ones([2, 3], int) p np.vstack([p, 2*p]) np.hstack([p, 2*p]) print(x + y) # elementwise addition [1 2 3] + [4 5 6] = [5 7 9] print(x - y) # elementwise subtraction [1 2 3] - [4 5 6] = [-3 -3 -3] print(x * y) # elementwise multiplication [1 2 3] * [4 5 6] = [4 10 18] print(x / y) # elementwise divison [1 2 3] / [4 5 6] = [0.25 0.4 0.5] print(x**2) # elementwise power [1 2 3] ^2 = [1 4 9] x.dot(y) # dot product 1*4 + 2*5 + 3*6 z = np.array([y, y**2]) print(len(z)) # number of rows of array z = np.array([y, y**2]) z z.shape z.T z.T.shape z.dtype z = z.astype('f') z.dtype a = np.array([-4, -2, 1, 3, 5]) a.sum() a.max() a.min() a.mean() a.std() a.argmax() a.argmin() s = np.arange(13)**2 s s[0], s[4], s[-1] s[1:5] s[-4:] s[-5::-2] r = np.arange(36) r.resize((6, 6)) r r[2, 2] r[3, 3:6] r[:2, :-1] r[-1, ::2] r[r > 30] r[r > 30] = 30 r r2 = r[:3,:3] r2 r2[:] = 0 r2 r r_copy = r.copy() r_copy r_copy[:] = 10 print(r_copy, '\n') print(r) test = np.random.randint(0, 10, (4,3)) test for row in test: print(row) for i in range(len(test)): print(test[i]) for i, row in enumerate(test): print('row', i, 'is', row) test2 = test**2 test2 for i, j in zip(test, test2): print(i,'+',j,'=',i+j) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <br> Step2: <br> Step3: <br> Step4: <br> Step5: <br> Step6: <br> Step7: <br> Step8: <br> Step9: <br> Step10: <br> Step11: <br> Step12: <br> Step13: <br> Step14: <br> Step15: <br> Step16: <br> Step17: <br> Step18: <br> Step19: <br> Step20: <br> Step21: <br> Step22: <br> Step23: <br> Step24: <br> Step25: <br> Step26: <br> Step27: <br> Step28: <br> Step29: <br> Step30: <br> Step31: <br> Step32: <br> Step33: <br> Step34: <br> Step35: <br> Step36: <br> Step37: <br> Step38: <br> Step39: <br> Step40: <br> Step41: <br> Step42: <br> Step43: <br> Step44: <br> Step45: <br> Step46: <br> Step47: <br> Step48: <br> Step49: <br> Step50: <br> Step51: <br> Step52: <br> Step53: <br> Step54: <br> Step55: <br> Step56: <br> Step57: <br> Step58: <br> Step59: <br> Step60: <br> Step61: <br> Step62: <br> Step63: <br> Step64: <br> Step65: <br> Step66: <br> Step67: <br> Step68: <br> Step69: <br> Step70: <br> Step71: <br> Step72: <br> Step73: <br> Step74: <br> Step75: <br> Step76: <br> Step77: <br> Step78: <br> Step79: <br> Step80: <br> Step81: <br> Step82: <br> Step83: <br> Step84: <br> Step85: <br> Step86: <br> Step87: <br> Step88: <br> Step89: <br> Step90: <br> Step91: <br> Step92: <br> Step93: <br> Step94: <br> Step95: <br> Step96: <br> Step97: <br> Step98: <br> Step99: <br>
15,651
<ASSISTANT_TASK:> Python Code: # set up all the data for the rest of the notebook import json from collections import Counter from itertools import chain from IPython.display import HTML def vote_table(votes): Render a crappy HTML table for easy display. I'd use Pandas, but that seems like complete overkill for this simple task. base_table = <table> <tr><td>Position</td><td>Album</td><td>Votes</td></tr> {} </table> base_row = "<tr><td>{0}</td><td>{1}</td><td>{2}</td></tr>" vote_rows = [base_row.format(idx, name, vote) for idx, (name, vote) in enumerate(votes, 1)] return HTML(base_table.format('\n'.join(vote_rows))) with open('shreddit_q2_votes.json', 'r') as fh: ballots = json.load(fh) with open('tallied_votes.json', 'r') as fh: tallied = Counter(json.load(fh)) equal_placement_ballots = Counter(chain.from_iterable(ballots)) vote_table(tallied.most_common(10)) vote_table(equal_placement_ballots.most_common(10)) weighted_ballot = Counter() for ballot in ballots: for item, weight in zip(ballot, range(5, 0, -1)): weighted_ballot[item] += weight sum(1 for _ in filter(lambda x: len(x) < 5, ballots)) / len(ballots) vote_table(weighted_ballot.most_common(10)) regular_tally_spots = {name.lower(): pos for pos, (name, _) in enumerate(tallied.most_common(), 1)} base_table = <table> <tr><td>Album</td><td>Regular Spot</td><td>Weighted Spot</td></tr> {} </table> base_row = "<tr><td>{0}</td><td>{1}</td><td>{2}</td></tr>" rows = [base_row.format(name, regular_tally_spots[name], pos) for pos, (name, _) in enumerate(weighted_ballot.most_common(), 1) # some albums didn't make it, like Arcturian D: if name in regular_tally_spots] HTML(base_table.format('\n'.join(rows))) number_one = Counter([b[0] for b in ballots]) vote_table(number_one.most_common(10)) #regular tallying vote_table(equal_placement_ballots.most_common()) #weighted ballot vote_table(weighted_ballot.most_common()) #number one count vote_table(number_one.most_common()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Analyzing Shreddit's Q2 Top 5 voting Step3: Equal Placement Ballots Step4: And here's the top ten from my computed tally Step5: Weighted Tally Ballot Step6: This handles the situation where a ballot may not be full (five votes), which make up a surpsingly non trival amount of the ballots Step7: Anyways, what does a top ten for weighted votes end up looking like? Step9: Hm, it's not actually all the different. Some bands move around a little bit, Deathhammer moves into the top ten using this method. But overall, the general spread is pretty much the same. Step10: What album appeared at number one most often? Step11: This paints a slightly different picture of the top ten. While the names are largely the same, Scar Sighted was thought of as the top album most often, despite being at two or three through the other methods. And Misþyrming is at four (okay, "2", again fast and loose with numbering) despite being the solid top choice for all other methods.
15,652
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np import tensorflow as tf import tflearn from tflearn.data_utils import to_categorical reviews = pd.read_csv('reviews.txt', header=None) labels = pd.read_csv('labels.txt', header=None) from collections import Counter total_counts = Counter() for _, row in reviews.iterrows(): total_counts.update(row[0].split(' ')) print("Total words in data set: ", len(total_counts)) total_counts.most_common(10) vocab = sorted(total_counts, key=total_counts.get, reverse=True)[:10000] print(vocab[:60]) print(vocab[-1], ': ', total_counts[vocab[-1]]) word2idx = {word: i for i, word in enumerate(vocab)} def text_to_vector(text): word_vector = np.zeros(len(vocab), dtype=np.int_) for word in text.split(' '): idx = word2idx.get(word, None) if idx is None: continue else: word_vector[idx] += 1 return np.array(word_vector) text_to_vector('The tea is for a party to celebrate ' 'the movie so she has no time for a cake')[:65] word_vectors = np.zeros((len(reviews), len(vocab)), dtype=np.int_) for ii, (_, text) in enumerate(reviews.iterrows()): word_vectors[ii] = text_to_vector(text[0]) # Printing out the first 5 word vectors word_vectors[:5, :23] Y = (labels=='positive').astype(np.int_) records = len(labels) shuffle = np.arange(records) np.random.shuffle(shuffle) test_fraction = 0.9 train_split, test_split = shuffle[:int(records*test_fraction)], shuffle[int(records*test_fraction):] trainX, trainY = word_vectors[train_split,:], to_categorical(Y.values[train_split], 2) testX, testY = word_vectors[test_split,:], to_categorical(Y.values[test_split], 2) trainY # Network building def build_model(): # This resets all parameters and variables, leave this here tf.reset_default_graph() # Inputs net = tflearn.input_data([None, 10000]) # Hidden layer(s) net = tflearn.fully_connected(net, 200, activation='ReLU') net = tflearn.fully_connected(net, 25, activation='ReLU') # Output layer net = tflearn.fully_connected(net, 2, activation='softmax') net = tflearn.regression(net, optimizer='sgd', learning_rate=0.1, loss='categorical_crossentropy') model = tflearn.DNN(net) return model model = build_model() # Training model.fit(trainX, trainY, validation_set=0.1, show_metric=True, batch_size=128, n_epoch=100) predictions = (np.array(model.predict(testX))[:,0] >= 0.5).astype(np.int_) test_accuracy = np.mean(predictions == testY[:,0], axis=0) print("Test accuracy: ", test_accuracy) # Helper function that uses your model to predict sentiment def test_sentence(sentence): positive_prob = model.predict([text_to_vector(sentence.lower())])[0][1] print('Sentence: {}'.format(sentence)) print('P(positive) = {:.3f} :'.format(positive_prob), 'Positive' if positive_prob > 0.5 else 'Negative') sentence = "Moonlight is by far the best movie of 2016." test_sentence(sentence) sentence = "It's amazing anyone could be talented enough to make something this spectacularly awful" test_sentence(sentence) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Preparing the data Step2: Counting word frequency Step3: Let's keep the first 10000 most frequent words. As Andrew noted, most of the words in the vocabulary are rarely used so they will have little effect on our predictions. Below, we'll sort vocab by the count value and keep the 10000 most frequent words. Step4: What's the last word in our vocabulary? We can use this to judge if 10000 is too few. If the last word is pretty common, we probably need to keep more words. Step5: The last word in our vocabulary shows up in 30 reviews out of 25000. I think it's fair to say this is a tiny proportion of reviews. We are probably fine with this number of words. Step6: Text to vector function Step7: If you do this right, the following code should return Step8: Now, run through our entire review data set and convert each review to a word vector. Step9: Train, Validation, Test sets Step10: Building the network Step11: Intializing the model Step12: Training the network Step13: Testing Step14: Try out your own text!
15,653
<ASSISTANT_TASK:> Python Code: import sys sys.path.append('../deeprl') import gym env = gym.make('MountainCar-v0') print env.action_space print env.observation_space print env.observation_space.low print env.observation_space.high print env.goal_position %matplotlib inline import numpy as np import matplotlib.pyplot as plt # initialize the environment obs = env.reset() log = [] # perform 1000 steps for step in range(1000): # sample a random action action = env.action_space.sample() # step the environment and observe the results obs,rew,terminal,_ = env.step(action) # store state log.append(obs) log = np.array(log) #plot the trajectory plt.title('mc trajectory') plt.xlabel('position') plt.ylabel('velocity') plt.plot(log[:,0],log[:,1]) import tensorflow as tf import tflearn as nn def create_mlp(inputs, n_out): # input definition, don't change this line net = nn.input_data(placeholder=inputs) # define the hidden layers: # this creates a standard feedforward network layer with 25 hidden units net = nn.fully_connected(net, 25, activation='relu', weight_decay=0.0001) # dropout layers help prevent overfitting (0.3 dropout rate) net = nn.dropout(net, 0.3) net = nn.fully_connected(net, 25, activation='relu', weight_decay=0.0001) net = nn.dropout(net, 0.3) # output Q-values, don't change net = nn.fully_connected(net, n_out, activation='linear') return net from agents import DQNAgent from experiment import Experiment #erase previously created tf graphs tf.reset_default_graph() #create a DQNAgent agent = DQNAgent(create_mlp, # network creation function env.action_space.n,# number of actions env.observation_space.shape, # state dimensions alpha=0.001, # learning rate gamma=0.99,# discount factor min_replay_size=1000, # samples to gather before starting training replay_size=100000, # max samples to keep target_freq=10000, # update the target network every #target_freq steps batch_size=64) # number of samples to use for single update exp = Experiment(agent, env) # run agent on envrionment for 75K steps rewards = exp.run_epoch(75000) # utility function to calculate mean with sliding window def running_mean(data,window_size=10): return np.convolve(data,np.ones(window_size),mode='valid') / window_size plt.plot(running_mean(rewards)) #create grid highs = env.observation_space.high lows = env.observation_space.low Xs, Ys = np.meshgrid(np.linspace(lows[0],highs[0],30), np.linspace(lows[1],highs[1],30)) Zs = np.zeros_like(Xs) for idx in range(Xs.size): s = np.zeros((1,2)) s[0,0]=Xs.flat[idx] s[0,1]=Ys.flat[idx] Zs.flat[idx] = np.max(agent.get_values(s)) #max qvalue at state from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter fig = plt.figure() ax = fig.gca(projection='3d') surf = ax.plot_surface(Xs, Ys, -Zs, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) fig.colorbar(surf, shrink=0.5, aspect=5) plt.show() obs = env.reset() log = [] for step in range(1000): #this is still e-greedy action = agent.select_action(obs[np.newaxis,:]) obs,rew,terminal,_ = env.step(action) log.append(obs) # uncomment to visualize, might not work in notebook on all systems: # env.render() if terminal: break log = np.array(log) #plot the trajectory plt.title('mc trajectory') plt.xlabel('position') plt.ylabel('velocity') plt.plot(log[:,0],log[:,1]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Using OpenAI Gym Step2: A gym environment contains all relevant data describing the problem. We can directly inspect the action space and the observation space of the environment. In case of mountaincar, we have a discrete action space with 3 actions and a continuous observation space with 2 variables Step3: Using an environment is easy. Just repeatedly call the step function to perform an action from the action space and observe the results. The step function returns the next observation, the reward and a termination indicator (there is also a dict with additional info, but this is mostly unused). Step4: Running DQN Step5: Create a DQNAgent and run an experiment on the Mountaincar environment. The DQNAgent class implements a basic DQN. The Experiment class runs an agent on a given envrionment. The <i>run_epoch</i> method runs for a fixed number of steps and returns the cumulatie reward for each finished episode. The parameters below should give reasonable results. Step6: now plot the rewards of the episodes performed Step7: Since mountaincar has only 2 state variables (position and velocity) we can also plot the Q-function learnt by the neural network. Below we generate a grid of points over the state space and calculate the maximum Q-value at each state. Step8: 3d surface plot using matplotlib Step9: Compare with the value function obtained by Barto & Sutton
15,654
<ASSISTANT_TASK:> Python Code: from math import pi %run matplotlib_setup.ipy from matplotlib import pyplot import numpy as np import kwant lat=kwant.lattice.square() L,W=30,16 def myshape(R): return ( (R[0]**2 + R[1]**2) > (L-W/2)**2 and (R[0]**2 + R[1]**2) < (L+W/2)**2) H=kwant.Builder() H[lat.shape(myshape,(L,0) )]=4 H[lat.neighbors()]=1 def Aharonov_Bohm(site1,site2,phi): return np.exp(-2j*pi*phi) for hop in H.hoppings(): if hop[0].tag[0]==1 and hop[0].tag[1]>0 and hop[1].tag[0]==0: H[hop]=Aharonov_Bohm sym=kwant.TranslationalSymmetry(lat.vec((1,0))) def lead_shape(R): return abs(R[1]) < W/2 and abs(R[0]) <3 Hlead =kwant.Builder(sym) Hlead[lat.shape(lead_shape,(0,0) )]=4 Hlead[lat.neighbors()]=1 H.attach_lead(Hlead) H.attach_lead(Hlead.reversed()) kwant.plot(H); Hf=H.finalized() data = [] phis = np.linspace(0,1.,50) for phi in phis: smatrix = kwant.smatrix(Hf, 3.3,args=[phi]) data.append(smatrix.transmission(1, 0)) pyplot.plot(phis, data,'o'); pyplot.xlabel('$\phi = BS/(h/e)$') pyplot.ylabel('g in unit of $(2e^2/h)$'); pyplot.title('Aharonov-Effect') L,W=100,12 def Field(site1,site2,phi): x1,y1=site1.pos x2,y2=site2.pos return -np.exp(-0.5j * phi * (x1 - x2) * (y1 + y2)) H[lat.neighbors()] = Field phis = np.linspace(0.,0.0005,50) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We see that the Aharonov-Bohm effect contains several harmonics Step2: Now run it, don't forget to change the x-scale of the plot.
15,655
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt from properimage import single_image as s %matplotlib inline pixel = np.random.random((128,128))*5. # Add some stars to it star = [[35, 38, 35], [38, 90, 39], [35, 39, 34]] for i in range(25): x, y = np.random.randint(120, size=2) pixel[x:x+3,y:y+3] = star mask = np.random.randint(2, size=(128,128)) for i in range(10): mask = mask & np.random.randint(2, size=(128,128)) img = s.SingleImage(pixel, mask) print(img) img.data plt.figure(figsize=(6,6)) plt.imshow(img.data, cmap='Greys') img.best_sources[['x', 'y', 'cflux']] a_fields, psf_basis = img.get_variable_psf() len(psf_basis), psf_basis[0].shape a_fields plt.imshow(psf_basis[0]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We can see that the img object created automatically produces an output Step2: If you would like to acces the data inside the object img just ask for data. Step3: As can be seen it is a numpy masked array, with bad pixels flagged. Step4: We can check the best sources extracted. Step5: And also obtain the estimation of PSF. Step6: As in our simple example we don't vary the PSF we obtain only a PSF element, and a None coefficient. Step7: We may check the looks of the psf_basis single element.
15,656
<ASSISTANT_TASK:> Python Code: !gvim data/SF_Si_bulk/invar.in %cd data/SF_Si_bulk/ %run ../../../../../Code/SF/sf.py cd ../../../ from __future__ import print_function import numpy as np import matplotlib.pyplot as plt # plt.rcParams['figure.figsize'] = (9., 6.) %matplotlib inline sf_c = np.genfromtxt( 'data/SF_Si_bulk/Spfunctions/spftot_exp_kpt_1_19_bd_1_4_s1.0_p1.0_800ev_np1.dat') sf_gw = np.genfromtxt( 'data/SF_Si_bulk/Spfunctions/spftot_gw_s1.0_p1.0_800ev.dat') #!gvim spftot_exp_kpt_1_19_bd_1_4_s1.0_p1.0_800ev_np1.dat plt.plot(sf_c[:,0], sf_c[:,1], label='1-pole cumulant') plt.plot(sf_gw[:,0], sf_gw[:,1], label='GW') plt.xlim(-50, 0) plt.ylim(0, 300) plt.title("Bulk Si - Spectral function - ib=1, ikpt=1") plt.xlabel("Energy (eV)") plt.grid(); plt.legend(loc='best') !jupyter-nbconvert --to pdf cumulant-to-pdf.ipynb pwd !xpdf cumulant-to-pdf.pdf <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now I can run my script Step2: Not very elegant, I know. It's just for demo pourposes. Step3: I have first to import a few modules/set up a few things Step4: Next I can read the data from a local folder Step5: Now I can plot the stored arrays. Step6: Creating a PDF document
15,657
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: import colab !pip install --upgrade pip except: pass !pip install -U tfx import tensorflow as tf print('TensorFlow version: {}'.format(tf.__version__)) from tfx import v1 as tfx print('TFX version: {}'.format(tfx.__version__)) import os PIPELINE_NAME = "penguin-transform" # Output directory to store artifacts generated from the pipeline. PIPELINE_ROOT = os.path.join('pipelines', PIPELINE_NAME) # Path to a SQLite DB file to use as an MLMD storage. METADATA_PATH = os.path.join('metadata', PIPELINE_NAME, 'metadata.db') # Output directory where created models from the pipeline will be exported. SERVING_MODEL_DIR = os.path.join('serving_model', PIPELINE_NAME) from absl import logging logging.set_verbosity(logging.INFO) # Set default logging level. import urllib.request import tempfile DATA_ROOT = tempfile.mkdtemp(prefix='tfx-data') # Create a temporary directory. _data_path = 'https://storage.googleapis.com/download.tensorflow.org/data/palmer_penguins/penguins_size.csv' _data_filepath = os.path.join(DATA_ROOT, "data.csv") urllib.request.urlretrieve(_data_path, _data_filepath) !head {_data_filepath} !sed -i '/\bNA\b/d' {_data_filepath} !head {_data_filepath} import shutil SCHEMA_PATH = 'schema' _schema_uri = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/penguin/schema/raw/schema.pbtxt' _schema_filename = 'schema.pbtxt' _schema_filepath = os.path.join(SCHEMA_PATH, _schema_filename) os.makedirs(SCHEMA_PATH, exist_ok=True) urllib.request.urlretrieve(_schema_uri, _schema_filepath) _module_file = 'penguin_utils.py' %%writefile {_module_file} from typing import List, Text from absl import logging import tensorflow as tf from tensorflow import keras from tensorflow_metadata.proto.v0 import schema_pb2 import tensorflow_transform as tft from tensorflow_transform.tf_metadata import schema_utils from tfx import v1 as tfx from tfx_bsl.public import tfxio # Specify features that we will use. _FEATURE_KEYS = [ 'culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g' ] _LABEL_KEY = 'species' _TRAIN_BATCH_SIZE = 20 _EVAL_BATCH_SIZE = 10 # NEW: TFX Transform will call this function. def preprocessing_fn(inputs): tf.transform's callback function for preprocessing inputs. Args: inputs: map from feature keys to raw not-yet-transformed features. Returns: Map from string feature key to transformed feature. outputs = {} # Uses features defined in _FEATURE_KEYS only. for key in _FEATURE_KEYS: # tft.scale_to_z_score computes the mean and variance of the given feature # and scales the output based on the result. outputs[key] = tft.scale_to_z_score(inputs[key]) # For the label column we provide the mapping from string to index. # We could instead use `tft.compute_and_apply_vocabulary()` in order to # compute the vocabulary dynamically and perform a lookup. # Since in this example there are only 3 possible values, we use a hard-coded # table for simplicity. table_keys = ['Adelie', 'Chinstrap', 'Gentoo'] initializer = tf.lookup.KeyValueTensorInitializer( keys=table_keys, values=tf.cast(tf.range(len(table_keys)), tf.int64), key_dtype=tf.string, value_dtype=tf.int64) table = tf.lookup.StaticHashTable(initializer, default_value=-1) outputs[_LABEL_KEY] = table.lookup(inputs[_LABEL_KEY]) return outputs # NEW: This function will apply the same transform operation to training data # and serving requests. def _apply_preprocessing(raw_features, tft_layer): transformed_features = tft_layer(raw_features) if _LABEL_KEY in raw_features: transformed_label = transformed_features.pop(_LABEL_KEY) return transformed_features, transformed_label else: return transformed_features, None # NEW: This function will create a handler function which gets a serialized # tf.example, preprocess and run an inference with it. def _get_serve_tf_examples_fn(model, tf_transform_output): # We must save the tft_layer to the model to ensure its assets are kept and # tracked. model.tft_layer = tf_transform_output.transform_features_layer() @tf.function(input_signature=[ tf.TensorSpec(shape=[None], dtype=tf.string, name='examples') ]) def serve_tf_examples_fn(serialized_tf_examples): # Expected input is a string which is serialized tf.Example format. feature_spec = tf_transform_output.raw_feature_spec() # Because input schema includes unnecessary fields like 'species' and # 'island', we filter feature_spec to include required keys only. required_feature_spec = { k: v for k, v in feature_spec.items() if k in _FEATURE_KEYS } parsed_features = tf.io.parse_example(serialized_tf_examples, required_feature_spec) # Preprocess parsed input with transform operation defined in # preprocessing_fn(). transformed_features, _ = _apply_preprocessing(parsed_features, model.tft_layer) # Run inference with ML model. return model(transformed_features) return serve_tf_examples_fn def _input_fn(file_pattern: List[Text], data_accessor: tfx.components.DataAccessor, tf_transform_output: tft.TFTransformOutput, batch_size: int = 200) -> tf.data.Dataset: Generates features and label for tuning/training. Args: file_pattern: List of paths or patterns of input tfrecord files. data_accessor: DataAccessor for converting input to RecordBatch. tf_transform_output: A TFTransformOutput. batch_size: representing the number of consecutive elements of returned dataset to combine in a single batch Returns: A dataset that contains (features, indices) tuple where features is a dictionary of Tensors, and indices is a single Tensor of label indices. dataset = data_accessor.tf_dataset_factory( file_pattern, tfxio.TensorFlowDatasetOptions(batch_size=batch_size), schema=tf_transform_output.raw_metadata.schema) transform_layer = tf_transform_output.transform_features_layer() def apply_transform(raw_features): return _apply_preprocessing(raw_features, transform_layer) return dataset.map(apply_transform).repeat() def _build_keras_model() -> tf.keras.Model: Creates a DNN Keras model for classifying penguin data. Returns: A Keras Model. # The model below is built with Functional API, please refer to # https://www.tensorflow.org/guide/keras/overview for all API options. inputs = [ keras.layers.Input(shape=(1,), name=key) for key in _FEATURE_KEYS ] d = keras.layers.concatenate(inputs) for _ in range(2): d = keras.layers.Dense(8, activation='relu')(d) outputs = keras.layers.Dense(3)(d) model = keras.Model(inputs=inputs, outputs=outputs) model.compile( optimizer=keras.optimizers.Adam(1e-2), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[keras.metrics.SparseCategoricalAccuracy()]) model.summary(print_fn=logging.info) return model # TFX Trainer will call this function. def run_fn(fn_args: tfx.components.FnArgs): Train the model based on given args. Args: fn_args: Holds args used to train the model as name/value pairs. tf_transform_output = tft.TFTransformOutput(fn_args.transform_output) train_dataset = _input_fn( fn_args.train_files, fn_args.data_accessor, tf_transform_output, batch_size=_TRAIN_BATCH_SIZE) eval_dataset = _input_fn( fn_args.eval_files, fn_args.data_accessor, tf_transform_output, batch_size=_EVAL_BATCH_SIZE) model = _build_keras_model() model.fit( train_dataset, steps_per_epoch=fn_args.train_steps, validation_data=eval_dataset, validation_steps=fn_args.eval_steps) # NEW: Save a computation graph including transform layer. signatures = { 'serving_default': _get_serve_tf_examples_fn(model, tf_transform_output), } model.save(fn_args.serving_model_dir, save_format='tf', signatures=signatures) def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str, schema_path: str, module_file: str, serving_model_dir: str, metadata_path: str) -> tfx.dsl.Pipeline: Implements the penguin pipeline with TFX. # Brings data into the pipeline or otherwise joins/converts training data. example_gen = tfx.components.CsvExampleGen(input_base=data_root) # Computes statistics over data for visualization and example validation. statistics_gen = tfx.components.StatisticsGen( examples=example_gen.outputs['examples']) # Import the schema. schema_importer = tfx.dsl.Importer( source_uri=schema_path, artifact_type=tfx.types.standard_artifacts.Schema).with_id( 'schema_importer') # Performs anomaly detection based on statistics and data schema. example_validator = tfx.components.ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=schema_importer.outputs['result']) # NEW: Transforms input data using preprocessing_fn in the 'module_file'. transform = tfx.components.Transform( examples=example_gen.outputs['examples'], schema=schema_importer.outputs['result'], materialize=False, module_file=module_file) # Uses user-provided Python function that trains a model. trainer = tfx.components.Trainer( module_file=module_file, examples=example_gen.outputs['examples'], # NEW: Pass transform_graph to the trainer. transform_graph=transform.outputs['transform_graph'], train_args=tfx.proto.TrainArgs(num_steps=100), eval_args=tfx.proto.EvalArgs(num_steps=5)) # Pushes the model to a filesystem destination. pusher = tfx.components.Pusher( model=trainer.outputs['model'], push_destination=tfx.proto.PushDestination( filesystem=tfx.proto.PushDestination.Filesystem( base_directory=serving_model_dir))) components = [ example_gen, statistics_gen, schema_importer, example_validator, transform, # NEW: Transform component was added to the pipeline. trainer, pusher, ] return tfx.dsl.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, metadata_connection_config=tfx.orchestration.metadata .sqlite_metadata_connection_config(metadata_path), components=components) tfx.orchestration.LocalDagRunner().run( _create_pipeline( pipeline_name=PIPELINE_NAME, pipeline_root=PIPELINE_ROOT, data_root=DATA_ROOT, schema_path=SCHEMA_PATH, module_file=_module_file, serving_model_dir=SERVING_MODEL_DIR, metadata_path=METADATA_PATH)) # List files in created model directory. !find {SERVING_MODEL_DIR} !saved_model_cli show --dir {SERVING_MODEL_DIR}/$(ls -1 {SERVING_MODEL_DIR} | sort -nr | head -1) --tag_set serve --signature_def serving_default # Find a model with the latest timestamp. model_dirs = (item for item in os.scandir(SERVING_MODEL_DIR) if item.is_dir()) model_path = max(model_dirs, key=lambda i: int(i.name)).path loaded_model = tf.keras.models.load_model(model_path) inference_fn = loaded_model.signatures['serving_default'] # Prepare an example and run inference. features = { 'culmen_length_mm': tf.train.Feature(float_list=tf.train.FloatList(value=[49.9])), 'culmen_depth_mm': tf.train.Feature(float_list=tf.train.FloatList(value=[16.1])), 'flipper_length_mm': tf.train.Feature(int64_list=tf.train.Int64List(value=[213])), 'body_mass_g': tf.train.Feature(int64_list=tf.train.Int64List(value=[5400])), } example_proto = tf.train.Example(features=tf.train.Features(feature=features)) examples = example_proto.SerializeToString() result = inference_fn(examples=tf.constant([examples])) print(result['output_0'].numpy()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Feature Engineering using TFX Pipeline and TensorFlow Transform Step2: Install TFX Step3: Did you restart the runtime? Step4: Set up variables Step5: Prepare example data Step6: Take a quick look at what the raw data looks like. Step7: There are some entries with missing values which are represented as NA. Step8: You should be able to see seven features which describe penguins. We will use Step13: This schema file was created with the same pipeline as in the previous tutorial Step15: Now you have completed all of the preparation steps to build a TFX pipeline. Step16: Run the pipeline Step17: You should see "INFO Step18: You can also check the signature of the generated model using the Step19: Because we defined serving_default with our own serve_tf_examples_fn
15,658
<ASSISTANT_TASK:> Python Code: import os import math from zipfile import ZipFile from urllib.request import urlretrieve import numpy as np import pandas as pd import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.layers import StringLookup import matplotlib.pyplot as plt urlretrieve("http://files.grouplens.org/datasets/movielens/ml-1m.zip", "movielens.zip") ZipFile("movielens.zip", "r").extractall() ratings_data = pd.read_csv( "ml-1m/ratings.dat", sep="::", names=["user_id", "movie_id", "rating", "unix_timestamp"], ) ratings_data["movie_id"] = ratings_data["movie_id"].apply(lambda x: f"movie_{x}") ratings_data["user_id"] = ratings_data["user_id"].apply(lambda x: f"user_{x}") ratings_data["rating"] = ratings_data["rating"].apply(lambda x: float(x)) del ratings_data["unix_timestamp"] print(f"Number of users: {len(ratings_data.user_id.unique())}") print(f"Number of movies: {len(ratings_data.movie_id.unique())}") print(f"Number of ratings: {len(ratings_data.index)}") random_selection = np.random.rand(len(ratings_data.index)) <= 0.85 train_data = ratings_data[random_selection] eval_data = ratings_data[~random_selection] train_data.to_csv("train_data.csv", index=False, sep="|", header=False) eval_data.to_csv("eval_data.csv", index=False, sep="|", header=False) print(f"Train data split: {len(train_data.index)}") print(f"Eval data split: {len(eval_data.index)}") print("Train and eval data files are saved.") csv_header = list(ratings_data.columns) user_vocabulary = list(ratings_data.user_id.unique()) movie_vocabulary = list(ratings_data.movie_id.unique()) target_feature_name = "rating" learning_rate = 0.001 batch_size = 128 num_epochs = 3 base_embedding_dim = 64 def get_dataset_from_csv(csv_file_path, batch_size=128, shuffle=True): return tf.data.experimental.make_csv_dataset( csv_file_path, batch_size=batch_size, column_names=csv_header, label_name=target_feature_name, num_epochs=1, header=False, field_delim="|", shuffle=shuffle, ) def run_experiment(model): # Compile the model. model.compile( optimizer=keras.optimizers.Adam(learning_rate), loss=tf.keras.losses.MeanSquaredError(), metrics=[keras.metrics.MeanAbsoluteError(name="mae")], ) # Read the training data. train_dataset = get_dataset_from_csv("train_data.csv", batch_size) # Read the test data. eval_dataset = get_dataset_from_csv("eval_data.csv", batch_size, shuffle=False) # Fit the model with the training data. history = model.fit(train_dataset, epochs=num_epochs, validation_data=eval_dataset,) return history def embedding_encoder(vocabulary, embedding_dim, num_oov_indices=0, name=None): return keras.Sequential( [ StringLookup( vocabulary=vocabulary, mask_token=None, num_oov_indices=num_oov_indices ), layers.Embedding( input_dim=len(vocabulary) + num_oov_indices, output_dim=embedding_dim ), ], name=f"{name}_embedding" if name else None, ) def create_baseline_model(): # Receive the user as an input. user_input = layers.Input(name="user_id", shape=(), dtype=tf.string) # Get user embedding. user_embedding = embedding_encoder( vocabulary=user_vocabulary, embedding_dim=base_embedding_dim, name="user" )(user_input) # Receive the movie as an input. movie_input = layers.Input(name="movie_id", shape=(), dtype=tf.string) # Get embedding. movie_embedding = embedding_encoder( vocabulary=movie_vocabulary, embedding_dim=base_embedding_dim, name="movie" )(movie_input) # Compute dot product similarity between user and movie embeddings. logits = layers.Dot(axes=1, name="dot_similarity")( [user_embedding, movie_embedding] ) # Convert to rating scale. prediction = keras.activations.sigmoid(logits) * 5 # Create the model. model = keras.Model( inputs=[user_input, movie_input], outputs=prediction, name="baseline_model" ) return model baseline_model = create_baseline_model() baseline_model.summary() history = run_experiment(baseline_model) plt.plot(history.history["loss"]) plt.plot(history.history["val_loss"]) plt.title("model loss") plt.ylabel("loss") plt.xlabel("epoch") plt.legend(["train", "eval"], loc="upper left") plt.show() class QREmbedding(keras.layers.Layer): def __init__(self, vocabulary, embedding_dim, num_buckets, name=None): super(QREmbedding, self).__init__(name=name) self.num_buckets = num_buckets self.index_lookup = StringLookup( vocabulary=vocabulary, mask_token=None, num_oov_indices=0 ) self.q_embeddings = layers.Embedding(num_buckets, embedding_dim,) self.r_embeddings = layers.Embedding(num_buckets, embedding_dim,) def call(self, inputs): # Get the item index. embedding_index = self.index_lookup(inputs) # Get the quotient index. quotient_index = tf.math.floordiv(embedding_index, self.num_buckets) # Get the reminder index. remainder_index = tf.math.floormod(embedding_index, self.num_buckets) # Lookup the quotient_embedding using the quotient_index. quotient_embedding = self.q_embeddings(quotient_index) # Lookup the remainder_embedding using the remainder_index. remainder_embedding = self.r_embeddings(remainder_index) # Use multiplication as a combiner operation return quotient_embedding * remainder_embedding class MDEmbedding(keras.layers.Layer): def __init__( self, blocks_vocabulary, blocks_embedding_dims, base_embedding_dim, name=None ): super(MDEmbedding, self).__init__(name=name) self.num_blocks = len(blocks_vocabulary) # Create vocab to block lookup. keys = [] values = [] for block_idx, block_vocab in enumerate(blocks_vocabulary): keys.extend(block_vocab) values.extend([block_idx] * len(block_vocab)) self.vocab_to_block = tf.lookup.StaticHashTable( tf.lookup.KeyValueTensorInitializer(keys, values), default_value=-1 ) self.block_embedding_encoders = [] self.block_embedding_projectors = [] # Create block embedding encoders and projectors. for idx in range(self.num_blocks): vocabulary = blocks_vocabulary[idx] embedding_dim = blocks_embedding_dims[idx] block_embedding_encoder = embedding_encoder( vocabulary, embedding_dim, num_oov_indices=1 ) self.block_embedding_encoders.append(block_embedding_encoder) if embedding_dim == base_embedding_dim: self.block_embedding_projectors.append(layers.Lambda(lambda x: x)) else: self.block_embedding_projectors.append( layers.Dense(units=base_embedding_dim) ) def call(self, inputs): # Get block index for each input item. block_indicies = self.vocab_to_block.lookup(inputs) # Initialize output embeddings to zeros. embeddings = tf.zeros(shape=(tf.shape(inputs)[0], base_embedding_dim)) # Generate embeddings from blocks. for idx in range(self.num_blocks): # Lookup embeddings from the current block. block_embeddings = self.block_embedding_encoders[idx](inputs) # Project embeddings to base_embedding_dim. block_embeddings = self.block_embedding_projectors[idx](block_embeddings) # Create a mask to filter out embeddings of items that do not belong to the current block. mask = tf.expand_dims(tf.cast(block_indicies == idx, tf.dtypes.float32), 1) # Set the embeddings for the items not belonging to the current block to zeros. block_embeddings = block_embeddings * mask # Add the block embeddings to the final embeddings. embeddings += block_embeddings return embeddings movie_frequencies = ratings_data["movie_id"].value_counts() movie_frequencies.hist(bins=10) sorted_movie_vocabulary = list(movie_frequencies.keys()) movie_blocks_vocabulary = [ sorted_movie_vocabulary[:400], # high popularity movies block sorted_movie_vocabulary[400:1700], # normal popularity movies block sorted_movie_vocabulary[1700:], # low popularity movies block ] movie_blocks_embedding_dims = [64, 32, 16] user_embedding_num_buckets = len(user_vocabulary) // 50 def create_memory_efficient_model(): # Take the user as an input. user_input = layers.Input(name="user_id", shape=(), dtype=tf.string) # Get user embedding. user_embedding = QREmbedding( vocabulary=user_vocabulary, embedding_dim=base_embedding_dim, num_buckets=user_embedding_num_buckets, name="user_embedding", )(user_input) # Take the movie as an input. movie_input = layers.Input(name="movie_id", shape=(), dtype=tf.string) # Get embedding. movie_embedding = MDEmbedding( blocks_vocabulary=movie_blocks_vocabulary, blocks_embedding_dims=movie_blocks_embedding_dims, base_embedding_dim=base_embedding_dim, name="movie_embedding", )(movie_input) # Compute dot product similarity between user and movie embeddings. logits = layers.Dot(axes=1, name="dot_similarity")( [user_embedding, movie_embedding] ) # Convert to rating scale. prediction = keras.activations.sigmoid(logits) * 5 # Create the model. model = keras.Model( inputs=[user_input, movie_input], outputs=prediction, name="baseline_model" ) return model memory_efficient_model = create_memory_efficient_model() memory_efficient_model.summary() history = run_experiment(memory_efficient_model) plt.plot(history.history["loss"]) plt.plot(history.history["val_loss"]) plt.title("model loss") plt.ylabel("loss") plt.xlabel("epoch") plt.legend(["train", "eval"], loc="upper left") plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Prepare the data Step2: Create train and eval data splits Step3: Define dataset metadata and hyperparameters Step4: Train and evaluate the model Step5: Experiment 1 Step6: Implement the baseline model Step7: Notice that the number of trainable parameters is 623,744 Step8: Experiment 2 Step9: Implement Mixed Dimension embedding as a layer Step10: Implement the memory-efficient model Step11: You can see that we can group the movies into three blocks, and assign them 64, 32, and 16 Step12: Notice that the number of trainable parameters is 117,968, which is more than 5x less than
15,659
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'csiro-bom', 'sandbox-1', 'landice') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.ice_albedo') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "prescribed" # "function of ice age" # "function of ice density" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.atmospheric_coupling_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.oceanic_coupling_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "ice velocity" # "ice thickness" # "ice temperature" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.grid.adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.grid.base_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.grid.resolution_limit') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.grid.projection') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.glaciers.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.glaciers.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.glaciers.dynamic_areal_extent') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.grounding_line_method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "grounding line prescribed" # "flux prescribed (Schoof)" # "fixed grid size" # "moving grid" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.ice_sheet') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.ice_shelf') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.mass_balance.surface_mass_balance') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.mass_balance.basal.bedrock') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.mass_balance.basal.ocean') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.mass_balance.frontal.calving') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.mass_balance.frontal.melting') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.dynamics.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.dynamics.approximation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "SIA" # "SAA" # "full stokes" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.dynamics.adaptive_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.landice.ice.dynamics.timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Ice Albedo Step7: 1.4. Atmospheric Coupling Variables Step8: 1.5. Oceanic Coupling Variables Step9: 1.6. Prognostic Variables Step10: 2. Key Properties --&gt; Software Properties Step11: 2.2. Code Version Step12: 2.3. Code Languages Step13: 3. Grid Step14: 3.2. Adaptive Grid Step15: 3.3. Base Resolution Step16: 3.4. Resolution Limit Step17: 3.5. Projection Step18: 4. Glaciers Step19: 4.2. Description Step20: 4.3. Dynamic Areal Extent Step21: 5. Ice Step22: 5.2. Grounding Line Method Step23: 5.3. Ice Sheet Step24: 5.4. Ice Shelf Step25: 6. Ice --&gt; Mass Balance Step26: 7. Ice --&gt; Mass Balance --&gt; Basal Step27: 7.2. Ocean Step28: 8. Ice --&gt; Mass Balance --&gt; Frontal Step29: 8.2. Melting Step30: 9. Ice --&gt; Dynamics Step31: 9.2. Approximation Step32: 9.3. Adaptive Timestep Step33: 9.4. Timestep
15,660
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt from matplotlib import colors from matplotlib.font_manager import FontProperties %matplotlib inline from keras.models import model_from_json from keras.models import Sequential from keras.layers.core import Dense, Activation from keras.layers.recurrent import LSTM from keras import optimizers import utils DATA_PATH = '' test_fname_start = 'test_linear' train_fname_start = 'train_linear' no_files = 1 train_X, train_y_true = utils.load_data(DATA_PATH, train_fname_start, no_files) test_X, test_y_true = utils.load_data(DATA_PATH, test_fname_start, no_files) print(train_X.shape, test_X.shape, train_y_true.shape, test_y_true.shape) font0 = FontProperties(); font1 = font0.copy(); font1.set_size('xx-large'); font1.set_weight('bold'); fig = plt.figure(figsize=(30,20)); cmap = colors.ListedColormap(['white', 'black']); #rect = l,b,w,h rect1 = 0.2, 0.1, 0.1, 0.2 rect2 = 0.4, 0.1, 0.3, 0.2 start = 2*3 ax1= fig.add_axes(rect1); ax2 = fig.add_axes(rect2); im = test_X[start,:,:].copy() ax1.imshow(im.transpose(),origin='lower', cmap=cmap, interpolation = 'none',aspect='auto'); ax1.set_title('Example of noise image',fontproperties=font1); ax1.set_xlabel('non-dim time',fontproperties=font1); ax1.set_ylabel('non-dim range',fontproperties=font1); ims = test_X[start:start+3,:,:].copy() im = np.reshape(ims, (ims.shape[0]*ims.shape[1],ims.shape[2])); ax2.imshow(im.transpose(),origin='lower', cmap=cmap, interpolation = 'none',aspect='auto'); ax2.set_title('Example of three stacked images: noise, noise+track, noise+track',fontproperties=font1); ax2.set_xlabel('non-dim time',fontproperties=font1); ax2.set_ylabel('non-dim range',fontproperties=font1); ax2.set_xlim(0,30); ax2.set_ylim(0.30); for i in range(0,30,10): ax2.plot([i, i],[0, 30],'r-'); fig = plt.figure(figsize=(30,20)); cmap = colors.ListedColormap(['white', 'black']); #rect = l,b,w,h rect1 = 0.2, 0.1, 0.1, 0.2 rect2 = 0.22, 0.11, 0.1, 0.2 rect3 = 0.25, 0.12, 0.1, 0.2 ax1= fig.add_axes(rect3); im = test_X[start+2,:,:].copy() ax1.imshow(im.transpose(),origin='lower', cmap=cmap, interpolation = 'none',aspect='auto'); ax2= fig.add_axes(rect2); im = test_X[start+1,:,:].copy() ax2.imshow(im.transpose(),origin='lower', cmap=cmap, interpolation = 'none',aspect='auto'); ax3= fig.add_axes(rect1); im = test_X[start,:,:].copy() ax3.imshow(im.transpose(),origin='lower', cmap=cmap, interpolation = 'none',aspect='auto'); ax3.set_xlabel('non-dim time',fontproperties=font1); ax3.set_ylabel('non-dim range',fontproperties=font1); keras_model_load = True # False, True batch_size = 3 if keras_model_load: model_name = 'keras_3k_dat_linmodel' model_lin = utils.load_keras_model(model_name) else: np.random.seed(17) input_shape = (train_X.shape[1],train_X.shape[2]) hidden_size = 16 model_lin = Sequential() model_lin.add(LSTM(input_shape=input_shape, output_dim=hidden_size, return_sequences=True)) model_lin.add(Dense(hidden_size)) model_lin.add(Activation('relu')) model_lin.add(Dense(output_dim=1, activation="relu")) optimizer = optimizers.Adam(clipnorm=2) model_lin.compile(optimizer=optimizer, loss='binary_crossentropy') model_lin.summary() if not keras_model_load: y3D = utils.track_y_3D(train_y_true, n = dxn) model_lin.fit(train_X, y3D, epochs = 100, batch_size = batch_size, verbose = 1, shuffle=True) Y_estim_train = model_lin.predict(train_X, batch_size = batch_size) Y_estim_test = model_lin.predict(test_X, batch_size = batch_size) print(Y_estim_train.shape, Y_estim_test.shape) Y_estim_train=Y_estim_train.sum(axis=1)/Y_estim_train.shape[1] Y_estim_test=Y_estim_test.sum(axis=1)/Y_estim_test.shape[1] Y_estim_test[Y_estim_test < 0.5]=0 Y_estim_test[Y_estim_test >= 0.5]=1 Y_estim_train[Y_estim_train < 0.5]=0 Y_estim_train[Y_estim_train >= 0.5]=1 row1_train = 60 row2_train = 90 row1_test = 100 row2_test = 150 dxn = 10 utils.plot_results(test_y_true, Y_estim_test, train_X, train_y_true, Y_estim_train, test_X, dxn, row1_train, row2_train, row1_test, row2_test, N_plots = 7) utils.roc_dat(Y_estim_test, test_y_true, 0.5) utils.roc_dat(Y_estim_train, train_y_true, 0.5) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now I load the pre-generated artificial data required for the LSTM training and testing. Note that I have used 3000 and 300 images for training and testing respectively. These images were stacked into 3D matrices, each image having a size of 10 by 30 pixels. Each image was labeled as either noisy (y[i] = 0) or including track (y[i]=1). Step2: Next, to show the structure of the data, we look into a few example images. Step3: Above, the left image shows a typical distribution of noise marked by black rectangulas. On the right, the three images have been concatenated. From the left to the right, the first image corresponds to noise shown on the left, and the next two images show a linear track, looking as a staircase consisting from small black rectangular boxes going down through the middle and the rightmost images. Step4: Learning to detect tracks using Long Short-Time-Memory model Step5: Now we use the trained model to predict labels of the input images used for training as well as for testing Step6: To estimate one label per image, we need to average over 10 labels that were generated for 10 time steps of each image. Step7: Since the predicted output is real valued, using the threshold value of 0.5, I categorized the output into two categories Step8: Results Step9: Finally, I estimated the probability of detection (Pd) and the probability of false alarms (Pfa), applied to the test, and to the training data. This metrics is often used for receiver operating characterisitc estimation.
15,661
<ASSISTANT_TASK:> Python Code: # Copyright 2019 The TensorFlow Hub Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import functools import itertools import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd import tensorflow as tf import tensorflow_datasets as tfds import tensorflow_hub as hub from tqdm import trange # Use the inner product between two embedding vectors as the similarity measure def plot_correlation(labels, features): corr = np.inner(features, features) corr /= np.max(corr) sns.heatmap(corr, xticklabels=labels, yticklabels=labels) # Generate embeddings for some terms queries = [ # Related viruses 'coronavirus', 'SARS', 'MERS', # Regions 'Italy', 'Spain', 'Europe', # Symptoms 'cough', 'fever', 'throat' ] module = hub.load('https://tfhub.dev/tensorflow/cord-19/swivel-128d/3') embeddings = module(queries) plot_correlation(queries, embeddings) builder = tfds.builder(name='scicite') builder.download_and_prepare() train_data, validation_data, test_data = builder.as_dataset( split=('train', 'validation', 'test'), as_supervised=True) #@title Let's take a look at a few labeled examples from the training set NUM_EXAMPLES = 10#@param {type:"integer"} TEXT_FEATURE_NAME = builder.info.supervised_keys[0] LABEL_NAME = builder.info.supervised_keys[1] def label2str(numeric_label): m = builder.info.features[LABEL_NAME].names return m[numeric_label] data = next(iter(train_data.batch(NUM_EXAMPLES))) pd.DataFrame({ TEXT_FEATURE_NAME: [ex.numpy().decode('utf8') for ex in data[0]], LABEL_NAME: [label2str(x) for x in data[1]] }) #@title Hyperparameters { run: "auto" } EMBEDDING = 'https://tfhub.dev/tensorflow/cord-19/swivel-128d/3' #@param {type: "string"} TRAINABLE_MODULE = False #@param {type: "boolean"} hub_layer = hub.KerasLayer(EMBEDDING, input_shape=[], dtype=tf.string, trainable=TRAINABLE_MODULE) model = tf.keras.Sequential() model.add(hub_layer) model.add(tf.keras.layers.Dense(3)) model.summary() model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) EPOCHS = 35#@param {type: "integer"} BATCH_SIZE = 32#@param {type: "integer"} history = model.fit(train_data.shuffle(10000).batch(BATCH_SIZE), epochs=EPOCHS, validation_data=validation_data.batch(BATCH_SIZE), verbose=1) from matplotlib import pyplot as plt def display_training_curves(training, validation, title, subplot): if subplot%10==1: # set up the subplots on the first call plt.subplots(figsize=(10,10), facecolor='#F0F0F0') plt.tight_layout() ax = plt.subplot(subplot) ax.set_facecolor('#F8F8F8') ax.plot(training) ax.plot(validation) ax.set_title('model '+ title) ax.set_ylabel(title) ax.set_xlabel('epoch') ax.legend(['train', 'valid.']) display_training_curves(history.history['accuracy'], history.history['val_accuracy'], 'accuracy', 211) display_training_curves(history.history['loss'], history.history['val_loss'], 'loss', 212) results = model.evaluate(test_data.batch(512), verbose=2) for name, value in zip(model.metrics_names, results): print('%s: %.3f' % (name, value)) prediction_dataset = next(iter(test_data.batch(20))) prediction_texts = [ex.numpy().decode('utf8') for ex in prediction_dataset[0]] prediction_labels = [label2str(x) for x in prediction_dataset[1]] predictions = [ label2str(x) for x in np.argmax(model.predict(prediction_texts), axis=-1)] pd.DataFrame({ TEXT_FEATURE_NAME: prediction_texts, LABEL_NAME: prediction_labels, 'prediction': predictions }) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: TF-Hub CORD-19 Swivel 埋め込みを探索する Step2: 埋め込みを分析する Step3: 埋め込みが異なる用語の意味をうまく捉えていることが分かります。それぞれの単語は所属するクラスタの他の単語に類似していますが(「コロナウイルス」は「SARS」や「MERS」と高い関連性がある)、ほかのクラスタの単語とは異なります(「SARS」と「スペイン」の類似度はゼロに近い)。 Step4: 引用の意図分類器をトレーニングする Step5: モデルをトレーニングして評価する Step6: モデルを評価する Step7: 損失はすぐに減少しますが、特に精度は急速に上がることが分かります。予測と真のラベルがどのように関係しているかを確認するために、いくつかの例をプロットしてみましょう。
15,662
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt from netgraph import Graph edges = [(0, 1), (1, 1)] Graph(edges, node_color='red', node_size=4.) plt.show() import numpy as np import matplotlib.pyplot as plt from netgraph import Graph Graph([(0, 1), (1, 2), (2, 0)], edge_color={(0, 1) : 'g', (1, 2) : 'lightblue', (2, 0) : np.array([1, 0, 0])}, node_size={0 : 20, 1 : 4.2, 2 : np.pi}, ) plt.show() import matplotlib.pyplot as plt; plt.ion() from netgraph import Graph fig, ax = plt.subplots() g = Graph([(0, 1), (1, 2), (2, 0)], ax=ax) plt.show() # make some changes g.node_artists[0].set_alpha(0.2) g.edge_artists[(1, 2)].set_facecolor('red') # force redraw to display changes fig.canvas.draw() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Using a dictionary mapping individual nodes or individual edges to a property Step2: By directly manipulating the node and edge artists.
15,663
<ASSISTANT_TASK:> Python Code: %pylab inline matplotlib.style.use('ggplot') # dataframes! import pandas # Construct dataframe columns = ['eggs','sausage','bacon'] indices = ['Novel A', 'Novel B', 'Novel C'] dtm = [[50,60,60],[90,10,10], [20,70,70]] dtm_df = pandas.DataFrame(dtm, columns = columns, index = indices) # Show dataframe dtm_df # Plot our points scatter(dtm_df['eggs'], dtm_df['sausage']) # Make the graph look good xlim([0,100]), ylim([0,100]) xlabel('eggs'), ylabel('sausage') # Although we want the Cosine Distance, it is mathematically # simpler to calculate its opposite: Cosine Similarity from sklearn.metrics.pairwise import cosine_similarity # So we will subtract the similarities from 1 cos_sim = cosine_similarity(dtm_df) # And we'll make it a little easier to read np.round(cos_sim, 2) # Turn our DTM sideways dtm_df.T # Find the Cosine Distances between pairs of word-vectors cos_sim = cosine_similarity(dtm_df.T) # In readable format np.round(cos_sim, 2) # Data Wrangling import os import numpy as np import pandas from scipy.spatial.distance import cosine from sklearn.metrics import pairwise from sklearn.manifold import MDS, TSNE # Natural Language Processing import gensim import nltk #nltk.download('punkt') from nltk.tokenize import word_tokenize, sent_tokenize # Custom Tokenizer for Classroom Use def fast_tokenize(text): # Get a list of punctuation marks from string import punctuation lower_case = text.lower() # Iterate through text removing punctuation characters no_punct = "".join([char for char in lower_case if char not in punctuation]) # Split text over whitespace into list of words tokens = no_punct.split() return tokens # Import Metadata into Pandas Dataframe meta_df = pandas.read_csv('resources/txtlab_Novel450_English.csv') # Check Metadata meta_df # Set location of corpus folder fiction_folder = 'txtlab_Novel450_English/' # Collect the text of each file in the 'fiction_folder' on the hard drive # Create empty list, each entry will be the string for a given novel novel_list = [] # Iterate through filenames in 'fiction_folder' for filename in os.listdir(fiction_folder): # Read novel text as single string with open(fiction_folder + filename, 'r') as file_in: this_novel = file_in.read() # Add novel text as single string to master list novel_list.append(this_novel) # Inspect first item in novel_list novel_list[0] # Split each novel into sentences sentences = [sentence for novel in novel_list for sentence in sent_tokenize(novel)] # Inspect first sentence sentences[0] # Split each sentence into tokens words_by_sentence = [fast_tokenize(sentence) for sentence in sentences] # Remove any sentences that contain zero tokens words_by_sentence = [sentence for sentence in words_by_sentence if sentence != []] # Inspect first sentence words_by_sentence[0] # Train word2vec model from txtLab corpus model = gensim.models.Word2Vec(words_by_sentence, size=100, window=5, \ min_count=25, sg=1, alpha=0.025, iter=5, batch_words=10000) # Return dense word vector model['whale'] # Find cosine distance between two given word vectors model.similarity('pride','prejudice') # Find nearest word vectors by cosine distance model.most_similar('pride') # Given a list of words, we can ask which doesn't belong # Finds mean vector of words in list # and identifies the word further from that mean model.doesnt_match(['pride','prejudice', 'whale']) # Get most similar words to BANK, in order # to get a sense for its primary meaning model.most_similar('bank') # Remove the sense of "river bank" from "bank" and see what is left model.most_similar(positive=['bank'], negative=['river']) # Get most similar words to KING, in order # to get a sense for its primary meaning model.most_similar('king') # The canonic word2vec analogy: King - Man + Woman -> Queen model.most_similar(positive=['woman', 'king'], negative=['man']) # Feminine Vector model.most_similar(positive=['she','her','hers','herself'], negative=['he','him','his','himself']) # Masculine Vector model.most_similar(positive=['he','him','his','himself'], negative=['she','her','hers','herself']) ## EX. Use the most_similar method to find the tokens nearest to 'car' in our model. ## Do the same for 'motorcar'. ## Q. What characterizes each word in our corpus? Does this make sense? ## EX. How does our model answer the analogy: MADRID is to SPAIN as PARIS is to __________ ## Q. What has our model learned about nation-states? ## EX. Perform the canonic Word2Vec addition again but leave out a term: ## Try 'king' - 'man', 'woman' - 'man', 'woman' + 'king' ## Q. What do these indicate semantically? # Dictionary of words in model model.wv.vocab #model.vocab # deprecated # Visualizing the whole vocabulary would make it hard to read len(model.wv.vocab) #len(model.vocab) # deprecated # For interpretability, we'll select words that already have a semantic relation her_tokens = [token for token,weight in model.most_similar(positive=['she','her','hers','herself'], \ negative=['he','him','his','himself'], topn=50)] # Inspect list her_tokens # Get the vector for each sampled word vectors = [model[word] for word in her_tokens] # Calculate distances among texts in vector space dist_matrix = pairwise.pairwise_distances(vectors, metric='cosine') # Multi-Dimensional Scaling (Project vectors into 2-D) mds = MDS(n_components = 2, dissimilarity='precomputed') embeddings = mds.fit_transform(dist_matrix) # Make a pretty graph _, ax = plt.subplots(figsize=(10,10)) ax.scatter(embeddings[:,0], embeddings[:,1], alpha=0) for i in range(len(vectors)): ax.annotate(her_tokens[i], ((embeddings[i,0], embeddings[i,1]))) # For comparison, here is the same graph using a masculine-pronoun vector his_tokens = [token for token,weight in model.most_similar(positive=['he','him','his','himself'], \ negative=['she','her','hers','herself'], topn=50)] vectors = [model[word] for word in his_tokens] dist_matrix = pairwise.pairwise_distances(vectors, metric='cosine') mds = MDS(n_components = 2, dissimilarity='precomputed') embeddings = mds.fit_transform(dist_matrix) _, ax = plt.subplots(figsize=(10,10)) ax.scatter(embeddings[:,0], embeddings[:,1], alpha=0) for i in range(len(vectors)): ax.annotate(his_tokens[i], ((embeddings[i,0], embeddings[i,1]))) ## Q. What kinds of semantic relationships exist in the diagram above? ## Are there any words that seem out of place? # Save current model for later use model.wv.save_word2vec_format('resources/word2vec.txtlab_Novel150_English.txt') #model.save_word2vec_format('resources/word2vec.txtlab_Novel150_English.txt') # deprecated # Load up models from disk # Model trained on Eighteenth Century Collections Online corpus (~2500 texts) # Made available by Ryan Heuser: http://ryanheuser.org/word-vectors-1/ ecco_model = gensim.models.KeyedVectors.load_word2vec_format('resources/word2vec.ECCO-TCP.txt') #ecco_model = gensim.models.Word2Vec.load_word2vec_format('resources/word2vec.ECCO-TCP.txt') # deprecated # What are similar words to BANK? ecco_model.most_similar('bank') # What if we remove the sense of "river bank"? ecco_model.most_similar(positive=['bank'], negative=['river']) ## EX. Heuser's blog post explores an analogy in eighteenth-century thought that ## RICHES are to VIRTUE what LEARNING is to GENIUS. How true is this in ## the ECCO-trained Word2Vec model? Is it true in the one we trained? ## Q. How might we compare word2vec models more generally? # ECCO model: RICHES are to VIRTUE what LEARNING is to ?? # txtLab model: RICHES are to VIRTUE what LEARNING is to ?? <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create a DTM with a Few Pseudo-Texts Step2: Visualize Step3: Vectors Step4: Vector Semantics Step5: Word2Vec Step6: Corpus Description Step7: Import Corpus Step8: Pre-Processing Step9: 2. Word2Vec Step10: Embeddings Step11: Vector-Space Operations Step12: Multiple Valences Step13: Analogy Step14: Gendered Vectors Step15: Exercises Step16: Visualization Step17: 3. Saving/Loading Models Step18: Exercise
15,664
<ASSISTANT_TASK:> Python Code: %matplotlib inline from cmt.components import Cem cem = Cem() print cem.get_output_var_names() cem.get_input_var_names() angle_name = 'sea_surface_water_wave__azimuth_angle_of_opposite_of_phase_velocity' print "Data type: %s" % cem.get_var_type(angle_name) print "Units: %s" % cem.get_var_units(angle_name) print "Grid id: %d" % cem.get_var_grid(angle_name) print "Number of elements in grid: %d" % cem.get_grid_size(0) print "Type of grid: %s" % cem.get_grid_type(0) cem.initialize(None) import numpy as np cem.set_value("sea_surface_water_wave__height", 2.) cem.set_value("sea_surface_water_wave__period", 7.) cem.set_value("sea_surface_water_wave__azimuth_angle_of_opposite_of_phase_velocity", 0. * np.pi / 180.) grid_id = cem.get_var_grid('sea_water__depth') grid_type = cem.get_grid_type(grid_id) grid_rank = cem.get_grid_rank(grid_id) print 'Type of grid: %s (%dD)' % (grid_type, grid_rank) spacing = np.empty((grid_rank, ), dtype=float) shape = cem.get_grid_shape(grid_id) cem.get_grid_spacing(grid_id, out=spacing) print 'The grid has %d rows and %d columns' % (shape[0], shape[1]) print 'The spacing between rows is %f and between columns is %f' % (spacing[0], spacing[1]) z = np.empty(shape, dtype=float) cem.get_value('sea_water__depth', out=z) def plot_coast(spacing, z): import matplotlib.pyplot as plt xmin, xmax = 0., z.shape[1] * spacing[0] * 1e-3 ymin, ymax = 0., z.shape[0] * spacing[1] * 1e-3 plt.imshow(z, extent=[xmin, xmax, ymin, ymax], origin='lower', cmap='ocean') plt.colorbar().ax.set_ylabel('Water Depth (m)') plt.xlabel('Along shore (km)') plt.ylabel('Cross shore (km)') plot_coast(spacing, z) qs = np.zeros_like(z) qs[0, 100] = 1250 cem.get_var_units('land_surface_water_sediment~bedload__mass_flow_rate') cem.get_time_step(), cem.get_time_units(), cem.get_current_time() for time in xrange(3000): cem.set_value('land_surface_water_sediment~bedload__mass_flow_rate', qs) cem.update_until(time) cem.get_value('sea_water__depth', out=z) cem.get_current_time() plot_coast(spacing, z) val = np.empty((5, ), dtype=float) cem.get_value("basin_outlet~coastal_center__x_coordinate", val) val / 100. qs[0, 150] = 1500 for time in xrange(3750): cem.set_value('land_surface_water_sediment~bedload__mass_flow_rate', qs) cem.update_until(time) cem.get_value('sea_water__depth', out=z) plot_coast(spacing, z) qs.fill(0.) for time in xrange(4000): cem.set_value('land_surface_water_sediment~bedload__mass_flow_rate', qs) cem.update_until(time) cem.get_value('sea_water__depth', out=z) plot_coast(spacing, z) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Import the Cem class, and instantiate it. In Python, a model with a BMI will have no arguments for its constructor. Note that although the class has been instantiated, it's not yet ready to be run. We'll get to that later! Step2: Even though we can't run our waves model yet, we can still get some information about it. Just don't try to run it. Some things we can do with our model are get the names of the input variables. Step3: We can also get information about specific variables. Here we'll look at some info about wave direction. This is the main input of the Cem model. Notice that BMI components always use CSDMS standard names. The CSDMS Standard Name for wave angle is, Step4: OK. We're finally ready to run the model. Well not quite. First we initialize the model with the BMI initialize method. Normally we would pass it a string that represents the name of an input file. For this example we'll pass None, which tells Cem to use some defaults. Step5: Before running the model, let's set a couple input parameters. These two parameters represent the wave height and wave period of the incoming waves to the coastline. Step6: The main output variable for this model is water depth. In this case, the CSDMS Standard Name is much shorter Step7: With the grid_id, we can now get information about the grid. For instance, the number of dimension and the type of grid (structured, unstructured, etc.). This grid happens to be uniform rectilinear. If you were to look at the "grid" types for wave height and period, you would see that they aren't on grids at all but instead are scalars. Step8: Because this grid is uniform rectilinear, it is described by a set of BMI methods that are only available for grids of this type. These methods include Step9: Allocate memory for the water depth grid and get the current values from cem. Step10: Here I define a convenience function for plotting the water depth and making it look pretty. You don't need to worry too much about it's internals for this tutorial. It just saves us some typing later on. Step11: It generates plots that look like this. We begin with a flat delta (green) and a linear coastline (y = 3 km). The bathymetry drops off linearly to the top of the domain. Step12: Right now we have waves coming in but no sediment entering the ocean. To add some discharge, we need to figure out where to put it. For now we'll put it on a cell that's next to the ocean. Step13: The CSDMS Standard Name for this variable is Step14: Set the bedload flux and run the model. Step15: Let's add another sediment source with a different flux and update the model. Step16: Here we shut off the sediment supply completely.
15,665
<ASSISTANT_TASK:> Python Code: df = pd.read_csv('data/test_data2.csv', encoding='latin-1') print(len(df)) df.head() df['Released'] = pd.to_datetime(df['Released']) df['Year'] = pd.DatetimeIndex(df['Released']).year df['Month'] = pd.DatetimeIndex(df['Released']).month df.head() import plotly.plotly as py from plotly.tools import FigureFactory as FF df_a = df[['Prod_Budget', 'Year', 'Month', 'Total_Torrents']] import plotly.plotly as py from plotly.tools import FigureFactory as FF df_a = df[['Prod_Budget', 'Year', 'Month', 'Total_Torrents']] fig = FF.create_scatterplotmatrix(df_a, diag='histogram', index='Prod_Budget', height=800, width=800) py.iplot(fig, filename='Histograms along Diagonal Subplots') # look at current data set AFTER year cutoff plt.rcParams['figure.figsize'] = (15, 15) _ = pd.tools.plotting.scatter_matrix(df_yr) # unique list of grouped genres as strings unq_genres = df_yr['Genre'].unique() unq_genres = unq_genres.tolist() #print(len(unq_genres)) #print(unq_genres[:10]) # unique list of grouped genres as lists lst_grp_genres = [] for lst in unq_genres: temp = [] for genre in lst.split(','): temp.append(genre) lst_grp_genres.append(temp) #print(len(lst_grp_genres)) #print(lst_grp_genres) # unique list of individual genres ind_genre = set() for lst in unq_genres: for genre in lst.split(','): ind_genre.add(genre.strip()) ind_genre = sorted(ind_genre) #print(len(ind_genre)) #print(ind_genre) from patsy import dmatrices patsy_formula = 'Total_Torrents ~ Prod_Budget + Year + Genre_Single' y, x = dmatrices(patsy_formula, data=df_sub, return_type='dataframe') import statsmodels.api as sm model = sm.OLS(y, x) results = model.fit() results.summary() from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(x, y) mod_lr_score = model.score(x, y) mod_lr_coef = model.coef_ from sklearn import cross_validation as cv from sklearn import metrics x_train, x_test, y_train, y_test = cv.train_test_split(x,y,test_size=0.20,random_state=1234) model = LinearRegression().fit(x_train, y_train) model.summary # store results mean_sq_err = metrics.mean_squared_error(y_train,model.predict(x_train)) cv_mod_score = model.score(x_train, y_train) # reset x, y otherwise errors occur y, x = dmatrices(patsy_formula, data=df_sub, return_type='dataframe') from sklearn.cross_validation import KFold kf = KFold(len(df_sub), n_folds=10, shuffle=True) for train_index, test_index in kf: x_train, x_test = x.iloc[train_index], x.iloc[test_index] y_train, y_test = y.iloc[train_index], y.iloc[test_index] clf2 = LinearRegression().fit(x.iloc[train_index], y.iloc[train_index]) # store results mean_sq_errKf = metrics.mean_squared_error(y_train,model.predict(x_train)) cvKf_mod_score = clf2.score(x,y) #NORMAL RESULTS print('Model Linear Regression Score = {0}'.format(mod_lr_score)) print(' Mean Square Error = {0}'.format(mean_sq_err)) print(' Cross Validation Model Score = {0}'.format(cv_mod_score)) print(' Mean Squred Error K-Fold = {0}'.format(mean_sq_errKf)) print('Cross Val. K-Fold Model Score = {0}'.format(cvKf_mod_score)) fig = plt.figure(figsize=(12,8)) fig = sm.graphics.plot_regress_exog(results,'Prod_Budget', fig=fig) _ = plt.plot(y, model.predict(x), 'ro') df.columns df_sub['log_budg']=np.log(df_sub.Prod_Budget) #df_sub['log_year']=np.log(df_sub.Year) #df_sub['log_run']=np.log(df_sub.Runtime) df_sub['log_tor']=np.log(df_sub.Total_Torrents) trans = df_sub[['log_budg', 'Year', 'log_tor']] plt.rcParams['figure.figsize'] = (15, 15) _ = pd.tools.plotting.scatter_matrix(trans) log_patsy_formula = 'log_tor ~ log_budg + Year + Genre_Single' y, x = dmatrices(log_patsy_formula, data=df_sub, return_type='dataframe') import statsmodels.formula.api as smf results = smf.ols(formula=log_patsy_formula, data=df_sub,).fit() results.summary() from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(x, y) # store results log_mod_lr_score = model.score(x,y) from sklearn import cross_validation as cv from sklearn import metrics x_train, x_test, y_train, y_test = cv.train_test_split(x,y,test_size=0.20,random_state=1234) model = LinearRegression().fit(x_train, y_train) # store results log_mean_sq_err = metrics.mean_squared_error(y_train,model.predict(x_train)) log_cv_mod_score = model.score(x_train, y_train) # reset x, y otherwise errors occur y, x = dmatrices(log_patsy_formula, data=df_sub, return_type='dataframe') from sklearn.cross_validation import KFold kf = KFold(len(df_sub), n_folds=10, shuffle=True) for train_index, test_index in kf: x_train, x_test = x.iloc[train_index], x.iloc[test_index] y_train, y_test = y.iloc[train_index], y.iloc[test_index] clf2 = LinearRegression().fit(x.iloc[train_index], y.iloc[train_index]) # store results log_mean_sq_errKf = metrics.mean_squared_error(y_train,model.predict(x_train)) log_cvKf_mod_score = clf2.score(x,y) #LOG RESULTS print('Log Model Linear Regression Score = {0}'.format(log_mod_lr_score)) print(' Log Mean Square Error = {0}'.format(log_mean_sq_err)) print(' Log Cross Validation Model Score = {0}'.format(log_cv_mod_score)) print(' Log Mean Squred Error K-Fold = {0}'.format(log_mean_sq_errKf)) print('Log Cross Val. K-Fold Model Score = {0}'.format(log_cvKf_mod_score)) _ = plt.plot(y, model.predict(x), 'bo') plt.figure(figsize=(25,10)) ind = np.arange(len(yr_dict)) width = 0.35 bar_year = [year for year, count in yr_lst] bar_count = [count for year, count in yr_lst] plt.bar(ind, bar_count, width, color='r') plt.ylabel('Count') plt.xlabel('Year') plt.title('Number of Torrents per Year') plt.xticks(ind + width/2., (bar_year), rotation='vertical') plt.yticks(np.arange(0, 91, 5)) plt.show() #log_tor ~ log_budg + Year + Month + log_run + Genre_Single' fig = plt.figure(figsize=(12,8)) fig = sm.graphics.plot_regress_exog(results,'log_budg', fig=fig) fig = plt.figure(figsize=(12,8)) fig = sm.graphics.plot_regress_exog(results,'Year', fig=fig) #fig = plt.figure(figsize=(12,8)) #fig = sm.graphics.plot_regress_exog(results,'Month', fig=fig) plt.figure(figsize=(15,10)) plt.axis([0, 450000000, 0, 1500]) plt.xlabel('Production Budget') plt.ylabel('Torrents') plt.title('Torrents vs. Production Budget - All') plt.scatter(df_sub['Prod_Budget'], df_sub['Total_Torrents'], alpha=0.5, s=50) import plotly.plotly as py from plotly.tools import FigureFactory as FF df_yr = df[['Prod_Budget', 'Year', 'Month', 'Total_Torrents']] fig = FF.create_scatterplotmatrix(df_sub, diag='histogram', index='Prod_Budget', height=800, width=800) py.iplot(fig, filename='Histograms along Diagonal Subplots') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Convert dates to datetime objects Step2: fig = FF.create_scatterplotmatrix(df_a, diag='box', index='Prod_Budget', Step3: Log Transform
15,666
<ASSISTANT_TASK:> Python Code: # Let's handle units from astropy import units as u # Structure to map healpix' levels to their angular sizes # healpix_levels = { 0 : 58.63 * u.deg, 1 : 29.32 * u.deg, 2 : 14.66 * u.deg, 3 : 7.329 * u.deg, 4 : 3.665 * u.deg, 5 : 1.832 * u.deg, 6 : 54.97 * u.arcmin, 7 : 27.48 * u.arcmin, 8 : 13.74 * u.arcmin, 9 : 6.871 * u.arcmin, 10 : 3.435 * u.arcmin, 11 : 1.718 * u.arcmin, 12 : 51.53 * u.arcsec, 13 : 25.77 * u.arcsec, 14 : 12.88 * u.arcsec, 15 : 6.442 * u.arcsec, 16 : 3.221 * u.arcsec, 17 : 1.61 * u.arcsec, 18 : 805.2 * u.milliarcsecond, 19 : 402.6 * u.milliarcsecond, 20 : 201.3 * u.milliarcsecond, 21 : 100.6 * u.milliarcsecond, 22 : 50.32 * u.milliarcsecond, 23 : 25.16 * u.milliarcsecond, 24 : 12.58 * u.milliarcsecond, 25 : 6.291 * u.milliarcsecond, 26 : 3.145 * u.milliarcsecond, 27 : 1.573 * u.milliarcsecond, 28 : 786.3 * u.microarcsecond, 29 : 393.2 * u.microarcsecond } # as usual, matplotlib %matplotlib inline import matplotlib.pyplot as plt # Load Healpix import healpy # Erin Sheldon's healpix_util import healpix_util as hu # Thomas Boch's MOCpy import mocpy %ls from astropy.io import fits chandra = fits.open('Chandra_multiwavelength.fits')[1] print chandra.columns # we are interested here on columns 'RA','DEC' and 'RADEC_ERR' _data = {'ra' : chandra.data['RA'] * u.degree, 'dec': chandra.data['DEC']* u.degree, 'pos_err' : chandra.data['RADEC_ERR']* u.arcsec} from astropy.table import Table _table = Table(_data) import pandas as pd df = _table.to_pandas() del _table,_data df.hist('pos_err',bins=100) plt.show() df.describe() # A function to find out which healpix level corresponds a given (typical) size of coverage def size2level(size): Returns nearest Healpix level corresponding to a given diamond size The 'nearest' Healpix level is here to be the nearest greater level, right before the first level smaller than 'size'. assert size.unit ko = None for k,v in healpix_levels.iteritems(): if v < 2 * size: break ko = k return ko level = size2level(df.pos_err.median()* u.arcsec) nside = 2**level print "Typical (median) position error: \n{}".format(df.pos_err.median()) print "\nCorrespondig healpix level: {} \n\t and nsize value: {}".format(level,nside) # Let's convert from ra,dec to theta,phi # This function comes from mocpy def ra2phi(ra): convert equatorial ra, dec in degrees to polar theta, phi in radians import math return math.radians(ra) def dec2theta(dec): convert equatorial ra, dec in degrees to polar theta, phi in radians import math return math.pi/2 - math.radians(dec) def radec2thetaphi(ra,dec): _phi = ra2phi(ra) _theta = dec2theta(dec) return _theta,_phi import healpy def healpix_radec2pix(nside, ra, dec, nest=True): _theta,_phi = radec2thetaphi(ra, dec) return healpy.ang2pix(nside, _theta, _phi, nest=nest) df['phi'] = df.ra.apply(ra2phi) df['theta'] = df.dec.apply(dec2theta) df.describe() hp_pix_eq = df.apply(lambda x:healpix_radec2pix(nside,x.ra,x.dec,nest=True), axis=1) hp_pix_ang = df.apply(lambda x:healpy.ang2pix(nside,x.theta,x.phi,nest=True), axis=1) import numpy numpy.array_equal(hp_pix_ang,hp_pix_eq) hpix = hu.HealPix(scheme='nest',nside=nside) hpix hu_pix = hpix.eq2pix(ra=df.ra,dec=df.dec) numpy.array_equal(hu_pix,hp_pix_ang) and numpy.array_equal(hu_pix,hp_pix_eq) # Curiosity: which one is faster? %timeit hpix.eq2pix(ra=df.ra,dec=df.dec) %timeit df.apply(lambda x:healpix_radec2pix(nside,x.ra,x.dec,nest=True), axis=1) # So...all results are equal \o/ and ES's is faster # we can now go on and put it inside our DataFrame df['hpix'] = hu_pix df.describe() moc = mocpy.MOC() moc.add_pix_list(level,df.hpix) moc.plot() moc.write('chandra_MOC_uniq.fits') table = Table.from_pandas(df) table.write('chandra_MOC_radec.fits',format='fits',overwrite=True) del df,table,moc,chandra,hpix %ls -lh from astropy.io import fits xmm = fits.open('XMM_multiwavelength_cat.fits')[1] xmm.columns.names # we are interested here on columns 'RA','DEC' and 'RADEC_ERR' _data = {'ra' : xmm.data['RA'] * u.degree, 'dec': xmm.data['DEC']* u.degree, 'pos_err' : xmm.data['RADEC_ERR']* u.arcsec} df = Table(_data).to_pandas() df.hist('pos_err',bins=100) plt.show() df.describe() level = size2level(df.pos_err.median()* u.arcsec) nside = 2**level print "Typical (median) position error: \n{}".format(df.pos_err.median()) print "\nCorrespondig healpix level: {} \n\t and nsize value: {}".format(level,nside) hpix = hu.HealPix(scheme='nest',nside=nside) hpix df['hpix'] = hpix.eq2pix(ra=df.ra,dec=df.dec) df.describe() moc = mocpy.MOC() moc.add_pix_list(level,df.hpix) moc.plot() moc.write('xmm_MOC_uniq.fits') table = Table.from_pandas(df) table.write('xmm_MOC_radec.fits',format='fits',overwrite=True) %ls -lh def radec_2_moc(filename,ra_column,dec_column,radius_column=None,radius_value=None): import healpix_util import mocpy import time start_all = time.clock() tbhdu = open_fits(filename) table = radec_table(tbhdu,ra_column,dec_column,radius_column) start_convert = time.clock() if not radius_column: if radius_value != None and radius_value > 0: radius = radius_value else: from astropy import units radius = 1 * units.arcsec else: radius = radius_mean(tbhdu,radius_column) assert hasattr(radius,'unit') level = size2level(radius) nside = 2**level hpix = healpix_util.HealPix('nest',nside) table['hpix'] = hpix.eq2pix(table['ra'],table['dec']) stop_convert = time.clock() fileroot = '.'.join(filename.split('.')[:-1]) start_write_normal = time.clock() fileout = '_'.join([fileroot,'MOC_position.fit']) table.write(fileout,format='fits',overwrite=True) stop_write_normal = time.clock() start_write_moc = time.clock() # fileout = '_'.join([fileroot,'MOC_uniq.fit']) # moc = mocpy.MOC() # moc.add_pix_list(level,table['hpix']) # moc.write(fileout) stop_write_moc = time.clock() stop_all = time.clock() _msg = "Time elapsed converting pixels: {}\n".format(stop_convert-start_convert) _msg += "Time elapsed on writing the table: {}\n".format(stop_write_normal-start_write_normal) _msg += "Time elapsed on writing MOC: {}\n".format(stop_write_moc-start_write_moc) _msg += "Total time: {}\n".format(stop_all-start_all) _msg += "Number of points: {}\n".format(len(table)) return _msg def open_fits(filename,hdu=1): from astropy.io import fits from astropy.units import Quantity _tab = fits.open(filename,ignore_missing_end=True)[hdu] return _tab def radec_table(tbhdu,ra_column,dec_column,radius_column=None): from astropy.table import Table from astropy import units import numpy _data = {'ra':tbhdu.data.field(ra_column) * units.deg, 'dec':tbhdu.data.field(dec_column) * units.deg, 'id':numpy.arange(tbhdu.header['NAXIS2'])} if radius_column: try: _d = tbhdu.data.field(radius_column) _data.update({'radius':_d}) except: pass return Table(_data) def radius_mean(tbhdu,radius_column): from astropy.units import Quantity radius = None if radius_column: _radius = Quantity(tbhdu.data.field(radius_column), u.arcsec) radius = _radius.mean() assert radius return radius res = radec_2_moc('Chandra_multiwavelength.fits','RA','DEC','RADEC_ERR') print res res = radec_2_moc('XMM_multiwavelength_cat.fits','RA','DEC','RADEC_ERR') print res %ls -lh def print_fits_columns(fitsfile,hdu=1): from astropy.io import fits hdul = fits.open(fitsfile,ignore_missing_end=True) tbhdu = hdul[1] print "Number of objects: {}\n".format(tbhdu.header['NAXIS2']) print "{} columns:\n".format(fitsfile) ncols = len(tbhdu.columns) i = 0 for c in tbhdu.columns: if i<=5: print "\t{}; ".format(c.name) else: print "\t... ({} columns)".format(ncols-i) break i += 1 hdul.close() print_fits_columns('photometry/hers/hers_catalogue_3sig250_no_extended.fits') res = radec_2_moc('photometry/hers/hers_catalogue_3sig250_no_extended.fits','RA','DEC') print res print_fits_columns('photometry/galex/S82_gmsc_chbrandt.fit') res = radec_2_moc('photometry/galex/S82_gmsc_chbrandt.fit','ra','dec','poserr') print res print_fits_columns('photometry/sdss/Stripe82_photo_chbrandt.fit') res = radec_2_moc('photometry/sdss/Stripe82_photo_chbrandt.fit','ra','dec') print res print_fits_columns('photometry/shela/shela_stripe82_v1.3_cat.fits') res = radec_2_moc('photometry/shela/shela_stripe82_v1.3_cat.fits','SDSS_RA','SDSS_DEC') print res print_fits_columns('photometry/spies/SpIES_ch1ch2_allaor_5s_bothchan_final.fits') res = radec_2_moc('photometry/spies/SpIES_ch1ch2_allaor_5s_bothchan_final.fits','RA','DEC') print res print_fits_columns('photometry/unwise/brandt.fits') res = radec_2_moc('photometry/unwise/brandt.fits','ra','dec') print res print_fits_columns('photometry/vla/first_14dec17.fits') res = radec_2_moc('photometry/vla/first_14dec17.fits','RA','DEC') print res <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step4: The libraries we can use to generate/manipulate Healpix/MOC maps are Step5: Let's do the same with healpix_util now Step6: MOCpy for visualizing and writing the maps Step7: MOC catalogs now for LaMassa's XMM Step8: Automating MOC generation from fits files
15,667
<ASSISTANT_TASK:> Python Code: import tensorflow as tf from tensorflow.python.client import timeline import pylab import numpy as np import os %matplotlib inline %config InlineBackend.figure_format = 'retina' tf.logging.set_verbosity(tf.logging.INFO) tf.reset_default_graph() config = tf.ConfigProto( log_device_placement=True, ) config.gpu_options.allow_growth=True config.graph_options.optimizer_options.global_jit_level \ = tf.OptimizerOptions.ON_1 print(config) sess = tf.Session(config=config) print(sess) from datetime import datetime version = int(datetime.now().strftime("%s")) num_samples = 100000 import numpy as np import pylab x_train = np.random.rand(num_samples).astype(np.float32) print(x_train) noise = np.random.normal(scale=0.01, size=len(x_train)) y_train = x_train * 0.1 + 0.3 + noise print(y_train) pylab.plot(x_train, y_train, '.') x_test = np.random.rand(len(x_train)).astype(np.float32) print(x_test) noise = np.random.normal(scale=.01, size=len(x_train)) y_test = x_test * 0.1 + 0.3 + noise print(y_test) pylab.plot(x_test, y_test, '.') with tf.device("/cpu:0"): W = tf.get_variable(shape=[], name='weights') print(W) b = tf.get_variable(shape=[], name='bias') print(b) with tf.device("/device:XLA_GPU:0"): x_observed = tf.placeholder(shape=[None], dtype=tf.float32, name='x_observed') print(x_observed) y_pred = W * x_observed + b print(y_pred) learning_rate = 0.025 with tf.device("/device:XLA_GPU:0"): y_observed = tf.placeholder(shape=[None], dtype=tf.float32, name='y_observed') print(y_observed) loss_op = tf.reduce_mean(tf.square(y_pred - y_observed)) optimizer_op = tf.train.GradientDescentOptimizer(learning_rate) train_op = optimizer_op.minimize(loss_op) print("Loss Scalar: ", loss_op) print("Optimizer Op: ", optimizer_op) print("Train Op: ", train_op) with tf.device("/cpu:0"): init_op = tf.global_variables_initializer() print(init_op) sess.run(init_op) print("Initial random W: %f" % sess.run(W)) print("Initial random b: %f" % sess.run(b)) def test(x, y): return sess.run(loss_op, feed_dict={x_observed: x, y_observed: y}) test(x_train, y_train) loss_summary_scalar_op = tf.summary.scalar('loss', loss_op) loss_summary_merge_all_op = tf.summary.merge_all() train_summary_writer = tf.summary.FileWriter('/root/tensorboard/linear/xla_gpu/%s/train' % version, graph=tf.get_default_graph()) test_summary_writer = tf.summary.FileWriter('/root/tensorboard/linear/xla_gpu/%s/test' % version, graph=tf.get_default_graph()) %%time from tensorflow.python.client import timeline with tf.device("/device:XLA_GPU:0"): run_metadata = tf.RunMetadata() max_steps = 401 for step in range(max_steps): if (step < max_steps - 1): test_summary_log, _ = sess.run([loss_summary_merge_all_op, loss_op], feed_dict={x_observed: x_test, y_observed: y_test}) train_summary_log, _ = sess.run([loss_summary_merge_all_op, train_op], feed_dict={x_observed: x_train, y_observed: y_train}) else: test_summary_log, _ = sess.run([loss_summary_merge_all_op, loss_op], feed_dict={x_observed: x_test, y_observed: y_test}) train_summary_log, _ = sess.run([loss_summary_merge_all_op, train_op], feed_dict={x_observed: x_train, y_observed: y_train}, options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE), run_metadata=run_metadata) trace = timeline.Timeline(step_stats=run_metadata.step_stats) with open('timeline-xla-gpu.json', 'w') as trace_file: trace_file.write(trace.generate_chrome_trace_format(show_memory=True)) if step % 10 == 0: print(step, sess.run([W, b])) train_summary_writer.add_summary(train_summary_log, step) train_summary_writer.flush() test_summary_writer.add_summary(test_summary_log, step) test_summary_writer.flush() pylab.plot(x_train, y_train, '.', label="target") pylab.plot(x_train, sess.run(y_pred, feed_dict={x_observed: x_train, y_observed: y_train}), ".", label="predicted") pylab.legend() pylab.ylim(0, 1.0) import os optimize_me_parent_path = '/root/models/optimize_me/linear/xla_gpu' saver = tf.train.Saver() os.system('rm -rf %s' % optimize_me_parent_path) os.makedirs(optimize_me_parent_path) unoptimized_model_graph_path = '%s/unoptimized_xla_gpu.pb' % optimize_me_parent_path tf.train.write_graph(sess.graph_def, '.', unoptimized_model_graph_path, as_text=False) print(unoptimized_model_graph_path) model_checkpoint_path = '%s/model.ckpt' % optimize_me_parent_path saver.save(sess, save_path=model_checkpoint_path) print(model_checkpoint_path) print(optimize_me_parent_path) os.listdir(optimize_me_parent_path) sess.close() %%bash summarize_graph --in_graph=/root/models/optimize_me/linear/xla_gpu/unoptimized_xla_gpu.pb from __future__ import absolute_import from __future__ import division from __future__ import print_function import re from google.protobuf import text_format from tensorflow.core.framework import graph_pb2 def convert_graph_to_dot(input_graph, output_dot, is_input_graph_binary): graph = graph_pb2.GraphDef() with open(input_graph, "rb") as fh: if is_input_graph_binary: graph.ParseFromString(fh.read()) else: text_format.Merge(fh.read(), graph) with open(output_dot, "wt") as fh: print("digraph graphname {", file=fh) for node in graph.node: output_name = node.name print(" \"" + output_name + "\" [label=\"" + node.op + "\"];", file=fh) for input_full_name in node.input: parts = input_full_name.split(":") input_name = re.sub(r"^\^", "", parts[0]) print(" \"" + input_name + "\" -> \"" + output_name + "\";", file=fh) print("}", file=fh) print("Created dot file '%s' for graph '%s'." % (output_dot, input_graph)) input_graph='/root/models/optimize_me/linear/xla_gpu/unoptimized_xla_gpu.pb' output_dot='/root/notebooks/unoptimized_xla_gpu.dot' convert_graph_to_dot(input_graph=input_graph, output_dot=output_dot, is_input_graph_binary=True) %%bash dot -T png /root/notebooks/unoptimized_xla_gpu.dot \ -o /root/notebooks/unoptimized_xla_gpu.png > /tmp/a.out from IPython.display import Image Image('/root/notebooks/unoptimized_xla_gpu.png', width=1024, height=768) %%bash dot -T png /tmp/hlo_graph_1.*.dot -o /root/notebooks/hlo_graph_1.png &>/dev/null dot -T png /tmp/hlo_graph_10.*.dot -o /root/notebooks/hlo_graph_10.png &>/dev/null dot -T png /tmp/hlo_graph_50.*.dot -o /root/notebooks/hlo_graph_50.png &>/dev/null dot -T png /tmp/hlo_graph_75.*.dot -o /root/notebooks/hlo_graph_75.png &>/dev/null <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Reset TensorFlow Graph Step2: Create TensorFlow Session Step3: Generate Model Version (current timestamp) Step4: Load Model Training and Test/Validation Data Step5: Randomly Initialize Variables (Weights and Bias) Step6: View Accuracy of Pre-Training, Initial Random Variables Step7: Setup Loss Summary Operations for Tensorboard Step8: Train Model Step9: View Loss Summaries in Tensorboard Step10: Show Graph Step11: XLA JIT Visualizations
15,668
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm from math import pi def y(x): return np.cos(pi*x) x = np.linspace(-1, 1, 100) X = np.random.uniform(-1, 1, 25) X_data = X.reshape(25, 1) y_obs_list = [] for i in range(len(X)): y_obs = y(X[i]) + np.random.normal(0, 0.5) y_obs_list.append(y_obs) X_data = X.reshape(25, 1) Y_data = np.asarray(y_obs_list).reshape(25, 1) fig, ax = plt.subplots(figsize=(8,6)) ax.plot(x, y(x)) ax.scatter(X_data, Y_data) from sklearn import linear_model regr = linear_model.LinearRegression() regr.fit(X_data, Y_data) print('intercept: \n', regr.intercept_) print('coefficient: \n', regr.coef_) print("Mean Squared Error: %.2f" % np.mean((regr.predict(X_data) - Y_data) ** 2)) print('R squared: %.2f' % regr.score(X_data, Y_data)) fig, ax = plt.subplots(figsize=(8,8)) ax.plot(x, y(x), label = "True Model") ax.scatter(X_data, Y_data, label = "Training Points") ax.plot(X_data, regr.predict(X_data), label = "Regression Line") plt.legend(loc='lower center') plt.show from sklearn.preprocessing import PolynomialFeatures X_data_example = np.random.random((3, 2)) print(X_data_example) poly = PolynomialFeatures(degree=2) poly_X_data_example = poly.fit_transform(X_data_example) print(poly.fit_transform(X_data_example)) from sklearn.pipeline import make_pipeline x_plot = np.linspace(-1, 1, 100).reshape(100,1) regression = linear_model.LinearRegression() for degree in [2, 5, 14]: # chain PolynomialFeatures and LinearRegression into one # estimator (make_pipeline is just a shorthand for Pipeline) model = make_pipeline(PolynomialFeatures(degree), regression) model.fit(X_data, Y_data) #predict using the linear model y_plot = model.predict(x_plot) #plot fig, ax = plt.subplots(figsize=(8,8)) ax.plot(x, y(x), label = "True Model") ax.scatter(X_data, Y_data, label = "Training Points") ax.plot(x_plot, y_plot, label="Degree %d" % degree) plt.legend(loc='lower center') #compute the mean squared error (MSE) MSE = np.mean((model.predict(X_data) - Y_data) ** 2) print("Mean Squared Error for Degree %d" % degree, ":") print(MSE) plt.title("Degree {}\nMSE = {:.2e}".format(degree, MSE)) plt.xlim(-1, 1) plt.ylim(-2, 2) plt.show() from sklearn.cross_validation import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X_data, Y_data, test_size=0.4, random_state=0) X_train.shape, Y_train.shape X_test.shape, Y_test.shape regr = linear_model.LinearRegression() regr.fit(X_train, Y_train) # The coefficients print('intercept: \n', regr.intercept_) print('coefficient: \n', regr.coef_) # The mean square error computed on validation sets print("Mean Squared Error: %.2f" % np.mean((regr.predict(X_test) - Y_test) ** 2)) regression = linear_model.LinearRegression() for degree in [1, 2, 5, 14]: model = make_pipeline(PolynomialFeatures(degree), regression) model.fit(X_train, Y_train) print("MSE on VALIDATION SET for Degree %d" % degree, ":") print(np.mean((model.predict(X_test) - Y_test) ** 2)) from sklearn.cross_validation import cross_val_score scores = cross_val_score(linear_model.LinearRegression(), X_data, Y_data, cv = 5, scoring = 'mean_squared_error') print("MSE array:", scores) from sklearn.metrics.scorer import SCORERS print(SCORERS.keys()) def my_own_scoring(regr, X_data, Y_data): return np.mean(regr.predict(X_data) == Y_data) cross_val_score(regr, X_data, Y_data, cv = 5, scoring = my_own_scoring) from sklearn.cross_validation import KFold kf = KFold(n = len(X_data), n_folds = 5, shuffle = True) MSE_kth_list = [] print("len(kf):", len(kf)) for train_index, test_index in kf: print("TRAIN:", train_index, "TEST:", test_index) X_train, X_test = X_data[train_index], X_data[test_index] Y_train, Y_test = Y_data[train_index], Y_data[test_index] regr = linear_model.LinearRegression().fit(X_train, Y_train) MSE_kth = np.mean((regr.predict(X_test) - Y_test) ** 2) MSE_kth_list.append(MSE_kth) print("Average k-fold MSE:", np.mean(MSE_kth_list)) from sklearn.cross_validation import LeaveOneOut loo = LeaveOneOut(len(X_data)) for train_index, test_index in loo: print("TRAIN:", train_index, "TEST:", test_index) X_train, X_test = X_data[train_index], X_data[test_index] Y_train, Y_test = Y_data[train_index], Y_data[test_index] from sklearn.linear_model import Ridge Ridge_regr = Ridge(alpha=0.5) Ridge_regr.fit(X_data, Y_data) print('Intercept: \n', Ridge_regr.intercept_) print('Coefficient: \n', Ridge_regr.coef_) print("Mean Squared Error: %.2f" % np.mean((Ridge_regr.predict(X_data) - Y_data) ** 2)) print('R^2: %.2f' % Ridge_regr.score(X_data, Y_data)) from sklearn.linear_model import RidgeCV # a list of possible lambda values lambda_list = [0.1, 1, 5, 10] RidgeCV_regr = RidgeCV(alphas = lambda_list, scoring = 'mean_squared_error') RidgeCV_regr.fit(X_data, Y_data) print("Cross-Validated alpha:", RidgeCV_regr.alpha_) from sklearn.pipeline import Pipeline from sklearn.pipeline import make_pipeline from sklearn.linear_model import Ridge x_plot = np.linspace(-1, 1, 100).reshape(100,1) for degree in [1, 2, 5, 14]: model = make_pipeline(PolynomialFeatures(degree), RidgeCV_regr) model.fit(X_data, Y_data) print("Cross-Validated Lambda for degree: %d" % degree) print(RidgeCV_regr.alpha_) # Evaluate the models using crossvalidation scores = cross_val_score(model, X_data, Y_data, scoring="mean_squared_error", cv=10) y_plot = model.predict(x_plot) #plot fig, ax = plt.subplots(figsize=(8,8)) ax.plot(x, y(x), label = "True Model") ax.scatter(X_data, Y_data, label = "Training Points") ax.plot(x_plot, y_plot, label="Degree %d" % degree) plt.legend(loc='lower center') print("Cross-Validated MSE:") print(-scores.mean()) plt.title("Degree {}\nMSE = {:.2e}\n Chosen Lambda {}".format(degree, -scores.mean(), RidgeCV_regr.alpha_)) plt.xlim(-1, 1) plt.ylim(-2, 2) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We will begin by stating our "true model", defined as $y = \cos(\pi x)$. Step2: We now add some random "noise" to it in order to generate 25 data points, i.e., 25 $(x_i, y_i)$-tuples that will form our dataset. To do so, we have Step3: Here we want to plot the true model and the $(x_i, y_i)$-tuples we generated above. Step4: Now, we use Scikit for Linear Regression. The module "LinearRegression" fits a linear model with coefficients $\beta = (\beta_1, \beta_2, \dots, \beta_p)$ to minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. Mathematically it solves a problem of the form Step5: We now plot the results, which are obviously not very significant. Step6: To make things more interesting, we are now going to use Scikit's linear models trained on nonlinear functions of the data. This approach maintains the generally fast performance of linear methods, while allowing them to fit a much wider range of data. Step7: This sort of preprocessing can be streamlined with the "Pipeline" tools. In fact, Pipeline can be used to chain multiple estimators into one. This is useful as there is often a fixed sequence of steps in processing the data, for example feature selection, normalization and classification. Pipeline serves two purposes here Step8: We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called underfitting. A polynomial of degree 5 approximates the true function almost perfectly. For higher degrees the model will overfit the training data, i.e. it learns the noise of the training data. Step9: We can train a linear regression model on (X-train, Y-train) data, and then compute the Mean Squared Error on the (X-test, Y-test) set. Step10: We can do the same with "polynomial fitting". Step11: What we observe is a giant increase in the MSE for the polynomial of 14th degree. This is an obvious consequence of overfitting, i.e., with a 14th degree polynomal we are minimizing empirical risk, and not the "true" risk. Step12: The simplest way to use cross-validation is to call the "cross_val_score" helper function on the estimator and the dataset. By default, the score computed at each CV iteration is the score method of the estimator. It is possible to change this by using the scoring parameter. Step13: When the cv argument is an integer, "cross_val_score uses" the KFold by default. Step14: There are many built-in scoring metrics. However, we can always define our own metric Step15: Scikit-Learn provides many tools to generate indices that can be used to generate dataset splits according to different cross validation strategies. Step16: Each fold is constituted by two arrays Step17: Another example of cross-validation strategy is the "LeaveOneOut" (or LOO, a simple cross-validation. Each learning set is created by taking all the samples except one, the test set being the sample left out. Thus, for n samples, we have n different training sets and n different tests set. This cross-validation procedure does not waste much data as only one sample is removed from the training set Step18: We now turn to Ridge Regression. Step19: RidgeCV implements ridge regression with built-in cross-validation of the alpha parameter. It defaults to Generalized Cross-Validation (GCV), an efficient form of leave-one-out (LOO) cross-validation Step20: In this final example, we demonstrates the problems of underfitting and overfitting and how we can use Ridge regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees.
15,669
<ASSISTANT_TASK:> Python Code: from veneer.manage import start, create_command_line, kill_all_now import veneer veneer_install = 'D:\\src\\projects\\Veneer\\Compiled\\Source 4.1.1.4484 (public version)' source_version = '4.1.1' cmd_directory = 'E:\\temp\\veneer_cmd' path = create_command_line(veneer_install,source_version,dest=cmd_directory) path catchment_project='ExampleProject/CalibrationExample.rsproj' num_copies=20 # Important - set this to be a number ~ the number of CPU cores in your system! first_port=9950 processes,ports = start(catchment_project, n_instances=num_copies, ports=first_port, debug=True, veneer_exe=path, remote=False) vs = [veneer.Veneer(port=p) for p in ports] %matplotlib inline v = vs[0] v.network().as_dataframe().plot() from veneer.pest import Case calibration = Case('CalibrationCase',optimiser='cmaes_p',model_servers=ports) calibration.options['PRECIS']='single' v.model.find_model_type('GR4J') params = v.model.find_parameters('TIME.Models.RainfallRunoff.GR4J.GR4J') params params = params[2:] params ranges = { 'x1':[100.0,500.0], 'x2':[1.0,5.0], 'x3':[1.0,200.0], 'x4':[0.5,3.0] } ranges for param,param_range in ranges.items(): print('Configuring %s'%param) pest_pname = '$'+param+'$' # 1. Tell PEST how to set the parameter calibration.parameters.model.catchment.runoff.set_param_values(param,pest_pname) # 2. Details of the PEST parameter. name, starting value, min, max # Decide what to use for the initial value... half way between min and max! initial = 0.5*(param_range[0]+param_range[1]) calibration.parameters.describe(pest_pname,initial,param_range[0],param_range[1]) print(calibration.ptf_text()) print(calibration.pcf_text()) calibration.options import pandas as pd flows = pd.read_csv('SyntheticObservedFlow.csv',parse_dates=True,dayfirst=True,index_col=0) flows[0::50] # Show every fifty days flows.plot() start,end = flows.index[[0,-1]] start,end network = v.network() nodes = network['features'].find_by_feature_type('node') nodes._all_values('name') calibration_node = 'G123456A' calibration.observations.data.read_csv('SyntheticObservedFlow.csv',parse_dates=True,dayfirst=True,index_col=0) comparison={'NetworkElement':calibration_node,'RecordingVariable':'Downstream Flow Volume'} flows.columns from veneer import stats dir(stats) help(stats.nse) calibration.observations.compare('Flow',comparison,stat=stats.nse,aggregation='daily') for v in vs: veneer.log('Configuring recording for server on port %d'%v.port) v.configure_recording(enable=[comparison],disable=[{}]) print(calibration.ptf_text()) print(calibration.pif_text()) print(calibration.pcf_text()) print(calibration.prf_text()) pest_path='C:\\PEST' import os os.environ['PATH'] = os.environ['PATH']+';'+pest_path results = calibration.run() #results = calibration.get_results() results['parameters'] kill_all_now(processes) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Also as before, we need a copy of the Veneer client for each copy of the server Step2: The catchment Step3: Describing the PEST 'Job' Step4: At very least, we need to give a Case a name - which is the basis for all the filenames that will be written out. Step5: PEST has many options - most of which we leave at default. One option that we currently need is to put PEST into single precision mode. This is because PEST, in double precision mode, uses a syntax for floating point literals that is not valid Python Step6: Configuring the calibration parameters Step7: We only want to calibrate x1-x4 - (C and k are specific to the eWater version of GR4J - they provide a baseflow filter) Step8: We need to assign ranges to each of these. The model implementation in Source has metadata about suitable ranges - but at this stage, there isn't an easy way to interrogate that information from veneer-py. You can check in the Source user interface (Edit|Rainfall Runoff Models) to see the ranges. Step9: Now, we can loop over each parameter and 'teach' PEST about it - ie tell PEST how to modify the parameter and tell PEST what range we want to calibrate over Step10: Note Step11: There are still gaps in the PTF - eg the # Compute Stats section - that will come as we describe the outputs and observations. Step12: Note Step13: Configuring the outputs and observations Step14: Note Step15: This (synthetic) observed flow sequence relates to the (synthetic) gauge towards the bottom of the system. What was it called? Step16: Aaah, we want 'G123456A' Step17: Now we can tell PEST about the observations and the comparison we want. Step18: And we can set up the comparison Step19: veneer-py configures the observation based on the column name in the observed flow file (so that you can have multiple comparisons from different columns and files) Step20: We also need to reference a stats function. You can write your own (but you'll need to store it in a .py file) or you can access one from veneer.stats Step21: We need to do one more thing Step22: If we look at the content of the PEST config files now, we'll see more details filled in Step23: Running PEST
15,670
<ASSISTANT_TASK:> Python Code: from __future__ import print_function, division %matplotlib inline import numpy as np import nsfg import first import analytic import thinkstats2 import thinkplot thinkplot.PrePlot(3) for lam in [2.0, 1, 0.5]: xs, ps = thinkstats2.RenderExpoCdf(lam, 0, 3.0, 50) label = r'$\lambda=%g$' % lam thinkplot.Plot(xs, ps, label=label) thinkplot.Config(title='Exponential CDF', xlabel='x', ylabel='CDF', loc='lower right') df = analytic.ReadBabyBoom() diffs = df.minutes.diff() cdf = thinkstats2.Cdf(diffs, label='actual') thinkplot.Cdf(cdf) thinkplot.Config(xlabel='Time between births (minutes)', ylabel='CDF') thinkplot.Cdf(cdf, complement=True) thinkplot.Config(xlabel='Time between births (minutes)', ylabel='CCDF', yscale='log', loc='upper right') thinkplot.PrePlot(3) mus = [1.0, 2.0, 3.0] sigmas = [0.5, 0.4, 0.3] for mu, sigma in zip(mus, sigmas): xs, ps = thinkstats2.RenderNormalCdf(mu=mu, sigma=sigma, low=-1.0, high=4.0) label = r'$\mu=%g$, $\sigma=%g$' % (mu, sigma) thinkplot.Plot(xs, ps, label=label) thinkplot.Config(title='Normal CDF', xlabel='x', ylabel='CDF', loc='upper left') preg = nsfg.ReadFemPreg() weights = preg.totalwgt_lb.dropna() # estimate parameters: trimming outliers yields a better fit mu, var = thinkstats2.TrimmedMeanVar(weights, p=0.01) print('Mean, Var', mu, var) # plot the model sigma = np.sqrt(var) print('Sigma', sigma) xs, ps = thinkstats2.RenderNormalCdf(mu, sigma, low=0, high=12.5) thinkplot.Plot(xs, ps, label='model', color='0.6') # plot the data cdf = thinkstats2.Cdf(weights, label='data') thinkplot.PrePlot(1) thinkplot.Cdf(cdf) thinkplot.Config(title='Birth weights', xlabel='Birth weight (pounds)', ylabel='CDF') n = 1000 thinkplot.PrePlot(3) mus = [0, 1, 5] sigmas = [1, 1, 2] for mu, sigma in zip(mus, sigmas): sample = np.random.normal(mu, sigma, n) xs, ys = thinkstats2.NormalProbability(sample) label = '$\mu=%d$, $\sigma=%d$' % (mu, sigma) thinkplot.Plot(xs, ys, label=label) thinkplot.Config(title='Normal probability plot', xlabel='standard normal sample', ylabel='sample values') mean, var = thinkstats2.TrimmedMeanVar(weights, p=0.01) std = np.sqrt(var) xs = [-4, 4] fxs, fys = thinkstats2.FitLine(xs, mean, std) thinkplot.Plot(fxs, fys, linewidth=4, color='0.8') xs, ys = thinkstats2.NormalProbability(weights) thinkplot.Plot(xs, ys, label='all live') thinkplot.Config(title='Normal probability plot', xlabel='Standard deviations from mean', ylabel='Birth weight (lbs)') full_term = preg[preg.prglngth >= 37] term_weights = full_term.totalwgt_lb.dropna() mean, var = thinkstats2.TrimmedMeanVar(weights, p=0.01) std = np.sqrt(var) xs = [-4, 4] fxs, fys = thinkstats2.FitLine(xs, mean, std) thinkplot.Plot(fxs, fys, linewidth=4, color='0.8') thinkplot.PrePlot(2) xs, ys = thinkstats2.NormalProbability(weights) thinkplot.Plot(xs, ys, label='all live') xs, ys = thinkstats2.NormalProbability(term_weights) thinkplot.Plot(xs, ys, label='full term') thinkplot.Config(title='Normal probability plot', xlabel='Standard deviations from mean', ylabel='Birth weight (lbs)') import brfss df = brfss.ReadBrfss() weights = df.wtkg2.dropna() def MakeNormalModel(weights): Plots a CDF with a Normal model. weights: sequence cdf = thinkstats2.Cdf(weights, label='weights') mean, var = thinkstats2.TrimmedMeanVar(weights) std = np.sqrt(var) print('n, mean, std', len(weights), mean, std) xmin = mean - 4 * std xmax = mean + 4 * std xs, ps = thinkstats2.RenderNormalCdf(mean, std, xmin, xmax) thinkplot.Plot(xs, ps, label='model', linewidth=4, color='0.8') thinkplot.Cdf(cdf) MakeNormalModel(weights) thinkplot.Config(title='Adult weight, linear scale', xlabel='Weight (kg)', ylabel='CDF', loc='upper right') log_weights = np.log10(weights) MakeNormalModel(log_weights) thinkplot.Config(title='Adult weight, log scale', xlabel='Weight (log10 kg)', ylabel='CDF', loc='upper right') def MakeNormalPlot(weights): Generates a normal probability plot of birth weights. weights: sequence mean, var = thinkstats2.TrimmedMeanVar(weights, p=0.01) std = np.sqrt(var) xs = [-5, 5] xs, ys = thinkstats2.FitLine(xs, mean, std) thinkplot.Plot(xs, ys, color='0.8', label='model') xs, ys = thinkstats2.NormalProbability(weights) thinkplot.Plot(xs, ys, label='weights') MakeNormalPlot(weights) thinkplot.Config(title='Adult weight, normal plot', xlabel='Weight (kg)', ylabel='CDF', loc='upper left') MakeNormalPlot(log_weights) thinkplot.Config(title='Adult weight, lognormal plot', xlabel='Weight (log10 kg)', ylabel='CDF', loc='upper left') xmin = 0.5 thinkplot.PrePlot(3) for alpha in [2.0, 1.0, 0.5]: xs, ps = thinkstats2.RenderParetoCdf(xmin, alpha, 0, 10.0, n=100) thinkplot.Plot(xs, ps, label=r'$\alpha=%g$' % alpha) thinkplot.Config(title='Pareto CDF', xlabel='x', ylabel='CDF', loc='lower right') import populations pops = populations.ReadData() print('Number of cities/towns', len(pops)) log_pops = np.log10(pops) cdf = thinkstats2.Cdf(pops, label='data') cdf_log = thinkstats2.Cdf(log_pops, label='data') # pareto plot xs, ys = thinkstats2.RenderParetoCdf(xmin=5000, alpha=1.4, low=0, high=1e7) thinkplot.Plot(np.log10(xs), 1-ys, label='model', color='0.8') thinkplot.Cdf(cdf_log, complement=True) thinkplot.Config(xlabel='log10 population', ylabel='CCDF', yscale='log', loc='lower left') thinkplot.PrePlot(cols=2) mu, sigma = log_pops.mean(), log_pops.std() xs, ps = thinkstats2.RenderNormalCdf(mu, sigma, low=0, high=8) thinkplot.Plot(xs, ps, label='model', color='0.8') thinkplot.Cdf(cdf_log) thinkplot.Config(xlabel='log10 population', ylabel='CDF', loc='lower right') thinkstats2.NormalProbabilityPlot(log_pops, label='data') thinkplot.Config(xlabel='Random variate', ylabel='log10 population', xlim=[-5, 5]) import random def expovariate(lam): p = random.random() x = -np.log(1-p) / lam return x t = [expovariate(lam=2) for _ in range(1000)] cdf = thinkstats2.Cdf(t) thinkplot.Cdf(cdf, complement=True) thinkplot.Config(xlabel='Exponential variate', ylabel='CCDF', yscale='log') import scipy.stats mu = 178 sigma = 7.7 dist = scipy.stats.norm(loc=mu, scale=sigma) type(dist) dist.mean(), dist.std() dist.cdf(mu-sigma) # Solution low = dist.cdf(177.8) # 5'10" high = dist.cdf(185.4) # 6'1" low, high, high-low alpha = 1.7 xmin = 1 # meter dist = scipy.stats.pareto(b=alpha, scale=xmin) dist.median() # Solution dist.mean() # Solution dist.cdf(dist.mean()) # Solution (1 - dist.cdf(1000)) * 7e9, dist.sf(1000) * 7e9 # Solution # One way to solve this is to search for a height that we # expect one person out of 7 billion to exceed. # It comes in at roughly 600 kilometers. dist.sf(600000) * 7e9 # Solution # Another way is to use `ppf`, which evaluates the "percent point function", which # is the inverse CDF. So we can compute the height in meters that corresponds to # the probability (1 - 1/7e9). dist.ppf(1 - 1/7e9) sample = [random.weibullvariate(2, 1) for _ in range(1000)] cdf = thinkstats2.Cdf(sample) thinkplot.Cdf(cdf, transform='weibull') thinkplot.Config(xlabel='Weibull variate', ylabel='CCDF') import analytic df = analytic.ReadBabyBoom() diffs = df.minutes.diff() cdf = thinkstats2.Cdf(diffs, label='actual') n = len(diffs) lam = 44.0 / 24 / 60 sample = [random.expovariate(lam) for _ in range(n)] 1/lam, np.mean(sample) # Solution model = thinkstats2.Cdf(sample, label='model') thinkplot.PrePlot(2) thinkplot.Cdfs([cdf, model], complement=True) thinkplot.Config(xlabel='Time between births (minutes)', ylabel='CCDF', yscale='log') # Solution # If you plot distributions for a large number of samples, you get a sense # of how much random variation to expect. In this case, the data fall within # the range we expect, so there is no compelling reason to think it is # not exponential. for i in range(100): sample = [random.expovariate(lam) for _ in range(n)] thinkplot.Cdf(thinkstats2.Cdf(sample), complement=True, color='0.9') thinkplot.Cdf(cdf, complement=True) thinkplot.Config(xlabel='Time between births (minutes)', ylabel='CCDF', yscale='log') import hinc df = hinc.ReadData() df xs, ps = df.income.values, df.ps.values cdf = thinkstats2.Cdf(xs, ps, label='data') cdf_log = thinkstats2.Cdf(np.log10(xs), ps, label='data') # linear plot thinkplot.Cdf(cdf) thinkplot.Config(xlabel='household income', ylabel='CDF') xs, ys = thinkstats2.RenderParetoCdf(xmin=55000, alpha=2.5, low=0, high=250000) thinkplot.Plot(xs, 1-ys, label='model', color='0.8') thinkplot.Cdf(cdf, complement=True) thinkplot.Config(xlabel='log10 household income', ylabel='CCDF', xscale='log', yscale='log', loc='lower left') median = cdf_log.Percentile(50) iqr = cdf_log.Percentile(75) - cdf_log.Percentile(25) std = iqr / 1.349 # choose std to match the upper tail std = 0.35 print(median, std) xs, ps = thinkstats2.RenderNormalCdf(median, std, low=3.5, high=5.5) thinkplot.Plot(xs, ps, label='model', color='0.8') thinkplot.Cdf(cdf_log) thinkplot.Config(xlabel='log10 household income', ylabel='CDF') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Exponential distribution Step2: Here's the distribution of interarrival times from a dataset of birth times. Step3: Here's what the CCDF looks like on a log-y scale. A straight line is consistent with an exponential distribution. Step4: Normal distribution Step5: I'll use a normal model to fit the distribution of birth weights from the NSFG. Step6: Here's the observed CDF and the model. The model fits the data well except in the left tail. Step7: A normal probability plot is a visual test for normality. The following example shows that if the data are actually from a normal distribution, the plot is approximately straight. Step8: Here's the normal probability plot for birth weights, showing that the lightest babies are lighter than we expect from the normal mode, and the heaviest babies are heavier. Step9: If we suspect that the deviation in the left tail is due to preterm babies, we can check by selecting only full term births. Step10: Now the deviation in the left tail is almost gone, but the heaviest babies are still heavy. Step11: Lognormal model Step13: The following function estimates the parameters of a normal distribution and plots the data and a normal model. Step14: Here's the distribution of adult weights and a normal model, which is not a very good fit. Step15: Here's the distribution of adult weight and a lognormal model, plotted on a log-x scale. The model is a better fit for the data, although the heaviest people are heavier than the model expects. Step17: The following function generates a normal probability plot. Step18: When we generate a normal probability plot with adult weights, we can see clearly that the data deviate from the model systematically. Step19: If we make a normal probability plot with log weights, the model fit the data well except in the tails, where the heaviest people exceed expectations. Step20: Pareto distribution Step21: The distribution of populations for cities and towns is sometimes said to be Pareto-like. Step22: Here's the distribution of population for cities and towns in the U.S., along with a Pareto model. The model fits the data well in the tail. Step23: The lognormal model might be a better fit for this data (as is often the case for things that are supposed to be Pareto). Step24: Here's a normal probability plot for the log-populations. The model fits the data well except in the right tail, where the biggest cities are bigger than expected. Step25: Random variates Step26: We can test it by generating a sample. Step27: And plotting the CCDF on a log-y scale. Step28: A straight line is consistent with an exponential distribution. Step29: For example <tt>scipy.stats.norm</tt> represents a normal distribution. Step30: A "frozen random variable" can compute its mean and standard deviation. Step31: It can also evaluate its CDF. How many people are more than one standard deviation below the mean? About 16% Step32: How many people are between 5'10" and 6'1"? Step33: Exercise Step34: What is the mean height in Pareto world? Step35: What fraction of people are shorter than the mean? Step36: Out of 7 billion people, how many do we expect to be taller than 1 km? You could use <tt>dist.cdf</tt> or <tt>dist.sf</tt>. Step37: How tall do we expect the tallest person to be? Step38: Exercise Step39: Exercise Step40: Worked Example Step41: Here's what the CDF looks like on a linear scale. Step42: To check whether a Pareto model describes the data well, I plot the CCDF on a log-log scale. Step43: For the lognormal model I estimate mu and sigma using percentile-based statistics (median and IQR). Step44: Here's what the distribution, and fitted model, look like on a log-x scale.
15,671
<ASSISTANT_TASK:> Python Code: from IPython.display import display from sympy import symbols, simplify, sympify, expand from sympy import init_printing from sympy import Eq, Function from clebschVector import ClebschVec from clebschVector import div, grad, gradPerp, advVec from common import rho, theta, poisson from common import displayVec init_printing() u_z = symbols('u_z', real = True) # In reality this is a function, but as it serves only as a dummy it is here defined as a symbol # This makes it easier to replace f = symbols('f', real = True) phi = Function('phi')(rho, theta) n = Function('n')(rho, theta) # Symbols for printing zeta, chi, epsilon = symbols('zeta, chi, epsilon') nGradPerpPhi = gradPerp(phi)*n displayVec(nGradPerpPhi) # The basis-vectors are contravariant => components are covariant eTheta = ClebschVec(rho=0, theta=1, z=0, covariant=True) eRho = ClebschVec(rho=1, theta=0, z=0, covariant=True) B = eTheta^eRho displayVec(B, 'B') Blen = B.len() display(Eq(symbols('B'), Blen)) b = B/(B.len()) displayVec(b, 'b') gradPerpPhi = gradPerp(phi) displayVec(gradPerpPhi) # Normalized B BTilde = 1 # Defining u_E ue = - ((gradPerpPhi^b)/BTilde) displayVec(ue, 'u_E') ueDotGrad_f = ue*grad(f) display(ueDotGrad_f) aRho, aZ, aTheta = symbols('a^rho, a^z, a^theta') a_Rho, a_Z, a_Theta = symbols('a_rho, a_z, a_theta') aCov = ClebschVec(rho = a_Rho, z=a_Z, theta = a_Theta, covariant=True) aCon = ClebschVec(rho = aRho, z=aZ, theta = aTheta, covariant=False) aCovDotNablaGradPhi = advVec(aCov, nGradPerpPhi) displayVec(aCovDotNablaGradPhi) aConDotNablaGradPhi = advVec(aCon, nGradPerpPhi) displayVec(aConDotNablaGradPhi) ueDotGradnGradPerpPhi = advVec(ue, nGradPerpPhi) displayVec(ueDotGradnGradPerpPhi.doitVec()) displayVec(ueDotGradnGradPerpPhi.doitVec().simplifyVec()) div_ueDotGradnGradPerpPhi = div(ueDotGradnGradPerpPhi) zetaFunc = div_ueDotGradnGradPerpPhi.doit().expand() display(Eq(zeta, simplify(zetaFunc))) vortD = div(gradPerp(phi)*n) display(Eq(symbols('Omega^D'), vortD.doit().expand())) poissonPhiVortD = Blen*poisson(phi, vortD) chiFunc = poissonPhiVortD.doit().expand() display(Eq(chi, chiFunc)) epsilonFunc = (zetaFunc - chiFunc).expand() display(Eq(epsilon, epsilonFunc)) epsMinusCorrection = epsilonFunc\ -\ (\ (1/rho)*phi.diff(rho)*poisson(phi.diff(rho), n)\ +(1/(rho)**3)*phi.diff(theta)*poisson(phi.diff(theta),n)\ +(1/(rho)**4)*n.diff(theta)*(phi.diff(theta))**2 ) display(epsMinusCorrection.simplify()) xi = (Blen/2)*poisson(ue*ue, n).doit() epsMinusNewCorr = epsilonFunc - (Blen/2)*poisson(ue*ue, n).doit() display(epsMinusNewCorr.simplify()) display((ue*ue).doit()) display((zetaFunc - (chiFunc + xi)).simplify()) S = expand(zetaFunc) strS = str(S) # phi rho derivatives strS = strS.replace('Derivative(phi(rho, theta), rho)', 'phi_x') strS = strS.replace('Derivative(phi(rho, theta), rho, rho)', 'phi_xx') strS = strS.replace('Derivative(phi(rho, theta), rho, rho, rho)', 'phi_xxx') # phi theta derivatives strS = strS.replace('Derivative(phi(rho, theta), theta)', 'phi_z') strS = strS.replace('Derivative(phi(rho, theta), theta, theta)', 'phi_zz') strS = strS.replace('Derivative(phi(rho, theta), theta, theta, theta)', 'phi_zzz') # phi mixed derivatives strS = strS.replace('Derivative(phi(rho, theta), rho, theta)', 'phi_xz') strS = strS.replace('Derivative(phi(rho, theta), rho, theta, theta)', 'phi_xzz') strS = strS.replace('Derivative(phi(rho, theta), rho, rho, theta)', 'phi_xxz') # Non-derivatives strS = strS.replace('phi(rho, theta)', 'phi') # n rho derivatives strS = strS.replace('Derivative(n(rho, theta), rho)', 'n_x') strS = strS.replace('Derivative(n(rho, theta), rho, rho)', 'n_xx') # n theta derivatives strS = strS.replace('Derivative(n(rho, theta), theta)', 'n_z') strS = strS.replace('Derivative(n(rho, theta), theta, theta)', 'n_zz') # n mixed derivatives strS = strS.replace('Derivative(n(rho, theta), rho, theta)', 'n_xz') # Non-derivatives strS = strS.replace('n(rho, theta)', 'n') newS = sympify(strS) display(Eq(symbols('S_new'), expand(newS))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Calculation of the $E\times B$ advection Step2: Defining $\mathbf{u}_E$ Step3: NOTE Step4: Calculation of $\mathbf{u}E\cdot\nabla \left(n\nabla\perp\phi\right)$ Step5: Calculation of $\mathbf{a}\cdot\nabla \left(n\nabla_\perp\phi\right)$ Step6: Using covariant vector Step7: Using contravariant vector Step8: Calculation of full $\mathbf{u}E\cdot\nabla \left(n\nabla\perp\phi\right)$ Step9: Calculation of $\nabla\cdot\left(\mathbf{u}E\cdot\nabla\left[n\nabla\perp\phi\right]\right)$ Step10: Comparison with $B{\phi,\Omega^D}$ Step11: We now write $\chi = B{\phi,\Omega^D}$ Step12: The difference $\epsilon$ between $\zeta = \nabla\cdot\left(\mathbf{u}E\cdot\nabla\left[n\nabla\perp\phi\right]\right)$ and $\chi = B{\phi,\Omega^D}$ is given by Step13: In fact we see that Step14: What is more interesting is in fact that Step15: Where Step16: Note that the last term $\frac{1}{\rho^4}(\partial_\theta n)(\partial_\theta\phi)^2$ does not appear to come from the Poisson bracket. This is however the case, and comes from the part which contains Step17: Printing for comparison
15,672
<ASSISTANT_TASK:> Python Code: from nipype import Node, Workflow from nipype.interfaces.fsl import SliceTimer, MCFLIRT, Smooth # Initiate a node to correct for slice wise acquisition slicetimer = Node(SliceTimer(index_dir=False, interleaved=True, time_repetition=2.5), name="slicetimer") # Initiate a node to correct for motion mcflirt = Node(MCFLIRT(mean_vol=True, save_plots=True), name="mcflirt") # Initiate a node to smooth functional images smooth = Node(Smooth(fwhm=4), name="smooth") preproc01 = Workflow(name='preproc01', base_dir='.') preproc01.connect([(slicetimer, mcflirt, [('slice_time_corrected_file', 'in_file')]), (mcflirt, smooth, [('out_file', 'in_file')])]) preproc01.write_graph(graph2use='orig') # Visualize graph from IPython.display import Image Image(filename="preproc01/graph_detailed.png") slicetimer.inputs.in_file = '/data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz' %time preproc01.run('MultiProc', plugin_args={'n_procs': 5}) !tree preproc01 -I '*js|*json|*pklz|_report|*.dot|*html' smooth.inputs.fwhm = 2 %time preproc01.run('MultiProc', plugin_args={'n_procs': 5}) # First, let's copy/clone 'preproc01' preproc02 = preproc01.clone('preproc02') preproc03 = preproc01.clone('preproc03') preproc04 = preproc01.clone('preproc04') preproc05 = preproc01.clone('preproc05') metaflow = Workflow(name='metaflow', base_dir='.') # Now we can add the five preproc workflows to the bigger metaflow metaflow.add_nodes([preproc01, preproc02, preproc03, preproc04, preproc05]) # As before, let's write the graph of the workflow metaflow.write_graph(graph2use='flat') # And visualize the graph from IPython.display import Image Image(filename="metaflow/graph_detailed.png") %time metaflow.run('MultiProc', plugin_args={'n_procs': 5}) !tree metaflow -I '*js|*json|*pklz|_report|*.dot|*html' <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now, we can import the interfaces that we want to use for the preprocessing. Step2: Next, we will put the three interfaces into a node and define the specific input parameters. Step3: After creating the nodes, we can now create the preprocessing workflow. Step4: Now, we can put all the nodes into this preprocessing workflow. We specify the data flow / execution flow of the workflow by connecting the corresponding nodes to each other. Step5: To better understand what we did we can write out the workflow graph and visualize it directly in this notebook. Step6: Run the workflow on one functional image Step7: To show off Nipype's parallelization power, let's run the workflow in parallel, on 5 processors and let's show the execution time Step8: Conclusion Step9: Rerunning of a workflow Step10: And let's run the workflow again. Step11: Conclusion Step12: We now have five different preprocessing workflows. If we want to run them in parallel, we can put them all in another workflow. Step13: Note Step14: Ah... so now we can see that the metaflow has potential for parallelization. So let's put it to test Step15: This time we can see that Nipype uses all available processors.
15,673
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.pipeline import Pipeline from sklearn.model_selection import train_test_split from sklearn.ensemble import VotingClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import SGDClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import LabelEncoder from keras.utils import np_utils from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D from keras.layers import Activation, Dropout, Flatten, Dense from keras.layers import ZeroPadding2D from keras.layers import Convolution2D import h5py from keras import applications from keras.utils.np_utils import to_categorical from keras.models import Model import urllib import os import math df_train = pd.read_excel('Training_Data_Assessment.xlsx') df_test = pd.read_excel('Data To Classify_Assessment.xlsx') categories = pd.read_excel('Categories_Assessment.xlsx',header=None,names=['CategoryName']) df_train.head() df_train.describe() df_test.head() df_test.describe() categories.head() unique_categories = categories['CategoryName'] df_train.drop_duplicates('ASIN',inplace=True) x_df_train, x_df_test, y_df_train, y_df_test = train_test_split(df_train[['Title','ImageUrl']],df_train[['CategoryName']], train_size=.8, stratify=df_train['CategoryName'],random_state=30) current_path = os.getcwd() train_path = os.path.join(current_path,'train') validation_path = os.path.join(current_path,'validation') test_path = os.path.join(current_path,'test') def image_download(x_df,y_df,unique_categories,path,category_column='CategoryName',imageurl_column='ImageUrl'): for i in x_df.index: for j in unique_categories: if y_df[category_column][i] == j: class_path = os.path.join(path,j) if not os.path.exists(class_path): os.makedirs(class_path) filename = '%s.jpg'%i fullfilename = os.path.join(class_path,filename) if not os.path.exists(fullfilename): try: urllib.request.urlretrieve(x_df[imageurl_column][i],fullfilename) except: print('Did not download:') print(i) print(x_df[imageurl_column][i]) pass return image_download(x_df=x_df_train,y_df=y_df_train,unique_categories=unique_categories,path=train_path) image_download(x_df=x_df_test,y_df=y_df_test,unique_categories=unique_categories,path=validation_path) for i in df_test.index: class_path = os.path.join(test_path,'New folder') if not os.path.exists(class_path): os.makedirs(class_path) filename = '%s.jpg'%i fullfilename = os.path.join(class_path,filename) if not os.path.exists(fullfilename): try: urllib.request.urlretrieve(df_test['ImageUrl'][i],fullfilename) except: print('Did not download:') print(i) print(df_test['ImageUrl'][i]) pass text_clf_multinomial_nb = Pipeline([('vect', CountVectorizer(stop_words='english',lowercase=True)),('tfidf', TfidfTransformer()),('clf', MultinomialNB())]) text_clf_multinomial_nb.fit(x_df_train['Title'], y_df_train['CategoryName']) text_clf_multinomial_nb.score(x_df_test['Title'],y_df_test['CategoryName']) text_clf_sgd = Pipeline([('vect', CountVectorizer(stop_words='english',lowercase=True)),('tfidf', TfidfTransformer()),('clf', SGDClassifier())]) text_clf_sgd.fit(x_df_train['Title'], y_df_train['CategoryName']) text_clf_sgd.score(x_df_test['Title'],y_df_test['CategoryName']) text_clf_rf = Pipeline([('vect', CountVectorizer(stop_words='english',lowercase=True)),('tfidf', TfidfTransformer()),('clf', RandomForestClassifier())]) text_clf_rf.fit(x_df_train['Title'], y_df_train['CategoryName']) text_clf_rf.score(x_df_test['Title'],y_df_test['CategoryName']) text_clf_logis = Pipeline([('vect', CountVectorizer(stop_words='english',lowercase=True)),('tfidf', TfidfTransformer()),('clf', LogisticRegression())]) text_clf_logis.fit(x_df_train['Title'], y_df_train['CategoryName']) text_clf_logis.score(x_df_test['Title'],y_df_test['CategoryName']) # dimensions of our images. img_width, img_height = 150, 150 top_model_weights_path = 'bottleneck_fc_model1.h5' train_data_dir = 'train' validation_data_dir = 'validation' epochs = 50 batch_size = 32 datagen = ImageDataGenerator(rescale=1. / 255) model = applications.VGG16(include_top=False, weights='imagenet') #train generator train_generator = datagen.flow_from_directory( train_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode= 'categorical', shuffle=False) #train variables nb_train_samples = len(train_generator.filenames) num_classes = len(train_generator.class_indices) predict_size_train = int(math.ceil(nb_train_samples / batch_size)) #creaing training feature set bottleneck_features_train = model.predict_generator( train_generator, predict_size_train) np.save('bottleneck_features_train',bottleneck_features_train) #train labels train_labels = train_generator.classes train_labels = to_categorical(train_labels,63) #validation generator generator = datagen.flow_from_directory( validation_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode= 'categorical', shuffle=False) #test variables nb_validation_samples = len(generator.filenames) predict_size_validation = int(math.ceil(nb_validation_samples / batch_size)) #creaing validation feature set bottleneck_features_validation = model.predict_generator( generator, predict_size_validation) np.save('bottleneck_features_validation',bottleneck_features_validation) #test labels validation_labels = generator.classes validation_labels = to_categorical(validation_labels,63) #loading training and validation feature set generated above train_data = np.load('bottleneck_features_train.npy') validation_data = np.load('bottleneck_features_validation.npy') from keras import optimizers rmsprop = optimizers.RMSprop(lr=0.001) top_model = Sequential() top_model.add(Flatten(input_shape=train_data.shape[1:])) top_model.add(Dense(256, activation='relu')) top_model.add(Dropout(0.6)) top_model.add(Dense(63, activation='softmax')) top_model.compile(optimizer=rmsprop,loss='categorical_crossentropy', metrics=['accuracy']) top_model.fit(train_data, train_labels, epochs=30, batch_size=batch_size, validation_data=(validation_data, validation_labels)) top_model.save_weights(top_model_weights_path) model_vgg = applications.VGG16(weights='imagenet', include_top=False, input_shape=(150, 150, 3)) top_model = Sequential() top_model.add(Flatten(input_shape=model_vgg.output_shape[1:])) top_model.add(Dense(256, activation='relu')) top_model.add(Dropout(0.6)) top_model.add(Dense(63, activation='softmax')) top_model.load_weights('bottleneck_fc_model1.h5') model = Model(inputs = model_vgg.input, outputs = top_model(model_vgg.output)) df_test.reset_index(inplace=True) filename=[] vgg16_predictions=[] final_data_dir='test' test_datagen = ImageDataGenerator(rescale=1./255) test_generator = test_datagen.flow_from_directory( final_data_dir, target_size=(img_width, img_height), class_mode=None, batch_size=1) filenames = test_generator.filenames nb_samples = len(filenames) predict = model.predict_generator(test_generator,steps = nb_samples) for f in filenames: filename.append(f) for r in predict: vgg16_predictions.append(np.argmax(r)) ir_res = pd.DataFrame( {'filename': [f[11:-4] for f in filename], 'category': vgg16_predictions, }) ir_res.to_csv('ir_res.csv') len(ir_res) x=pd.read_csv('ir_res.csv') index=train_generator.class_indices y=list(x['category']) categories_p=[] for i in y: for j in index: if i == index[j]: categories_p.append(j) df_test.set_index('ASIN',inplace=True) a=text_clf_multinomial_nb.predict(df_test['Title']) b=text_clf_sgd.predict(df_test['Title']) c=text_clf_rf.predict(df_test['Title']) d=text_clf_logis.predict(df_test['Title']) ir_res_new = pd.DataFrame( {'ASIN': x['filename'], 'CNN Category': categories_p, }) ir_res_new.set_index('ASIN',inplace=True) predictions = df_test.join(ir_res_new) predictions.drop(['Title','ImageUrl','BrandName'],1, inplace=True) predictions['Multinomial NB Category'] = a predictions['SVC Category'] = b predictions['RF Category'] = c predictions['LogisticR Category'] = d final_pred =[] for i in range(len(df_test)): lst = [a[i],b[i],c[i],d[i],predictions['CNN Category'][i]] final_pred.append(max(set(lst), key=lst.count)) df_test['Category'] = final_pred df_test.to_csv('final_prediction.csv') predictions.to_csv('predictions_allClassifiers.csv') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Exploratory Data Analysis Step2: Observations Step3: Training and Validation Split Step4: Image Downloading Step5: Function to download test and validation images Step6: Download Training Images Step7: Download Validation Images Step8: Download Test Images Step9: Text Classification Steps in pipeline Step10: SGD Classifier Step11: Random Forest Classifier Step12: Logistic Regression Classifier Step13: Note Step14: Building VGG16 network Step15: Running VGG16 is expensive, as working on CPU. I want to only do it only once. This prevents me from using data augmentation which can improve my model by preventing overfitting. Step16: Generating Validation Feature Set Step17: Loading Training and Validation feature set Step18: Training top classifier model Step19: Making Final Image Recognition Model Step20: Predict Category based on Test Images Step21: Make image classification results into a data frame Step22: Final Product Classification Step23: Collecting all predictions from all classifiers Step24: Take Average of all 5 classifiers
15,674
<ASSISTANT_TASK:> Python Code: %matplotlib inline # All the imports from __future__ import print_function, division from math import * import random import sys import matplotlib.pyplot as plt # TODO 1: Enter your unity ID here __author__ = "tchhabr" class O: Basic Class which - Helps dynamic updates - Pretty Prints def __init__(self, **kwargs): self.has().update(**kwargs) def has(self): return self.__dict__ def update(self, **kwargs): self.has().update(kwargs) return self def __repr__(self): show = [':%s %s' % (k, self.has()[k]) for k in sorted(self.has().keys()) if k[0] is not "_"] txt = ' '.join(show) if len(txt) > 60: show = map(lambda x: '\t' + x + '\n', show) return '{' + ' '.join(show) + '}' print("Unity ID: ", __author__) # Few Utility functions def say(*lst): Print whithout going to new line print(*lst, end="") sys.stdout.flush() def random_value(low, high, decimals=2): Generate a random number between low and high. decimals incidicate number of decimal places return round(random.uniform(low, high),decimals) def gt(a, b): return a > b def lt(a, b): return a < b def shuffle(lst): Shuffle a list random.shuffle(lst) return lst class Decision(O): Class indicating Decision of a problem def __init__(self, name, low, high): @param name: Name of the decision @param low: minimum value @param high: maximum value O.__init__(self, name=name, low=low, high=high) class Objective(O): Class indicating Objective of a problem def __init__(self, name, do_minimize=True): @param name: Name of the objective @param do_minimize: Flag indicating if objective has to be minimized or maximized O.__init__(self, name=name, do_minimize=do_minimize) class Point(O): Represents a member of the population def __init__(self, decisions): O.__init__(self) self.decisions = decisions self.objectives = None def __hash__(self): return hash(tuple(self.decisions)) def __eq__(self, other): return self.decisions == other.decisions def clone(self): new = Point(self.decisions) new.objectives = self.objectives return new class Problem(O): Class representing the cone problem. def __init__(self): O.__init__(self) # TODO 2: Code up decisions and objectives below for the problem # using the auxilary classes provided above. self.decisions = None self.objectives = None radius = Decision('radius', 0, 10) height = Decision('height', 0, 20) self.decisions = [radius, height] s = Objective('surface') t = Objective('total area') self.objectives = [s,t] @staticmethod def evaluate(point): [r, h] = point.decisions point.objectives = None # TODO 3: Evaluate the objectives S and T for the point. l = (r**2 + h**2)**0.5 S = pi * r * l T = S + pi * r**2 point.objectives = [S, T] return point.objectives @staticmethod def is_valid(point): [r, h] = point.decisions # TODO 4: Check if the point has valid decisions V = pi*(r**2)*h/3 return V > 200 def generate_one(self): # TODO 5: Generate a valid instance of Point. while True: point = Point([random_value(d.low, d.high) for d in self.decisions]) if Problem.is_valid(point): return point cone = Problem() point = cone.generate_one() cone.evaluate(point) print(point) def populate(problem, size): population = [] # TODO 6: Create a list of points of length 'size' return [problem.generate_one() for _ in xrange(size)] print (populate(cone,5)) def crossover(mom, dad): # TODO 7: Create a new point which contains decisions from # the first half of mom and second half of dad n = len(mom.decisions) return Point(mom.decisions[:n//2] + dad.decisions[n//2:]) pop = populate(cone,5) crossover(pop[0], pop[1]) def mutate(problem, point, mutation_rate=0.01): # TODO 8: Iterate through all the decisions in the problem # and if the probability is less than mutation rate # change the decision(randomly set it between its max and min). for i, d in enumerate(problem.decisions): if random.random() < mutation_rate: point.decisions[i] = random_value(d.low, d.high) return point print (mutate(cone,point,0.1)) obs = populate(cone,5) print (obs) def bdom(problem, one, two): Return if one dominates two objs_one = problem.evaluate(one) objs_two = problem.evaluate(two) if (one == two): return False dominates = False # TODO 9: Return True/False based on the definition # of bdom above. first = True second = False for i,_ in enumerate(problem.objectives): if ((first is True) & gt(one.objectives[i], two.objectives[i])): first = False elif (not second & (one.objectives[i] is not two.objectives[i])): second = True dominates = first & second return dominates print (bdom(cone,obs[4],obs[4])) def fitness(problem, population, point): dominates = 0 # TODO 10: Evaluate fitness of a point. # For this workshop define fitness of a point # as the number of points dominated by it. # For example point dominates 5 members of population, # then fitness of point is 5. for pop in population: if bdom(problem, point, pop): dominates += 1 return dominates def elitism(problem, population, retain_size): # TODO 11: Sort the population with respect to the fitness # of the points and return the top 'retain_size' points of the population fit_pop = [fitness(cone,population,pop) for pop in population] population = [pop for _,pop in sorted(zip(fit_pop,population), reverse = True)] return population[:retain_size] def ga(pop_size = 100, gens = 250): problem = Problem() population = populate(problem, pop_size) [problem.evaluate(point) for point in population] initial_population = [point.clone() for point in population] gen = 0 while gen < gens: say(".") children = [] for _ in range(pop_size): mom = random.choice(population) dad = random.choice(population) while (mom == dad): dad = random.choice(population) child = mutate(problem, crossover(mom, dad)) if problem.is_valid(child) and child not in population+children: children.append(child) population += children population = elitism(problem, population, pop_size) gen += 1 print("") return initial_population, population def plot_pareto(initial, final): initial_objs = [point.objectives for point in initial] final_objs = [point.objectives for point in final] initial_x = [i[0] for i in initial_objs] initial_y = [i[1] for i in initial_objs] final_x = [i[0] for i in final_objs] final_y = [i[1] for i in final_objs] plt.scatter(initial_x, initial_y, color='b', marker='+', label='initial') plt.scatter(final_x, final_y, color='r', marker='o', label='final') plt.title("Scatter Plot between initial and final population of GA") plt.ylabel("Total Surface Area(T)") plt.xlabel("Curved Surface Area(S)") plt.legend(loc=9, bbox_to_anchor=(0.5, -0.175), ncol=2) plt.show() initial, final = ga() plot_pareto(initial, final) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Genetic Algorithm Workshop Step11: The optimization problem Step12: Great. Now that the class and its basic methods is defined, we move on to code up the GA. Step13: Crossover Step14: Mutation Step16: Fitness Evaluation Step17: Fitness and Elitism Step18: Putting it all together and making the GA Step19: Visualize
15,675
<ASSISTANT_TASK:> Python Code: # Configure Jupyter so figures appear in the notebook %matplotlib inline # Configure Jupyter to display the assigned value after an assignment %config InteractiveShell.ast_node_interactivity='last_expr_or_assign' # import classes from thinkbayes2 from thinkbayes2 import Pmf, Suite import pandas as pd import numpy as np import thinkplot class BayesTable(pd.DataFrame): def __init__(self, hypo, prior=1, **options): columns = ['prior', 'likelihood', 'unnorm', 'posterior'] super().__init__(index=hypo, columns=columns, **options) self.prior = prior def mult(self): self.unnorm = self.prior * self.likelihood def norm(self): nc = np.sum(self.unnorm) self.posterior = self.unnorm / nc return nc def update(self): self.mult() return self.norm() def reset(self): return BayesTable(self.hypo, self.posterior) base_rate = 2.65 / 1000 hypo = ['cancer', 'no cancer'] prior = [base_rate, 1-base_rate] table = BayesTable(hypo, prior) sensitivity = 0.734 specificity = 0.877 table.likelihood = [sensitivity, 1-specificity] table likelihood_ratio = table.likelihood['cancer'] / table.likelihood['no cancer'] table.update() table table.posterior['cancer'] * 100 def compute_ppv(base_rate, sensitivity, specificity): pmf = Pmf() pmf['cancer'] = base_rate * sensitivity pmf['no cancer'] = (1 - base_rate) * (1 - specificity) pmf.Normalize() return pmf pmf = compute_ppv(base_rate, sensitivity, specificity) ages = [40, 50, 60, 70, 80] rates = pd.Series([2.65, 4.28, 5.70, 6.76, 8.51], index=ages) for age, rate in rates.items(): pmf = compute_ppv(rate, sensitivity, specificity) print(age, pmf['cancer']) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Interpreting medical tests Step2: Assumptions and interpretation Step3: So there is a 1.56% chance that this patient has cancer, given that the initial screening mammogram was positive.
15,676
<ASSISTANT_TASK:> Python Code: import json my_tweets = json.load(open('my_tweets.json')) for id_, tweet_info in my_tweets.items(): print(id_, tweet_info) break def run_vader(nlp, textual_unit, lemmatize=False, parts_of_speech_to_consider=set(), verbose=0): Run VADER on a sentence from spacy :param str textual unit: a textual unit, e.g., sentence, sentences (one string) (by looping over doc.sents) :param bool lemmatize: If True, provide lemmas to VADER instead of words :param set parts_of_speech_to_consider: -empty set -> all parts of speech are provided -non-empty set: only these parts of speech are considered :param int verbose: if set to 1, information is printed about input and output :rtype: dict :return: vader output dict doc = nlp(textual_unit) input_to_vader = [] for sent in doc.sents: for token in sent: if verbose >= 2: print(token, token.pos_) to_add = token.text if lemmatize: to_add = token.lemma_ if to_add == '-PRON-': to_add = token.text if parts_of_speech_to_consider: if token.pos_ in parts_of_speech_to_consider: input_to_vader.append(to_add) else: input_to_vader.append(to_add) scores = vader_model.polarity_scores(' '.join(input_to_vader)) if verbose >= 1: print() print('INPUT SENTENCE', sent) print('INPUT TO VADER', input_to_vader) print('VADER OUTPUT', scores) return scores def vader_output_to_label(vader_output): map vader output e.g., {'neg': 0.0, 'neu': 0.0, 'pos': 1.0, 'compound': 0.4215} to one of the following values: a) positive float -> 'positive' b) 0.0 -> 'neutral' c) negative float -> 'negative' :param dict vader_output: output dict from vader :rtype: str :return: 'negative' | 'neutral' | 'positive' compound = vader_output['compound'] if compound < 0: return 'negative' elif compound == 0.0: return 'neutral' elif compound > 0.0: return 'positive' assert vader_output_to_label( {'neg': 0.0, 'neu': 0.0, 'pos': 1.0, 'compound': 0.0}) == 'neutral' assert vader_output_to_label( {'neg': 0.0, 'neu': 0.0, 'pos': 1.0, 'compound': 0.01}) == 'positive' assert vader_output_to_label( {'neg': 0.0, 'neu': 0.0, 'pos': 1.0, 'compound': -0.01}) == 'negative' import spacy ! python -m spacy download en_core_web_sm nlp = spacy.load('en_core_web_sm') from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer vader_model = SentimentIntensityAnalyzer() my_annotation = 'positive' # what you annotate yourself sentence = "I like Python" vader_output = run_vader(nlp, sentence) vader_label = vader_output_to_label(vader_output) accurate = my_annotation == vader_label print() print('SENTENCE', sentence) # the sentence print('VADER OUTPUT', vader_output) # the VADER output print('VADER LABEL', vader_label) # the VADER output mapped to a label, in this case 'positive' print('MY ANNOTATION', my_annotation) # my annotation print('ACCURACY', accurate) # did VADER predict the same label as my manual annotation? import json my_tweets = json.load(open('my_tweets.json')) tweets = [] all_vader_output = [] manual_annotation = [] for id_, tweet_info in my_tweets.items(): the_tweet = tweet_info['text_of_tweet'] vader_output = ''# run vader vader_label = ''# convert vader output to category tweets.append(the_tweet) all_vader_output.append(vader_label) manual_annotation.append(tweet_info['sentiment_label']) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step3: Exercise 3 Step4: Exercise 3a
15,677
<ASSISTANT_TASK:> Python Code: import numpy as np from scipy import linalg import mne from mne.datasets import sample from mne.viz import plot_sparse_source_estimates data_path = sample.data_path() fwd_fname = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif' ave_fname = data_path + '/MEG/sample/sample_audvis-ave.fif' cov_fname = data_path + '/MEG/sample/sample_audvis-shrunk-cov.fif' subjects_dir = data_path + '/subjects' condition = 'Left Auditory' # Read noise covariance matrix noise_cov = mne.read_cov(cov_fname) # Handling average file evoked = mne.read_evokeds(ave_fname, condition=condition, baseline=(None, 0)) evoked.crop(tmin=0.04, tmax=0.18) evoked = evoked.pick_types(eeg=False, meg=True) # Handling forward solution forward = mne.read_forward_solution(fwd_fname) def apply_solver(solver, evoked, forward, noise_cov, loose=0.2, depth=0.8): Call a custom solver on evoked data. This function does all the necessary computation: - to select the channels in the forward given the available ones in the data - to take into account the noise covariance and do the spatial whitening - to apply loose orientation constraint as MNE solvers - to apply a weigthing of the columns of the forward operator as in the weighted Minimum Norm formulation in order to limit the problem of depth bias. Parameters ---------- solver : callable The solver takes 3 parameters: data M, gain matrix G, number of dipoles orientations per location (1 or 3). A solver shall return 2 variables: X which contains the time series of the active dipoles and an active set which is a boolean mask to specify what dipoles are present in X. evoked : instance of mne.Evoked The evoked data forward : instance of Forward The forward solution. noise_cov : instance of Covariance The noise covariance. loose : float in [0, 1] | 'auto' Value that weights the source variances of the dipole components that are parallel (tangential) to the cortical surface. If loose is 0 then the solution is computed with fixed orientation. If loose is 1, it corresponds to free orientations. The default value ('auto') is set to 0.2 for surface-oriented source space and set to 1.0 for volumic or discrete source space. depth : None | float in [0, 1] Depth weighting coefficients. If None, no depth weighting is performed. Returns ------- stc : instance of SourceEstimate The source estimates. # Import the necessary private functions from mne.inverse_sparse.mxne_inverse import \ (_prepare_gain, _check_loose_forward, is_fixed_orient, _reapply_source_weighting, _make_sparse_stc) all_ch_names = evoked.ch_names loose, forward = _check_loose_forward(loose, forward) # Handle depth weighting and whitening (here is no weights) gain, gain_info, whitener, source_weighting, mask = _prepare_gain( forward, evoked.info, noise_cov, pca=False, depth=depth, loose=loose, weights=None, weights_min=None) # Select channels of interest sel = [all_ch_names.index(name) for name in gain_info['ch_names']] M = evoked.data[sel] # Whiten data M = np.dot(whitener, M) n_orient = 1 if is_fixed_orient(forward) else 3 X, active_set = solver(M, gain, n_orient) X = _reapply_source_weighting(X, source_weighting, active_set) stc = _make_sparse_stc(X, active_set, forward, tmin=evoked.times[0], tstep=1. / evoked.info['sfreq']) return stc def solver(M, G, n_orient): Run L2 penalized regression and keep 10 strongest locations. Parameters ---------- M : array, shape (n_channels, n_times) The whitened data. G : array, shape (n_channels, n_dipoles) The gain matrix a.k.a. the forward operator. The number of locations is n_dipoles / n_orient. n_orient will be 1 for a fixed orientation constraint or 3 when using a free orientation model. n_orient : int Can be 1 or 3 depending if one works with fixed or free orientations. If n_orient is 3, then ``G[:, 2::3]`` corresponds to the dipoles that are normal to the cortex. Returns ------- X : array, (n_active_dipoles, n_times) The time series of the dipoles in the active set. active_set : array (n_dipoles) Array of bool. Entry j is True if dipole j is in the active set. We have ``X_full[active_set] == X`` where X_full is the full X matrix such that ``M = G X_full``. K = linalg.solve(np.dot(G, G.T) + 1e15 * np.eye(G.shape[0]), G).T K /= np.linalg.norm(K, axis=1)[:, None] X = np.dot(K, M) indices = np.argsort(np.sum(X ** 2, axis=1))[-10:] active_set = np.zeros(G.shape[1], dtype=bool) for idx in indices: idx -= idx % n_orient active_set[idx:idx + n_orient] = True X = X[active_set] return X, active_set # loose, depth = 0.2, 0.8 # corresponds to loose orientation loose, depth = 1., 0. # corresponds to free orientation stc = apply_solver(solver, evoked, forward, noise_cov, loose, depth) plot_sparse_source_estimates(forward['src'], stc, bgcolor=(1, 1, 1), opacity=0.1) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Auxiliary function to run the solver Step4: Define your solver Step5: Apply your custom solver Step6: View in 2D and 3D ("glass" brain like 3D plot)
15,678
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline def LSCE(x, y): beta_1 = np.sum((x - np.mean(x))*(y-np.mean(y))) / np.sum((x-np.mean(x))*(x-np.mean(x))) beta_0 = np.mean(y) - beta_1 * np.mean(x) return beta_0, beta_1 advertising = pd.read_csv('Advertising.csv',index_col=0) tv = advertising['TV'] sales = advertising['Sales'] beta_0, beta_1 = LSCE(tv,sales) x = np.linspace(-10,310,1000) y = beta_1 * x + beta_0 plt.scatter(tv, sales, marker='+') plt.plot(x, y,c='k') plt.xlim(-10,310) plt.show() beta_1 = 3 beta_0 = 2 random = np.random.normal(size=100, loc=0, scale=1) X = np.linspace(-2,2,500) X = np.random.choice(X, size=100, replace=False) Y = X*beta_1+beta_0 +random y_true = X*beta_1+beta_0 beta_0_, beta_1_ = LSCE(X, Y) y_predict = X *beta_1_ + beta_0_ plt.scatter(X,Y) plt.plot(X,y_true, c='g') plt.plot(X, y_predict, c='r') plt.show() # calculate the parameter from numpy.linalg import inv X = advertising[['TV','Radio','Newspaper']].values Y = advertising['Sales'].values X = np.hstack((X, np.full((len(Y),1), 1.0))) beta = inv(X.T.dot(X)).dot(X.T).dot(Y) print ('the parameters are: ',beta[0], beta[1], beta[2], beta[-1]) # calculate the correlation # X = advertising[['TV', 'Radio','Newspaper','Sales']].values # X_mean = np.mean(X,axis=0) # X -= X_mean # numerator =X.T.dot(X) # XX = X*X # XX = np.sum(XX, axis=0) # denumorator = np.sqrt((XX.T.dot(XX))) # numerator/denumorator advertising.corr() auto = pd.read_table('Auto',sep='\s+') rows=np.sum(auto.values=='?',axis=1) delete_rows = [] for idx,_ in enumerate(rows): if _!=0: delete_rows.append(idx) auto=auto.drop(auto.index[delete_rows]) data = auto[['mpg','horsepower']] horsepower= data['horsepower'].values.astype('float') data['horsepower_2'] = horsepower * horsepower data['beta_0'] = np.full(horsepower.shape,1.0) # plot the scatter plt.scatter(horsepower, auto['mpg']) # calcault linear X = data[['horsepower','beta_0']].values.astype('float') y = data['mpg'].values.astype('float').reshape(X.shape[0],1) beta_linear =inv(X.T.dot(X)).dot(X.T).dot(y) X = data[['horsepower','horsepower_2','beta_0']].values.astype('float') beta_linear2 = inv(X.T.dot(X)).dot(X.T).dot(y) x = np.linspace(40,230, 500) y_linear = x*beta_linear[0] + beta_linear[1] y_linear2 = x*beta_linear2[0] + x*x*beta_linear2[1] +beta_linear2[2] plt.plot(x, y_linear, c='b') plt.plot(x, y_linear2, c='g') plt.show() horsepower = data['horsepower'].values.astype('float') mpg = data['mpg'].values.astype('float') residual_linear = mpg - (horsepower*beta_linear[0]+beta_linear[1]) plt.scatter(mpg, residual_linear) plt.show() residual_quadratic = mpg - (horsepower*beta_linear2[0]+horsepower*horsepower*beta_linear2[1]+beta_linear2[-1]) plt.scatter(mpg, residual_quadratic) plt.show() import pandas as pd import numpy as np import matplotlib.pyplot as plt from numpy.linalg import inv auto = pd.read_table('Auto',sep='\s+') rows=np.sum(auto.values=='?',axis=1) delete_rows = [] for idx,_ in enumerate(rows): if _!=0: delete_rows.append(idx) auto=auto.drop(auto.index[delete_rows]) horsepower= auto['horsepower'].values.astype('float') auto['ones'] = np.full(horsepower.shape, 1.0) X = auto[['horsepower','ones']].values.astype('float') y = auto['mpg'].values.astype('float').reshape(X.shape[0],1) beta_linear =inv(X.T.dot(X)).dot(X.T).dot(y) print('β0 :',beta_linear[-1][0]) print('β1 :', beta_linear[0][0]) sample_num = len(y) residual = np.power(X.dot(beta_linear)-y,2).sum() sigma = np.sqrt(residual/(sample_num-2)) horsepower_98 = np.array([[98.0,1.0]]) mpg_98 = horsepower_98.dot(beta_linear)[0,0] mpg_98_uppper_bound = mpg_98+2*sigma mpg_98_lower_bound = mpg_98-2*sigma print('predict value is %f when horsepower is 98'%mpg_98) print('The range is [%f,%f]' %(mpg_98_lower_bound,mpg_98_uppper_bound)) mpg = auto['mpg'].values.astype('float') plt.scatter(horsepower, mpg) plt.show() auto_cor=auto[['mpg','displacement','horsepower','weight','acceleration']] auto_cor.corr() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The difference between the population regression line adn the least squres lien many seem quite confusing. The answer is using a sample to estimate the characteristics of a large population. Step2: 2.1 Import Question Step3: 3.6 Potential Probelms Step4: 3.6.2 Correlation of Error Terms
15,679
<ASSISTANT_TASK:> Python Code: import math def isPower(x , y ) : res1 = math . log(y ) // math . log(x ) res2 = math . log(y ) // math . log(x ) return(res1 == res2 )  def check(n ) : x =(n + 7 ) // 8 if(( n + 7 ) % 8 == 0 and isPower(10 , x ) ) : return True  else : return False   n = 73 if(check(n ) != 0 ) : print("Yes ")  else : print("No ")  <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
15,680
<ASSISTANT_TASK:> Python Code: # make our x array x = np.linspace(-4, 4, 801) # f(x) = x^2 def f(x): return x**2 # derivative of x^2 is 2x def f_prime(x): return 2*x # take a look at the curve plt.plot(x, f(x), c='black') sns.despine(); # starting position on the curve x_start = -4.0 # looking at the values of the derivative, for each value of x. # we see the greatest change at the tops of the curve, namely 4 and -4 plt.plot(x, f_prime(x), c='black'); # learning rate alpha = 0.2 # let's take our first step! step1 = alpha*f_prime(x_start) # our new value of x is just the previous value, minus the step next_x = x_start - step1 # take a look at the step we took, with respect to the curve plt.plot(x, f(x), c='black') plt.scatter([x_start, next_x], [f(x_start), f(next_x)], c='red') plt.plot([x_start, next_x], [f(x_start), f(next_x)], c='red') plt.xlim((-4, 4)) plt.ylim((0, 16)) sns.despine(); another_x = next_x - alpha*f_prime(next_x) # take a look at the combination of the two steps we've taken plt.plot(x, f(x), c='black') plt.plot([x_start, next_x], [f(x_start), f(next_x)], c='red') plt.scatter([x_start, next_x], [f(x_start), f(next_x)], c='red') plt.plot([x_start, next_x, another_x], [f(x_start), f(next_x), f(another_x)], c='red') plt.scatter([x_start, next_x, another_x], [f(x_start), f(next_x), f(another_x)], c='red') plt.xlim((-4, 4)) plt.ylim((0, 16)) sns.despine(); # how many steps we're going to take in our Descent num_steps = 101 # hold our steps, including our initial starting position x_steps = [x_start] # do num_steps iterations for i in xrange(num_steps): prev_x = x_steps[i] new_x = prev_x - alpha*f_prime(prev_x) x_steps.append(new_x) # plot the gradient descent as we go down the curve plt.plot(x, f(x), c='black') plt.plot(x_steps, [f(xi) for xi in x_steps], c='red') plt.scatter(x_steps, [f(xi) for xi in x_steps], c='red') plt.xlim((-4, 4)) plt.ylim((0, 16)) sns.despine(); # check the size of the derivative when we finished the iteration print 'gradient at the end of our interations:', x_steps[-1] # it's zero, for all intensive purposes print 'Is the derivative effectively equal to zero at the bottom?', np.isclose(x_steps[-1], 0.0) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's assume we start at the top of the curve, at x = -4, and want to get down to x=0. Step2: In this algorithm, alpha is known as the "learning rate", and all it does is keep us from taking steps that are too aggressive, where we could shoot past the minimum. Step3: Here we can see that we took a pretty big step towards the minimum, just as we'd like. Step4: At this point, we've taken two steps in our Gradient Descent, and we've gone from x=-4 all the way to x=-1.44. Every additional step we take is going to give us smaller and smaller returns, so instead of writing out each additional step, let's do this programatically.
15,681
<ASSISTANT_TASK:> Python Code: import numpy as np import seaborn as sns import pandas as pd from matplotlib import pyplot as plt, animation %matplotlib notebook #%matplotlib inline sns.set_context("paper") # interactive imports import plotly import cufflinks as cf cf.go_offline(connected=True) plotly.offline.init_notebook_mode(connected=True) class RandomVar: def __init__(self, probs): self.values = np.arange(len(probs)) self.probs = probs def pick(self, n=1): return np.random.choice(self.values, p=self.probs) coin = RandomVar([0.5, 0.5]) coin.pick() biased_coin = RandomVar([0.1, 0.9]) biased_coin.pick() die = RandomVar([1/6]*6) die.pick() # information content for a target probability def info_content(p_x): return -np.log2(p_x) # entropy of a random variable probability distribution def entropy(p_x): return -sum(p_x*np.log2(p_x)) entropy([1/8]*8) # log function x = np.linspace(0.00001, 2, 100) plt.plot(x, np.log(x), label='Log') plt.legend() plt.show() #log of product equals sum of logs n = 10 #a = np.random.random_sample(n) #b = np.random.random_sample(n) plt.plot(a, label='a') plt.plot(b, label='b') plt.plot(np.log(a), label='log(a)') plt.plot(np.log(b), label='log(b)') #plt.plot(np.log(a)+np.log(b), label='log(a)+log(b)') plt.plot(np.log(a*b), label='log(a+b)') plt.legend() plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Information Theory Step2: Maximum entropy for a discrete random variable is obtained with a uniform distribution. For a continuous random variable we have an equivalent increase in entropy for an increase in the variance.
15,682
<ASSISTANT_TASK:> Python Code: from pseudo_spectral_projection import gauss_quads gauss_nodes = [nodes for nodes, _ in gauss_quads] from monte_carlo_integration import sobol_samples sobol_nodes = [sobol_samples[:, :nodes.shape[1]] for nodes in gauss_nodes] from matplotlib import pyplot pyplot.rc("figure", figsize=[12, 4]) pyplot.subplot(121) pyplot.scatter(*gauss_nodes[4]) pyplot.title("Gauss quadrature nodes") pyplot.subplot(122) pyplot.scatter(*sobol_nodes[4]) pyplot.title("Sobol nodes") pyplot.show() import numpy from problem_formulation import model_solver gauss_evals = [ numpy.array([model_solver(node) for node in nodes.T]) for nodes in gauss_nodes ] sobol_evals = [ numpy.array([model_solver(node) for node in nodes.T]) for nodes in sobol_nodes ] from problem_formulation import coordinates pyplot.subplot(121) pyplot.plot(coordinates, gauss_evals[4].T, alpha=0.3) pyplot.title("Gauss evaluations") pyplot.subplot(122) pyplot.plot(coordinates, sobol_evals[4].T, alpha=0.3) pyplot.title("Sobol evaluations") pyplot.show() import chaospy from problem_formulation import joint expansions = [chaospy.generate_expansion(order, joint) for order in range(1, 10)] expansions[0].round(10) gauss_model_approx = [ chaospy.fit_regression(expansion, samples, evals) for expansion, samples, evals in zip(expansions, gauss_nodes, gauss_evals) ] sobol_model_approx = [ chaospy.fit_regression(expansion, samples, evals) for expansion, samples, evals in zip(expansions, sobol_nodes, sobol_evals) ] pyplot.subplot(121) model_approx = gauss_model_approx[4] evals = model_approx(*gauss_nodes[1]) pyplot.plot(coordinates, evals, alpha=0.3) pyplot.title("Gaussian approximation") pyplot.subplot(122) model_approx = sobol_model_approx[1] evals = model_approx(*sobol_nodes[1]) pyplot.plot(coordinates, evals, alpha=0.3) pyplot.title("Sobol approximation") pyplot.show() expected = chaospy.E(gauss_model_approx[-2], joint) std = chaospy.Std(gauss_model_approx[-2], joint) expected[:4].round(4), std[:4].round(4) pyplot.rc("figure", figsize=[6, 4]) pyplot.xlabel("coordinates") pyplot.ylabel("model approximation") pyplot.fill_between( coordinates, expected-2*std, expected+2*std, alpha=0.3) pyplot.plot(coordinates, expected) pyplot.show() from problem_formulation import error_in_mean, error_in_variance error_in_mean(expected), error_in_variance(std**2) sizes = [nodes.shape[1] for nodes in gauss_nodes] eps_gauss_mean = [ error_in_mean(chaospy.E(model, joint)) for model in gauss_model_approx ] eps_gauss_var = [ error_in_variance(chaospy.Var(model, joint)) for model in gauss_model_approx ] eps_sobol_mean = [ error_in_mean(chaospy.E(model, joint)) for model in sobol_model_approx ] eps_sobol_var = [ error_in_variance(chaospy.Var(model, joint)) for model in sobol_model_approx ] pyplot.rc("figure", figsize=[12, 4]) pyplot.subplot(121) pyplot.title("Error in mean") pyplot.loglog(sizes, eps_gauss_mean, "-", label="Gaussian") pyplot.loglog(sizes, eps_sobol_mean, "--", label="Sobol") pyplot.legend() pyplot.subplot(122) pyplot.title("Error in variance") pyplot.loglog(sizes, eps_gauss_var, "-", label="Gaussian") pyplot.loglog(sizes, eps_sobol_var, "--", label="Sobol") pyplot.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The number of Sobol samples to use at each order is arbitrary, but for Step2: Evaluating model solver Step3: Select polynomial expansion Step4: Solve the linear regression problem Step5: Descriptive statistics Step6: Error analysis Step7: The analysis can be performed as follows
15,683
<ASSISTANT_TASK:> Python Code: import larch, pandas, os, gzip larch.__version__ from larch.data_warehouse import example_file with gzip.open(example_file("arc"), 'rt') as previewfile: print(*(next(previewfile) for x in range(70))) itin = pandas.read_csv(example_file("arc"), index_col=['id_case','id_alt']) itin.info() itin.head() d = larch.DataFrames(itin, ch='choice', crack=True, autoscale_weights=True) d.info(1) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The example itinerary choice described here is based on data derived from a ticketing database Step2: The first line of the file contains column headers. After that, each line represents
15,684
<ASSISTANT_TASK:> Python Code: from __future__ import print_function, division %matplotlib inline %precision 6 import warnings warnings.filterwarnings('ignore') from thinkbayes2 import Pmf, Cdf import thinkplot import numpy as np from numpy.fft import fft, ifft from inspect import getsourcelines def show_code(func): lines, _ = getsourcelines(func) for line in lines: print(line, end='') d6 = Pmf() for x in range(1, 7): d6[x] = 1 d6.Print() show_code(Pmf.Normalize) d6.Normalize() d6.Print() d6[3] d6[7] # Solution die = Pmf(dict(red=2, blue=4)) die.Normalize() die.Print() show_code(Pmf.__getitem__) show_code(Pmf.Mean) show_code(Pmf.Var) d6.Mean(), d6.Var() show_code(Pmf.Expect) mu = d6.Mean() d6.Expect(lambda x: (x-mu)**3) show_code(Pmf.AddPmf) thinkplot.Pdf(d6) twice = d6 + d6 thinkplot.Pdf(twice, color='green') thrice = twice + d6 thinkplot.Pdf(d6) thinkplot.Pdf(twice, color='green') thinkplot.Pdf(thrice, color='red') # Solution dice = die + die dice.Print() show_code(Cdf.__init__) cdf = Cdf(thrice) cdf.Print() thinkplot.Cdf(cdf); show_code(Cdf.Probs) cdf.Probs((2, 10, 18)) cdf[5] # Solution 1 - cdf[14] show_code(Cdf.Values) cdf.Values((0.1, 0.5, 0.9)) show_code(Cdf.Sample) cdf.Sample(1) cdf.Sample(6) cdf.Sample((2, 2)) # Solution def iqr(cdf): values = cdf.Values((0.25, 0.75)) return np.diff(values)[0] iqr(cdf) show_code(Cdf.Max) best = cdf.Max(6) thinkplot.Cdf(best); best[10] # Solution def Min(cdf, k): return Cdf(cdf.xs, 1 - (1-cdf.ps)**k) worst = Min(cdf, 6) thinkplot.Cdf(worst); import matplotlib.pyplot as plt class CharFunc: def __init__(self, hs): Initializes the CF. hs: NumPy array of complex self.hs = hs def __mul__(self, other): Computes the elementwise product of two CFs. return CharFunc(self.hs * other.hs) def make_pmf(self, thresh=1e-11): Converts a CF to a PMF. Values with probabilities below `thresh` are dropped. ps = ifft(self.hs) d = dict((i, p) for i, p in enumerate(ps.real) if p > thresh) return Pmf(d) def plot_cf(self, **options): Plots the real and imaginary parts of the CF. n = len(self.hs) xs = np.arange(-n//2, n//2) hs = np.roll(self.hs, len(self.hs) // 2) plt.plot(xs, hs.real, label='real', **options) plt.plot(xs, hs.imag, label='imag', **options) plt.legend() def compute_fft(d, n=256): Computes the FFT of a PMF of integers. Values must be integers less than `n`. xs, freqs = zip(*d.items()) ps = np.zeros(256) ps[xs,] = freqs hs = fft(ps) return hs hs = compute_fft(thrice.d) cf = CharFunc(hs) cf.plot_cf() show_code(CharFunc.make_pmf) thinkplot.Pdf(cf.make_pmf()) show_code(CharFunc.__mul__) sixth = (cf * cf).make_pmf() thinkplot.Pdf(sixth) sixth.Print() sixth.Mean(), sixth.Var() #Solution n = len(cf.hs) mags = np.abs(cf.hs) plt.plot(np.roll(mags, n//2)) None # The result approximates a Gaussian curve because # the PMF is approximately Gaussian and the FT of a # Gaussian is also Gaussian class Dist(Pmf, Cdf, CharFunc): def __init__(self, d): Initializes the Dist. Calls all three __init__ methods. Pmf.__init__(self, d) Cdf.__init__(self, d) CharFunc.__init__(self, compute_fft(d)) def __add__(self, other): Computes the distribution of the sum using Pmf.__add__. pmf = Pmf.__add__(self, other) return Dist(pmf.d) def __mul__(self, other): Computes the distribution of the sum using CharFunc.__mul__. pmf = CharFunc.__mul__(self, other).make_pmf() return Dist(pmf.d) dist = Dist(sixth.d) thinkplot.Pdf(dist) dist[21] dist.Mean(), dist.Var() dist.ValueArray((0.25, 0.5, 0.75)) dist.Probs((18, 21, 24)) dist.Sample(10) thinkplot.Cdf(dist.Max(6)); twelfth = dist + dist thinkplot.Pdf(twelfth) twelfth.Mean() twelfth_fft = dist * dist thinkplot.Pdf(twelfth_fft) twelfth_fft.Mean() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Playing dice with the universe Step2: Initially the "probabilities" are all 1, so the total probability in the Pmf is 6, which doesn't make a lot of sense. In a proper, meaningful, PMF, the probabilities add up to 1, which implies that one outcome, and only one outcome, will occur (for any given roll of the die). Step3: Normalize adds up the probabilities in the PMF and divides through by the total. The result is a Pmf with probabilities that add to 1. Step4: The fundamental operation provided by a Pmf is a "lookup"; that is, we can look up an outcome and get the corresponding probability. Pmf provides __getitem__, so we can use bracket notation to look up an outcome Step5: And if you look up a value that's not in the Pmf, the probability is 0. Step6: Exerise Step7: Is that all there is? Step8: Python dictionaries are implemented using hash tables, so we expect __getitem__ to be fast. In terms of algorithmic complexity, it is constant time, or $O(1)$. Step9: This implementation is efficient, in the sense that it is $O(n)$, and because it uses a comprehension to traverse the outcomes, the overhead is low. Step10: And here's how they are used Step11: The structure of Mean and Var is the same Step12: As an example, we can use Expect to compute the third central moment of the distribution Step13: Because the distribution is symmetric, the third central moment is 0. Step14: The outer loop traverses the outcomes and probabilities of the first Pmf; the inner loop traverses the second Pmf. Each time through the loop, we compute the sum of the outcome pair, v1 and v2, and the probability that the pair occurs. Step15: When we use the + operator, Python invokes __add__, which invokes AddPmf, which returns a new Pmf object. Here's the Pmf that represents the sum of two dice Step16: And here's the Pmf that represents the sum of three dice. Step17: As we add up more dice, the result converges to the bell shape of the Gaussian distribution. Step18: Cumulative probabilities Step19: xs is the sorted list of values, and freqs are their frequencies or probabilities. Step20: Because we have to sort the values, the time to compute a Cdf is $O(n \log n)$. Step21: The range of the CDF is always from 0 to 1. Step22: The details here are a little tricky because we have to deal with some "off by one" problems, and if any of the values are less than the smallest value in the Cdf, we have to handle that as a special case. But the basic idea is simple, and the implementation is efficient. Step23: Cdf also provides __getitem__, so we can use brackets to look up a single value Step24: Exercise Step25: Reverse lookup Step26: And here's an example that finds the 10th, 50th, and 90th percentiles Step27: The Cdf representation is also good at generating random samples, by choosing a probability uniformly from 0 to 1 and finding the corresponding value. Here's the method Cdf provides Step28: The result is a NumPy array with the given shape. The time to generate each random choice is $O(\log n)$ Step29: Exercise Step30: Max and min Step31: To get the distribution of the maximum, we make a new Cdf with the same values as the original, and with the ps raised to the kth power. Simple, right? Step32: So the chance of generating a character whose best property is 10 is less than 2%. Step37: Characteristic function Step39: The attribute, hs, is the Fourier transform of the Pmf, represented as a NumPy array of complex numbers. Step40: fft computes the Fast Fourier Transform (FFT), which is called "fast" because the run time is $O(n \log n)$. Step41: The characteristic function contains all of the information from the Pmf, but it is encoded in a form that is hard to interpret. However, if we are given a characteristic function, we can find the corresponding Pmf. Step42: And here's an example Step43: Now we can use the characteristic function to compute a convolution. CharFunc provides __mul__, which multiplies the hs elementwise and returns a new CharFunc object Step44: And here's how we can use it to compute the distribution of the sum of 6 dice. Step45: Here are the probabilities, mean, and variance. Step46: This might seem like a roundabout way to compute a convolution, but it is efficient. The time to Compute the CharFunc objects is $O(n \log n)$. Multiplying them together is $O(n)$. And converting back to a Pmf is $O(n \log n)$. Step50: Distributions Step51: When you create a Dist, you provide a dictionary of values and probabilities. Step52: We inherit __getitem__ from Pmf, so we can look up the probability of a value. Step53: We also get mean and variance from Pmf Step54: But we can also use methods from Cdf, like ValueArray Step55: And Probs Step56: And Sample Step57: Dist.__add__ uses Pmf.__add__, which performs convolution the slow way Step58: Dist.__mul__ uses CharFunc.__mul__, which performs convolution the fast way.
15,685
<ASSISTANT_TASK:> Python Code: %pylab inline from pyseidon import * Station? station=Station('http://ecoii.acadiau.ca/thredds/dodsC/ecoii/test/Station3D_dngrid_BF_20130730_20130809.nc') print station.Grid.name flowDir, velNorm = station.Util2D.flow_dir('GP_120726_BPa') flowDir, velNorm = station.Util2D.flow_dir('GP_120726_BPa', exceedance=True) fI, eI, pa, pav = station.Util2D.ebb_flood_split('GP_120726_BPa') print "Flood mean flow speed: " + str(velNorm[fI].mean()) + " m/s" print "Ebb mean flow speed: " + str(velNorm[eI].mean()) + " m/s" station.Util2D.speed_histogram('Westport') station.Util2D.speed_histogram('DG_1a') station.Util2D.speed_histogram('PP-120917-BPa') harmo = station.Util2D.Harmonic_analysis_at_point('GP_120726_BPa', velocity=True, elevation=False) print harmo velos = station.Util2D.Harmonic_reconstruction(harmo) vs = station.Util3D.verti_shear('GP_120726_BPa', time_ind=eI) norm = station.Util3D.velo_norm('GP_120726_BPa', time_ind=fI) fd = station.Util3D.flow_dir('GP_120726_BPa', time_ind=fI, vertical=True) depths = station.Util3D.depth('GP_120726_BPa') meandepths = np.mean(depths[fI], axis=0) meanfd = np.mean(fd,axis=0) station.Plots.plot_xy(meanfd, meandepths, title='Flood flow direction at GP_120726_BPa', xlabel='direction', ylabel='depth') station.dump_profile_data(meanfd, meandepths, title='Flood flow direction at GP_120726_BPa', xlabel='direction', ylabel='depth') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. PySeidon - Station object initialisation Step2: Star here means all. Usually this form of statements would import the entire library. In the case of PySeidon, this statement will import the following object classes Step3: According to the documentation, in order to define a Station object, the only required input is a filename. This string input represents path to a file or a folder containing files (e.g. testStation=Station('./path_to_Station_output_file/filename') or testStation=Station('./path_to_Station_output_file/folder/') ) and whose file can be a pickle file (i.e. .p) or a netcdf file (i.e. *.nc). Step4: 1.3. Object attributes, functions, methods & special methods Step5: Util3D Step6: Save functions
15,686
<ASSISTANT_TASK:> Python Code: %matplotlib inline %config InlineBackend.figure_format = 'retina' import numpy as np import pandas as pd import matplotlib.pyplot as plt data_path = 'Bike-Sharing-Dataset/hour.csv' rides = pd.read_csv(data_path) rides.head() rides[:24*10].plot(x='dteday', y='cnt') dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday'] for each in dummy_fields: dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False) rides = pd.concat([rides, dummies], axis=1) fields_to_drop = ['instant', 'dteday', 'season', 'weathersit', 'weekday', 'atemp', 'mnth', 'workingday', 'hr'] data = rides.drop(fields_to_drop, axis=1) data.head() quant_features = ['casual', 'registered', 'cnt', 'temp', 'hum', 'windspeed'] # Store scalings in a dictionary so we can convert back later scaled_features = {} for each in quant_features: mean, std = data[each].mean(), data[each].std() scaled_features[each] = [mean, std] data.loc[:, each] = (data[each] - mean)/std # Save data for approximately the last 21 days test_data = data[-21*24:] # Now remove the test data from the data set data = data[:-21*24] # Separate the data into features and targets target_fields = ['cnt', 'casual', 'registered'] features, targets = data.drop(target_fields, axis=1), data[target_fields] test_features, test_targets = test_data.drop(target_fields, axis=1), test_data[target_fields] # Hold out the last 60 days or so of the remaining data as a validation set train_features, train_targets = features[:-60*24], targets[:-60*24] val_features, val_targets = features[-60*24:], targets[-60*24:] class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Set number of nodes in input, hidden and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Initialize weights self.weights_input_to_hidden = np.random.normal(0.0, self.hidden_nodes**-0.5, (self.input_nodes, self.hidden_nodes)) self.weights_hidden_to_output = np.random.normal(0.0, self.output_nodes**-0.5, (self.hidden_nodes, self.output_nodes)) self.lr = learning_rate #### TODO: Set self.activation_function to your implemented sigmoid function #### def sigmoid(x): return 1/(1+np.exp(-x)) # Replace 0 with your sigmoid calculation here self.activation_function = sigmoid def train(self, inputs_list, targets_list): # Convert inputs list to 2d array inputs = np.array(inputs_list, ndmin=2) #.T targets = np.array(targets_list, ndmin=2) #.T #print(inputs.shape, targets.shape) #### Implement the forward pass here #### ### Forward pass ### # TODO: Hidden layer - Replace these values with your calculations. hidden_inputs = inputs @ self.weights_input_to_hidden # signals into hidden layer hidden_outputs = self.activation_function(x=hidden_inputs) #self.activation_function(x=hidden_inputs) # signals from hidden layer # TODO: Output layer - Replace these values with your calculations. final_inputs = hidden_outputs @ self.weights_hidden_to_output #np.dot(self.weights_hidden_to_output, hidden_outputs) #hidden_outputs * self.weigths_hidden_to_output # Aras: no biases I am assuming # signals into final output layer final_outputs = final_inputs * 1 #Aras: f(x)=x for in/out layer #self.activation_function(x=final_inputs) # signals from final output layer #### Implement the backward pass here #### ### Backward pass ### # TODO: Output error - Replace this value with your calculations. output_errors = (final_outputs - targets) # Aras: derivative of f(x)=x # Output layer error is the difference between desired target and actual output. output_grad = output_errors * 1 # activation functon for output layer is f(x)=x and derivative is 1 (slope) # TODO: Backpropagated error - Replace these values with your calculations. hidden_errors = output_grad @ self.weights_hidden_to_output.T #np.dot(self.weights_hidden_to_output.T, output_grad) #* (1-hidden_outputs) * hidden_outputs #(targets_list-final_outputs) * -1 * -(1 - self.activation_function(x)) * self.activation_function(x) # errors propagated to the hidden layer #hidden_grad = np.dot(hidden_errors, self.activation_derivative(x=hidden_inputs)) #hidden_errors * hidden_outputs * (1-hidden_outputs) #np.dot(inputs, hidden_errors) #hidden_error * self.weights_hidden_to_input # hidden layer gradients hidden_grad = hidden_errors * hidden_outputs * (1-hidden_outputs) # activation_function 1st derivative # TODO: Update the weights - Replace these values with your calculations. self.weights_hidden_to_output -= self.lr * hidden_outputs.T @ output_grad #np.dot(hidden_outputs, output_grad).T #output_errors * self.weights_hidden_to_output * hidden_outputs # update hidden-to-output weights with gradient descent step self.weights_input_to_hidden -= self.lr * inputs.T @ hidden_grad #hidden_grad * inputs_list # update input-to-hidden weights with gradient descent step def run(self, inputs_list): # Run a forward pass through the network inputs = np.array(inputs_list, ndmin=2) #.T -> Aras: I don't understand why? As I mentioned also above. #### Implement the forward pass here #### # TODO: Hidden layer - replace these values with the appropriate calculations. hidden_inputs = inputs @ self.weights_input_to_hidden #np.dot(self.weights_input_to_hidden, inputs) #inputs * self.weight_input_to_hidden # signals into hidden layer hidden_outputs = self.activation_function(x=hidden_inputs) # signals from hidden layer # TODO: Output layer - Replace these values with the appropriate calculations. final_inputs = hidden_outputs @ self.weights_hidden_to_output #np.dot(self.weights_hidden_to_output, hidden_outputs) #hidden_outputs * self.weights_hidden_to_output # signals into final output layer final_outputs = final_inputs * 1 #np.zeros((1, len(inputs_list))) # signals from final output layer return final_outputs def MSE(y_ref, Y_res): # Aras: ref==reference && res==result # Aras changed this part by adding ref and res. return np.mean((y_ref-Y_res)**2) import sys ### Set the hyperparameters here ### epochs = 100 learning_rate = 0.001 hidden_nodes = 28 #56/2 - half of the input features/dimensions output_nodes = 1 N_i = train_features.shape[1] network = NeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate) losses = {'train':[], 'validation':[]} for e in range(epochs): # Go through a random batch of 128 records from the training data set batch = np.random.choice(train_features.index, size=128) for record, target in zip(train_features.loc[batch].values, # Aras: features/ Dimensions/ Variables_txn? train_targets.loc[batch]['cnt']): # Aras: Labels/ Indeces/ Classes_txn? network.train(record, target) # Aras: record==sample && target==label # Printing out the training progress train_loss = MSE(network.run(train_features), train_targets['cnt'].values) val_loss = MSE(network.run(val_features), val_targets['cnt'].values) ## Aras: Can we use SSE instead? sys.stdout.write("\rProgress: " + str(100 * e/float(epochs))[:4] \ + "% ... Training loss: " + str(train_loss)[:5] \ + " ... Validation loss: " + str(val_loss)[:5]) losses['train'].append(train_loss) losses['validation'].append(val_loss) plt.plot(losses['train'], label='Training loss') plt.plot(losses['validation'], label='Validation loss') plt.legend() plt.ylim(top=2.5) plt.plot(losses['train'], label='Training loss') plt.plot(losses['validation'], label='Validation loss') plt.legend() plt.ylim(top=2.5) fig, ax = plt.subplots(figsize=(8,4)) mean, std = scaled_features['cnt'] predictions = network.run(test_features)*std + mean ax.plot(predictions, label='Prediction') ax.plot((test_targets['cnt']*std + mean).values, label='Data') ax.set_xlim(right=len(predictions)) ax.legend() dates = pd.to_datetime(rides.loc[test_data.index]['dteday']) dates = dates.apply(lambda d: d.strftime('%b %d')) ax.set_xticks(np.arange(len(dates))[12::24]) _ = ax.set_xticklabels(dates[12::24], rotation=45) fig, ax = plt.subplots(figsize=(8,4)) mean, std = scaled_features['cnt'] predictions = network.run(test_features)*std + mean ax.plot(predictions, label='Prediction') ax.plot((test_targets['cnt']*std + mean).values, label='Data') ax.set_xlim(right=len(predictions)) ax.legend() dates = pd.to_datetime(rides.loc[test_data.index]['dteday']) dates = dates.apply(lambda d: d.strftime('%b %d')) ax.set_xticks(np.arange(len(dates))[12::24]) _ = ax.set_xticklabels(dates[12::24], rotation=45) import unittest inputs = [0.5, -0.2, 0.1] targets = [0.4] test_w_i_h = np.array([[0.1, 0.4, -0.3], [-0.2, 0.5, 0.2]]).T test_w_h_o = np.array([[0.3, -0.1]]).T class TestMethods(unittest.TestCase): ########## # Unit tests for data loading ########## def test_data_path(self): # Test that file path to dataset has been unaltered self.assertTrue(data_path.lower() == 'bike-sharing-dataset/hour.csv') def test_data_loaded(self): # Test that data frame loaded self.assertTrue(isinstance(rides, pd.DataFrame)) ########## # Unit tests for network functionality ########## def test_activation(self): network = NeuralNetwork(3, 2, 1, 0.5) # Test that the activation function is a sigmoid self.assertTrue(np.all(network.activation_function(0.5) == 1/(1+np.exp(-0.5)))) def test_train(self): # Test that weights are updated correctly on training network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() network.train(inputs, targets) #print(network.weights_hidden_to_output) self.assertTrue(np.allclose(network.weights_hidden_to_output, np.array([[ 0.37275328, -0.03172939]]).T)) #print(network.weights_input_to_hidden) self.assertTrue(np.allclose(network.weights_input_to_hidden, np.array([[ 0.10562014, 0.39775194, -0.29887597], [-0.20185996, 0.50074398, 0.19962801]]).T)) def test_run(self): # Test correctness of run method network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() self.assertTrue(np.allclose(network.run(inputs), 0.09998924)) suite = unittest.TestLoader().loadTestsFromModule(TestMethods()) unittest.TextTestRunner().run(suite) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load and prepare the data Step2: Checking out the data Step3: Dummy variables Step4: Scaling target variables Step5: Splitting the data into training, testing, and validation sets Step6: We'll split the data into two sets, one for training and one for validating as the network is being trained. Since this is time series data, we'll train on historical data, then try to predict on future data (the validation set). Step7: Time to build the network Step8: Training the network Step9: Check out your predictions Step10: OPTIONAL
15,687
<ASSISTANT_TASK:> Python Code: import pandas as pd # Start by importing the tweets data X = pd.read_csv('../datasets/tweets.csv') X.shape X.columns X.info() X.head(5) min(X.Avg) max(X.Avg) X.Avg.hist(); corpusTweets = X.Tweet.tolist() # get a list of all tweets, then is easier to apply preprocessign to each item # Convert to lower-case corpusLowered = [s.lower() for s in corpusTweets] corpusLowered[0:5] # Remove punctuation import re corpusNoPunct = [re.sub(r'([^\s\w_]|_)+', ' ', s.strip()) for s in corpusLowered] corpusNoPunct[0:5] import os def readStopwords(): ''' returns stopwords as strings Assume that a file called "stopwords.txt" exists in the folder ''' filename = "stopwords.txt" path = os.path.join("", filename) file = open(path, 'r') return file.read().splitlines() # splitlines is used to remove newlines stopWords = set(readStopwords()) "the" in stopWords # quick test stopWords.add("apple") stopWords.add("appl") stopWords.add("iphone") stopWords.add("ipad") stopWords.add("ipod") stopWords.add("itunes") stopWords.add("ios") stopWords.add("http") print ("apple" in stopWords) print ("google" in stopWords) # tokenise corpusTokens = [s.split() for s in corpusNoPunct] corpusTokens[0:3] # Stem document from nltk import PorterStemmer porter = PorterStemmer() corpus = [] for tweet in corpusTokens: cleanTokens = [token for token in tweet if token not in stopWords] # a list of tokens stemmedTokens = [porter.stem(token) for token in cleanTokens] cleanTweet = ' '.join(stemmedTokens) corpus.append(cleanTweet) corpus[0:5] from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer(lowercase=False, max_features=500) cv.fit(corpus) 'apple' in cv.vocabulary_ # a quick test cv.get_feature_names()[0:20] # in alphabetical order bagOfWords = cv.transform(corpus) bagOfWords sum_words = bagOfWords.toarray().sum(axis=0) words_freq = [(word, sum_words[idx]) for word, idx in cv.vocabulary_.items()] words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True) words_freq[:10] df = pd.DataFrame(bagOfWords.toarray()) df.shape df.info() df.head(1) import numpy.random numpy.random.seed(100) # just for reproducibility from sklearn.model_selection import train_test_split X.Avg = [int(round(a)) for a in X.Avg] # cluster target into 5 classes X_train, X_test, y_train, y_test = train_test_split(df, X.Avg, test_size=0.25) X_test.shape from sklearn.naive_bayes import MultinomialNB classifier = MultinomialNB() classifier.fit(X_train, y_train) predictions = classifier.predict(X_test) predictions[0:100] from sklearn import metrics # Model Accuracy, how often is the classifier correct? print("Accuracy: {:.2}".format(metrics.accuracy_score(y_test, predictions))) mat = metrics.confusion_matrix(y_test, predictions) mat import matplotlib.pyplot as plt labels = ['strongly neg.', 'negative', 'neutral', 'positive', 'strongly pos.'] fig = plt.figure() ax = fig.add_subplot(111) cm = ax.matshow(mat) # plot the title, use y to leave some space before the labels plt.title("Confusion matrix - Tweets arranged by sentiment", y=1.2) ax.set_xticklabels([''] + labels) ax.set_yticklabels([''] + labels) plt.setp(ax.get_xticklabels(), rotation=-30, ha="right", rotation_mode="anchor") plt.xlabel("Predicted") plt.ylabel("Actual") # Loop over data dimensions and create text annotations. for i in range(len(mat)): for j in range(len(mat)): text = ax.text(j, i, mat[i, j], ha="center", va="center", color="w") # Create colorbar fig.colorbar(cm); correctPredictions = sum(mat[i][i] for i in range(len(mat))) correctPredictions print("Accuracy: {:.2}".format(correctPredictions / len(y_test))) neutralTweets = sum(1 for sentiment in y_test if sentiment == 0) # neutral tweets in Test dataset neutralTweets len(y_test) - neutralTweets print("Accuracy baseline: {:.2}".format(neutralTweets / len(y_test))) # for simplicity, it re-uses the vectorizer and the classifier without passing them # as arguments. Industrialising it would mean to create a pipeline with # vectoriser > classifier > label string def predictSentiment(t): bow = cv.transform([t]) prediction = classifier.predict(bow) if prediction == 0: return "Neutral" elif prediction > 0: return "Positive" else: return "Negative" predictSentiment("I don't know what to think about apple!") predictSentiment("I love apple, its products are always the best, really!") predictSentiment("Apple lost its mojo, I will never buy again an iphone better an Android") X.loc[X.Avg < 0] = -1 # negative sentiment X.loc[X.Avg >= 0] = 1 # NON-negative sentiment X_train, X_test, y_train, y_test = train_test_split(df, X.Avg, test_size=0.25) classifier = MultinomialNB() # 0.77 classifier.fit(X_train, y_train) predictionsTwo = classifier.predict(X_test) predictionsTwo[0:100] # Model Accuracy, how often is the classifier correct? print("Accuracy: {:.2}".format(metrics.accuracy_score(y_test, predictionsTwo))) matBinary = metrics.confusion_matrix(y_test, predictionsTwo) matBinary labels = ['negative', 'NOT negative'] fig = plt.figure() ax = fig.add_subplot(111) cm = ax.matshow(matBinary) # plot the title, use y to leave some space before the labels plt.title("Confusion matrix - Tweets arranged by sentiment", y=1.2) ax.set_xticklabels([''] + labels) ax.set_yticklabels([''] + labels) plt.setp(ax.get_xticklabels(), rotation=-30, ha="right", rotation_mode="anchor") plt.xlabel("Predicted") plt.ylabel("Actual") # Loop over data dimensions and create text annotations. for i in range(len(matBinary)): for j in range(len(matBinary)): text = ax.text(j, i, matBinary[i, j], ha="center", va="center", color="w") # Create colorbar fig.colorbar(cm); tn, fp, fn, tp = matBinary.ravel() print("True Negatives: ",tn) print("False Positives: ",fp) print("False Negatives: ",fn) print("True Positives: ",tp) Accuracy = (tn+tp)/(tp+tn+fp+fn) print("Accuracy: {:.2f}".format(Accuracy)) Sensitivity = tp/(tp+fn) print("Sensitivity {:0.2f}".format(Sensitivity)) #Specificity Specificity = tn/(tn+fp) print("Specificity {:0.2f}".format(Specificity)) probs = classifier.predict_proba(X_test) # get the probabilities preds = probs[:,1] ## keep probabilities for the positive outcome only fpr, tpr, threshold = metrics.roc_curve(y_test, preds) # calculate roc roc_auc = metrics.auc(fpr, tpr) # calculate AUC plt.title('Receiver Operating Characteristic') plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc) plt.plot([0, 1], [0, 1],'r--') # plot random guessing plt.legend(loc = 'lower right') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show() # Precision Precision = tp/(tp+fp) print("Precision or Positive Predictive Power: {:0.2f}".format(Precision)) # Negative Predictive Value print("Negative predictive Power: {:0.2f}".format(tn / (tn+fn))) # F1 Score f1 = (2 * Precision * Sensitivity) / (Precision + Sensitivity) print("F1 Score {:0.2f}".format(f1)) classifierTuned = MultinomialNB(class_prior=[.4, 0.6]) # try to max specificity classifierTuned.fit(X_train, y_train) predictionsTuned = classifierTuned.predict(X_test) matTuned = metrics.confusion_matrix(y_test, predictionsTuned) matTuned tn, fp, fn, tp = matTuned.ravel() Accuracy = (tn+tp)/(tp+tn+fp+fn) print("Accuracy: {:.2f}".format(Accuracy)) # it was 0.79 Sensitivity = tp/(tp+fn) print("Sensitivity {:0.2f}".format(Sensitivity)) #it was 0.9 Specificity = tn/(tn+fp) print("Specificity {:0.2f}".format(Specificity)) # it was 0.53 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: It contains 1181 tweets (as text) and one manually labeled sentiment. Step2: 2 means very positive, 0 is neutral and -2 is very negative Step3: Process the data Step4: Now we remove the stopwords. First we define which are the common words (stopwords) to be removed Step5: To remove a word from the corpus if that word is contained in our stopwords set, we need first to tokenise the corpus (i.e., split it into words or tokens) Step6: Create a Document-Term matrix Step7: Now we use the voctoriser to transform the corpus into a sparse matrix where each tweet has 1 if the feature is present in it or 0 if not. Step8: We put it into a data frame to use it in the classifier Step9: We start by splitting the tweets into training and test sets, as usual Step10: Train and test the classifier Step11: Metrics Step12: The classifier was correct 64% of times (not only if a tweet was negative but also if it was strongly negative or moderately negative). Step13: It's more clear if we visualise it as a heat map Step14: The numbers in the diagonal are all the times when the predicted sentiment for a tweet was the same as the actual sentiment. Step15: Which is the same value as above. Step16: This tells us that in our test dataset we have 178 observation with neutral sentiment and 118 with positive or negative tweets. Step17: So our Naive Bayesian model does better than the simple baseline. Step18: Ok. We try with two new tweets and see what we get, one positive and one negative Step19: Binary Classification Step20: We need to re-apply the classifier Step21: As you can see, there is no more classes 2, 0 or -2 now Step22: Of course is better, we have less classes to predict, less errors to make. Step23: In a two-class problem, we are often looking to discriminate between observations with a specific outcome, from normal observations. Such as a disease state or no disease state or spam versus no-spam. Step24: Accuracy can be re-formulated as the ratio between the true events (positive and negative) and the total events Step25: Accuracy is not a reliable metric for the real performance of a classifier, because it will yield misleading results if the data set is unbalanced (that is, when the numbers of observations in different classes vary greatly). Step26: Sensitivity is a real number between 0 and 1. A sensitivity of 1 means that ALL the Negative cases have been correctly classified. Step27: ROC (Receiver Operating Characteristic) curve Step28: The ROC curve is a useful tool for a few reasons Step29: Similarly, you can calculate the Negative Predictive Power Step30: The F1 score is the harmonic mean of the Precision & Sensitivity, and is used to indicate a balance between them. It ranges from 0 to 1; F1 Score reaches its best value at 1 (perfect precision & sensitivity) and worst at 0. Step31: What do we use the ROC for?
15,688
<ASSISTANT_TASK:> Python Code: import logging from conf import LisaLogging LisaLogging.setup() # Generate plots inline %matplotlib inline import os # Support to access the remote target import devlib from env import TestEnv # RTApp configurator for generation of PERIODIC tasks from wlgen import RTA, Ramp # Setup target configuration my_conf = { # Target platform and board "platform" : 'linux', "board" : 'juno', "host" : '192.168.0.1', # Folder where all the results will be collected "results_dir" : "EnergyMeter_AEP", # Define devlib modules to load "modules" : ["cpufreq"], # Required by rt-app calibration "exclude_modules" : [ 'hwmon' ], # Energy Meters Configuration for ARM Energy Probe "emeter" : { "instrument" : "aep", "conf" : { # Value of the shunt resistor in Ohm 'resistor_values' : [0.099], # Device entry assigned to the probe on the host 'device_entry' : '/dev/ttyACM0', }, 'channel_map' : { 'BAT' : 'BAT' } }, # Tools required by the experiments "tools" : [ 'trace-cmd', 'rt-app' ], # Comment this line to calibrate RTApp in your own platform # "rtapp-calib" : {"0": 360, "1": 142, "2": 138, "3": 352, "4": 352, "5": 353}, } # Initialize a test environment using: te = TestEnv(my_conf, wipe=False, force_new=True) target = te.target # Create and RTApp RAMP task rtapp = RTA(te.target, 'ramp', calibration=te.calibration()) rtapp.conf(kind='profile', params={ 'ramp' : Ramp( start_pct = 60, end_pct = 20, delta_pct = 5, time_s = 0.5).get() }) # EnergyMeter Start te.emeter.reset() rtapp.run(out_dir=te.res_dir) # EnergyMeter Stop and samples collection nrg_report = te.emeter.report(te.res_dir) logging.info("Collected data:") !tree $te.res_dir logging.info("Measured channels energy:") logging.info("%s", nrg_report.channels) logging.info("Generated energy file:") logging.info(" %s", nrg_report.report_file) !cat $nrg_report.report_file logging.info("Samples collected for the BAT channel (only first 10)") samples_file = os.path.join(te.res_dir, 'samples.csv') !head $samples_file <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Import required modules Step2: Target Configuration Step3: Workload Execution and Power Consumptions Samping Step4: Power Measurements Data
15,689
<ASSISTANT_TASK:> Python Code: import pandas as pd ef = pd.read_excel('EIA CO2 factors.xlsx', header=1, skip_footer=1, index_col='EIA Fuel Code') ef.columns = [name.strip() for name in ef.columns] ef['Link'] = 'https://www.eia.gov/electricity/annual/html/epa_a_03.html' ef.rename_axis({'Factor (Kilograms of CO2 Per Million Btu)**':'Fossil Factor'}, axis=1, inplace=True) ef.loc['BFG',:] = ['Blast Furnace Gas', 274.32, None , 'https://www.epa.gov/sites/production/files/2015-07/documents/emission-factors_2014.pdf'] ef.loc['MSN',:] = ['Non-biomass Municipal Solid Waste', 90.7, 'Assume the same as MSW', 'https://www.epa.gov/sites/production/files/2015-07/documents/emission-factors_2014.pdf'] # Use the bituminous coal factor for synthetic coal ef.loc['SC',:] = ['Synthetic Coal', 93.3, 'Use same factor as BIT and RC', None] # Use fuel gas for other gases ef.loc['OG', :] = ['Other gases', 59, 'Assume fuel gas', 'https://www.epa.gov/sites/production/files/2015-07/documents/emission-factors_2014.pdf'] # Use BIT factor for synthetic gas from coal (SGC) and DFO for SGP # The actual factors won't matter as much because we're going to use the EPA # emission values. ef.loc['SGC', ['Fossil Factor', 'Notes']] = [93.3, 'Using BIT value. Likely not correct'] ef.loc['SGP', ['Fossil Factor', 'Notes']] = [73.16, 'Using DFO value. Likely not correct'] non_fossil_fuels = ['AB', 'BLQ', 'LFG', 'MSB', 'NUC', 'OBG', 'OBL', 'OBS', 'OTH', 'PUR', 'SLW', 'SUN', 'WAT', 'WDL', 'WDS', 'WH', 'WND'] for fuel in non_fossil_fuels: ef.loc[fuel, ['Fossil Factor', 'Notes']] = [0, 'non-fossil fuel'] epa_factor_link = 'https://www.epa.gov/sites/production/files/2015-07/documents/emission-factors_2014.pdf' ipcc_factor_link = 'http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combustion.pdf' ef['Total Factor'] = ef['Fossil Factor'] ef.loc['BLQ', ['Total Factor', 'Notes', 'Link']] = [94.4, 'Table 6-6, North American Softwood', 'https://www.epa.gov/sites/production/files/2015-03/documents/subpartaa-tsd-pulp_and_paper.pdf'] ef.loc['AB', ['Total Factor', 'Link']] = [118.17, epa_factor_link] ef.loc['LFG', ['Total Factor', 'Link']] = [52.17, epa_factor_link] ef.loc['MSB', ['Total Factor', 'Notes', 'Link']] = [90.7, 'Biomass portion of MSW', epa_factor_link] ef.loc['OBG', ['Total Factor', 'Link']] = [52.17, epa_factor_link] ef.loc['OBL', ['Total Factor', 'Link']] = [83.98, ipcc_factor_link] ef.loc['OBS', ['Total Factor', 'Link']] = [105.51, epa_factor_link] ef.loc[['SLW', 'WDL'], ['Total Factor', 'Notes', 'Link']] = [83.98, 'Assume same as OBL', ipcc_factor_link] # ef.loc['WDL', ['Total Factor', 'Notes', 'Link']] = [83.98, 'Assume same as OBL', ipcc_factor_link] ef.loc['WDS', ['Total Factor', 'Link']] = [93.8, epa_factor_link] path = os.path.join('Clean data', 'Final emission factors.csv') ef.to_csv(path) ef <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Add EPA emission factors for fossil fuels not included in the EIA file Step2: Add non-fossil emission factors for a total emission factor column Step3: Export
15,690
<ASSISTANT_TASK:> Python Code: import numpy as np #For numerical programming and multi-dimensional arrays from pandas import date_range #For date-rate generation from bqplot import LinearScale, Lines, Axis, Figure, DateScale, ColorScale security_1 = np.cumsum(np.random.randn(150)) + 100. security_2 = np.cumsum(np.random.randn(150)) + 100. sc_x = LinearScale() sc_y = LinearScale() line = Lines(x=np.arange(len(security_1)), y=security_1, scales={'x': sc_x, 'y': sc_y}) ax_x = Axis(scale=sc_x, label='Index') ax_y = Axis(scale=sc_y, orientation='vertical', label='y-values of Security 1') Figure(marks=[line], axes=[ax_x, ax_y], title='Security 1') line.colors = ['DarkOrange'] # The opacity allows us to display the Line while featuring other Marks that may be on the Figure line.opacities = [.5] line.stroke_width = 2.5 line.fill = 'bottom' line.fill_opacities = [0.2] line.line_style = 'dashed' line.interpolation = 'basis' line.marker = 'triangle-down' # Here we define the dates we would like to use dates = date_range(start='01-01-2007', periods=150) dt_x = DateScale() sc_y = LinearScale() time_series = Lines(x=dates, y=security_1, scales={'x': dt_x, 'y': sc_y}) ax_x = Axis(scale=dt_x, label='Date') ax_y = Axis(scale=sc_y, orientation='vertical', label='Security 1') Figure(marks=[time_series], axes=[ax_x, ax_y], title='A Time Series Plot') x_dt = DateScale() y_sc = LinearScale() dates_new = date_range(start='06-01-2007', periods=150) securities = np.cumsum(np.random.randn(150, 10), axis=0) positions = np.random.randint(0, 2, size=10) # We pass the color scale and the color data to the lines line = Lines(x=dates, y=[security_1, security_2], scales={'x': x_dt, 'y': y_sc}, labels=['Security 1', 'Security 2']) ax_x = Axis(scale=x_dt, label='Date') ax_y = Axis(scale=y_sc, orientation='vertical', label='Security 1') Figure(marks=[line], axes=[ax_x, ax_y], legend_location='top-left') line.x, line.y = [dates, dates_new], [security_1, security_2] x_dt = DateScale() y_sc = LinearScale() col_sc = ColorScale(colors=['Red', 'Green']) dates_color = date_range(start='06-01-2007', periods=150) securities = 100. + np.cumsum(np.random.randn(150, 10), axis=0) positions = np.random.randint(0, 2, size=10) # Here we generate 10 random price series and 10 random positions # We pass the color scale and the color data to the lines line = Lines(x=dates_color, y=securities.T, scales={'x': x_dt, 'y': y_sc, 'color': col_sc}, color=positions, labels=['Security 1', 'Security 2']) ax_x = Axis(scale=x_dt, label='Date') ax_y = Axis(scale=y_sc, orientation='vertical', label='Security 1') Figure(marks=[line], axes=[ax_x, ax_y], legend_location='top-left') line.color = None sc_x = LinearScale() sc_y = LinearScale() patch = Lines(x=[[0, 2, 1.2, np.nan, np.nan, np.nan, np.nan], [0.5, 2.5, 1.7, np.nan, np.nan, np.nan, np.nan], [4,5,6, 6, 5, 4, 3]], y=[[0, 0, 1 , np.nan, np.nan, np.nan, np.nan], [0.5, 0.5, -0.5, np.nan, np.nan, np.nan, np.nan], [1, 1.1, 1.2, 2.3, 2.2, 2.7, 1.0]], fill_colors=['orange', 'blue', 'red'], fill='inside', stroke_width=10, close_path=True, scales={'x': sc_x, 'y': sc_y}, display_legend=True) Figure(marks=[patch], animation_duration=1000) patch.opacities = [0.1, 0.2] patch.x = [[2, 3, 3.2, np.nan, np.nan, np.nan, np.nan], [0.5, 2.5, 1.7, np.nan, np.nan, np.nan, np.nan], [4,5,6, 6, 5, 4, 3]] patch.close_path = False <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Random Data Generation Step2: Basic Line Chart Step3: The x attribute refers to the data represented horizontally, while the y attribute refers the data represented vertically. Step4: In a similar way, we can also change any attribute after the plot has been displayed to change the plot. Run each of the cells below, and try changing the attributes to explore the different features and how they affect the plot. Step5: To switch to an area chart, set the fill attribute, and control the look with fill_opacities and fill_colors. Step6: While a Lines plot allows the user to extract the general shape of the data being plotted, there may be a need to visualize discrete data points along with this shape. This is where the markers attribute comes in. Step7: The marker attributes accepts the values square, circle, cross, diamond, square, triangle-down, triangle-up, arrow, rectangle, ellipse. Try changing the string above and re-running the cell to see how each marker type looks. Step8: Plotting Multiples Sets of Data with Lines Step9: We pass each data set as an element of a list. The colors attribute allows us to pass a specific color for each line. Step10: Similarly, we can also pass multiple x-values for multiple sets of y-values Step11: Coloring Lines according to data Step12: We can also reset the colors of the Line to their defaults by setting the color attribute to None. Step13: Patches
15,691
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt import seaborn as sbn import pandas as pd from uuid import uuid4 from lpde.geometry import WidthOf, Window, PointAt, BoundingBox, Mapper, Grid from lpde.estimators import ParallelEstimator from lpde.estimators.datatypes import Event, Degree, Action, Scalings, Signal from lpde.producers import MockParams, MockProducer from lpde.producers.distributions import gaussian %matplotlib notebook legendre_width = WidthOf(1.8) center = PointAt(0, 0) window = Window(1.8, 1.8) bounds = BoundingBox(center, window) mapper = Mapper(bounds, legendre_width) degree = Degree(20, 20) params = MockParams(20, 100, 1, gaussian) density = ParallelEstimator(degree, mapper, params) action = Action.ADD point = PointAt(0.5, 0.5) event = Event(uuid4(), action, point) grid = Grid(100, 100) def gaussian(): x, y = np.random.multivariate_normal((0,0), ((0.1,0), (0,0.1))) if (-0.9 <= x <= 0.9) and (-0.9 <= y <= 0.9): return x, y else: return gaussian() def uniform(): return np.random.uniform(low=-0.9, high=0.9, size=2) locations = [] def new_event(dist): location = dist() locations.append(location) point = PointAt(*location) return Event(uuid4(), Action(1), point) def random_event(dist): event_type = np.random.randint(low=-1, high=2) if event_type == 1: location = dist() point = PointAt(*location) return Event(uuid4(), Action(1), point) elif event_type == 0: location = dist() point = PointAt(*location) column = density._phi.sample(1, axis=1).columns.values[0] return Event(column, Action(0), point) column = density._phi.sample(1, axis=1).columns.values[0] return Event(column, Action(-1)) density.controller.start(1, 1.0) density.producer.start() density.at(point) density.controller.stop() #%%time for i in range(100): density.update_with(new_event(gaussian)) #while not density.controller.phi_queue.empty(): # pass %%time for i in range(1000): density.update_with(random_event(gaussian)) while not density._phi_queue_empty: pass %%time for i in range(1000): density.at(new_event(uniform).location) while not density._phi_queue_empty: pass n_hat = density.on(grid) fig, ax = plt.subplots() ax.set(xlabel=r'$x$', ylabel=r'$y$') #ax.scatter(*zip(*locations), s=5, c='k') contour = ax.imshow(n_hat, cmap='viridis', alpha=0.9, extent=bounds.x_range+bounds.y_range, origin='lower', interpolation='bicubic') cbar = plt.colorbar(contour, ax=ax, label=r'$n(x)$') fig.tight_layout() from bokeh.io import output_file, show from bokeh.plotting import figure from bokeh.tile_providers import STAMEN_TONER, STAMEN_TERRAIN bound = 20000000 # meters fig = figure(tools='pan, wheel_zoom', x_range=(-bound, bound), y_range=(-bound, bound)) fig.axis.visible = False fig.add_tile(STAMEN_TERRAIN) output_file("stamen_toner_plot.html") show(fig) from bokeh.plotting import figure, show, output_file p = figure(x_range=bounds.x_range, y_range=bounds.y_range) # must give a vector of image data for image parameter p.image(image=[n_hat], x=bounds.x_range[0], y=bounds.y_range[0], dw=bounds.window[0], dh=bounds.window[1], palette="Spectral11", alpha=0.8) output_file("image.html", title="image.py example") show(p) # open a browser def f(): pass type(f) callable(function) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Notebook settings Step2: Density Estimation Step3: Create mock data streams Step4: Timings of density estimation Step5: Timings
15,692
<ASSISTANT_TASK:> Python Code: import math import numpy as np import h5py import matplotlib.pyplot as plt import scipy from PIL import Image from scipy import ndimage import tensorflow as tf from tensorflow.python.framework import ops from cnn_utils import * %matplotlib inline np.random.seed(1) # Loading the data (signs) X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset() # Example of a picture index = 6 plt.imshow(X_train_orig[index]) print ("y = " + str(np.squeeze(Y_train_orig[:, index]))) X_train = X_train_orig/255. X_test = X_test_orig/255. Y_train = convert_to_one_hot(Y_train_orig, 6).T Y_test = convert_to_one_hot(Y_test_orig, 6).T print ("number of training examples = " + str(X_train.shape[0])) print ("number of test examples = " + str(X_test.shape[0])) print ("X_train shape: " + str(X_train.shape)) print ("Y_train shape: " + str(Y_train.shape)) print ("X_test shape: " + str(X_test.shape)) print ("Y_test shape: " + str(Y_test.shape)) conv_layers = {} # GRADED FUNCTION: create_placeholders def create_placeholders(n_H0, n_W0, n_C0, n_y): Creates the placeholders for the tensorflow session. Arguments: n_H0 -- scalar, height of an input image n_W0 -- scalar, width of an input image n_C0 -- scalar, number of channels of the input n_y -- scalar, number of classes Returns: X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float" Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float" ### START CODE HERE ### (≈2 lines) X = tf.placeholder(tf.float32, shape=[None, n_H0, n_W0, n_C0]) Y = tf.placeholder(tf.float32, shape=[None, n_y]) ### END CODE HERE ### return X, Y X, Y = create_placeholders(64, 64, 3, 6) print ("X = " + str(X)) print ("Y = " + str(Y)) # GRADED FUNCTION: initialize_parameters def initialize_parameters(): Initializes weight parameters to build a neural network with tensorflow. The shapes are: W1 : [4, 4, 3, 8] W2 : [2, 2, 8, 16] Returns: parameters -- a dictionary of tensors containing W1, W2 tf.set_random_seed(1) # so that your "random" numbers match ours ### START CODE HERE ### (approx. 2 lines of code) W1 = tf.get_variable("W1", [4,4,3,8], initializer = tf.contrib.layers.xavier_initializer(seed = 0)) W2 = tf.get_variable("W2", [2,2,8,16], initializer = tf.contrib.layers.xavier_initializer(seed = 0)) ### END CODE HERE ### parameters = {"W1": W1, "W2": W2} return parameters tf.reset_default_graph() with tf.Session() as sess_test: parameters = initialize_parameters() init = tf.global_variables_initializer() sess_test.run(init) print("W1 = " + str(parameters["W1"].eval()[1,1,1])) print("W2 = " + str(parameters["W2"].eval()[1,1,1])) # GRADED FUNCTION: forward_propagation def forward_propagation(X, parameters): Implements the forward propagation for the model: CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED Arguments: X -- input dataset placeholder, of shape (input size, number of examples) parameters -- python dictionary containing your parameters "W1", "W2" the shapes are given in initialize_parameters Returns: Z3 -- the output of the last LINEAR unit # Retrieve the parameters from the dictionary "parameters" W1 = parameters['W1'] W2 = parameters['W2'] ### START CODE HERE ### # CONV2D: stride of 1, padding 'SAME' Z1 = tf.nn.conv2d(X,W1, strides = [1,1,1,1], padding = 'SAME') # RELU A1 = tf.nn.relu(Z1) # MAXPOOL: window 8x8, sride 8, padding 'SAME' P1 = tf.nn.max_pool(A1, ksize = [1,8,8,1], strides = [1,8,8,1], padding = 'SAME') # CONV2D: filters W2, stride 1, padding 'SAME' Z2 = tf.nn.conv2d(P1,W2, strides = [1,1,1,1], padding = 'SAME') # RELU A2 = tf.nn.relu(Z2) # MAXPOOL: window 4x4, stride 4, padding 'SAME' P2 = tf.nn.max_pool(A2, ksize = [1,4,4,1], strides = [1,4,4,1], padding = 'SAME') # FLATTEN F = tf.contrib.layers.flatten(P2) # FULLY-CONNECTED without non-linear activation function (not not call softmax). # 6 neurons in output layer. Hint: one of the arguments should be "activation_fn=None" Z3 = tf.contrib.layers.fully_connected(F, num_outputs=6,activation_fn=None,weights_regularizer = tf.contrib.layers.l2_regularizer(0.01)) ### END CODE HERE ### return Z3 tf.reset_default_graph() with tf.Session() as sess: np.random.seed(1) X, Y = create_placeholders(64, 64, 3, 6) parameters = initialize_parameters() Z3 = forward_propagation(X, parameters) init = tf.global_variables_initializer() sess.run(init) a = sess.run(Z3, {X: np.random.randn(2,64,64,3), Y: np.random.randn(2,6)}) print("Z3 = " + str(a)) # GRADED FUNCTION: compute_cost def compute_cost(Z3, Y): Computes the cost Arguments: Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples) Y -- "true" labels vector placeholder, same shape as Z3 Returns: cost - Tensor of the cost function ### START CODE HERE ### (1 line of code) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = Z3, labels = Y))+tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) ### END CODE HERE ### return cost tf.reset_default_graph() with tf.Session() as sess: np.random.seed(1) X, Y = create_placeholders(64, 64, 3, 6) parameters = initialize_parameters() Z3 = forward_propagation(X, parameters) cost = compute_cost(Z3, Y) init = tf.global_variables_initializer() sess.run(init) a = sess.run(cost, {X: np.random.randn(4,64,64,3), Y: np.random.randn(4,6)}) print("cost = " + str(a)) # GRADED FUNCTION: model def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009, num_epochs = 100, minibatch_size = 64, print_cost = True): Implements a three-layer ConvNet in Tensorflow: CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED Arguments: X_train -- training set, of shape (None, 64, 64, 3) Y_train -- test set, of shape (None, n_y = 6) X_test -- training set, of shape (None, 64, 64, 3) Y_test -- test set, of shape (None, n_y = 6) learning_rate -- learning rate of the optimization num_epochs -- number of epochs of the optimization loop minibatch_size -- size of a minibatch print_cost -- True to print the cost every 100 epochs Returns: train_accuracy -- real number, accuracy on the train set (X_train) test_accuracy -- real number, testing accuracy on the test set (X_test) parameters -- parameters learnt by the model. They can then be used to predict. ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables tf.set_random_seed(1) # to keep results consistent (tensorflow seed) seed = 3 # to keep results consistent (numpy seed) (m, n_H0, n_W0, n_C0) = X_train.shape n_y = Y_train.shape[1] costs = [] # To keep track of the cost # Create Placeholders of the correct shape ### START CODE HERE ### (1 line) X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y) ### END CODE HERE ### # Initialize parameters ### START CODE HERE ### (1 line) parameters = initialize_parameters() ### END CODE HERE ### # Forward propagation: Build the forward propagation in the tensorflow graph ### START CODE HERE ### (1 line) Z3 = forward_propagation(X, parameters) ### END CODE HERE ### # Cost function: Add cost function to tensorflow graph ### START CODE HERE ### (1 line) cost = compute_cost(Z3, Y) ### END CODE HERE ### # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer that minimizes the cost. ### START CODE HERE ### (1 line) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) ### END CODE HERE ### # Initialize all the variables globally init = tf.global_variables_initializer() # Start the session to compute the tensorflow graph with tf.Session() as sess: # Run the initialization sess.run(init) # Do the training loop for epoch in range(num_epochs): minibatch_cost = 0. num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set seed = seed + 1 minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed) for minibatch in minibatches: # Select a minibatch (minibatch_X, minibatch_Y) = minibatch # IMPORTANT: The line that runs the graph on a minibatch. # Run the session to execute the optimizer and the cost, the feedict should contain a minibatch for (X,Y). ### START CODE HERE ### (1 line) _ , temp_cost = sess.run([optimizer,cost],feed_dict={X:minibatch_X, Y:minibatch_Y}) ### END CODE HERE ### minibatch_cost += temp_cost / num_minibatches # Print the cost every epoch if print_cost == True and epoch % 5 == 0: print ("Cost after epoch %i: %f" % (epoch, minibatch_cost)) if print_cost == True and epoch % 1 == 0: costs.append(minibatch_cost) # plot the cost plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per tens)') plt.title("Learning rate =" + str(learning_rate)) plt.show() # Calculate the correct predictions predict_op = tf.argmax(Z3, 1) correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1)) # Calculate accuracy on the test set accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print(accuracy) train_accuracy = accuracy.eval({X: X_train, Y: Y_train}) test_accuracy = accuracy.eval({X: X_test, Y: Y_test}) print("Train Accuracy:", train_accuracy) print("Test Accuracy:", test_accuracy) return train_accuracy, test_accuracy, parameters _, _, parameters = model(X_train, Y_train, X_test, Y_test) fname = "images/thumbs_up.jpg" image = np.array(ndimage.imread(fname, flatten=False)) my_image = scipy.misc.imresize(image, size=(64,64)) plt.imshow(my_image) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Run the next cell to load the "SIGNS" dataset you are going to use. Step2: As a reminder, the SIGNS dataset is a collection of 6 signs representing numbers from 0 to 5. Step3: In Course 2, you had built a fully-connected network for this dataset. But since this is an image dataset, it is more natural to apply a ConvNet to it. Step5: 1.1 - Create placeholders Step7: Expected Output Step9: Expected Output Step11: Expected Output Step13: Expected Output Step14: Run the following cell to train your model for 100 epochs. Check if your cost after epoch 0 and 5 matches our output. If not, stop the cell and go back to your code! Step15: Expected output
15,693
<ASSISTANT_TASK:> Python Code: import numpy as np import scanpy.api as sc from anndata import AnnData from numpy.random import negative_binomial, binomial, seed seed(1234) # n_cluster needs to be smaller than n_simulated_cells, n_marker_genes needs to be smaller than n_simulated_genes n_simulated_cells=1000 n_simulated_genes=100 n_cluster=100 n_marker_genes=10 # Specify parameter between 0 and 1 for zero_inflation and p, positive integer for r # Differential gene expression is simulated using reference parameters for all cells/genes # except for marker genes in the distinct cells. reference_zero_inflation=0.15 reference_p=0.25 reference_n=2 cluster_zero_inflation=0.9 cluster_p=0.5 cluster_n=1 adata=AnnData(np.multiply(binomial(1,reference_zero_inflation,(n_simulated_cells,n_simulated_genes)), negative_binomial(reference_n,reference_p,(n_simulated_cells,n_simulated_genes)))) # adapt marker_genes for cluster adata.X[0:n_cluster,0:n_marker_genes]=np.multiply(binomial(1,cluster_zero_inflation,(n_cluster,n_marker_genes)), negative_binomial(cluster_n,cluster_p,(n_cluster,n_marker_genes))) import pandas as pd smp='true_groups' true_groups_int=np.ones((n_simulated_cells,)) true_groups_int[0:n_cluster]=0 true_groups=list() for i,j in enumerate(true_groups_int): true_groups.append(str(j)) adata.smp['true_groups']=pd.Categorical(true_groups, dtype='category') adata.uns[smp + '_order']=np.asarray(['0','1']) sc.tl.rank_genes_groups(adata, 'true_groups') sc.pl.rank_genes_groups(adata, n_genes=20) sc.tl.rank_genes_groups(adata, 'true_groups', test_type='wilcoxon') sc.pl.rank_genes_groups(adata, n_genes=20) # n_cluster needs to be smaller than n_simulated_cells, n_marker_genes needs to be smaller than n_simulated_genes n_simulated_cells=1000 n_simulated_genes=100 n_cluster=100 n_marker_genes=10 # Specify parameter between 0 and 1 for zero_inflation and p, positive integer for r # Differential gene expression is simulated using reference parameters for all cells/genes # except for marker genes in the distinct cells. reference_zero_inflation=0.15 reference_p=0.5 reference_n=6 cluster_zero_inflation=0.9 cluster_p=0.5 cluster_n=1 adata=AnnData(np.multiply(binomial(1,reference_zero_inflation,(n_simulated_cells,n_simulated_genes)), negative_binomial(reference_n,reference_p,(n_simulated_cells,n_simulated_genes)))) # adapt marker_genes for cluster adata.X[0:n_cluster,0:n_marker_genes]=np.multiply(binomial(1,cluster_zero_inflation,(n_cluster,n_marker_genes)), negative_binomial(cluster_n,cluster_p,(n_cluster,n_marker_genes))) import pandas as pd smp='true_groups' true_groups_int=np.ones((n_simulated_cells,)) true_groups_int[0:n_cluster]=0 true_groups=list() for i,j in enumerate(true_groups_int): true_groups.append(str(j)) adata.smp['true_groups']=pd.Categorical(true_groups, dtype='category') adata.uns[smp + '_order']=np.asarray(['0','1']) sc.tl.rank_genes_groups(adata, 'true_groups') sc.pl.rank_genes_groups(adata, n_genes=20) sc.tl.rank_genes_groups(adata, 'true_groups', test_type='wilcoxon') sc.pl.rank_genes_groups(adata, n_genes=20) # n_cluster needs to be smaller than n_simulated_cells, n_marker_genes needs to be smaller than n_simulated_genes n_simulated_cells=1000 n_simulated_genes=100 n_cluster=100 n_marker_genes=10 # Specify parameter between 0 and 1 for zero_inflation and p, positive integer for r # Differential gene expression is simulated using reference parameters for all cells/genes # except for marker genes in the distinct cells. reference_zero_inflation=0.15 reference_p=0.5 reference_n=6 cluster_zero_inflation=0.9 cluster_p=0.55 cluster_n=2 adata=AnnData(np.multiply(binomial(1,reference_zero_inflation,(n_simulated_cells,n_simulated_genes)), negative_binomial(reference_n,reference_p,(n_simulated_cells,n_simulated_genes)))) # adapt marker_genes for cluster adata.X[0:n_cluster,0:n_marker_genes]=np.multiply(binomial(1,cluster_zero_inflation,(n_cluster,n_marker_genes)), negative_binomial(cluster_n,cluster_p,(n_cluster,n_marker_genes))) smp='true_groups' true_groups_int=np.ones((n_simulated_cells,)) true_groups_int[0:n_cluster]=0 true_groups=list() for i,j in enumerate(true_groups_int): true_groups.append(str(j)) adata.smp['true_groups']=pd.Categorical(true_groups, dtype='category') adata.uns[smp + '_order']=np.asarray(['0','1']) sc.tl.rank_genes_groups(adata, 'true_groups') sc.pl.rank_genes_groups(adata, n_genes=20) sc.tl.rank_genes_groups(adata, 'true_groups', test_type='wilcoxon') sc.pl.rank_genes_groups(adata, n_genes=20) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: First, data following a (zero-inflated) negative binomial (ZINB) distribution is created for testing purposes. Test size and distribution parameters can be specified. Step2: Create data. Step3: Cluster according to true grouping Step4: Testing Step5: As can be seen above, not on only does the wilcoxon-rank-sum test detect all marker genes, but there is also a clear difference to all other genes in ranking. Step6: This parameter initialization leads to the following expectations/ variances Step7: With smaller difference in variance, still all marker genes are detected, but less clearly. Step8: This parameter initialization leads to the following expectations/ variances
15,694
<ASSISTANT_TASK:> Python Code: # pip install cartoframes import pandas as pd stores_df = pd.read_csv('http://libs.cartocdn.com/cartoframes/files/starbucks_brooklyn.csv') stores_df.head() from cartoframes.auth import set_default_credentials set_default_credentials('creds.json') from cartoframes.data.services import Geocoding stores_gdf, _ = Geocoding().geocode(stores_df, street='address') stores_gdf.head() from cartoframes.viz import Map, Layer Map(Layer(stores_gdf)) from cartoframes.viz import Map, Layer, size_continuous_style Map(Layer(stores_gdf, size_continuous_style('revenue', size_range=[10,40]), title='Annual Revenue ($)')) from cartoframes.data.services import Isolines isochrones_gdf, _ = Isolines().isochrones(stores_gdf, [15*60], mode='walk') isochrones_gdf.head() stores_map = Map([ Layer(isochrones_gdf), Layer(stores_gdf, size_continuous_style('revenue', size_range=[10,40]), title='Annual Revenue ($)') ]) stores_map from cartoframes.data.observatory import Catalog datasets_df = Catalog().country('usa').category('demographics').datasets.to_dataframe() datasets_df[datasets_df['is_public_data'] == True] from cartoframes.data.observatory import Dataset dataset = Dataset.get('acs_sociodemogr_b758e778') variables_df = dataset.variables.to_dataframe() variables_df[variables_df['description'].str.contains('total population', case=False, na=False)] from cartoframes.data.observatory import Variable from cartoframes.data.observatory import Enrichment variable = Variable.get('total_pop_3cf008b3') isochrones_gdf = Enrichment().enrich_polygons(isochrones_gdf, [variable]) isochrones_gdf.head() from cartoframes.viz import color_continuous_style Map([ Layer(isochrones_gdf, color_continuous_style('total_pop'), title='Total Population'), Layer(stores_gdf, size_continuous_style('revenue', size_range=[10,40]), title='Annual Revenue ($)') ]) result_map = Map([ Layer( isochrones_gdf, color_continuous_style('total_pop', stroke_width=0, opacity=0.7), title='Total Population', default_widget=True ), Layer( stores_gdf, size_continuous_style('revenue', size_range=[10,40], stroke_color='white'), title='Annual Revenue ($)', default_widget=True ) ]) result_map result_map.publish('starbucks_analysis', password=None, if_exists='replace') from cartoframes import to_carto to_carto(stores_gdf, 'starbucks_stores', if_exists='replace') to_carto(isochrones_gdf, 'starbucks_isochrones', if_exists='replace') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: For other ways to install CARTOframes, check out the Installation guide. Step2: To display your stores as points on a map, you first have to convert the address column into geometries. This process is called geocoding and CARTO provides a straightforward way to do it (you can learn more about it in the Data Services guide). Step3: Now that your credentials are set, we are ready to geocode the dataframe. The resulting data will be a GeoDataFrame. Step4: Done! Now that the stores are geocoded, you will notice a new column named geometry has been added. This column stores the geographic location of each store and it's used to plot each location on the map. Step5: Great! You have a map! Step6: Good job! By using the size continuous visualization style you can see right away where the stores with higher revenue are. By default, visualization styles also provide a popup with the mapped value and an appropriate legend. Step7: There they are! To learn more about creating isochrones and isodistances check out the Data Services guide. Step8: Nice! Let's take the first one (acs_sociodemogr_b758e778) that has aggregated data from 2013 to 2018 and check which of its variables have data about the total population. Step9: We can see the variable that contains the total population is the one with the slug total_pop_3cf008b3. Now we are ready to enrich our areas of influence with that variable. Step10: Great! Let's see the result on a map Step11: At this stage, we could say that the store on the right performs better than others because its area of influence is the one with the lowest population but the store is not the one with the lowest revenue. This insight will help us to focus on them in further analyses. Step12: Cool! Now that you have a small dashboard to play with, let's publish it on CARTO so you are able to share it with anyone. To do this, you just need to call the publish method from the Map class Step13: In order to improve the performance and reduce the size of your map, we recommend to upload the data to CARTO and use the table names in the layers instead. To upload your data, you just need to call to_carto with your GeoDataFrame
15,695
<ASSISTANT_TASK:> Python Code: def parse_barcodes(bcfile, bc_id='BC'): res = {} with open(bcfile, 'r') as fi: for line in fi: fields = line.strip().split(',') if fields[0].startswith(bc_id): res[fields[0]] = fields[1] return res def parse_exp_config(expfile, bc_dict): res = [] fieldnames = ['id', 'sample', 'cond', 'barcode', 'size', 'region', 'Qbit', 'conc', 'dilution'] with open(expfile) as fi: reader = csv.DictReader(fi, fieldnames=fieldnames) for rec in reader: if rec['id']: res.append({ 'sample': rec['sample'], 'bc_id': rec['barcode'], 'bc_seq': bc_dict[rec['barcode']], 'temp': int(rec['cond'][:2]), 'bcm': '+' in rec['cond'], }) return pd.DataFrame.from_records(res) bc_dict = parse_barcodes('../../data/Lexogen_Sense_RNA-Seq.csv') exp_df = parse_exp_config('../../data/2017-03-09_NextSeq.csv', bc_dict) agg_utr = pd.read_csv('../../data/utr.counts.csv') agg_utr def normalize(df, edf, columns=None): ''' Prepares the UTR dataframe (`df`) for log transformation. Adds experiment metadata from `edf`. Adds pseudocounts to `utr_counts` and `UTR_length`. Normalizes counts to UTR length. ''' def pseudo_counts(x): return x + 1 if x == 0 else x df = df.merge(edf, how='left', on='sample') if columns is not None: df = df[columns] # Add pseudocounts to allow log transform later df['utr_counts'] = df['utr_counts'].apply(pseudo_counts) df['UTR_length'] = df['UTR_length'].apply(pseudo_counts) df['utr_norm'] = df['utr_counts'] / df['UTR_length'] return df columns = ['gene', 'TSS', 'start', 'end', 'UTR_length', 'utr_counts', 'sample', 'bcm', 'temp'] utr = normalize(agg_utr, exp_df, columns) utr # build expression matrix X = pd.DataFrame() samples = [] for sample in set(utr['sample']): mask = (utr['sample']==sample) & (utr['bcm']==False) if not utr[mask].empty: X[sample] = utr[mask]['utr_norm'].values samples.append(sample) # Same as .fit() and then .transform() X_std = StandardScaler().fit_transform(X.values.T) X_std sklearn_pca = sklearnPCA(n_components=10) Y = sklearn_pca.fit_transform(X_std) print(Y) print(sklearn_pca.explained_variance_) print(sklearn_pca.explained_variance_ratio_) vdf = pd.DataFrame() vdf['PC'] = [(i+1) for i,x in enumerate(sklearn_pca.explained_variance_ratio_)] vdf['var'] = sklearn_pca.explained_variance_ratio_ (ggplot(vdf, aes(x='PC', y='var')) + geom_point(size=5, alpha=0.3) + ylab('Explained variance') + ggtitle('Unfiltered -BCM') ) pca_df = pd.DataFrame() pca_df['cond'] = ['%doC' % exp_df[exp_df['sample']==sample]['temp'] for sample in samples] pca_df['PC1'] = Y[:,0] pca_df['PC2'] = Y[:,1] pca_df (ggplot(pca_df, aes(x='PC1', y='PC2', color='cond')) + geom_point(size=5, alpha=0.3) + ggtitle('Unfiltered -BCM') ) # build expression matrix X = pd.DataFrame() samples = [] for sample in set(utr['sample']): mask = (utr['sample']==sample) & (utr['bcm']==True) if not utr[mask].empty: X[sample] = utr[mask]['utr_norm'].values samples.append(sample) X_std = StandardScaler().fit_transform(X.values.T) X_std sklearn_pca = sklearnPCA(n_components=10) Y = sklearn_pca.fit_transform(X_std) print(Y) print(sklearn_pca.explained_variance_) print(sklearn_pca.explained_variance_ratio_) vdf = pd.DataFrame() vdf['PC'] = [(i+1) for i,x in enumerate(sklearn_pca.explained_variance_ratio_)] vdf['var'] = sklearn_pca.explained_variance_ratio_ (ggplot(vdf, aes(x='PC', y='var')) + geom_point(size=5, alpha=0.3) + ylab('Explained variance') + ggtitle('Unfiltered +BCM') ) pca_df = pd.DataFrame() pca_df['cond'] = ['%doC' % exp_df[exp_df['sample']==sample]['temp'] for sample in samples] pca_df['PC1'] = Y[:,0] pca_df['PC2'] = Y[:,1] pca_df (ggplot(pca_df, aes(x='PC1', y='PC2', color='cond')) + geom_point(size=5, alpha=0.3) + ggtitle('Unfiltered +BCM') ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Read the counts table Step2: Normalize to UTR length Step3: Notation Step4: Principal Component Analisys (PCA) Step5: Aside Step6: +BCM samples
15,696
<ASSISTANT_TASK:> Python Code: %matplotlib inline import nsfg df = nsfg.ReadFemPreg() df df.birthord.value_counts().sort_index() df.prglngth.value_counts().sort_index() df.agepreg.hist(by=df.birthord) df.totalwgt_lb.mean() df['totalwgt_kg'] = df.totalwgt_lb / 2.20462 df.totalwgt_kg.mean() df.finalwgt.value_counts().sort_index() df.outcome == 1 live = df[df.outcome == 1] len(live) len(live[(live.birthwgt_lb >= 0) & (live.birthwgt_lb <= 5)]) len(live[(live.birthwgt_lb >= 9) & (live.birthwgt_lb <= 95)]) firsts = df[df.birthord==1] others = df[df.birthord>1] len(firsts), len(others) firsts.totalwgt_lb.mean() others.totalwgt_lb.mean() fln = firsts.prglngth.mean() oln = others.prglngth.mean() hdiff = (fln - oln) * (7*24) print "First baby's average pregnancy weeks: %.2f" % fln print "Not first baby's average pregnancy weeks: %.2f" % oln print "Average hours of difference: %.2f" % hdiff <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Print value counts for <tt>birthord</tt> and compare to results published in the codebook Step2: Print value counts for <tt>prglngth</tt> and compare to results published in the codebook Step3: Print value counts for <tt>agepreg</tt> and compare to results published in the codebook. Step4: Compute the mean birthweight. Step5: Create a new column named <tt>totalwgt_kg</tt> that contains birth weight in kilograms. Compute its mean. Remember that when you create a new column, you have to use dictionary syntax, not dot notation. Step6: Look through the codebook and find a variable, other than the ones mentioned in the book, that you find interesting. Compute values counts, means, or other statistics. Step7: Create a boolean Series. Step8: Use a boolean Series to select the records for the pregnancies that ended in live birth. Step9: Count the number of live births with <tt>birthwgt_lb</tt> between 0 and 5 pounds (including both). The result should be 1125. Step10: Count the number of live births with <tt>birthwgt_lb</tt> between 9 and 95 pounds (including both). The result should be 798 Step11: Use <tt>birthord</tt> to select the records for first babies and others. How many are there of each? Step12: Compute the mean weight for first babies and others. Step13: Compute the mean <tt>prglngth</tt> for first babies and others. Compute the difference in means, expressed in hours.
15,697
<ASSISTANT_TASK:> Python Code: path = get_file('nietzsche.txt', origin="https://s3.amazonaws.com/text-datasets/nietzsche.txt") text = open(path).read() print('corpus length:', len(text)) chars = sorted(list(set(text))) vocab_size = len(chars)+1 print('total chars:', vocab_size) chars.insert(0, "\0") ''.join(chars[1:-6]) char_indices = dict((c, i) for i, c in enumerate(chars)) indices_char = dict((i, c) for i, c in enumerate(chars)) idx = [char_indices[c] for c in text] idx[:10] ''.join(indices_char[i] for i in idx[:70]) cs=3 c1_dat = [idx[i] for i in xrange(0, len(idx)-1-cs, cs)] c2_dat = [idx[i+1] for i in xrange(0, len(idx)-1-cs, cs)] c3_dat = [idx[i+2] for i in xrange(0, len(idx)-1-cs, cs)] c4_dat = [idx[i+3] for i in xrange(0, len(idx)-1-cs, cs)] x1 = np.stack(c1_dat[:-2]) x2 = np.stack(c2_dat[:-2]) x3 = np.stack(c3_dat[:-2]) y = np.stack(c4_dat[:-2]) x1[:4], x2[:4], x3[:4] y[:4] x1.shape, y.shape n_fac = 42 def embedding_input(name, n_in, n_out): inp = Input(shape=(1,), dtype='int64', name=name) emb = Embedding(n_in, n_out, input_length=1)(inp) return inp, Flatten()(emb) c1_in, c1 = embedding_input('c1', vocab_size, n_fac) c2_in, c2 = embedding_input('c2', vocab_size, n_fac) c3_in, c3 = embedding_input('c3', vocab_size, n_fac) n_hidden = 256 dense_in = Dense(n_hidden, activation='relu') c1_hidden = dense_in(c1) dense_hidden = Dense(n_hidden, activation='tanh') c2_dense = dense_in(c2) hidden_2 = dense_hidden(c1_hidden) c2_hidden = merge([c2_dense, hidden_2]) c3_dense = dense_in(c3) hidden_3 = dense_hidden(c2_hidden) c3_hidden = merge([c3_dense, hidden_3]) dense_out = Dense(vocab_size, activation='softmax') c4_out = dense_out(c3_hidden) model = Model([c1_in, c2_in, c3_in], c4_out) model.compile(loss='sparse_categorical_crossentropy', optimizer=Adam()) model.optimizer.lr=0.000001 model.fit([x1, x2, x3], y, batch_size=64, nb_epoch=4) model.optimizer.lr=0.01 model.fit([x1, x2, x3], y, batch_size=64, nb_epoch=4) model.optimizer.lr.set_value(0.000001) model.fit([x1, x2, x3], y, batch_size=64, nb_epoch=4) model.optimizer.lr.set_value(0.01) model.fit([x1, x2, x3], y, batch_size=64, nb_epoch=4) def get_next(inp): idxs = [char_indices[c] for c in inp] arrs = [np.array(i)[np.newaxis] for i in idxs] p = model.predict(arrs) i = np.argmax(p) return chars[i] get_next('phi') get_next(' th') get_next(' an') cs=8 c_in_dat = [[idx[i+n] for i in xrange(0, len(idx)-1-cs, cs)] for n in range(cs)] c_out_dat = [idx[i+cs] for i in xrange(0, len(idx)-1-cs, cs)] xs = [np.stack(c[:-2]) for c in c_in_dat] len(xs), xs[0].shape y = np.stack(c_out_dat[:-2]) [xs[n][:cs] for n in range(cs)] y[:cs] n_fac = 42 def embedding_input(name, n_in, n_out): inp = Input(shape=(1,), dtype='int64', name=name+'_in') emb = Embedding(n_in, n_out, input_length=1, name=name+'_emb')(inp) return inp, Flatten()(emb) c_ins = [embedding_input('c'+str(n), vocab_size, n_fac) for n in range(cs)] n_hidden = 256 dense_in = Dense(n_hidden, activation='relu') dense_hidden = Dense(n_hidden, activation='relu', init='identity') dense_out = Dense(vocab_size, activation='softmax') hidden = dense_in(c_ins[0][1]) for i in range(1,cs): c_dense = dense_in(c_ins[i][1]) hidden = dense_hidden(hidden) hidden = merge([c_dense, hidden]) c_out = dense_out(hidden) model = Model([c[0] for c in c_ins], c_out) model.compile(loss='sparse_categorical_crossentropy', optimizer=Adam()) model.fit(xs, y, batch_size=64, nb_epoch=12) def get_next(inp): idxs = [np.array(char_indices[c])[np.newaxis] for c in inp] p = model.predict(idxs) return chars[np.argmax(p)] get_next('for thos') get_next('part of ') get_next('queens a') n_hidden, n_fac, cs, vocab_size = (256, 42, 8, 86) model=Sequential([ Embedding(vocab_size, n_fac, input_length=cs), SimpleRNN(n_hidden, activation='relu', inner_init='identity'), Dense(vocab_size, activation='softmax') ]) model.summary() model.compile(loss='sparse_categorical_crossentropy', optimizer=Adam()) model.fit(np.concatenate(xs,axis=1), y, batch_size=64, nb_epoch=8) def get_next_keras(inp): idxs = [char_indices[c] for c in inp] arrs = np.array(idxs)[np.newaxis,:] p = model.predict(arrs)[0] return chars[np.argmax(p)] get_next_keras('this is ') get_next_keras('part of ') get_next_keras('queens a') #c_in_dat = [[idx[i+n] for i in xrange(0, len(idx)-1-cs, cs)] # for n in range(cs)] c_out_dat = [[idx[i+n] for i in xrange(1, len(idx)-cs, cs)] for n in range(cs)] ys = [np.stack(c[:-2]) for c in c_out_dat] [xs[n][:cs] for n in range(cs)] [ys[n][:cs] for n in range(cs)] dense_in = Dense(n_hidden, activation='relu') dense_hidden = Dense(n_hidden, activation='relu', init='identity') dense_out = Dense(vocab_size, activation='softmax', name='output') inp1 = Input(shape=(n_fac,), name='zeros') hidden = dense_in(inp1) outs = [] for i in range(cs): c_dense = dense_in(c_ins[i][1]) hidden = dense_hidden(hidden) hidden = merge([c_dense, hidden], mode='sum') # every layer now has an output outs.append(dense_out(hidden)) model = Model([inp1] + [c[0] for c in c_ins], outs) model.compile(loss='sparse_categorical_crossentropy', optimizer=Adam()) zeros = np.tile(np.zeros(n_fac), (len(xs[0]),1)) zeros.shape model.fit([zeros]+xs, ys, batch_size=64, nb_epoch=12) def get_nexts(inp): idxs = [char_indices[c] for c in inp] arrs = [np.array(i)[np.newaxis] for i in idxs] p = model.predict([np.zeros(n_fac)[np.newaxis,:]] + arrs) print(list(inp)) return [chars[np.argmax(o)] for o in p] get_nexts(' this is') get_nexts(' part of') n_hidden, n_fac, cs, vocab_size model=Sequential([ Embedding(vocab_size, n_fac, input_length=cs), SimpleRNN(n_hidden, return_sequences=True, activation='relu', inner_init='identity'), TimeDistributed(Dense(vocab_size, activation='softmax')), ]) model.summary() model.compile(loss='sparse_categorical_crossentropy', optimizer=Adam()) xs[0].shape x_rnn=np.stack(np.squeeze(xs), axis=1) y_rnn=np.atleast_3d(np.stack(ys, axis=1)) x_rnn.shape, y_rnn.shape model.fit(x_rnn, y_rnn, batch_size=64, nb_epoch=8) def get_nexts_keras(inp): idxs = [char_indices[c] for c in inp] arr = np.array(idxs)[np.newaxis,:] p = model.predict(arr)[0] print(list(inp)) return [chars[np.argmax(o)] for o in p] get_nexts_keras(' this is') model=Sequential([ SimpleRNN(n_hidden, return_sequences=True, input_shape=(cs, vocab_size), activation='relu', inner_init='identity'), TimeDistributed(Dense(vocab_size, activation='softmax')), ]) model.compile(loss='categorical_crossentropy', optimizer=Adam()) oh_ys = [to_categorical(o, vocab_size) for o in ys] oh_y_rnn=np.stack(oh_ys, axis=1) oh_xs = [to_categorical(o, vocab_size) for o in xs] oh_x_rnn=np.stack(oh_xs, axis=1) oh_x_rnn.shape, oh_y_rnn.shape model.fit(oh_x_rnn, oh_y_rnn, batch_size=64, nb_epoch=8) def get_nexts_oh(inp): idxs = np.array([char_indices[c] for c in inp]) arr = to_categorical(idxs, vocab_size) p = model.predict(arr[np.newaxis,:])[0] print(list(inp)) return [chars[np.argmax(o)] for o in p] get_nexts_oh(' this is') bs=64 model=Sequential([ Embedding(vocab_size, n_fac, input_length=cs, batch_input_shape=(bs,8)), BatchNormalization(), LSTM(n_hidden, return_sequences=True, stateful=True), TimeDistributed(Dense(vocab_size, activation='softmax')), ]) model.compile(loss='sparse_categorical_crossentropy', optimizer=Adam()) mx = len(x_rnn)//bs*bs model.fit(x_rnn[:mx], y_rnn[:mx], batch_size=bs, nb_epoch=4, shuffle=False) model.optimizer.lr=1e-4 model.fit(x_rnn[:mx], y_rnn[:mx], batch_size=bs, nb_epoch=4, shuffle=False) model.fit(x_rnn[:mx], y_rnn[:mx], batch_size=bs, nb_epoch=4, shuffle=False) n_input = vocab_size n_output = vocab_size def init_wgts(rows, cols): scale = math.sqrt(2/rows) return shared(normal(scale=scale, size=(rows, cols)).astype(np.float32)) def init_bias(rows): return shared(np.zeros(rows, dtype=np.float32)) def wgts_and_bias(n_in, n_out): return init_wgts(n_in, n_out), init_bias(n_out) def id_and_bias(n): return shared(np.eye(n, dtype=np.float32)), init_bias(n) t_inp = T.matrix('inp') t_outp = T.matrix('outp') t_h0 = T.vector('h0') lr = T.scalar('lr') all_args = [t_h0, t_inp, t_outp, lr] W_h = id_and_bias(n_hidden) W_x = wgts_and_bias(n_input, n_hidden) W_y = wgts_and_bias(n_hidden, n_output) w_all = list(chain.from_iterable([W_h, W_x, W_y])) def step(x, h, W_h, b_h, W_x, b_x, W_y, b_y): # Calculate the hidden activations h = nnet.relu(T.dot(x, W_x) + b_x + T.dot(h, W_h) + b_h) # Calculate the output activations y = nnet.softmax(T.dot(h, W_y) + b_y) # Return both (the 'Flatten()' is to work around a theano bug) return h, T.flatten(y, 1) [v_h, v_y], _ = theano.scan(step, sequences=t_inp, outputs_info=[t_h0, None], non_sequences=w_all) error = nnet.categorical_crossentropy(v_y, t_outp).sum() g_all = T.grad(error, w_all) def upd_dict(wgts, grads, lr): return OrderedDict({w: w-g*lr for (w,g) in zip(wgts,grads)}) upd = upd_dict(w_all, g_all, lr) fn = theano.function(all_args, error, updates=upd, allow_input_downcast=True) X = oh_x_rnn Y = oh_y_rnn X.shape, Y.shape err=0.0; l_rate=0.01 for i in range(len(X)): err+=fn(np.zeros(n_hidden), X[i], Y[i], l_rate) if i % 1000 == 999: print ("Error:{:.3f}".format(err/1000)) err=0.0 f_y = theano.function([t_h0, t_inp], v_y, allow_input_downcast=True) pred = np.argmax(f_y(np.zeros(n_hidden), X[6]), axis=1) act = np.argmax(X[6], axis=1) [indices_char[o] for o in act] [indices_char[o] for o in pred] def sigmoid(x): return 1/(1+np.exp(-x)) def sigmoid_d(x): output = sigmoid(x) return output*(1-output) def relu(x): return np.maximum(0., x) def relu_d(x): return (x > 0.)*1. relu(np.array([3.,-3.])), relu_d(np.array([3.,-3.])) def dist(a,b): return pow(a-b,2) def dist_d(a,b): return 2*(a-b) import pdb eps = 1e-7 def x_entropy(pred, actual): return -np.sum(actual * np.log(np.clip(pred, eps, 1-eps))) def x_entropy_d(pred, actual): return -actual/pred def softmax(x): return np.exp(x)/np.exp(x).sum() def softmax_d(x): sm = softmax(x) res = np.expand_dims(-sm,-1)*sm res[np.diag_indices_from(res)] = sm*(1-sm) return res test_preds = np.array([0.2,0.7,0.1]) test_actuals = np.array([0.,1.,0.]) nnet.categorical_crossentropy(test_preds, test_actuals).eval() x_entropy(test_preds, test_actuals) test_inp = T.dvector() test_out = nnet.categorical_crossentropy(test_inp, test_actuals) test_grad = theano.function([test_inp], T.grad(test_out, test_inp)) test_grad(test_preds) x_entropy_d(test_preds, test_actuals) pre_pred = random(oh_x_rnn[0][0].shape) preds = softmax(pre_pred) actual = oh_x_rnn[0][0] np.allclose(softmax_d(pre_pred).dot(x_entropy_d(preds,actual)), preds-actual) softmax(test_preds) nnet.softmax(test_preds).eval() test_out = T.flatten(nnet.softmax(test_inp)) test_grad = theano.function([test_inp], theano.gradient.jacobian(test_out, test_inp)) test_grad(test_preds) softmax_d(test_preds) act=relu act_d = relu_d loss=x_entropy loss_d=x_entropy_d def scan(fn, start, seq): res = [] prev = start for s in seq: app = fn(prev, s) res.append(app) prev = app return res scan(lambda prev,curr: prev+curr, 0, range(5)) inp = oh_x_rnn outp = oh_y_rnn n_input = vocab_size n_output = vocab_size inp.shape, outp.shape def one_char(prev, item): # Previous state tot_loss, pre_hidden, pre_pred, hidden, ypred = prev # Current inputs and output x, y = item pre_hidden = np.dot(x,w_x) + np.dot(hidden,w_h) hidden = act(pre_hidden) pre_pred = np.dot(hidden,w_y) ypred = softmax(pre_pred) return ( # Keep track of loss so we can report it tot_loss+loss(ypred, y), # Used in backprop pre_hidden, pre_pred, # Used in next iteration hidden, # To provide predictions ypred) def get_chars(n): return zip(inp[n], outp[n]) def one_fwd(n): return scan(one_char, (0,0,0,np.zeros(n_hidden),0), get_chars(n)) # "Columnify" a vector def col(x): return x[:,newaxis] def one_bkwd(args, n): global w_x,w_y,w_h i=inp[n] # 8x86 o=outp[n] # 8x86 d_pre_hidden = np.zeros(n_hidden) # 256 for p in reversed(range(len(i))): totloss, pre_hidden, pre_pred, hidden, ypred = args[p] x=i[p] # 86 y=o[p] # 86 d_pre_pred = softmax_d(pre_pred).dot(loss_d(ypred,y)) # 86 d_pre_hidden = (np.dot(d_pre_hidden, w_h.T) + np.dot(d_pre_pred,w_y.T)) * act_d(pre_hidden) # 256 # d(loss)/d(w_y) = d(loss)/d(pre_pred) * d(pre_pred)/d(w_y) w_y -= col(hidden) * d_pre_pred * alpha # d(loss)/d(w_h) = d(loss)/d(pre_hidden[p-1]) * d(pre_hidden[p-1])/d(w_h) if (p>0): w_h -= args[p-1][3].dot(d_pre_hidden) * alpha w_x -= col(x)*d_pre_hidden * alpha return d_pre_hidden scale=math.sqrt(2./n_input) w_x = normal(scale=scale, size=(n_input,n_hidden)) w_y = normal(scale=scale, size=(n_hidden, n_output)) w_h = np.eye(n_hidden, dtype=np.float32) overallError=0 alpha=0.0001 for n in range(10000): res = one_fwd(n) overallError+=res[-1][0] deriv = one_bkwd(res, n) if(n % 1000 == 999): print ("Error:{:.4f}; Gradient:{:.5f}".format( overallError/1000, np.linalg.norm(deriv))) overallError=0 model=Sequential([ GRU(n_hidden, return_sequences=True, input_shape=(cs, vocab_size), activation='relu', inner_init='identity'), TimeDistributed(Dense(vocab_size, activation='softmax')), ]) model.compile(loss='categorical_crossentropy', optimizer=Adam()) model.fit(oh_x_rnn, oh_y_rnn, batch_size=64, nb_epoch=8) get_nexts_oh(' this is') W_h = id_and_bias(n_hidden) W_x = init_wgts(n_input, n_hidden) W_y = wgts_and_bias(n_hidden, n_output) rW_h = init_wgts(n_hidden, n_hidden) rW_x = wgts_and_bias(n_input, n_hidden) uW_h = init_wgts(n_hidden, n_hidden) uW_x = wgts_and_bias(n_input, n_hidden) w_all = list(chain.from_iterable([W_h, W_y, uW_x, rW_x])) w_all.extend([W_x, uW_h, rW_h]) def gate(x, h, W_h, W_x, b_x): return nnet.sigmoid(T.dot(x, W_x) + b_x + T.dot(h, W_h)) def step(x, h, W_h, b_h, W_y, b_y, uW_x, ub_x, rW_x, rb_x, W_x, uW_h, rW_h): reset = gate(x, h, rW_h, rW_x, rb_x) update = gate(x, h, uW_h, uW_x, ub_x) h_new = gate(x, h * reset, W_h, W_x, b_h) h = update*h + (1-update)*h_new y = nnet.softmax(T.dot(h, W_y) + b_y) return h, T.flatten(y, 1) [v_h, v_y], _ = theano.scan(step, sequences=t_inp, outputs_info=[t_h0, None], non_sequences=w_all) error = nnet.categorical_crossentropy(v_y, t_outp).sum() g_all = T.grad(error, w_all) upd = upd_dict(w_all, g_all, lr) fn = theano.function(all_args, error, updates=upd, allow_input_downcast=True) err=0.0; l_rate=0.1 for i in range(len(X)): err+=fn(np.zeros(n_hidden), X[i], Y[i], l_rate) if i % 1000 == 999: l_rate *= 0.95 print ("Error:{:.2f}".format(err/1000)) err=0.0 W = (shared(np.concatenate([np.eye(n_hidden), normal(size=(n_input, n_hidden))]) .astype(np.float32)), init_bias(n_hidden)) rW = wgts_and_bias(n_input+n_hidden, n_hidden) uW = wgts_and_bias(n_input+n_hidden, n_hidden) W_y = wgts_and_bias(n_hidden, n_output) w_all = list(chain.from_iterable([W, W_y, uW, rW])) def gate(m, W, b): return nnet.sigmoid(T.dot(m, W) + b) def step(x, h, W, b, W_y, b_y, uW, ub, rW, rb): m = T.concatenate([h, x]) reset = gate(m, rW, rb) update = gate(m, uW, ub) m = T.concatenate([h*reset, x]) h_new = gate(m, W, b) h = update*h + (1-update)*h_new y = nnet.softmax(T.dot(h, W_y) + b_y) return h, T.flatten(y, 1) [v_h, v_y], _ = theano.scan(step, sequences=t_inp, outputs_info=[t_h0, None], non_sequences=w_all) def upd_dict(wgts, grads, lr): return OrderedDict({w: w-g*lr for (w,g) in zip(wgts,grads)}) error = nnet.categorical_crossentropy(v_y, t_outp).sum() g_all = T.grad(error, w_all) upd = upd_dict(w_all, g_all, lr) fn = theano.function(all_args, error, updates=upd, allow_input_downcast=True) err=0.0; l_rate=0.01 for i in range(len(X)): err+=fn(np.zeros(n_hidden), X[i], Y[i], l_rate) if i % 1000 == 999: print ("Error:{:.2f}".format(err/1000)) err=0.0 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Sometimes it's useful to have a zero value in the dataset, e.g. for padding Step2: Map from chars to indices and back again Step3: idx will be the data we use from now own - it simply converts all the characters to their index (based on the mapping above) Step4: 3 char model Step5: Our inputs Step6: Our output Step7: The first 4 inputs and outputs Step8: The number of latent factors to create (i.e. the size of the embedding matrix) Step9: Create inputs and embedding outputs for each of our 3 character inputs Step10: Create and train model Step11: This is the 'green arrow' from our diagram - the layer operation from input to hidden. Step12: Our first hidden activation is simply this function applied to the result of the embedding of the first character. Step13: This is the 'orange arrow' from our diagram - the layer operation from hidden to hidden. Step14: Our second and third hidden activations sum up the previous hidden state (after applying dense_hidden) to the new input state. Step15: This is the 'blue arrow' from our diagram - the layer operation from hidden to output. Step16: The third hidden state is the input to our output layer. Step17: Test model Step18: Our first RNN! Step19: For each of 0 through 7, create a list of every 8th character with that starting point. These will be the 8 inputs to out model. Step20: Then create a list of the next character in each of these series. This will be the labels for our model. Step21: So each column below is one series of 8 characters from the text. Step22: ...and this is the next character after each sequence. Step23: Create and train model Step24: The first character of each sequence goes through dense_in(), to create our first hidden activations. Step25: Then for each successive layer we combine the output of dense_in() on the next character with the output of dense_hidden() on the current hidden state, to create the new hidden state. Step26: Putting the final hidden state through dense_out() gives us our output. Step27: So now we can create our model. Step28: Test model Step29: Our first RNN with keras! Step30: This is nearly exactly equivalent to the RNN we built ourselves in the previous section. Step31: Returning sequences Step32: Reading down each column shows one set of inputs and outputs. Step33: Create and train model Step34: We're going to pass a vector of all zeros as our starting point - here's our input layers for that Step35: Test model Step36: Sequence model with keras Step37: To convert our previous keras model into a sequence model, simply add the 'return_sequences=True' parameter, and add TimeDistributed() around our dense layer. Step38: One-hot sequence model with keras Step39: Stateful model with keras Step40: A stateful model is easy to create (just add "stateful=True") but harder to train. We had to add batchnorm and use LSTM to get reasonable results. Step41: Since we're using a fixed batch shape, we have to ensure our inputs and outputs are a even multiple of the batch size. Step42: Theano RNN Step43: Using raw theano, we have to create our weight matrices and bias vectors ourselves - here are the functions we'll use to do so (using glorot initialization). Step44: We return the weights and biases together as a tuple. For the hidden weights, we'll use an identity initialization (as recommended by Hinton.) Step45: Theano doesn't actually do any computations until we explicitly compile and evaluate the function (at which point it'll be turned into CUDA code and sent off to the GPU). So our job is to describe the computations that we'll want theano to do - the first step is to tell theano what inputs we'll be providing to our computation Step46: Now we're ready to create our intial weight matrices. Step47: Theano handles looping by using the GPU scan operation. We have to tell theano what to do at each step through the scan - this is the function we'll use, which does a single forward pass for one character Step48: Now we can provide everything necessary for the scan operation, so we can setup that up - we have to pass in the function to call at each step, the sequence to step through, the initial values of the outputs, and any other arguments to pass to the step function. Step49: We can now calculate our loss function, and all of our gradients, with just a couple of lines of code! Step50: We even have to show theano how to do SGD - so we set up this dictionary of updates to complete after every forward pass, which apply to standard SGD update rule to every weight. Step51: We're finally ready to compile the function! Step52: To use it, we simply loop through our input data, calling the function compiled above, and printing our progress from time to time. Step53: Pure python RNN! Step54: We also have to define our own scan function. Since we're not worrying about running things in parallel, it's very simple to implement Step55: ...for instance, scan on + is the cumulative sum. Step56: Set up training Step57: Here's the function to do a single forward pass of an RNN, for a single character. Step58: We use scan to apply the above to a whole sequence of characters. Step59: Now we can define the backward step. We use a loop to go through every element of the sequence. The derivatives are applying the chain rule to each step, and accumulating the gradients across the sequence. Step60: Now we can set up our initial weight matrices. Note that we're not using bias at all in this example, in order to keep things simpler. Step61: Our loop looks much like the theano loop in the previous section, except that we have to call the backwards step ourselves. Step62: Keras GRU Step63: Theano GRU Step64: Here's the definition of a gate - it's just a sigmoid applied to the addition of the dot products of the input vectors. Step65: Our step is nearly identical to before, except that we multiply our hidden state by our reset gate, and we update our hidden state based on the update gate. Step66: Everything from here on is identical to our simple RNN in theano. Step67: Combined weights
15,698
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt %matplotlib inline before = np.loadtxt('Data/questionnaire_before.txt',delimiter=',') after = np.loadtxt('Data/questionnaire_after.txt',delimiter=',') form = np.loadtxt('Data/questionnaire_form.txt',delimiter=',') questions = np.array(range(1,15)) form_quest = np.array([1,5,10,9,13,6,3,8,4,7,2,12,11,14]) before_m = before.mean(axis=0) after_m = after.mean(axis=0) form_m = form.mean(axis=0) before fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(111) ax.grid(color='#E6E6E6',linewidth=2,linestyle='-',) ax.plot(before_m,questions,'o-',color='DeepSkyBlue',label='Before',lw=4,ms=10,mew=0) ax.plot(after_m,questions-0.2,'o-',color='DarkMagenta',label='After',lw=4,ms=10,mew=0) [line.set_zorder(3) for line in ax.lines] ax.tick_params(axis='both',color='#E6E6E6') ax.spines['top'].set_color('#E6E6E6') ax.spines['bottom'].set_color('#E6E6E6') ax.spines['left'].set_color('#E6E6E6') ax.spines['right'].set_color('#E6E6E6') ax.set_xlim(0,6) ax.set_ylim(15,0) ax.set_ylabel('Statement Number') ax.legend(loc=2,frameon=False) ax.set_xticklabels(['','Completely agree','','Neither','','Completely Disagree','']) before_responses = np.zeros((5,14)) after_responses = np.zeros((5,14)) form_responses = np.zeros((5,14)) for ii in range(14): for jj in range(5): before_responses[jj,ii] = sum(before[:,ii] == jj+1) after_responses[jj,ii] = sum(after[:,ii] == jj+1) form_responses[jj,ii] = sum(form[:,ii] == jj+1) fig, ax = plt.subplots(1, 1, figsize=(10,5)) #Add nice light grey boundaries and grid: ax.tick_params(axis='both', color='#E6E6E6') ax.spines['top'].set_color('#E6E6E6') ax.spines['bottom'].set_color('#E6E6E6') ax.spines['left'].set_color('#E6E6E6') ax.spines['right'].set_color('#E6E6E6') ax.vlines(np.arange(0.5,15,1), 0.5,5.5, lw=2, colors='#E6E6E6') ax.hlines(np.arange(0.5,6,1), 0.5,14.5, lw=2, colors='#E6E6E6') #Plot the heatmap data p = ax.imshow(before_responses, origin='lower', cmap='Blues', extent=[0.5, 14.5, 0.5, 5.5], interpolation='nearest') cb = plt.colorbar(p, aspect=6.5, fraction=0.05) cb.set_label('Response Counts') ax.set_yticklabels(['', 'Completely agree', '', 'Neither', '', 'Completely Disagree']) ax.set_xlabel('Statement') from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.ticker import MultipleLocator fig, axs = plt.subplots(3, 1, figsize=(10,15)) #Add nice light grey boundaries and grid: for ax in axs.reshape(-1): ax.tick_params(axis='both', color='#E6E6E6') ax.spines['top'].set_color('#E6E6E6') ax.spines['bottom'].set_color('#E6E6E6') ax.spines['left'].set_color('#E6E6E6') ax.spines['right'].set_color('#E6E6E6') ax.vlines(np.arange(0.5, 15, 1), 0.5, 5.5, lw=2, colors='#E6E6E6') ax.hlines(np.arange(0.5, 6, 1), 0.5, 14.5, lw=2, colors='#E6E6E6') #Plot the heatmap data p = axs[0].imshow(before_responses, origin='lower', cmap='Blues', extent=[0.5, 14.5, 0.5, 5.5], interpolation='nearest') div1 = make_axes_locatable(axs[0]) cbloc = div1.append_axes("right", size="5%", pad=0.05) cb1 = plt.colorbar(p, cax=cbloc, ticks=MultipleLocator(1.0)) axs[0].set_title('Before') p = axs[1].imshow(after_responses, origin='lower', cmap='RdPu', extent=[0.5, 14.5, 0.5, 5.5], interpolation='nearest') div2 = make_axes_locatable(axs[1]) cbloc = div2.append_axes("right", size="5%", pad=0.05) cb2 = plt.colorbar(p, cax=cbloc, ticks=MultipleLocator(1.0)) axs[1].set_title('After') p = axs[2].imshow(form_responses, origin='lower', cmap='Greens', extent=[0.5, 14.5, 0.5, 5.5], interpolation='nearest') div3 = make_axes_locatable(axs[2]) cbloc = div3.append_axes("right", size="5%", pad=0.05) cb3 = plt.colorbar(p, cax=cbloc, ticks=MultipleLocator(1.0)) axs[2].set_title('Form') for ax in axs: ax.set_yticklabels(['', 'Completely agree', '', 'Neither', '', 'Completely Disagree']) ax.set_xlabel('Statement') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As you can see above, the data as provided were arranged with rows for each question, and the responses of each individual as the columns. Step2: There are several issues with the above plot. Firstly, as discussed above, we have used the mean of the responses to each statement. While this <i>does</i> give a rough feeling of the overal tone, it loses information. We could add error bars to the points to indicate the spread in the responses. Step3: Which, I hope you agree, is a very attractive and informative plot.
15,699
<ASSISTANT_TASK:> Python Code: success = True # We'll use this to keep track of the various tests failures = [] try: import numpy as np import scipy print "numpy and scipy imported -- success!" except: success = False msg = "* There was a problem importing numpy or scipy. You will definitely need these!" print msg failures.append(msg) try: import matplotlib import matplotlib.pyplot as plt %matplotlib inline except: success = False msg = "* There was a problem importing matplotlib. You will definitely need this" failures.append(msg) plt.plot([1, 2, 3], [1, 4, 9], "ro--") try: import pandas, PyQt4, enaml print "pandas, PyQt4, and enaml imported -- success!" except: success = False msg = "* There was a problem importing pandas, pyqt, or enaml. You will need these for Days 2 and 3." print msg failures.append(msg) try: import h5py from mpl_toolkits.basemap import Basemap print "h5py and Basemap imported -- success!" except: success = False msg = "* There was a problem with h5py and/or Basemap. You will need these for Day 2." failures.append(msg) # Basemap Test try: f = plt.figure(1, figsize=(14.0, 10.0)) f.suptitle("Basemap - First Map") f.text(0.05, 0.95, "Mollewide") f.subplots_adjust(left=0.05, right=0.95, top=0.80, bottom=0.05, wspace=0.2, hspace=0.4) f.add_subplot(1, 1, 1) b = Basemap(projection="moll", lon_0=0, resolution='c') b.drawcoastlines() b.drawparallels(np.arange( -90.0, 90.0, 20.0)) b.drawmeridians(np.arange(-180.0, 181.0, 20.0)) except: success = False msg = "* There was a problem creating a Basemap plot. You will need this for Day 2." failures.append(msg) if success: print Congratulations! Your python environment seems to be working properly. We look forward to seeing you at the Boot Camp! elif failures: print The following problems occurred: %s. Please contact us and we will try to help you fix things. % ("\n".join(failures)) else: print There was a problem with your python environment -- please contact us and we will try to help you figure out what happened. <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: You should see a simple plot below the next cell. Step5: There should be a Basemap plot displayed below this cell.