|
--- |
|
license: cc-by-4.0 |
|
task_categories: |
|
- text-generation |
|
- text-classification |
|
language: |
|
- ja |
|
size_categories: |
|
- 10K<n<100K |
|
--- |
|
|
|
# Overview |
|
This dataset provides a convenient and user-friendly format of data from [Aozora Bunko (青空文庫)](https://www.aozora.gr.jp/), a website that compiles public-domain books in Japan, ideal for Machine Learning applications. |
|
|
|
[For Japanese] 日本語での概要説明を Qiita に記載しました: https://qiita.com/akeyhero/items/b53eae1c0bc4d54e321f |
|
|
|
# Methodology |
|
|
|
The code to reproduce this dataset is made available on GitHub: [globis-org/aozorabunko-exctractor](https://github.com/globis-org/aozorabunko-extractor). |
|
|
|
## 1. Data collection |
|
We firstly downloaded the [CSV file that lists all works](https://www.aozora.gr.jp/index_pages/person_all.html). The information extracted from this CSV is incorporated into the `meta` field. |
|
Next, we filtered out any books not categorized as public domain. |
|
We retrieved the main text of each book corresponding to every row in the CSV and incorporated it into the `text` field in UTF-8. |
|
|
|
## 2. Deduplication |
|
We removed entries where the `図書カードURL` (Library card URL) in this CSV did not match with the `作品ID` (Work ID) and `人物ID` (Person ID). |
|
In addition, entries with text identical to previously encountered text were discarded. |
|
|
|
## 3. Cleaning |
|
The data in the `text` field was then cleaned in the following sequence: |
|
|
|
1. Convert new lines to `\n` |
|
2. Remove headers |
|
3. Remove footnotes and add them to the `footnote` field |
|
4. Convert inserted notes into regular parenthetical text |
|
5. Remove ruby (phonetic guides) |
|
6. Convert specific characters, such as external characters and iteration marks, into standard Unicode characters |
|
7. Remove any remaining markup |
|
8. Remove leading and trailing new lines and horizontal rules |
|
|
|
# Tips |
|
|
|
If you prefer to employ only modern Japanese, you can filter entries with: `row["meta"]["文字遣い種別"] == "新字新仮名"`. |
|
|
|
# Example |
|
|
|
```py |
|
>>> from datasets import load_dataset |
|
>>> ds = load_dataset('globis-university/aozorabunko-clean') |
|
>>> ds |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['text', 'footnote', 'meta'], |
|
num_rows: 16951 |
|
}) |
|
}) |
|
>>> ds = ds.filter(lambda row: row['meta']['文字遣い種別'] == '新字新仮名') # only modern Japanese |
|
>>> ds |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['text', 'footnote', 'meta'], |
|
num_rows: 10246 |
|
}) |
|
}) |
|
>>> book = ds['train'][0] # one of the works |
|
>>> book['meta']['作品名'] |
|
'ウェストミンスター寺院' |
|
>>> text = book['text'] # main content |
|
>>> len(text) |
|
10639 |
|
>>> print(text[:100]) |
|
深いおどろきにうたれて、 |
|
名高いウェストミンスターに |
|
真鍮や石の記念碑となって |
|
すべての王侯貴族が集まっているのをみれば、 |
|
今はさげすみも、ほこりも、見栄もない。 |
|
善にかえった貴人の姿、 |
|
華美と俗世の |
|
``` |
|
|
|
# License |
|
CC BY 4.0 |