Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
json
Sub-tasks:
extractive-qa
Languages:
Finnish
Size:
< 1K
Tags:
question-generation
License:
metadata
pretty_name: WikiQA-100-fi
language:
- fi
license:
- gpl-3.0
multilinguality:
- monolingual
size_categories:
- n<1k
task_categories:
- question-answering
- question-generation
- extractive-qa
task_ids:
- extractive-qa
train-eval-index:
- config: plain_text
task: question-answering
task_id: extractive_question_answering
splits:
train_split: train
eval_split: validation
col_mapping:
question: question
context: context
answers:
text: text
answer_start: answer_start
Dataset Card for "WikiQA-100-fi"
Dataset Summary
WikiQA-100-fi dataset contains 100 questions related to Finnish Wikipedia articles. The dataset is in the SQuAD format, and there are 10 questions for each category identified by the authors of SQuAD. Unlike SQuAD2.0, WikiQA-100-fi contains only answerable questions. The dataset is tiny compared to actual QA test sets, but it still gives an impression of the models' performance on purely native text data collected by a native speaker. The dataset was originally created as an evaluation set for models that had been mostly fine-tuned with automatically translated QA data. More information about the dataset and models created with it can be found here.
Dataset Structure
Data Instances
Example data:
{
"title": "Folksonomia",
"paragraphs": [
{
"qas": [
{
"question": "Minkälaista sisältöä käyttäjät voivat luokitella folksonomian avulla?",
"id": "6t4ufel624",
"answers": [
{
"text": "www-sivuja, valokuvia ja linkkejä",
"answer_start": 155
}
],
"is_impossible": false
}
],
"context": "Folksonomia (engl. folksonomy) on yhteisöllisesti tuotettu, avoin luokittelujärjestelmä, jonka avulla internet-käyttäjät voivat luokitella sisältöä, kuten www-sivuja, valokuvia ja linkkejä. Etymologisesti folksonomia on peräisin sanojen \"folk\" (suom. väki) ja \"taxonomy\" (suom. taksonomia) leikkimielisestä yhdistelmästä."
}
]
}
Data Fields
plain_text
id
: astring
feature.title
: astring
feature.context
: astring
feature.question
: astring
feature.answers
: a dictionary feature containing:text
: astring
feature.answer_start
: aint32
feature.
Data Splits
name | test |
---|---|
plain_text | 100 |
Citation Information
@MastersThesis{3241c198b3f147faacbc6d8b64ed9419,
author = "Kylli{\"a}inen, {Ilmari}",
title = "Neural Factoid Question Answering and Question Generation for Finnish",
language = "en",
address = "Helsinki, Finland",
school = "University of Helsinki",
year = "2022",
month = "jun",
day = "15",
url = "https://helda.helsinki.fi/handle/10138/344973"
}