Problem
stringlengths
5
628
Rationale
stringlengths
1
2.74k
options
stringlengths
37
137
correct
stringclasses
5 values
annotated_formula
stringlengths
6
848
linear_formula
stringlengths
7
357
category
stringclasses
6 values
by selling 22 pens for a rupee a woman loses 10 % . how many for a rupee should he sell in order to gain 50 % ?
"1394 x 1394 = ( 1394 ) 2 = ( 1400 - 2 ) 2 = ( 1400 ) 2 + ( 6 ) 2 - ( 6 x 1400 x 6 ) = 1943236 . answer : option a"
a ) 1943236 , b ) 1981709 , c ) 18362619 , d ) 2031719 , e ) none of these
a
multiply(divide(1394, 1394), const_100)
divide(n0,n1)|multiply(#0,const_100)|
general
1394 x 1394
b claims 2 / 7 of the profit a claims remaining 5 / 7 of the profit = > a : b = 5 / 7 : 2 / 7 = 5 : 2 let the money contributed by b = b then a : b = 16000 Γ— 8 : b Γ— 4 therefore , 16000 Γ— 8 : b Γ— 4 = 5 : 2 16000 Γ— 8 Γ— 2 = b Γ— 4 Γ— 5 16000 Γ— 2 Γ— 2 = b Γ— 5 3200 Γ— 2 Γ— 2 = b b = 12800 answer is a .
a ) 12800 , b ) 13000 , c ) 11500 , d ) 12500 , e ) 12000
a
divide(multiply(multiply(16000, 8), divide(8, 4)), multiply(4, add(4, const_1)))
add(n2,const_1)|divide(n1,n2)|multiply(n0,n1)|multiply(#1,#2)|multiply(n2,#0)|divide(#3,#4)
general
a and b start a business jointly . a invests rs 16000 for 8 month and b remains in the business for 4 months . out of total profit , b claims 2 / 7 of the profit . how much money was contributed by b ?
we are looking for two numbers . # 1 - x # 2 - 3 x Γ’ € β€œ 2 the sum is 82 . # 1 + # 2 = 82 substituting x + 3 x Γ’ € β€œ 2 = 82 4 x Γ’ € β€œ 2 = 82 4 x = 84 x = 21 the first number is 21 , the second number is two less than three times 21 or 61 . correct answer e
a ) 7 - 19 , b ) 8 - 20 , c ) 10 - 16 , d ) 15 - 9 , e ) 21 - 61
e
subtract(divide(add(82, const_2), add(3, const_1)), subtract(multiply(3, divide(add(82, const_2), add(3, const_1))), const_2))
add(n1,const_2)|add(n0,const_1)|divide(#0,#1)|multiply(n0,#2)|subtract(#3,const_2)|subtract(#2,#4)
general
the second of two numbers is two less than 3 times the first . find the numbers if there sum is 82 .
"let t be the time that john spent for his final push . thus , per the question , 4.2 t = 3.7 t + 10 + 2 - - - > 0.5 t = 12 - - - > t = 24 seconds . c is the correct answer ."
a ) 13 seconds , b ) 17 seconds , c ) 24 seconds , d ) 34 seconds , e ) 51 seconds
c
divide(add(divide(multiply(3.7, add(10, 2)), subtract(4.2, 3.7)), add(10, 2)), 4.2)
add(n0,n3)|subtract(n1,n2)|multiply(n2,#0)|divide(#2,#1)|add(#0,#3)|divide(#4,n1)|
physics
john and steve are speed walkers in a race . john is 10 meters behind steve when he begins his final push . john blazes to the finish at a pace of 4.2 m / s , while steve maintains a blistering 3.7 m / s speed . if john finishes the race 2 meters ahead of steve , how long was john ’ s final push ?
"solution 32.5 let p . w . be rs . x . then , s . i . on rs . x at 16 % for 9 months = rs . 171 . ∴ x 16 x 9 / 12 x 1 / 100 } = 171 or x = 1425 . ∴ p . w . = rs . 1425 . answer c"
a ) rs . 1386 , b ) rs . 1764 , c ) rs . 1425 , d ) rs . 2268 , e ) none of these
c
add(divide(171, divide(multiply(divide(9, multiply(const_4, const_3)), 16), const_100)), 171)
multiply(const_3,const_4)|divide(n0,#0)|multiply(n1,#1)|divide(#2,const_100)|divide(n2,#3)|add(n2,#4)|
gain
the true discount on a bill due 9 months hence at 16 % per annum is rs . 171 . the amount of the bill is
"let x be pair of shoes and y be pair of boots . 22 x + 16 y = 540 . . . eq 1 8 x + 32 y = 720 . . . . eq 2 . now multiply eq 1 by 2 and sub eq 2 . 44 x = 1080 8 x = 720 . 36 x = 360 = > x = 10 . sub x in eq 2 . . . . we get 80 + 32 y = 720 . . . then we get 32 y = 640 then y = 20 differenece between x and y is 10 answer : c"
a ) 12 , b ) 11 , c ) 10 , d ) 15 , e ) 16
c
divide(subtract(540, multiply(22, divide(subtract(multiply(540, const_2), 720), subtract(multiply(22, const_2), 8)))), 16)
multiply(n2,const_2)|multiply(n0,const_2)|subtract(#0,n5)|subtract(#1,n3)|divide(#2,#3)|multiply(n0,#4)|subtract(n2,#5)|divide(#6,n1)|
general
suzie ’ s discount footwear sells all pairs of shoes for one price and all pairs of boots for another price . on monday the store sold 22 pairs of shoes and 16 pairs of boots for $ 540 . on tuesday the store sold 8 pairs of shoes and 32 pairs of boots for $ 720 . how much more do pairs of boots cost than pairs of shoes at suzie ’ s discount footwear ?
f : c : w 1 : 12 : 30 sport version : f : c 3 : 12 f : w 1 : 60 or 3 : 180 so c : f : w = 12 : 3 : 180 c / w = 12 / 180 = 3 ounces / x ounces x = 3 * 180 / 12 = 45 ounces of water answer : a
['a ) 45', 'b ) 50', 'c ) 55', 'd ) 60', 'e ) 63']
a
multiply(multiply(30, const_2), divide(3, const_4))
divide(n3,const_4)|multiply(n2,const_2)|multiply(#0,#1)
other
in the standard formulation of a flavored drink the ratio by volume of flavoring to corn syrup to water is 1 : 12 : 30 . in the ` ` sport ' ' formulation , the ratio of flavoring to corn syrup is three times as great as in the standard formulation , and the ratio of flavoring to water is half that of the standard formulation . if a large bottle of the ` ` sport ' ' formulation contains 3 ounces of corn syrup , how many ounces of water does it contain ?
"as two numbers are prime , only options satisfy ie option b and c and d , e but option a will not make the product of numbers i . e 35 answer : b"
a ) 8 and 4 , b ) 7 and 5 , c ) 6 and 5 , d ) 8 and 5 , e ) 6 and 5
b
add(35, 12)
add(n0,n1)|
physics
sum of two numbers prime to each other is 12 and their l . c . m . is 35 . what are the numbers ?
"let the amount paid to x per week = x and the amount paid to y per week = y then x + y = 440 but x = 120 % of y = 120 y / 100 = 12 y / 10 Γ’ Λ† Β΄ 12 y / 10 + y = 440 Γ’ ‑ ’ y [ 12 / 10 + 1 ] = 440 Γ’ ‑ ’ 22 y / 10 = 440 Γ’ ‑ ’ 22 y = 4400 Γ’ ‑ ’ y = 4400 / 22 = 400 / 2 = rs . 200 b )"
a ) s . 150 , b ) s . 200 , c ) s . 250 , d ) s . 350 , e ) s . 400
b
divide(multiply(440, multiply(add(const_1, const_4), const_2)), multiply(add(multiply(add(const_1, const_4), const_2), const_1), const_2))
add(const_1,const_4)|multiply(#0,const_2)|add(#1,const_1)|multiply(n0,#1)|multiply(#2,const_2)|divide(#3,#4)|
general
two employees x and y are paid a total of rs . 440 per week by their employer . if x is paid 120 percent of the sum paid to y , how much is y paid per week ?
"equate the fat : 0.1 x + 0.25 * 8 = 0.2 ( x + 8 ) - - > x = 4 . answer : a ."
a ) 4 , b ) 12 , c ) 14 , d ) 16 , e ) 28
a
divide(multiply(subtract(25, 20), 8), 10)
subtract(n2,n3)|multiply(n1,#0)|divide(#1,n0)|
general
how many gallons of milk that is 10 percent butter - fat must be added to 8 gallons of milk that is 25 percent butterfat to obtain milk that is 20 percent butterfat ?
"820 * 8.5 6970.0 gm 6.97 kg answer : d"
a ) 6.6 kg , b ) 6.8 kg , c ) 6.7 kg , d ) 6.97 kg , e ) 7.8 kg
d
divide(multiply(8.5, 820), const_1000)
multiply(n0,n1)|divide(#0,const_1000)|
general
a envelop weight 8.5 gm , if 820 of these envelop are sent with an advertisement mail . how much wieght ?
"l * w = 500 : area , l is the length and w is the width . 2 l + 2 w = 90 : perimeter l = 45 - w : solve for l ( 45 - w ) * w = 500 : substitute in the area equation w = 20 and l = 25 correct answer d"
a ) 5 , b ) 10 , c ) 15 , d ) 20 , e ) 25
d
divide(subtract(divide(90, const_2), sqrt(subtract(multiply(divide(90, const_2), divide(90, const_2)), multiply(const_4, 500)))), const_2)
divide(n1,const_2)|multiply(n0,const_4)|multiply(#0,#0)|subtract(#2,#1)|sqrt(#3)|subtract(#0,#4)|divide(#5,const_2)|
geometry
the area of a rectangular field is equal to 500 square meters . its perimeter is equal to 90 meters . find the width of this rectangle .
angle between hands of a clock when the minute hand is behind the hour hand , the angle between the two hands at m minutes past h ' o clock = 30 ( h βˆ’ m / 5 ) + m / 2 degree when the minute hand is ahead of the hour hand , the angle between the two hands at m minutes past h ' o clock = 30 ( m / 5 βˆ’ h ) βˆ’ m / 2 degree here h = 11 , m = 30 and minute hand is behind the hour hand . hence the angle = 30 ( h βˆ’ m / 5 ) + m / 2 = 30 ( 11 βˆ’ 30 / 5 ) + 30 / 2 = 30 ( 11 βˆ’ 6 ) + 15 = 30 Γ— 5 + 15 = 165 Β° answer is d .
a ) 35 Β° , b ) 65 Β° , c ) 45 Β° , d ) 165 Β° , e ) 95 Β°
d
divide(multiply(subtract(multiply(divide(multiply(const_3, const_4), subtract(multiply(const_3, const_4), const_1)), multiply(add(const_4, const_1), subtract(multiply(const_3, const_4), const_1))), divide(const_60, const_2)), subtract(multiply(const_3, const_4), const_1)), const_2)
add(const_1,const_4)|divide(const_60,const_2)|multiply(const_3,const_4)|subtract(#2,const_1)|divide(#2,#3)|multiply(#0,#3)|multiply(#4,#5)|subtract(#6,#1)|multiply(#7,#3)|divide(#8,const_2)
physics
the angle between the minute hand and the hour hand of a clock when the time is 11.30 , is
16 + 6 = 22 . answer is c .
a ) 7 , b ) 33 , c ) 22 , d ) 17 , e ) 25
c
add(16, 6)
add(n0,n1)|
general
there are 16 bees in the hive , then 6 more fly . how many bees are there in all ?
"explanation : 108 kmph = ( 108 x 5 / 18 ) m / sec = 30 m / s . answer : c"
a ) 10.8 , b ) 18 , c ) 30 , d ) 38.8 , e ) none of these
c
multiply(108, const_0_2778)
multiply(n0,const_0_2778)|
physics
a train moves with a speed of 108 kmph . its speed in metres per second is :
"( 60 / 100 ) * x Γ’ € β€œ 20 = 88 6 x = 1080 x = 180 answer : c"
a ) 120 , b ) 300 , c ) 180 , d ) 170 , e ) 148
c
divide(add(20, 88), divide(60, const_100))
add(n0,n2)|divide(n1,const_100)|divide(#0,#1)|
gain
20 is subtracted from 60 % of a number , the result is 88 . find the number ?
"( 50 / 100 ) * 250 Γ’ € β€œ ( 25 / 100 ) * 400 125 - 100 = 25 answer : b"
a ) 25 , b ) 26 , c ) 29 , d ) 39 , e ) 26
b
subtract(multiply(250, divide(50, const_100)), multiply(divide(25, const_100), 400))
divide(n0,const_100)|divide(n2,const_100)|multiply(n1,#0)|multiply(n3,#1)|subtract(#2,#3)|
gain
by how much is 50 % of 250 greater than 25 % of 400 .
solution required ratio = 60 : 90 = 2 : 3 answer b
a ) 1 : 3 , b ) 2 : 3 , c ) 3 : 4 , d ) 4 : 5 , e ) none of these
b
divide(subtract(6.3, 5.7), subtract(7.2, 6.3))
subtract(n2,n1)|subtract(n0,n2)|divide(#0,#1)
other
find the ratio in which rice at rs . 7.20 a kg be mixed with rice at rs . 5.70 a kg to produce a mixture worth rs . 6.30 a kg ?
the slope of the line m is rise / run = 22 - ( - 18 ) / 15 - ( - 15 ) = 4 / 3 4 / 3 = 22 - 2 / 15 - x 60 - 4 x = 66 - 6 x = 0 the answer is c .
a ) - 2 , b ) - 1 , c ) 0 , d ) 1 , e ) 2
c
add(1522, 18)
add(n1,n2)
general
in a rectangular coordinate system , if a line passes through the points ( - 15 , - 18 ) , ( 1522 ) and ( x , 2 ) then what is the value of x ?
"perimeter of the sector = length of the arc + 2 ( radius ) = ( 108 / 360 * 2 * 22 / 7 * 21 ) + 2 ( 21 ) = 39.6 + 42 = 81.6 cm answer : a"
a ) 81.6 cm , b ) 85.9 cm , c ) 90 cm , d ) 92 cm , e ) 95 cm
a
multiply(multiply(const_2, divide(multiply(subtract(21, const_3), const_2), add(const_4, const_3))), 21)
add(const_3,const_4)|subtract(n0,const_3)|multiply(#1,const_2)|divide(#2,#0)|multiply(#3,const_2)|multiply(n0,#4)|
physics
the sector of a circle has radius of 21 cm and central angle 108 o . find its perimeter ?
"let the total solution is 150 l with 80 l water 70 l syrup . to make 35 % syrup solution , the result solution must have 97.5 l syrup and 52.5 l syrup . therefore we are taking 17.5 l of syrup from initial solution and replacing with water . using urinary method : 70 l syrup in 150 l solution 17.5 l syrup in 37.5 l solution we started by multiplying 10 now to get to the result we need to divide by 17.5 = > amount of solution to be replaced with water ( 37.5 / 17.5 ) = 2.14 . correct option : c"
a ) 1.5 , b ) 1.75 , c ) 2.14 , d ) 2.34 , e ) 2.64
c
multiply(divide(subtract(divide(7, add(8, 7)), divide(const_2, add(const_2, const_3))), divide(7, add(8, 7))), add(8, 7))
add(n0,n1)|add(const_2,const_3)|divide(n1,#0)|divide(const_2,#1)|subtract(#2,#3)|divide(#4,#2)|multiply(#0,#5)|
gain
a solution contains 8 parts of water for every 7 parts of lemonade syrup . how many parts of the solution should be removed and replaced with water so that the solution will now contain 35 % lemonade syrup ?
let ' s take the approach that uses the answer choices to eliminate wasted time . 500 / 100 = 5 coffee bar per minute per machine . 20 machines = 100 per minute . 2 minutes worth = 200 coffe bar . looking at the answers it is clear . . . we can only choose ( d ) the correct answer is d .
a ) 110 , b ) 220 , c ) 330 , d ) 200 , e ) 789
d
multiply(multiply(divide(500, 100), 2), 20)
divide(n1,n0)|multiply(n3,#0)|multiply(n2,#1)
gain
running at the same constant rate , 100 identical machines can produce a total of 500 coffee bar per minute . at this rate , how many bottles could 20 such machines produce in 2 minutes ?
"x / ( 1 / 36 ) = ( 4 / 5 ) / ( 2 / 9 ) x = 4 * 9 * 1 / 36 * 5 * 2 = 1 / 10 the answer is b ."
a ) 1 / 5 , b ) 1 / 10 , c ) 1 / 15 , d ) 1 / 20 , e ) 1 / 25
b
divide(1, 36)
divide(n0,n1)|
other
a certain fraction has the same ratio to 1 / 36 , as 4 / 5 does to 2 / 9 . what is this certain fraction ?
"( 5 ! * 5 ! + 6 ! * 5 ! ) / 3 = 5 ! ( 5 ! + 6 ! ) / 3 = 120 ( 120 + 720 ) / 3 = ( 120 * 840 ) / 3 = 120 * 280 units digit of the above product will be equal to 0 answer e"
a ) 4 , b ) 3 , c ) 2 , d ) 1 , e ) 0
e
divide(add(multiply(factorial(5), factorial(5)), multiply(factorial(5), factorial(5))), 5)
factorial(n0)|factorial(n1)|factorial(n3)|multiply(#0,#1)|multiply(#0,#2)|add(#3,#4)|divide(#5,n0)|
general
what is the units digit of ( 5 ! * 5 ! + 6 ! * 5 ! ) / 3 ?
"- x 2 - ( k + 8 ) x - 8 = - ( x - 2 ) ( x - 4 ) : given - x 2 - ( k + 8 ) x - 8 = - x 2 + 6 x - 8 - ( k + 8 ) = 6 : two polynomials are equal if their corresponding coefficients are equal . k = - 14 : solve the above for k correct answer c"
a ) 11 , b ) 12 , c ) 14 , d ) 19 , e ) 15
c
add(8, add(4, 2))
add(n0,n4)|add(n1,#0)|
general
find the constant k so that : - x 2 - ( k + 8 ) x - 8 = - ( x - 2 ) ( x - 4 )
"explanation : 6000 : 4000 : 10000 3 : 2 : 5 3 / 10 * 11000 = 3300 answer : a"
a ) 3300 , b ) 1100 , c ) 2667 , d ) 600 , e ) 4000
a
multiply(divide(6000, add(add(6000, 4000), 10000)), 11000)
add(n0,n1)|add(n2,#0)|divide(n0,#1)|multiply(n3,#2)|
gain
a , b and c invested rs . 6000 , rs . 4000 and rs . 10000 respectively , in a partnership business . find the share of a in profit of rs . 11000 after a year ?
"both cooking and weaving = 20 - ( 5 + 8 + 5 ) = 2 so , the correct answer is b ."
a ) 1 , b ) 2 , c ) 3 , d ) 4 , e ) 5
b
subtract(subtract(subtract(20, 8), 5), 5)
subtract(n1,n4)|subtract(#0,n5)|subtract(#1,n3)|
other
a group of people participate in some curriculum , 30 of them practice yoga , 20 study cooking , 15 study weaving , 5 of them study cooking only , 8 of them study both the cooking and yoga , 5 of them participate all curriculums . how many people study both cooking and weaving ?
"75 = ( 750 * 5 * r ) / 100 r = 2 % . answer : a"
a ) 2 , b ) 3 , c ) 4 , d ) 5 , e ) 6
a
multiply(divide(divide(subtract(825, 750), 750), 5), const_100)
subtract(n1,n0)|divide(#0,n0)|divide(#1,n2)|multiply(#2,const_100)|
gain
at what rate percent on simple interest will rs . 750 amount to rs . 825 in 5 years ?
"690 = 2 * 3 * 5 * 23 so the least value forncan be 23 . e"
a ) 10 , b ) 11 , c ) 12 , d ) 13 , e ) 23
e
divide(divide(divide(divide(690, const_2), const_3), const_4), divide(const_10, const_2))
divide(n1,const_2)|divide(const_10,const_2)|divide(#0,const_3)|divide(#2,const_4)|divide(#3,#1)|
general
if n is a positive integer and the product of all integers from 1 to n , inclusive , is a multiple of 690 , what is the least possible value of n ?
lets do it by picking up numbers . let arthur carry 2 crumbs per trip , this means amy carries 3 crumbs per trip . also let arthur make 2 trips and so amy makes 4 trips . thus total crumbs carried by arthur ( b ) = 2 x 2 = 4 , total crumbs carried by amy = 3 x 4 = 12 . 12 is 3 times 4 , so e
a ) b / 2 , b ) b , c ) 3 b / 2 , d ) 2 b , e ) 3 b
e
multiply(const_2, add(const_1, divide(const_1, const_2)))
divide(const_1,const_2)|add(#0,const_1)|multiply(#1,const_2)
general
two ants , arthur and amy , have discovered a picnic and are bringing crumbs back to the anthill . amy makes twice as many trips and carries one and a half times as many crumbs per trip as arthur . if arthur carries a total of b crumbs to the anthill , how many crumbs will amy bring to the anthill , in terms of b ?
detailed solution let the total students be ( n + 1 ) let total badges be x let the average of β€˜ n ’ students be y the student who got 1 / 6 th of x = 5 y or y = x / 30 therefore β€˜ n ’ students got 1 / 30 th of total share each or n * x / 30 + 1 * x / 6 = x nx + 5 x = 30 x n + 5 = 30 or n = 25 total = n + 1 = 26 correct answer : b
a ) 30 , b ) 26 , c ) 11 , d ) 31 , e ) 32
b
add(subtract(multiply(6, 5), 5), 1)
multiply(n1,n2)|subtract(#0,n2)|add(n0,#1)
general
a certain number of badges were distributed among a class of students . the student who got 1 / 6 th of the total number of badges actually got 5 times the average number of badges the others got ! how many students were there in the class ?
"explanation : 23 23 + 2 ^ 2 = 27 23 + 3 ^ 2 = 36 23 + 4 ^ 2 = 52 23 + 5 ^ 2 = 77 answer : c"
a ) 40 , b ) 24 , c ) 77 , d ) 36 , e ) 12
c
subtract(negate(52), multiply(subtract(27, 36), divide(subtract(27, 36), subtract(23, 27))))
negate(n3)|subtract(n1,n2)|subtract(n0,n1)|divide(#1,#2)|multiply(#3,#1)|subtract(#0,#4)|
general
23 , 27 , 36 , 52 , . . .
# of people times the # of hours : 4 * 7 = 28 - - > 4 lawyers do 28 worksin 7 hours . 3 * 14 / 3 = 14 - - > 3 assistants do 14 worksin 4 hours so , since the amount of work the assistants do is half the work the lawyers do , the time will be double , soans a
a ) 14 , b ) 10 , c ) 9 , d ) 6 , e ) 5
a
multiply(multiply(divide(const_2, const_3), 3), 7)
divide(const_2,const_3)|multiply(n2,#0)|multiply(n1,#1)
general
tough and tricky questions : work / rate problems . a group of 4 junior lawyers require 7 hours to complete a legal research assignment . how many hours would it take a group of 3 legal assistants to complete the same research assignment assuming that a legal assistant works at two - thirds the rate of a junior lawyer ? source : chili hot gmat
"work done by mahesh in 30 days = 20 * 1 / 30 = 2 / 3 remaining work = 1 - 2 / 3 = 1 / 3 1 / 3 work is done by rajesh in 30 days whole work will be done by rajesh is 30 * 3 = 90 days answer is a"
a ) 90 , b ) 25 , c ) 37 , d ) 41 , e ) 30
a
divide(const_1, divide(subtract(const_1, multiply(20, divide(const_1, 30))), 30))
divide(const_1,n0)|multiply(n1,#0)|subtract(const_1,#1)|divide(#2,n2)|divide(const_1,#3)|
physics
mahesh can do a piece of work in 30 days . he works at it for 20 days and then rajesh finished it in 30 days . how long will y take to complete the work ?
from ( x + 6 ) ( y - 6 ) = 0 it follows that either x = - 6 or y = 6 . thus either x ^ 2 = 36 or y ^ 2 = 36 . now , if x ^ 2 = 36 , then the least value of y ^ 2 is 0 , so the least value of x ^ 2 + y ^ 2 = 36 + 0 = 36 . similarly if y ^ 2 = 36 , then the least value of x ^ 2 is 0 , so the least value of x ^ 2 + y ^ 2 = 0 + 36 = 36 . answer : d .
a ) 0 , b ) 16 , c ) 25 , d ) 36 , e ) 49
d
power(6, 2)
power(n0,n3)
general
if x and y are numbers such that ( x + 6 ) ( y - 6 ) = 0 , what is the smallest possible value of x ^ 2 + y ^ 2
let x be the larger number and y be the smaller number . x - y = 6 x + 2 ( y ) = 15 solve by substitution : y = x - 6 x + 2 ( x - 6 ) = 15 x + 2 x - 12 = 15 3 x = 27 x = 9 the larger number is 9 , so answer c is correct .
a ) 7 , b ) 8 , c ) 9 , d ) 10 , e ) 11
c
divide(add(15, multiply(const_2, 6)), add(const_1, const_2))
add(const_1,const_2)|multiply(n0,const_2)|add(n1,#1)|divide(#2,#0)
general
the difference of a larger number and a smaller number is 6 . the sum of the larger number and twice the smaller is 15 . what is the larger number ?
"explanation : length of the platform = speed of train * extra time taken to cross the platform . length of platform = 72 kmph * 12 seconds convert 72 kmph into m / sec 1 kmph = 518518 m / s ( this can be easily derived . but if you can remember this conversion , it saves a good 30 seconds ) . ∴ 72 kmph = 518 βˆ— 72518 βˆ— 72 = 20 m / sec therefore , length of the platform = 20 m / s * 12 sec = 240 meters . correct answer : a"
a ) 240 meters , b ) 360 meters , c ) 420 meters , d ) 600 meters , e ) can not be determined
a
subtract(multiply(divide(multiply(72, const_1000), const_3600), 30), multiply(divide(multiply(72, const_1000), const_3600), 18))
multiply(n0,const_1000)|divide(#0,const_3600)|multiply(n1,#1)|multiply(n2,#1)|subtract(#2,#3)|
physics
a train traveling at 72 kmph crosses a platform in 30 seconds and a man standing on the platform in 18 seconds . what is the length of the platform in meters ?
"16 % of 2 litres = 0.32 litres 40 % of 6 litres = 2.4 litres therefore , total quantity of alcohol is 2.72 litres . this mixture is in a 10 litre vessel . hence , the concentration of alcohol in this 10 litre vessel is 27.2 % answer : d"
a ) 31 % . , b ) 71 % . , c ) 49 % . , d ) 27.2 % . , e ) 51 % .
d
multiply(divide(add(multiply(divide(16, const_100), 2), multiply(divide(40, const_100), 6)), 10), const_100)
divide(n1,const_100)|divide(n3,const_100)|multiply(n0,#0)|multiply(n2,#1)|add(#2,#3)|divide(#4,n5)|multiply(#5,const_100)|
general
a vessel of capacity 2 litre has 16 % of alcohol and another vessel of capacity 6 litre had 40 % alcohol . the total liquid of 8 litre was poured out in a vessel of capacity 10 litre and thus the rest part of the vessel was filled with the water . what is the new concentration of mixture ?
1 : 4 answer : b
['a ) 1 : 0', 'b ) 1 : 4', 'c ) 1 : 6', 'd ) 1 : 2', 'e ) 1 : 1']
b
divide(1, const_4)
divide(n0,const_4)
geometry
the diameters of two spheres are in the ratio 1 : 2 what is the ratio of their surface area ?
explanation : 3 prize among 10 students can be distributed in 10 c 3 ways = 120 ways . answer : d
a ) 10 , b ) 45 , c ) 95 , d ) 120 , e ) none of these
d
add(multiply(10, 3), multiply(subtract(10, const_1), 10))
multiply(n0,n1)|subtract(n1,const_1)|multiply(n1,#1)|add(#0,#2)
general
there are 3 prizes to be distributed among 10 students . if no students gets more than one prize , then this can be done in ?
"72 + 82 + x = 3 * 75 x = 71 the answer is b ."
a ) 69 % , b ) 71 % , c ) 73 % , d ) 75 % , e ) 77 %
b
subtract(multiply(const_3, 75), add(72, 82))
add(n0,n1)|multiply(n2,const_3)|subtract(#1,#0)|
general
a student got 72 % in math and 82 % in history . to get an overall average of 75 % , how much should the student get in the third subject ?
let b ' s capital be rs . x . { 3500 \ 12 } / { 7 x } = { 2 } / { 3 } = > x = 9000 . answer : d
a ) rs . 9228 , b ) rs . 9129 , c ) rs . 9120 , d ) rs . 9000 , e ) rs . 1922
d
divide(multiply(multiply(3500, const_12), 3), multiply(subtract(const_12, 5), 2))
multiply(n0,const_12)|subtract(const_12,n1)|multiply(n3,#0)|multiply(n2,#1)|divide(#2,#3)
other
a starts business with rs . 3500 and after 5 months , b joins with a as his partner . after a year , the profit is divided in the ratio 2 : 3 . what is b ' s contribution in the capital ?
"c . p . of 1 litre of milk = ( 20 Γ— 2 ⁄ 3 ) = 40 ⁄ 3 ∴ ratio of water and milk = 8 ⁄ 3 : 32 ⁄ 3 = 8 : 32 = 1 : 4 ∴ quantity of water to be added to 60 litres of milk = ( 1 ⁄ 4 Γ— 60 ) litres = 15 litres . answer c"
a ) 10 litres , b ) 12 litres , c ) 15 litres , d ) 18 litres , e ) none of these
c
divide(20, add(1, divide(1, 2)))
divide(n1,n3)|add(n1,#0)|divide(n4,#1)|
general
how much water must be added to 60 litres of milk at 1 1 ⁄ 2 litres for 20 so as to have a mixture worth 10 2 ⁄ 3 a litre ?
"the number of silver cars is 0.15 * 40 + 0.45 * 80 = 42 the percentage of cars which are silver is 42 / 120 = 35 % the answer is b ."
a ) 30 % , b ) 35 % , c ) 40 % , d ) 45 % , e ) 50 %
b
multiply(divide(add(multiply(40, divide(15, const_100)), multiply(80, divide(45, const_100))), add(40, 80)), const_100)
add(n0,n2)|divide(n1,const_100)|divide(n3,const_100)|multiply(n0,#1)|multiply(n2,#2)|add(#3,#4)|divide(#5,#0)|multiply(#6,const_100)|
gain
a car dealership has 40 cars on the lot , 15 % of which are silver . if the dealership receives a new shipment of 80 cars , 45 % of which are not silver , what percentage of total number of cars are silver ?
"factors of 24 - 1 , 2 , 3 , 4 , 6 , 8 , 12,24 factors of 27 - 1 , 3 , 9,27 comparing both , we have 6 factors of 24 which are not factors of 27 - 2,4 , 6,8 , 12,24 answer : b"
a ) 2 , b ) 6 , c ) 4 , d ) 1 , e ) 5
b
divide(27, 24)
divide(n1,n0)|
other
how many of the positive factors of 24 are not factors of 27
"speed on return trip = 120 % of 60 = 72 km / hr . average speed of trip = 60 + 72 / 2 = 132 / 2 = 66 km / hr answer : d"
a ) 33 , b ) 77 , c ) 48 , d ) 66 , e ) 21
d
divide(add(multiply(60, add(const_1, divide(20, const_100))), 60), const_2)
divide(n1,const_100)|add(#0,const_1)|multiply(n0,#1)|add(n0,#2)|divide(#3,const_2)|
general
a person travels from p to q a speed of 60 km / hr and returns by increasing his speed by 20 % . what is his average speed for both the trips ?
"a + b 5 days work = 5 * 1 / 10 = 1 / 2 remaining work = 1 - 1 / 2 = 1 / 2 1 / 2 work is done by a in 5 days whole work will be done by a in 5 * 2 = 10 days answer is a"
a ) 10 , b ) 15 , c ) 20 , d ) 5 , e ) 30
a
divide(multiply(5, 10), subtract(10, 5))
multiply(n0,n2)|subtract(n0,n1)|divide(#0,#1)|
physics
a and b can together finish a work in 10 days . they worked together for 5 days and then b left . after another 5 days , a finished the remaining work . in how many days a alone can finish the job ?
"area = l * w = ( l ) * ( l - 10 ) = 200 trial and error : 19 * 9 = 171 ( too low ) 20 * 10 = 200 the length is 20 meters . the answer is a ."
a ) 20 , b ) 22 , c ) 24 , d ) 26 , e ) 28
a
add(10, add(const_0_25, add(const_0_33, divide(divide(200, 10), const_2))))
divide(n1,n0)|divide(#0,const_2)|add(#1,const_0_33)|add(#2,const_0_25)|add(n0,#3)|
geometry
a rectangular field has a length 10 meters more than it is width . if the area of the field is 200 , what is the length ( in meters ) of the rectangular field ?
"drawing two balls of same color from seven green balls can be done in ⁷ c β‚‚ ways . similarly from eight white balls two can be drawn in ways . 7 / 15 answer : e"
a ) 7 / 18 , b ) 7 / 19 , c ) 7 / 11 , d ) 7 / 12 , e ) 7 / 15
e
add(multiply(divide(8, add(7, 8)), divide(subtract(8, const_1), subtract(add(7, 8), const_1))), multiply(divide(7, add(7, 8)), divide(subtract(7, const_1), subtract(add(7, 8), const_1))))
add(n0,n1)|subtract(n1,const_1)|subtract(n0,const_1)|divide(n1,#0)|divide(n0,#0)|subtract(#0,const_1)|divide(#1,#5)|divide(#2,#5)|multiply(#3,#6)|multiply(#4,#7)|add(#8,#9)|
other
a bag contains 7 green and 8 white balls . if two balls are drawn simultaneously , the probability that both are of the same colour is - .
"explanation : ( men 4 : 9 ) : ( hrs / day 10 : 6 ) : : 1600 : x hence 4 * 10 * x = 9 * 6 * 1600 or x = 9 * 6 * 1600 / 4 * 10 = 2160 answer : d"
a ) rs 840 , b ) rs 1320 , c ) rs 1620 , d ) rs 2160 , e ) none of these
d
multiply(divide(multiply(9, 6), multiply(4, 10)), 1600)
multiply(n3,n4)|multiply(n0,n1)|divide(#0,#1)|multiply(n2,#2)|
physics
if 4 men working 10 hours a day earn rs . 1600 per week , then 9 men working 6 hours a day will earn how much per week ?
"let the number be x . ( 5 / 4 ) * x = ( 4 / 5 ) * x + 9 25 x = 16 x + 180 9 x = 180 x = 20 the answer is c ."
a ) 16 , b ) 18 , c ) 20 , d ) 22 , e ) 24
c
divide(divide(multiply(multiply(9, divide(4, 5)), divide(4, 5)), subtract(const_1, multiply(divide(4, 5), divide(4, 5)))), divide(4, 5))
divide(n0,n1)|multiply(n4,#0)|multiply(#0,#0)|multiply(#0,#1)|subtract(const_1,#2)|divide(#3,#4)|divide(#5,#0)|
general
a student was asked to find 4 / 5 of a number . but the student divided the number by 4 / 5 , thus the student got 9 more than the correct answer . find the number .
cp per kg of mixture = [ 24 ( 150 ) + 36 ( 125 ) ] / ( 24 + 36 ) = rs . 135 sp = cp [ ( 100 + profit % ) / 100 ] = 135 * [ ( 100 + 40 ) / 100 ] = rs . 189 . answer : c
a ) rs . 135 , b ) rs . 162 , c ) rs . 189 , d ) rs . 198 , e ) none of these
c
add(divide(add(multiply(24, 150), multiply(36, 125)), add(36, 24)), multiply(divide(add(multiply(24, 150), multiply(36, 125)), add(36, 24)), divide(40, const_100)))
add(n0,n2)|divide(n4,const_100)|multiply(n0,n1)|multiply(n2,n3)|add(#2,#3)|divide(#4,#0)|multiply(#5,#1)|add(#5,#6)
gain
raman mixed 24 kg of butter at rs . 150 per kg with 36 kg butter at the rate of rs . 125 per kg . at what price per kg should he sell the mixture to make a profit of 40 % in the transaction ?
"j + k = 284 and so k = 284 - j j - 8 = 2 k j - 8 = 2 ( 284 - j ) 3 j = 576 j = 192 the answer is e ."
a ) 176 , b ) 180 , c ) 184 , d ) 188 , e ) 192
e
add(multiply(divide(subtract(284, 8), const_3), const_2), 8)
subtract(n1,n0)|divide(#0,const_3)|multiply(#1,const_2)|add(n0,#2)|
general
if jake loses 8 pounds , he will weigh twice as much as his sister kendra . together they now weigh 284 pounds . what is jake ’ s present weight , in pounds ?
"they together completed 4 / 10 work in 4 days . balance 6 / 10 work will be completed by arun alone in 40 * 6 / 10 = 24 days . answer : e"
a ) 16 days . , b ) 17 days . , c ) 18 days . , d ) 19 days . , e ) 24 days .
e
subtract(40, multiply(divide(40, 10), 4))
divide(n2,n0)|multiply(n1,#0)|subtract(n2,#1)|
physics
arun and tarun can do a work in 10 days . after 4 days tarun went to his village . how many days are required to complete the remaining work by arun alone . arun can do the work alone in 40 days .
"50 * 23 = 1150 1150 - 1145 = 5 answer : d"
a ) 2 , b ) 3 , c ) 4 , d ) 5 , e ) 8
d
subtract(multiply(add(multiply(const_4, const_10), const_2), 23), 1145)
multiply(const_10,const_4)|add(#0,const_2)|multiply(n1,#1)|subtract(#2,n0)|
general
what least number must be added to 1145 , so that the sum is completely divisible by 23 ?
percentage change in area = ( βˆ’ 30 βˆ’ 20 + ( 30 Γ— 20 ) / 100 ) % = βˆ’ 44 % i . e . , area is decreased by 44 % answer : c
a ) 24 % , b ) 30 % , c ) 44 % , d ) 54 % , e ) 64 %
c
divide(subtract(multiply(const_100, const_100), multiply(subtract(const_100, 30), subtract(const_100, 20))), const_100)
multiply(const_100,const_100)|subtract(const_100,n0)|subtract(const_100,n1)|multiply(#1,#2)|subtract(#0,#3)|divide(#4,const_100)
gain
a towel , when bleached , lost 30 % of its length and 20 % of its breadth . what is the percentage decrease in area ?
"solution let the son ' s present age be x years . then , man ' s present age = ( x + 30 ) years . then Γ’ € ΒΉ = Γ’ € ΒΊ ( x + 30 ) + 2 = 2 ( x + 2 ) Γ’ € ΒΉ = Γ’ € ΒΊ x + 32 = 2 x + 4 x = 28 . answer b"
a ) 14 years , b ) 28 years , c ) 20 years , d ) 22 years , e ) none
b
divide(subtract(30, subtract(multiply(const_2, const_2), const_2)), subtract(const_2, const_1))
multiply(const_2,const_2)|subtract(const_2,const_1)|subtract(#0,const_2)|subtract(n0,#2)|divide(#3,#1)|
general
a man is 30 years older than his son . in two years , his age will be twice the age of his son . the present age of the son is
"let x be the discount on pony jeans . then 0.22 - x is the discount on fox jeans . 3 ( 0.22 - x ) ( 15 ) + 2 x ( 18 ) = 8.73 9.9 - 45 x + 36 x = 8.73 9 x = 1.17 x = 0.13 the answer is e ."
a ) 9 % , b ) 10 % , c ) 11 % , d ) 12 % , e ) 13 %
e
multiply(subtract(divide(22, const_100), divide(subtract(8.73, multiply(divide(22, const_100), multiply(18, 2))), subtract(multiply(15, 3), multiply(18, 2)))), const_100)
divide(n6,const_100)|multiply(n1,n5)|multiply(n0,n4)|multiply(#0,#1)|subtract(#2,#1)|subtract(n2,#3)|divide(#5,#4)|subtract(#0,#6)|multiply(#7,const_100)|
gain
fox jeans regularly sell for $ 15 a pair and pony jeans regularly sell for $ 18 a pair . during a sale these regular unit prices are discounted at different rates so that a total of $ 8.73 is saved by purchasing 5 pairs of jeans : 3 pairs of fox jeans and 2 pairs of pony jeans . if the sum of the two discount rates is 22 percent , what is the discount rate on pony jeans ?
"original price = 100 cp = 80 s = 80 * ( 180 / 100 ) = 112 100 - 144 = 44 % answer : e"
a ) 18 % , b ) 13 % , c ) 12 % , d ) 32 % , e ) 44 %
e
multiply(subtract(divide(divide(multiply(subtract(const_100, 20), add(const_100, 80)), const_100), const_100), const_1), const_100)
add(n1,const_100)|subtract(const_100,n0)|multiply(#0,#1)|divide(#2,const_100)|divide(#3,const_100)|subtract(#4,const_1)|multiply(#5,const_100)|
gain
a trader bought a car at 20 % discount on its original price . he sold it at a 80 % increase on the price he bought it . what percent of profit did he make on the original price ?
"800 * 15 = 1000 * x x = 12 answer : e"
a ) 11.5 , b ) 12.5 , c ) 10.5 , d ) 11 , e ) 12
e
divide(multiply(15, 800), add(800, 200))
add(n0,n2)|multiply(n0,n1)|divide(#1,#0)|
physics
800 men have provisions for 15 days . if 200 more men join them , for how many days will the provisions last now ?
as you see 5 ! till 10 ! each unit digit is zero . so 1 ! + 2 ! + 3 ! + 4 ! = 33 so unit digit 3 + 0 = 3 n = 3 n ^ n = 3 ^ 3 = 27 so last digit is 7 . answer : e
a ) 3 , b ) 4 , c ) 5 , d ) 6 , e ) 7
e
power(subtract(10, 3), const_1)
subtract(n3,n2)|power(#0,const_1)
general
n = 1 ! + 2 ! + 3 ! . . . . . + 10 ! . what is the last digit of n ^ n ?
i think there is a typo in question . it should have been ` ` by weight liquid ' x ' makes up . . . . . ` ` weight of liquid x = 0.8 % of weight of a + 1.8 % of weight of b when 250 gms of a and 700 gms of b is mixed : weight of liquid x = ( 0.8 * 250 ) / 100 + ( 1.8 * 700 ) / 100 = 14.6 gms % of liquid x in resultant mixture = ( 14.6 / 1000 ) * 100 = 1.46 % a
a ) 1.46 % , b ) 1.93 % , c ) 10 % , d ) 15 % , e ) 19 %
a
divide(add(multiply(250, 0.8), multiply(700, 1.8)), const_1000)
multiply(n0,n2)|multiply(n1,n3)|add(#0,#1)|divide(#2,const_1000)
gain
by weight , liquid x makes up 0.8 percent of solution a and 1.8 percent of solution b . if 250 grams of solution a are mixed with 700 grams of solution b , then liquid x accounts for what percent of the weight of the resulting solution ?
"old set s - total is avg * no of elements = 6.2 * 10 = 62 if one number is increased by 3 then total increased to 62 + 3 = 65 new avg - 65 / 10 = 6.5 . hence answer is a ."
a ) 6.5 , b ) 6.7 , c ) 6.8 , d ) 6.85 , e ) 6.9
a
divide(add(multiply(10, 6.2), 3), 10)
multiply(n0,n1)|add(n2,#0)|divide(#1,n0)|
general
set s contains exactly 10 numbers and has an average ( arithmetic mean ) of 6.2 . if one of the numbers in set s is increased by 3 , while all other numbers remain the same , what is the new average of set s ?
"the amount a gets for managing = 20 % of rs . 11000 = 2200 remaining profit = 11000 – 2200 = 8800 this is to be divided in the ratio 2 : 9 . share of b = 9 / 11 of 8800 = 7200 answer b"
a ) 3500 , b ) 7200 , c ) 6800 , d ) 4800 , e ) none of these
b
add(divide(multiply(subtract(11000, divide(multiply(20, 11000), const_100)), add(const_2, const_3)), add(add(const_2, const_3), add(const_2, const_4))), divide(multiply(20, 11000), const_100))
add(const_2,const_3)|add(const_2,const_4)|multiply(n2,n3)|add(#0,#1)|divide(#2,const_100)|subtract(n3,#4)|multiply(#0,#5)|divide(#6,#3)|add(#7,#4)|
gain
a is a working partner and b is a sleeping partner in a business . a puts in 20,000 and b 90,000 . a gets 20 % of the profit for managing the business , and the rest is divided in proportion to their capitals . find the share of b in profit of 11000 .
"both cooking and weaving = 25 - ( 6 + 8 + 7 ) = 4 so , the correct answer is d ."
a ) 1 , b ) 2 , c ) 3 , d ) 4 , e ) 5
d
subtract(subtract(subtract(25, 8), 7), 6)
subtract(n1,n4)|subtract(#0,n5)|subtract(#1,n3)|
other
a group of people participate in some curriculum , 30 of them practice yoga , 25 study cooking , 15 study weaving , 6 of them study cooking only , 8 of them study both the cooking and yoga , 7 of them participate all curriculums . how many people study both cooking and weaving ?
"a quick note on doubling . when you double a length you have 2 * l 1 . when you double all lengths of a rectangle you have ( 2 * l 1 ) ( 2 * l 2 ) = a . an increase of 2 ^ 2 or 4 . when you double all lengths of a rectangular prism you have ( 2 * l 1 ) ( 2 * l 2 ) ( 2 * l 3 ) = v . an increase of 2 ^ 3 or 8 . this leads to the basic relationship : line : 2 * original size rectangle : 4 * original size rectangular prism : 8 * original size answer is d"
a ) 20 , b ) 40 , c ) 60 , d ) 80 , e ) 100
d
multiply(power(const_2, const_3), 10)
power(const_2,const_3)|multiply(n0,#0)|
geometry
a carpenter constructed a rectangular sandbox with a capacity of 10 cubic feet . if the carpenter were to make a similar sandbox twice as long , twice as wide , and twice as high as the first sandbox , what would be the capacity , in cubic feet , of the second sandbox ?
"1 h - - - - - 5 ? - - - - - - 60 12 h rs = 25 + 21 = 46 t = 12 d = 46 * 12 = 552 answer : c"
a ) 457 km , b ) 444 km , c ) 552 km , d ) 645 km , e ) 453 km
c
add(multiply(divide(60, subtract(21, 25)), 25), multiply(divide(60, subtract(21, 25)), 21))
subtract(n1,n0)|divide(n2,#0)|multiply(n0,#1)|multiply(n1,#1)|add(#2,#3)|
physics
two passenger trains start at the same hour in the day from two different stations and move towards each other at the rate of 25 kmph and 21 kmph respectively . when they meet , it is found that one train has traveled 60 km more than the other one . the distance between the two stations is ?
"8 ( 8 Γ— 3 ) Γ· 2 = 12 ( 12 Γ— 3 ) Γ· 2 = 18 ( 18 Γ— 3 ) Γ· 2 = 27 ( 27 Γ— 3 ) Γ· 2 = 40.5 ( 40.5 Γ— 3 ) Γ· 2 = 60.75 answer is b ."
a ) 62 , b ) 60.75 , c ) 60.5 , d ) 60.25 , e ) 60
b
subtract(negate(27), multiply(subtract(12, 18), divide(subtract(12, 18), subtract(8, 12))))
negate(n3)|subtract(n1,n2)|subtract(n0,n1)|divide(#1,#2)|multiply(#3,#1)|subtract(#0,#4)|
general
8 , 12 , 18 , 27 , 40.5 , ( . . . )
"let total capacity be x we know 160 = 0.80 x x = 160 / 0.80 = 200 prior to storm , we had 130 bn gallons 200 - 130 = 70 answer : b"
a ) 75 , b ) 70 , c ) 65 , d ) 85 , e ) 90
b
divide(divide(multiply(160, const_100), 80), const_2)
multiply(n1,const_100)|divide(#0,n2)|divide(#1,const_2)|
general
a rainstorm increased the amount of water stored in state j reservoirs from 130 billion gallons to 160 billion gallons . if the storm increased the amount of water in the reservoirs to 80 percent of total capacity , approximately how many billion gallons of water were the reservoirs short of total capacity prior to the storm ?
"explanation : a : b = 2 : 5 = 2 : 5 = > a : c = 2 : 1 = 2 : 1 = > a : b : c = 6 : 5 : 1 b share = ( 5 / 12 ) * 15000 = 6250 option e"
a ) 1950 , b ) 6895 , c ) 4879 , d ) 8126 , e ) 6250
e
multiply(multiply(multiply(multiply(add(5, 2), 5), const_100), const_100), divide(5, add(add(1, 2), 5)))
add(n0,n1)|add(n0,n3)|add(n3,#0)|multiply(#1,n3)|divide(n3,#2)|multiply(#3,const_100)|multiply(#5,const_100)|multiply(#4,#6)|
gain
in business , a and c invested amounts in the ratio 2 : 1 , whereas the ratio between amounts invested by a and b was 2 : 5 , if rs 15,000 was their profit , how much amount did b receive .
"1 women ' s 1 day work = 1 / 70 1 child ' s 1 day work = 1 / 140 ( 8 women + 12 children ) ' s 1 day work = ( 8 / 70 + 12 / 140 ) = 1 / 5 8 women and 4 children will complete the work in 5 days . b"
a ) 4 , b ) 5 , c ) 7 , d ) 8 , e ) 2
b
inverse(add(divide(8, multiply(10, 7)), divide(10, multiply(10, 14))))
multiply(n0,n1)|multiply(n0,n3)|divide(n4,#0)|divide(n0,#1)|add(#2,#3)|inverse(#4)|
physics
10 women can complete a work in 7 days and 10 children take 14 days to complete the work . how many days will 8 women and 12 children take to complete the work ?
"find the pattern of the remainders after each power : ( 3 ^ 1 ) / 7 remainder 3 ( 3 ^ 2 ) / 7 remainder 2 ( 3 ^ 3 ) / 7 remainder 6 ( 3 ^ 4 ) / 7 remainder 4 ( 3 ^ 5 ) / 7 remainder 5 ( 3 ^ 6 ) / 7 remainder 1 - - > this is where the cycle ends ( 3 ^ 7 ) / 7 remainder 3 - - > this is where the cycle begins again ( 3 ^ 8 ) / 7 remainder 2 continuing the pattern to ( 3 ^ 50 ) / 7 gives us a remainder of 2 final answer : c ) 2"
a ) 5 , b ) 3 , c ) 2 , d ) 1 , e ) 7
c
reminder(power(3, 50), 7)
power(n0,n1)|reminder(#0,n2)|
general
find the remainder of the division ( 3 ^ 50 ) / 7 .
first , let ' s graph the lines y = 2 and x = 2 at this point , we need to find the points where the line y = 10 - x intersects the other two lines . for the vertical line , we know that x = 2 , so we ' ll plug x = 2 into the equation y = 10 - x to get y = 10 - 2 = 8 perfect , when x = 2 , y = 8 , so one point of intersection is ( 28 ) for the horizontal line , we know that y = 2 , so we ' ll plug y = 2 into the equation y = 10 - x to get 2 = 10 - x . solve to get : x = 8 so , when y = 2 , x = 8 , so one point of intersection is ( 82 ) now add these points to our graph and sketch the line y = 10 - x at this point , we can see that we have the following triangle . the base has length 6 and the height is 6 area = ( 1 / 2 ) ( base ) ( height ) = ( 1 / 2 ) ( 6 ) ( 6 ) = 18 answer : e
a ) a ) 8 , b ) b ) 10 , c ) c ) 12 , d ) d ) 14 , e ) e ) 18
e
multiply(subtract(subtract(10, 2), 2), multiply(multiply(const_2, const_0_25), subtract(subtract(10, 2), 2)))
multiply(const_0_25,const_2)|subtract(n2,n0)|subtract(#1,n0)|multiply(#0,#2)|multiply(#3,#2)
general
what is the area inscribed by the lines y = 2 , x = 2 , y = 10 - x on an xy - coordinate plane ?
"from the details given in the problem principle = p = $ 8,000 and r = 9 % or 0.09 expressed as a decimal . as the annual interest is to be calculated , the time period t = 1 . plugging these values in the simple interest formula , i = p x t x r = 8,000 x 1 x 0.09 = 720.00 annual interest to be paid = $ 720 answer : c"
a ) 680 , b ) 700 , c ) 720 , d ) 730 , e ) 750
c
divide(multiply(multiply(multiply(9, const_100), sqrt(const_100)), 9), const_100)
multiply(n1,const_100)|sqrt(const_100)|multiply(#0,#1)|multiply(n1,#2)|divide(#3,const_100)|
gain
alex takes a loan of $ 8,000 to buy a used truck at the rate of 9 % simple interest . calculate the annual interest to be paid for the loan amount .
"this one took me bout 3 1 / 2 min . just testin numbers and what not . first notice that n is positive . save time by noticing thati worked out one solution where n = 0 only to find that thats not an option : p . 1 - 7 stands for ^ 1 thru 7 1 : 7 * 1 = 7 2 : 7 * 7 = 9 3 : 7 * 9 = 3 4 : 7 * 3 = 1 5 : 7 * 1 = 7 6 : 7 * 7 = 9 7 : 7 * 9 = 3 pattern repeats every @ 5 . notice every ^ 4 or multiple of 4 is always going to be 1 . this is just for future notice for similar problems . so 7 ^ 4 n + 3 - - - > if n = 1 then its ( ( 7 ^ 7 ) * 6 ) ) / 10 which can say is going to be 3 * 8 - - > 18 / 10 - - > r = 8 now from here if id double check just to make sure . 7 ^ 4 ( 2 ) + 3 * 6 ^ 2 - - - > 7 ^ 11 * 36 or we can just say again 7 ^ 11 * 6 ( b / c we are only interested in the units digit ) . since ^ 12 is going to be 1 that means ^ 11 is going to be 3 ( as taken from our pattern ) so again 3 * 6 = 18 / 10 - - - > r = 8 . c or j in this problem ."
a ) 1 , b ) 2 , c ) 4 , d ) 6 , e ) 8
c
reminder(multiply(multiply(const_3, const_3), 6), 10)
multiply(const_3,const_3)|multiply(n3,#0)|reminder(#1,n4)|
general
if n is a positive integer , what is the remainder when ( 4 ^ ( 4 n + 3 ) ) ( 6 ^ n ) is divided by 10 ?
let initial price be 1000 price in day 1 after 10 % discount = 900 price in day 2 after 20 % discount = 720 price in day 3 after 40 % discount = 432 so , price in day 3 as percentage of the sale price on day 1 will be = 432 / 900 * 100 = > 48 % answer will definitely be ( b )
a ) 28 % , b ) 48 % , c ) 64.8 % , d ) 70 % , e ) 72 %
b
add(multiply(divide(divide(40, const_100), subtract(1, divide(1, 10))), const_100), 2)
divide(n5,const_100)|divide(n1,n0)|subtract(n1,#1)|divide(#0,#2)|multiply(#3,const_100)|add(n2,#4)
gain
the price of an item is discounted 10 percent on day 1 of a sale . on day 2 , the item is discounted another 20 percent , and on day 3 , it is discounted an additional 40 percent . the price of the item on day 3 is what percentage of the sale price on day 1 ?
"sol . required probability = pg . ) x p ( b ) = ( 1 β€” d x ( 1 β€” i ) = : x 1 = 2 / 5 ans . ( e )"
a ) 1 / 2 , b ) 1 , c ) 2 / 3 , d ) 3 / 4 , e ) 2 / 5
e
multiply(subtract(1, divide(1, 3)), subtract(1, divide(1, 5)))
divide(n1,n2)|divide(n1,n5)|subtract(n1,#0)|subtract(n1,#1)|multiply(#2,#3)|
general
the probability that a man will be alive for 10 more yrs is 1 / 3 & the probability that his wife will alive for 10 more yrs is 2 / 5 . the probability that none of them will be alive for 10 more yrs , is
"the diagonal of the rectangle will be the diameter of the circle . and perimeter = 2 * pi * r ans : e"
a ) 2.5 Ο€ , b ) 5 Ο€ , c ) 10 Ο€ , d ) 12.5 Ο€ , e ) 15 Ο€
e
circumface(divide(sqrt(add(power(9, const_2), power(12, 12))), 12))
power(n0,const_2)|power(n1,n1)|add(#0,#1)|sqrt(#2)|divide(#3,n1)|circumface(#4)|
geometry
a 9 by 12 rectangle is inscribed in circle . what is the circumference of the circle ?
"no of dogs = 45 long fur = 28 brown = 17 neither long fur nor brown = 8 therefore , either long fur or brown = 45 - 8 = 37 37 = 28 + 17 - both both = 8 answer d"
a ) 26 , b ) 19 , c ) 11 , d ) 8 , e ) 6
d
subtract(add(28, 17), subtract(45, 8))
add(n1,n2)|subtract(n0,n3)|subtract(#0,#1)|
other
each of the dogs in a certain kennel is a single color . each of the dogs in the kennel either has long fur or does not . of the 45 dogs in the kennel , 28 have long fur , 17 are brown , and 8 are neither long - furred nor brown . how many long - furred dogs are brown ?
must be twice on heads and twice on tails 1 / 2 * 1 / 2 * 1 / 2 * 1 / 2 = 1 / 16 answer : c
a ) 1 / 8 , b ) 1 / 4 , c ) 1 / 16 , d ) 1 / 32 , e ) 1 / 2
c
divide(const_1, power(const_2, 4))
power(const_2,n0)|divide(const_1,#0)
general
when tossed , a certain coin has equal probability of landing on either side . if the coin is tossed 4 times , what is the probability that it will land twice on heads and twice tails ?
"amount of rs . 100 for 1 year when compounded half - yearly = [ 100 * ( 1 + 7 / 100 ) 2 ] = rs . 14.49 effective rate = ( 114.49 - 100 ) = 14.49 % answer : d"
a ) 16.06 % , b ) 16.07 % , c ) 16.08 % , d ) 14.49 % , e ) 16.19 %
d
add(add(divide(14, const_2), divide(14, const_2)), divide(multiply(divide(14, const_2), divide(14, const_2)), const_100))
divide(n0,const_2)|add(#0,#0)|multiply(#0,#0)|divide(#2,const_100)|add(#1,#3)|
gain
the effective annual rate of interest corresponding to a nominal rate of 14 % per annum payable half - yearly is ?
"juan ' s income = 100 ( assume ) ; tim ' s income = 50 ( 50 percent less than juan ' s income ) ; mary ' s income = 80 ( 60 percent more than tim ' s income ) . thus , mary ' s income ( 80 ) is 80 % of juan ' s income ( 100 ) . answer : d ."
a ) 124 % , b ) 120 % , c ) 96 % , d ) 80 % , e ) 64 %
d
multiply(multiply(subtract(const_1, divide(50, const_100)), add(const_1, divide(60, const_100))), const_100)
divide(n0,const_100)|divide(n1,const_100)|add(#0,const_1)|subtract(const_1,#1)|multiply(#2,#3)|multiply(#4,const_100)|
general
mary ' s income is 60 percent more than tim ' s income , and tim ' s income is 50 percent less than juan ' s income . what percent of juan ' s income is mary ' s income ?
a little reflection will show that chalk marks will touch the ground together for the first time after the wheels have passed over a distance which is the lcm of 2 2 / 5 metres and 3 3 / 7 metres . lcm of 12 / 5 metres and 24 / 7 metres = 24 metres . answer is e
a ) 18 metres , b ) 16 metres , c ) 38 metres , d ) 42 metres , e ) 24 metres
e
add(multiply(7, 3), 3)
multiply(n3,n5)|add(n3,#0)
general
the circumferences of the fore and hind - wheels of a carriage are 2 2 / 5 and 3 3 / 7 meters respectively . a chalk mark is put on the point of contact of each wheel with the ground at any given moment . how far will the carriage have travelled so that their chalk marks may be again on the ground at the same time ?
"explanation : a ’ s one day work = 1 / 5 b ’ s one day work = 1 / 4 ( a + b ) ’ s one day work = 1 / 5 + 1 / 4 = 9 / 20 = > time = 20 / 9 = 2 2 / 9 days answer : option d"
a ) 6 / 11 , b ) 8 / 11 , c ) 7 / 9 , d ) 2 / 9 , e ) 10 / 11
d
divide(const_1, add(divide(const_1, 5), divide(const_1, 4)))
divide(const_1,n0)|divide(const_1,n1)|add(#0,#1)|divide(const_1,#2)|
physics
a can do a piece of work in 5 days and b can do it in 4 days how long will they both work together to complete the work ?
"5 ^ 5 Γ— 5 ^ x = ( 125 ) ^ 4 5 ^ ( 5 + x ) = 5 ^ 12 since they have the same base we can just set the exponents equal to each other : ( 5 + x ) = 12 x = 7 ans . e ) 7"
a ) 2 , b ) 3 , c ) 5 , d ) 6 , e ) 7
e
divide(subtract(multiply(const_2, 5), 125), const_3)
multiply(n1,const_2)|subtract(#0,n3)|divide(#1,const_3)|
general
if 5 ^ 5 Γ— 5 ^ x = ( 125 ) ^ 4 , then what is the value of x ?
working formula . . . initial concentration * initial volume = final concentration * final volume . let x is the part removed from 100 lts . 30.25 % ( 1 - x / 100 ) ^ 2 = 25 % * 100 % ( 1 - x / 100 ) ^ 2 = 25 / 30.25 - - - - - - > ( 1 - x / 100 ) ^ 2 = ( 5 / 5.5 ) ^ 2 100 - x = 500 / 5.5 x = 9.1 . . . ans a
a ) 9.1 litres , b ) 10 litres , c ) 8 litres , d ) 12 litres , e ) 6 litres
a
multiply(100, subtract(const_1, sqrt(divide(25, 30.25))))
divide(n2,n1)|sqrt(#0)|subtract(const_1,#1)|multiply(n0,#2)
general
a 100 - litre mixture of milk and water contains 30.25 litres of milk . ' x ' litres of this mixture is removed and replaced with an equal quantum of water . if the process is repeated once , then the concentration of the milk stands reduced at 25 % . what is the value of x ?
"x = ( y / 4 ) - ( 2 / 5 ) , and so y = 4 x + 8 / 5 . the slope is 4 . ( n + 12 - n ) / ( m + p - m ) = 3 p = 3 the answer is c ."
a ) 1 , b ) 2 , c ) 3 , d ) 4 , e ) 5
c
divide(12, 4)
divide(n0,n1)|
general
m and n are the x and y coordinates , respectively , of a point in the coordinate plane . if the points ( m , n ) and ( m + p , n + 12 ) both lie on the line defined by the equation x = ( y / 4 ) - ( 2 / 5 ) , what is the value of p ?
"1000 * 15 = 1300 * x x = 11.5 answer : a"
a ) 11.5 , b ) 12.5 , c ) 12.6 , d ) 12.2 , e ) 12.1
a
divide(multiply(15, 1000), add(1000, 300))
add(n0,n2)|multiply(n0,n1)|divide(#1,#0)|
physics
1000 men have provisions for 15 days . if 300 more men join them , for how many days will the provisions last now ?
this can be solve in two steps and without any complex calculation . given : equation of line a as y = ( 4 / 3 ) x - 100 . so the line intercept the axes at ( 0 , - 100 ) and ( 750 ) . this can be considered a right angle triangle with right angle at ( 00 ) . so base = 100 , height = 75 and hypotenuse = 125 ( by pythagoras triplet ) so a perpendicular from the ( 00 ) to hypotenuse will be the answer . area of triangle = 0.5 * 100 * 75 = 0.5 * 125 * x = > x = 60 ; so answer is 60 = c
a ) 48 , b ) 50 , c ) 60 , d ) 75 , e ) 100
c
divide(multiply(100, 3), sqrt(add(power(4, const_2), power(3, const_2))))
multiply(n1,n2)|power(n0,const_2)|power(n1,const_2)|add(#1,#2)|sqrt(#3)|divide(#0,#4)
general
the equation of line a is y = 4 / 3 * x - 100 . what is the smallest possible distance in the xy - plane from the point with coordinates ( 0 , 0 ) to any point on line a ?
"within one standard deviation of the average age means 31 + / - 7 25 - - 31 - - 37 number of dif . ages - 25 26 27 28 29 30 31 32 33 34 35 36 37 total = 13 b"
a ) 8 , b ) 13 , c ) 15 , d ) 18 , e ) 30
b
add(multiply(6, const_2), const_1)
multiply(n1,const_2)|add(#0,const_1)|
general
the average age of applicants for a new job is 31 , with a standard deviation of 6 . the hiring manager is only willing to accept applications whose age is within one standard deviation of the average age . what is the maximum number of different ages of the applicants ?
"3 w = 2 m 20 m - - - - - - 21 * 8 hours 21 w - - - - - - x * 6 hours 14 m - - - - - - x * 6 20 * 21 * 8 = 14 * x * 6 x = 40 answer : c"
a ) 32 , b ) 87 , c ) 40 , d ) 99 , e ) 77
c
add(floor(divide(multiply(multiply(21, 8), multiply(20, 3)), multiply(multiply(21, 2), 6))), const_1)
multiply(n1,n2)|multiply(n0,n5)|multiply(n4,n6)|multiply(#0,#1)|multiply(n3,#2)|divide(#3,#4)|floor(#5)|add(#6,const_1)|
physics
20 men take 21 days of 8 hours each to do a piece of work . how many days of 6 hours each would 21 women take to do the same . if 3 women do as much work as 2 men ?
"1 sd from the mean is adding and subtrating the amount if standard deviation from the mean one time . 2 sd from the mean is adding and subtracting twice . 1 sd from the mean ranges from 25 to 55 , where 55 is within sd above the mean and 25 within 1 sd below the mean 2 sd = 15 twice = 30 from the the mean , which is 55 to 25 , where 55 is within 2 sd above the mean and 30 is within 2 sd below the mean . answer = a"
a ) 20 , b ) 31 , c ) 45 , d ) 90 , e ) 89
a
multiply(2, 15)
multiply(n1,n2)|
general
the class mean score on a test was 40 , and the standard deviation was 15 . if jack ' s score was within 2 standard deviations of the mean , what is the lowest score he could have received ?
machine b produces 100 part in 30 minutes . machine a produces 100 parts thrice as fast as b , so machine a produces 100 parts in 30 / 3 = 10 minutes . now , machine a produces 100 parts in 10 minutes which is 100 / 10 = 10 parts / minute . 10 parts x a total of 6 minutes = 60 d
a ) 20 , b ) 80 , c ) 40 , d ) 60 , e ) 50
d
multiply(multiply(divide(100, 30), const_3), 6)
divide(n0,n2)|multiply(#0,const_3)|multiply(n3,#1)
gain
machine a produces 100 parts thrice as fast as machine b does . machine b produces 100 parts in 30 minutes . if each machine produces parts at a constant rate , how many parts does machine a produce in 6 minutes ?
"machine y produces 20 percent more widgets in an hour than machine x does in an hour . so if machine x produces 100 widgets , then machine y produces 120 widgets . ratio of 120 / 100 = 6 / 5 . this is their speed of work ( y : x ) . i . e . speed of their work ( x : y ) = 5 / 6 now , time is inversely proportional to speed . hence the ratio of the time spent ( x : y ) = 6 / 5 let us assume that they spend 6 x and 5 x hours . given that 6 x - 5 x = 80 so , x = 80 . hence 6 x = 6 * 80 = 480 hours . hence x takes 120 hours to produce 1080 widgets . so , in 1 hour , it can produce ( 1 * 1080 ) / 480 = 2.25 hence option ( e ) ."
a ) 100 , b ) 65 , c ) 25 , d ) 11 , e ) 2.25
e
divide(1080, multiply(divide(80, const_10), 80))
divide(n0,const_10)|multiply(n0,#0)|divide(n1,#1)|
general
machine x takes 80 hours longer than machine y to produce 1080 widgets . machine y produces 20 percent more widgets in an hour than machine x does in an hour . how many widgets per hour does machine x produce
"solution : total number of students studying both are 423 + 226 - 134 = 515 ( subtracting the 134 since they were included in the both the other numbers already ) . so 80 % of total is 515 , so 100 % is approx . 644 . answer is d : 644"
a ) 515 , b ) 545 , c ) 618 . , d ) 644 . , e ) 666
d
add(226, 423)
add(n0,n1)|
general
in the faculty of reverse - engineering , 226 second year students study numeric methods , 423 second year students study automatic control of airborne vehicles and 134 second year students study them both . how many students are there in the faculty if the second year students are approximately 80 % of the total ?
"answer : a ( 5 x 9 - 3 x 4 ) / 2 = 16.5"
a ) 16.5 , b ) 10 , c ) 8 , d ) 9.5 , e ) none of these
a
divide(subtract(multiply(5, 9), multiply(3, 4)), 2)
multiply(n0,n1)|multiply(n2,n3)|subtract(#0,#1)|divide(#2,n4)|
general
the average of 5 quantities is 9 . the average of 3 of them is 4 . what is the average of remaining 2 numbers ?
"relative speed = 60 + 30 = 90 km / hr . 90 * 5 / 18 = 25 m / sec . distance covered = 500 + 500 = 1000 m . required time = 1000 / 25 = 40 sec . answer : c"
a ) 12 sec , b ) 24 sec , c ) 40 sec , d ) 60 sec , e ) 62 sec
c
add(60, 30)
add(n1,n2)|
physics
two goods trains each 500 m long are running in opposite directions on parallel tracks . their speeds are 60 km / hr and 30 km / hr respectively . find the time taken by the slower train to pass the driver of the faster one ?
"the total height was 45 cm too much . the average height should be reduced by 45 cm / 30 = 1.5 cm the answer is b ."
a ) 176.5 cm , b ) 175.5 cm , c ) 174.5 cm , d ) 173.5 cm , e ) 172.5 cm
b
divide(subtract(multiply(30, 177), subtract(151, 106)), 30)
multiply(n0,n1)|subtract(n2,n3)|subtract(#0,#1)|divide(#2,n0)|
general
the average height of 30 students in a class was calculated as 177 cm . it has later found that the height of one of the students in the class was incorrectly written as 151 cm whereas the actual height was 106 cm . what was the actual average height of the students in the class ?
"rest time = number of rest Γ£ β€” time for each rest = 5 Γ£ β€” 6 = 30 minutes total time to cover 6 km = ( 6 Γ’  β€ž 10 Γ£ β€” 60 ) minutes + 30 minutes = 66 minutes answer c"
a ) 48 min . , b ) 50 min . , c ) 66 min . , d ) 55 min . , e ) none of these
c
add(multiply(divide(6, 10), speed(const_60, const_1)), multiply(const_4, 6))
divide(n1,n0)|multiply(n1,const_4)|speed(const_60,const_1)|multiply(#0,#2)|add(#3,#1)|
physics
a man is walking at a speed of 10 km per hour . after every kilometre , he takes rest for 6 minutes . how much time will be take to cover a distance of 6 kilometres ?
given that two trains are of same length i . e . . 150 mtrs first train passes the km stone in 15 seconds . here we have time and distance so speed = 150 / 15 = 10 m / s we need to find out the second train speed . suppose the speed of the 2 nd train is x m / s relative speed of two trains is ( 10 + x ) = = > ( 150 + 150 ) / ( 10 + x ) = 8 = = > ( 300 ) / ( 10 + x ) = 8 = = > 300 = 80 + 8 x = = > 300 - 80 = 8 x = = > 220 = 8 x : - x = 55 / 2 m / s convert m / s into km / ph ( 55 / 2 ) * ( 18 / 5 ) = 99 kmph answer : d
a ) 60 kmph , b ) 66 kmph , c ) 72 kmph , d ) 99 kmph , e ) 89 kmph
d
multiply(divide(subtract(add(150, 150), multiply(divide(150, 15), 8)), 8), const_3_6)
add(n0,n0)|divide(n0,n1)|multiply(n2,#1)|subtract(#0,#2)|divide(#3,n2)|multiply(#4,const_3_6)
physics