configs:
- config_name: default
data_files:
- split: train
path:
- data/train-*
- data/val-*
- split: validation
path: data/validation-*
dataset_info:
features:
- name: id
dtype: string
- name: original_prompt
dtype: string
- name: positive_prompt
dtype: string
- name: negative_prompt
dtype: string
- name: url
dtype: string
- name: model_gen0
dtype: string
- name: model_gen1
dtype: string
- name: model_gen2
dtype: string
- name: model_gen3
dtype: string
- name: width_gen0
dtype: int64
- name: width_gen1
dtype: int64
- name: width_gen2
dtype: int64
- name: width_gen3
dtype: int64
- name: height_gen0
dtype: int64
- name: height_gen1
dtype: int64
- name: height_gen2
dtype: int64
- name: height_gen3
dtype: int64
- name: num_inference_steps_gen0
dtype: int64
- name: num_inference_steps_gen1
dtype: int64
- name: num_inference_steps_gen2
dtype: int64
- name: num_inference_steps_gen3
dtype: int64
- name: filepath_gen0
dtype: string
- name: filepath_gen1
dtype: string
- name: filepath_gen2
dtype: string
- name: filepath_gen3
dtype: string
- name: image_gen0
dtype: image
- name: image_gen1
dtype: image
- name: image_gen2
dtype: image
- name: image_gen3
dtype: image
splits:
- name: train
num_bytes: 2626848010531.5
num_examples: 2306629
- name: validation
num_bytes: 5318900038
num_examples: 4800
download_size: 2568003790242
dataset_size: 2632166910569.5
ELSA - Multimedia use case
ELSA Multimedia is a large collection of Deep Fake images, generated using diffusion models
Dataset Summary
This dataset was developed as part of the EU project ELSA. Specifically for the Multimedia use-case. Official webpage: https://benchmarks.elsa-ai.eu/ This dataset aims to develop effective solutions for detecting and mitigating the spread of deep fake images in multimedia content. Deep fake images, which are highly realistic and deceptive manipulations, pose significant risks to privacy, security, and trust in digital media. This dataset can be used to train robust and accurate models that can identify and flag instances of deep fake images.
ELSA versions
Name | Description | Link |
---|---|---|
ELSA1M_track1 | Dataset of 1M images generated using diffusion model | https://huggingface.co/datasets/elsaEU/ELSA1M_track1 |
ELSA10M_track1 | Dataset of 10M images generated using four different diffusion models for each caption, multiple image compression formats, multiple aspect ration | https://huggingface.co/datasets/elsaEU/ELSA_D3 |
ELSA500k_track2 | Dataset of 500k images generated using diffusion model with diffusion attentive attribution maps [1] | https://huggingface.co/datasets/elsaEU/ELSA500k_track2 |
from datasets import load_dataset
elsa_data = load_dataset("elsaEU/ELSA_D3", split="train", streaming=True)
Using streaming=True lets you work with the dataset without downloading it.
Dataset Structure
Each parquet file contains nearly 1k images and a JSON file with metadata.
The Metadata for generated images are:
- ID: Laion image ID
- original_prompt: Laion Prompt
- positive_prompt: positive prompt used for image generation
- negative_prompt: negative prompt used for image generation
- url: Url of the real image associated with the same prompt
- width: width generated image
- height: height generated image
- num_inference_steps: diffusion steps of the generator
- filepath: path of the generated image
- model_gen0: Generator 0 name
- model_gen1: Generator 1 name
- model_gen2: Generator 2 name
- model_gen3: Generator 3 name
- image_gen0: image generated with generator 0
- image_gen1: image generated with generator 1
- image_gen2: image generated with generator 2
- image_gen3: image generated with generator 3
- aspect_ratio: aspect ratio of the generated image
Dataset Curators
- Leonardo Labs (rosario.dicarlo.ext@leonardo.com)
- UNIMORE (https://aimagelab.ing.unimore.it/imagelab/)
Paper page
Paper can be found at https://huggingface.co/papers/2407.20337.