Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
clinc_oos / README.md
albertvillanova's picture
Convert dataset to Parquet (#5)
155b9c7 verified
metadata
annotations_creators:
  - expert-generated
language_creators:
  - crowdsourced
language:
  - en
license:
  - cc-by-3.0
multilinguality:
  - monolingual
size_categories:
  - 10K<n<100K
source_datasets:
  - original
task_categories:
  - text-classification
task_ids:
  - intent-classification
paperswithcode_id: clinc150
pretty_name: CLINC150
dataset_info:
  - config_name: imbalanced
    features:
      - name: text
        dtype: string
      - name: intent
        dtype:
          class_label:
            names:
              '0': restaurant_reviews
              '1': nutrition_info
              '2': account_blocked
              '3': oil_change_how
              '4': time
              '5': weather
              '6': redeem_rewards
              '7': interest_rate
              '8': gas_type
              '9': accept_reservations
              '10': smart_home
              '11': user_name
              '12': report_lost_card
              '13': repeat
              '14': whisper_mode
              '15': what_are_your_hobbies
              '16': order
              '17': jump_start
              '18': schedule_meeting
              '19': meeting_schedule
              '20': freeze_account
              '21': what_song
              '22': meaning_of_life
              '23': restaurant_reservation
              '24': traffic
              '25': make_call
              '26': text
              '27': bill_balance
              '28': improve_credit_score
              '29': change_language
              '30': 'no'
              '31': measurement_conversion
              '32': timer
              '33': flip_coin
              '34': do_you_have_pets
              '35': balance
              '36': tell_joke
              '37': last_maintenance
              '38': exchange_rate
              '39': uber
              '40': car_rental
              '41': credit_limit
              '42': oos
              '43': shopping_list
              '44': expiration_date
              '45': routing
              '46': meal_suggestion
              '47': tire_change
              '48': todo_list
              '49': card_declined
              '50': rewards_balance
              '51': change_accent
              '52': vaccines
              '53': reminder_update
              '54': food_last
              '55': change_ai_name
              '56': bill_due
              '57': who_do_you_work_for
              '58': share_location
              '59': international_visa
              '60': calendar
              '61': translate
              '62': carry_on
              '63': book_flight
              '64': insurance_change
              '65': todo_list_update
              '66': timezone
              '67': cancel_reservation
              '68': transactions
              '69': credit_score
              '70': report_fraud
              '71': spending_history
              '72': directions
              '73': spelling
              '74': insurance
              '75': what_is_your_name
              '76': reminder
              '77': where_are_you_from
              '78': distance
              '79': payday
              '80': flight_status
              '81': find_phone
              '82': greeting
              '83': alarm
              '84': order_status
              '85': confirm_reservation
              '86': cook_time
              '87': damaged_card
              '88': reset_settings
              '89': pin_change
              '90': replacement_card_duration
              '91': new_card
              '92': roll_dice
              '93': income
              '94': taxes
              '95': date
              '96': who_made_you
              '97': pto_request
              '98': tire_pressure
              '99': how_old_are_you
              '100': rollover_401k
              '101': pto_request_status
              '102': how_busy
              '103': application_status
              '104': recipe
              '105': calendar_update
              '106': play_music
              '107': 'yes'
              '108': direct_deposit
              '109': credit_limit_change
              '110': gas
              '111': pay_bill
              '112': ingredients_list
              '113': lost_luggage
              '114': goodbye
              '115': what_can_i_ask_you
              '116': book_hotel
              '117': are_you_a_bot
              '118': next_song
              '119': change_speed
              '120': plug_type
              '121': maybe
              '122': w2
              '123': oil_change_when
              '124': thank_you
              '125': shopping_list_update
              '126': pto_balance
              '127': order_checks
              '128': travel_alert
              '129': fun_fact
              '130': sync_device
              '131': schedule_maintenance
              '132': apr
              '133': transfer
              '134': ingredient_substitution
              '135': calories
              '136': current_location
              '137': international_fees
              '138': calculator
              '139': definition
              '140': next_holiday
              '141': update_playlist
              '142': mpg
              '143': min_payment
              '144': change_user_name
              '145': restaurant_suggestion
              '146': travel_notification
              '147': cancel
              '148': pto_used
              '149': travel_suggestion
              '150': change_volume
    splits:
      - name: train
        num_bytes: 546901
        num_examples: 10625
      - name: validation
        num_bytes: 160298
        num_examples: 3100
      - name: test
        num_bytes: 286966
        num_examples: 5500
    download_size: 441918
    dataset_size: 994165
  - config_name: plus
    features:
      - name: text
        dtype: string
      - name: intent
        dtype:
          class_label:
            names:
              '0': restaurant_reviews
              '1': nutrition_info
              '2': account_blocked
              '3': oil_change_how
              '4': time
              '5': weather
              '6': redeem_rewards
              '7': interest_rate
              '8': gas_type
              '9': accept_reservations
              '10': smart_home
              '11': user_name
              '12': report_lost_card
              '13': repeat
              '14': whisper_mode
              '15': what_are_your_hobbies
              '16': order
              '17': jump_start
              '18': schedule_meeting
              '19': meeting_schedule
              '20': freeze_account
              '21': what_song
              '22': meaning_of_life
              '23': restaurant_reservation
              '24': traffic
              '25': make_call
              '26': text
              '27': bill_balance
              '28': improve_credit_score
              '29': change_language
              '30': 'no'
              '31': measurement_conversion
              '32': timer
              '33': flip_coin
              '34': do_you_have_pets
              '35': balance
              '36': tell_joke
              '37': last_maintenance
              '38': exchange_rate
              '39': uber
              '40': car_rental
              '41': credit_limit
              '42': oos
              '43': shopping_list
              '44': expiration_date
              '45': routing
              '46': meal_suggestion
              '47': tire_change
              '48': todo_list
              '49': card_declined
              '50': rewards_balance
              '51': change_accent
              '52': vaccines
              '53': reminder_update
              '54': food_last
              '55': change_ai_name
              '56': bill_due
              '57': who_do_you_work_for
              '58': share_location
              '59': international_visa
              '60': calendar
              '61': translate
              '62': carry_on
              '63': book_flight
              '64': insurance_change
              '65': todo_list_update
              '66': timezone
              '67': cancel_reservation
              '68': transactions
              '69': credit_score
              '70': report_fraud
              '71': spending_history
              '72': directions
              '73': spelling
              '74': insurance
              '75': what_is_your_name
              '76': reminder
              '77': where_are_you_from
              '78': distance
              '79': payday
              '80': flight_status
              '81': find_phone
              '82': greeting
              '83': alarm
              '84': order_status
              '85': confirm_reservation
              '86': cook_time
              '87': damaged_card
              '88': reset_settings
              '89': pin_change
              '90': replacement_card_duration
              '91': new_card
              '92': roll_dice
              '93': income
              '94': taxes
              '95': date
              '96': who_made_you
              '97': pto_request
              '98': tire_pressure
              '99': how_old_are_you
              '100': rollover_401k
              '101': pto_request_status
              '102': how_busy
              '103': application_status
              '104': recipe
              '105': calendar_update
              '106': play_music
              '107': 'yes'
              '108': direct_deposit
              '109': credit_limit_change
              '110': gas
              '111': pay_bill
              '112': ingredients_list
              '113': lost_luggage
              '114': goodbye
              '115': what_can_i_ask_you
              '116': book_hotel
              '117': are_you_a_bot
              '118': next_song
              '119': change_speed
              '120': plug_type
              '121': maybe
              '122': w2
              '123': oil_change_when
              '124': thank_you
              '125': shopping_list_update
              '126': pto_balance
              '127': order_checks
              '128': travel_alert
              '129': fun_fact
              '130': sync_device
              '131': schedule_maintenance
              '132': apr
              '133': transfer
              '134': ingredient_substitution
              '135': calories
              '136': current_location
              '137': international_fees
              '138': calculator
              '139': definition
              '140': next_holiday
              '141': update_playlist
              '142': mpg
              '143': min_payment
              '144': change_user_name
              '145': restaurant_suggestion
              '146': travel_notification
              '147': cancel
              '148': pto_used
              '149': travel_suggestion
              '150': change_volume
    splits:
      - name: train
        num_bytes: 791247
        num_examples: 15250
      - name: validation
        num_bytes: 160298
        num_examples: 3100
      - name: test
        num_bytes: 286966
        num_examples: 5500
    download_size: 525729
    dataset_size: 1238511
  - config_name: small
    features:
      - name: text
        dtype: string
      - name: intent
        dtype:
          class_label:
            names:
              '0': restaurant_reviews
              '1': nutrition_info
              '2': account_blocked
              '3': oil_change_how
              '4': time
              '5': weather
              '6': redeem_rewards
              '7': interest_rate
              '8': gas_type
              '9': accept_reservations
              '10': smart_home
              '11': user_name
              '12': report_lost_card
              '13': repeat
              '14': whisper_mode
              '15': what_are_your_hobbies
              '16': order
              '17': jump_start
              '18': schedule_meeting
              '19': meeting_schedule
              '20': freeze_account
              '21': what_song
              '22': meaning_of_life
              '23': restaurant_reservation
              '24': traffic
              '25': make_call
              '26': text
              '27': bill_balance
              '28': improve_credit_score
              '29': change_language
              '30': 'no'
              '31': measurement_conversion
              '32': timer
              '33': flip_coin
              '34': do_you_have_pets
              '35': balance
              '36': tell_joke
              '37': last_maintenance
              '38': exchange_rate
              '39': uber
              '40': car_rental
              '41': credit_limit
              '42': oos
              '43': shopping_list
              '44': expiration_date
              '45': routing
              '46': meal_suggestion
              '47': tire_change
              '48': todo_list
              '49': card_declined
              '50': rewards_balance
              '51': change_accent
              '52': vaccines
              '53': reminder_update
              '54': food_last
              '55': change_ai_name
              '56': bill_due
              '57': who_do_you_work_for
              '58': share_location
              '59': international_visa
              '60': calendar
              '61': translate
              '62': carry_on
              '63': book_flight
              '64': insurance_change
              '65': todo_list_update
              '66': timezone
              '67': cancel_reservation
              '68': transactions
              '69': credit_score
              '70': report_fraud
              '71': spending_history
              '72': directions
              '73': spelling
              '74': insurance
              '75': what_is_your_name
              '76': reminder
              '77': where_are_you_from
              '78': distance
              '79': payday
              '80': flight_status
              '81': find_phone
              '82': greeting
              '83': alarm
              '84': order_status
              '85': confirm_reservation
              '86': cook_time
              '87': damaged_card
              '88': reset_settings
              '89': pin_change
              '90': replacement_card_duration
              '91': new_card
              '92': roll_dice
              '93': income
              '94': taxes
              '95': date
              '96': who_made_you
              '97': pto_request
              '98': tire_pressure
              '99': how_old_are_you
              '100': rollover_401k
              '101': pto_request_status
              '102': how_busy
              '103': application_status
              '104': recipe
              '105': calendar_update
              '106': play_music
              '107': 'yes'
              '108': direct_deposit
              '109': credit_limit_change
              '110': gas
              '111': pay_bill
              '112': ingredients_list
              '113': lost_luggage
              '114': goodbye
              '115': what_can_i_ask_you
              '116': book_hotel
              '117': are_you_a_bot
              '118': next_song
              '119': change_speed
              '120': plug_type
              '121': maybe
              '122': w2
              '123': oil_change_when
              '124': thank_you
              '125': shopping_list_update
              '126': pto_balance
              '127': order_checks
              '128': travel_alert
              '129': fun_fact
              '130': sync_device
              '131': schedule_maintenance
              '132': apr
              '133': transfer
              '134': ingredient_substitution
              '135': calories
              '136': current_location
              '137': international_fees
              '138': calculator
              '139': definition
              '140': next_holiday
              '141': update_playlist
              '142': mpg
              '143': min_payment
              '144': change_user_name
              '145': restaurant_suggestion
              '146': travel_notification
              '147': cancel
              '148': pto_used
              '149': travel_suggestion
              '150': change_volume
    splits:
      - name: train
        num_bytes: 394124
        num_examples: 7600
      - name: validation
        num_bytes: 160298
        num_examples: 3100
      - name: test
        num_bytes: 286966
        num_examples: 5500
    download_size: 385185
    dataset_size: 841388
configs:
  - config_name: imbalanced
    data_files:
      - split: train
        path: imbalanced/train-*
      - split: validation
        path: imbalanced/validation-*
      - split: test
        path: imbalanced/test-*
  - config_name: plus
    data_files:
      - split: train
        path: plus/train-*
      - split: validation
        path: plus/validation-*
      - split: test
        path: plus/test-*
  - config_name: small
    data_files:
      - split: train
        path: small/train-*
      - split: validation
        path: small/validation-*
      - split: test
        path: small/test-*

Dataset Card for CLINC150

Table of Contents

Dataset Description

Dataset Summary

Task-oriented dialog systems need to know when a query falls outside their range of supported intents, but current text classification corpora only define label sets that cover every example. We introduce a new dataset that includes queries that are out-of-scope (OOS), i.e., queries that do not fall into any of the system's supported intents. This poses a new challenge because models cannot assume that every query at inference time belongs to a system-supported intent class. Our dataset also covers 150 intent classes over 10 domains, capturing the breadth that a production task-oriented agent must handle. It offers a way of more rigorously and realistically benchmarking text classification in task-driven dialog systems.

Supported Tasks and Leaderboards

  • intent-classification: This dataset is for evaluating the performance of intent classification systems in the presence of "out-of-scope" queries, i.e., queries that do not fall into any of the system-supported intent classes. The dataset includes both in-scope and out-of-scope data. here.

Languages

English

Dataset Structure

Data Instances

A sample from the training set is provided below:

{
    'text' : 'can you walk me through setting up direct deposits to my bank of internet savings account',
    'label' : 108 
}

Data Fields

  • text : Textual data
  • label : 150 intent classes over 10 domains, the dataset contains one label for 'out-of-scope' intent.

The Label Id to Label Name map is mentioned in the table below:

| Label Id | Label name | |--- |--- | | 0 | restaurant_reviews | | 1 | nutrition_info | | 2 | account_blocked | | 3 | oil_change_how | | 4 | time | | 5 | weather | | 6 | redeem_rewards | | 7 | interest_rate | | 8 | gas_type | | 9 | accept_reservations | | 10 | smart_home | | 11 | user_name | | 12 | report_lost_card | | 13 | repeat | | 14 | whisper_mode | | 15 | what_are_your_hobbies | | 16 | order | | 17 | jump_start | | 18 | schedule_meeting | | 19 | meeting_schedule | | 20 | freeze_account | | 21 | what_song | | 22 | meaning_of_life | | 23 | restaurant_reservation | | 24 | traffic | | 25 | make_call | | 26 | text | | 27 | bill_balance | | 28 | improve_credit_score | | 29 | change_language | | 30 | no | | 31 | measurement_conversion | | 32 | timer | | 33 | flip_coin | | 34 | do_you_have_pets | | 35 | balance | | 36 | tell_joke | | 37 | last_maintenance | | 38 | exchange_rate | | 39 | uber | | 40 | car_rental | | 41 | credit_limit | | 42 | oos | | 43 | shopping_list | | 44 | expiration_date | | 45 | routing | | 46 | meal_suggestion | | 47 | tire_change | | 48 | todo_list | | 49 | card_declined | | 50 | rewards_balance | | 51 | change_accent | | 52 | vaccines | | 53 | reminder_update | | 54 | food_last | | 55 | change_ai_name | | 56 | bill_due | | 57 | who_do_you_work_for | | 58 | share_location | | 59 | international_visa | | 60 | calendar | | 61 | translate | | 62 | carry_on | | 63 | book_flight | | 64 | insurance_change | | 65 | todo_list_update | | 66 | timezone | | 67 | cancel_reservation | | 68 | transactions | | 69 | credit_score | | 70 | report_fraud | | 71 | spending_history | | 72 | directions | | 73 | spelling | | 74 | insurance | | 75 | what_is_your_name | | 76 | reminder | | 77 | where_are_you_from | | 78 | distance | | 79 | payday | | 80 | flight_status | | 81 | find_phone | | 82 | greeting | | 83 | alarm | | 84 | order_status | | 85 | confirm_reservation | | 86 | cook_time | | 87 | damaged_card | | 88 | reset_settings | | 89 | pin_change | | 90 | replacement_card_duration | | 91 | new_card | | 92 | roll_dice | | 93 | income | | 94 | taxes | | 95 | date | | 96 | who_made_you | | 97 | pto_request | | 98 | tire_pressure | | 99 | how_old_are_you | | 100 | rollover_401k | | 101 | pto_request_status | | 102 | how_busy | | 103 | application_status | | 104 | recipe | | 105 | calendar_update | | 106 | play_music | | 107 | yes | | 108 | direct_deposit | | 109 | credit_limit_change | | 110 | gas | | 111 | pay_bill | | 112 | ingredients_list | | 113 | lost_luggage | | 114 | goodbye | | 115 | what_can_i_ask_you | | 116 | book_hotel | | 117 | are_you_a_bot | | 118 | next_song | | 119 | change_speed | | 120 | plug_type | | 121 | maybe | | 122 | w2 | | 123 | oil_change_when | | 124 | thank_you | | 125 | shopping_list_update | | 126 | pto_balance | | 127 | order_checks | | 128 | travel_alert | | 129 | fun_fact | | 130 | sync_device | | 131 | schedule_maintenance | | 132 | apr | | 133 | transfer | | 134 | ingredient_substitution | | 135 | calories | | 136 | current_location | | 137 | international_fees | | 138 | calculator | | 139 | definition | | 140 | next_holiday | | 141 | update_playlist | | 142 | mpg | | 143 | min_payment | | 144 | change_user_name | | 145 | restaurant_suggestion | | 146 | travel_notification | | 147 | cancel | | 148 | pto_used | | 149 | travel_suggestion | | 150 | change_volume |

Data Splits

The dataset comes in different subsets:

  • small : Small, in which there are only 50 training queries per each in-scope intent
  • imbalanced : Imbalanced, in which intents have either 25, 50, 75, or 100 training queries.
  • plus: OOS+, in which there are 250 out-of-scope training examples, rather than 100.
name train validation test
small 7600 3100 5500
imbalanced 10625 3100 5500
plus 15250 3100 5500

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

@inproceedings{larson-etal-2019-evaluation,
    title = "An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction",
    author = "Larson, Stefan  and
      Mahendran, Anish  and
      Peper, Joseph J.  and
      Clarke, Christopher  and
      Lee, Andrew  and
      Hill, Parker  and
      Kummerfeld, Jonathan K.  and
      Leach, Kevin  and
      Laurenzano, Michael A.  and
      Tang, Lingjia  and
      Mars, Jason",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
    year = "2019",
    url = "https://www.aclweb.org/anthology/D19-1131"
}

Contributions

Thanks to @sumanthd17 for adding this dataset.