Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
tweet_topic_single / README.md
asahi417's picture
Update README.md
cb81707
---
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 1k<10K
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: TweetTopicSingle
---
# Dataset Card for "cardiffnlp/tweet_topic_single"
## Dataset Description
- **Paper:** [https://arxiv.org/abs/2209.09824](https://arxiv.org/abs/2209.09824)
- **Dataset:** Tweet Topic Dataset
- **Domain:** Twitter
- **Number of Class:** 6
### Dataset Summary
This is the official repository of TweetTopic (["Twitter Topic Classification
, COLING main conference 2022"](https://arxiv.org/abs/2209.09824)), a topic classification dataset on Twitter with 6 labels.
Each instance of TweetTopic comes with a timestamp which distributes from September 2019 to August 2021.
See [cardiffnlp/tweet_topic_multi](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi) for multi label version of TweetTopic.
The tweet collection used in TweetTopic is same as what used in [TweetNER7](https://huggingface.co/datasets/tner/tweetner7).
The dataset is integrated in [TweetNLP](https://tweetnlp.org/) too.
### Preprocessing
We pre-process tweets before the annotation to normalize some artifacts, converting URLs into a special token `{{URL}}` and non-verified usernames into `{{USERNAME}}`.
For verified usernames, we replace its display name (or account name) with symbols `{@}`.
For example, a tweet
```
Get the all-analog Classic Vinyl Edition
of "Takin' Off" Album from @herbiehancock
via @bluenoterecords link below:
http://bluenote.lnk.to/AlbumOfTheWeek
```
is transformed into the following text.
```
Get the all-analog Classic Vinyl Edition
of "Takin' Off" Album from {@herbiehancock@}
via {@bluenoterecords@} link below: {{URL}}
```
A simple function to format tweet follows below.
```python
import re
from urlextract import URLExtract
extractor = URLExtract()
def format_tweet(tweet):
# mask web urls
urls = extractor.find_urls(tweet)
for url in urls:
tweet = tweet.replace(url, "{{URL}}")
# format twitter account
tweet = re.sub(r"\b(\s*)(@[\S]+)\b", r'\1{\2@}', tweet)
return tweet
target = """Get the all-analog Classic Vinyl Edition of "Takin' Off" Album from @herbiehancock via @bluenoterecords link below: http://bluenote.lnk.to/AlbumOfTheWeek"""
target_format = format_tweet(target)
print(target_format)
'Get the all-analog Classic Vinyl Edition of "Takin\' Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below: {{URL}}'
```
### Data Splits
| split | number of texts | description |
|:------------------------|-----:|------:|
| test_2020 | 376 | test dataset from September 2019 to August 2020 |
| test_2021 | 1693 | test dataset from September 2020 to August 2021 |
| train_2020 | 2858 | training dataset from September 2019 to August 2020 |
| train_2021 | 1516 | training dataset from September 2020 to August 2021 |
| train_all | 4374 | combined training dataset of `train_2020` and `train_2021` |
| validation_2020 | 352 | validation dataset from September 2019 to August 2020 |
| validation_2021 | 189 | validation dataset from September 2020 to August 2021 |
| train_random | 2830 | randomly sampled training dataset with the same size as `train_2020` from `train_all` |
| validation_random | 354 | randomly sampled training dataset with the same size as `validation_2020` from `validation_all` |
| test_coling2022_random | 3399 | random split used in the COLING 2022 paper |
| train_coling2022_random | 3598 | random split used in the COLING 2022 paper |
| test_coling2022 | 3399 | temporal split used in the COLING 2022 paper |
| train_coling2022 | 3598 | temporal split used in the COLING 2022 paper |
For the temporal-shift setting, model should be trained on `train_2020` with `validation_2020` and evaluate on `test_2021`.
In general, model would be trained on `train_all`, the most representative training set with `validation_2021` and evaluate on `test_2021`.
**IMPORTANT NOTE:** To get a result that is comparable with the results of the COLING 2022 Tweet Topic paper, please use `train_coling2022` and `test_coling2022` for temporal-shift, and `train_coling2022_random` and `test_coling2022_random` fir random split (the coling2022 split does not have validation set).
### Models
| model | training data | F1 | F1 (macro) | Accuracy |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|---------:|-------------:|-----------:|
| [cardiffnlp/roberta-large-tweet-topic-single-all](https://huggingface.co/cardiffnlp/roberta-large-tweet-topic-single-all) | all (2020 + 2021) | 0.896043 | 0.800061 | 0.896043 |
| [cardiffnlp/roberta-base-tweet-topic-single-all](https://huggingface.co/cardiffnlp/roberta-base-tweet-topic-single-all) | all (2020 + 2021) | 0.887773 | 0.79793 | 0.887773 |
| [cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-all](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-all) | all (2020 + 2021) | 0.892499 | 0.774494 | 0.892499 |
| [cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-all](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-all) | all (2020 + 2021) | 0.890136 | 0.776025 | 0.890136 |
| [cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all) | all (2020 + 2021) | 0.894861 | 0.800952 | 0.894861 |
| [cardiffnlp/roberta-large-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/roberta-large-tweet-topic-single-2020) | 2020 only | 0.878913 | 0.70565 | 0.878913 |
| [cardiffnlp/roberta-base-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/roberta-base-tweet-topic-single-2020) | 2020 only | 0.868281 | 0.729667 | 0.868281 |
| [cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-2020) | 2020 only | 0.882457 | 0.740187 | 0.882457 |
| [cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-2020) | 2020 only | 0.87596 | 0.746275 | 0.87596 |
| [cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-2020) | 2020 only | 0.877732 | 0.746119 | 0.877732 |
Model fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single/blob/main/lm_finetuning.py).
## Dataset Structure
### Data Instances
An example of `train` looks as follows.
```python
{
"text": "Game day for {{USERNAME}} U18\u2019s against {{USERNAME}} U18\u2019s. Even though it\u2019s a \u2018home\u2019 game for the people that have settled in Mid Wales it\u2019s still a 4 hour round trip for us up to Colwyn Bay. Still enjoy it though!",
"date": "2019-09-08",
"label": 4,
"id": "1170606779568463874",
"label_name": "sports_&_gaming"
}
```
### Label ID
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/tweet_topic_single/raw/main/dataset/label.single.json).
```python
{
"arts_&_culture": 0,
"business_&_entrepreneurs": 1,
"pop_culture": 2,
"daily_life": 3,
"sports_&_gaming": 4,
"science_&_technology": 5
}
```
### Citation Information
```
@inproceedings{dimosthenis-etal-2022-twitter,
title = "{T}witter {T}opic {C}lassification",
author = "Antypas, Dimosthenis and
Ushio, Asahi and
Camacho-Collados, Jose and
Neves, Leonardo and
Silva, Vitor and
Barbieri, Francesco",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics"
}
```