File size: 56,526 Bytes
40b69ae aa5cf88 b2c7214 40b69ae b2c7214 40b69ae b2c7214 50a3003 f7ca9e8 b2c7214 aa5cf88 50a3003 aa5cf88 db315c0 40b69ae b2c7214 40b69ae b2c7214 40b69ae aa5cf88 50a3003 40b69ae 6362a04 40b69ae 53e9423 944dcdd f7ca9e8 f784759 f7ca9e8 f784759 0a029f8 e1e2545 f784759 f7ca9e8 c56de2f f7ca9e8 53e9423 f7ca9e8 944dcdd c56de2f 030623c 944dcdd 40b69ae c56de2f 40b69ae f784759 50a3003 f784759 c56de2f f784759 40b69ae b2c7214 50a3003 b2c7214 56285d0 aa5cf88 f784759 50a3003 f7ca9e8 50a3003 f7ca9e8 f784759 f7ca9e8 f784759 f7ca9e8 f784759 f7ca9e8 f784759 f7ca9e8 f784759 f7ca9e8 aa5cf88 53e9423 aa5cf88 53e9423 aa5cf88 c56de2f aa5cf88 f784759 50a3003 f784759 0c51235 aa5cf88 50a3003 f784759 50a3003 f7ca9e8 f784759 50a3003 f7ca9e8 f784759 f7ca9e8 f784759 f7ca9e8 f784759 f7ca9e8 f784759 f7ca9e8 f784759 f7ca9e8 aa5cf88 6362a04 aa5cf88 c56de2f aa5cf88 f784759 50a3003 f784759 50a3003 aa5cf88 f784759 f7ca9e8 f784759 50a3003 f7ca9e8 f784759 50a3003 f7ca9e8 f784759 f7ca9e8 f784759 f7ca9e8 f784759 f7ca9e8 f784759 f7ca9e8 f784759 f7ca9e8 aa5cf88 6362a04 aa5cf88 0c51235 030623c 0c51235 aa5cf88 f784759 50a3003 f784759 50a3003 aa5cf88 f784759 aa5cf88 f7ca9e8 f784759 f7ca9e8 f784759 f7ca9e8 f784759 f7ca9e8 aa5cf88 c56de2f f784759 c56de2f f784759 c56de2f 53e9423 c56de2f f784759 c56de2f aa5cf88 c56de2f aa5cf88 030623c f784759 e1e2545 f784759 e1e2545 f784759 aa5cf88 f784759 944dcdd aa5cf88 0c51235 aa5cf88 56285d0 aa5cf88 56285d0 aa5cf88 40b69ae 21a36a2 56285d0 21a36a2 aa5cf88 e1e2545 aa5cf88 40b69ae aa5cf88 db315c0 aa5cf88 944dcdd aa5cf88 db315c0 aa5cf88 db315c0 0c51235 db315c0 aa5cf88 944dcdd aa5cf88 db315c0 aa5cf88 944dcdd aa5cf88 db315c0 0c51235 db315c0 aa5cf88 827c2f9 944dcdd 827c2f9 944dcdd aa5cf88 944dcdd db315c0 e1e2545 aa5cf88 db315c0 827c2f9 aa5cf88 db315c0 0c51235 e1e2545 030623c f9c6571 50a3003 f9c6571 030623c e1e2545 b2c7214 f7ca9e8 db315c0 0c51235 db315c0 c56de2f e1e2545 50a3003 030623c 50a3003 db315c0 aa5cf88 f9c6571 db315c0 aa5cf88 50a3003 030623c 50a3003 aa5cf88 50a3003 aa5cf88 50a3003 aa5cf88 827c2f9 aa5cf88 f9c6571 aa5cf88 db315c0 030623c b2c7214 50a3003 b2c7214 db315c0 944dcdd db315c0 40b69ae 030623c 40b69ae b2c7214 40b69ae 21a36a2 40b69ae b2c7214 3cc19b3 db315c0 3cc19b3 db315c0 3cc19b3 db315c0 21a36a2 db315c0 21a36a2 db315c0 21a36a2 db315c0 21a36a2 56285d0 21a36a2 40b69ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"Try this Free online SD 1.5 generator with the results: https://perchance.org/fusion-ai-image-generator\n",
"\n",
" This Notebook is a Stable-diffusion tool which allows you to find similiar prompts to an existing prompt. It uses the Nearest Neighbor decoder method listed here:https://arxiv.org/pdf/2303.03032"
],
"metadata": {
"id": "cRV2YWomjMBU"
}
},
{
"cell_type": "code",
"source": [
"# @title β Initialize\n",
"\n",
"import os\n",
"home_directory = '/content/'\n",
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
"if using_Kaggle : home_directory = '/kaggle/working/'\n",
"%cd {home_directory}\n",
"\n",
"def fix_bad_symbols(txt):\n",
" result = txt\n",
" for symbol in ['^', '}', '{' , ')', '(', '[' , ']' , ':' , '=' ]:\n",
" result = result.replace(symbol,'\\\\' + symbol)\n",
" #------#\n",
" return result;\n",
"\n",
"def my_mkdirs(folder):\n",
" if os.path.exists(folder)==False:\n",
" os.makedirs(folder)\n",
"\n",
"#πΈπΉ\n",
"# Load the data if not already loaded\n",
"try:\n",
" loaded\n",
"except:\n",
" from safetensors.torch import load_file , save_file\n",
" import json , torch , requests , math\n",
" import pandas as pd\n",
" from PIL import Image\n",
" import cv2\n",
" from matplotlib import pyplot as plt\n",
" #----#\n",
" %cd {home_directory}\n",
" !git clone https://huggingface.co/datasets/codeShare/fusion-t2i-generator-data\n",
" loaded = True\n",
" %cd {home_directory + 'fusion-t2i-generator-data/'}\n",
" !unzip reference.zip\n",
"\n",
"from transformers import AutoTokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
"from transformers import CLIPProcessor, CLIPModel\n",
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
"logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
"\n",
"#------#\n",
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
"with open(f'reference_prompts.json', 'r') as f:\n",
" data = json.load(f)\n",
" _df = pd.DataFrame({'count': data})['count']\n",
" target_prompts = {\n",
" key : value for key, value in _df.items()\n",
" }\n",
"#------#\n",
"with open(f'reference_urls.json', 'r') as f:\n",
" data = json.load(f)\n",
" _df = pd.DataFrame({'count': data})['count']\n",
" target_urls = {\n",
" key : value for key, value in _df.items()\n",
" }\n",
"\n",
"#------#\n",
"dot_dtype = torch.float32\n",
"dim = 768\n",
"ref = torch.zeros(dim).to(dtype = dot_dtype)"
],
"metadata": {
"id": "TC5lMJrS1HCC",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"The visualization has no effect on the output. It will only be used if you enable the 'Show encoding' checkbox"
],
"metadata": {
"id": "OpOoRmaP3u2H"
}
},
{
"cell_type": "code",
"source": [
"# @title β Define parameters for visalizing the reference in a 16x16 grid <br> (the visualization settings has no effect on output)\n",
"from PIL import Image, ImageDraw\n",
"SCALE = 0.0002 # @param {type:\"slider\", min:0.0001, max:0.001, step:0.00001}\n",
"ZERO_POINT = 100 # @param {type:\"slider\", min:0, max:300, step:1}\n",
"CELL_SIZE = 16\n",
"\n",
"BORDER_THICKNESS = 4\n",
"\n",
"def visualize(_ref):\n",
" RGB_tensor = (torch.round(_ref/SCALE)+torch.ones(dim)*ZERO_POINT)\n",
" cellsize = CELL_SIZE\n",
" tick = round(cellsize/2)\n",
" border_offset = round(BORDER_THICKNESS/2)\n",
" width = 16*cellsize + BORDER_THICKNESS\n",
" height = 16*cellsize + BORDER_THICKNESS\n",
" image = Image.new('RGB', (width, height), (0, 0, 0))\n",
" draw = ImageDraw.Draw(image)\n",
" for row in range(16):\n",
" for col in range(16):\n",
" tmp = 3*row*col\n",
" r = max(0,min(255,int(RGB_tensor[tmp].item())))\n",
" g = max(0,min(255,int(RGB_tensor[tmp+1].item())))\n",
" b = max(0,min(255,int(RGB_tensor[tmp+2].item())))\n",
" fillColor = (r,g,b)\n",
" x0 = row*cellsize +border_offset\n",
" y0 = (15-col)*cellsize +border_offset\n",
" x1 = row*cellsize + 2*tick + border_offset\n",
" y1 = (15-col)*cellsize + 2*tick + border_offset\n",
" shape = [(x0, y0), (x1, y1)]\n",
" draw.rectangle(shape, fill=fillColor, outline=(0,0,0))\n",
" return (image)\n",
"\n",
"num_plots = 1\n",
"try:\n",
" %cd /content/\n",
" _ref = load_file('reference.safetensors' )\n",
" num_plots = num_plots+1\n",
"except: _ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
"#-----#\n",
"try: ref\n",
"except: ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
"\n",
"image_size = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
"show_encoding = True # @param {type:\"boolean\"}\n",
"#------#\n",
"if show_encoding:\n",
" # create figure\n",
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
" rows = 1\n",
" columns = num_plots\n",
" fig.add_subplot(rows, columns, 1)\n",
" plt.imshow( visualize(ref))\n",
" plt.axis('off')\n",
" plt.title( \"Encoding (local variable)\", color='white', fontsize=round(20*image_size))\n",
" if num_plots>1:\n",
" fig.add_subplot(rows, columns, 2)\n",
" plt.imshow( visualize( _ref['weights'].to(dot_dtype)))\n",
" plt.axis('off')\n",
" plt.title(\"Encoding (saved file)\", color='white', fontsize=round(20*image_size))\n",
" #------#\n",
"\n",
"print(f'Using settings SCALE = {SCALE} and ZERO_POINT = {ZERO_POINT} for visualizing the text_encoding')"
],
"metadata": {
"id": "YDu8XlehhWID",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Paste a prompt in the cell below to create an encoding**\n",
"\n"
],
"metadata": {
"id": "Xf9zoq-Za3wi"
}
},
{
"cell_type": "code",
"source": [
"\n",
"# @markdown π Write a text prompt (this will overwrite any savefile already stored)\n",
"NEW_ENCODING = '' # @param {type:'string' ,placeholder:'write a prompt'}\n",
"enable = True # @param {type:\"boolean\"}\n",
"# @markdown -----\n",
"# @markdown π Enhance/Penalize Similarity and skip items containing word(s)\n",
"POS = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
"NEG = ''# @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
"# @markdown -----\n",
"# @markdown logarithmic prompt strength x for value 10^(x-1)\n",
"_POS = 0 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
"_NEG = 0 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
"# @markdown -----\n",
"# @markdown Check similiarity for this encoding against any written prompt(s)\n",
"# @title β Evaluate saved reference similarity to select items (optional)\n",
"EVAL = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
"\n",
"show_local_reference = True # @param {type:\"boolean\"}\n",
"show_encoding = True # @param {type:\"boolean\"}\n",
"\n",
"try:\n",
" %cd /content/\n",
" _ref = load_file('reference.safetensors' )\n",
" ref = _ref['weights'].to(dot_dtype)\n",
"except:\n",
" ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
" _ref = {}\n",
" _ref['weights'] = ref\n",
" %cd /content/\n",
" save_file(_ref, 'reference.safetensors')\n",
"#-----#\n",
"\n",
"if NEW_ENCODING.strip() != ''\n",
" item = NEW_ENCODING.strip()\n",
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" ref = model.get_text_features(**inputs)[0]\n",
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
"#------#\n",
"\n",
"try: ref\n",
"except: ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
"\n",
"if EVAL.strip() != '':\n",
" print(\"Saved Reference:\\n\")\n",
" for item in EVAL.split(','):\n",
" if item.strip()=='':continue\n",
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" test = model.get_text_features(**inputs)[0]\n",
" test = test/test.norm(p=2 , dim = -1 , keepdim = True)\n",
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
" eval = torch.dot(ref , test)\n",
" print(f'{item.strip()} : {round(eval.item()*100, 2)}%')\n",
" #-----#\n",
" if(show_local_reference):\n",
" print(\"\\n---------\\nLocal Reference with enchancements added :\\n\")\n",
"\n",
" for _item in POS.split(','):\n",
" item = _item.strip()\n",
" if item == '':continue\n",
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" ref = ref + math.pow(10,_POS-1) * model.get_text_features(**inputs)[0]\n",
" #-------#\n",
"\n",
" for _item in NEG.split(','):\n",
" item = _item.strip()\n",
" if item == '':continue\n",
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" ref = ref + math.pow(10,_NEG-1) * model.get_text_features(**inputs)[0]\n",
" #-------#\n",
"\n",
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
" for item in EVAL.split(','):\n",
" if item.strip()=='':continue\n",
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" test = model.get_text_features(**inputs)[0]\n",
" test = test/test.norm(p=2 , dim = -1 , keepdim = True)\n",
" eval = torch.dot(ref , test)\n",
" print(f'{item.strip()} : {round(eval.item()*100, 2)}%')\n",
" #-----#\n",
"\n",
" if show_encoding:\n",
" # create figure\n",
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
" rows = 1\n",
" columns = 3\n",
" fig.add_subplot(rows, columns, 1)\n",
" plt.imshow( visualize(ref))\n",
" plt.axis('off')\n",
" plt.title( \"Encoding (local variable)\", color='white', fontsize=round(20*image_size))\n",
" if num_plots>1:\n",
" fig.add_subplot(rows, columns, 2)\n",
" plt.imshow( visualize( _ref['weights'].to(dot_dtype)))\n",
" plt.axis('off')\n",
" plt.title(\"Encoding (saved file)\", color='white', fontsize=round(20*image_size))\n",
"\n",
" fig.add_subplot(rows, columns, 3)\n",
" plt.imshow( visualize(ref - _ref['weights'].to(dot_dtype)))\n",
" plt.axis('off')\n",
" plt.title(\"Changes\", color='white', fontsize=round(20*image_size))\n",
" #------#\n",
"\n",
"\n"
],
"metadata": {
"id": "Oxi6nOyrUTAe"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Use a pre-encoded image+prompt pair as reference (optional)**"
],
"metadata": {
"id": "f9_AcquM7AYZ"
}
},
{
"cell_type": "code",
"source": [
"\n",
"loaded_ref = False\n",
"try:\n",
" ref\n",
" loaded_ref = True\n",
"except:ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
"if loaded_ref : prev_ref = ref.clone().detach()\n",
"\n",
"try:prompt\n",
"except: prompt = ''\n",
"\n",
"# @markdown πΌοΈ+π Choose a pre-encoded reference (note: some results are NSFW!)\n",
"index = 596 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
"PROMPT_INDEX = index\n",
"prompt = target_prompts[f'{PROMPT_INDEX}']\n",
"url = target_urls[f'{PROMPT_INDEX}']\n",
"if url.find('perchance')>-1:\n",
" image = Image.open(requests.get(url, stream=True).raw)\n",
"#------#\n",
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
"references = torch.load('reference_text_and_image_encodings.pt' , weights_only=False)\n",
"# @markdown βοΈ πΌοΈ encoding <-----?-----> π encoding </div> <br>\n",
"C = 0.3 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
"log_strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
"method = 'Add to existing ref' # @param [\"Refresh\" , \"Add to existing ref\" , \"Subtract from existing ref\" , \"Do nothing\"]\n",
"image_size = 0.57 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
"show_encoding = True # @param {type:\"boolean\"}\n",
"\n",
"if(not method == 'Do nothing'):\n",
" if method == 'Refresh': ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
" if method == 'Subtract from existing ref':\n",
" ref = torch.sub(ref, math.pow(10 ,log_strength-1) * C * references[index][0].dequantize().to(dtype = torch.float32))\n",
" ref = torch.sub(ref, math.pow(10 ,log_strength-1) * (1-C) * references[index][1].dequantize().to(dtype = torch.float32))\n",
" else:\n",
" ref = torch.add(ref, math.pow(10 ,log_strength-1) * C * references[index][0].dequantize().to(dtype = torch.float32))\n",
" ref = torch.add(ref, math.pow(10 ,log_strength-1) * (1-C) * references[index][1].dequantize().to(dtype = torch.float32))\n",
" #---------#\n",
" references = '' # Clear up memory\n",
" ref = ref/ref.norm(p=2, dim=-1, keepdim=True)\n",
" ref = ref.clone().detach()\n",
" #------#\n",
" # create figure\n",
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
" rows = 1\n",
" columns = 1\n",
" if show_encoding: columns = columns+1\n",
" if show_encoding and loaded_ref : columns = columns+1\n",
" fig.add_subplot(rows, columns, 1)\n",
" plt.imshow(image)\n",
" plt.axis('off')\n",
" plt.title(f\"Reference image at index={index}\" , color='white' , fontsize=round(20*image_size))\n",
" #-----#\n",
" if show_encoding and loaded_ref:\n",
" fig.add_subplot(rows, columns, columns-1)\n",
" plt.imshow( visualize(prev_ref))\n",
" plt.axis('off')\n",
" plt.title(\"Encoding (before)\" , color='white' , fontsize=round(20*image_size))\n",
" print(f'Prompt for this image : \\n\\n \"{prompt} \" \\n\\n')\n",
"\n",
" if show_encoding:\n",
" fig.add_subplot(rows, columns, columns)\n",
" plt.imshow( visualize(ref))\n",
" plt.axis('off')\n",
" plt.title(\"Encoding (now)\" , color='white' , fontsize=round(20*image_size))\n",
" #------#\n"
],
"metadata": {
"id": "BwrEs5zVB0Sb"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Use an image as a reference via URL (optional)**"
],
"metadata": {
"id": "KI9Ho6CG7m3Z"
}
},
{
"cell_type": "code",
"source": [
"\n",
"loaded_ref = False\n",
"try:\n",
" ref\n",
" loaded_ref = True\n",
"except:ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
"if loaded_ref : prev_ref = ref.clone().detach()\n",
"\n",
"try:prompt\n",
"except: prompt = ''\n",
"\n",
"# @markdown πΌοΈ Upload your own image for use as reference via URL (optional)\n",
"URL = '' # @param {type:'string' ,placeholder:'paste an url here'}\n",
"if URL.strip() != '':\n",
" image = Image.open(requests.get(URL, stream=True).raw)\n",
" log_strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
" method = 'Add to existing ref' # @param [\"Refresh\" , \"Add to existing ref\" , \"Subtract from existing ref\" , \"Do nothing\"]\n",
" image_size = 0.79 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
" show_encoding = True # @param {type:\"boolean\"}\n",
" #---------#\n",
" if(not method == 'Do nothing'):\n",
" # Get image features\n",
" inputs = processor(images=image, return_tensors=\"pt\")\n",
" image_features = model.get_image_features(**inputs)\n",
" image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n",
" #-------#\n",
" if method == 'Refresh':\n",
" ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
" if method == 'Subtract from existing ref':\n",
" ref = ref - math.pow(10,log_strength-1)*image_features\n",
" else: ref = ref + math.pow(10,log_strength-1)*image_features\n",
" #-----#\n",
" ref = ref/ref.norm(p=2, dim=-1, keepdim=True)\n",
" ref = ref[0]\n",
" ref = ref.clone().detach()\n",
" #------#\n",
" # create figure\n",
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
" rows = 1\n",
" columns = 1\n",
" if show_encoding: columns = 2\n",
" if show_encoding and loaded_ref : columns = 3\n",
" fig.add_subplot(rows, columns, 1)\n",
" plt.imshow(image)\n",
" plt.axis('off')\n",
" plt.title(\"Reference image from URL\" , color='white' , fontsize=round(20*image_size))\n",
" #-----#\n",
" if show_encoding and loaded_ref:\n",
" fig.add_subplot(rows, columns, columns-1)\n",
" plt.imshow( visualize(prev_ref))\n",
" plt.axis('off')\n",
" plt.title(\"Encoding (before)\" , color='white' , fontsize=round(20*image_size))\n",
" if show_encoding:\n",
" fig.add_subplot(rows, columns, columns)\n",
" plt.imshow( visualize(ref))\n",
" plt.axis('off')\n",
" plt.title(\"Encoding (now)\" , color='white' , fontsize=round(20*image_size))\n",
" #------#"
],
"metadata": {
"id": "IqUsiQw2HU2C"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Use an image as a reference via uploading it to the /content/ folder (optional)**"
],
"metadata": {
"id": "MBPi7F8S7tg3"
}
},
{
"cell_type": "code",
"source": [
"\n",
"loaded_ref = False\n",
"try:\n",
" ref\n",
" loaded_ref = True\n",
"except:ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
"if loaded_ref : prev_ref = ref.clone().detach()\n",
"\n",
"try:prompt\n",
"except: prompt = ''\n",
"\n",
"# @markdown πΌοΈ Upload your own image for use as reference via URL (optional)\n",
"FILENAME = '' # @param {type:'string' ,placeholder:'IMG_123.png'}\n",
"log_strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
"method = 'Add to existing ref' # @param [\"Refresh\" , \"Add to existing ref\" , \"Subtract from existing ref\" , \"Do nothing\"]\n",
"image_size = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
"show_encoding = True # @param {type:\"boolean\"}\n",
"\n",
"if FILENAME.strip() != '':\n",
" %cd /content/\n",
" image = cv2.imread(FILENAME)\n",
" b,g,r = cv2.split(image)\n",
" image = cv2.merge([r,g,b])\n",
" #---------#\n",
" if(not method == 'Do nothing'):\n",
" # Get image features\n",
" inputs = processor(images=image, return_tensors=\"pt\")\n",
" image_features = model.get_image_features(**inputs)\n",
" image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n",
" #-------#\n",
" if method == 'Refresh':\n",
" ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
" if method == 'Subtract from existing ref':\n",
" ref = ref - math.pow(10,log_strength-1)*image_features\n",
" else: ref = ref + math.pow(10,log_strength-1)*image_features\n",
" #-----#\n",
" ref = ref/ref.norm(p=2, dim=-1, keepdim=True)\n",
" ref = ref[0]\n",
" ref = ref.clone().detach()\n",
" #------#\n",
" # create figure\n",
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
" rows = 1\n",
" columns = 1\n",
" if show_encoding: columns = 2\n",
" if show_encoding and loaded_ref : columns = 3\n",
" fig.add_subplot(rows, columns, 1)\n",
" plt.imshow(image)\n",
" plt.axis('off')\n",
" plt.title(f\"Reference image from uploaded image {FILENAME}\" , color='white' , fontsize=round(20*image_size))\n",
" #-----#\n",
" if show_encoding and loaded_ref:\n",
" fig.add_subplot(rows, columns, columns-1)\n",
" plt.imshow( visualize(prev_ref))\n",
" plt.axis('off')\n",
" plt.title(\"Encoding (before)\" , color='white' , fontsize=round(20*image_size))\n",
" if show_encoding:\n",
" fig.add_subplot(rows, columns, columns)\n",
" plt.imshow( visualize(ref))\n",
" plt.axis('off')\n",
" plt.title(\"Encoding (now)\" , color='white' , fontsize=round(20*image_size))\n",
" #------#"
],
"metadata": {
"id": "I_-GOwFPKkha"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Save the reference prior to running the Interrogator**"
],
"metadata": {
"id": "zeu6JcM-mk9z"
}
},
{
"cell_type": "code",
"source": [
"# @title β Save the reference\n",
"\n",
"loaded_ref = False\n",
"try:\n",
" ref\n",
" loaded_ref = True\n",
"except:ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
"if loaded_ref : prev_ref = ref.clone().detach()\n",
"\n",
"try:prompt\n",
"except: prompt = ''\n",
"\n",
"reset_everything = False # @param {type:\"boolean\"}\n",
"_ref = {}\n",
"ref = ref/ref.norm(p=2, dim=-1, keepdim=True)\n",
"if (reset_everything) : ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
"_ref['weights'] = ref.to(dot_dtype)\n",
"%cd /content/\n",
"save_file(_ref , 'reference.safetensors' )\n",
"image_size = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
"show_encoding = True # @param {type:\"boolean\"}\n",
"#------#\n",
"print(\"Saved local encoding to reference.safetensors\")\n",
"if show_encoding:\n",
" # create figure\n",
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
" rows = 1\n",
" columns = num_plots\n",
" fig.add_subplot(rows, columns, 1)\n",
" plt.imshow( visualize(ref))\n",
" plt.axis('off')\n",
" plt.title( \"Encoding (local variable)\", color='white', fontsize=round(20*image_size))\n",
" if num_plots>1:\n",
" fig.add_subplot(rows, columns, 2)\n",
" plt.imshow( visualize( _ref['weights'].to(dot_dtype)))\n",
" plt.axis('off')\n",
" plt.title(\"Encoding (saved file)\", color='white', fontsize=round(20*image_size))\n",
" #------#"
],
"metadata": {
"id": "lOQuTPfBMK82",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Run the interrogator**\n",
"\n",
" Since the list of items is large (>1 million items) you will need to select a range within the sorted results to print."
],
"metadata": {
"id": "ROKsoZrt7zMe"
}
},
{
"cell_type": "code",
"source": [
"# @title β CLIP Interrogator\n",
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
"_START_AT = '0' # @param [\"0\", \"10000\", \"50000\"] {allow-input: true}\n",
"START_AT = 0\n",
"if _START_AT.isnumeric(): START_AT = int(_START_AT)\n",
"\n",
"output_folder = home_directory + 'results/'\n",
"output_folder_sims = home_directory + 'results/sims/'\n",
"my_mkdirs(output_folder)\n",
"my_mkdirs(output_folder_sims)\n",
"\n",
"\n",
"\n",
"# @markdown -----\n",
"# @markdown Select vocab\n",
"general = True # @param {type:\"boolean\"}\n",
"civit9 = True # @param {type:\"boolean\"}\n",
"fanfic1 = False # @param {type:\"boolean\"}\n",
"fanfic2 = False # @param {type:\"boolean\"}\n",
"# @markdown -----\n",
"# @title β New interrogator code using quantized text corpus\n",
"%cd /content/\n",
"_ref = load_file('reference.safetensors' )\n",
"ref = _ref['weights'].to(dot_dtype)\n",
"# @markdown π Enhance/Penalize Similarity and skip items containing word(s)\n",
"POS1 = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
"POS2 = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
"NEG = ''# @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
"SKIP = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
"min_wordcount = 0 # @param {type:\"slider\", min:0, max:20, step:1}\n",
"def isBlacklisted(_txt):\n",
" blacklist = SKIP.lower().replace('</w>' , ' ').replace('{' , '').replace('}' , '').replace('|' , ',').strip()\n",
" if blacklist == '': return False\n",
" txt = _txt.lower().strip()\n",
" if len(txt)<min_wordcount: return True\n",
" if txt.isnumeric(): return True\n",
" #-----#\n",
" for item in list(blacklist.split(',')):\n",
" if item.strip() == '' : continue\n",
" if txt.find(item.strip())> -1 : return True\n",
" #------#\n",
" found = False\n",
" alphabet = 'abcdefghijklmnopqrstuvxyz'\n",
" for letter in alphabet:\n",
" found = txt.find(letter)>-1\n",
" if found:break\n",
" #------#\n",
" return not found\n",
"# @markdown -----\n",
"# @markdown logarithmic prompt strength x for value 10^(x-1)\n",
"_POS1 = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
"_POS2 = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
"_NEG = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
"# @markdown -----\n",
"# @markdown Save similarity as a list for later review (this will slow down the code)\n",
"save_similiarity = True # @param {type:\"boolean\"}\n",
"# @markdown -----\n",
"include_similiarity = False # @param {type:\"boolean\"}\n",
"print_as_list = False # @param {type:\"boolean\"}\n",
"N = 7 # @param {type:\"slider\", min:0, max:10, step:1}\n",
"#-----#\n",
"for _item in POS1.split(','):\n",
" item = _item.strip()\n",
" if item == '':continue\n",
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" ref = ref + math.pow(10,_POS1-1) * model.get_text_features(**inputs)[0]\n",
"#-------#\n",
"for _item in POS2.split(','):\n",
" item = _item.strip()\n",
" if item == '':continue\n",
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" ref = ref + math.pow(10,_POS2-1) * model.get_text_features(**inputs)[0]\n",
"#-------#\n",
"for _item in NEG.split(','):\n",
" item = _item.strip()\n",
" if item == '':continue\n",
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
" ref = ref + math.pow(10,_NEG-1) * model.get_text_features(**inputs)[0]\n",
"#------#\n",
"ref = (ref/ref.norm(p=2, dim=-1, keepdim=True)).to(dtype = dot_dtype)\n",
"vocab_to_load = ''\n",
"if (general): vocab_to_load = vocab_to_load + 'general , '\n",
"if (civit9): vocab_to_load = vocab_to_load + 'civit9 , '\n",
"if (fanfic1): vocab_to_load = vocab_to_load + 'fanfic1 , '\n",
"if (fanfic2): vocab_to_load = vocab_to_load + 'fanfic2 , '\n",
"vocab_to_load = (vocab_to_load +'}').replace(' , }' , '')\n",
"multi = vocab_to_load.find(',')>-1\n",
"#-----#\n",
"prompts_folder = f'{home_directory}fusion-t2i-generator-data/vocab-v2/text'\n",
"encodings_folder = f'{home_directory}fusion-t2i-generator-data/vocab-v2/text_encodings'\n",
"#----#\n",
"scale = 0.0043\n",
"size = 0\n",
"#------#\n",
"total_items = 0\n",
"for filename in os.listdir(prompts_folder):\n",
" if (not general and filename.find('general')>-1):continue\n",
" if (not civit9 and filename.find('civit9')>-1):continue\n",
" if (not fanfic1 and filename.find('fanfic1')>-1):continue\n",
" if (not fanfic2 and filename.find('fanfic2')>-1):continue\n",
" size = size + LIST_SIZE\n",
"#-------#\n",
"similiar_sims = torch.zeros(size)\n",
"similiar_prompts = {}\n",
"_index = 0\n",
"#-------#\n",
"similiar_encodings = {}\n",
"for filename in os.listdir(prompts_folder):\n",
" if (not general and filename.find('general')>-1):continue\n",
" if (not civit9 and filename.find('civit9')>-1):continue\n",
" if (not fanfic1 and filename.find('fanfic1')>-1):continue\n",
" if (not fanfic2 and filename.find('fanfic2')>-1):continue\n",
" #------#\n",
" root_filename = filename.replace('.json', '')\n",
" %cd {prompts_folder}\n",
" prompts = {}\n",
" with open(f'{root_filename}.json', 'r') as f:\n",
" data = json.load(f).items()\n",
" for key,value in data:\n",
" prompts[key] = value\n",
" num_items = int(prompts['num_items'])\n",
" total_items = total_items + num_items\n",
" #------#\n",
" try:vocab_loaded\n",
" except:\n",
" vocab_loaded = 'first'\n",
" #-----#\n",
" if vocab_loaded == 'first' or (vocab_loaded != vocab_to_load and not multi):\n",
" %cd {encodings_folder}\n",
" _text_encodings = load_file(f'{root_filename}.safetensors')['weights'].to(torch.uint8)\n",
" text_encodings = torch.zeros(num_items , dim)\n",
" tmp = torch.ones(dim).to(dot_dtype)\n",
" for index in range(num_items):\n",
" text_encodings[index] = torch.sub(_text_encodings[index][1:dim+1].to(dot_dtype) , tmp , alpha= _text_encodings[index][0].to(dot_dtype))\n",
" vocab_loaded = vocab_to_load\n",
" #------#\n",
" sims = torch.matmul(text_encodings*scale, ref.t())\n",
" sorted , indices = torch.sort(sims , dim=0 , descending = True)\n",
" tmp = {}\n",
" tmp['weights'] = sorted\n",
" %cd {output_folder_sims}\n",
" save_file(tmp, root_filename + '_sims.safetensors')\n",
" tmp={}\n",
" #-----#\n",
" for index in range(LIST_SIZE + START_AT):\n",
" if index<START_AT: continue\n",
" key = indices[index].item()\n",
" try:prompt = prompts[f'{key}']\n",
" except:continue\n",
" if(isBlacklisted(prompt)):continue\n",
" #-------#\n",
" similiar_sims[_index] = torch.tensor(round(sims[key].item(), 5))\n",
" similiar_prompts[f'{_index}'] = prompt\n",
" _index = _index + 1\n",
" #-------#\n",
" continue\n",
"#---------#\n",
"total_items = total_items + num_items+1\n",
"#-------#\n",
"print(f'\\nProcessed entire list of {total_items} items to find closest match.\\nSaved closest matching indices {START_AT} to {START_AT + LIST_SIZE} as the dict \"similiar_prompts\" with {LIST_SIZE} items.\\n')\n",
"\n",
"# Print results\n",
"sorted , indices = torch.sort(similiar_sims , dim=0 , descending = True)\n",
"if(print_as_list):\n",
" for index in range(LIST_SIZE):\n",
" key = indices[index].item()\n",
" sim = similiar_sims[key].item()\n",
" prompt = similiar_prompts[f'{key}']\n",
" if include_similiarity :print(f'{prompt} - {round(sim*100,1)} %')\n",
" else: print(f'{prompt}')\n",
"#-------#\n",
"else:\n",
" prompt = ''\n",
" for iter in range(N):\n",
" prompt = prompt + '{'\n",
" for index in range(LIST_SIZE):\n",
" key = indices[index].item()\n",
" sim = similiar_sims[key].item()\n",
" prompt = prompt + fix_bad_symbols(similiar_prompts[f'{key}']) + '|'\n",
" #-----#\n",
" prompt = (prompt + '}').replace('|}', '} ')\n",
" #------#\n",
" print(f'Similiar prompts: \\n\\n\\n{prompt} \\n\\n\\n//----//')\n",
"#-----#\n",
"\n",
"#Clear memory\n",
"_text_encodings = {}\n",
"prompts = {}\n",
"#-----#\n",
"\n",
"image\n"
],
"metadata": {
"id": "kOYZ8Ajn-DD8"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"**Evaluate Similarities**\n",
"\n",
"Run this cell to see how far down the list you can go before similarity to the reference is lost."
],
"metadata": {
"id": "yl1DYzUn8YCC"
}
},
{
"cell_type": "code",
"source": [
"# @title β Evaluate similarities\n",
"%cd {output_folder_sims}\n",
"index = 0\n",
"for filename in os.listdir(output_folder_sims):\n",
" _sims = load_file(filename)\n",
" _sims = _sims['weights']\n",
" for _sim in _sims.tolist():\n",
" index = index + 1\n",
" #-------#\n",
"total_items = index\n",
"sims = torch.zeros(total_items)\n",
"index = 0\n",
"for filename in os.listdir(output_folder_sims):\n",
" _sims = load_file(filename)\n",
" _sims = _sims['weights']\n",
" for sim in _sims.tolist():\n",
" sims[index] = sim\n",
" index = index + 1\n",
" #-------#\n",
"#---------------#\n",
"_sorted , indices = torch.sort(sims , dim=0 , descending = True)\n",
"SCALE = 0.001\n",
"sorted = torch.round(_sorted/SCALE)\n",
"ZERO_POINT = sorted[total_items-1].item()\n",
"sorted = (sorted - torch.ones(total_items)*ZERO_POINT)\n",
"densities = torch.bincount(sorted.to(dtype = torch.int64))\n",
"yy = densities.tolist()\n",
"top = (sorted[0] + ZERO_POINT).to(dtype = torch.int64).item()\n",
"num_coords = round(top - ZERO_POINT)\n",
"xx = [round((ZERO_POINT + x)*100*SCALE,2) for x in range(num_coords+1)]\n",
"index = 0\n",
"for item in xx:\n",
" if item>0:break\n",
" index = index + 1\n",
"#----#\n",
"positive_bound = index\n",
"ss =list(xx)\n",
"tmp = 0\n",
"chunk = 1\n",
"CHUNK_SIZE = 1000\n",
"index = 0\n",
"for num in reversed(yy):\n",
" tmp = tmp + num\n",
" if(tmp>CHUNK_SIZE):\n",
" _tmp = math.floor(tmp/CHUNK_SIZE)\n",
" chunk = chunk + _tmp\n",
" tmp = tmp - CHUNK_SIZE * _tmp\n",
" ss[num_coords - index] = chunk\n",
" index = index + 1\n",
"#------#\n",
"fig, ax = plt.subplots()\n",
"fig.canvas.draw()\n",
"plt.plot(ss[positive_bound:], xx[positive_bound:])\n",
"plt.xlabel ('Search depth')\n",
"plt.ylabel ('Similarity')\n",
"plt.title ('Similarity to index')\n",
"plt.grid()\n",
"indices_depth = [item.get_text() for item in ax.get_xticklabels()]\n",
"sim_pcnts = [item.get_text() for item in ax.get_yticklabels()]\n",
"\n",
"index = 0\n",
"for index_depth in indices_depth:\n",
" indices_depth[index] = index_depth + 'K'\n",
" index = index + 1\n",
"#-------#\n",
"\n",
"index = 0\n",
"for sim_pcnt in sim_pcnts:\n",
" sim_pcnts[index] = sim_pcnt + '%'\n",
" index = index + 1\n",
"#-------#\n",
"ax.set_xticklabels(indices_depth)\n",
"ax.set_yticklabels(sim_pcnts)\n",
"plt.show()"
],
"metadata": {
"id": "ln6DsZPG99ez"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# @title β Save the results\n",
"\n",
"def mkdir(folder):\n",
" if os.path.exists(folder)==False:\n",
" os.makedirs(folder)\n",
"#-----#\n",
"output_folder = home_directory + 'results'\n",
"mkdir(output_folder)\n",
"#-----#\n",
"try: similiar_prompts\n",
"except:similiar_prompts = {}\n",
"%cd {output_folder}\n",
"print(f'Saving similiar_prompts.json to {output_folder}...')\n",
"with open('similiar_prompts.json', 'w') as f:\n",
" json.dump(similiar_prompts, f)\n",
"#-----#\n",
"try: similiar_sims\n",
"except: similiar_sims = torch.zeros(dim).to(dot_dtype)\n",
"#-------#\n",
"_similiar_sims = {}\n",
"_similiar_sims['weights'] = similiar_sims.to(dot_dtype)\n",
"%cd {output_folder}\n",
"print(f'Saving similiar_sims.safetensors to {output_folder}...')\n",
"save_file(_similiar_sims, 'similiar_sims.safetensors')\n"
],
"metadata": {
"id": "m-N553nXz9Jd",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"\n",
"# @title β Print results\n",
"sorted , indices = torch.sort(similiar_sims , dim=0 , descending = True)\n",
"include_similiarity = False # @param {type:\"boolean\"}\n",
"print_as_list = False # @param {type:\"boolean\"}\n",
"N = 7 # @param {type:\"slider\", min:0, max:10, step:1}\n",
"FILENAME = '' # @param {type:'string' ,placeholder:'write .json file to load (optional)'}\n",
"_FILENAME = FILENAME.replace('.json' , '')\n",
"if _FILENAME.strip() == '': _FILENAME = 'similiar_prompts'\n",
"#------#\n",
"%cd {output_folder}\n",
"with open(f'{_FILENAME}.json', 'r') as f:\n",
" data = json.load(f)\n",
" _df = pd.DataFrame({'count': data})['count']\n",
" similiar_prompts = {\n",
" key : value for key, value in _df.items()\n",
" }\n",
"#-------#\n",
"_similiar_sims = load_file('similiar_sims.safetensors')\n",
"similiar_sims = _similiar_sims['weights'].to(dot_dtype)\n",
"\n",
"# @title β Run the CLIP interrogator on the saved reference\n",
"\n",
"# @markdown Select which values within the saved list to print\n",
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
"START_AT = 0 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
"\n",
"if(print_as_list):\n",
" for index in range(LIST_SIZE + START_AT):\n",
" if index<START_AT:continue\n",
" key = indices[index].item()\n",
" sim = similiar_sims[key].item()\n",
" prompt = similiar_prompts[f'{key}']\n",
" if include_similiarity :print(f'{prompt} - {round(sim*100,1)} %')\n",
" else: print(f'{prompt}')\n",
"#-------#\n",
"else:\n",
" prompt = ''\n",
" for iter in range(N):\n",
" prompt = prompt + '{'\n",
" for index in range(LIST_SIZE + START_AT):\n",
" if index<START_AT:continue\n",
" key = indices[index].item()\n",
" sim = similiar_sims[key].item()\n",
" prompt = prompt + fix_bad_symbols(similiar_prompts[f'{key}']) + '|'\n",
" #-----#\n",
" prompt = (prompt + '}').replace('|}', '} ')\n",
" #------#\n",
" print(f'Similiar prompts: \\n\\n {prompt} \\n\\n')\n",
"image\n",
"#-----#\n"
],
"metadata": {
"id": "XOMkIKc9-wZz",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"OTHER STUFF BELOW - Code for the modules below are work-in-progress."
],
"metadata": {
"id": "FRIqYJDEebpf"
}
},
{
"cell_type": "markdown",
"source": [
"The savefile can be used here : https://perchance.org/fusion-ai-image-generator"
],
"metadata": {
"id": "JldNmWy1iyvK"
}
},
{
"cell_type": "code",
"source": [
"# @title \tβ Create fusion-generator .json savefile from result\n",
"filename = 'blank.json'\n",
"path = '/content/text-to-image-prompts/fusion/'\n",
"\n",
"print(f'reading {filename}....')\n",
"_index = 0\n",
"%cd {path}\n",
"with open(f'{filename}', 'r') as f:\n",
" data = json.load(f)\n",
"#------#\n",
"_df = pd.DataFrame({'count': data})['count']\n",
"_savefile = {\n",
" key : value for key, value in _df.items()\n",
"}\n",
"#------#\n",
"from safetensors.torch import load_file\n",
"import json , os , torch\n",
"import pandas as pd\n",
"#----#\n",
"def my_mkdirs(folder):\n",
" if os.path.exists(folder)==False:\n",
" os.makedirs(folder)\n",
"#------#\n",
"savefile_prompt = ''\n",
"for i in range(N) : savefile_prompt = savefile_prompt + ' ' + __prompts\n",
"_savefile['main'] = savefile_prompt.replace('\\n', ' ').replace(' ', ' ').replace(' ', ' ')\n",
"#------#\n",
"save_filename = f'fusion_C05_X7_1000_{PROMPT_INDEX}.json'\n",
"output_folder = '/content/output/savefiles/'\n",
"my_mkdirs(output_folder)\n",
"#-----#\n",
"%cd {output_folder}\n",
"print(f'Saving segment {save_filename} to {output_folder}...')\n",
"with open(save_filename, 'w') as f:\n",
" json.dump(_savefile, f)\n"
],
"metadata": {
"id": "Q7vpNAXQilbf",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# @title \tβ Create a savefile-set from the entire range of pre-encoded items\n",
"\n",
"# @markdown π₯ Load the data (only required one time)\n",
"load_the_data = True # @param {type:\"boolean\"}\n",
"\n",
"import math\n",
"from safetensors.torch import load_file\n",
"import json , os , torch\n",
"import pandas as pd\n",
"from PIL import Image\n",
"import requests\n",
"\n",
"def my_mkdirs(folder):\n",
" if os.path.exists(folder)==False:\n",
" os.makedirs(folder)\n",
"\n",
"# @markdown βοΈ Set the value for C in the reference <br> <br> sim = C* text_enc + image_enc*(1-C) <br><br>\n",
"\n",
"C = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
"\n",
"# @markdown π« Penalize similarity to this prompt(optional)\n",
"if(load_the_data):\n",
" target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n",
" from transformers import AutoTokenizer\n",
" tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
" from transformers import CLIPProcessor, CLIPModel\n",
" processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
" model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
" logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
"#---------#\n",
"\n",
"filename = 'blank.json'\n",
"path = '/content/text-to-image-prompts/fusion/'\n",
"print(f'reading {filename}....')\n",
"_index = 0\n",
"%cd {path}\n",
"with open(f'{filename}', 'r') as f:\n",
" data = json.load(f)\n",
"#------#\n",
"_df = pd.DataFrame({'count': data})['count']\n",
"_blank = {\n",
" key : value for key, value in _df.items()\n",
"}\n",
"#------#\n",
"\n",
"root_savefile_name = 'fusion_C05_X7'\n",
"\n",
"%cd /content/\n",
"output_folder = '/content/output/savefiles/'\n",
"my_mkdirs(output_folder)\n",
"my_mkdirs('/content/output2/savefiles/')\n",
"my_mkdirs('/content/output3/savefiles/')\n",
"my_mkdirs('/content/output4/savefiles/')\n",
"my_mkdirs('/content/output5/savefiles/')\n",
"my_mkdirs('/content/output6/savefiles/')\n",
"my_mkdirs('/content/output7/savefiles/')\n",
"my_mkdirs('/content/output8/savefiles/')\n",
"my_mkdirs('/content/output9/savefiles/')\n",
"my_mkdirs('/content/output10/savefiles/')\n",
"my_mkdirs('/content/output11/savefiles/')\n",
"my_mkdirs('/content/output12/savefiles/')\n",
"my_mkdirs('/content/output13/savefiles/')\n",
"\n",
"\n",
"NEG = '' # @param {type:'string'}\n",
"strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n",
"\n",
"for index in range(1667):\n",
"\n",
" PROMPT_INDEX = index\n",
" prompt = target_prompts[f'{index}']\n",
" url = urls[f'{index}']\n",
" if url.find('perchance')>-1:\n",
" image = Image.open(requests.get(url, stream=True).raw)\n",
" else: continue #print(\"(No image for this ID)\")\n",
"\n",
" print(f\"no. {PROMPT_INDEX} : '{prompt}'\")\n",
" text_features_A = target_text_encodings[f'{index}']\n",
" image_features_A = target_image_encodings[f'{index}']\n",
" # text-similarity\n",
" sims = C * torch.matmul(text_tensor, text_features_A.t())\n",
"\n",
" neg_sims = 0*sims\n",
" if(NEG != ''):\n",
" # Get text features for user input\n",
" inputs = tokenizer(text = NEG, padding=True, return_tensors=\"pt\")\n",
" text_features_NEG = model.get_text_features(**inputs)\n",
" text_features_NEG = text_features_A/text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
" # text-similarity\n",
" neg_sims = strength*torch.matmul(text_tensor, text_features_NEG.t())\n",
" #------#\n",
"\n",
" # plus image-similarity\n",
" sims = sims + (1-C) * torch.matmul(text_tensor, image_features_A.t()) * logit_scale\n",
"\n",
" # minus NEG-similarity\n",
" sims = sims - neg_sims\n",
"\n",
" # Sort the items\n",
" sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
"\n",
" # @markdown Repeat output N times\n",
" RANGE = 1000\n",
" NUM_CHUNKS = 10+\n",
" separator = '|'\n",
" _savefiles = {}\n",
" #-----#\n",
" for chunk in range(NUM_CHUNKS):\n",
" if chunk=<10:continue\n",
" start_at_index = chunk * RANGE\n",
" _prompts = ''\n",
" for _index in range(start_at_index + RANGE):\n",
" if _index < start_at_index : continue\n",
" index = indices[_index].item()\n",
" prompt = prompts[f'{index}']\n",
" _prompts = _prompts.replace(prompt + separator,'')\n",
" _prompts = _prompts + prompt + separator\n",
" #------#\n",
" _prompts = fix_bad_symbols(_prompts)\n",
" _prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
" _savefiles[f'{chunk}'] = _prompts\n",
" #---------#\n",
" save_filename = f'{root_savefile_name}_{start_at_index + RANGE}_{PROMPT_INDEX}.json'\n",
"\n",
"\n",
" if (chunk=<20 && chunk>10): %cd '/content/output2/savefiles/'\n",
" if (chunk<=30 && chunk>20): %cd '/content/output3/savefiles/'\n",
" if (chunk=<40 && chunk>30): %cd '/content/output4/savefiles/'\n",
" if (chunk<=50 && chunk>40): %cd '/content/output5/savefiles/'\n",
" if (chunk=<60 && chunk>50): %cd '/content/output6/savefiles/'\n",
" if (chunk<=70 && chunk>60): %cd '/content/output7/savefiles/'\n",
" if (chunk=<80 && chunk>70): %cd '/content/output8/savefiles/'\n",
" if (chunk<=90 && chunk>80): %cd '/content/output9/savefiles/'\n",
" if (chunk=<100 && chunk>90): %cd '/content/output10/savefiles/'\n",
" if (chunk<=110 && chunk>100): %cd '/content/output11/savefiles/'\n",
" if (chunk=<120 && chunk>110): %cd '/content/output12/savefiles/'\n",
" if (chunk<=130 && chunk>120): %cd '/content/output13/savefiles/'\n",
"\n",
"\n",
" #------#\n",
" print(f'Saving savefile {save_filename} to {output_folder}...')\n",
" with open(save_filename, 'w') as f:\n",
" json.dump(_savefiles, f)\n",
" #---------#\n",
" continue\n",
"#-----------#"
],
"metadata": {
"id": "x1uAVXZEoL0T",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Determine if this notebook is running on Colab or Kaggle\n",
"#Use https://www.kaggle.com/ if Google Colab GPU is busy\n",
"home_directory = '/content/'\n",
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
"if using_Kaggle : home_directory = '/kaggle/working/'\n",
"%cd {home_directory}\n",
"#-------#\n",
"\n",
"# @title Download the text_encodings as .zip\n",
"import os\n",
"%cd {home_directory}\n",
"#os.remove(f'{home_directory}results.zip')\n",
"root_output_folder = home_directory + 'output/'\n",
"zip_dest = f'/content/results.zip' #drive/MyDrive\n",
"!zip -r {zip_dest} {root_output_folder}"
],
"metadata": {
"id": "zivBNrw9uSVD",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# @title \tβ Quick fix for normalizing encoded text corpus tensors\n",
"\n",
"import os\n",
"my_mkdirs('/content/output')\n",
"my_mkdirs('/content/output/text_encodings')\n",
"\n",
"for filename in os.listdir(f'{prompts_folder}'):\n",
" %cd {prompts_folder}\n",
" prompts = {}\n",
" with open(f'{filename}', 'r') as f:\n",
" data = json.load(f).items()\n",
" for key,value in data:\n",
" prompts[key] = value\n",
" #------#\n",
" num_items = int(prompts['num_items'])\n",
"\n",
" %cd {encodings_folder}\n",
" enc_filename = filename.replace('json', 'safetensors')\n",
" _text_encodings = load_file(f'{enc_filename}')['weights'].to(torch.uint8)\n",
" text_encodings = torch.zeros(num_items , dim)\n",
" tmp = torch.ones(dim)\n",
" tmp2 = torch.tensor(1/0.0043)\n",
" zero_point = 0\n",
" for index in range(num_items):\n",
" text_encodings[index] = torch.tensor(0.0043) * torch.sub(_text_encodings[index][1:dim+1] , tmp , alpha= _text_encodings[index][0]).to(torch.float32)\n",
" text_encodings[index] = tmp2*text_encodings[index]/text_encodings[index].norm(p=2, dim=-1, keepdim = True)\n",
" test = torch.round( torch.add(text_encodings[index],tmp*zero_point))\n",
" less_than_zero = test<0\n",
" while(torch.any(less_than_zero).item()):\n",
" zero_point = zero_point + 1\n",
" test = torch.round( torch.add(text_encodings[index],tmp*zero_point))\n",
" less_than_zero = test<0\n",
" #------#\n",
" _text_encodings[index][0] = zero_point\n",
" _text_encodings[index][1:dim+1] = test\n",
" #-------#\n",
" %cd /content/output/text_encodings\n",
"\n",
" tmp = {}\n",
" tmp['weights'] = _text_encodings.to(torch.uint8)\n",
" tmp['num_items'] = torch.tensor(num_items).to(torch.uint8)\n",
" tmp['scale'] = torch.tensor(0.0043)\n",
" save_file(tmp , f'{enc_filename}')\n",
"#------#"
],
"metadata": {
"cellView": "form",
"id": "9qgHW1Wr7kZn"
},
"execution_count": null,
"outputs": []
}
]
} |