Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
AOC_ALDi / README.md
Zaid's picture
Upload README.md with huggingface_hub
e9f8caa verified

Dataset Card for AOC_ALDi

Table of Contents

Dataset Description

  • Homepage: [info]
  • Repository: [info]
  • Paper: [info]
  • Leaderboard: [info]
  • Point of Contact: [info]

Dataset Summary

[More Information Needed]

Supported Tasks and Leaderboards

[More Information Needed]

Languages

[More Information Needed]

Dataset Structure

Data Instances

[More Information Needed]

Data Fields

[More Information Needed]

Data Splits

[More Information Needed]

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

@inproceedings{keleg-etal-2023-aldi,
    title = "{ALD}i: Quantifying the {A}rabic Level of Dialectness of Text",
    author = "Keleg, Amr  and
      Goldwater, Sharon  and
      Magdy, Walid",
    editor = "Bouamor, Houda  and
      Pino, Juan  and
      Bali, Kalika",
    booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2023",
    address = "Singapore",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.emnlp-main.655",
    doi = "10.18653/v1/2023.emnlp-main.655",
    pages = "10597--10611",
    abstract = "Transcribed speech and user-generated text in Arabic typically contain a mixture of Modern Standard Arabic (MSA), the standardized language taught in schools, and Dialectal Arabic (DA), used in daily communications. To handle this variation, previous work in Arabic NLP has focused on Dialect Identification (DI) on the sentence or the token level. However, DI treats the task as binary, whereas we argue that Arabic speakers perceive a spectrum of dialectness, which we operationalize at the sentence level as the Arabic Level of Dialectness (ALDi), a continuous linguistic variable. We introduce the AOC-ALDi dataset (derived from the AOC dataset), containing 127,835 sentences (17{\%} from news articles and 83{\%} from user comments on those articles) which are manually labeled with their level of dialectness. We provide a detailed analysis of AOC-ALDi and show that a model trained on it can effectively identify levels of dialectness on a range of other corpora (including dialects and genres not included in AOC-ALDi), providing a more nuanced picture than traditional DI systems. Through case studies, we illustrate how ALDi can reveal Arabic speakers{'} stylistic choices in different situations, a useful property for sociolinguistic analyses.",
}

Contributions

Thanks to @github-username for adding this dataset.