|
--- |
|
license: cc-by-nc-sa-4.0 |
|
language: ja |
|
tags: |
|
- advertisement |
|
task_categories: |
|
- text2text-generation |
|
- image-to-text |
|
size_categories: 10K<n<100K |
|
pretty_name: camera |
|
dataset_info: |
|
- config_name: with-lp-images |
|
features: |
|
- name: asset_id |
|
dtype: int64 |
|
- name: kw |
|
dtype: string |
|
- name: lp_meta_description |
|
dtype: string |
|
- name: title_org |
|
dtype: string |
|
- name: title_ne1 |
|
dtype: string |
|
- name: title_ne2 |
|
dtype: string |
|
- name: title_ne3 |
|
dtype: string |
|
- name: domain |
|
dtype: string |
|
- name: parsed_full_text_annotation |
|
sequence: |
|
- name: text |
|
dtype: string |
|
- name: xmax |
|
dtype: int64 |
|
- name: xmin |
|
dtype: int64 |
|
- name: ymax |
|
dtype: int64 |
|
- name: ymin |
|
dtype: int64 |
|
- name: lp_image |
|
dtype: image |
|
splits: |
|
- name: test |
|
num_bytes: 2528981570 |
|
num_examples: 872 |
|
- name: validation |
|
num_bytes: 13133740369.43 |
|
num_examples: 3098 |
|
- name: train |
|
num_bytes: 51367983297.415 |
|
num_examples: 12395 |
|
download_size: 65867475365 |
|
dataset_size: 67030705236.845 |
|
- config_name: without-lp-images |
|
features: |
|
- name: asset_id |
|
dtype: int64 |
|
- name: kw |
|
dtype: string |
|
- name: lp_meta_description |
|
dtype: string |
|
- name: title_org |
|
dtype: string |
|
- name: title_ne1 |
|
dtype: string |
|
- name: title_ne2 |
|
dtype: string |
|
- name: title_ne3 |
|
dtype: string |
|
- name: domain |
|
dtype: string |
|
- name: parsed_full_text_annotation |
|
sequence: |
|
- name: text |
|
dtype: string |
|
- name: xmax |
|
dtype: int64 |
|
- name: xmin |
|
dtype: int64 |
|
- name: ymax |
|
dtype: int64 |
|
- name: ymin |
|
dtype: int64 |
|
splits: |
|
- name: test |
|
num_bytes: 14634833 |
|
num_examples: 872 |
|
- name: validation |
|
num_bytes: 69170878 |
|
num_examples: 3098 |
|
- name: train |
|
num_bytes: 280633510 |
|
num_examples: 12395 |
|
download_size: 150489014 |
|
dataset_size: 364439221 |
|
configs: |
|
- config_name: with-lp-images |
|
data_files: |
|
- split: test |
|
path: with-lp-images/test-* |
|
- split: validation |
|
path: with-lp-images/validation-* |
|
- split: train |
|
path: with-lp-images/train-* |
|
default: true |
|
- config_name: without-lp-images |
|
data_files: |
|
- split: test |
|
path: without-lp-images/test-* |
|
- split: validation |
|
path: without-lp-images/validation-* |
|
- split: train |
|
path: without-lp-images/train-* |
|
|
|
--- |
|
|
|
# Dataset Card for CAMERA📷: |
|
|
|
## Table of Contents: |
|
- [Dataset Card for Camera](#dataset-card-for-camera) |
|
- [Table of Contents](#table-of-contents) |
|
- [Dataset Details](#dataset-details) |
|
- [Dataset Description](#dataset-description) |
|
- [Dataset Sources](#dataset-sources) |
|
- [Uses](#uses) |
|
- [Direct Use](#direct-use) |
|
- [Dataset Information](#datasest-information) |
|
- [Data Example](#data-example) |
|
- [Dataset Structure](#dataset-structure) |
|
- [Citation](#citation) |
|
|
|
|
|
## Dataset Details |
|
|
|
### Dataset Description |
|
CAMERA (CyberAgent Multimodal Evaluation for Ad Text GeneRAtion) is the Japanese ad text generation dataset, which comprises actual data sourced from Japanese search ads and incorporates annotations encompassing multi-modal information such as the LP images. |
|
|
|
### Dataset Sources |
|
|
|
- **Homepage:** [Github](https://github.com/CyberAgentAILab/camera) |
|
- **Paper:** [Striking Gold in Advertising: Standardization and Exploration of Ad Text |
|
Generation](https://aclanthology.org/2024.acl-long.54/) |
|
- [NEW!] Our paper has been accepted to [ACL2024](https://2024.aclweb.org/), and we will update the paper information as soon as the proceedings are published. |
|
|
|
## Uses |
|
|
|
### Direct Use |
|
|
|
- Dataset with lp images (with-lp-images) |
|
```python |
|
import datasets |
|
dataset = datasets.load_dataset("cyberagent/camera", name="with-lp-images") |
|
``` |
|
|
|
- Dataset without lp images (without-lp-images) |
|
```python |
|
import datasets |
|
dataset = datasets.load_dataset("cyberagent/camera", name="without-lp-images") |
|
``` |
|
|
|
### Dataset Information |
|
|
|
- with-lp-images |
|
``` |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation', 'lp_image'], |
|
num_rows: 12395 |
|
}) |
|
validation: Dataset({ |
|
features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation', 'lp_image'], |
|
num_rows: 3098 |
|
}) |
|
test: Dataset({ |
|
features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation', 'lp_image'], |
|
num_rows: 872 |
|
}) |
|
}) |
|
``` |
|
|
|
- without-lp-images |
|
``` |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation'], |
|
num_rows: 12395 |
|
}) |
|
validation: Dataset({ |
|
features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation'], |
|
num_rows: 3098 |
|
}) |
|
test: Dataset({ |
|
features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation'], |
|
num_rows: 872 |
|
}) |
|
}) |
|
``` |
|
|
|
### Data Example |
|
|
|
``` |
|
{'asset_id': 6041, |
|
'kw': 'GLLARE MARUYAMA', |
|
'lp_meta_description': '美容サロン ブルーヘアー 札幌市 西区 琴似 創業34年 かゆみ、かぶれを防ぎ、美しい髪へ', |
|
'title_org': '北海道、水の教会で結婚式', |
|
'title_ne1': '', |
|
'title_ne2': '', |
|
'title_ne3': '', |
|
'domain': '', |
|
'parsed_full_text_annotation': { |
|
'text': ['表参道', |
|
'名古屋', |
|
'梅田', |
|
... |
|
'成約者様専用ページ', |
|
'個人情報保護方針', |
|
'星野リゾートトマム'], |
|
'xmax': [163, |
|
162, |
|
157, |
|
... |
|
1047, |
|
1035, |
|
1138], |
|
'xmin': [125, |
|
125, |
|
129, |
|
... |
|
937, |
|
936, |
|
1027], |
|
'ymax': [9652, |
|
9791, |
|
9928, |
|
... |
|
17119, |
|
17154, |
|
17515], |
|
'ymin': [9642, |
|
9781, |
|
9918, |
|
... |
|
17110, |
|
17143, |
|
17458]}, |
|
'lp_image': <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=1200x17596>} |
|
``` |
|
|
|
### Dataset Structure |
|
|
|
| Name | Description | |
|
| ---- | ---- | |
|
| asset_id | ids (associated with LP images) | |
|
| kw | search keyword | |
|
| lp_meta_description | meta description extracted from LP (i.e., LP Text)| |
|
| title_org | ad text (original gold reference) | |
|
| title_ne{1-3} | ad text (additonal gold references for multi-reference evaluation | |
|
| domain | industry domain (HR, EC, Fin, Edu) for industry-wise evaluation | |
|
| parsed_full_text_annotation | OCR result for LP image | |
|
| lp_image | LP image | |
|
|
|
## Citation |
|
|
|
``` |
|
@inproceedings{mita-etal-2024-striking, |
|
title = "Striking Gold in Advertising: Standardization and Exploration of Ad Text Generation", |
|
author = "Mita, Masato and |
|
Murakami, Soichiro and |
|
Kato, Akihiko and |
|
Zhang, Peinan", |
|
editor = "Ku, Lun-Wei and |
|
Martins, Andre and |
|
Srikumar, Vivek", |
|
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", |
|
month = aug, |
|
year = "2024", |
|
address = "Bangkok, Thailand and virtual meeting", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2024.acl-long.54", |
|
pages = "955--972", |
|
abstract = "In response to the limitations of manual ad creation, significant research has been conducted in the field of automatic ad text generation (ATG). However, the lack of comprehensive benchmarks and well-defined problem sets has made comparing different methods challenging. To tackle these challenges, we standardize the task of ATG and propose a first benchmark dataset, CAMERA, carefully designed and enabling the utilization of multi-modal information and facilitating industry-wise evaluations. Our extensive experiments with a variety of nine baselines, from classical methods to state-of-the-art models including large language models (LLMs), show the current state and the remaining challenges. We also explore how existing metrics in ATG and an LLM-based evaluator align with human evaluations.", |
|
} |
|
``` |