Datasets:
language:
- en
license: unknown
size_categories:
- 10K<n<100K
task_categories:
- feature-extraction
- text-classification
- image-classification
- image-feature-extraction
- zero-shot-classification
- zero-shot-image-classification
pretty_name: multimodal-sarcasm-dataset
tags:
- sarcasm
- sarcasm-detection
- mulitmodal-sarcasm-detection
- sarcasm detection
- multimodao sarcasm detection
- tweets
dataset_info:
- config_name: mmsd-original
features:
- name: image
dtype: image
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1816409874.384
num_examples: 19816
- name: validation
num_bytes: 260024770
num_examples: 2410
- name: test
num_bytes: 262626922.717
num_examples: 2409
download_size: 2690054686
dataset_size: 2339061567.101
- config_name: mmsd-v1
features:
- name: image
dtype: image
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1797521611.232
num_examples: 19557
- name: validation
num_bytes: 259452303.817
num_examples: 2387
- name: test
num_bytes: 261557636.749
num_examples: 2373
download_size: 2667548595
dataset_size: 2318531551.798
- config_name: mmsd-v2
features:
- name: image
dtype: image
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1816105257.384
num_examples: 19816
- name: validation
num_bytes: 259989983
num_examples: 2410
- name: test
num_bytes: 262588464.717
num_examples: 2409
download_size: 2689804711
dataset_size: 2338683705.101
configs:
- config_name: mmsd-original
data_files:
- split: train
path: mmsd-original/train-*
- split: validation
path: mmsd-original/validation-*
- split: test
path: mmsd-original/test-*
- config_name: mmsd-v1
data_files:
- split: train
path: mmsd-v1/train-*
- split: validation
path: mmsd-v1/validation-*
- split: test
path: mmsd-v1/test-*
- config_name: mmsd-v2
data_files:
- split: train
path: mmsd-v2/train-*
- split: validation
path: mmsd-v2/validation-*
- split: test
path: mmsd-v2/test-*
MMSD2.0: Towards a Reliable Multi-modal Sarcasm Detection System
This is a copy of the dataset uploaded on Hugging Face for easy access. The original data comes from this work, which is an improvement upon a previous study.
Usage
from typing import TypedDict, cast
import pytorch_lightning as pl
from datasets import Dataset, load_dataset
from torch import Tensor
from torch.utils.data import DataLoader
from transformers import CLIPProcessor
class MMSDModelInput(TypedDict):
pixel_values: Tensor
input_ids: Tensor
attention_mask: Tensor
label: Tensor
id: list[str]
class MMSDDatasetModule(pl.LightningDataModule):
def __init__(
self,
clip_ckpt_name: str = "openai/clip-vit-base-patch32",
dataset_version: str = "mmsd-v2",
max_length: int = 77,
train_batch_size: int = 32,
val_batch_size: int = 32,
test_batch_size: int = 32,
num_workers: int = 19,
) -> None:
super().__init__()
self.clip_ckpt_name = clip_ckpt_name
self.dataset_version = dataset_version
self.train_batch_size = train_batch_size
self.val_batch_size = val_batch_size
self.test_batch_size = test_batch_size
self.num_workers = num_workers
self.max_length = max_length
def setup(self, stage: str) -> None:
processor = CLIPProcessor.from_pretrained(self.clip_ckpt_name)
def preprocess(example):
inputs = processor(
text=example["text"],
images=example["image"],
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.max_length,
)
return {
"pixel_values": inputs["pixel_values"],
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"label": example["label"],
}
self.raw_dataset = cast(
Dataset,
load_dataset("coderchen01/MMSD2.0", name=self.dataset_version),
)
self.dataset = self.raw_dataset.map(
preprocess,
batched=True,
)
def train_dataloader(self) -> DataLoader:
return DataLoader(
self.dataset["train"],
batch_size=self.train_batch_size,
shuffle=True,
num_workers=self.num_workers,
)
def val_dataloader(self) -> DataLoader:
return DataLoader(
self.dataset["validation"],
batch_size=self.val_batch_size,
num_workers=self.num_workers,
)
def test_dataloader(self) -> DataLoader:
return DataLoader(
self.dataset["test"],
batch_size=self.test_batch_size,
num_workers=self.num_workers,
)
References
[1] Yitao Cai, Huiyu Cai, and Xiaojun Wan. 2019. Multi-Modal Sarcasm Detection in Twitter with Hierarchical Fusion Model. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2506–2515, Florence, Italy. Association for Computational Linguistics.
[2] Libo Qin, Shijue Huang, Qiguang Chen, Chenran Cai, Yudi Zhang, Bin Liang, Wanxiang Che, and Ruifeng Xu. 2023. MMSD2.0: Towards a Reliable Multi-modal Sarcasm Detection System. In Findings of the Association for Computational Linguistics: ACL 2023, pages 10834–10845, Toronto, Canada. Association for Computational Linguistics.