Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
aass
#1
by
ahmadrammal
- opened
- .gitignore +0 -4
- README.md +25 -98
- get_model_list.py +0 -47
- lm_finetuning.py +0 -226
- readme.py +0 -89
- tweet_topic_single.py +20 -31
.gitignore
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
wandb
|
2 |
-
ray_result*
|
3 |
-
ckpt
|
4 |
-
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -14,99 +14,18 @@ task_ids:
|
|
14 |
pretty_name: TweetTopicSingle
|
15 |
---
|
16 |
|
17 |
-
# Dataset Card for "
|
18 |
|
19 |
## Dataset Description
|
20 |
|
21 |
-
- **Paper:**
|
22 |
- **Dataset:** Tweet Topic Dataset
|
23 |
- **Domain:** Twitter
|
24 |
- **Number of Class:** 6
|
25 |
|
26 |
|
27 |
### Dataset Summary
|
28 |
-
|
29 |
-
, COLING main conference 2022"](https://arxiv.org/abs/2209.09824)), a topic classification dataset on Twitter with 6 labels.
|
30 |
-
Each instance of TweetTopic comes with a timestamp which distributes from September 2019 to August 2021.
|
31 |
-
See [cardiffnlp/tweet_topic_multi](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi) for multi label version of TweetTopic.
|
32 |
-
The tweet collection used in TweetTopic is same as what used in [TweetNER7](https://huggingface.co/datasets/tner/tweetner7).
|
33 |
-
The dataset is integrated in [TweetNLP](https://tweetnlp.org/) too.
|
34 |
-
|
35 |
-
### Preprocessing
|
36 |
-
We pre-process tweets before the annotation to normalize some artifacts, converting URLs into a special token `{{URL}}` and non-verified usernames into `{{USERNAME}}`.
|
37 |
-
For verified usernames, we replace its display name (or account name) with symbols `{@}`.
|
38 |
-
For example, a tweet
|
39 |
-
```
|
40 |
-
Get the all-analog Classic Vinyl Edition
|
41 |
-
of "Takin' Off" Album from @herbiehancock
|
42 |
-
via @bluenoterecords link below:
|
43 |
-
http://bluenote.lnk.to/AlbumOfTheWeek
|
44 |
-
```
|
45 |
-
is transformed into the following text.
|
46 |
-
```
|
47 |
-
Get the all-analog Classic Vinyl Edition
|
48 |
-
of "Takin' Off" Album from {@herbiehancock@}
|
49 |
-
via {@bluenoterecords@} link below: {{URL}}
|
50 |
-
```
|
51 |
-
A simple function to format tweet follows below.
|
52 |
-
```python
|
53 |
-
import re
|
54 |
-
from urlextract import URLExtract
|
55 |
-
extractor = URLExtract()
|
56 |
-
def format_tweet(tweet):
|
57 |
-
# mask web urls
|
58 |
-
urls = extractor.find_urls(tweet)
|
59 |
-
for url in urls:
|
60 |
-
tweet = tweet.replace(url, "{{URL}}")
|
61 |
-
# format twitter account
|
62 |
-
tweet = re.sub(r"\b(\s*)(@[\S]+)\b", r'\1{\2@}', tweet)
|
63 |
-
return tweet
|
64 |
-
target = """Get the all-analog Classic Vinyl Edition of "Takin' Off" Album from @herbiehancock via @bluenoterecords link below: http://bluenote.lnk.to/AlbumOfTheWeek"""
|
65 |
-
target_format = format_tweet(target)
|
66 |
-
print(target_format)
|
67 |
-
'Get the all-analog Classic Vinyl Edition of "Takin\' Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below: {{URL}}'
|
68 |
-
```
|
69 |
-
|
70 |
-
|
71 |
-
### Data Splits
|
72 |
-
|
73 |
-
| split | number of texts | description |
|
74 |
-
|:------------------------|-----:|------:|
|
75 |
-
| test_2020 | 376 | test dataset from September 2019 to August 2020 |
|
76 |
-
| test_2021 | 1693 | test dataset from September 2020 to August 2021 |
|
77 |
-
| train_2020 | 2858 | training dataset from September 2019 to August 2020 |
|
78 |
-
| train_2021 | 1516 | training dataset from September 2020 to August 2021 |
|
79 |
-
| train_all | 4374 | combined training dataset of `train_2020` and `train_2021` |
|
80 |
-
| validation_2020 | 352 | validation dataset from September 2019 to August 2020 |
|
81 |
-
| validation_2021 | 189 | validation dataset from September 2020 to August 2021 |
|
82 |
-
| train_random | 2830 | randomly sampled training dataset with the same size as `train_2020` from `train_all` |
|
83 |
-
| validation_random | 354 | randomly sampled training dataset with the same size as `validation_2020` from `validation_all` |
|
84 |
-
| test_coling2022_random | 3399 | random split used in the COLING 2022 paper |
|
85 |
-
| train_coling2022_random | 3598 | random split used in the COLING 2022 paper |
|
86 |
-
| test_coling2022 | 3399 | temporal split used in the COLING 2022 paper |
|
87 |
-
| train_coling2022 | 3598 | temporal split used in the COLING 2022 paper |
|
88 |
-
|
89 |
-
For the temporal-shift setting, model should be trained on `train_2020` with `validation_2020` and evaluate on `test_2021`.
|
90 |
-
In general, model would be trained on `train_all`, the most representative training set with `validation_2021` and evaluate on `test_2021`.
|
91 |
-
|
92 |
-
**IMPORTANT NOTE:** To get a result that is comparable with the results of the COLING 2022 Tweet Topic paper, please use `train_coling2022` and `test_coling2022` for temporal-shift, and `train_coling2022_random` and `test_coling2022_random` fir random split (the coling2022 split does not have validation set).
|
93 |
-
|
94 |
-
### Models
|
95 |
-
|
96 |
-
| model | training data | F1 | F1 (macro) | Accuracy |
|
97 |
-
|:------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|---------:|-------------:|-----------:|
|
98 |
-
| [cardiffnlp/roberta-large-tweet-topic-single-all](https://huggingface.co/cardiffnlp/roberta-large-tweet-topic-single-all) | all (2020 + 2021) | 0.896043 | 0.800061 | 0.896043 |
|
99 |
-
| [cardiffnlp/roberta-base-tweet-topic-single-all](https://huggingface.co/cardiffnlp/roberta-base-tweet-topic-single-all) | all (2020 + 2021) | 0.887773 | 0.79793 | 0.887773 |
|
100 |
-
| [cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-all](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-all) | all (2020 + 2021) | 0.892499 | 0.774494 | 0.892499 |
|
101 |
-
| [cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-all](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-all) | all (2020 + 2021) | 0.890136 | 0.776025 | 0.890136 |
|
102 |
-
| [cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all) | all (2020 + 2021) | 0.894861 | 0.800952 | 0.894861 |
|
103 |
-
| [cardiffnlp/roberta-large-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/roberta-large-tweet-topic-single-2020) | 2020 only | 0.878913 | 0.70565 | 0.878913 |
|
104 |
-
| [cardiffnlp/roberta-base-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/roberta-base-tweet-topic-single-2020) | 2020 only | 0.868281 | 0.729667 | 0.868281 |
|
105 |
-
| [cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-2020) | 2020 only | 0.882457 | 0.740187 | 0.882457 |
|
106 |
-
| [cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-2020) | 2020 only | 0.87596 | 0.746275 | 0.87596 |
|
107 |
-
| [cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-2020) | 2020 only | 0.877732 | 0.746119 | 0.877732 |
|
108 |
-
|
109 |
-
Model fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single/blob/main/lm_finetuning.py).
|
110 |
|
111 |
## Dataset Structure
|
112 |
|
@@ -136,21 +55,29 @@ The label2id dictionary can be found at [here](https://huggingface.co/datasets/t
|
|
136 |
}
|
137 |
```
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
### Citation Information
|
140 |
|
141 |
```
|
142 |
-
|
143 |
-
title = "{T}witter {T}opic {C}lassification",
|
144 |
-
author = "Antypas, Dimosthenis and
|
145 |
-
Ushio, Asahi and
|
146 |
-
Camacho-Collados, Jose and
|
147 |
-
Neves, Leonardo and
|
148 |
-
Silva, Vitor and
|
149 |
-
Barbieri, Francesco",
|
150 |
-
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
|
151 |
-
month = oct,
|
152 |
-
year = "2022",
|
153 |
-
address = "Gyeongju, Republic of Korea",
|
154 |
-
publisher = "International Committee on Computational Linguistics"
|
155 |
-
}
|
156 |
```
|
|
|
14 |
pretty_name: TweetTopicSingle
|
15 |
---
|
16 |
|
17 |
+
# Dataset Card for "cardiff_nlp/tweet_topic_single"
|
18 |
|
19 |
## Dataset Description
|
20 |
|
21 |
+
- **Paper:** TBA
|
22 |
- **Dataset:** Tweet Topic Dataset
|
23 |
- **Domain:** Twitter
|
24 |
- **Number of Class:** 6
|
25 |
|
26 |
|
27 |
### Dataset Summary
|
28 |
+
Topic classification dataset on Twitter with single label per tweet.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
## Dataset Structure
|
31 |
|
|
|
55 |
}
|
56 |
```
|
57 |
|
58 |
+
### Data Splits
|
59 |
+
|
60 |
+
| split | number of texts |
|
61 |
+
|:--------------------------|-----:|
|
62 |
+
| test | 1679 |
|
63 |
+
| train | 1505 |
|
64 |
+
| validation | 188 |
|
65 |
+
| temporal_2020_test | 573 |
|
66 |
+
| temporal_2021_test | 1679 |
|
67 |
+
| temporal_2020_train | 4585 |
|
68 |
+
| temporal_2021_train | 1505 |
|
69 |
+
| temporal_2020_validation | 573 |
|
70 |
+
| temporal_2021_validation | 188 |
|
71 |
+
| random_train | 4564 |
|
72 |
+
| random_validation | 573 |
|
73 |
+
| coling2022_random_test | 5536 |
|
74 |
+
| coling2022_random_train | 5731 |
|
75 |
+
| coling2022_temporal_test | 5536 |
|
76 |
+
| coling2022_temporal_train | 5731 |
|
77 |
+
|
78 |
+
|
79 |
### Citation Information
|
80 |
|
81 |
```
|
82 |
+
TBA
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
```
|
get_model_list.py
DELETED
@@ -1,47 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import requests
|
4 |
-
|
5 |
-
import pandas as pd
|
6 |
-
|
7 |
-
|
8 |
-
def download(filename, url):
|
9 |
-
try:
|
10 |
-
with open(filename) as f:
|
11 |
-
json.load(f)
|
12 |
-
except Exception:
|
13 |
-
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
14 |
-
with open(filename, "wb") as f:
|
15 |
-
r = requests.get(url)
|
16 |
-
f.write(r.content)
|
17 |
-
with open(filename) as f:
|
18 |
-
tmp = json.load(f)
|
19 |
-
return tmp
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
models = [
|
24 |
-
"cardiffnlp/roberta-large-tweet-topic-single-all",
|
25 |
-
"cardiffnlp/roberta-base-tweet-topic-single-all",
|
26 |
-
"cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-all",
|
27 |
-
"cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-all",
|
28 |
-
"cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all",
|
29 |
-
"cardiffnlp/roberta-large-tweet-topic-single-2020",
|
30 |
-
"cardiffnlp/roberta-base-tweet-topic-single-2020",
|
31 |
-
"cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-2020",
|
32 |
-
"cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-2020",
|
33 |
-
"cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-2020"
|
34 |
-
]
|
35 |
-
|
36 |
-
os.makedirs("metric_files", exist_ok=True)
|
37 |
-
|
38 |
-
metrics = []
|
39 |
-
for i in models:
|
40 |
-
model_type = "all (2020 + 2021)" if i.endswith("all") else "2020 only"
|
41 |
-
url = f"https://huggingface.co/{i}/raw/main/metric_summary.json"
|
42 |
-
model_url = f"https://huggingface.co/{i}"
|
43 |
-
metric = download(f"metric_files/{os.path.basename(i)}.json", url)
|
44 |
-
metrics.append({"model": f"[{i}]({model_url})", "training data": model_type, "F1": metric["test/eval_f1"], "F1 (macro)": metric["test/eval_f1_macro"], "Accuracy": metric["test/eval_accuracy"]})
|
45 |
-
|
46 |
-
df = pd.DataFrame(metrics)
|
47 |
-
print(df.to_markdown(index=False))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lm_finetuning.py
DELETED
@@ -1,226 +0,0 @@
|
|
1 |
-
'''
|
2 |
-
wandb offline
|
3 |
-
export WANDB_DISABLED='true'
|
4 |
-
export RAY_RESULTS='ray_results'
|
5 |
-
|
6 |
-
python lm_finetuning.py -m "roberta-large" -o "ckpt/2021/roberta-large" --push-to-hub --hf-organization "cardiffnlp" -a "roberta-large-tweet-topic-single-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021"
|
7 |
-
python lm_finetuning.py -m "roberta-large" -o "ckpt/2020/roberta-large" --push-to-hub --hf-organization "cardiffnlp" -a "roberta-large-tweet-topic-single-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021"
|
8 |
-
|
9 |
-
python lm_finetuning.py -m "roberta-base" -o "ckpt/2021/roberta_base" --push-to-hub --hf-organization "cardiffnlp" -a "roberta-base-tweet-topic-single-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021"
|
10 |
-
python lm_finetuning.py -m "roberta-base" -o "ckpt/2020/roberta_base" --push-to-hub --hf-organization "cardiffnlp" -a "roberta-base-tweet-topic-single-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021"
|
11 |
-
|
12 |
-
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-2019-90m" -o "ckpt/2021/twitter-roberta-base-2019-90m" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-2019-90m-tweet-topic-single-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021"
|
13 |
-
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-2019-90m" -o "ckpt/2020/twitter-roberta-base-2019-90m" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-2019-90m-tweet-topic-single-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021"
|
14 |
-
|
15 |
-
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2020" -o "ckpt/2021/twitter-roberta-base-dec2020" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-dec2020-tweet-topic-single-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021"
|
16 |
-
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2020" -o "ckpt/2020/twitter-roberta-base-dec2020" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-dec2020-tweet-topic-single-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021"
|
17 |
-
|
18 |
-
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2021" -o "ckpt/2021/twitter-roberta-base-dec2021" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-dec2021-tweet-topic-single-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021"
|
19 |
-
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2021" -o "ckpt/2020/twitter-roberta-base-dec2021" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-dec2021-tweet-topic-single-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021"
|
20 |
-
'''
|
21 |
-
|
22 |
-
import argparse
|
23 |
-
import json
|
24 |
-
import logging
|
25 |
-
import os
|
26 |
-
import shutil
|
27 |
-
import urllib.request
|
28 |
-
import multiprocessing
|
29 |
-
from os.path import join as pj
|
30 |
-
|
31 |
-
import torch
|
32 |
-
import numpy as np
|
33 |
-
from huggingface_hub import create_repo
|
34 |
-
from datasets import load_dataset, load_metric
|
35 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
36 |
-
from ray import tune
|
37 |
-
|
38 |
-
from readme import get_readme
|
39 |
-
|
40 |
-
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S')
|
41 |
-
|
42 |
-
PARALLEL = bool(int(os.getenv("PARALLEL", 1)))
|
43 |
-
RAY_RESULTS = os.getenv("RAY_RESULTS", "ray_results")
|
44 |
-
LABEL2ID = {
|
45 |
-
"arts_&_culture": 0,
|
46 |
-
"business_&_entrepreneurs": 1,
|
47 |
-
"pop_culture": 2,
|
48 |
-
"daily_life": 3,
|
49 |
-
"sports_&_gaming": 4,
|
50 |
-
"science_&_technology": 5
|
51 |
-
}
|
52 |
-
ID2LABEL = {v: k for k, v in LABEL2ID.items()}
|
53 |
-
|
54 |
-
|
55 |
-
def internet_connection(host='http://google.com'):
|
56 |
-
try:
|
57 |
-
urllib.request.urlopen(host)
|
58 |
-
return True
|
59 |
-
except:
|
60 |
-
return False
|
61 |
-
|
62 |
-
|
63 |
-
def get_metrics():
|
64 |
-
metric_accuracy = load_metric("accuracy")
|
65 |
-
metric_f1 = load_metric("f1")
|
66 |
-
|
67 |
-
def compute_metric_search(eval_pred):
|
68 |
-
logits, labels = eval_pred
|
69 |
-
predictions = np.argmax(logits, axis=-1)
|
70 |
-
return metric_f1.compute(predictions=predictions, references=labels, average='micro')
|
71 |
-
|
72 |
-
def compute_metric_all(eval_pred):
|
73 |
-
logits, labels = eval_pred
|
74 |
-
predictions = np.argmax(logits, axis=-1)
|
75 |
-
return {
|
76 |
-
'f1': metric_f1.compute(predictions=predictions, references=labels, average='micro')['f1'],
|
77 |
-
'f1_macro': metric_f1.compute(predictions=predictions, references=labels, average='macro')['f1'],
|
78 |
-
'accuracy': metric_accuracy.compute(predictions=predictions, references=labels)['accuracy']
|
79 |
-
}
|
80 |
-
return compute_metric_search, compute_metric_all
|
81 |
-
|
82 |
-
|
83 |
-
def main():
|
84 |
-
parser = argparse.ArgumentParser(description='Fine-tuning language model.')
|
85 |
-
parser.add_argument('-m', '--model', help='transformer LM', default='roberta-base', type=str)
|
86 |
-
parser.add_argument('-d', '--dataset', help='', default='cardiffnlp/tweet_topic_single', type=str)
|
87 |
-
parser.add_argument('--split-train', help='', required=True, type=str)
|
88 |
-
parser.add_argument('--split-validation', help='', required=True, type=str)
|
89 |
-
parser.add_argument('--split-test', help='', required=True, type=str)
|
90 |
-
parser.add_argument('-l', '--seq-length', help='', default=128, type=int)
|
91 |
-
parser.add_argument('--random-seed', help='', default=42, type=int)
|
92 |
-
parser.add_argument('--eval-step', help='', default=50, type=int)
|
93 |
-
parser.add_argument('-o', '--output-dir', help='Directory to output', default='ckpt_tmp', type=str)
|
94 |
-
parser.add_argument('-t', '--n-trials', default=10, type=int)
|
95 |
-
parser.add_argument('--push-to-hub', action='store_true')
|
96 |
-
parser.add_argument('--use-auth-token', action='store_true')
|
97 |
-
parser.add_argument('--hf-organization', default=None, type=str)
|
98 |
-
parser.add_argument('-a', '--model-alias', help='', default=None, type=str)
|
99 |
-
parser.add_argument('--summary-file', default='metric_summary.json', type=str)
|
100 |
-
parser.add_argument('--skip-train', action='store_true')
|
101 |
-
parser.add_argument('--skip-eval', action='store_true')
|
102 |
-
opt = parser.parse_args()
|
103 |
-
assert opt.summary_file.endswith('.json'), f'`--summary-file` should be a json file {opt.summary_file}'
|
104 |
-
# setup data
|
105 |
-
dataset = load_dataset(opt.dataset)
|
106 |
-
network = internet_connection()
|
107 |
-
# setup model
|
108 |
-
tokenizer = AutoTokenizer.from_pretrained(opt.model, local_files_only=not network)
|
109 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
110 |
-
opt.model,
|
111 |
-
num_labels=6,
|
112 |
-
local_files_only=not network,
|
113 |
-
id2label=ID2LABEL,
|
114 |
-
label2id=LABEL2ID
|
115 |
-
)
|
116 |
-
tokenized_datasets = dataset.map(
|
117 |
-
lambda x: tokenizer(x["text"], padding="max_length", truncation=True, max_length=opt.seq_length),
|
118 |
-
batched=True)
|
119 |
-
# setup metrics
|
120 |
-
compute_metric_search, compute_metric_all = get_metrics()
|
121 |
-
|
122 |
-
if not opt.skip_train:
|
123 |
-
# setup trainer
|
124 |
-
trainer = Trainer(
|
125 |
-
model=model,
|
126 |
-
args=TrainingArguments(
|
127 |
-
output_dir=opt.output_dir,
|
128 |
-
evaluation_strategy="steps",
|
129 |
-
eval_steps=opt.eval_step,
|
130 |
-
seed=opt.random_seed
|
131 |
-
),
|
132 |
-
train_dataset=tokenized_datasets[opt.split_train],
|
133 |
-
eval_dataset=tokenized_datasets[opt.split_validation],
|
134 |
-
compute_metrics=compute_metric_search,
|
135 |
-
model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
|
136 |
-
opt.model,
|
137 |
-
num_labels=6,
|
138 |
-
local_files_only=not network,
|
139 |
-
return_dict=True,
|
140 |
-
id2label=ID2LABEL,
|
141 |
-
label2id=LABEL2ID
|
142 |
-
)
|
143 |
-
)
|
144 |
-
# parameter search
|
145 |
-
if PARALLEL:
|
146 |
-
best_run = trainer.hyperparameter_search(
|
147 |
-
hp_space=lambda x: {
|
148 |
-
"learning_rate": tune.loguniform(1e-6, 1e-4),
|
149 |
-
"num_train_epochs": tune.choice(list(range(1, 6))),
|
150 |
-
"per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]),
|
151 |
-
},
|
152 |
-
local_dir=RAY_RESULTS, direction="maximize", backend="ray", n_trials=opt.n_trials,
|
153 |
-
resources_per_trial={'cpu': multiprocessing.cpu_count(), "gpu": torch.cuda.device_count()},
|
154 |
-
|
155 |
-
)
|
156 |
-
else:
|
157 |
-
best_run = trainer.hyperparameter_search(
|
158 |
-
hp_space=lambda x: {
|
159 |
-
"learning_rate": tune.loguniform(1e-6, 1e-4),
|
160 |
-
"num_train_epochs": tune.choice(list(range(1, 6))),
|
161 |
-
"per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]),
|
162 |
-
},
|
163 |
-
local_dir=RAY_RESULTS, direction="maximize", backend="ray", n_trials=opt.n_trials
|
164 |
-
)
|
165 |
-
# finetuning
|
166 |
-
for n, v in best_run.hyperparameters.items():
|
167 |
-
setattr(trainer.args, n, v)
|
168 |
-
trainer.train()
|
169 |
-
trainer.save_model(pj(opt.output_dir, 'best_model'))
|
170 |
-
best_model_path = pj(opt.output_dir, 'best_model')
|
171 |
-
else:
|
172 |
-
best_model_path = pj(opt.output_dir, 'best_model')
|
173 |
-
|
174 |
-
# evaluation
|
175 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
176 |
-
best_model_path,
|
177 |
-
num_labels=6,
|
178 |
-
local_files_only=not network,
|
179 |
-
id2label=ID2LABEL,
|
180 |
-
label2id=LABEL2ID
|
181 |
-
)
|
182 |
-
trainer = Trainer(
|
183 |
-
model=model,
|
184 |
-
args=TrainingArguments(
|
185 |
-
output_dir=opt.output_dir,
|
186 |
-
evaluation_strategy="no",
|
187 |
-
seed=opt.random_seed
|
188 |
-
),
|
189 |
-
train_dataset=tokenized_datasets[opt.split_train],
|
190 |
-
eval_dataset=tokenized_datasets[opt.split_test],
|
191 |
-
compute_metrics=compute_metric_all,
|
192 |
-
)
|
193 |
-
summary_file = pj(opt.output_dir, opt.summary_file)
|
194 |
-
if not opt.skip_eval:
|
195 |
-
result = {f'test/{k}': v for k, v in trainer.evaluate().items()}
|
196 |
-
logging.info(json.dumps(result, indent=4))
|
197 |
-
with open(summary_file, 'w') as f:
|
198 |
-
json.dump(result, f)
|
199 |
-
|
200 |
-
if opt.push_to_hub:
|
201 |
-
assert opt.hf_organization is not None, f'specify hf organization `--hf-organization`'
|
202 |
-
assert opt.model_alias is not None, f'specify hf organization `--model-alias`'
|
203 |
-
url = create_repo(opt.model_alias, organization=opt.hf_organization, exist_ok=True)
|
204 |
-
# if not opt.skip_train:
|
205 |
-
args = {"use_auth_token": opt.use_auth_token, "repo_url": url, "organization": opt.hf_organization}
|
206 |
-
trainer.model.push_to_hub(opt.model_alias, **args)
|
207 |
-
tokenizer.push_to_hub(opt.model_alias, **args)
|
208 |
-
if os.path.exists(summary_file):
|
209 |
-
shutil.copy2(summary_file, opt.model_alias)
|
210 |
-
extra_desc = f"This model is fine-tuned on `{opt.split_train}` split and validated on `{opt.split_test}` split of tweet_topic."
|
211 |
-
readme = get_readme(
|
212 |
-
model_name=f"{opt.hf_organization}/{opt.model_alias}",
|
213 |
-
metric=summary_file,
|
214 |
-
language_model=opt.model,
|
215 |
-
extra_desc= extra_desc
|
216 |
-
)
|
217 |
-
with open(f"{opt.model_alias}/README.md", "w") as f:
|
218 |
-
f.write(readme)
|
219 |
-
os.system(
|
220 |
-
f"cd {opt.model_alias} && git lfs install && git add . && git commit -m 'model update' && git push && cd ../")
|
221 |
-
shutil.rmtree(f"{opt.model_alias}") # clean up the cloned repo
|
222 |
-
|
223 |
-
|
224 |
-
if __name__ == '__main__':
|
225 |
-
main()
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
readme.py
DELETED
@@ -1,89 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
from typing import Dict
|
4 |
-
|
5 |
-
|
6 |
-
sample = "#NewVideo Cray Dollas- Water- Ft. Charlie Rose- (Official Music Video)- {{URL}} via {@YouTube@} #watchandlearn {{USERNAME}}"
|
7 |
-
bib = """
|
8 |
-
@inproceedings{dimosthenis-etal-2022-twitter,
|
9 |
-
title = "{T}witter {T}opic {C}lassification",
|
10 |
-
author = "Antypas, Dimosthenis and
|
11 |
-
Ushio, Asahi and
|
12 |
-
Camacho-Collados, Jose and
|
13 |
-
Neves, Leonardo and
|
14 |
-
Silva, Vitor and
|
15 |
-
Barbieri, Francesco",
|
16 |
-
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
|
17 |
-
month = oct,
|
18 |
-
year = "2022",
|
19 |
-
address = "Gyeongju, Republic of Korea",
|
20 |
-
publisher = "International Committee on Computational Linguistics"
|
21 |
-
}
|
22 |
-
"""
|
23 |
-
|
24 |
-
|
25 |
-
def get_readme(model_name: str,
|
26 |
-
metric: str,
|
27 |
-
language_model,
|
28 |
-
extra_desc: str = ''):
|
29 |
-
with open(metric) as f:
|
30 |
-
metric = json.load(f)
|
31 |
-
return f"""---
|
32 |
-
datasets:
|
33 |
-
- cardiffnlp/tweet_topic_single
|
34 |
-
metrics:
|
35 |
-
- f1
|
36 |
-
- accuracy
|
37 |
-
model-index:
|
38 |
-
- name: {model_name}
|
39 |
-
results:
|
40 |
-
- task:
|
41 |
-
type: text-classification
|
42 |
-
name: Text Classification
|
43 |
-
dataset:
|
44 |
-
name: cardiffnlp/tweet_topic_single
|
45 |
-
type: cardiffnlp/tweet_topic_single
|
46 |
-
args: cardiffnlp/tweet_topic_single
|
47 |
-
split: test_2021
|
48 |
-
metrics:
|
49 |
-
- name: F1
|
50 |
-
type: f1
|
51 |
-
value: {metric['test/eval_f1']}
|
52 |
-
- name: F1 (macro)
|
53 |
-
type: f1_macro
|
54 |
-
value: {metric['test/eval_f1_macro']}
|
55 |
-
- name: Accuracy
|
56 |
-
type: accuracy
|
57 |
-
value: {metric['test/eval_accuracy']}
|
58 |
-
pipeline_tag: text-classification
|
59 |
-
widget:
|
60 |
-
- text: "I'm sure the {"{@Tampa Bay Lightning@}"} would’ve rather faced the Flyers but man does their experience versus the Blue Jackets this year and last help them a lot versus this Islanders team. Another meat grinder upcoming for the good guys"
|
61 |
-
example_title: "Example 1"
|
62 |
-
- text: "Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US."
|
63 |
-
example_title: "Example 2"
|
64 |
-
---
|
65 |
-
# {model_name}
|
66 |
-
|
67 |
-
This model is a fine-tuned version of [{language_model}](https://huggingface.co/{language_model}) on the [tweet_topic_single](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single). {extra_desc}
|
68 |
-
Fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single/blob/main/lm_finetuning.py). It achieves the following results on the test_2021 set:
|
69 |
-
|
70 |
-
- F1 (micro): {metric['test/eval_f1']}
|
71 |
-
- F1 (macro): {metric['test/eval_f1_macro']}
|
72 |
-
- Accuracy: {metric['test/eval_accuracy']}
|
73 |
-
|
74 |
-
|
75 |
-
### Usage
|
76 |
-
|
77 |
-
```python
|
78 |
-
from transformers import pipeline
|
79 |
-
|
80 |
-
pipe = pipeline("text-classification", "{model_name}")
|
81 |
-
topic = pipe("Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US.")
|
82 |
-
print(topic)
|
83 |
-
```
|
84 |
-
|
85 |
-
### Reference
|
86 |
-
```
|
87 |
-
{bib}
|
88 |
-
```
|
89 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tweet_topic_single.py
CHANGED
@@ -4,45 +4,35 @@ from itertools import chain
|
|
4 |
import datasets
|
5 |
|
6 |
logger = datasets.logging.get_logger(__name__)
|
7 |
-
_DESCRIPTION = """[TweetTopic](
|
8 |
|
9 |
-
_VERSION = "1.0.
|
10 |
_CITATION = """
|
11 |
-
|
12 |
-
title = "{T}witter {T}opic {C}lassification",
|
13 |
-
author = "Antypas, Dimosthenis and
|
14 |
-
Ushio, Asahi and
|
15 |
-
Camacho-Collados, Jose and
|
16 |
-
Neves, Leonardo and
|
17 |
-
Silva, Vitor and
|
18 |
-
Barbieri, Francesco",
|
19 |
-
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
|
20 |
-
month = oct,
|
21 |
-
year = "2022",
|
22 |
-
address = "Gyeongju, Republic of Korea",
|
23 |
-
publisher = "International Committee on Computational Linguistics"
|
24 |
-
}
|
25 |
"""
|
26 |
_HOME_PAGE = "https://cardiffnlp.github.io"
|
27 |
_LABEL_TYPE = "single"
|
28 |
_NAME = f"tweet_topic_{_LABEL_TYPE}"
|
29 |
_URL = f'https://huggingface.co/datasets/cardiffnlp/{_NAME}/raw/main/dataset'
|
30 |
_URLS = {
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
f"{str(datasets.Split.
|
35 |
-
f"{str(datasets.Split.
|
36 |
-
f"{str(datasets.Split.
|
37 |
-
f"{str(datasets.Split.
|
38 |
-
f"{str(datasets.Split.
|
39 |
-
f"{str(datasets.Split.VALIDATION)}
|
40 |
-
f"{str(datasets.Split.
|
41 |
-
f"{str(datasets.Split.
|
42 |
-
f"{str(datasets.Split.TEST)}
|
43 |
-
f"{str(datasets.Split.TRAIN)}
|
|
|
|
|
44 |
}
|
45 |
|
|
|
46 |
class TweetTopicSingleConfig(datasets.BuilderConfig):
|
47 |
"""BuilderConfig"""
|
48 |
|
@@ -78,14 +68,13 @@ class TweetTopicSingle(datasets.GeneratorBasedBuilder):
|
|
78 |
_key += 1
|
79 |
|
80 |
def _info(self):
|
81 |
-
names = ["arts_&_culture", "business_&_entrepreneurs", "pop_culture", "daily_life", "sports_&_gaming", "science_&_technology"]
|
82 |
return datasets.DatasetInfo(
|
83 |
description=_DESCRIPTION,
|
84 |
features=datasets.Features(
|
85 |
{
|
86 |
"text": datasets.Value("string"),
|
87 |
"date": datasets.Value("string"),
|
88 |
-
"label": datasets.
|
89 |
"label_name": datasets.Value("string"),
|
90 |
"id": datasets.Value("string")
|
91 |
}
|
|
|
4 |
import datasets
|
5 |
|
6 |
logger = datasets.logging.get_logger(__name__)
|
7 |
+
_DESCRIPTION = """[TweetTopic](TBA)"""
|
8 |
|
9 |
+
_VERSION = "1.0.1"
|
10 |
_CITATION = """
|
11 |
+
TBA
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
"""
|
13 |
_HOME_PAGE = "https://cardiffnlp.github.io"
|
14 |
_LABEL_TYPE = "single"
|
15 |
_NAME = f"tweet_topic_{_LABEL_TYPE}"
|
16 |
_URL = f'https://huggingface.co/datasets/cardiffnlp/{_NAME}/raw/main/dataset'
|
17 |
_URLS = {
|
18 |
+
str(datasets.Split.TEST): [f'{_URL}/split_temporal/test_2021.{_LABEL_TYPE}.json'],
|
19 |
+
str(datasets.Split.TRAIN): [f'{_URL}/split_temporal/train_2021.{_LABEL_TYPE}.json'],
|
20 |
+
str(datasets.Split.VALIDATION): [f'{_URL}/split_temporal/validation_2021.{_LABEL_TYPE}.json'],
|
21 |
+
f"temporal_2020_{str(datasets.Split.TEST)}": [f'{_URL}/split_temporal/test_2020.{_LABEL_TYPE}.json'],
|
22 |
+
f"temporal_2021_{str(datasets.Split.TEST)}": [f'{_URL}/split_temporal/test_2021.{_LABEL_TYPE}.json'],
|
23 |
+
f"temporal_2020_{str(datasets.Split.TRAIN)}": [f'{_URL}/split_temporal/train_2020.{_LABEL_TYPE}.json'],
|
24 |
+
f"temporal_2021_{str(datasets.Split.TRAIN)}": [f'{_URL}/split_temporal/train_2021.{_LABEL_TYPE}.json'],
|
25 |
+
f"temporal_2020_{str(datasets.Split.VALIDATION)}": [f'{_URL}/split_temporal/validation_2020.{_LABEL_TYPE}.json'],
|
26 |
+
f"temporal_2021_{str(datasets.Split.VALIDATION)}": [f'{_URL}/split_temporal/validation_2021.{_LABEL_TYPE}.json'],
|
27 |
+
f"random_{str(datasets.Split.TRAIN)}": [f'{_URL}/split_random/train_random.{_LABEL_TYPE}.json'],
|
28 |
+
f"random_{str(datasets.Split.VALIDATION)}": [f'{_URL}/split_random/validation_random.{_LABEL_TYPE}.json'],
|
29 |
+
f"coling2022_random_{str(datasets.Split.TEST)}": [f'{_URL}/split_coling2022_random/test_random.{_LABEL_TYPE}.json'],
|
30 |
+
f"coling2022_random_{str(datasets.Split.TRAIN)}": [f'{_URL}/split_coling2022_random/train_random.{_LABEL_TYPE}.json'],
|
31 |
+
f"coling2022_temporal_{str(datasets.Split.TEST)}": [f'{_URL}/split_coling2022_temporal/test_2021.{_LABEL_TYPE}.json'],
|
32 |
+
f"coling2022_temporal_{str(datasets.Split.TRAIN)}": [f'{_URL}/split_coling2022_temporal/train_2020.{_LABEL_TYPE}.json'],
|
33 |
}
|
34 |
|
35 |
+
|
36 |
class TweetTopicSingleConfig(datasets.BuilderConfig):
|
37 |
"""BuilderConfig"""
|
38 |
|
|
|
68 |
_key += 1
|
69 |
|
70 |
def _info(self):
|
|
|
71 |
return datasets.DatasetInfo(
|
72 |
description=_DESCRIPTION,
|
73 |
features=datasets.Features(
|
74 |
{
|
75 |
"text": datasets.Value("string"),
|
76 |
"date": datasets.Value("string"),
|
77 |
+
"label": datasets.Value("int32"),
|
78 |
"label_name": datasets.Value("string"),
|
79 |
"id": datasets.Value("string")
|
80 |
}
|