audio
audioduration (s)
0.01
29
text
stringlengths
1
104
id
stringlengths
35
35
session_id
stringclasses
176 values
你好
-2aLms7XTfk-00000-00000020-00000070
-2aLms7XTfk
我是小夫
-2aLms7XTfk-00001-00000070-00000156
-2aLms7XTfk
上个月
-2aLms7XTfk-00002-00000176-00000256
-2aLms7XTfk
在机缘巧合之下
-2aLms7XTfk-00003-00000256-00000380
-2aLms7XTfk
我以低于半价的价格入手了这个盒损版的雷克沙双SD卡套装
-2aLms7XTfk-00004-00000380-00000819
-2aLms7XTfk
规格是UHS-II
-2aLms7XTfk-00005-00000853-00000976
-2aLms7XTfk
说来这也是我第一次使用UHS-II卡
-2aLms7XTfk-00006-00001046-00001303
-2aLms7XTfk
这期视频
-2aLms7XTfk-00007-00001326-00001413
-2aLms7XTfk
我想结合手中的读卡器和相机
-2aLms7XTfk-00008-00001413-00001626
-2aLms7XTfk
对比一下
-2aLms7XTfk-00009-00001633-00001703
-2aLms7XTfk
我手里的这几张高速SD卡
-2aLms7XTfk-00010-00001703-00001880
-2aLms7XTfk
在理论测试
-2aLms7XTfk-00011-00001880-00001963
-2aLms7XTfk
和实际使用场景下的表现如何
-2aLms7XTfk-00012-00001963-00002186
-2aLms7XTfk
UHS-II卡到底比UHS-I快多少?
-2aLms7XTfk-00013-00002226-00002510
-2aLms7XTfk
我们是不是真的需要USH-II卡?
-2aLms7XTfk-00014-00002536-00002770
-2aLms7XTfk
由于我的两张雷克沙SD卡是盒损版的
-2aLms7XTfk-00015-00002803-00003073
-2aLms7XTfk
所以拆开之后
-2aLms7XTfk-00016-00003093-00003206
-2aLms7XTfk
我先用H2testw测试了一下这两张卡的实际容量
-2aLms7XTfk-00017-00003206-00003576
-2aLms7XTfk
也顺便推荐一下这款软件
-2aLms7XTfk-00018-00003623-00003796
-2aLms7XTfk
这款软件可以很快的测出各种闪存的实际容量
-2aLms7XTfk-00019-00003826-00004156
-2aLms7XTfk
对于我这种喜欢捡漏的人来说特别友好
-2aLms7XTfk-00020-00004180-00004490
-2aLms7XTfk
也建议各位在购买来路不明的存储介质时
-2aLms7XTfk-00021-00004490-00004766
-2aLms7XTfk
都使用这个软件测试一下实际容量和读写速度
-2aLms7XTfk-00022-00004766-00005093
-2aLms7XTfk
H2testw的测试结果显示
-2aLms7XTfk-00023-00005193-00005400
-2aLms7XTfk
其中一张卡的写入速度是115 Mbyte/s
-2aLms7XTfk-00024-00005430-00005720
-2aLms7XTfk
读取速度可以达到190 Mbyte/s
-2aLms7XTfk-00025-00005730-00005990
-2aLms7XTfk
而另一张卡的写入速度稍高
-2aLms7XTfk-00026-00005990-00006173
-2aLms7XTfk
是116 Mbyte/s
-2aLms7XTfk-00027-00006183-00006350
-2aLms7XTfk
而读取速度达到了211 Mbyte/s
-2aLms7XTfk-00028-00006350-00006600
-2aLms7XTfk
看来第二张卡的闪存体质更好一些
-2aLms7XTfk-00029-00006620-00006873
-2aLms7XTfk
我对比了一下网上其它人测出的数据
-2aLms7XTfk-00030-00006926-00007159
-2aLms7XTfk
我这两张卡的写入速度都超过了网友的测试
-2aLms7XTfk-00031-00007190-00007520
-2aLms7XTfk
但是读取稍慢
-2aLms7XTfk-00032-00007536-00007666
-2aLms7XTfk
我又用ATTO Disk Benchmark
-2aLms7XTfk-00033-00007709-00007870
-2aLms7XTfk
分别测试了这两张雷克沙UHS-II卡的读写速度
-2aLms7XTfk-00034-00007870-00008226
-2aLms7XTfk
从测试结果来看
-2aLms7XTfk-00035-00008276-00008416
-2aLms7XTfk
第二张卡的体质的确要更好一些
-2aLms7XTfk-00036-00008443-00008676
-2aLms7XTfk
不过区别不大
-2aLms7XTfk-00037-00008686-00008793
-2aLms7XTfk
值得一提的是
-2aLms7XTfk-00038-00008836-00008953
-2aLms7XTfk
无论是H2testw
-2aLms7XTfk-00039-00008963-00009126
-2aLms7XTfk
还是ATTO
-2aLms7XTfk-00040-00009133-00009226
-2aLms7XTfk
两张卡的读取速度都稍低于雷克沙标称的250MB/s
-2aLms7XTfk-00041-00009243-00009646
-2aLms7XTfk
不过118MB/s的写入速度可以认为达到官网的标称速度了
-2aLms7XTfk-00042-00009686-00010113
-2aLms7XTfk
我又分别测试了手中的几张高速SD卡
-2aLms7XTfk-00043-00010156-00010426
-2aLms7XTfk
首先是闪迪的旧版Extreme Pro SD卡
-2aLms7XTfk-00044-00010490-00010786
-2aLms7XTfk
UHS-I U1规格
-2aLms7XTfk-00045-00010826-00011010
-2aLms7XTfk
这张卡我已经使用了十来年
-2aLms7XTfk-00046-00011050-00011246
-2aLms7XTfk
即使以现在的眼光来看
-2aLms7XTfk-00047-00011276-00011446
-2aLms7XTfk
读写速度仍然非常优异
-2aLms7XTfk-00048-00011453-00011716
-2aLms7XTfk
94.4MB/s的读取速度与标称的95MB/s无异
-2aLms7XTfk-00049-00011716-00012056
-2aLms7XTfk
写入速度也达到了83MB/s
-2aLms7XTfk-00050-00012100-00012346
-2aLms7XTfk
只不过16G的容量现在看来稍微有点小了
-2aLms7XTfk-00051-00012346-00012710
-2aLms7XTfk
接下来是新版的Extreme Pro
-2aLms7XTfk-00052-00012710-00012893
-2aLms7XTfk
升级到了UHS-I U3规格
-2aLms7XTfk-00053-00012940-00013180
-2aLms7XTfk
同时标称读取速度来到了170MB/s
-2aLms7XTfk-00054-00013203-00013533
-2aLms7XTfk
然而我跑了两遍ATTO测试
-2aLms7XTfk-00055-00013533-00013726
-2aLms7XTfk
读取速度都只有95MB/s左右
-2aLms7XTfk-00056-00013746-00013980
-2aLms7XTfk
远远达不到标称的170MB/s
-2aLms7XTfk-00057-00014000-00014253
-2aLms7XTfk
不过这张卡的写入速度倒是比旧版提升了一点
-2aLms7XTfk-00058-00014266-00014550
-2aLms7XTfk
由上代的83MB/s来到了86MB/s左右
-2aLms7XTfk-00059-00014583-00014906
-2aLms7XTfk
不过稍低于官网标称的90MB/s的写入速度
-2aLms7XTfk-00060-00014936-00015236
-2aLms7XTfk
然后是闪迪的Extreme
-2aLms7XTfk-00061-00015240-00015473
-2aLms7XTfk
同样是UHS-I U3规格
-2aLms7XTfk-00062-00015480-00015700
-2aLms7XTfk
从名字上就可以看出来
-2aLms7XTfk-00063-00015719-00015890
-2aLms7XTfk
这张卡的定位低于Extreme Pro
-2aLms7XTfk-00064-00015903-00016119
-2aLms7XTfk
主打量大管饱
-2aLms7XTfk-00065-00016130-00016253
-2aLms7XTfk
先看64G版的速度
-2aLms7XTfk-00066-00016283-00016450
-2aLms7XTfk
从测试来看
-2aLms7XTfk-00067-00016476-00016600
-2aLms7XTfk
读取速度与定位旗舰的Extreme Pro一样
-2aLms7XTfk-00068-00016613-00016880
-2aLms7XTfk
只不过写入速度低了不少
-2aLms7XTfk-00069-00016893-00017070
-2aLms7XTfk
徘徊在67MB/s左右
-2aLms7XTfk-00070-00017083-00017290
-2aLms7XTfk
有意思的是
-2aLms7XTfk-00071-00017303-00017406
-2aLms7XTfk
64G版的官网标称写入速度最高只有60MB/s
-2aLms7XTfk-00072-00017423-00017800
-2aLms7XTfk
而我这张卡竟然超过了官网的标称速度
-2aLms7XTfk-00073-00017826-00018106
-2aLms7XTfk
我又测试了下256G的版本
-2aLms7XTfk-00074-00018170-00018396
-2aLms7XTfk
让我意外的是
-2aLms7XTfk-00075-00018436-00018550
-2aLms7XTfk
读写速度与定位更高的Extreme Pro几乎没有差别
-2aLms7XTfk-00076-00018573-00018910
-2aLms7XTfk
不过这两张Extreme卡的读取速度与刚刚测试的Extreme Pro一样
-2aLms7XTfk-00077-00018916-00019340
-2aLms7XTfk
都无法达到官方标称的速度
-2aLms7XTfk-00078-00019360-00019573
-2aLms7XTfk
好奇之下我去搜了下UHS-I的理论最高传输速度
-2aLms7XTfk-00079-00019606-00020000
-2aLms7XTfk
是104MB/s
-2aLms7XTfk-00080-00020026-00020153
-2aLms7XTfk
我又去看了下闪迪的Datasheet
-2aLms7XTfk-00081-00020193-00020413
-2aLms7XTfk
原来需要靠特殊的读卡器才能突破104MB/s的限制
-2aLms7XTfk-00082-00020460-00020940
-2aLms7XTfk
最后是索尼的这张SD卡
-2aLms7XTfk-00083-00020940-00021126
-2aLms7XTfk
型号是SF-32UX2
-2aLms7XTfk-00084-00021150-00021360
-2aLms7XTfk
从命名上来看
-2aLms7XTfk-00085-00021410-00021543
-2aLms7XTfk
似乎是第二代产品
-2aLms7XTfk-00086-00021550-00021710
-2aLms7XTfk
支持UHS-I U3规格
-2aLms7XTfk-00087-00021720-00021923
-2aLms7XTfk
这张卡停产应该有些年头了
-2aLms7XTfk-00088-00021956-00022180
-2aLms7XTfk
但在当年的一众高速SD卡中
-2aLms7XTfk-00089-00022190-00022403
-2aLms7XTfk
性价比非常突出
-2aLms7XTfk-00090-00022403-00022546
-2aLms7XTfk
从ATTO的测试结果来看
-2aLms7XTfk-00091-00022576-00022763
-2aLms7XTfk
读写速度都要稍逊于闪迪的Extreme
-2aLms7XTfk-00092-00022773-00023030
-2aLms7XTfk
不过我记得当时的售价要远低于闪迪
-2aLms7XTfk-00093-00023073-00023353
-2aLms7XTfk
另外同场加映闪迪Extreme CF卡测试表现
-2aLms7XTfk-00094-00023353-00023726
-2aLms7XTfk
虽然同为Extreme产品线
-2aLms7XTfk-00095-00023763-00023960
-2aLms7XTfk
但是读写速度都要高于SD卡
-2aLms7XTfk-00096-00023976-00024190
-2aLms7XTfk
果然你大爷还是你大爷
-2aLms7XTfk-00097-00024226-00024426
-2aLms7XTfk
在理论测试中
-2aLms7XTfk-00098-00024476-00024606
-2aLms7XTfk
我手中的这几张高速SD卡
-2aLms7XTfk-00099-00024630-00024830
-2aLms7XTfk

Dataset Card for code-switching yodas

This dataset is derived from espnet/yodas, more details can be found here: https://huggingface.co/datasets/espnet/yodas

This is a subset of the zh000 subset of espnet/yodas dataset, which selects videos with Mandarin-English code-switching phenomenon.

Note that code-switching is only gauranteed per video rather than per utterance. Therefore, not every utterance in the dataset contains code-switching.

Dataset Details

Dataset Usage

The default config does not modify any text of the selected samples.

from datasets import load_dataset
cs_yodas = load_dataset("georgechang8/code_switch_yodas_zh")

The clean config cleanses the text of the selected samples (as in the processing).

from datasets import load_dataset
cs_yodas_clean = load_dataset("georgechang8/code_switch_yodas_zh", "clean")
{'audio': {'path': 'GaUSbuZm5Ec-00207-00083809-00084143.wav',
  'array': array([-0.09082031,  0.01898193,  0.02850342, ...,  0.01419067,
          0.01391602,  0.01513672]),
  'sampling_rate': 16000},
 'text': '項明生,訂Agoda的項明生',
 'id': 'GaUSbuZm5Ec-00207-00083809-00084143',
 'session_id': 'GaUSbuZm5Ec'}

Dataset Description

  • Language(s): Chinese, English
  • License: CC-BY-3.0

Dataset Sources [optional]

Dataset Creation

Data Collection and Processing

  1. Read the text content of clips of espnet/yodas
import glob
import re
import pandas as pd
from pathlib import Path
from tqdm.auto import tqdm
from collections import defaultdict
from dataclasses import dataclass, asdict

@dataclass
class Video:
    name: str = ""
    shard: str = ""
    duration: float = 0
    content: str = ""

data = defaultdict(Video)
trange = tqdm(glob.glob("yodas/data/zh000/text/*.txt"))
for file in trange:
    shard = Path(file).stem
    with open(file, "r", encoding="utf8") as f:
        for m in re.finditer(r"(.{11})-\d{5}-\d{8}-(\d{8})\s+(.*)", f.read()):
            name = m.group(1)
            assert data[name].shard in ["", shard]
            data[name].shard = shard
            data[name].name = name
            data[name].duration = int(m.group(2)) / 100
            data[name].content += " " + m.group(3)
    trange.set_postfix(vids=len(data))

data_df = pd.DataFrame(map(asdict, data.values()))
  1. Retain videos with chinese symbols
import re
cjk_pattern = re.compile(
    # puncs \uff00-\uffef \u3000-\u303f
    r"[\u3400-\u4db5\u4e00-\u9fa5\u9fa6-\u9fbb\uf900-\ufa2d\ufa30-\ufa6a\ufa70-\ufad9\u2e80-\u2eff\u31c0-\u31ef\u2f00-\u2fdf\u2ff0-\u2fff\u3100-\u312f\u31a0-\u31bf\ufe10-\ufe1f\ufe30-\ufe4f\u2600-\u26ff\u2700-\u27bf\u3200-\u32ff\u3300-\u33ff]"
)
chinese_df = data_df[data_df['content'].apply(lambda x: cjk_pattern.search(x) is not None)]
  1. Filter out videos with Pingyin's
pinyin_pattern = re.compile(
    r'[üÜāáǎàōóǒòēéěèīíǐìūúǔùǖǘǚǜ]'
)
chinese_pin_df = chinese_df[chinese_df['content'].apply(lambda x: pinyin_pattern.search(x) is None)]
  1. Retain videos with latin scripts
az_pattern = re.compile(
    r"[a-zA-Z]+"
)
mixed_df = chinese_pin_df[chinese_pin_df['content'].apply(lambda x: az_pattern.search(x) is not None)]
  1. Retain videos with punctuations
punc_pattern = re.compile(
    r'[!?。,、·.,?!]'
)
mixed_punc_df = mixed_df[mixed_df['content'].apply(lambda x: punc_pattern.search(x) is not None)]
  1. Sort by increasing proportion of chinese characters
def func(x):
    return x.apply(lambda z: len(cjk_pattern.findall(z)) / len(z))
mixed_punc_df = mixed_punc_df.sort_values(by='content', key=func)

This gives around 1000 videos left.

  1. Save to csv to for manual inspection
mixed_punc_df.to_csv('sanity.csv')
  1. Manually inspect 0-500
  • NwRTR8mY-7A: mostly english
  • ASL3yEYC1IE, etc.: contains English translation for each line
  • Recurring creators whose content is not good code-switching: "天天開心","日向蓝子","笑花兒","关于麻将的职人","大濕:","朋友sisi","please my hero","金玲老師"
  • Manually pick exceptions to previous rule to add to accepted list
  • Recurring creators whose content is good code-switching: "我是小夫","久德電子","GL_TECH"
  • Most videos about: "U.S. stock market", "tech reviews" are accepted.
  1. Quickly skim through 501-1000 (only 10 were picked)

A total of 176 videos were picked in step 8 & 9

  1. Extract selected video clips' audio
from tqdm.auto import tqdm
from pathlib import path
import tarfile

with open("codeswitch.txt", "r") as f: # list of 176 picked video_ids
    codeswitch = set(map(str.strip, f.readlines()))
code_switch_data = data_df[data_df['name'].apply(lambda x: x in codeswitch)]

shard_names = {}
for name, shard in zip(
    code_switch_data['name'].tolist(),
    code_switch_data['shard'].tolist()
):
    if shard not in shard_names:
        shard_names[shard] = set()
    shard_names[shard].add(name)

def extract_wav_files(shard, output_dir):
    # Create the output directory if it doesn't exist
    tar_file_path = f"yodas/data/zh000/audio/{shard}.tar.gz"
    names = shard_names[shard]

    # Open the tar.gz file
    with tarfile.open(tar_file_path, 'r:gz') as tar:
        # Iterate through the contents of the tar file
        for member in tar.getmembers():
            # Check if the member is a WAV file
            video_id = re.search(r"(.{11})-\d{5}-\d{8}-\d{8}", member.name)
            if video_id and video_id.group(1) in names:
                # Extract the WAV file contents into the output directory
                output_path = Path(output_dir, Path(member.name).name)
                with open(output_path, 'wb') as output_file:
                    output_file.write(tar.extractfile(member).read())

output_dir = "./code_switch_yodas"
Path(output_dir).mkdir(exist_ok=True, parents=True)
for shard in tqdm(shard_names):
    extract_wav_files(shard, output_dir)
  1. Publish the subset
import datasets
from datasets import Dataset

audio_dataset = Dataset.from_dict({
    "audio": [
        f"{output_dir}/{clip_id}.wav"
        for clip_id in clip_ids
    ],
    "text": texts,
    "id": clip_ids,
    "session_id": [x[:11] for x in clip_ids]
})
audio_dataset = audio_dataset.cast_column("audio", datasets.features.Audio(sampling_rate=16000))
audio_dataset = audio_dataset.sort("id")
audio_dataset.push_to_hub(
    "georgechang8/code_switch_yodas_zh",
    commit_message="Initial commit",
    embed_external_files=True
)

Extra (without punctuations)

Doing step 1-10, but reverse step 5 to look for ones without punctuations, this yields a small extra set:

extra_set = {
    "37s5xmYYSM8",
    "3ZVVBEugui4",
    "-zHxyIuEw-8",
    "Dngt6Ca8-3u",
    "zJcle9SO98Q",
    "murJVhx5dd0",
    "6hCLoOVtM5Y", # test
    "U-1tallz0hM",
    "wfCUHCYJgIU",
    "GrKoml8qb78",
    "YMTMTFpV7_M",
    "GJV0ZRzAARy",
    "BtMii9364Fg",
    "apK8JYOq6gI",
    "IF-GnMzu7y8",
    "0qJ61eujIVo",
    "Okq02I_jTcA",
    "hCnZlSbTht8",
    "rMk21JBTisE", # validation
    "s9qzwyIM3JI",
    "NBf6Z9R1r7I",
    "jIbc2Jzfa0g",
}
train:
20 videos
validation:
1 video
test:
1 video
DatasetDict({
    train: Dataset({
        features: ['audio', 'text', 'id', 'session_id'],
        num_rows: 5990
    })
    validation: Dataset({
        features: ['audio', 'text', 'id', 'session_id'],
        num_rows: 397
    })
    test: Dataset({
        features: ['audio', 'text', 'id', 'session_id'],
        num_rows: 282
    })
})

Data Cleaning

  1. The video Pew9CK74axu is manually cleaned
def filter_fn(batch):
    return (z == 'Pew9CK74axu' for z in batch['session_id'])

special_care = audio_dataset.filter(filter_fn, num_proc=8, batched=True)
with open("manual_edit.txt", "w", encoding="utf8") as f:
    for l in special_care['text']:
        f.write(l + "\n")
# manual cleaning ...
with open("manual_edit_finish.txt", "r", encoding="utf8") as f:
    lines = list(map(str.strip, f.readlines()))
replace_dict = {
    a: b 
    for a, b in zip(special_care['id'], lines)
}
def manual_edit(batch):
    texts = []
    for sid, orig in zip(batch['id'], batch['text']):
        texts += [replace_dict.get(sid, orig)]
    return {'text': texts}

audio_dataset_manual = audio_dataset.map(manual_edit, batched=True, num_proc=8)
  1. Low log-prob filtering Using whisper-medium to compute the logprob, then filter by a handpicked threshold -3.5
# Get rid of low-prob videos
low_prob_set = {
    '9lQs7INyYBQ',
    'HezOD6XPr_M',
    'HfeLdctBVGY',
    'IzfrgOUd2Uc',
    'UFklIGGKWN0',
    '_x8LwaPRtCE',
    'eK9m6uCNN6Q',
    'erbZNpDMHN0',
    'l9BjfWr1_Pg',
    'nSStWkJtbR4',
    'wrEY_EzQEsy',
    '3Zed0NHrmxo',
    'r29FW7K4iok',
    'MgdQuY0-abI',
    'yHh4rM2KX5Q'
}
audio_dataset_manual = audio_dataset_manual.filter(lambda batch: [s not in low_prob_set for s in batch['session_id']], num_proc=2, batched=True)
# 176 - 14 = 161 videos
  1. train/dev/test split
from datasets import DatasetDict

validation_set = {
    "AyPua3Mi9FU",
    "r29FW7K4iok", # low prob
    "GaUSbuZm5Ec",
    "AKW9vmSy8lQ",
    "3Zed0NHrmxo", # low prob
    "ZHPFLOuT48u",
    "RiCN24FLVLk",
    "zrV_ZNWo8PQ",
    # "rMk21JBTisE", # new (no punc) ==> not in 'default' config
}
test_set = {
    "lH7bZ-8hF1o",
    "WF4ovtdi6wu",
    "MgdQuY0-abI", # low prob
    "yHh4rM2KX5Q", # low prob
    "e_cxHBDSqsM",
    "NO6985Bf_Ro",
    # "6hCLoOVtM5Y", # new (no punc) ==> not in 'default' config
}

def train_fn(batch):
    return (z not in (validation_set|test_set) for z in batch['session_id'])
def validation_fn(batch):
    return (z in validation_set for z in batch['session_id'])
def test_fn(batch):
    return (z in test_set for z in batch['session_id'])

audio_dataset_manual = DatasetDict(
    train=audio_dataset_manual.filter(train_fn, num_proc=2, batched=True),
    validation=audio_dataset_manual.filter(validation_fn, num_proc=2, batched=True),
    test=audio_dataset_manual.filter(test_fn, num_proc=2, batched=True)
)

Don't forget to merge with extra set

from datasets import concatenate_datasets
ds_extra = load_dataset("georgechang8/code_switch_yodas_zh", "clean_extra") # no longer available
audio_dataset_manual = DatasetDict({
    split: concatenate_datasets([audio_dataset_manual[split], ds_extra[split]])
    for split in audio_dataset_manual
})

Do sanity check

ds_full = audio_dataset_manual
for split in ds_full:
    print(split, len(set(ds_full[split]['id'])))
assert len(set(ds_full['train']['id']) & set(ds_full['validation']['id'])) == 0
assert len(set(ds_full['train']['id']) & set(ds_full['test']['id'])) == 0
assert len(set(ds_full['test']['id']) & set(ds_full['validation']['id'])) == 0
  1. General cleansing pipeline
import re
import html

def remove_emojies(text):
  # Ref: https://gist.github.com/Alex-Just/e86110836f3f93fe7932290526529cd1#gistcomment-3208085
  # Ref: https://en.wikipedia.org/wiki/Unicode_block
  EMOJI_PATTERN = re.compile(
    "["
    "\U0001F1E0-\U0001F1FF"  # flags (iOS)
    "\U0001F300-\U0001F5FF"  # symbols & pictographs
    "\U0001F600-\U0001F64F"  # emoticons
    "\U0001F680-\U0001F6FF"  # transport & map symbols
    "\U0001F700-\U0001F77F"  # alchemical symbols
    "\U0001F780-\U0001F7FF"  # Geometric Shapes Extended
    "\U0001F800-\U0001F8FF"  # Supplemental Arrows-C
    "\U0001F900-\U0001F9FF"  # Supplemental Symbols and Pictographs
    "\U0001FA00-\U0001FA6F"  # Chess Symbols
    "\U0001FA70-\U0001FAFF"  # Symbols and Pictographs Extended-A
    "\U00002702-\U000027B0"  # Dingbats
    "]"
  )
  text = re.sub(EMOJI_PATTERN, r' ', text)
  return text

def clean_transcripts(x):
    cjk = "[\u3400-\u4db5\u4e00-\u9fa5\u9fa6-\u9fbb\uf900-\ufa2d\ufa30-\ufa6a\ufa70-\ufad9\uff00-\uffef\u2e80-\u2eff\u3000-\u303f\u31c0-\u31ef\u2f00-\u2fdf\u2ff0-\u2fff\u3100-\u312f\u31a0-\u31bf\ufe10-\ufe1f\ufe30-\ufe4f\u2600-\u26ff\u2700-\u27bf\u3200-\u32ff\u3300-\u33ff]"
    x = html.unescape(x)
    x = remove_emojies(x)
    x = re.sub(r'\.{3,}', ' ', x)
    x = re.sub(r'…+', ' ', x)
    x = re.sub(r'\s+|^|$', '  ', x) # expanding space allows matching " uh uh" case
    x = re.sub(rf"({cjk}|\s)([Uu][mh]|U[MH])({cjk}|\s)", r"\1 \3", x) # uh/um surrounded by cjk or space
    x = re.sub(r"([HhEe]mm+|[HE]MM+)", " ", x) # hmm emm
    x = re.sub(fr"\*+({cjk}+|[A-Za-z]+)\*+", " ", x)  # *叹气* 
    x = re.sub(r'[呃嗯]+', ' ', x)  # 呃嗯
    def replace_except(pattern, repl, z, excs):
        for e, t in excs:
            z = z.replace(e, t)
        z = re.sub(pattern, repl, z)
        for e, t in excs:
            z = z.replace(t, e)
        return z
    # remove 恩 except for 恩桥 感恩 恩怨
    x = replace_except("恩", ' ', x, excs=[("感恩", "呃"),("恩桥", "嗯"),("恩怨", "emm")])
    x = re.sub(r'([^()]*)', ' ', x)  # remove (...)
    x = re.sub(r'[()]+', ' ', x) # remove isolated()
    x = re.sub(r"\s+", " ", x)
    # remove (...) except for 'Program Files (x86)'
    x = replace_except(r'\([^()]*\)', ' ', x, excs=[("Program Files (x86)", "呃")])
    x = re.sub(r'[()]+', ' ', x) # remove isolated ()
    puncs = r'[,?!。:;~?!,.:;~]'
    x = re.sub(rf'({puncs})(?:\s*\1)+', r'\1', x) # ??? -> ?
    x = re.sub(rf"\s+({puncs})", r'\1', x) # text , -> text,
    sp_puncs = r'[?!,.;]' # puncs with spaces
    x = re.sub(rf"({puncs}*{sp_puncs})([^\d])", r'\1 \2', x) # text!?cont -> text!? cont
    x = re.sub(rf"^[\s]*{puncs}+", "", x) # leading puncs
    x = re.sub(r"\s+", " ", x) # excess spaces
    return x.strip()

def clean_batch(batch):
    return {'text': [clean_transcripts(x) for x in batch['text']]}

audio_dataset_manual_clean = audio_dataset_manual.map(clean_batch, batched=True, num_proc=8)
  1. Publish
audio_dataset_manual_clean.push_to_hub(
    "georgechang8/code_switch_yodas_zh",
    config_name="clean",
    set_default=False,
    commit_message="Clean transcript",
    max_shard_size="1GB",
    embed_external_files=True,
)

Limitations

  1. The filtering & hand-picking process might left out useful videos.
  2. The transcriptions is not processed in any way, so might need further cleansing.

Dataset Card Contact

Original dataset: https://huggingface.co/datasets/espnet/yodas CS processing: Chih-Chiang Chang (cc.chang0828@gmail.com)

Downloads last month
48