post_href
stringlengths 57
213
| python_solutions
stringlengths 71
22.3k
| slug
stringlengths 3
77
| post_title
stringlengths 1
100
| user
stringlengths 3
29
| upvotes
int64 -20
1.2k
| views
int64 0
60.9k
| problem_title
stringlengths 3
77
| number
int64 1
2.48k
| acceptance
float64 0.14
0.91
| difficulty
stringclasses 3
values | __index_level_0__
int64 0
34k
|
---|---|---|---|---|---|---|---|---|---|---|---|
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/1342438/Easy-Python-Solution-w-Comments | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
max_len = 0
#holds the current non repeating substring
passed = []
for i in range(len(s)):
if s[i] not in passed:
passed.append(s[i])
max_len = max(len(passed), max_len)
else:
#if repeat found, update max_len with current substr in passed
max_len = max(len(passed), max_len)
#begin the next substr after the first char in s that is repeated
passed = passed[passed.index(s[i])+1:] + [s[i]]
return max_len | longest-substring-without-repeating-characters | Easy Python Solution w/ Comments | mguthrie45 | 4 | 413 | longest substring without repeating characters | 3 | 0.338 | Medium | 100 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2670619/Simple-python-code-with-explanation | class Solution:
def lengthOfLongestSubstring(self, s):
#create a variable and assign value 0 to it
longest_substring = 0
#create a pointer l and assign 0 to it
l = 0
#create a pointer r and assign 0 to it
r = 0
#iterate over the elements in string(s)
for i in range(len(s)):
#if the length of string[l:r+1] is same as the length of set(s[l:r+1])
#that means the elements in substring are unique
if len(s[l:r+1] ) == len(set(s[l:r+1])):
#then change the longest_substring value as the maximum of r-l+1 and itself
longest_substring = max(longest_substring,r-l + 1)
#increse the r pointer by 1
r = r +1
#if the elements in substring are repeating
else:
#then increse the l pointer by 1
l = l + 1
#and increse r pointer value by 1
r = r + 1
#after iterating over the string
#return the variable(longest_substring)
return longest_substring | longest-substring-without-repeating-characters | Simple python code with explanation | thomanani | 3 | 274 | longest substring without repeating characters | 3 | 0.338 | Medium | 101 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2670619/Simple-python-code-with-explanation | class Solution:
#just used the iterator as r pointer
def lengthOfLongestSubstring(self, s):
summ = 0
l = 0
for r in range(len(s)):
if len(s[l:r+1]) == len(set(s[l:r+1])):
summ = max(summ,r-l+1)
else:
l = l + 1
return summ | longest-substring-without-repeating-characters | Simple python code with explanation | thomanani | 3 | 274 | longest substring without repeating characters | 3 | 0.338 | Medium | 102 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2450783/Python3%3A-Sliding-window-O(N)-greater-Faster-than-99.7 | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
seen = {}
left = 0
output = 0
for right, char in enumerate(s):
# If char not in seen dictionary, we can keep increasing the window size by moving right pointer
if char not in seen:
output = max(output, right - left + 1)
# There are two cases if `char` in seen:
# case 1: char is inside the current window, we move left pointer to seen[char] + 1.
# case 2: char is not inside the current window, we can keep increase the window
else:
if seen[char] < left:
output = max(output, right - left + 1)
else:
left = seen[char] + 1
seen[char] = right
return output | longest-substring-without-repeating-characters | Python3: Sliding window O(N) => Faster than 99.7% | cquark | 3 | 294 | longest substring without repeating characters | 3 | 0.338 | Medium | 103 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2423128/Faster-than-99.5-Python-Solution | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
substr = deque()
index = set()
max_len = 0
for char in s:
if char not in index:
substr.append(char)
index.add(char)
else:
while substr:
c = substr.popleft()
index.remove(c)
if c == char:
substr.append(char)
index.add(char)
break
if len(substr) > max_len:
max_len = len(substr)
return max_len | longest-substring-without-repeating-characters | Faster than 99.5% Python Solution | vyalovvldmr | 3 | 332 | longest substring without repeating characters | 3 | 0.338 | Medium | 104 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2383487/Fastest-Solution-Explained0ms100-O(n)time-complexity-O(n)space-complexity | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
seen = {}
l = 0
output = 0
for r in range(len(s)):
"""
If s[r] not in seen, we can keep increasing the window size by moving right pointer
"""
if s[r] not in seen:
output = max(output,r-l+1)
"""
There are two cases if s[r] in seen:
case1: s[r] is inside the current window, we need to change the window by moving left pointer to seen[s[r]] + 1.
case2: s[r] is not inside the current window, we can keep increase the window
"""
else:
if seen[s[r]] < l:
output = max(output,r-l+1)
else:
l = seen[s[r]] + 1
seen[s[r]] = r
return output | longest-substring-without-repeating-characters | [Fastest Solution Explained][0ms][100%] O(n)time complexity O(n)space complexity | cucerdariancatalin | 3 | 808 | longest substring without repeating characters | 3 | 0.338 | Medium | 105 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2377883/Python-Solution-or-Classic-Two-Pointer-Sliding-Window-Based | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
store = set()
maxLen = 0
left = 0
for right in range(len(s)):
# to skip consecutive repeating characters
while s[right] in store:
store.remove(s[left])
# lower window size
left += 1
store.add(s[right])
maxLen = max(maxLen,right - left + 1)
return maxLen | longest-substring-without-repeating-characters | Python Solution | Classic Two Pointer - Sliding Window Based | Gautam_ProMax | 3 | 188 | longest substring without repeating characters | 3 | 0.338 | Medium | 106 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/673878/Simple-python | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
length, start = 0, 0
seen = {}
for idx, c in enumerate(s):
if c in seen and start <= seen[c]:
start = seen[c] + 1
length = max(length, idx-start+1)
seen[c] = idx
return length | longest-substring-without-repeating-characters | Simple python | etherealoptimist | 3 | 737 | longest substring without repeating characters | 3 | 0.338 | Medium | 107 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/266333/Python-Solution-faster-than-100.00-other-solutions | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
if len(s):
result = []
temp = s[0]
for i in s[1:]:
if i not in temp:
temp += i
elif i == temp[0]:
temp = temp[1:] + i
elif i == temp[-1]:
result.append(temp)
temp = i
else:
result.append(temp)
temp = temp[temp.find(i) + 1:] + i
result.append(temp)
return len(max(result, key=len))
return 0 | longest-substring-without-repeating-characters | Python Solution faster than 100.00% other solutions | _l0_0l_ | 3 | 586 | longest substring without repeating characters | 3 | 0.338 | Medium | 108 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2778596/Python-3-O(n)-faster-than-99.94 | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
seen = {}
best = 0
front = -1
for i, c in enumerate(s):
if c in seen and front < seen[c]:
front = seen[c]
seen[c] = i
if (i - front) > best:
best = i - front
return best | longest-substring-without-repeating-characters | Python 3 O(n) faster than 99.94% | Zachii | 2 | 756 | longest substring without repeating characters | 3 | 0.338 | Medium | 109 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2775814/Efficient-Python-solution-(SLIDING-WINDOW) | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
length = 0
count = {}
l = 0
for r in range(len(s)):
count[s[r]] = count.get(s[r], 0)+1
while count[s[r]] > 1:
count[s[l]] -= 1
l += 1
length = max(length, 1+r-l)
return length | longest-substring-without-repeating-characters | Efficient Python solution (SLIDING WINDOW) | really_cool_person | 2 | 1,100 | longest substring without repeating characters | 3 | 0.338 | Medium | 110 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2764542/Python-Simple-Python-Solution | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
m=0
for i in range(len(s)):
l=[]
c=0
for j in range(i,len(s)):
if s[j] not in l:
l.append(s[j])
c+=1
m=max(m,c)
else:
break
return m | longest-substring-without-repeating-characters | [ Python ]๐๐Simple Python Solution โ
โ
| sourav638 | 2 | 18 | longest substring without repeating characters | 3 | 0.338 | Medium | 111 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2488819/Python-simple-solution.-O(n) | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
if len(s) == 0:
return 0
global_max = 1
left = 0
used = {}
for right in range(0,len(s)):
if s[right] in used:
left = max(left, used[s[right]]+1)
used[s[right]] = right
global_max = max(right-left+1, global_max)
return global_max | longest-substring-without-repeating-characters | Python simple solution. O(n) | haruka980209 | 2 | 180 | longest substring without repeating characters | 3 | 0.338 | Medium | 112 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2403381/C%2B%2BPython-O(N)-Solution-with-better-and-faster-approach | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
start = maxLength = 0
usedChar = {}
for i in range(len(s)):
if s[i] in usedChar and start <= usedChar[s[i]]:
start = usedChar[s[i]] + 1
else:
maxLength = max(maxLength, i - start + 1)
usedChar[s[i]] = i
return maxLength | longest-substring-without-repeating-characters | C++/Python O(N) Solution with better and faster approach | arpit3043 | 2 | 422 | longest substring without repeating characters | 3 | 0.338 | Medium | 113 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2359311/Python-runtime-63.07-memory-49.48 | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
max_len = 0
sub = set()
start_delete_index = 0
for index, character in enumerate(s):
while character in sub:
sub.remove(s[start_delete_index])
start_delete_index += 1
sub.add(character)
if len(sub) > max_len:
max_len = len(sub)
return max_len | longest-substring-without-repeating-characters | Python, runtime 63.07%, memory 49.48% | tsai00150 | 2 | 190 | longest substring without repeating characters | 3 | 0.338 | Medium | 114 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2359311/Python-runtime-63.07-memory-49.48 | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
max_len = start = 0
seen = {}
for index, character in enumerate(s):
if character in seen and start <= seen[character]:
start = seen[character] + 1
seen[character] = index
max_len = max(max_len, index-start+1)
return max_len | longest-substring-without-repeating-characters | Python, runtime 63.07%, memory 49.48% | tsai00150 | 2 | 190 | longest substring without repeating characters | 3 | 0.338 | Medium | 115 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2233725/Simple-python-solution | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
mapping = {}
output = 0
start = 0
for char in range(len(s)):
if s[char] in mapping:
start = max(mapping[s[char]] + 1,start)
mapping[s[char]] = char
output = max(output, char - start + 1)
return output | longest-substring-without-repeating-characters | Simple python solution | asaffari101 | 2 | 182 | longest substring without repeating characters | 3 | 0.338 | Medium | 116 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2119781/Python-or-Easy-Solution-using-hashset | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
res = 0
charSet = set()
l = 0
for r in range(len(s)):
while s[r] in charSet:
charSet.remove(s[l])
l += 1
charSet.add(s[r])
res = max(res,r-l+1)
return res | longest-substring-without-repeating-characters | Python | Easy Solution using hashset | __Asrar | 2 | 272 | longest substring without repeating characters | 3 | 0.338 | Medium | 117 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2078071/Python3-sliding-window-solution-in-O(n)-77ms-14MB | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
chars = set()
l = r = 0
top = 0
while r < len(s):
while s[r] in chars:
chars.remove(s[l])
l += 1
chars.add(s[r])
top = max(top, len(chars))
r += 1
# top = max(top, len(chars))
return top | longest-substring-without-repeating-characters | Python3 sliding window solution in O(n) 77ms 14MB | GeorgeD8 | 2 | 190 | longest substring without repeating characters | 3 | 0.338 | Medium | 118 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/1889624/Simple-python3-solution-oror-two-pointer | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
i=0
j=i+1
max_len = 0
temp = []
while(i<len(s)):
temp.append(s[i])
while(j<len(s) and s[j] not in temp):
temp.append(s[j])
j+=1
if max_len<len(temp):
max_len = len(temp)
temp=[]
i+=1
j=i+1
return max_len | longest-substring-without-repeating-characters | Simple python3 solution || two pointer | darshanraval194 | 2 | 348 | longest substring without repeating characters | 3 | 0.338 | Medium | 119 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/1860113/Clean-Python-3-solution-(sliding-window-%2B-hash-map) | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
dic = dict()
max_len = 0
l = 0
r = 0
while l < len(s) and r < len(s):
if s[r] not in dic:
dic[s[r]] = True
r += 1
max_len = max(max_len, r - l)
else:
dic.pop(s[l])
l += 1
return max_len | longest-substring-without-repeating-characters | Clean Python 3 solution (sliding window + hash map) | Hongbo-Miao | 2 | 128 | longest substring without repeating characters | 3 | 0.338 | Medium | 120 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/1829631/Python-or-Walkthrough-%2B-Complexity-or-Sliding-Window | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
def has_duplicates(start, end):
seen = set()
while start <= end:
letter = s[start]
if letter in seen:
return True
else:
seen.add(letter)
start += 1
return False
n = len(s)
longest = 0
for start in range(n):
for end in range(start, n):
if not has_duplicates(start, end):
longest = max(longest, end - start + 1)
return longest | longest-substring-without-repeating-characters | Python | Walkthrough + Complexity | Sliding Window | leetbeet73 | 2 | 520 | longest substring without repeating characters | 3 | 0.338 | Medium | 121 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/1829631/Python-or-Walkthrough-%2B-Complexity-or-Sliding-Window | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
start = longest = 0
seen = {}
for end in range(len(s)):
letter = s[end]
if letter in seen:
start = max(seen[letter] + 1, start)
longest = max(longest, end - start + 1)
seen[letter] = end
return longest | longest-substring-without-repeating-characters | Python | Walkthrough + Complexity | Sliding Window | leetbeet73 | 2 | 520 | longest substring without repeating characters | 3 | 0.338 | Medium | 122 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/1077043/Python3-O(1)-space! | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
if len(s) == 1:
return 1
long = 0
l = 0
r = 1
while r < len(s):
if s[r] not in s[l:r]:
r += 1
long = max(long, len(s[l:r]))
else:
while s[r] in s[l:r]:
l += 1
return long | longest-substring-without-repeating-characters | Python3 O(1) space! | BeetCoder | 2 | 253 | longest substring without repeating characters | 3 | 0.338 | Medium | 123 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/905320/Python-3-solution-or-Memory-Usage%3A-14.3-MB-less-than-100.00-of-Python3-online-submissions. | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
maxlength = 0
startIndex = 0
i = 0
letters = []
while i < len(s):
if s[i] not in letters:
letters.append(s[i])
i = i + 1
else:
maxlength = max(len(letters), maxlength)
startIndex = startIndex + 1
i = startIndex
letters.clear()
return max(len(letters), maxlength) | longest-substring-without-repeating-characters | Python 3 solution | Memory Usage: 14.3 MB, less than 100.00% of Python3 online submissions. | manojkumarmanusai | 2 | 358 | longest substring without repeating characters | 3 | 0.338 | Medium | 124 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/468273/Easy-to-follow-Python3-solution-(faster-than-99-and-memory-usage-less-than-100) | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
b = ''
l = ''
for c in s:
if c in b:
i = b.index(c)
b = b[i+1:] + c
else:
b += c
if len(b) > len(l):
l = b
return len(l) | longest-substring-without-repeating-characters | Easy-to-follow Python3 solution (faster than 99% & memory usage less than 100%) | gizmoy | 2 | 391 | longest substring without repeating characters | 3 | 0.338 | Medium | 125 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2619481/Simple-python3-solution | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
charSet = set()
l = 0
res = 0
for r in range(len(s)):
while s[r] in charSet:
charSet.remove(s[l])
l += 1
charSet.add(s[r])
res = max(res, r - l + 1)
return res | longest-substring-without-repeating-characters | Simple python3 solution | __Simamina__ | 1 | 174 | longest substring without repeating characters | 3 | 0.338 | Medium | 126 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2591490/Python-solution-with-comments | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
seen = {} #Hashmap to keep track of where we last saw a given character
res = 0 #Initial longest substring
start = 0 #Window starting point
for end,char in enumerate(s):
if char in seen and start <= seen[char]:
#If we've seen this character before and the start position is before or equal
#to the current character then we must move the window starting point
#since no duplicates allowed
start = seen[char] + 1
else:
#Otherwise
#Compute the size of the current window and update the result
res = max(res,end - start + 1)
#Always update the current position for any given character
seen[char] = end
return res | longest-substring-without-repeating-characters | Python solution with comments | harrisonhcue | 1 | 124 | longest substring without repeating characters | 3 | 0.338 | Medium | 127 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2511175/simple-Python3-solution | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
charSet = set()
l = 0
res = 0
for r in range(len(s)):
while s[r] in charSet:
charSet.remove(s[l])
l += 1
charSet.add(s[r])
res = max(res, r - l + 1)
return res | longest-substring-without-repeating-characters | simple Python3 solution | __Simamina__ | 1 | 163 | longest substring without repeating characters | 3 | 0.338 | Medium | 128 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2445855/Python3-or-2-Different-Solutions-or-Optimal-Solution | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
# Method 1: Naive Inefficient Approach
l = 0
r = 0
ans = 0
maxans = 0
count = []
while r<=len(s)-1:
if s[r] not in count:
count.append(s[r])
ans += 1
r += 1
else:
count.clear()
ans = 0
l += 1
r = l
maxans = max(maxans,ans)
return maxans
# Method 2: T.C: O(n) S.C: O(n)
count = set()
l = 0
maxcount = 0
for r in range(len(s)):
while s[r] in count:
count.remove(s[l])
l+=1
count.add(s[r])
maxcount = max(maxcount,len(count))
return maxcount
# Search with tag chawlashivansh for my solutions | longest-substring-without-repeating-characters | Python3 | 2 Different Solutions | Optimal Solution | chawlashivansh | 1 | 187 | longest substring without repeating characters | 3 | 0.338 | Medium | 129 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2306073/Python-Two-Clean-Sliding-Window-Solutions | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
maxLength = left = 0
seen = {}
for i in range(len(s)):
# If letter is already seen, move left window by 1 to the right until letter is no longer in dictionary
while s[i] in seen:
seen[s[left]] -= 1
if seen[s[left]] == 0:
del seen[s[left]]
left += 1
# Add letter
seen[s[i]] = 1
maxLength = max(maxLength, i - left + 1)
return maxLength | longest-substring-without-repeating-characters | Python - Two Clean Sliding Window Solutions | Reinuity | 1 | 141 | longest substring without repeating characters | 3 | 0.338 | Medium | 130 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2306073/Python-Two-Clean-Sliding-Window-Solutions | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
maxLength = left = 0
seen = {}
for i in range(len(s)):
#If letter is already seen
if s[i] in seen:
# Set left window to the max between its current index, or the index of the last occurance of the current letter + 1
left = max(left, seen[s[i]] + 1)
# Save the index
seen[s[i]] = i
maxLength = max(maxLength, i - left + 1)
return maxLength | longest-substring-without-repeating-characters | Python - Two Clean Sliding Window Solutions | Reinuity | 1 | 141 | longest substring without repeating characters | 3 | 0.338 | Medium | 131 |
https://leetcode.com/problems/longest-substring-without-repeating-characters/discuss/2188837/Sliding-Window-Solution-oror-Implementation-of-Approach-by-Aditya-Verma | class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
i, j = 0, 0
n = len(s)
frequencyArray = [0]*(5 * 10**4)
maxSize = 0
while j < n:
frequencyArray[ord(s[j]) - ord('a')] += 1
mapSize = (5*10**4) - frequencyArray.count(0)
if mapSize == j - i + 1:
maxSize = max(maxSize, j - i + 1)
j += 1
elif mapSize < j - i + 1:
while mapSize < j - i + 1:
frequencyArray[ord(s[i]) - ord('a')] -= 1
mapSize = (5*10**4) - frequencyArray.count(0)
i += 1
j += 1
return maxSize | longest-substring-without-repeating-characters | Sliding Window Solution || Implementation of Approach by Aditya Verma | Vaibhav7860 | 1 | 151 | longest substring without repeating characters | 3 | 0.338 | Medium | 132 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/949705/Python3-two-pointer-greater9621-runtime-commented | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
# Get the lengths of both lists
l1,l2 = len(nums1), len(nums2)
# Determine the middle
middle = (l1 + l2) / 2
# EDGE CASE:
# If we only have 1 value (e.g. [1], []), return nums1[0] if the length of
# that list is greater than the length of l2, otherwise return nums2[1]
if middle == 0.5: return float(nums1[0]) if l1 > l2 else float(nums2[0])
# Initialize 2 pointers
x = y = 0
# Initialize 2 values to store the previous and current value (in case of an even
# amount of values, we need to average 2 values)
cur = prev = 0
# Determine the amount of loops we need. If the middle is even, loop that amount + 1:
# eg: [1, 2, 3, 4, 5, 6] 6 values, middle = 3, loops = 3+1
# ^ ^
# | +-- cur
# +----- prev
# If the middle is odd, loop that amount + 0.5
# eg: [1, 2, 3, 4, 5] 5 values, middle = 2.5, loops = 2.5+0.5
# ^
# +--- cur
loops = middle+1 if middle % 1 == 0 else middle+0.5
# Walk forward the amount of loops
for _ in range(int(loops)):
# Store the value of cur in prev
prev = cur
# If the x pointer is equal to the amount of elements of nums1 (l1 == len(nums1))
if x == l1:
# Store nums2[y] in cur, 'cause we hit the end of nums1
cur = nums2[y]
# Move the y pointer one ahead
y += 1
# If the y pointer is equal to the amount of elements of nums2 (l2 == len(nums2))
elif y == l2:
# Store nums1[x] in cur, 'cause we hit the end of nums2
cur = nums1[x]
# Move the x pointer one ahead
x += 1
# If the value in nums1 is bigger than the value in nums2
elif nums1[x] > nums2[y]:
# Store nums2[y] in cur, because it's the lowest value
cur = nums2[y]
# Move the y pointer one ahead
y += 1
# If the value in nums2 is bigger than the value in nums1
else:
# Store nums1[x] in, because it's the lowest value
cur = nums1[x]
# Move the x pointer one ahead
x += 1
# If middle is even
if middle % 1 == 0.0:
# Return the average of the cur + prev values (which will return a float)
return (cur+prev)/2
# If middle is odd
else:
# Return the cur value, as a float
return float(cur) | median-of-two-sorted-arrays | Python3 two pointer >96,21% runtime [commented] | tomhagen | 32 | 5,100 | median of two sorted arrays | 4 | 0.353 | Hard | 133 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/1592457/Python-O(m-%2B-n)-time-O(1)-space | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
m, n = len(nums1), len(nums2)
mid = (m + n) // 2 + 1
prev2 = prev1 = None
i = j = 0
for _ in range(mid):
prev2 = prev1
if j == n or (i != m and nums1[i] <= nums2[j]):
prev1 = nums1[i]
i += 1
else:
prev1 = nums2[j]
j += 1
return prev1 if (m + n) % 2 else (prev1 + prev2) / 2 | median-of-two-sorted-arrays | Python O(m + n) time, O(1) space | dereky4 | 21 | 2,100 | median of two sorted arrays | 4 | 0.353 | Hard | 134 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/1174195/C%2B%2BPython-O(log(m%2Bn))-solution | class Solution:
def findkth(self, a: List[int], b: List[int], target) -> int:
# print("a: {}, b:{}".format(a, b))
n, m = len(a), len(b)
if n <= 0:
return b[target - 1]
if m <= 0:
return a[target - 1]
med_a, med_b = n // 2 + 1, m // 2 + 1
ma, mb = a[n // 2], b[m // 2]
if med_a + med_b > target:
if ma > mb:
return self.findkth(a[:med_a - 1], b, target)
else:
return self.findkth(a, b[:med_b - 1], target)
else:
if ma > mb:
return self.findkth(a, b[med_b:], target - med_b)
else:
return self.findkth(a[med_a:], b, target - med_a)
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
n, m = len(nums1), len(nums2)
if n == 0 :
if m % 2 == 0:
return (nums2[m // 2 - 1] + nums2[m // 2]) / 2
else:
return nums2[m // 2]
if m == 0 :
if n % 2 == 0:
return (nums1[n // 2 - 1] + nums1[n // 2]) / 2
else:
return nums1[n // 2]
if (m + n) % 2 == 0:
return (self.findkth(nums1, nums2, (m + n) // 2) + self.findkth(nums1, nums2, (m + n) // 2 + 1)) / 2
return self.findkth(nums1, nums2, (m + n) // 2 + 1) | median-of-two-sorted-arrays | C++/Python O(log(m+n)) solution | m0biu5 | 21 | 4,800 | median of two sorted arrays | 4 | 0.353 | Hard | 135 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/1309837/Elegant-Python-Binary-Search-or-O(log(min(mn)))-O(1) | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
if len(nums2) < len(nums1): nums1, nums2 = nums2, nums1
m, n = len(nums1), len(nums2)
left, right = 0, m-1
while True:
pointer1 = left + (right-left) // 2
pointer2 = (m+n)//2 - pointer1 - 2
left1 = nums1[pointer1] if pointer1 in range(m) else -math.inf
left2 = nums2[pointer2] if pointer2 in range(n) else -math.inf
right1 = nums1[pointer1+1] if pointer1+1 in range(m) else math.inf
right2 = nums2[pointer2+1] if pointer2+1 in range(n) else math.inf
if left1 <= right2 and left2 <= right1:
if (m+n) % 2 == 0: return (max(left1, left2) + min(right1, right2)) / 2
else: return min(right1, right2)
elif left1 > right2: right = pointer1 - 1
else: left = pointer1 + 1 | median-of-two-sorted-arrays | Elegant Python Binary Search | O(log(min(m,n))), O(1) | soma28 | 10 | 2,100 | median of two sorted arrays | 4 | 0.353 | Hard | 136 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/1067613/Python-O(log(m%2Bn))-with-explanation-and-comments | class Solution:
def findMedianSortedArrays(self, nums1, nums2) -> float:
# odd length -> e.g. length 5, left(2) and right(2) would be the same index
# even length -> e.g. length 6, left(2) and right(3) would be different indices
m, n = len(nums1), len(nums2)
left, right = (m+n-1)//2, (m+n)//2
return (self.getKth(nums1, nums2, left) + self.getKth(nums1, nums2, right))/2
def getKth(self, nums1, nums2, k):
# if one list is exhausted, return the kth index of the other list
if nums1 == []:
return nums2[k]
if nums2 == []:
return nums1[k]
# base case
# k is 0-based, so finding the kth index equals eliminating k length elements.
# k == 0 means we have eliminated all smaller indices, return the next highest number, which would be the median
# e.g. to find the third index (k = 3), we eliminate 3 smaller elements (index 0, 1, 2)
if k == 0:
return min(nums1[0], nums2[0])
# find the subarray to be eliminated this iteration
m, n = len(nums1), len(nums2)
eliminated_length = min(m,n,(k+1)//2) # 1-based so k + 1
eliminated_index = eliminated_length - 1 # 0-based so - 1
if nums1[eliminated_index] <= nums2[eliminated_index]:
nums1 = nums1[eliminated_index+1:]
else:
nums2 = nums2[eliminated_index+1:]
# update k, the number of elements to be eliminated next round
k -= eliminated_length
return self.getKth(nums1, nums2, k) | median-of-two-sorted-arrays | Python O(log(m+n)) with explanation and comments | killerf1 | 8 | 1,400 | median of two sorted arrays | 4 | 0.353 | Hard | 137 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2672475/Python-O(-Log(-Min(m-n)-)-)-Solution-with-full-working-explanation | class Solution: # Time: O(log(min(m, n))) and Space: O(n)
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
A, B = nums1, nums2
total = len(nums1) + len(nums2)
half = total // 2
if len(A) > len(B): # for our solution we are assuming that B will be bigger than A, if it's not given than make it
A, B = B, A
l, r = 0, len(A) - 1 # we also assume that A is exactly half of B
while True: # when any return statement is executed it will stop
i = (l + r) // 2 # A[mid]
# B[mid] = total//2(divide by 2 will get us mid B ) - A[mid](if we sub A from total, B's left) -
# 2(to make it align with starting index 0 of A & B, else it will go out of bounds)
j = half - i - 2
Aleft = A[i] if i >= 0 else float("-infinity") # if index i is in negative than assign -infinity to Aleft
Aright = A[i + 1] if (i + 1) < len(A) else float("infinity") # if index i+1 is greater than the size of A assign infinity to Aright
Bleft = B[j] if j >= 0 else float("-infinity") # if index j is in negative than assign -infinity to Bleft
Bright = B[j + 1] if (j + 1) < len(B) else float("infinity") # if index j+1 is greater than the size of B assign infinity to Bright
# A = [1, 2, 3(left), 4(right), 5] and B = [1, 2, 3(left), 4(right), 5, 6, 7, 8] # B = 6 - 2 - 2 = 2(i.e 0,1,2)
if Aleft <= Bright and Bleft <= Aright: # 3 <= 4 and 3 <= 4
if total % 2: # odd: min(4, 4)
return min(Aright, Bright)
return (max(Aleft, Bleft) + min(Aright, Bright)) / 2 # even: max(3, 3) + min(4, 4) / 2
elif Aleft > Bright: # A = [1, 2, 3(left), 4(right), 5, 6] and B = [1, 2(left), 3(right), 4, 5]
r = i - 1 # r = 3 - 1 = 2(i.e. index 0,1,2) --> A = [1, 2(L), 3(R), 4, 5, 6] and B = [1, 2, 3(L), 4(R), 5, 6]
else: # when Bleft > Aright, we will increase l so L becomes R, and R pointer is shifted to R+1 index
l = i + 1 | median-of-two-sorted-arrays | Python O( Log( Min(m, n) ) ) Solution with full working explanation | DanishKhanbx | 7 | 3,300 | median of two sorted arrays | 4 | 0.353 | Hard | 138 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2672475/Python-O(-Log(-Min(m-n)-)-)-Solution-with-full-working-explanation | class Solution: # Time: O(NLogN) and Space: O(1)
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
nums1 = nums1 + nums2
nums1 = sorted(nums1)
n = len(nums1)
if n % 2 == 0:
return (nums1[n//2 - 1] + nums1[(n//2)])/2
else:
n = math.ceil(n/2)
return nums1[n-1] | median-of-two-sorted-arrays | Python O( Log( Min(m, n) ) ) Solution with full working explanation | DanishKhanbx | 7 | 3,300 | median of two sorted arrays | 4 | 0.353 | Hard | 139 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/697669/Python-or-simple-or-BInary-search-or-O(log(min(mn))) | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
nums1_len = len(nums1)
nums2_len = len(nums2)
if (nums1_len > nums2_len):
return self.findMedianSortedArrays(nums2,nums1)
low = 0
high = nums1_len
while(low<=high):
partition_nums1 = (low+high)//2
partition_nums2 = (nums1_len+nums2_len+1)//2 - partition_nums1
max_left_x = nums1[partition_nums1-1] if partition_nums1 else -float('inf')
min_right_x = nums1[partition_nums1] if partition_nums1 < nums1_len else float('inf')
max_left_y = nums2[partition_nums2-1] if partition_nums2 else -float('inf')
min_right_y = nums2[partition_nums2] if partition_nums2 < nums2_len else float('inf')
if (max_left_x<=min_right_y and max_left_y <= min_right_x):
if (nums1_len+nums2_len)%2 == 0:
return (max(max_left_x,max_left_y)+min(min_right_x,min_right_y))/2
else:
return max(max_left_x,max_left_y)
elif(max_left_x>min_right_y):
high = partition_nums1-1
else:
low = partition_nums1+1 | median-of-two-sorted-arrays | Python | simple | BInary search | O(log(min(m,n))) | ekantbajaj | 7 | 1,800 | median of two sorted arrays | 4 | 0.353 | Hard | 140 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2799909/Python-or-Easy-Solution | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
final = []
i = 0
j = 0
while i<len(nums1) and j<len(nums2):
if nums1[i] <= nums2[j]:
final.append(nums1[i])
i += 1
else:
final.append(nums2[j])
j += 1
final = final + nums1[i:] + nums2[j:]
size = len(final)
return (final[size//2]) if size % 2 != 0 else (final[size//2 - 1] + final[(size//2)])/2 | median-of-two-sorted-arrays | Python | Easy Solutionโ | manayathgeorgejames | 6 | 3,700 | median of two sorted arrays | 4 | 0.353 | Hard | 141 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2032243/Python-Tushar-Roy's-Solution-9463 | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
if len(nums1) > len(nums2):
return self.findMedianSortedArrays(nums2, nums1)
all_len = len(nums1) + len(nums2)
left_size = (all_len + 1) // 2
lo, hi = 0, len(nums1) - 1
while True:
med1 = (lo + hi) // 2
med2 = left_size - 1 - (med1 + 1)
left1 = -float('inf') if med1 < 0 else nums1[med1]
right1 = float('inf') if med1 + 1 >= len(nums1) else nums1[med1 + 1]
left2 = -float('inf') if med2 < 0 else nums2[med2]
right2 = float('inf') if med2 + 1 >= len(nums2) else nums2[med2 + 1]
if left1 > right2:
hi = med1 if hi != 0 else med1 - 1
elif left2 > right1:
lo = med1 + 1
else:
break
if all_len % 2 == 1:
return max(left1, left2)
else:
return (max(left1, left2) + min(right1, right2)) / 2 | median-of-two-sorted-arrays | โ
Python, Tushar Roy's Solution, 94,63% | AntonBelski | 5 | 666 | median of two sorted arrays | 4 | 0.353 | Hard | 142 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/1874742/Python-O(log(m%2Bn))-Modifed-Binary-Search-w-Comments | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
# Initialize total length of array len(A) + len(B), and rounded down half = total // 2
# We will assume A is smaller array of two(swap A and B if needed)
# Binary search array A, find its middle i
# Then the middle of B is j = half - i because half is supposed to be the length of left partition in global scale
# But we are not sure if this is valid partition where all left partition values are smaller than right partitions
# So we cross check the end of A's left partition(Aleft) and the start of B's right partition(Bright), and vice versa for B and A
# If we confirm they are in ascending order, we have a valid partition so we just need to compute median
# If they are not in ascending order, fix partitions to make it correct
# Fixing A will result in B being fixed automatically
A, B = nums1, nums2
total = len(nums1) + len(nums2)
half = total // 2
# make sure A is always smaller array
if len(B) < len(A):
A, B = B, A
l = 0
r = len(A) - 1
while True: # no condition because there is guaranteed to be a median so we can just return right away
i = l + (r - l) // 2 #Middle of A
j = half - i - 2 #Middle of B
# we subtract by 2 because array index starts at 0. j starts and 0 and i starts at 0 so take those into account
# Aleft is the end of left partition(= middle, i)
# Aright is the beginning of right partition(= adjacent to middle, i+1)
# Vice versa for B
Aleft = A[i] if i >= 0 else float('-inf') # Is i out of bound? If yes, give it default value of -infinity
Aright = A[i+1] if (i+1) < len(A) else float('inf') # likewise for right boundary
Bleft = B[j] if j >= 0 else float('-inf')
Bright = B[j+1] if (j+1) < len(B) else float('inf')
# This infinity arrangement for out of bound is useful for when we check valid partition in next step
# If end of A's left partition is smaller than right partition B's start, and vice versa for B and A, we have a valid partition
# so then we compute result and return it
if Aleft <= Bright and Bleft <= Aright:
# if we have odd length of array
if total % 2 != 0:
return min(Aright, Bright) # median is the beginning of right partition and it will be min value between Aright and Bright
# even length of array
# median is the mean of two values adjacent to mid, which are end of left partition and beginning of right partition
return (max(Aleft, Bleft) + min(Aright, Bright))/2
# If end A's left partition is larger than B's start of right partition, we need to fix partitions.
# Since arrays are in ascending order, shifting r will result in smaller A's left partition, which leads to smaller Aleft
elif Aleft > Bright:
r = i-1
# Or we could have too small A, in which case we increase A's size by shifting l
else:
l = i+1 | median-of-two-sorted-arrays | Python O(log(m+n)) Modifed Binary Search w/ Comments | hermit1007 | 4 | 621 | median of two sorted arrays | 4 | 0.353 | Hard | 143 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/1522910/Python%3A-O(log(m%2Bn))-solution-with-diagram-explanation | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
m,n=len(nums1),len(nums2)
k=ceil((m+n)/2)
lo=max(0,k-n)
hi=min(k,m)
def calculateBorder(k,x):
m_k=nums1[x] if x<m else math.inf
n_k=nums2[k-x] if k-x<n else math.inf
m_k_1=nums1[x-1] if x>0 else -math.inf
n_k_1=nums2[k-x-1] if k-x>0 else -math.inf
return m_k,n_k,m_k_1,n_k_1
while lo<hi:
x=(lo+hi)//2
m_k,n_k,m_k_1,n_k_1=calculateBorder(k,x)
if m_k_1>n_k:
hi=x
elif n_k_1>m_k:
lo=x+1
else:
return max(m_k_1,n_k_1) if (m+n)%2 else (max(m_k_1,n_k_1)+min(m_k,n_k))/2
m_k,n_k,m_k_1,n_k_1=calculateBorder(k,lo)
return max(m_k_1,n_k_1) if (m+n)%2 else (max(m_k_1,n_k_1)+min(m_k,n_k))/2 | median-of-two-sorted-arrays | Python: O(log(m+n)) solution with diagram explanation | SeraphNiu | 4 | 1,200 | median of two sorted arrays | 4 | 0.353 | Hard | 144 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2779958/Python-Simple-Python-Solution | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
num=sorted(nums1+nums2)
if len(num)%2==0:
return (num[(len(num)//2)-1] + num[(len(num)//2)])/2
else:
return (num[(len(num)//2)]*2)/2 | median-of-two-sorted-arrays | [ Python ] ๐๐ Simple Python Solution โ
โ
| sourav638 | 2 | 96 | median of two sorted arrays | 4 | 0.353 | Hard | 145 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2444913/median-of-two-sorted-arrays-simple-understandable-python3-solution | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
nums1.extend(nums2)
nums1.sort()
l = len(nums1)
mid1 = l // 2
if l % 2 == 1:
return nums1[mid1]
else:
mid2 = (l // 2) - 1
return (nums1[mid1] + nums1[mid2])/2 | median-of-two-sorted-arrays | median of two sorted arrays - simple understandable python3 solution | whammie | 2 | 555 | median of two sorted arrays | 4 | 0.353 | Hard | 146 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2361650/Easy-solution-using-Python-or-76ms | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
list1=nums1+nums2
list1.sort()
length=len(list1)
if length%2==1:
return float(list1[((length+1)//2)-1])
else:
return (list1[length//2-1]+list1[(length//2)])/2 | median-of-two-sorted-arrays | Easy solution using Python | 76ms | Hardik-26 | 2 | 240 | median of two sorted arrays | 4 | 0.353 | Hard | 147 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2361650/Easy-solution-using-Python-or-76ms | class Solution(object):
def findMedianSortedArrays(self, nums1, nums2):
list1=nums1+nums2
list1.sort()
length=len(list1)
if length%2==1:
return float(list1[((length+1)//2)-1])
else:
return float(list1[length//2-1]+list1[(length//2)])/2 | median-of-two-sorted-arrays | Easy solution using Python | 76ms | Hardik-26 | 2 | 240 | median of two sorted arrays | 4 | 0.353 | Hard | 148 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2267528/FASTEST-PYTHON-3-LINE-SOLUTION | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
nums1[0:0]=nums2
nums1.sort()
return float(nums1[len(nums1)//2]) if len(nums1)%2==1 else (nums1[len(nums1)//2]+nums1[(len(nums1)//2)-1])/2 | median-of-two-sorted-arrays | FASTEST PYTHON 3 LINE SOLUTION | afz123 | 2 | 484 | median of two sorted arrays | 4 | 0.353 | Hard | 149 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/1970305/Python-optimal-solution | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
#last index
n=len(nums2)
m=len(nums1)
for i in range(n):
nums1.append(0)
lst=n+m-1
# merging from last index
while m>0 and n>0:
if nums1[m-1] > nums2[n-1]:
nums1[lst]=nums1[m-1]
m-=1
else:
nums1[lst]=nums2[n-1]
n-=1
lst-=1
# for remaining values in nums2
while n>0:
nums1[lst]=nums2[n-1]
n-=1
lst-=1
if len(nums1)%2!=0:
return nums1[len(nums1)//2]
else:
return (nums1[len(nums1)//2]+nums1[(len(nums1)//2)-1])/2 | median-of-two-sorted-arrays | Python optimal solution | saty035 | 2 | 296 | median of two sorted arrays | 4 | 0.353 | Hard | 150 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/1961779/Python-easy-to-read-and-understand | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
m, n = len(nums1), len(nums2)
i, j = 0, 0
nums = []
while i < m and j < n:
if nums1[i] < nums2[j]:
nums.append(nums1[i])
i += 1
else:
nums.append(nums2[j])
j += 1
while i < m:
nums.append(nums1[i])
i += 1
while j < n:
nums.append(nums2[j])
j += 1
l = len(nums)
if l%2 == 0:
return (nums[l//2] + nums[l//2-1]) / 2
else:
return nums[l//2] | median-of-two-sorted-arrays | Python easy to read and understand | sanial2001 | 2 | 579 | median of two sorted arrays | 4 | 0.353 | Hard | 151 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/1805841/Short-Simple-Solution | class Solution():
def findMedianSortedArrays(self, nums1, nums2):
combined = nums1 + nums2
combined.sort()
length = len(combined)
if length % 2 == 0:
length = (length / 2) - 1
median = (combined[int(length)] + combined[int(length + 1)]) / 2
else:
length = ((length - 1) / 2) - 1
median = combined[int(length) + 1]
return median | median-of-two-sorted-arrays | Short Simple Solution | blacksquid | 2 | 478 | median of two sorted arrays | 4 | 0.353 | Hard | 152 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/714754/Python-O(log(m%2Bn))-Solution-with-comments | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
if len(nums1) > len(nums2):
nums1,nums2 = nums2, nums1
#Shorter array is nums1
n1,n2 = len(nums1),len(nums2)
leftHalf = (n1+n2+1)//2
#Now the minimum contribution nums1 can make to the merged array is 0 and the max contribution is n1(nums1's length)
minContribution = 0
maxContribution = n1
#We are essentially finding the last element of the left half of the merged final array, because it is sufficient for finding the median. We do this using binary search.
while minContribution <= maxContribution:
#We are searching in the space [minContribution,maxContribution] for the number of elements nums1 will contribute to the left half of the merged array. Since we know the size of the left half of the merged array, we can calculate the number of elements nums2 will contribute. Thus, we can find the median.
c1 = minContribution + (maxContribution-minContribution)//2 #Num of elements nums1 contributes
c2 = leftHalf - c1#Num of elements nums2 contributes
x,x2,y,y2 = None,None,None,None
if c1>0 : x = nums1[c1-1]
if c2>0 : y = nums2[c2-1]
if c1<n1: x2 = nums1[c1]
if c2<n2: y2 = nums2[c2]
#This is the important part. If x > y2, it means that x will come after y2 in the final merged array. Hence, we need to decrease maxContribution by 1.
if x and y2 and x>y2: maxContribution= c1-1
#Similarly, if y>x2, we need to increase num of elements nums2 contributes; hence, increase the number of elemenets nums1 contributes.
elif y and x2 and y>x2: minContribution = c1+1
#This is the case which happens when we've found our answer
else:
#Here we find out the last element of the left half of the merged array. If x>y, it means that x will be the, median(since it will occur after y in the merged array). SImilar reasoning is applicable for the other case.
leftHalfEnd = None
if not x: leftHalfEnd = y
elif not y or x>y: leftHalfEnd = x
else: leftHalfEnd = y
#Now if the total elements(n1+n2) is odd, we can simply return the leftHalfEnd
if (n1+n2)%2:
return leftHalfEnd
#However, if it is even, we need to find the first element in the right half of the merged array and calculate their mean and return it.
else:
rightHalfFirst = None
if not x2: rightHalfFirst = y2
elif not y2 or x2<y2: rightHalfFirst = x2
else: rightHalfFirst = y2
return (rightHalfFirst + leftHalfEnd)/2
return -1 | median-of-two-sorted-arrays | [Python] O(log(m+n)) Solution with comments | spongeb0b | 2 | 512 | median of two sorted arrays | 4 | 0.353 | Hard | 153 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/622231/python3-solution-77ms-beats-99 | class Solution:
def findMedianSortedArrays(self, A: List[int], B: List[int]) -> float:
""" Brute Force --> O(m + n) """
# nums3 = sorted(nums1 + nums2)
# print(nums3)
# if len(nums3) % 2 == 0:
# mid = len(nums3)//2
# mid1 = mid-1
# return (nums3[mid] + nums3[mid1])/2
# else:
# mid = len(nums3)//2
# return nums3[mid]
""" O(log(m + n)) """
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
A, B = nums1, nums2
total = len(A) + len(B)
half = total // 2
if len(B) < len(A):
A, B = B, A
l, r = 0, len(A)-1
while True:
i = (l + r) // 2
j = half - i - 2
Aleft = A[i] if i >= 0 else float("-inf")
Aright = A[i+1] if (i+1) < len(A) else float("inf")
Bleft = B[j] if j >= 0 else float("-inf")
Bright = B[j+1] if (j+1) < len(B) else float("inf")
if Aleft <= Bright and Bleft < Aright:
if total % 2:
return min(Aright, Bright)
else:
return (max(Aleft, Bleft) + min(Aright, Bright)) / 2
elif Aleft > Bright:
r = i-1
else:
l = i+1 | median-of-two-sorted-arrays | python3 solution - 77ms - beats 99% | ratikdubey | 2 | 147 | median of two sorted arrays | 4 | 0.353 | Hard | 154 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2501326/Simple-Logical-Solution-in-Python | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
nums = nums1 + nums2
nums.sort()
med = len(nums)/2
if med.is_integer():
med = int(med)
return (nums[med]+nums[med-1])/2
return nums[int(med)] | median-of-two-sorted-arrays | Simple Logical Solution in Python | Real-Supreme | 1 | 181 | median of two sorted arrays | 4 | 0.353 | Hard | 155 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2459620/Simple-python-solution | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
num3=nums1+nums2
num3.sort()
l=len(num3)
if l%2==1:
return num3[l//2]
else:
return(num3[l//2]+num3[l//2-1])/2 | median-of-two-sorted-arrays | Simple python solution | ilancheran | 1 | 234 | median of two sorted arrays | 4 | 0.353 | Hard | 156 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2418916/Simple-Solutionor-Very-Easy-to-Understand | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
for i in range(len(nums2)):
nums1.append(nums2[i])
nums1.sort() # sort the merged array
length = len(nums1)
half = length//2
if(length%2 != 0):
return nums1[half] # median is the middle number
else:
mean = (nums1[half] + nums1[half - 1])/2 # median is the avg. of 2 middle numbers
return mean | median-of-two-sorted-arrays | Simple Solution| Very Easy to Understand | AngelaInfantaJerome | 1 | 121 | median of two sorted arrays | 4 | 0.353 | Hard | 157 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2412098/Python-Short-Easy-and-Faster-Solution | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
arr = sorted(nums1 + nums2)
mid = len(arr) // 2
if len(arr) % 2:
return arr[mid]
return (arr[mid-1] + arr[mid]) / 2.0 | median-of-two-sorted-arrays | [Python] Short, Easy and Faster Solution | Buntynara | 1 | 223 | median of two sorted arrays | 4 | 0.353 | Hard | 158 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2371583/Very-Easy-solution-with-python | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
mergedList = nums1 + nums2
mergedList.sort()
midIndex = int(len(mergedList)/2)
if len(mergedList) % 2 == 0:
res = (mergedList[midIndex-1] + mergedList[midIndex]) / 2
return res
else:
res = merge
```dList[midIndex]
return res | median-of-two-sorted-arrays | Very Easy solution with python | amr-khalil | 1 | 177 | median of two sorted arrays | 4 | 0.353 | Hard | 159 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2356530/Python-simple-one-liner | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
return median(sorted(nums1 + nums2)) | median-of-two-sorted-arrays | Python simple one-liner | Arrstad | 1 | 132 | median of two sorted arrays | 4 | 0.353 | Hard | 160 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2336302/Simple-or-Python-or-Beats-96.89 | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
nums1 = sorted(nums1 + nums2)
l = len(nums1)
if l % 2:
return nums1[l // 2]
else:
l //= 2
return (nums1[l] + nums1[l - 1]) / 2 | median-of-two-sorted-arrays | Simple | Python | Beats 96.89% | fake_death | 1 | 238 | median of two sorted arrays | 4 | 0.353 | Hard | 161 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2308549/93-faster-or-python-or-O(n-logn)-or-simple-solution | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
nums1 = nums1+ nums2
nums1.sort()
n = len(nums1)
if n % 2 != 0:
mid = nums1[n//2]
return mid
elif n%2 ==0:
mid = n//2
avg = (nums1[mid] + (nums1[mid-1])) /2
return avg | median-of-two-sorted-arrays | 93% faster | python | O(n logn) | simple solution | TuhinBar | 1 | 99 | median of two sorted arrays | 4 | 0.353 | Hard | 162 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2147954/Python-Solution-oror-short-and-simple-code | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
l=nums1[:]+nums2[:]
l.sort()
r=0
if len(l)%2 !=0:
r=l[len(l)//2]
else:
r=sum(l[len(l)//2 - 1 : len(l)//2 + 1]) / 2
return r | median-of-two-sorted-arrays | Python Solution || short and simple code | T1n1_B0x1 | 1 | 350 | median of two sorted arrays | 4 | 0.353 | Hard | 163 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/1810446/Simple-Python3-Sol-O(m%2Bn) | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
len1 = len(nums1)
len2 = len(nums2)
n = len1+len2
i1,i2 = 0,0
d = []
while i2 < len2 and i1 < len1:
if nums2[i2] > nums1[i1]:
d.append(nums1[i1])
i1+=1
elif nums2[i2] == nums1[i1]:
d.append(nums1[i1])
d.append(nums2[i2])
i1+=1
i2+=1
else:
d.append(nums2[i2])
i2+=1
if n%2 == 0 and n//2<len(d): return (d[n//2]+d[n//2 - 1])/2
if n%2==1 and n//2<len(d): return d[n//2]
if i1 == len1:
d.extend(nums2[i2:])
else:
d.extend(nums1[i1:])
if n%2 == 0: return (d[n//2]+d[n//2 - 1])/2
else: return d[n//2] | median-of-two-sorted-arrays | Simple Python3 Sol O(m+n) | shivamm0296 | 1 | 318 | median of two sorted arrays | 4 | 0.353 | Hard | 164 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/1749839/Python3-or-Simple-or-O(n%2Bm)-or-two-pointers | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
ptr1 = 0 # pointer for nums1
ptr2 = 0 # pointer for nums2
ret = [] # list storing elements ascendingly until median
while (ptr1+ptr2 < (len(nums1)+len(nums2)+1)/2):
if ptr1 == len(nums1):
ret.append(nums2[ptr2])
ptr2 += 1
continue
if ptr2 == len(nums2):
ret.append(nums1[ptr1])
ptr1 += 1
continue
if nums1[ptr1] < nums2[ptr2]:
ret.append(nums1[ptr1])
ptr1 += 1
else:
ret.append(nums2[ptr2])
ptr2 += 1
if (len(nums1)+len(nums2))%2 == 0:
return (ret[-1] + ret[-2]) / 2
else:
return ret[-1] | median-of-two-sorted-arrays | Python3 | Simple | O(n+m) | two-pointers | Onlycst | 1 | 634 | median of two sorted arrays | 4 | 0.353 | Hard | 165 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/1598799/Self-explanatory-solution-with-almost-constant-space | class Solution:
def findKthElement(self, nums1: List[int], nums2: List[int], k: int) -> float:
if len(nums1) > len(nums2):
nums1, nums2 = nums2, nums1
lowNumSelected = 0 # minimum number of elements can be selected from shorter array
highNumSelected = len(nums1) if k > len(nums1) else k # maximum number of elements can be selected from shorter array
while(True):
if lowNumSelected == highNumSelected: break
shortArrCutOff = (lowNumSelected + highNumSelected) // 2
longArrCutOff = k - shortArrCutOff
if longArrCutOff > len(nums2):
lowNumSelected = shortArrCutOff + 1
else:
leftShortLargestElement = nums1[shortArrCutOff - 1] if shortArrCutOff > 0 else -float('inf')
rightShortSmallestElement = nums1[shortArrCutOff] if shortArrCutOff < len(nums1) else float('inf')
leftLongLargestElement = nums2[longArrCutOff - 1] if longArrCutOff > 0 else -float('inf')
rightLongSmallestElement = nums2[longArrCutOff] if longArrCutOff < len(nums2) else float('inf')
if leftShortLargestElement > rightLongSmallestElement:
highNumSelected = shortArrCutOff - 1
elif leftLongLargestElement > rightShortSmallestElement:
lowNumSelected = shortArrCutOff + 1
else:
break
numSelected = (lowNumSelected + highNumSelected) // 2
if numSelected > 0:
if k - numSelected > 0:
return max(nums1[numSelected - 1], nums2[k - numSelected - 1])
else:
return nums1[numSelected - 1]
return nums2[k-1]
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
m, n = len(nums1), len(nums2)
if (m + n) % 2 == 1:
k = (m + n) // 2
return self.findKthElement(nums1, nums2, k + 1)
else:
k = (m + n) // 2
return (self.findKthElement(nums1, nums2, k + 1) + self.findKthElement(nums1, nums2, k)) / 2 | median-of-two-sorted-arrays | Self-explanatory solution with almost constant space | vudat1710 | 1 | 270 | median of two sorted arrays | 4 | 0.353 | Hard | 166 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/1581195/Short-and-readable-python3-84ms-solution | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
i=0
j=0
m2=0
l=len(nums1)+len(nums2)
nums1.append(1000001)
nums2.append(1000001)
for _i in range(l//2+1):
if nums1[i]<nums2[j]:
m1,m2=m2,nums1[i]
i+=1
else:
m1,m2=m2,nums2[j]
j+=1
return float(m2) if l%2 else float(m1+m2)/2 | median-of-two-sorted-arrays | Short and readable python3 84ms solution | Veanules | 1 | 467 | median of two sorted arrays | 4 | 0.353 | Hard | 167 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/1580354/Two-two-two-pointers-as-if-they-were-merged | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
n1 = len(nums1)
n2 = len(nums2)
n = n1 + n2
p1 = 0
p2 = n - 1
a1 = 0
a2 = n1 - 1
b1 = 0
b2 = n2 -1
while p2 - p1 > 1:
p1 += 1
p2 -= 1
if a2 < a1:
b1 += 1
b2 -= 1
continue
if b2 < b1:
a1 += 1
a2 -= 1
continue
if nums1[a1] <= nums2[b1]:
a1 += 1
else:
b1 += 1
if nums1[a2] > nums2[b2]:
a2 -= 1
else:
b2 -= 1
if p1 == p2:
return sum(nums1[a1:a2+1]) if len(nums1[a1:a2+1])>0 else sum(nums2[b1:b2+1])
return (sum(nums1[a1:a2+1]) + sum(nums2[b1:b2+1]))/2 | median-of-two-sorted-arrays | Two-two-two pointers as if they were merged | hl2425 | 1 | 186 | median of two sorted arrays | 4 | 0.353 | Hard | 168 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/1530105/Python3-solution-in-time-O(n%2Bm) | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
m,n = len(nums1),len(nums2)
if m+n<1:
return -1
merge = []
i,j = 0,0
while i<len(nums1) and j<len(nums2):
if nums1[i]<=nums2[j]:
merge.append(nums1[i])
i+=1
elif nums1[i]>=nums2[j]:
merge.append(nums2[j])
j+=1
if len(nums1)>i:
merge.extend(nums1[i:])
else:
merge.extend(nums2[j:])
a = len(merge)
if a==1:
return merge[0]
b = ceil(a/2)
if a%2==0:
return (merge[b]+merge[b-1])/2
else:
return merge[b-1] | median-of-two-sorted-arrays | Python3 solution in time O(n+m) | Abhists | 1 | 300 | median of two sorted arrays | 4 | 0.353 | Hard | 169 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/1530105/Python3-solution-in-time-O(n%2Bm) | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
m,n = len(nums1),len(nums2)
if m+n<1:
return -1
merge = []
merge = sorted(nums1 + nums2)
a = len(merge)
if a==1:
return merge[0]
b = ceil(a/2)
if a%2==0:
return (merge[b]+merge[b-1])/2
else:
return merge[b-1] | median-of-two-sorted-arrays | Python3 solution in time O(n+m) | Abhists | 1 | 300 | median of two sorted arrays | 4 | 0.353 | Hard | 170 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2848110/python-solution | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
complete = nums1 + nums2
complete.sort()
if len(complete)%2 ==0:
# return sum(complete)/len(complete)
return (complete[int((len(complete) - 1)/2)] + complete[int((len(complete) + 1)/2)])/2
else :
return complete[int((len(complete) - 1)/2)] | median-of-two-sorted-arrays | python solution | HARMEETSINGH0 | 0 | 1 | median of two sorted arrays | 4 | 0.353 | Hard | 171 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2841662/Python-oror-Easily-Understandable | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
for j in nums2:
nums1.append(j)
nums1.sort()
if(len(nums1)%2==0):
mid = len(nums1)//2
median = (nums1[mid-1] + nums1[mid])/2
else:
mid = len(nums1)//2
median = nums1[mid]
return median | median-of-two-sorted-arrays | Python || Easily Understandable | user6374IX | 0 | 4 | median of two sorted arrays | 4 | 0.353 | Hard | 172 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2838883/it-works | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
nums1.extend(nums2)
n=len(nums1)
nums1.sort()
if n%2==0 :
m=len(nums1)//2
return ((nums1[m-1]+nums1[m])/2)
else:
m=(len(nums1)//2)+1
return (nums1[m-1]) | median-of-two-sorted-arrays | it works | venkatesh402 | 0 | 1 | median of two sorted arrays | 4 | 0.353 | Hard | 173 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2838698/Python-Straight-Forward-Solution | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
ptr1, ptr2 = 0, 0
res = []
while ptr1 < len(nums1) and ptr2 < len(nums2):
if nums1[ptr1] < nums2[ptr2]:
res.append(nums1[ptr1])
ptr1 += 1
else:
res.append(nums2[ptr2])
ptr2 += 1
while ptr1 < len(nums1):
res.append(nums1[ptr1])
ptr1 += 1
while ptr2 < len(nums2):
res.append(nums2[ptr2])
ptr2 += 1
if len(res)%2 == 1:
return res[len(res)//2]
return (res[len(res)//2] + res[len(res)//2 - 1])/2 | median-of-two-sorted-arrays | Python Straight Forward Solution | paul1202 | 0 | 3 | median of two sorted arrays | 4 | 0.353 | Hard | 174 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2838657/Python3-Fast-93ms-solution | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
num = sorted(nums1 + nums2)
if len(num) % 2 != 0:
return float("%.5f" % num[len(num) // 2])
return float("%.5f" % (num[len(num) // 2] + num[len(num) // 2 - 1])) / 2 | median-of-two-sorted-arrays | Python3 Fast 93ms solution | Ki4EH | 0 | 1 | median of two sorted arrays | 4 | 0.353 | Hard | 175 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2838406/2-Python-easy-Solution-with-video-explanation | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
if (len(nums1) > len(nums2)):
return self.findMedianSortedArrays(nums2, nums1)
start = 0
end = len(nums1)
X = len(nums1)
Y = len(nums2)
while start <= end:
division1 = (start + end) // 2 # mid
division2 = (X + Y + 1) // 2 - division1
# left of the median of List 1
if (division1 == 0):
X1 = float('-inf')
else:
X1 = nums1[division1 - 1]
#right of the median of List 1
if (division1 == len(nums1)):
X2 = float('inf')
else:
X2 = nums1[division1]
# left of the median of List 2
if (division2 == 0):
Y1 = float('-inf')
else:
Y1 = nums2[division2 - 1]
# right of the median of List 2
if (division2 == len(nums2)):
Y2 = float('inf')
else:
Y2 = nums2[division2]
# check if we found the correct division
if (X1 <= Y2 and Y1 <= X2):
# check if the length of the sum of both lists are even or odd
if (X + Y) % 2 == 0:
median = ((max(X1, Y1) + min(X2, Y2)) / 2)
return median
else:
#odd
median = max(X1, Y1)
return median
elif Y1 > X2:
start = division1 + 1
else:
end = division1 - 1 | median-of-two-sorted-arrays | 2 Python easy Solution โ๏ธ with video explanation | CoderrrMan | 0 | 7 | median of two sorted arrays | 4 | 0.353 | Hard | 176 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2832807/Easy-Python-Solution | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
merged_list = self.merge_sort(nums1, nums2)
len_merged_list = len(merged_list)
# middle index and middle - 1 index
mid = len_merged_list // 2
# when the size is even
if len_merged_list % 2 == 0:
return (merged_list[mid] + merged_list[mid - 1]) / 2
# when the size is odd
return merged_list[mid]
def merge_sort(self, num1: List[int], num2: List[int]):
merged_list = []
i = 0
j = 0
len_num1 = len(num1) - 1
len_num2 = len(num2) - 1
while i <= len_num1 and j <= len_num2:
if num1[i] < num2[j]:
merged_list.append(num1[i])
i += 1
else:
merged_list.append(num2[j])
j += 1
while i <= len_num1:
merged_list.append(num1[i])
i += 1
while j <= len_num2:
merged_list.append(num2[j])
j += 1
return merged_list | median-of-two-sorted-arrays | Easy Python Solution | namashin | 0 | 4 | median of two sorted arrays | 4 | 0.353 | Hard | 177 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2831276/Python3-Solution | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
nums1.extend(nums2)
nums = sorted(nums1)
# nums = list(set(nums))
m = len(nums)
if m%2==0 and m>1:
i = m//2
med = (nums[i-1]+nums[i])/2
elif m%2==1 and m>1:
i = m//2
med = nums[i]
else:
med = nums[0]
return med | median-of-two-sorted-arrays | Python3 Solution | sina1 | 0 | 2 | median of two sorted arrays | 4 | 0.353 | Hard | 178 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2821932/Maybe-I-am-misunderstanding-why-this-problem-is-'hard'-The-solution-seems-pretty-simple.... | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
a = nums1 + nums2
a.sort()
b = int(len(a)/2)
if len(a) % 2 == 1:
return a[b]
return (a[b] + a[b-1]) / 2 | median-of-two-sorted-arrays | Maybe I am misunderstanding why this problem is 'hard'? The solution seems pretty simple.... | walter9388 | 0 | 18 | median of two sorted arrays | 4 | 0.353 | Hard | 179 |
https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2816882/dont-know-bro-its-just-simple | class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
sum_list = nums1 + nums2
sum_list.sort()
sum_size = len(sum_list)
if sum_size % 2 == 0:
x = (sum_list[int(sum_size/2)] + sum_list[int((sum_size/2) - 1)]) / 2
else:
x = sum_list[int(sum_size/2)]
return x | median-of-two-sorted-arrays | dont know bro its just simple | musaidovs883 | 0 | 13 | median of two sorted arrays | 4 | 0.353 | Hard | 180 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/2156659/Python-Easy-O(1)-Space-approach | class Solution:
def longestPalindrome(self, s: str) -> str:
n=len(s)
def expand_pallindrome(i,j):
while 0<=i<=j<n and s[i]==s[j]:
i-=1
j+=1
return (i+1, j)
res=(0,0)
for i in range(n):
b1 = expand_pallindrome(i,i)
b2 = expand_pallindrome(i,i+1)
res=max(res, b1, b2,key=lambda x: x[1]-x[0]+1) # find max based on the length of the pallindrome strings.
return s[res[0]:res[1]] | longest-palindromic-substring | โ
Python Easy O(1) Space approach | constantine786 | 47 | 6,600 | longest palindromic substring | 5 | 0.324 | Medium | 181 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/2156659/Python-Easy-O(1)-Space-approach | class Solution:
def longestPalindrome(self, s: str) -> str:
n=len(s)
def expand_center(i,j):
while 0<=i<=j<n and s[i]==s[j]:
i-=1
j+=1
return (i+1, j)
res=max([expand_center(i,i+offset) for i in range(n) for offset in range(2)], key=lambda x: x[1]-x[0]+1)
return s[res[0]:res[1]] | longest-palindromic-substring | โ
Python Easy O(1) Space approach | constantine786 | 47 | 6,600 | longest palindromic substring | 5 | 0.324 | Medium | 182 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/1057629/Python.-Super-simple-and-easy-understanding-solution.-O(n2). | class Solution:
def longestPalindrome(self, s: str) -> str:
res = ""
length = len(s)
def helper(left: int, right: int):
while left >= 0 and right < length and s[left] == s[right]:
left -= 1
right += 1
return s[left + 1 : right]
for index in range(len(s)):
res = max(helper(index, index), helper(index, index + 1), res, key = len)
return res | longest-palindromic-substring | Python. Super simple & easy-understanding solution. O(n^2). | m-d-f | 18 | 2,300 | longest palindromic substring | 5 | 0.324 | Medium | 183 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/2157014/Python-2-Approaches-with-Explanation | class Solution:
def longestPalindrome(self, s: str) -> str:
"""
Consider each character in s as the centre of a palindrome.
Check for the longest possible odd-length and even-length palindrome; store the longest palindrome
"""
# res is the starting index of the longest palindrome
# len_res is the length of the longest palindrome
# len_s is the length of the given string
res, len_res, len_s = 0, 0, len(s)
for i in range(len_s):
# check for palindromes with odd number of characters centred around s[i]
# i.e., s[i] -> s[i-1:i+2] -> s[i-2:i+3] -> ...
# odd is the starting index of the current palindrome with odd number of characters
# len_odd is the length of the current palindrome with odd number of characters
odd, len_odd = i, 1
for j in range(min(i, len_s-i-1)): # checking indexes [0, i) and [i+1, len_s); take the smaller range
if s[i-j-1] != s[i+j+1]: # if the two characters adjacent to the ends of the current palindrome are not equal,
break # a longer palindrome does not exist; break out of the loop
odd, len_odd = odd-1, len_odd+2 # else, a longer palindrome exists; update odd and len_odd to point to that palindrome
# check for palindromes with even number of characters centred around s[i-1:i+1]
# i.e., s[i-1:i+1] -> s[i-2:i+2] -> s[i-3:i+3] -> ...
# even is the starting index of the current palindrome with even number of characters
# len_even is the length of the current palindrome with even number of characters
even, len_even = i, 0
for j in range(min(i, len_s-i)): # checking indexes [0, i) and [i, len_s); take the smaller range
if s[i-j-1] != s[i+j]: # if the two characters adjacent to the ends of the current palindrome are not equal,
break # a longer palindrome does not exist; break out of the loop
even, len_even = even-1, len_even+2 # else, a longer palindrome exists; update even and len_even to point to that palindrome
# update res and len_res to point to the longest palindrome found so far
len_res, res = max((len_res, res), (len_odd, odd), (len_even, even))
return s[res:res+len_res] | longest-palindromic-substring | [Python] 2 Approaches with Explanation | zayne-siew | 11 | 905 | longest palindromic substring | 5 | 0.324 | Medium | 184 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/2157014/Python-2-Approaches-with-Explanation | class Solution:
def longestPalindrome(self, s: str) -> str:
"""
Manacher's Algorithm for longest palindromic substrings (LPS)
"""
# Transform S into T
# For example, S = "abba", T = "^#a#b#b#a#$"
# ^ and $ signs are sentinels appended to each end to avoid bounds checking
T = '#'.join('^{}$'.format(s))
n = len(T)
P = [0]*n
C = R = 0
for i in range (1, n-1):
P[i] = (R > i) and min(R-i, P[2*C-i]) # equals to i' = C - (i-C)
# Attempt to expand palindrome centered at i
while T[i+1+P[i]] == T[i-1-P[i]]:
P[i] += 1
# If palindrome centered at i expand past R,
# adjust center based on expanded palindrome
if i+P[i] > R:
C, R = i, i+P[i]
# Find the maximum element in P
maxLen, centerIndex = max((n, i) for i, n in enumerate(P))
return s[(centerIndex-maxLen)//2: (centerIndex+maxLen)//2] | longest-palindromic-substring | [Python] 2 Approaches with Explanation | zayne-siew | 11 | 905 | longest palindromic substring | 5 | 0.324 | Medium | 185 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/2156653/PYTHON-oror-DYNAMIC-AND-BRUTE-oror | class Solution:
def longestPalindrome(self, s: str) -> str:
res=s[0]
nn=len(res)
n=len(s)
for i in range(1,n-1):
kk=s[i]
z=1
while ((i-z)>=0) and ((i+z)<n) and (s[i-z]==s[i+z]):
kk=s[i-z]+kk+s[i-z]
z+=1
if len(kk)>nn:
res=kk
nn=len(res)
for i in range(0,n-1):
if s[i]==s[i+1]:
kk=s[i]+s[i+1]
z=1
while ((i-z)>=0) and ((i+z+1)<n) and (s[i-z]==s[i+z+1]):
kk=s[i-z]+kk+s[i-z]
z+=1
if len(kk)>nn:
res=kk
nn=len(res)
return res | longest-palindromic-substring | โ๏ธ PYTHON || DYNAMIC AND BRUTE || ;] | karan_8082 | 10 | 734 | longest palindromic substring | 5 | 0.324 | Medium | 186 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/2156653/PYTHON-oror-DYNAMIC-AND-BRUTE-oror | class Solution:
def longestPalindrome(self, s):
res = ''
dp = [[0]*len(s) for i in range(len(s))]
for i in range(len(s)):
dp[i][i] = True
res = s[i]
for i in range(len(s)-1,-1,-1):
for j in range(i+1,len(s)):
if s[i] == s[j]:
if j-i ==1 or dp[i+1][j-1] is True:
dp[i][j] = True
if len(res) < len(s[i:j+1]):
res = s[i:j+1]
return res | longest-palindromic-substring | โ๏ธ PYTHON || DYNAMIC AND BRUTE || ;] | karan_8082 | 10 | 734 | longest palindromic substring | 5 | 0.324 | Medium | 187 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/368409/Solution-in-Python-3-(-six-lines-)-(-O(n2)-speed-)-(-O(1)-space-)-(With-Explanation)-(beats-~90) | class Solution:
def longestPalindrome(self, s: str) -> str:
L, M, x = len(s), 0, 0
for i in range(L):
for a,b in [(i,i),(i,i+1)]:
while a >= 0 and b < L and s[a] == s[b]: a -= 1; b += 1
if b - a - 1 > M: M, x = b - a - 1, a + 1
return s[x:x+M]
- Junaid Mansuri
(LeetCode ID)@hotmail.com | longest-palindromic-substring | Solution in Python 3 ( six lines ) ( O(n^2) speed ) ( O(1) space ) (With Explanation) (beats ~90%) | junaidmansuri | 8 | 1,600 | longest palindromic substring | 5 | 0.324 | Medium | 188 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/2718979/Python-Solution-readable-code-with-thorough-explanation. | class Solution:
def longestPalindrome(self, s: str) -> str:
n = len(s) # Length of the input
if n == 1:
return s
def expandOutwards(start, end):
i = start
k = end
if s[i] != s[k]:
return ""
while(i-1 >= 0 and k+1 < n and s[i-1] == s[k+1]):
i-=1
k+=1
return s[i:k+1]
pal1 = ""
pal2 = ""
longPal = ""
for i in range(0, n-1):
pal1 = expandOutwards(i, i)
pal2 = expandOutwards(i, i+1)
# Conditional assignment statement
temp = pal1 if len(pal1) > len(pal2) else pal2
if len(temp) > len(longPal):
longPal = temp
return longPal | longest-palindromic-substring | Python Solution, readable code with thorough explanation. | BrandonTrastoy | 6 | 1,300 | longest palindromic substring | 5 | 0.324 | Medium | 189 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/2164588/Python3-solution-with-two-pointers | class Solution:
indices = []
maxLength = -float("inf")
def isPalindrome(self,low,high,s):
while low>=0 and high<len(s) and s[low]==s[high]:
low-=1
high+=1
if self.maxLength<high-low+1:
self.maxLength = high-low+1
self.indices = [low,high]
def longestPalindrome(self, s: str) -> str:
self.indices = []
self.maxLength = -float("inf")
for i in range(len(s)):
self.isPalindrome(i,i,s)
self.isPalindrome(i,i+1,s)
return s[self.indices[0]+1 : self.indices[1]] | longest-palindromic-substring | ๐ Python3 solution with two pointers | Dark_wolf_jss | 5 | 112 | longest palindromic substring | 5 | 0.324 | Medium | 190 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/1767684/Clean-Python-Solution | class Solution:
def longestPalindrome(self, s: str) -> str:
n, max_len, ans = len(s), 0, ''
def expand_around_center(l, r):
if r < n and s[l] != s[r]:
return '' # Index out of range or elements unequal(for even sized palindromes) thus return empty string
while l >= 0 and r < n and s[l] == s[r]: # Till the s[l], s[r] elements are in range and same, the palindrome continues to grow
l, r = l - 1, r + 1
return s[l + 1:r] # Return the palindrome formed
for i in range(n):
a, b = expand_around_center(i, i), expand_around_center(i, i + 1) # (i,i) for odd and (i,i+1) for even sized palindromes
main = a if len(a) > len(b) else b # Check which one of a, b is larger
if len(main) > max_len: # Check if palindrome with i as center is larger than previous entries then update if necessary
max_len, ans = len(main), main
return ans | longest-palindromic-substring | Clean Python Solution | anCoderr | 4 | 760 | longest palindromic substring | 5 | 0.324 | Medium | 191 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/2601218/Simple-python-code-with-explanation | class Solution:
def longestPalindrome(self, s: str) -> str:
#create an empty string res
res = ""
#store it's length as 0 in resLen
resLen = 0
#iterate using indexes in the string
for i in range(len(s)):
#odd case
#create the two pointers pointing at current position
l,r = i,i
#this while loop works utill it satisfies the following conditions
#l pointer should be greater than or equal to 0
#r pointer should be less than length of the string
#value at l pointer and r pointer should be same
while l >= 0 and r < len(s) and s[l] == s[r]:
#if the palindrome substring's length is greater than resLen
if (r-l+1) > resLen:
#change the res sting to the palindrome substring
res = s[l:r+1]
#and change the length of the res string to the palindrome substring length
resLen = (r-l+1)
#decrease the l pointer value by 1
#to see the left side elements
l -=1
#increase the r pointer value by 1
#to see the right side elements
r +=1
#even case
#create a two pointers l is at curr position and r is at next position
l,r = i,i+1
#this while loop works utill it satisfies the following conditions
#l pointer should be greater than or equal to 0
#r pointer should be less than length of the string
#value at l pointer and r pointer should be same
while l >= 0 and r < len(s) and s[l] == s[r]:
#if the palindrome substring's length is greater than resLen
if (r-l+1) > resLen:
#change the res sting to the palindrome substring
res = s[l:r+1]
#and change the length of the res string to the palindrome substring length
resLen = (r-l+1)
#decrease the l pointer value by 1
#to see the left side elements
l -=1
#increase the r pointer value by 1
#to see the right side elements
r +=1
#return the palindromic substring stored in the res string
return res | longest-palindromic-substring | Simple python code with explanation | thomanani | 3 | 532 | longest palindromic substring | 5 | 0.324 | Medium | 192 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/2156940/Longest-Palindromic-Substring | class Solution:
def longestPalindrome(self, s: str) -> str:
long_s = ''
n = len(s)
for i in range(n) :
left = i
right = i
while left >= 0 and right < n and s[left] == s[right] :
# print("left :", left)
# print("Right :", right)
if len(long_s) < right - left + 1 :
long_s = s[left : right + 1]
# print("long_s :", long_s)
left -= 1
right += 1
left = i
right = i + 1
# print("================")
# This Loop Is used if substring is in betwwen of two word i.e "bb"
while left >= 0 and right < n and s[left ] == s[right] :
# print("left 2===:", left)
# print("Right 2===:", right)
if len(long_s) < right - left + 1 :
long_s = s[left : right + 1]
# print("long_s 2:", long_s)
left -= 1
right += 1
return long_s | longest-palindromic-substring | Longest Palindromic Substring | vaibhav0077 | 3 | 312 | longest palindromic substring | 5 | 0.324 | Medium | 193 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/1504461/Python3-Beats-95.79 | class Solution:
def longestPalindrome(self, s: str) -> str:
longest = ""
core_start = 0
while core_start in range(len(s)):
# identifying the "core"
core_end = core_start
while core_end < len(s) - 1:
if s[core_end + 1] == s[core_end]:
core_end += 1
else:
break
# expanding the palindrome left and right
expand = 0
while (core_start - expand) > 0 and (core_end + expand) < len(s) - 1:
if s[core_start - expand - 1] == s[core_end + expand + 1]:
expand += 1
else:
break
# comparing to the longest found so far
if (core_end + expand + 1) - (core_start - expand) > len(longest):
longest = s[(core_start - expand):(core_end + expand + 1)]
# skip through the rest of the "core"
core_start = core_end + 1
return longest | longest-palindromic-substring | [Python3] Beats 95.79% | Wallace_W | 3 | 1,700 | longest palindromic substring | 5 | 0.324 | Medium | 194 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/2337365/EFFICIENT-APPROCH-using-python3 | class Solution:
def longestPalindrome(self, s: str) -> str:
def func(i,j):
while(i>=0 and j<len(s) and s[i]==s[j]):
i-=1
j+=1
return(s[i+1:j])
r=""
for i in range(len(s)):
test=func(i,i)
if len(r)<len(test):
r=test
test=func(i,i+1)
if len(r)<len(test):
r=test
return r | longest-palindromic-substring | EFFICIENT APPROCH using python3 | V_Bhavani_Prasad | 2 | 88 | longest palindromic substring | 5 | 0.324 | Medium | 195 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/2311861/Easy-Python3-Two-Pointer-Solution-w-Explanation | class Solution:
def longestPalindrome(self, s: str) -> str:
res = ''
for i in range(len(s)*2-1):
# i refers to the "central" (or "mid point" or "pivot") of the palindrome
# Uses index 0 as central, uses the middle of index 0 and 1 as central and so on
# idx 0 1 2 3 4 ...
# l r
# l r
# l r
# l r
# ...
l, r = i // 2, (i + 1) // 2
# Move the pointers outward to check if they are palidrome
while l >= 0 and r < len(s) and s[l] == s[r]:
l -= 1
r += 1
res = res if len(res) > len(s[l+1:r]) else s[l+1:r]
return res | longest-palindromic-substring | Easy Python3 Two Pointer Solution w/ Explanation | geom1try | 2 | 204 | longest palindromic substring | 5 | 0.324 | Medium | 196 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/1993958/Python3-Runtime%3A-897ms-81.93-memory%3A-13.9mb-99.78 | class Solution:
# O(n^2) || space O(n)
def longestPalindrome(self, string: str) -> str:
if not string or len(string) < 1:
return ''
start, end = 0, 0
for i in range(len(string)):
odd = self.expandFromMiddleHelper(string, i, i)
even = self.expandFromMiddleHelper(string, i, i + 1)
maxIndex = max(odd, even)
if maxIndex > end - start:
start = i - ((maxIndex - 1) // 2)
end = i + (maxIndex // 2)
return string[start:end + 1]
def expandFromMiddleHelper(self, string, left, right):
while left >= 0 and right < len(string) and string[left] == string[right]:
left -= 1
right += 1
currentWindowSize = (right - left - 1)
return currentWindowSize | longest-palindromic-substring | Python3 Runtime: 897ms 81.93% memory: 13.9mb 99.78% | arshergon | 2 | 361 | longest palindromic substring | 5 | 0.324 | Medium | 197 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/1993958/Python3-Runtime%3A-897ms-81.93-memory%3A-13.9mb-99.78 | class Solution:
# O(n^2) || space O(n)
def longestPalindrome(self, string: str) -> str:
result = ""
for i in range(len(string)):
left, right = i, i
while left >= 0 and right < len(string) and string[left] == string[right]:
currentWindowSize = (right - left + 1)
if currentWindowSize > len(result):
result = string[left:right + 1]
left -= 1
right += 1
left, right = i, i + 1
while left >= 0 and right < len(string) and string[left] == string[right]:
currentWindowSize = (right - left + 1)
if currentWindowSize > len(result):
result = string[left: right + 1]
left -= 1
right += 1
return result | longest-palindromic-substring | Python3 Runtime: 897ms 81.93% memory: 13.9mb 99.78% | arshergon | 2 | 361 | longest palindromic substring | 5 | 0.324 | Medium | 198 |
https://leetcode.com/problems/longest-palindromic-substring/discuss/2614056/Clean-python-solution-expand-from-the-center | class Solution:
def longestPalindrome(self, s: str) -> str:
res = ""
def helper(left, right):
while left >= 0 and right < len(s) and s[left] == s[right]:
left -= 1
right += 1
return s[left+1 : right]
for i in range(len(s)):
res = max(helper(i, i), helper(i, i+1), res, key=len)
return res | longest-palindromic-substring | Clean python solution expand from the center | miko_ab | 1 | 180 | longest palindromic substring | 5 | 0.324 | Medium | 199 |