Datasets:
File size: 4,459 Bytes
d4b59cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import json
import os
import datasets
from datasets.tasks import QuestionAnsweringExtractive
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{keren2021parashoot,
title={ParaShoot: A Hebrew Question Answering Dataset},
author={Keren, Omri and Levy, Omer},
booktitle={Proceedings of the 3rd Workshop on Machine Reading for Question Answering},
pages={106--112},
year={2021}
}
"""
_DESCRIPTION = """
A Hebrew question and answering dataset in the style of SQuAD, based on articles scraped from Wikipedia. The dataset contains a few thousand crowdsource-annotated pairs of questions and answers, in a setting suitable for few-shot learning.
"""
_URLS = {
"train": "data/train.tar.gz",
"validation": "data/dev.tar.gz",
"test": "data/test.tar.gz",
}
class ParashootConfig(datasets.BuilderConfig):
"""BuilderConfig for Parashoot."""
def __init__(self, **kwargs):
"""BuilderConfig for Parashoot.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(ParashootConfig, self).__init__(**kwargs)
class Parashoot(datasets.GeneratorBasedBuilder):
"""Parashoot: The Hebrew Question Answering Dataset. Version 1.1."""
BUILDER_CONFIGS = [
ParashootConfig(
version=datasets.Version("1.1.0", ""),
description=_DESCRIPTION,
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
}
),
}
),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=None,
homepage="https://github.com/omrikeren/ParaShoot",
citation=_CITATION,
task_templates=[
QuestionAnsweringExtractive(
question_column="question",
context_column="context",
answers_column="answers",
)
],
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": downloaded_files["train"],
"basename": "train.jsonl",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": downloaded_files["validation"],
"basename": "dev.jsonl",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": downloaded_files["test"],
"basename": "test.jsonl",
},
),
]
def _generate_examples(self, filepath, basename):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
key = 0
with open(os.path.join(filepath, basename), encoding="utf-8") as f:
for line in f:
article = json.loads(line)
title = article.get("title", "")
context = article["context"]
answer_starts = article["answers"]["answer_start"]
answers = article["answers"]["text"]
yield key, {
"title": title,
"context": context,
"question": article["question"],
"id": article["id"],
"answers": {
"answer_start": answer_starts,
"text": answers,
},
}
key += 1
|