FireRisk / README.md
blanchon's picture
🤗 Push-to-Hub FireRisk
234b2e7
|
raw
history blame
2.23 kB
---
language: en
license: unknown
task_categories:
- image-classification
paperswithcode_id: firerisk
pretty_name: FireRisk
tags:
- remote-sensing
- earth-observation
- geospatial
- aerial-imagery
- land-cover-classification
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': high
'1': low
'2': moderate
'3': non-burnable
'4': very_high
'5': very_low
'6': water
splits:
- name: train
num_bytes: 11575141474.625
num_examples: 70331
download_size: 11575727336
dataset_size: 11575141474.625
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# FireRisk
<!-- Dataset thumbnail -->
![FireRisk](./thumbnail.jpg)
<!-- Provide a quick summary of the dataset. -->
The FireRisk dataset is a dataset for remote sensing fire risk classification.
- **Paper:** https://arxiv.org/abs/2303.07035
- **Homepage:** https://github.com/CharmonyShen/FireRisk
## Description
<!-- Provide a longer summary of what this dataset is. -->
- **Total Number of Images**: 91872
- **Bands**: 3 (RGB)
- **Image Size**: 320x320
- **101,878 tree annotations**
- **Image Resolution**: 1m
- **Land Cover Classes**: 7
- **Classes**: high, low, moderate, non-burnable, very_high, very_low, water
- **Source**: NAIP Aerial
## Usage
To use this dataset, simply use `datasets.load_dataset("blanchon/FireRisk")`.
<!-- Provide any additional information on how to use this dataset. -->
```python
from datasets import load_dataset
FireRisk = load_dataset("blanchon/FireRisk")
```
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
If you use the EuroSAT dataset in your research, please consider citing the following publication:
```bibtex
@article{shen2023firerisk,
title = {FireRisk: A Remote Sensing Dataset for Fire Risk Assessment with Benchmarks Using Supervised and Self-supervised Learning},
author = {Shuchang Shen and Sachith Seneviratne and Xinye Wanyan and Michael Kirley},
year = {2023},
journal = {arXiv preprint arXiv: 2303.07035}
}
```