codeShare commited on
Commit
a2ff199
1 Parent(s): 977f957

Upload fusion_t2i_CLIP_interrogator.ipynb

Browse files
Google Colab Jupyter Notebooks/fusion_t2i_CLIP_interrogator.ipynb CHANGED
@@ -983,308 +983,6 @@
983
  },
984
  "execution_count": null,
985
  "outputs": []
986
- },
987
- {
988
- "cell_type": "markdown",
989
- "source": [
990
- "OTHER STUFF BELOW - Code for the modules below are work-in-progress."
991
- ],
992
- "metadata": {
993
- "id": "FRIqYJDEebpf"
994
- }
995
- },
996
- {
997
- "cell_type": "markdown",
998
- "source": [
999
- "The savefile can be used here : https://perchance.org/fusion-ai-image-generator"
1000
- ],
1001
- "metadata": {
1002
- "id": "JldNmWy1iyvK"
1003
- }
1004
- },
1005
- {
1006
- "cell_type": "code",
1007
- "source": [
1008
- "# @title \t⚄ Create fusion-generator .json savefile from result\n",
1009
- "filename = 'blank.json'\n",
1010
- "path = '/content/text-to-image-prompts/fusion/'\n",
1011
- "\n",
1012
- "print(f'reading {filename}....')\n",
1013
- "_index = 0\n",
1014
- "%cd {path}\n",
1015
- "with open(f'{filename}', 'r') as f:\n",
1016
- " data = json.load(f)\n",
1017
- "#------#\n",
1018
- "_df = pd.DataFrame({'count': data})['count']\n",
1019
- "_savefile = {\n",
1020
- " key : value for key, value in _df.items()\n",
1021
- "}\n",
1022
- "#------#\n",
1023
- "from safetensors.torch import load_file\n",
1024
- "import json , os , torch\n",
1025
- "import pandas as pd\n",
1026
- "#----#\n",
1027
- "def my_mkdirs(folder):\n",
1028
- " if os.path.exists(folder)==False:\n",
1029
- " os.makedirs(folder)\n",
1030
- "#------#\n",
1031
- "savefile_prompt = ''\n",
1032
- "for i in range(N) : savefile_prompt = savefile_prompt + ' ' + __prompts\n",
1033
- "_savefile['main'] = savefile_prompt.replace('\\n', ' ').replace(' ', ' ').replace(' ', ' ')\n",
1034
- "#------#\n",
1035
- "save_filename = f'fusion_C05_X7_1000_{PROMPT_INDEX}.json'\n",
1036
- "output_folder = '/content/output/savefiles/'\n",
1037
- "my_mkdirs(output_folder)\n",
1038
- "#-----#\n",
1039
- "%cd {output_folder}\n",
1040
- "print(f'Saving segment {save_filename} to {output_folder}...')\n",
1041
- "with open(save_filename, 'w') as f:\n",
1042
- " json.dump(_savefile, f)\n"
1043
- ],
1044
- "metadata": {
1045
- "id": "Q7vpNAXQilbf",
1046
- "cellView": "form"
1047
- },
1048
- "execution_count": null,
1049
- "outputs": []
1050
- },
1051
- {
1052
- "cell_type": "code",
1053
- "source": [
1054
- "# @title \t⚄ Create a savefile-set from the entire range of pre-encoded items\n",
1055
- "\n",
1056
- "# @markdown 📥 Load the data (only required one time)\n",
1057
- "load_the_data = True # @param {type:\"boolean\"}\n",
1058
- "\n",
1059
- "import math\n",
1060
- "from safetensors.torch import load_file\n",
1061
- "import json , os , torch\n",
1062
- "import pandas as pd\n",
1063
- "from PIL import Image\n",
1064
- "import requests\n",
1065
- "\n",
1066
- "def my_mkdirs(folder):\n",
1067
- " if os.path.exists(folder)==False:\n",
1068
- " os.makedirs(folder)\n",
1069
- "\n",
1070
- "# @markdown ⚖️ Set the value for C in the reference <br> <br> sim = C* text_enc + image_enc*(1-C) <br><br>\n",
1071
- "\n",
1072
- "C = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
1073
- "\n",
1074
- "# @markdown 🚫 Penalize similarity to this prompt(optional)\n",
1075
- "if(load_the_data):\n",
1076
- " target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n",
1077
- " from transformers import AutoTokenizer\n",
1078
- " tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
1079
- " from transformers import CLIPProcessor, CLIPModel\n",
1080
- " processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
1081
- " model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
1082
- " logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
1083
- "#---------#\n",
1084
- "\n",
1085
- "filename = 'blank.json'\n",
1086
- "path = '/content/text-to-image-prompts/fusion/'\n",
1087
- "print(f'reading {filename}....')\n",
1088
- "_index = 0\n",
1089
- "%cd {path}\n",
1090
- "with open(f'{filename}', 'r') as f:\n",
1091
- " data = json.load(f)\n",
1092
- "#------#\n",
1093
- "_df = pd.DataFrame({'count': data})['count']\n",
1094
- "_blank = {\n",
1095
- " key : value for key, value in _df.items()\n",
1096
- "}\n",
1097
- "#------#\n",
1098
- "\n",
1099
- "root_savefile_name = 'fusion_C05_X7'\n",
1100
- "\n",
1101
- "%cd /content/\n",
1102
- "output_folder = '/content/output/savefiles/'\n",
1103
- "my_mkdirs(output_folder)\n",
1104
- "my_mkdirs('/content/output2/savefiles/')\n",
1105
- "my_mkdirs('/content/output3/savefiles/')\n",
1106
- "my_mkdirs('/content/output4/savefiles/')\n",
1107
- "my_mkdirs('/content/output5/savefiles/')\n",
1108
- "my_mkdirs('/content/output6/savefiles/')\n",
1109
- "my_mkdirs('/content/output7/savefiles/')\n",
1110
- "my_mkdirs('/content/output8/savefiles/')\n",
1111
- "my_mkdirs('/content/output9/savefiles/')\n",
1112
- "my_mkdirs('/content/output10/savefiles/')\n",
1113
- "my_mkdirs('/content/output11/savefiles/')\n",
1114
- "my_mkdirs('/content/output12/savefiles/')\n",
1115
- "my_mkdirs('/content/output13/savefiles/')\n",
1116
- "\n",
1117
- "\n",
1118
- "NEG = '' # @param {type:'string'}\n",
1119
- "strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n",
1120
- "\n",
1121
- "for index in range(1667):\n",
1122
- "\n",
1123
- " PROMPT_INDEX = index\n",
1124
- " prompt = target_prompts[f'{index}']\n",
1125
- " url = urls[f'{index}']\n",
1126
- " if url.find('perchance')>-1:\n",
1127
- " image = Image.open(requests.get(url, stream=True).raw)\n",
1128
- " else: continue #print(\"(No image for this ID)\")\n",
1129
- "\n",
1130
- " print(f\"no. {PROMPT_INDEX} : '{prompt}'\")\n",
1131
- " text_features_A = target_text_encodings[f'{index}']\n",
1132
- " image_features_A = target_image_encodings[f'{index}']\n",
1133
- " # text-similarity\n",
1134
- " sims = C * torch.matmul(text_tensor, text_features_A.t())\n",
1135
- "\n",
1136
- " neg_sims = 0*sims\n",
1137
- " if(NEG != ''):\n",
1138
- " # Get text features for user input\n",
1139
- " inputs = tokenizer(text = NEG, padding=True, return_tensors=\"pt\")\n",
1140
- " text_features_NEG = model.get_text_features(**inputs)\n",
1141
- " text_features_NEG = text_features_A/text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
1142
- " # text-similarity\n",
1143
- " neg_sims = strength*torch.matmul(text_tensor, text_features_NEG.t())\n",
1144
- " #------#\n",
1145
- "\n",
1146
- " # plus image-similarity\n",
1147
- " sims = sims + (1-C) * torch.matmul(text_tensor, image_features_A.t()) * logit_scale\n",
1148
- "\n",
1149
- " # minus NEG-similarity\n",
1150
- " sims = sims - neg_sims\n",
1151
- "\n",
1152
- " # Sort the items\n",
1153
- " sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
1154
- "\n",
1155
- " # @markdown Repeat output N times\n",
1156
- " RANGE = 1000\n",
1157
- " NUM_CHUNKS = 10+\n",
1158
- " separator = '|'\n",
1159
- " _savefiles = {}\n",
1160
- " #-----#\n",
1161
- " for chunk in range(NUM_CHUNKS):\n",
1162
- " if chunk=<10:continue\n",
1163
- " start_at_index = chunk * RANGE\n",
1164
- " _prompts = ''\n",
1165
- " for _index in range(start_at_index + RANGE):\n",
1166
- " if _index < start_at_index : continue\n",
1167
- " index = indices[_index].item()\n",
1168
- " prompt = prompts[f'{index}']\n",
1169
- " _prompts = _prompts.replace(prompt + separator,'')\n",
1170
- " _prompts = _prompts + prompt + separator\n",
1171
- " #------#\n",
1172
- " _prompts = fix_bad_symbols(_prompts)\n",
1173
- " _prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
1174
- " _savefiles[f'{chunk}'] = _prompts\n",
1175
- " #---------#\n",
1176
- " save_filename = f'{root_savefile_name}_{start_at_index + RANGE}_{PROMPT_INDEX}.json'\n",
1177
- "\n",
1178
- "\n",
1179
- " if (chunk=<20 && chunk>10): %cd '/content/output2/savefiles/'\n",
1180
- " if (chunk<=30 && chunk>20): %cd '/content/output3/savefiles/'\n",
1181
- " if (chunk=<40 && chunk>30): %cd '/content/output4/savefiles/'\n",
1182
- " if (chunk<=50 && chunk>40): %cd '/content/output5/savefiles/'\n",
1183
- " if (chunk=<60 && chunk>50): %cd '/content/output6/savefiles/'\n",
1184
- " if (chunk<=70 && chunk>60): %cd '/content/output7/savefiles/'\n",
1185
- " if (chunk=<80 && chunk>70): %cd '/content/output8/savefiles/'\n",
1186
- " if (chunk<=90 && chunk>80): %cd '/content/output9/savefiles/'\n",
1187
- " if (chunk=<100 && chunk>90): %cd '/content/output10/savefiles/'\n",
1188
- " if (chunk<=110 && chunk>100): %cd '/content/output11/savefiles/'\n",
1189
- " if (chunk=<120 && chunk>110): %cd '/content/output12/savefiles/'\n",
1190
- " if (chunk<=130 && chunk>120): %cd '/content/output13/savefiles/'\n",
1191
- "\n",
1192
- "\n",
1193
- " #------#\n",
1194
- " print(f'Saving savefile {save_filename} to {output_folder}...')\n",
1195
- " with open(save_filename, 'w') as f:\n",
1196
- " json.dump(_savefiles, f)\n",
1197
- " #---------#\n",
1198
- " continue\n",
1199
- "#-----------#"
1200
- ],
1201
- "metadata": {
1202
- "id": "x1uAVXZEoL0T",
1203
- "cellView": "form"
1204
- },
1205
- "execution_count": null,
1206
- "outputs": []
1207
- },
1208
- {
1209
- "cell_type": "code",
1210
- "source": [
1211
- "# Determine if this notebook is running on Colab or Kaggle\n",
1212
- "#Use https://www.kaggle.com/ if Google Colab GPU is busy\n",
1213
- "home_directory = '/content/'\n",
1214
- "using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
1215
- "if using_Kaggle : home_directory = '/kaggle/working/'\n",
1216
- "%cd {home_directory}\n",
1217
- "#-------#\n",
1218
- "\n",
1219
- "# @title Download the text_encodings as .zip\n",
1220
- "import os\n",
1221
- "%cd {home_directory}\n",
1222
- "#os.remove(f'{home_directory}results.zip')\n",
1223
- "root_output_folder = home_directory + 'output/'\n",
1224
- "zip_dest = f'/content/results.zip' #drive/MyDrive\n",
1225
- "!zip -r {zip_dest} {root_output_folder}"
1226
- ],
1227
- "metadata": {
1228
- "id": "zivBNrw9uSVD",
1229
- "cellView": "form"
1230
- },
1231
- "execution_count": null,
1232
- "outputs": []
1233
- },
1234
- {
1235
- "cell_type": "code",
1236
- "source": [
1237
- "# @title \t⚄ Quick fix for normalizing encoded text corpus tensors\n",
1238
- "\n",
1239
- "import os\n",
1240
- "my_mkdirs('/content/output')\n",
1241
- "my_mkdirs('/content/output/text_encodings')\n",
1242
- "\n",
1243
- "for filename in os.listdir(f'{prompts_folder}'):\n",
1244
- " %cd {prompts_folder}\n",
1245
- " prompts = {}\n",
1246
- " with open(f'{filename}', 'r') as f:\n",
1247
- " data = json.load(f).items()\n",
1248
- " for key,value in data:\n",
1249
- " prompts[key] = value\n",
1250
- " #------#\n",
1251
- " num_items = int(prompts['num_items'])\n",
1252
- "\n",
1253
- " %cd {encodings_folder}\n",
1254
- " enc_filename = filename.replace('json', 'safetensors')\n",
1255
- " _text_encodings = load_file(f'{enc_filename}')['weights'].to(torch.uint8)\n",
1256
- " text_encodings = torch.zeros(num_items , dim)\n",
1257
- " tmp = torch.ones(dim)\n",
1258
- " tmp2 = torch.tensor(1/0.0043)\n",
1259
- " zero_point = 0\n",
1260
- " for index in range(num_items):\n",
1261
- " text_encodings[index] = torch.tensor(0.0043) * torch.sub(_text_encodings[index][1:dim+1] , tmp , alpha= _text_encodings[index][0]).to(torch.float32)\n",
1262
- " text_encodings[index] = tmp2*text_encodings[index]/text_encodings[index].norm(p=2, dim=-1, keepdim = True)\n",
1263
- " test = torch.round( torch.add(text_encodings[index],tmp*zero_point))\n",
1264
- " less_than_zero = test<0\n",
1265
- " while(torch.any(less_than_zero).item()):\n",
1266
- " zero_point = zero_point + 1\n",
1267
- " test = torch.round( torch.add(text_encodings[index],tmp*zero_point))\n",
1268
- " less_than_zero = test<0\n",
1269
- " #------#\n",
1270
- " _text_encodings[index][0] = zero_point\n",
1271
- " _text_encodings[index][1:dim+1] = test\n",
1272
- " #-------#\n",
1273
- " %cd /content/output/text_encodings\n",
1274
- "\n",
1275
- " tmp = {}\n",
1276
- " tmp['weights'] = _text_encodings.to(torch.uint8)\n",
1277
- " tmp['num_items'] = torch.tensor(num_items).to(torch.uint8)\n",
1278
- " tmp['scale'] = torch.tensor(0.0043)\n",
1279
- " save_file(tmp , f'{enc_filename}')\n",
1280
- "#------#"
1281
- ],
1282
- "metadata": {
1283
- "cellView": "form",
1284
- "id": "9qgHW1Wr7kZn"
1285
- },
1286
- "execution_count": null,
1287
- "outputs": []
1288
  }
1289
  ]
1290
  }
 
983
  },
984
  "execution_count": null,
985
  "outputs": []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
986
  }
987
  ]
988
  }