|
--- |
|
license: apache-2.0 |
|
task_categories: |
|
- text-generation |
|
language: |
|
- en |
|
tags: |
|
- data-juicer |
|
- pretraining |
|
size_categories: |
|
- 10M<n<100M |
|
--- |
|
|
|
# RedPajama -- CommonCrawl-2019-30 (refined by Data-Juicer) |
|
|
|
A refined version of CommonCrawl-2019-30 dataset in RedPajama by [Data-Juicer](https://github.com/alibaba/data-juicer). Removing some "bad" samples from the original dataset to make it higher-quality. |
|
|
|
This dataset is usually used to pretrain a Large Language Model. |
|
|
|
**Notice**: Here is a small subset for previewing. The whole dataset is available [here](https://dail-wlcb.oss-cn-wulanchabu.aliyuncs.com/LLM_data/our_refined_datasets/pretraining/redpajama-cc-refine-results/redpajama-cc-2019-30-refine-result.jsonl) (About 240GB). |
|
|
|
## Dataset Information |
|
|
|
- Number of samples: 36,557,283 (Keep ~45.08% from the original dataset) |
|
|
|
## Refining Recipe |
|
```yaml |
|
# global parameters |
|
project_name: 'Data-Juicer-recipes-cc-2019-30' |
|
dataset_path: '/path/to/your/dataset' # path to your dataset directory or file |
|
export_path: '/path/to/your/dataset.jsonl' |
|
|
|
np: 50 # number of subprocess to process your dataset |
|
open_tracer: true |
|
|
|
# process schedule |
|
# a list of several process operators with their arguments |
|
process: |
|
- document_simhash_deduplicator: |
|
tokenization: space |
|
window_size: 6 |
|
lowercase: true |
|
ignore_pattern: '\p{P}' |
|
num_blocks: 6 |
|
hamming_distance: 4 |
|
|
|
- clean_email_mapper: |
|
- clean_links_mapper: |
|
- fix_unicode_mapper: |
|
- punctuation_normalization_mapper: |
|
- whitespace_normalization_mapper: |
|
|
|
- alphanumeric_filter: # 770218 |
|
tokenization: false |
|
min_ratio: 0.7489 # 3sigma |
|
max_ratio: 0.8585 # 3sigma |
|
- average_line_length_filter: # for code |
|
max_len: 1500 # < 3sigma (2689) -- 177520 |
|
- character_repetition_filter: |
|
rep_len: 10 |
|
max_ratio: 0.3 # > 3sigma (0.1491) -- 151703 |
|
- flagged_words_filter: |
|
lang: en |
|
tokenization: true |
|
max_ratio: 0.0025 # 3sigma -- 101540 |
|
- language_id_score_filter: # remove language filter |
|
min_score: 0.788 # 3sigma -- 1622574 |
|
- maximum_line_length_filter: # for code |
|
max_len: 5000 # < 3sigma (8775) -- 485806 |
|
- perplexity_filter: |
|
lang: en |
|
max_ppl: 5000 # < 3sigma (6723) -- 676914 |
|
- special_characters_filter: |
|
min_ratio: 0.15 # > 3sigma (0.104) |
|
max_ratio: 0.35 # > 3sigma (0.322) -- 859797 |
|
- text_length_filter: |
|
max_len: 65589 # 3sigma -- 975142 |
|
- words_num_filter: |
|
lang: en |
|
tokenization: true |
|
min_num: 20 # > 3sigma -- 196 |
|
max_num: 13030 # 3sigma -- 989078 |
|
- word_repetition_filter: |
|
lang: en |
|
tokenization: true |
|
rep_len: 10 |
|
max_ratio: 0.279 # 3sigma -- 1716308 |
|
``` |