code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : List[Any] = [] if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for v in tree.values(): shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : str = [] for d in reversed(SCREAMING_SNAKE_CASE ): idx.append(flat_idx % d ) A_ : List[str] = flat_idx // d return tuple(reversed(SCREAMING_SNAKE_CASE ) ) @torch.jit.ignore def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(SCREAMING_SNAKE_CASE ) -> None: A_ : Dict = True for i in range(len(SCREAMING_SNAKE_CASE ) ): A_ : Optional[Any] = -1 * (i + 1) l[reversed_idx] &= tally A_ : Any = l[reversed_idx] if start_edges is None: A_ : Tuple = [s == 0 for s in start] reduce_edge_list(SCREAMING_SNAKE_CASE ) if end_edges is None: A_ : Union[str, Any] = [e == (d - 1) for e, d in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )] reduce_edge_list(SCREAMING_SNAKE_CASE ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(SCREAMING_SNAKE_CASE ) == 0: return [()] elif len(SCREAMING_SNAKE_CASE ) == 1: return [(slice(start[0] , end[0] + 1 ),)] A_ : List[Tuple[slice, ...]] = [] A_ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if s == e: path_list.append(slice(SCREAMING_SNAKE_CASE , s + 1 ) ) else: break A_ : Tuple[slice, ...] = tuple(SCREAMING_SNAKE_CASE ) A_ : Optional[int] = len(SCREAMING_SNAKE_CASE ) # start == end, and we're done if divergence_idx == len(SCREAMING_SNAKE_CASE ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None A_ : List[Any] = start[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None A_ : Union[str, Any] = end[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) A_ : int = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Tuple = t.shape[:no_batch_dims] A_ : Tuple = list(_flat_idx_to_idx(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # _get_minimal_slice_set is inclusive A_ : List[str] = list(_flat_idx_to_idx(flat_end - 1 , SCREAMING_SNAKE_CASE ) ) # Get an ordered list of slices to perform A_ : List[Any] = _get_minimal_slice_set( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) A_ : Tuple = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , ): if not (len(SCREAMING_SNAKE_CASE ) > 0): raise ValueError('''Must provide at least one input''' ) A_ : int = [shape[:no_batch_dims] for shape in _fetch_dims(SCREAMING_SNAKE_CASE )] A_ : int = tuple([max(SCREAMING_SNAKE_CASE ) for s in zip(*SCREAMING_SNAKE_CASE )] ) def _prep_inputs(SCREAMING_SNAKE_CASE ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: A_ : Any = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) A_ : List[Any] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: A_ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t A_ : Dict[str, Any] = tensor_tree_map(_prep_inputs , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = None if _out is not None: A_ : Optional[int] = tensor_tree_map(lambda SCREAMING_SNAKE_CASE : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) A_ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d A_ : Optional[Any] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(SCREAMING_SNAKE_CASE ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t A_ : Union[str, Any] = 0 A_ : Optional[int] = prepped_outputs for _ in range(SCREAMING_SNAKE_CASE ): # Chunk the input if not low_mem: A_ : Optional[Any] = _select_chunk else: A_ : Dict = partial( _chunk_slice , flat_start=SCREAMING_SNAKE_CASE , flat_end=min(SCREAMING_SNAKE_CASE , i + chunk_size ) , no_batch_dims=len(SCREAMING_SNAKE_CASE ) , ) A_ : Dict[str, Any] = tensor_tree_map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Run the layer on the chunk A_ : List[str] = layer(**SCREAMING_SNAKE_CASE ) # Allocate space for the output if out is None: A_ : Dict = tensor_tree_map(lambda SCREAMING_SNAKE_CASE : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , SCREAMING_SNAKE_CASE ) # Put the chunk in its pre-allocated space if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def assign(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: for k, v in da.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assign(SCREAMING_SNAKE_CASE , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: A_ : Union[str, Any] = da[k] assign(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for xa, xa in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if _add_into_out: xa[i : i + chunk_size] += xa else: A_ : Any = xa elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: A_ : Tuple = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size A_ : Optional[Any] = tensor_tree_map(lambda SCREAMING_SNAKE_CASE : t.view(orig_batch_dims + t.shape[1:] ) , SCREAMING_SNAKE_CASE ) return out class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE = 512 , )->Any: '''simple docstring''' A_ : Any = max_chunk_size A_ : Optional[int] = None A_ : Optional[tuple] = None def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size A_ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] A_ : int = [c for c in candidates if c > min_chunk_size] A_ : Dict = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_SCREAMING_SNAKE_CASE ) -> bool: try: with torch.no_grad(): fn(*_SCREAMING_SNAKE_CASE , chunk_size=_SCREAMING_SNAKE_CASE ) return True except RuntimeError: return False A_ : List[str] = 0 A_ : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) - 1 while i > min_viable_chunk_size_index: A_ : List[str] = test_chunk_size(candidates[i] ) if not viable: A_ : Any = (min_viable_chunk_size_index + i) // 2 else: A_ : Any = i A_ : int = (i + len(_SCREAMING_SNAKE_CASE ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->bool: '''simple docstring''' A_ : List[Any] = True for aa, aa in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert type(_SCREAMING_SNAKE_CASE ) == type(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): consistent &= self._compare_arg_caches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : List[Any] = [v for _, v in sorted(aa.items() , key=lambda _SCREAMING_SNAKE_CASE : x[0] )] A_ : int = [v for _, v in sorted(aa.items() , key=lambda _SCREAMING_SNAKE_CASE : x[0] )] consistent &= self._compare_arg_caches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: consistent &= aa == aa return consistent def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )->int: '''simple docstring''' A_ : List[Any] = True A_ : tuple = tree_map(lambda _SCREAMING_SNAKE_CASE : a.shape if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) else a , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_SCREAMING_SNAKE_CASE ) A_ : Tuple = self._compare_arg_caches(self.cached_arg_data , _SCREAMING_SNAKE_CASE ) else: # Otherwise, we can reuse the precomputed value A_ : Union[str, Any] = False if not consistent: A_ : List[Any] = self._determine_favorable_chunk_size( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) A_ : Union[str, Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
186
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = DDIMPipeline snake_case = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } snake_case = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS snake_case = False def _snake_case ( self )->List[str]: '''simple docstring''' torch.manual_seed(0 ) A_ : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) A_ : Optional[Any] = DDIMScheduler() A_ : str = {'''unet''': unet, '''scheduler''': scheduler} return components def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 )->Optional[Any]: '''simple docstring''' if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): A_ : Any = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: A_ : Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ : Any = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Optional[int] = '''cpu''' A_ : Dict = self.get_dummy_components() A_ : str = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : str = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) A_ : Any = pipe(**_SCREAMING_SNAKE_CASE ).images A_ : int = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) A_ : List[Any] = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) A_ : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _snake_case ( self )->Optional[int]: '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def _snake_case ( self )->Optional[int]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def _snake_case ( self )->Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : int = '''google/ddpm-cifar10-32''' A_ : Tuple = UNetaDModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ : str = DDIMScheduler() A_ : str = DDIMPipeline(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) ddim.to(_SCREAMING_SNAKE_CASE ) ddim.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = torch.manual_seed(0 ) A_ : Any = ddim(generator=_SCREAMING_SNAKE_CASE , eta=0.0 , output_type='''numpy''' ).images A_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A_ : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Tuple = '''google/ddpm-ema-bedroom-256''' A_ : int = UNetaDModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ : Any = DDIMScheduler.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = DDIMPipeline(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) ddpm.to(_SCREAMING_SNAKE_CASE ) ddpm.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Dict = torch.manual_seed(0 ) A_ : List[str] = ddpm(generator=_SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images A_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) A_ : Tuple = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
186
1
class _UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Dict) -> str: """simple docstring""" _UpperCamelCase = arr.split(",") def __UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" _UpperCamelCase = [int(self.array[0])] * len(self.array) _UpperCamelCase = [int(self.array[0])] * len(self.array) for i in range(1 , len(self.array)): _UpperCamelCase = max( int(self.array[i]) + sum_value[i - 1] , int(self.array[i])) _UpperCamelCase = max(sum_value[i] , rear[i - 1]) return rear[len(self.array) - 1] if __name__ == "__main__": lowerCamelCase__ = input('''please input some numbers:''') lowerCamelCase__ = SubArray(whole_array) lowerCamelCase__ = array.solve_sub_array() print(('''the results is:''', re))
361
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Optional[Any] , ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = 13 _UpperCamelCase = 7 _UpperCamelCase = 30 _UpperCamelCase = self.seq_length + self.mem_len _UpperCamelCase = 15 _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = 99 _UpperCamelCase = [10, 50, 80] _UpperCamelCase = 32 _UpperCamelCase = 32 _UpperCamelCase = 4 _UpperCamelCase = 8 _UpperCamelCase = 128 _UpperCamelCase = 2 _UpperCamelCase = 2 _UpperCamelCase = None _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = 3 _UpperCamelCase = self.vocab_size - 1 _UpperCamelCase = 0.01 def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" random.seed(self.seed) tf.random.set_seed(self.seed) def __UpperCAmelCase ( self : int , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFTransfoXLModel(lowercase_) _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : str , lowercase_ : Dict , lowercase_ : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFTransfoXLLMHeadModel(lowercase_) _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "labels": lm_labels} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase , _UpperCamelCase = model([input_ids_a, mems_a]).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Dict) -> str: """simple docstring""" _UpperCamelCase = TFTransfoXLForSequenceClassification(lowercase_) _UpperCamelCase = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = config_and_inputs _UpperCamelCase = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __A = () if is_tf_available() else () __A = ( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __A = False __A = False __A = False __A = False def __UpperCAmelCase ( self : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Any , lowercase_ : List[str]) -> Any: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __UpperCAmelCase ( self : Optional[Any]) -> int: """simple docstring""" _UpperCamelCase = TFTransfoXLModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=lowercase_ , d_embed=37) def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" self.model_tester.set_seed() _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowercase_) def __UpperCAmelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" self.model_tester.set_seed() _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowercase_) def __UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowercase_) def __UpperCAmelCase ( self : Dict) -> int: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase_) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class in list_other_models_with_output_ebd: _UpperCamelCase = model.get_output_embeddings() assert isinstance(lowercase_ , tf.keras.layers.Layer) _UpperCamelCase = model.get_bias() assert name is None else: _UpperCamelCase = model.get_output_embeddings() assert x is None _UpperCamelCase = model.get_bias() assert name is None def __UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" pass @slow def __UpperCAmelCase ( self : List[str]) -> Tuple: """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFTransfoXLModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss.") def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" pass @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("Skip test until #12651 is resolved.") @slow def __UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCamelCase = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103") # fmt: off _UpperCamelCase = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _UpperCamelCase = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _UpperCamelCase = model.generate(lowercase_ , max_length=200 , do_sample=lowercase_) self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_)
63
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase_ ( unittest.TestCase ): __UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def __a ( self , a , a , a ): UpperCamelCase__ = TextaTextGenerationPipeline(model=a , tokenizer=a ) return generator, ["Something to write", "Something else"] def __a ( self , a , a ): UpperCamelCase__ = generator("Something there" ) self.assertEqual(a , [{"generated_text": ANY(a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there" ) ) UpperCamelCase__ = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=a ) self.assertEqual( a , [ [{"generated_text": ANY(a )}, {"generated_text": ANY(a )}], [{"generated_text": ANY(a )}, {"generated_text": ANY(a )}], ] , ) UpperCamelCase__ = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=a ) self.assertEqual( a , [ [{"generated_text": ANY(a )}, {"generated_text": ANY(a )}], [{"generated_text": ANY(a )}, {"generated_text": ANY(a )}], ] , ) with self.assertRaises(a ): generator(4 ) @require_torch def __a ( self ): UpperCamelCase__ = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt" ) # do_sample=False necessary for reproducibility UpperCamelCase__ = generator("Something there" , do_sample=a ) self.assertEqual(a , [{"generated_text": ""}] ) UpperCamelCase__ = 3 UpperCamelCase__ = generator( "Something there" , num_return_sequences=a , num_beams=a , ) UpperCamelCase__ = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(a , a ) UpperCamelCase__ = generator("This is a test" , do_sample=a , num_return_sequences=2 , return_tensors=a ) self.assertEqual( a , [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ] , ) UpperCamelCase__ = generator.model.config.eos_token_id UpperCamelCase__ = "<pad>" UpperCamelCase__ = generator( ["This is a test", "This is a second test"] , do_sample=a , num_return_sequences=2 , batch_size=2 , return_tensors=a , ) self.assertEqual( a , [ [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], ] , ) @require_tf def __a ( self ): UpperCamelCase__ = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf" ) # do_sample=False necessary for reproducibility UpperCamelCase__ = generator("Something there" , do_sample=a ) self.assertEqual(a , [{"generated_text": ""}] )
80
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowercase_ ( enum.Enum ): __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @add_end_docstrings(a__ ) class lowercase_ ( a__ ): __UpperCAmelCase = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self , *a , **a ): super().__init__(*a , **a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCamelCase__ = None if self.model.config.prefix is not None: UpperCamelCase__ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCamelCase__ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._sanitize_parameters(prefix=a , **self._forward_params ) UpperCamelCase__ = {**self._preprocess_params, **preprocess_params} UpperCamelCase__ = {**self._forward_params, **forward_params} def __a ( self , a=None , a=None , a=None , a=None , a=None , a=None , a=None , a=None , **a , ): UpperCamelCase__ = {} if prefix is not None: UpperCamelCase__ = prefix if prefix: UpperCamelCase__ = self.tokenizer( a , padding=a , add_special_tokens=a , return_tensors=self.framework ) UpperCamelCase__ = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' " [None, 'hole']" ) UpperCamelCase__ = handle_long_generation preprocess_params.update(a ) UpperCamelCase__ = generate_kwargs UpperCamelCase__ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) UpperCamelCase__ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) UpperCamelCase__ = ReturnType.TENSORS if return_type is not None: UpperCamelCase__ = return_type if clean_up_tokenization_spaces is not None: UpperCamelCase__ = clean_up_tokenization_spaces if stop_sequence is not None: UpperCamelCase__ = self.tokenizer.encode(a , add_special_tokens=a ) if len(a ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) UpperCamelCase__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self , *a , **a ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*a , **a ) def __call__( self , a , **a ): return super().__call__(a , **a ) def __a ( self , a , a="" , a=None , **a ): UpperCamelCase__ = self.tokenizer( prefix + prompt_text , padding=a , add_special_tokens=a , return_tensors=self.framework ) UpperCamelCase__ = prompt_text if handle_long_generation == "hole": UpperCamelCase__ = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCamelCase__ = generate_kwargs["max_new_tokens"] else: UpperCamelCase__ = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCamelCase__ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) UpperCamelCase__ = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: UpperCamelCase__ = inputs["attention_mask"][:, -keep_length:] return inputs def __a ( self , a , **a ): UpperCamelCase__ = model_inputs["input_ids"] UpperCamelCase__ = model_inputs.get("attention_mask" , a ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = 1 else: UpperCamelCase__ = input_ids.shape[0] UpperCamelCase__ = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCamelCase__ = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: UpperCamelCase__ = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: UpperCamelCase__ = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCamelCase__ = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCamelCase__ = self.model.generate(input_ids=a , attention_mask=a , **a ) UpperCamelCase__ = generated_sequence.shape[0] if self.framework == "pt": UpperCamelCase__ = generated_sequence.reshape(a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCamelCase__ = tf.reshape(a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __a ( self , a , a=ReturnType.FULL_TEXT , a=True ): UpperCamelCase__ = model_outputs["generated_sequence"][0] UpperCamelCase__ = model_outputs["input_ids"] UpperCamelCase__ = model_outputs["prompt_text"] UpperCamelCase__ = generated_sequence.numpy().tolist() UpperCamelCase__ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCamelCase__ = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCamelCase__ = self.tokenizer.decode( a , skip_special_tokens=a , clean_up_tokenization_spaces=a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCamelCase__ = 0 else: UpperCamelCase__ = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=a , clean_up_tokenization_spaces=a , ) ) if return_type == ReturnType.FULL_TEXT: UpperCamelCase__ = prompt_text + text[prompt_length:] else: UpperCamelCase__ = text[prompt_length:] UpperCamelCase__ = {"generated_text": all_text} records.append(a ) return records
80
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __UpperCAmelCase : Tuple = Lock() def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> List[Any]: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(SCREAMING_SNAKE_CASE__) process_lock.release() # receive your right neighbor's value process_lock.acquire() __snake_case: Union[str, Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __snake_case: Optional[Any] = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(SCREAMING_SNAKE_CASE__) process_lock.release() # receive your left neighbor's value process_lock.acquire() __snake_case: int = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __snake_case: int = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) # after all swaps are performed, send the values back to main result_pipe[1].send(SCREAMING_SNAKE_CASE__) def A__ ( SCREAMING_SNAKE_CASE__) -> Union[str, Any]: __snake_case: List[Any] = [] __snake_case: List[Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __snake_case: str = Pipe() __snake_case: Any = Pipe() process_array_.append( Process( target=SCREAMING_SNAKE_CASE__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) __snake_case: Optional[Any] = temp_rs __snake_case: Optional[int] = temp_rr for i in range(1 , len(SCREAMING_SNAKE_CASE__) - 1): __snake_case: Optional[Any] = Pipe() __snake_case: int = Pipe() process_array_.append( Process( target=SCREAMING_SNAKE_CASE__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) __snake_case: Any = temp_rs __snake_case: List[Any] = temp_rr process_array_.append( Process( target=SCREAMING_SNAKE_CASE__ , args=( len(SCREAMING_SNAKE_CASE__) - 1, arr[len(SCREAMING_SNAKE_CASE__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(SCREAMING_SNAKE_CASE__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(SCREAMING_SNAKE_CASE__)): __snake_case: Tuple = result_pipe[p][0].recv() process_array_[p].join() return arr def A__ ( ) -> Union[str, Any]: __snake_case: List[str] = list(range(10 , 0 , -1)) print("""Initial List""") print(*SCREAMING_SNAKE_CASE__) __snake_case: int = odd_even_transposition(SCREAMING_SNAKE_CASE__) print("""Sorted List\n""") print(*SCREAMING_SNAKE_CASE__) if __name__ == "__main__": main()
293
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __UpperCAmelCase : str = logging.get_logger(__name__) class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : Any , A : int , A : int , A : float , **A : Optional[int] ): __snake_case: List[str] = feature_size __snake_case: Optional[int] = sampling_rate __snake_case: Any = padding_value __snake_case: Dict = kwargs.pop("""padding_side""" , """right""" ) __snake_case: Union[str, Any] = kwargs.pop("""return_attention_mask""" , A ) super().__init__(**A ) def UpperCAmelCase__ ( self : Optional[Any] , A : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , A : Union[bool, str, PaddingStrategy] = True , A : Optional[int] = None , A : bool = False , A : Optional[int] = None , A : Optional[bool] = None , A : Optional[Union[str, TensorType]] = None , ): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(A , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __snake_case: Optional[int] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f''' to this method that includes {self.model_input_names[0]}, but you provided''' f''' {list(processed_features.keys() )}''' ) __snake_case: List[str] = processed_features[self.model_input_names[0]] __snake_case: Any = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(A ) == 0: if return_attention_mask: __snake_case: Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __snake_case: int = required_input[0] if isinstance(A , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __snake_case: Optional[int] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(A ): __snake_case: Optional[int] = required_input[index][0] if return_tensors is None: if is_tf_tensor(A ): __snake_case: str = """tf""" elif is_torch_tensor(A ): __snake_case: str = """pt""" elif isinstance(A , (int, float, list, tuple, np.ndarray) ): __snake_case: List[str] = """np""" else: raise ValueError( f'''type of {first_element} unknown: {type(A )}. ''' """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __snake_case: List[Any] = to_numpy(A ) else: __snake_case: Union[str, Any] = [to_numpy(A ) for v in value] # Convert padding_strategy in PaddingStrategy __snake_case: Union[str, Any] = self._get_padding_strategies(padding=A , max_length=A ) __snake_case: Any = processed_features[self.model_input_names[0]] __snake_case: int = len(A ) if not all(len(A ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __snake_case: Union[str, Any] = [] for i in range(A ): __snake_case: List[Any] = {k: v[i] for k, v in processed_features.items()} # truncation __snake_case: Tuple = self._truncate( A , max_length=A , pad_to_multiple_of=A , truncation=A , ) truncated_inputs.append(A ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __snake_case: Optional[Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __snake_case: List[str] = PaddingStrategy.MAX_LENGTH __snake_case: List[Any] = {} for i in range(A ): # padding __snake_case: Any = self._pad( truncated_inputs[i] , max_length=A , padding_strategy=A , pad_to_multiple_of=A , return_attention_mask=A , ) for key, value in outputs.items(): if key not in batch_outputs: __snake_case: Optional[Any] = [] if value.dtype is np.dtype(np.floataa ): __snake_case: str = value.astype(np.floataa ) batch_outputs[key].append(A ) return BatchFeature(A , tensor_type=A ) def UpperCAmelCase__ ( self : int , A : Union[Dict[str, np.ndarray], BatchFeature] , A : Optional[int] = None , A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , A : Optional[int] = None , A : Optional[bool] = None , ): __snake_case: List[Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __snake_case: List[str] = len(A ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __snake_case: List[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __snake_case: Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(A ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __snake_case: List[str] = np.ones(len(A ) , dtype=np.intaa ) if needs_to_be_padded: __snake_case: Any = max_length - len(A ) if self.padding_side == "right": if return_attention_mask: __snake_case: Optional[int] = np.pad( processed_features["""attention_mask"""] , (0, difference) ) __snake_case: Any = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __snake_case: Union[str, Any] = np.pad( A , A , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __snake_case: Dict = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __snake_case: Union[str, Any] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __snake_case: str = np.pad( A , A , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def UpperCAmelCase__ ( self : Optional[Any] , A : Union[Dict[str, np.ndarray], BatchFeature] , A : Optional[int] = None , A : Optional[int] = None , A : Optional[bool] = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __snake_case: List[str] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __snake_case: List[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __snake_case: Tuple = len(A ) > max_length if needs_to_be_truncated: __snake_case: List[Any] = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __snake_case: int = processed_features["""attention_mask"""][:max_length] return processed_features def UpperCAmelCase__ ( self : int , A : int=False , A : int=None ): # Get padding strategy if padding is not False: if padding is True: __snake_case: Optional[int] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(A , A ): __snake_case: Optional[int] = PaddingStrategy(A ) elif isinstance(A , A ): __snake_case: Any = padding else: __snake_case: Any = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
293
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Optional[int] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase__ : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = state_dict.pop(lowerCamelCase ) UpperCAmelCase__ = val def a_ ( lowerCamelCase ): UpperCAmelCase__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase__ = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) UpperCAmelCase__ = value else: UpperCAmelCase__ = value return new_state_dict def a_ ( lowerCamelCase ): UpperCAmelCase__ = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ = in_proj_weight[:2_5_6, :] UpperCAmelCase__ = in_proj_bias[:2_5_6] UpperCAmelCase__ = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase__ = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase__ = in_proj_weight[-2_5_6:, :] UpperCAmelCase__ = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ = in_proj_weight[:2_5_6, :] UpperCAmelCase__ = in_proj_bias[:2_5_6] UpperCAmelCase__ = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase__ = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase__ = in_proj_weight[-2_5_6:, :] UpperCAmelCase__ = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase__ = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) UpperCAmelCase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase__ = in_proj_weight_cross_attn[:2_5_6, :] UpperCAmelCase__ = in_proj_bias_cross_attn[:2_5_6] UpperCAmelCase__ = in_proj_weight_cross_attn[2_5_6:5_1_2, :] UpperCAmelCase__ = in_proj_bias_cross_attn[2_5_6:5_1_2] UpperCAmelCase__ = in_proj_weight_cross_attn[-2_5_6:, :] UpperCAmelCase__ = in_proj_bias_cross_attn[-2_5_6:] def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ , UpperCAmelCase__ = image.size UpperCAmelCase__ = max(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = 8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 UpperCAmelCase__ = target_max_size / current_max_size UpperCAmelCase__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def a_ ( lowerCamelCase ): UpperCAmelCase__ = F.to_tensor(lowerCamelCase ) UpperCAmelCase__ = F.normalize(lowerCamelCase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): logger.info('Converting model...' ) # load original state dict UpperCAmelCase__ = torch.hub.load_state_dict_from_url(lowerCamelCase , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = rename_backbone_keys(lowerCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase__ = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): UpperCAmelCase__ = state_dict.pop(lowerCamelCase ) UpperCAmelCase__ = val # create HuggingFace model and load state dict UpperCAmelCase__ = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCAmelCase__ = 1_5 UpperCAmelCase__ = 2 UpperCAmelCase__ = {0: 'table', 1: 'table rotated'} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} else: UpperCAmelCase__ = 1_2_5 UpperCAmelCase__ = 6 UpperCAmelCase__ = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} UpperCAmelCase__ = DetrImageProcessor( format='coco_detection' , max_size=8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 ) UpperCAmelCase__ = TableTransformerForObjectDetection(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # verify our conversion UpperCAmelCase__ = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' UpperCAmelCase__ = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=lowerCamelCase ) UpperCAmelCase__ = Image.open(lowerCamelCase ).convert('RGB' ) UpperCAmelCase__ = normalize(resize(lowerCamelCase , lowerCamelCase ) ).unsqueeze(0 ) UpperCAmelCase__ = model(lowerCamelCase ) if "detection" in checkpoint_url: UpperCAmelCase__ = (1, 1_5, 3) UpperCAmelCase__ = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) UpperCAmelCase__ = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: UpperCAmelCase__ = (1, 1_2_5, 7) UpperCAmelCase__ = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) UpperCAmelCase__ = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) UpperCAmelCase__ = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(lowerCamelCase ) image_processor.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase__ : Dict = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase__ : Optional[int] = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
98
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = SpeechTaTokenizer __lowerCamelCase = False __lowerCamelCase = True def UpperCamelCase ( self ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ = SpeechTaTokenizer(lowercase ) A__ = AddedToken("<mask>" , lstrip=lowercase , rstrip=lowercase ) A__ = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self , lowercase ) -> Union[str, Any]: '''simple docstring''' A__ = "this is a test" A__ = "this is a test" return input_text, output_text def UpperCamelCase ( self , lowercase , lowercase=False , lowercase=20 , lowercase=5 ) -> Optional[Any]: '''simple docstring''' A__ , A__ = self.get_input_output_texts(lowercase ) A__ = tokenizer.encode(lowercase , add_special_tokens=lowercase ) A__ = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) return text, ids def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = "<pad>" A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-4] , "œ" ) self.assertEqual(vocab_keys[-2] , "<mask>" ) self.assertEqual(vocab_keys[-1] , "<ctc_blank>" ) self.assertEqual(len(lowercase ) , 81 ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = self.get_tokenizers(do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): A__ = tokenizer.vocab_size A__ = len(lowercase ) self.assertNotEqual(lowercase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A__ = ["aaaaa bbbbbb", "cccccccccdddddddd"] A__ = tokenizer.add_tokens(lowercase ) A__ = tokenizer.vocab_size A__ = len(lowercase ) self.assertNotEqual(lowercase , 0 ) self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , len(lowercase ) ) self.assertEqual(lowercase , all_size + len(lowercase ) ) A__ = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=lowercase ) self.assertGreaterEqual(len(lowercase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) A__ = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} A__ = tokenizer.add_special_tokens(lowercase ) A__ = tokenizer.vocab_size A__ = len(lowercase ) self.assertNotEqual(lowercase , 0 ) self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , len(lowercase ) ) self.assertEqual(lowercase , all_size_a + len(lowercase ) ) A__ = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=lowercase ) self.assertGreaterEqual(len(lowercase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' pass def UpperCamelCase ( self ) -> Any: '''simple docstring''' pass def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.get_tokenizer() A__ = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(lowercase , [SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) A__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) A__ = tokenizer.convert_tokens_to_ids(lowercase ) # fmt: off self.assertListEqual(lowercase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on A__ = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off A__ = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name="microsoft/speecht5_asr" , revision="c5ef64c71905caeccde0e4462ef3f9077224c524" , sequences=lowercase , )
68
0
'''simple docstring''' from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
351
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """wavlm""" def __init__( self : List[str] , _lowerCAmelCase : List[Any]=3_2 , _lowerCAmelCase : int=7_6_8 , _lowerCAmelCase : Any=1_2 , _lowerCAmelCase : Union[str, Any]=1_2 , _lowerCAmelCase : List[Any]=3_0_7_2 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : Dict=1e-5 , _lowerCAmelCase : List[Any]="group" , _lowerCAmelCase : Optional[Any]="gelu" , _lowerCAmelCase : Dict=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , _lowerCAmelCase : Any=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase : Optional[Any]=(1_0, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : int=1_2_8 , _lowerCAmelCase : Tuple=1_6 , _lowerCAmelCase : Optional[int]=3_2_0 , _lowerCAmelCase : Union[str, Any]=8_0_0 , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Any=0.05 , _lowerCAmelCase : List[Any]=1_0 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Union[str, Any]=1_0 , _lowerCAmelCase : List[Any]=3_2_0 , _lowerCAmelCase : int=2 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Optional[int]=1_0_0 , _lowerCAmelCase : Tuple=2_5_6 , _lowerCAmelCase : Union[str, Any]=2_5_6 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple="mean" , _lowerCAmelCase : Any=False , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Any=2_5_6 , _lowerCAmelCase : Tuple=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , _lowerCAmelCase : Dict=(5, 3, 3, 1, 1) , _lowerCAmelCase : Dict=(1, 2, 3, 1, 1) , _lowerCAmelCase : int=5_1_2 , _lowerCAmelCase : Optional[int]=8_0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Any=3 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : List[Any]=3 , _lowerCAmelCase : List[str]=None , **_lowerCAmelCase : List[str] , ): '''simple docstring''' super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase) __lowercase =hidden_size __lowercase =feat_extract_norm __lowercase =feat_extract_activation __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =conv_bias __lowercase =num_buckets __lowercase =max_bucket_distance __lowercase =num_conv_pos_embeddings __lowercase =num_conv_pos_embedding_groups __lowercase =len(self.conv_dim) __lowercase =num_hidden_layers __lowercase =intermediate_size __lowercase =hidden_act __lowercase =num_attention_heads __lowercase =hidden_dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =feat_proj_dropout __lowercase =final_dropout __lowercase =layerdrop __lowercase =layer_norm_eps __lowercase =initializer_range __lowercase =num_ctc_classes __lowercase =vocab_size __lowercase =do_stable_layer_norm __lowercase =use_weighted_layer_sum __lowercase =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase =apply_spec_augment __lowercase =mask_time_prob __lowercase =mask_time_length __lowercase =mask_time_min_masks __lowercase =mask_feature_prob __lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations __lowercase =num_codevectors_per_group __lowercase =num_codevector_groups __lowercase =contrastive_logits_temperature __lowercase =num_negatives __lowercase =codevector_dim __lowercase =proj_codevector_dim __lowercase =diversity_loss_weight # ctc loss __lowercase =ctc_loss_reduction __lowercase =ctc_zero_infinity # adapter __lowercase =add_adapter __lowercase =adapter_kernel_size __lowercase =adapter_stride __lowercase =num_adapter_layers __lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =xvector_output_dim @property def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
48
0
'''simple docstring''' import os lowerCAmelCase__ = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def _A ( A__ ): """simple docstring""" __lowercase = 0 __lowercase = 0 while index < len(A__ ) - 1: __lowercase = SYMBOLS[numerals[index]] __lowercase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _A ( A__ ): """simple docstring""" __lowercase = '''''' __lowercase = num // 1000 numerals += m_count * "M" num %= 1000 __lowercase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 __lowercase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _A ( A__ = "/p089_roman.txt" ): """simple docstring""" __lowercase = 0 with open(os.path.dirname(A__ ) + roman_numerals_filename ) as filea: __lowercase = filea.readlines() for line in lines: __lowercase = line.strip() __lowercase = parse_roman_numerals(A__ ) __lowercase = generate_roman_numerals(A__ ) savings += len(A__ ) - len(A__ ) return savings if __name__ == "__main__": print(f'{solution() = }')
104
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ = logging.getLogger() def _A ( ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''-f''' ) __lowercase = parser.parse_args() return args.f def _A ( A__ ): """simple docstring""" __lowercase = {} __lowercase = os.path.join(A__ , '''all_results.json''' ) if os.path.exists(A__ ): with open(A__ , '''r''' ) as f: __lowercase = json.load(A__ ) else: raise ValueError(F"can't find {path}" ) return results def _A ( ): """simple docstring""" __lowercase = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowerCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @classmethod def SCREAMING_SNAKE_CASE ( cls : List[str] ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(cls.tmpdir ,'''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __lowercase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def SCREAMING_SNAKE_CASE ( cls : str ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.7_5 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertLess(result['''perplexity'''] ,1_0_0 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertLess(result['''perplexity'''] ,4_2 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Tuple ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __lowercase = 7 if get_gpu_count() > 1 else 2 __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.7_5 ) self.assertLess(result['''train_loss'''] ,0.5 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] ,2_8 ) self.assertGreaterEqual(result['''eval_exact'''] ,2_8 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.8 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_rouge1'''] ,1_0 ) self.assertGreaterEqual(result['''eval_rouge2'''] ,2 ) self.assertGreaterEqual(result['''eval_rougeL'''] ,7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] ,7 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_bleu'''] ,3_0 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''translation_no_trainer''' ) ) ) @slow def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase__ ) __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] ,0.1_0 ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] ,0.6 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''image_classification_no_trainer''' ) ) )
104
1
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowercase_ = Mapping[str, np.ndarray] lowercase_ = Mapping[str, Any] # Is a nested dict. lowercase_ = 0.01 @dataclasses.dataclass(frozen=UpperCAmelCase ) class SCREAMING_SNAKE_CASE : _UpperCamelCase : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. _UpperCamelCase : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. _UpperCamelCase : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. _UpperCamelCase : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. _UpperCamelCase : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions _UpperCamelCase : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files _UpperCamelCase : Optional[str] = None # Templates used to generate this protein (prediction-only) _UpperCamelCase : Optional[Sequence[str]] = None # Chain corresponding to each parent _UpperCamelCase : Optional[Sequence[int]] = None def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Protein: lowercase__ = R'(\[[A-Z]+\]\n)' lowercase__ = [tag.strip() for tag in re.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0] lowercase__ = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) lowercase__ = ["N", "CA", "C"] lowercase__ = None lowercase__ = None lowercase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ = g[1][0].strip() for i in range(len(_SCREAMING_SNAKE_CASE ) ): if seq[i] not in residue_constants.restypes: lowercase__ = 'X' # FIXME: strings are immutable lowercase__ = np.array( [residue_constants.restype_order.get(_SCREAMING_SNAKE_CASE , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ = [] for axis in range(3 ): tertiary.append(list(map(_SCREAMING_SNAKE_CASE , g[1][axis].split() ) ) ) lowercase__ = np.array(_SCREAMING_SNAKE_CASE ) lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_SCREAMING_SNAKE_CASE ): lowercase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) lowercase__ = np.zeros( ( len(_SCREAMING_SNAKE_CASE ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_SCREAMING_SNAKE_CASE ): lowercase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_SCREAMING_SNAKE_CASE , atom_mask=_SCREAMING_SNAKE_CASE , aatype=_SCREAMING_SNAKE_CASE , residue_index=np.arange(len(_SCREAMING_SNAKE_CASE ) ) , b_factors=_SCREAMING_SNAKE_CASE , ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 ) -> List[str]: lowercase__ = [] lowercase__ = prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) lowercase__ = prot.parents lowercase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ = [p for i, p in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if i == chain_id] if parents is None or len(_SCREAMING_SNAKE_CASE ) == 0: lowercase__ = ['N/A'] pdb_headers.append(F"""PARENT {" ".join(_SCREAMING_SNAKE_CASE )}""" ) return pdb_headers def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: lowercase__ = [] lowercase__ = pdb_str.split('\n' ) lowercase__ = prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) lowercase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase__ = [] if prot.parents_chain_index is not None: lowercase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_SCREAMING_SNAKE_CASE ) , [] ) parent_dict[str(_SCREAMING_SNAKE_CASE )].append(_SCREAMING_SNAKE_CASE ) lowercase__ = max([int(_SCREAMING_SNAKE_CASE ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ = parent_dict.get(str(_SCREAMING_SNAKE_CASE ) , ['N/A'] ) parents_per_chain.append(_SCREAMING_SNAKE_CASE ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ = [['N/A']] def make_parent_line(_SCREAMING_SNAKE_CASE ) -> str: return F"""PARENT {" ".join(_SCREAMING_SNAKE_CASE )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ = 0 for i, l in enumerate(_SCREAMING_SNAKE_CASE ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_SCREAMING_SNAKE_CASE ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_SCREAMING_SNAKE_CASE ): lowercase__ = parents_per_chain[chain_counter] else: lowercase__ = ['N/A'] out_pdb_lines.append(make_parent_line(_SCREAMING_SNAKE_CASE ) ) return "\n".join(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = residue_constants.restypes + ['X'] def res_atoa(_SCREAMING_SNAKE_CASE ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) lowercase__ = residue_constants.atom_types lowercase__ = [] lowercase__ = prot.atom_mask lowercase__ = prot.aatype lowercase__ = prot.atom_positions lowercase__ = prot.residue_index.astype(np.intaa ) lowercase__ = prot.b_factors lowercase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) lowercase__ = get_pdb_headers(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: pdb_lines.extend(_SCREAMING_SNAKE_CASE ) lowercase__ = aatype.shape[0] lowercase__ = 1 lowercase__ = 0 lowercase__ = string.ascii_uppercase lowercase__ = None # Add all atom sites. for i in range(_SCREAMING_SNAKE_CASE ): lowercase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_SCREAMING_SNAKE_CASE , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase__ = 'ATOM' lowercase__ = atom_name if len(_SCREAMING_SNAKE_CASE ) == 4 else F""" {atom_name}""" lowercase__ = '' lowercase__ = '' lowercase__ = 1.0_0 lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ = '' lowercase__ = 'A' if chain_index is not None: lowercase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ = ( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(_SCREAMING_SNAKE_CASE ) atom_index += 1 lowercase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ = True lowercase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ = 'TER' lowercase__ = ( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(_SCREAMING_SNAKE_CASE ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , ) -> Protein: return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=_SCREAMING_SNAKE_CASE , remark=_SCREAMING_SNAKE_CASE , parents=_SCREAMING_SNAKE_CASE , parents_chain_index=_SCREAMING_SNAKE_CASE , )
269
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Optional[Any] = 'transfo-xl' _UpperCamelCase : Any = ['mems'] _UpperCamelCase : Any = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[Any] , a : Optional[int]=267_735 , a : str=[20_000, 40_000, 200_000] , a : str=1_024 , a : str=1_024 , a : int=16 , a : Optional[int]=64 , a : Optional[int]=4_096 , a : int=4 , a : Tuple=False , a : Any=18 , a : Tuple=1_600 , a : Union[str, Any]=1_000 , a : str=True , a : Dict=True , a : Any=0 , a : List[Any]=-1 , a : List[Any]=True , a : Tuple=0.1 , a : List[Any]=0.0 , a : Optional[Any]=True , a : int="normal" , a : Optional[Any]=0.01 , a : str=0.01 , a : List[Any]=0.02 , a : List[Any]=1E-5 , a : Optional[Any]=0 , **a : Optional[int] , )-> Optional[int]: """simple docstring""" lowercase__ = vocab_size lowercase__ = [] self.cutoffs.extend(a ) if proj_share_all_but_first: lowercase__ = [False] + [True] * len(self.cutoffs ) else: lowercase__ = [False] + [False] * len(self.cutoffs ) lowercase__ = d_model lowercase__ = d_embed lowercase__ = d_head lowercase__ = d_inner lowercase__ = div_val lowercase__ = pre_lnorm lowercase__ = n_layer lowercase__ = n_head lowercase__ = mem_len lowercase__ = same_length lowercase__ = attn_type lowercase__ = clamp_len lowercase__ = sample_softmax lowercase__ = adaptive lowercase__ = dropout lowercase__ = dropatt lowercase__ = untie_r lowercase__ = init lowercase__ = init_range lowercase__ = proj_init_std lowercase__ = init_std lowercase__ = layer_norm_epsilon super().__init__(eos_token_id=a , **a ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def SCREAMING_SNAKE_CASE_ ( self : Any , a : Optional[int] )-> Optional[int]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
269
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case : Any = logging.get_logger(__name__) def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple ): """simple docstring""" a :Any = b.T a :Tuple = np.sum(np.square(UpperCAmelCase_ ) , axis=1 ) a :Union[str, Any] = np.sum(np.square(UpperCAmelCase_ ) , axis=0 ) a :Tuple = np.matmul(UpperCAmelCase_ , UpperCAmelCase_ ) a :List[str] = aa[:, None] - 2 * ab + ba[None, :] return d def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int ): """simple docstring""" a :Union[str, Any] = x.reshape(-1 , 3 ) a :List[Any] = squared_euclidean_distance(UpperCAmelCase_ , UpperCAmelCase_ ) return np.argmin(UpperCAmelCase_ , axis=1 ) class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = ['pixel_values'] def __init__( self , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = True , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) a :int = size if size is not None else {'''height''': 256, '''width''': 256} a :Any = get_size_dict(_lowerCamelCase ) a :List[Any] = np.array(_lowerCamelCase ) if clusters is not None else None a :Optional[Any] = do_resize a :Any = size a :Dict = resample a :Optional[int] = do_normalize a :Optional[int] = do_color_quantize def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): a :Optional[Any] = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( _lowerCamelCase , size=(size['''height'''], size['''width''']) , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None , ): a :int = rescale(image=_lowerCamelCase , scale=1 / 127.5 , data_format=_lowerCamelCase ) a :List[Any] = image - 1 return image def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): a :Optional[int] = do_resize if do_resize is not None else self.do_resize a :Optional[Any] = size if size is not None else self.size a :Optional[int] = get_size_dict(_lowerCamelCase ) a :Union[str, Any] = resample if resample is not None else self.resample a :int = do_normalize if do_normalize is not None else self.do_normalize a :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize a :List[str] = clusters if clusters is not None else self.clusters a :List[str] = np.array(_lowerCamelCase ) a :List[Any] = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. a :Tuple = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: a :List[str] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_normalize: a :List[Any] = [self.normalize(image=_lowerCamelCase ) for image in images] if do_color_quantize: a :Union[str, Any] = [to_channel_dimension_format(_lowerCamelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) a :Union[str, Any] = np.array(_lowerCamelCase ) a :List[Any] = color_quantize(_lowerCamelCase , _lowerCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) a :List[str] = images.shape[0] a :Optional[Any] = images.reshape(_lowerCamelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. a :Optional[int] = list(_lowerCamelCase ) else: a :Tuple = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] a :Any = {'''input_ids''': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
94
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class __lowerCAmelCase ( lowerCamelCase__ ): # to overwrite at feature extractactor specific tests __lowerCamelCase = None __lowerCamelCase = None @property def snake_case ( self ): """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_snake_case , """feature_size""" ) ) self.assertTrue(hasattr(_snake_case , """sampling_rate""" ) ) self.assertTrue(hasattr(_snake_case , """padding_value""" ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_snake_case ) == len(_snake_case ) for x, y in zip(_snake_case , processed_features[input_name] ) ) ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case ) _lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) _lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case ) _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) _lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case ) _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="""tf""" ) _lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def snake_case ( self , _snake_case=False ): """simple docstring""" def _inputs_have_equal_length(_snake_case ): _lowerCAmelCase = len(input[0] ) for input_slice in input[1:]: if len(_snake_case ) != length: return False return True def _inputs_are_equal(_snake_case , _snake_case ): if len(_snake_case ) != len(_snake_case ): return False for input_slice_a, input_slice_a in zip(_snake_case , _snake_case ): if not np.allclose(np.asarray(_snake_case ) , np.asarray(_snake_case ) , atol=1e-3 ): return False return True _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_snake_case ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = self.feat_extract_tester.seq_length_diff _lowerCAmelCase = self.feat_extract_tester.max_seq_length + pad_diff _lowerCAmelCase = self.feat_extract_tester.min_seq_length _lowerCAmelCase = self.feat_extract_tester.batch_size _lowerCAmelCase = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _lowerCAmelCase = feat_extract.pad(_snake_case , padding=_snake_case ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""max_length""" , max_length=len(speech_inputs[-1] ) ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""np""" ) _lowerCAmelCase = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding="""max_length""" )[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=_snake_case , return_tensors="""np""" ) _lowerCAmelCase = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy _lowerCAmelCase = feat_extract.pad(_snake_case , pad_to_multiple_of=10 ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , pad_to_multiple_of=10 ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_snake_case ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_snake_case , return_tensors="""np""" , ) _lowerCAmelCase = input_a[input_name] self.assertTrue(all(len(_snake_case ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) ) _lowerCAmelCase = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_snake_case ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct _lowerCAmelCase = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def snake_case ( self , _snake_case=False ): """simple docstring""" def _inputs_have_equal_length(_snake_case ): _lowerCAmelCase = len(input[0] ) for input_slice in input[1:]: if len(_snake_case ) != length: return False return True def _inputs_are_equal(_snake_case , _snake_case ): if len(_snake_case ) != len(_snake_case ): return False for input_slice_a, input_slice_a in zip(_snake_case , _snake_case ): if not np.allclose(np.asarray(_snake_case ) , np.asarray(_snake_case ) , atol=1e-3 ): return False return True _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_snake_case ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) # truncate to smallest _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , truncation=_snake_case ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) ) _lowerCAmelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertFalse(_inputs_have_equal_length(_snake_case ) ) # truncate to smallest with np _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" , truncation=_snake_case , ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" ) _lowerCAmelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_snake_case ) ) # truncate to middle _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_snake_case , return_tensors="""np""" , ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_snake_case ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[1] ) , return_tensors="""np""" ) _lowerCAmelCase = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , truncation=_snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding="""longest""" , truncation=_snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding="""longest""" , truncation=_snake_case )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding="""max_length""" , truncation=_snake_case )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _lowerCAmelCase = 12 _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_snake_case , truncation=_snake_case , ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_snake_case , ) _lowerCAmelCase = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _lowerCAmelCase = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: _lowerCAmelCase = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertFalse(_inputs_have_equal_length(_snake_case ) ) def snake_case ( self ): """simple docstring""" self._check_padding(numpify=_snake_case ) def snake_case ( self ): """simple docstring""" self._check_padding(numpify=_snake_case ) def snake_case ( self ): """simple docstring""" self._check_truncation(numpify=_snake_case ) def snake_case ( self ): """simple docstring""" self._check_truncation(numpify=_snake_case ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""np""" )[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""np""" )[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""tf""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_dict _lowerCAmelCase = True _lowerCAmelCase = self.feature_extraction_class(**_snake_case ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = [len(_snake_case ) for x in speech_inputs] _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_dict _lowerCAmelCase = True _lowerCAmelCase = self.feature_extraction_class(**_snake_case ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = [len(_snake_case ) for x in speech_inputs] _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = min(_snake_case ) _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=_snake_case , truncation=_snake_case , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
82
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase = logging.get_logger(__name__) def lowerCamelCase_ ( UpperCamelCase__ : Any, UpperCamelCase__ : Optional[Any]=False ): '''simple docstring''' UpperCamelCase__ = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[Any]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ = '''''' else: UpperCamelCase__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) UpperCamelCase__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ = in_proj_bias[: config.hidden_size] UpperCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(UpperCamelCase__, UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Dict, UpperCamelCase__ : int, UpperCamelCase__ : Dict ): '''simple docstring''' UpperCamelCase__ = dct.pop(UpperCamelCase__ ) UpperCamelCase__ = val def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ = Image.open(requests.get(UpperCamelCase__, stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any, UpperCamelCase__ : int, UpperCamelCase__ : Optional[Any]=False ): '''simple docstring''' UpperCamelCase__ = BitConfig( global_padding='''same''', layer_type='''bottleneck''', depths=(3, 4, 9), out_features=['''stage3'''], embedding_dynamic_padding=UpperCamelCase__, ) UpperCamelCase__ = ViTHybridConfig(backbone_config=UpperCamelCase__, image_size=384, num_labels=1000 ) UpperCamelCase__ = False # load original model from timm UpperCamelCase__ = timm.create_model(UpperCamelCase__, pretrained=UpperCamelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase__ = timm_model.state_dict() if base_model: remove_classification_head_(UpperCamelCase__ ) UpperCamelCase__ = create_rename_keys(UpperCamelCase__, UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) UpperCamelCase__ = '''huggingface/label-files''' UpperCamelCase__ = '''imagenet-1k-id2label.json''' UpperCamelCase__ = json.load(open(hf_hub_download(UpperCamelCase__, UpperCamelCase__, repo_type='''dataset''' ), '''r''' ) ) UpperCamelCase__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": UpperCamelCase__ = ViTHybridModel(UpperCamelCase__ ).eval() else: UpperCamelCase__ = ViTHybridForImageClassification(UpperCamelCase__ ).eval() model.load_state_dict(UpperCamelCase__ ) # create image processor UpperCamelCase__ = create_transform(**resolve_data_config({}, model=UpperCamelCase__ ) ) UpperCamelCase__ = transform.transforms UpperCamelCase__ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } UpperCamelCase__ = ViTHybridImageProcessor( do_resize=UpperCamelCase__, size={'''shortest_edge''': timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=UpperCamelCase__, crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]}, do_normalize=UpperCamelCase__, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), ) UpperCamelCase__ = prepare_img() UpperCamelCase__ = transform(UpperCamelCase__ ).unsqueeze(0 ) UpperCamelCase__ = processor(UpperCamelCase__, return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(UpperCamelCase__, UpperCamelCase__ ) # verify logits with torch.no_grad(): UpperCamelCase__ = model(UpperCamelCase__ ) UpperCamelCase__ = outputs.logits print('''Predicted class:''', logits.argmax(-1 ).item() ) if base_model: UpperCamelCase__ = timm_model.forward_features(UpperCamelCase__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(UpperCamelCase__, outputs.pooler_output, atol=1e-3 ) else: UpperCamelCase__ = timm_model(UpperCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCamelCase__, outputs.logits, atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(F"""ybelkada/{vit_name}""" ) processor.push_to_hub(F"""ybelkada/{vit_name}""" ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) lowercase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
35
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowercase = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Dict=None ): '''simple docstring''' require_version(deps[pkg], UpperCamelCase__ )
35
1
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files" , [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ] , ) def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json" , "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) SCREAMING_SNAKE_CASE_ : str = DatasetInfosDict.from_directory(lowerCAmelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( "dataset_info" , [ DatasetInfo(), DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=4_2 , ), ] , ) def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : DatasetInfo ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = str(lowerCAmelCase ) dataset_info.write_to_directory(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = DatasetInfo.from_directory(lowerCAmelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowerCAmelCase , "dataset_info.json" ) ) def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = DatasetInfo( description="foo" , citation="bar" , homepage="https://foo.bar" , license="CC0" , features=Features({"a": Value("int32" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train", "num_examples": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = dataset_info._to_yaml_dict() assert sorted(lowerCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = yaml.safe_dump(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = yaml.safe_load(lowerCAmelCase ) assert dataset_info_yaml_dict == reloaded def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = DatasetInfo() SCREAMING_SNAKE_CASE_ : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict" , [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=4_2 , ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=4_2 ), "v2": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : DatasetInfosDict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = str(lowerCAmelCase ) dataset_infos_dict.write_to_directory(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = DatasetInfosDict.from_directory(lowerCAmelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): SCREAMING_SNAKE_CASE_ : Any = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml SCREAMING_SNAKE_CASE_ : Tuple = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowerCAmelCase , "README.md" ) )
18
from collections import defaultdict def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Tuple = True for v in tree[start]: if v not in visited: ret += dfs(lowerCAmelCase ) if ret % 2 == 0: cuts.append(lowerCAmelCase ) return ret def _snake_case ( ): """simple docstring""" dfs(1 ) if __name__ == "__main__": __lowerCamelCase , __lowerCamelCase : Union[str, Any] = 10, 9 __lowerCamelCase : Optional[int] = defaultdict(list) __lowerCamelCase : dict[int, bool] = {} __lowerCamelCase : list[int] = [] __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Any = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
1
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: lowercase__ = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase__ = key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' ) lowercase__ = key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' ) lowercase__ = key.replace('heads.cmd.itm_head.cls' , 'itm_head' ) lowercase__ = key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' ) lowercase__ = key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' ) lowercase__ = key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' ) lowercase__ = key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' ) lowercase__ = key.replace('mm_text_projection' , 'flava.text_to_mm_projection' ) lowercase__ = key.replace('mm_image_projection' , 'flava.image_to_mm_projection' ) lowercase__ = key.replace('image_encoder.module' , 'flava.image_model' ) lowercase__ = key.replace('text_encoder.module' , 'flava.text_model' ) lowercase__ = key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' ) lowercase__ = key.replace('mm_encoder.module' , 'flava.multimodal_model' ) lowercase__ = key.replace('text_projection' , 'flava.text_projection' ) lowercase__ = key.replace('image_projection' , 'flava.image_projection' ) lowercase__ = value.float() for key, value in codebook_state_dict.items(): lowercase__ = value return upgrade @torch.no_grad() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[Any]: if config_path is not None: lowercase__ = FlavaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: lowercase__ = FlavaConfig() lowercase__ = FlavaForPreTraining(_SCREAMING_SNAKE_CASE ).eval() lowercase__ = convert_dalle_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , save_checkpoint=_SCREAMING_SNAKE_CASE ) if os.path.exists(_SCREAMING_SNAKE_CASE ): lowercase__ = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) else: lowercase__ = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='cpu' ) lowercase__ = upgrade_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) lowercase__ = hf_model.state_dict() lowercase__ = count_parameters(_SCREAMING_SNAKE_CASE ) lowercase__ = count_parameters(_SCREAMING_SNAKE_CASE ) + count_parameters(_SCREAMING_SNAKE_CASE ) assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowercase_ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
361
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Optional[Any] = 'transfo-xl' _UpperCamelCase : Any = ['mems'] _UpperCamelCase : Any = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[Any] , a : Optional[int]=267_735 , a : str=[20_000, 40_000, 200_000] , a : str=1_024 , a : str=1_024 , a : int=16 , a : Optional[int]=64 , a : Optional[int]=4_096 , a : int=4 , a : Tuple=False , a : Any=18 , a : Tuple=1_600 , a : Union[str, Any]=1_000 , a : str=True , a : Dict=True , a : Any=0 , a : List[Any]=-1 , a : List[Any]=True , a : Tuple=0.1 , a : List[Any]=0.0 , a : Optional[Any]=True , a : int="normal" , a : Optional[Any]=0.01 , a : str=0.01 , a : List[Any]=0.02 , a : List[Any]=1E-5 , a : Optional[Any]=0 , **a : Optional[int] , )-> Optional[int]: """simple docstring""" lowercase__ = vocab_size lowercase__ = [] self.cutoffs.extend(a ) if proj_share_all_but_first: lowercase__ = [False] + [True] * len(self.cutoffs ) else: lowercase__ = [False] + [False] * len(self.cutoffs ) lowercase__ = d_model lowercase__ = d_embed lowercase__ = d_head lowercase__ = d_inner lowercase__ = div_val lowercase__ = pre_lnorm lowercase__ = n_layer lowercase__ = n_head lowercase__ = mem_len lowercase__ = same_length lowercase__ = attn_type lowercase__ = clamp_len lowercase__ = sample_softmax lowercase__ = adaptive lowercase__ = dropout lowercase__ = dropatt lowercase__ = untie_r lowercase__ = init lowercase__ = init_range lowercase__ = proj_init_std lowercase__ = init_std lowercase__ = layer_norm_epsilon super().__init__(eos_token_id=a , **a ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def SCREAMING_SNAKE_CASE_ ( self : Any , a : Optional[int] )-> Optional[int]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
269
0
'''simple docstring''' from __future__ import annotations def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = 0.00 _UpperCamelCase : Any = 0 for resistor in resistors: if resistor <= 0: _UpperCamelCase : Optional[int] = f'Resistor at index {index} has a negative or zero value!' raise ValueError(UpperCAmelCase_ ) first_sum += 1 / float(UpperCAmelCase_ ) index += 1 return 1 / first_sum def A__ ( UpperCAmelCase_ ): _UpperCamelCase : str = 0.00 _UpperCamelCase : Tuple = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _UpperCamelCase : Optional[Any] = f'Resistor at index {index} has a negative value!' raise ValueError(UpperCAmelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
83
'''simple docstring''' def A__ ( UpperCAmelCase_ ): if num < 0: return False _UpperCamelCase : int = num _UpperCamelCase : int = 0 while num > 0: _UpperCamelCase : str = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
83
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ :str = '''▁''' lowerCAmelCase__ :int = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase__ :Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } lowerCAmelCase__ :List[str] = { '''google/pegasus-xsum''': 5_1_2, } lowerCAmelCase__ :List[str] = logging.get_logger(__name__) class __a ( UpperCAmelCase ): _a : Any = VOCAB_FILES_NAMES _a : Tuple = VOCAB_FILES_NAMES _a : str = PRETRAINED_VOCAB_FILES_MAP _a : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : List[Any] = ['input_ids', 'attention_mask'] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<mask_2>" , _SCREAMING_SNAKE_CASE="<mask_1>" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=103 , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" _UpperCAmelCase = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) _UpperCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) _UpperCAmelCase = additional_special_tokens_extended else: _UpperCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = mask_token_sent _UpperCAmelCase = vocab_file _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # add special tokens to encoder dict _UpperCAmelCase = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} @property def UpperCAmelCase__ ( self ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def UpperCAmelCase__ ( self ) -> Dict[str, int]: """simple docstring""" _UpperCAmelCase = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] _UpperCAmelCase = self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) return sp_id + self.offset def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: _UpperCAmelCase = self.sp_model.IdToPiece(index - self.offset ) return token def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token _UpperCAmelCase = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=False ) -> List[str]: """simple docstring""" return 1 def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
351
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def lowerCAmelCase__ ( a__: Dict , a__: Dict , a__: Any , a__: Optional[int]=None , a__: str=None , a__: List[Any]=None , a__: Optional[int]=None , a__: Union[str, Any]=None , ) -> Tuple: '''simple docstring''' if attention_mask is None: _UpperCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _UpperCAmelCase = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=a__ ) if decoder_head_mask is None: _UpperCAmelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=a__ ) if cross_attn_head_mask is None: _UpperCAmelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=a__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=20 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , ) -> Any: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = encoder_layerdrop _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = bos_token_id def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = self.eos_token_id # Eos Token _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = self.get_config() _UpperCAmelCase = prepare_mam_aaa_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return config, inputs_dict def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = MaMaaaModel(config=_SCREAMING_SNAKE_CASE ).get_decoder().to(_SCREAMING_SNAKE_CASE ).eval() _UpperCAmelCase = inputs_dict['input_ids'] _UpperCAmelCase = inputs_dict['attention_mask'] _UpperCAmelCase = inputs_dict['head_mask'] # first forward pass _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )['last_hidden_state'] _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )[ 'last_hidden_state' ] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-2 ) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = MaMaaaModel(config=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ).eval() _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.encoder_last_hidden_state _UpperCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = model.get_encoder() encoder.save_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MaMaaaEncoder.from_pretrained(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = model.get_decoder() decoder.save_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MaMaaaDecoder.from_pretrained(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : List[Any] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) _a : List[str] = (MaMaaaForConditionalGeneration,) if is_torch_available() else () _a : int = ( { 'conversational': MaMaaaForConditionalGeneration, 'feature-extraction': MaMaaaModel, 'summarization': MaMaaaForConditionalGeneration, 'text2text-generation': MaMaaaForConditionalGeneration, 'translation': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) _a : str = True _a : Union[str, Any] = True _a : Optional[int] = False _a : Union[str, Any] = False def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = MaMaaaModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertEqual(info['missing_keys'] , [] ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = copy.deepcopy(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if not self.is_encoder_decoder: _UpperCAmelCase = inputs['input_ids'] del inputs["input_ids"] else: _UpperCAmelCase = inputs['input_ids'] _UpperCAmelCase = inputs.get('decoder_input_ids' , _SCREAMING_SNAKE_CASE ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model.get_input_embeddings() if not self.is_encoder_decoder: _UpperCAmelCase = wte(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = wte(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = wte(_SCREAMING_SNAKE_CASE ) with torch.no_grad(): model(**_SCREAMING_SNAKE_CASE )[0] def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = input_dict['input_ids'] _UpperCAmelCase = input_ids.ne(1 ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MaMaaaForConditionalGeneration(_SCREAMING_SNAKE_CASE ).eval().to(_SCREAMING_SNAKE_CASE ) if torch_device == "cuda": model.half() model.generate(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) model.generate(num_beams=4 , do_sample=_SCREAMING_SNAKE_CASE , early_stopping=_SCREAMING_SNAKE_CASE , num_return_sequences=3 ) def lowerCAmelCase__ ( a__: Tuple ) -> Optional[int]: '''simple docstring''' return torch.tensor(a__ , dtype=torch.long , device=a__ ) lowerCAmelCase__ :str = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __a ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) _UpperCAmelCase = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) _UpperCAmelCase = prepare_mam_aaa_inputs_dict(model.config , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )[0] _UpperCAmelCase = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # change to expected output here _UpperCAmelCase = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(_SCREAMING_SNAKE_CASE ) # change to intended input _UpperCAmelCase = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) _UpperCAmelCase = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) _UpperCAmelCase = prepare_mam_aaa_inputs_dict(model.config , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )[0] _UpperCAmelCase = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # change to expected output here _UpperCAmelCase = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) _UpperCAmelCase = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) _UpperCAmelCase = model.generate( input_ids=dct['input_ids'].to(_SCREAMING_SNAKE_CASE ) , attention_mask=dct['attention_mask'].to(_SCREAMING_SNAKE_CASE ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) _UpperCAmelCase = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] _UpperCAmelCase = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) assert generated == expected_en
185
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ :str = "▁" lowercase__ :List[str] = {"vocab_file": "spiece.model"} lowercase__ :List[Any] = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } lowercase__ :Optional[int] = { "google/pegasus-xsum": 512, } lowercase__ :str = logging.get_logger(__name__) class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Dict =VOCAB_FILES_NAMES lowercase_ : Optional[Any] =VOCAB_FILES_NAMES lowercase_ : List[str] =PRETRAINED_VOCAB_FILES_MAP lowercase_ : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : List[str] =['''input_ids''', '''attention_mask'''] def __init__( self ,A__ ,A__="<pad>" ,A__="</s>" ,A__="<unk>" ,A__="<mask_2>" ,A__="<mask_1>" ,A__=None ,A__=1_0_3 ,A__ = None ,**A__ ,): lowercase = offset if additional_special_tokens is not None: if not isinstance(A__ ,A__): raise TypeError( f'additional_special_tokens should be of type {type(A__)}, but is' f' {type(A__)}') lowercase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(A__) ,self.offset - 1) ] if len(set(A__)) != len(A__): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.') lowercase = additional_special_tokens_extended else: lowercase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 ,self.offset)] lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A__ ,unk_token=A__ ,mask_token=A__ ,pad_token=A__ ,mask_token_sent=A__ ,offset=A__ ,additional_special_tokens=A__ ,sp_model_kwargs=self.sp_model_kwargs ,**A__ ,) lowercase = mask_token_sent lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(A__) # add special tokens to encoder dict lowercase = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, }) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 ,self.offset - 1)}) lowercase = {v: k for k, v in self.encoder.items()} @property def A__ ( self): return len(self.sp_model) + self.offset def A__ ( self): lowercase = {self.convert_ids_to_tokens(A__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self): lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self ,A__): lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs'''): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def A__ ( self ,A__): return self.sp_model.encode(A__ ,out_type=A__) def A__ ( self ,A__): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowercase = self.sp_model.piece_to_id(A__) return sp_id + self.offset def A__ ( self ,A__): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowercase = self.sp_model.IdToPiece(index - self.offset) return token def A__ ( self ,A__): lowercase = [] lowercase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A__) + token lowercase = [] else: current_sub_tokens.append(A__) out_string += self.sp_model.decode(A__) return out_string.strip() def A__ ( self ,A__=False): return 1 def A__ ( self ,A__): lowercase = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def A__ ( self ,A__ ,A__ = None ,A__ = False): if already_has_special_tokens: return self._special_token_mask(A__) elif token_ids_a is None: return self._special_token_mask(A__) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def A__ ( self ,A__ ,A__=None): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A__ ( self ,A__ ,A__ = None): if not os.path.isdir(A__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return lowercase = os.path.join( A__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(A__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file ,A__) elif not os.path.isfile(self.vocab_file): with open(A__ ,'''wb''') as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(A__) return (out_vocab_file,)
101
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class snake_case__ (TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Any ) -> Optional[Any]: super().__init__(features=__lowerCamelCase ) a = torch_tensor_kwargs import torch # noqa import torch at initialization def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Dict ) -> Dict: import torch if isinstance(__lowerCamelCase , __lowerCamelCase ) and column: if all( isinstance(__lowerCamelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(__lowerCamelCase ) return column def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : List[Any] ) -> str: import torch if isinstance(__lowerCamelCase , (str, bytes, type(__lowerCamelCase )) ): return value elif isinstance(__lowerCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() a = {} if isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): a = {"dtype": torch.intaa} elif isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): a = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__lowerCamelCase , PIL.Image.Image ): a = np.asarray(__lowerCamelCase ) return torch.tensor(__lowerCamelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Tuple ) -> List[str]: import torch # support for torch, tf, jax etc. if hasattr(__lowerCamelCase , "__array__" ) and not isinstance(__lowerCamelCase , torch.Tensor ): a = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__lowerCamelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] ) elif isinstance(__lowerCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] ) return self._tensorize(__lowerCamelCase ) def __UpperCAmelCase ( self : int , __lowerCamelCase : dict ) -> str: return map_nested(self._recursive_tensorize , __lowerCamelCase , map_list=__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : pa.Table ) -> Mapping: a = self.numpy_arrow_extractor().extract_row(__lowerCamelCase ) a = self.python_features_decoder.decode_row(__lowerCamelCase ) return self.recursive_tensorize(__lowerCamelCase ) def __UpperCAmelCase ( self : int , __lowerCamelCase : pa.Table ) -> "torch.Tensor": a = self.numpy_arrow_extractor().extract_column(__lowerCamelCase ) a = self.python_features_decoder.decode_column(__lowerCamelCase , pa_table.column_names[0] ) a = self.recursive_tensorize(__lowerCamelCase ) a = self._consolidate(__lowerCamelCase ) return column def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : pa.Table ) -> Mapping: a = self.numpy_arrow_extractor().extract_batch(__lowerCamelCase ) a = self.python_features_decoder.decode_batch(__lowerCamelCase ) a = self.recursive_tensorize(__lowerCamelCase ) for column_name in batch: a = self._consolidate(batch[column_name] ) return batch
107
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = StableDiffusionSAGPipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' torch.manual_seed(0) __A : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __A : Dict = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0) __A : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0) __A : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __A : Any = CLIPTextModel(_UpperCAmelCase) __A : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') __A : Tuple = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=0): '''simple docstring''' if str(_UpperCAmelCase).startswith('mps'): __A : int = torch.manual_seed(_UpperCAmelCase) else: __A : List[Any] = torch.Generator(device=_UpperCAmelCase).manual_seed(_UpperCAmelCase) __A : str = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4') __A : Dict = sag_pipe.to(_UpperCAmelCase) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : Union[str, Any] = '.' __A : Any = torch.manual_seed(0) __A : List[Any] = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np') __A : List[str] = output.images __A : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __A : str = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') __A : int = sag_pipe.to(_UpperCAmelCase) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : Union[str, Any] = '.' __A : Optional[int] = torch.manual_seed(0) __A : Tuple = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np') __A : Dict = output.images __A : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __A : Optional[int] = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') __A : List[str] = sag_pipe.to(_UpperCAmelCase) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : Any = '.' __A : List[str] = torch.manual_seed(0) __A : Optional[Any] = sag_pipe( [prompt] , width=768 , height=512 , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) __A : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
190
'''simple docstring''' from collections.abc import Iterable from typing import Any class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase = None): '''simple docstring''' __A : str = value __A : Node | None = None # Added in order to delete a node easier __A : Node | None = None __A : Node | None = None def __repr__( self): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value) return pformat({F'{self.value}': (self.left, self.right)} , indent=1) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase = None): '''simple docstring''' __A : int = root def __str__( self): '''simple docstring''' return str(self.root) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if new_children is not None: # reset its kids __A : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(_UpperCAmelCase): # If it is the right children __A : int = new_children else: __A : Union[str, Any] = new_children else: __A : Tuple = new_children def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.root is None def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Dict = Node(_UpperCAmelCase) # create a new Node if self.empty(): # if Tree is empty __A : Union[str, Any] = new_node # set its root else: # Tree is not empty __A : Dict = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: __A : Tuple = new_node # We insert the new node in a leaf break else: __A : str = parent_node.left else: if parent_node.right is None: __A : List[str] = new_node break else: __A : int = parent_node.right __A : int = parent_node def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase): '''simple docstring''' for value in values: self.__insert(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if self.empty(): raise IndexError('Warning: Tree is empty! please use another.') else: __A : Any = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: __A : List[Any] = node.left if value < node.value else node.right return node def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase = None): '''simple docstring''' if node is None: if self.root is None: return None __A : str = self.root if not self.empty(): while node.right is not None: __A : Dict = node.right return node def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase = None): '''simple docstring''' if node is None: __A : Optional[Any] = self.root if self.root is None: return None if not self.empty(): __A : Optional[int] = self.root while node.left is not None: __A : Tuple = node.left return node def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = self.search(_UpperCAmelCase) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_UpperCAmelCase , _UpperCAmelCase) elif node.left is None: # Has only right children self.__reassign_nodes(_UpperCAmelCase , node.right) elif node.right is None: # Has only left children self.__reassign_nodes(_UpperCAmelCase , node.left) else: __A : str = self.get_max( node.left) # Gets the max value of the left branch self.remove(tmp_node.value) # type: ignore __A : List[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left) yield from self.preorder_traverse(node.right) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase=None): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root) else: return traversal_function(self.root) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if node: self.inorder(_UpperCAmelCase , node.left) arr.append(node.value) self.inorder(_UpperCAmelCase , node.right) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : list[int] = [] self.inorder(_UpperCAmelCase , _UpperCAmelCase) # append all values to list using inorder traversal return arr[k - 1] def _lowerCAmelCase ( __snake_case : Node | None ) -> list[Node]: __A : Tuple = [] if curr_node is not None: __A : Optional[Any] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _lowerCAmelCase ( ) -> None: __A : Optional[int] = (8, 3, 6, 1, 10, 14, 13, 4, 7) __A : str = BinarySearchTree() for i in testlist: t.insert(__snake_case ) # Prints all the elements of the list in order traversal print(__snake_case ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(__snake_case ) print(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
190
1
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , *__lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' super().__init__(*__lowerCamelCase , **__lowerCamelCase ) __A : Dict = {} def UpperCamelCase__( self , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' __A : str = super().add_tokens(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ''' `placeholder_token` that is not already in the tokenizer.''' ) def UpperCamelCase__( self , __lowerCamelCase , *__lowerCamelCase , __lowerCamelCase=1 , **__lowerCamelCase ): '''simple docstring''' __A : Tuple = [] if num_vec_per_token == 1: self.try_adding_tokens(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) output.append(__lowerCamelCase ) else: __A : Dict = [] for i in range(__lowerCamelCase ): __A : Tuple = placeholder_token + F"""_{i}""" self.try_adding_tokens(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) output.append(__lowerCamelCase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) __A : Optional[int] = output def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=False , __lowerCamelCase=1.0 ): '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ): __A : Tuple = [] for i in range(len(__lowerCamelCase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__lowerCamelCase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: __A : List[str] = self.token_map[placeholder_token] __A : int = tokens[: 1 + int(len(__lowerCamelCase ) * prop_tokens_to_load )] if vector_shuffle: __A : Tuple = copy.copy(__lowerCamelCase ) random.shuffle(__lowerCamelCase ) __A : List[Any] = text.replace(__lowerCamelCase , ''' '''.join(__lowerCamelCase ) ) return text def __call__( self , __lowerCamelCase , *__lowerCamelCase , __lowerCamelCase=False , __lowerCamelCase=1.0 , **__lowerCamelCase ): '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( __lowerCamelCase , vector_shuffle=__lowerCamelCase , prop_tokens_to_load=__lowerCamelCase ) , *__lowerCamelCase , **__lowerCamelCase , ) def UpperCamelCase__( self , __lowerCamelCase , *__lowerCamelCase , __lowerCamelCase=False , __lowerCamelCase=1.0 , **__lowerCamelCase ): '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( __lowerCamelCase , vector_shuffle=__lowerCamelCase , prop_tokens_to_load=__lowerCamelCase ) , *__lowerCamelCase , **__lowerCamelCase , )
179
"""simple docstring""" def __lowercase ( snake_case_ : int ) ->int: '''simple docstring''' assert ( isinstance(snake_case_ ,snake_case_ ) and number_of_steps > 0 ), F"""number_of_steps needs to be positive integer, your input {number_of_steps}""" if number_of_steps == 1: return 1 __A , __A : List[Any] = 1, 1 for _ in range(number_of_steps - 1 ): __A , __A : List[str] = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
179
1
class _A : # Public class to implement a graph def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: """simple docstring""" lowercase : Tuple = row lowercase : Union[str, Any] = col lowercase : int = graph def __a ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __a ( self : int , _A : int , _A : int , _A : list[list[bool]] ) -> None: """simple docstring""" lowercase : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase : Dict = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __a ( self : List[str] ) -> int: # And finally, count all islands. """simple docstring""" lowercase : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase : Optional[Any] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
365
class _A : # Public class to implement a graph def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: """simple docstring""" lowercase : Tuple = row lowercase : Union[str, Any] = col lowercase : int = graph def __a ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __a ( self : int , _A : int , _A : int , _A : list[list[bool]] ) -> None: """simple docstring""" lowercase : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase : Dict = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __a ( self : List[str] ) -> int: # And finally, count all islands. """simple docstring""" lowercase : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase : Optional[Any] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
116
0
'''simple docstring''' def _a( UpperCamelCase__ : int = 2_0_0_0_0_0_0 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =[0 for i in range(n + 1 )] SCREAMING_SNAKE_CASE__ : Union[str, Any] =1 SCREAMING_SNAKE_CASE__ : Tuple =1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] =1 SCREAMING_SNAKE_CASE__ : List[str] =0 for i in range(UpperCamelCase__ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'''{solution() = }''')
152
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right a_ = 5_0_0_0_3 a_ = 5_0_0_0_2 @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = PLBartTokenizer snake_case_ = None snake_case_ = False def __magic_name__ ( self : Optional[Any] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ : List[Any] =PLBartTokenizer(__lowercase , language_codes='''base''' , keep_accents=__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : List[Any] =PLBartTokenizer(__lowercase , language_codes='''base''' , keep_accents=__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE__ : str =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE__ : Any =tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual( __lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.vocab_size SCREAMING_SNAKE_CASE__ : Dict =[tokenizer.convert_ids_to_tokens(__lowercase ) for x in range(end - 4 , __lowercase )] self.assertListEqual(__lowercase , ['''__java__''', '''__python__''', '''__en_XX__''', '''<mask>'''] ) SCREAMING_SNAKE_CASE__ : str ='''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer(__lowercase ).input_ids self.assertEqual( tokenizer.decode(__lowercase , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase ) , __lowercase , ) def __magic_name__ ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : int =PLBartTokenizer(__lowercase , language_codes='''multi''' , keep_accents=__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual( __lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.vocab_size SCREAMING_SNAKE_CASE__ : List[str] =[tokenizer.convert_ids_to_tokens(__lowercase ) for x in range(end - 7 , __lowercase )] self.assertListEqual( __lowercase , ['''__java__''', '''__python__''', '''__en_XX__''', '''__javascript__''', '''__php__''', '''__ruby__''', '''__go__'''] ) SCREAMING_SNAKE_CASE__ : Any ='''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' SCREAMING_SNAKE_CASE__ : Tuple =tokenizer(__lowercase ).input_ids self.assertEqual( tokenizer.decode(__lowercase , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase ) , __lowercase , ) @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case_ = """uclanlp/plbart-python-en_XX""" snake_case_ = [ """def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])""", """def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""", ] snake_case_ = [ """Returns the maximum value of a b c.""", """Sums the values of a b c.""", ] snake_case_ = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def __magic_name__ ( cls : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ : PLBartTokenizer =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='''base''' , src_lang='''python''' , tgt_lang='''en_XX''' ) SCREAMING_SNAKE_CASE__ : int =1 return cls def __magic_name__ ( self : int ) -> Tuple: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__java__'''] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__python__'''] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__en_XX__'''] , 5_00_03 ) def __magic_name__ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowercase ) def __magic_name__ ( self : List[str] ) -> Tuple: self.assertIn(__lowercase , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] SCREAMING_SNAKE_CASE__ : int =self.tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertNotIn(self.tokenizer.eos_token , __lowercase ) def __magic_name__ ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Tuple =['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 20] self.assertIsInstance(src_text[0] , __lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =10 SCREAMING_SNAKE_CASE__ : Tuple =self.tokenizer(__lowercase , max_length=__lowercase , truncation=__lowercase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __lowercase ) self.assertEqual(len(__lowercase ) , __lowercase ) def __magic_name__ ( self : Any ) -> Tuple: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''__java__'''] ) , [5_00_04, 5_00_01] ) def __magic_name__ ( self : str ) -> List[str]: SCREAMING_SNAKE_CASE__ : Optional[Any] =tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Optional[Any] =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =PLBartTokenizer.from_pretrained(__lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowercase ) @require_torch def __magic_name__ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowercase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ : str =shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , __lowercase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def __magic_name__ ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Dict =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowercase , truncation=__lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ : Dict =shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE__ : Optional[Any] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def __magic_name__ ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE__ : Optional[Any] =self.tokenizer(self.src_text , padding=__lowercase , truncation=__lowercase , max_length=3 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =self.tokenizer( text_target=self.tgt_text , padding=__lowercase , truncation=__lowercase , max_length=10 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ : Dict =targets['''input_ids'''] SCREAMING_SNAKE_CASE__ : Union[str, Any] =shift_tokens_right(__lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE__ : str =self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''java''' ) self.assertEqual( nested_simplify(__lowercase ) , { # A, test, EOS, en_XX '''input_ids''': [[1_50, 2_42, 2, 5_00_03]], '''attention_mask''': [[1, 1, 1, 1]], # java '''forced_bos_token_id''': 5_00_01, } , )
152
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Any = [1] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = 0, 0, 0 lowerCamelCase__ : Optional[Any] = ugly_nums[ia] * 2 lowerCamelCase__ : Any = ugly_nums[ia] * 3 lowerCamelCase__ : int = ugly_nums[ia] * 5 for _ in range(1 , _lowerCamelCase ): lowerCamelCase__ : List[str] = min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ugly_nums.append(_lowerCamelCase ) if next_num == next_a: ia += 1 lowerCamelCase__ : Optional[Any] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowerCamelCase__ : List[str] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowerCamelCase__ : Optional[int] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"{ugly_numbers(2_00) = }")
316
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position A_ : Union[str, Any] = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip A_ : int = concatenate_datasets A_ : Any = DownloadConfig A_ : List[Any] = DownloadManager A_ : Optional[Any] = DownloadMode A_ : List[str] = DownloadConfig A_ : Optional[int] = DownloadMode A_ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( __magic_name__ ): lowercase = (UniPCMultistepScheduler,) lowercase = (('num_inference_steps', 25),) def _lowercase( self , **A ) -> int: UpperCAmelCase : int = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """solver_order""": 2, """solver_type""": """bh2""", } config.update(**A ) return config def _lowercase( self , A=0 , **A ) -> Tuple: UpperCAmelCase : int = dict(self.forward_default_kwargs ) UpperCAmelCase : Optional[Any] = kwargs.pop("""num_inference_steps""" , A ) UpperCAmelCase : Optional[int] = self.dummy_sample UpperCAmelCase : Optional[Any] = 0.1 * sample UpperCAmelCase : int = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase : Any = self.get_scheduler_config(**A ) UpperCAmelCase : int = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals UpperCAmelCase : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) UpperCAmelCase : List[Any] = scheduler_class.from_pretrained(A ) new_scheduler.set_timesteps(A ) # copy over dummy past residuals UpperCAmelCase : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase , UpperCAmelCase : List[Any] = sample, sample for t in range(A , time_step + scheduler.config.solver_order + 1 ): UpperCAmelCase : Any = scheduler.step(A , A , A , **A ).prev_sample UpperCAmelCase : Dict = new_scheduler.step(A , A , A , **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase( self , A=0 , **A ) -> List[str]: UpperCAmelCase : List[str] = dict(self.forward_default_kwargs ) UpperCAmelCase : Union[str, Any] = kwargs.pop("""num_inference_steps""" , A ) UpperCAmelCase : Any = self.dummy_sample UpperCAmelCase : Dict = 0.1 * sample UpperCAmelCase : Union[str, Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase : List[Any] = self.get_scheduler_config() UpperCAmelCase : Any = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase : Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) UpperCAmelCase : int = scheduler_class.from_pretrained(A ) # copy over dummy past residuals new_scheduler.set_timesteps(A ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase : Dict = scheduler.step(A , A , A , **A ).prev_sample UpperCAmelCase : List[Any] = new_scheduler.step(A , A , A , **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowercase( self , A=None , **A ) -> Dict: if scheduler is None: UpperCAmelCase : List[str] = self.scheduler_classes[0] UpperCAmelCase : Optional[Any] = self.get_scheduler_config(**A ) UpperCAmelCase : Union[str, Any] = scheduler_class(**A ) UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase : Union[str, Any] = self.get_scheduler_config(**A ) UpperCAmelCase : Tuple = scheduler_class(**A ) UpperCAmelCase : Optional[Any] = 10 UpperCAmelCase : Optional[Any] = self.dummy_model() UpperCAmelCase : Tuple = self.dummy_sample_deter scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Dict = model(A , A ) UpperCAmelCase : Union[str, Any] = scheduler.step(A , A , A ).prev_sample return sample def _lowercase( self ) -> int: UpperCAmelCase : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase : Dict = kwargs.pop("""num_inference_steps""" , A ) for scheduler_class in self.scheduler_classes: UpperCAmelCase : List[str] = self.get_scheduler_config() UpperCAmelCase : Tuple = scheduler_class(**A ) UpperCAmelCase : Optional[Any] = self.dummy_sample UpperCAmelCase : Any = 0.1 * sample if num_inference_steps is not None and hasattr(A , """set_timesteps""" ): scheduler.set_timesteps(A ) elif num_inference_steps is not None and not hasattr(A , """set_timesteps""" ): UpperCAmelCase : Any = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase : Optional[int] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] UpperCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] UpperCAmelCase : str = scheduler.timesteps[5] UpperCAmelCase : str = scheduler.timesteps[6] UpperCAmelCase : Optional[int] = scheduler.step(A , A , A , **A ).prev_sample UpperCAmelCase : Optional[int] = scheduler.step(A , A , A , **A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowercase( self ) -> List[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase : List[str] = UniPCMultistepScheduler(**self.get_scheduler_config() ) UpperCAmelCase : Union[str, Any] = self.full_loop(scheduler=A ) UpperCAmelCase : Optional[int] = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 UpperCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCAmelCase : Tuple = DEISMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase : Optional[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase : str = self.full_loop(scheduler=A ) UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def _lowercase( self ) -> Tuple: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=A ) def _lowercase( self ) -> Dict: self.check_over_configs(thresholding=A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=A , prediction_type=A , sample_max_value=A , solver_order=A , solver_type=A , ) def _lowercase( self ) -> Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def _lowercase( self ) -> Dict: for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=A , solver_type=A , prediction_type=A , ) UpperCAmelCase : Optional[int] = self.full_loop( solver_order=A , solver_type=A , prediction_type=A , ) assert not torch.isnan(A ).any(), "Samples have nan numbers" def _lowercase( self ) -> Dict: self.check_over_configs(lower_order_final=A ) self.check_over_configs(lower_order_final=A ) def _lowercase( self ) -> Optional[Any]: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=A , time_step=0 ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = self.full_loop() UpperCAmelCase : Optional[int] = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = self.full_loop(prediction_type="""v_prediction""" ) UpperCAmelCase : Optional[int] = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def _lowercase( self ) -> List[Any]: UpperCAmelCase : Dict = self.scheduler_classes[0] UpperCAmelCase : Dict = self.get_scheduler_config(thresholding=A , dynamic_thresholding_ratio=0 ) UpperCAmelCase : Dict = scheduler_class(**A ) UpperCAmelCase : Optional[int] = 10 UpperCAmelCase : List[str] = self.dummy_model() UpperCAmelCase : List[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Tuple = model(A , A ) UpperCAmelCase : int = scheduler.step(A , A , A ).prev_sample assert sample.dtype == torch.floataa def _lowercase( self , **A ) -> Optional[int]: for scheduler_class in self.scheduler_classes: UpperCAmelCase : int = self.get_scheduler_config(**A ) UpperCAmelCase : Optional[Any] = scheduler_class(**A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
265
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=64 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Optional[int]: UpperCAmelCase : List[Any] = parent UpperCAmelCase : Optional[int] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[Any] = is_training UpperCAmelCase : Dict = use_input_mask UpperCAmelCase : str = use_token_type_ids UpperCAmelCase : List[Any] = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Dict = num_hidden_layers UpperCAmelCase : Optional[int] = num_attention_heads UpperCAmelCase : int = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : List[str] = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : int = initializer_range UpperCAmelCase : str = num_labels UpperCAmelCase : Optional[int] = num_choices UpperCAmelCase : Dict = scope UpperCAmelCase : Union[str, Any] = vocab_size - 1 def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Any = None if self.use_input_mask: UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : List[str] = None if self.use_labels: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[int] = self.get_config() return config, input_ids, input_mask, token_labels def _lowercase( self ) -> Optional[Any]: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase : Any = True return config, input_ids, input_mask, token_labels def _lowercase( self , A , A , A ) -> int: UpperCAmelCase : str = GPTNeoXModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[str] = model(A , attention_mask=A ) UpperCAmelCase : List[str] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A ) -> Optional[int]: UpperCAmelCase : str = True UpperCAmelCase : Optional[Any] = GPTNeoXModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A ) -> List[str]: UpperCAmelCase : Tuple = GPTNeoXForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : str = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A ) -> Tuple: UpperCAmelCase : List[str] = self.num_labels UpperCAmelCase : Any = GPTNeoXForQuestionAnswering(A ) model.to(A ) model.eval() UpperCAmelCase : str = model(A , attention_mask=A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase( self , A , A , A , A ) -> int: UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : List[str] = GPTNeoXForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A , A ) -> str: UpperCAmelCase : List[Any] = self.num_labels UpperCAmelCase : Tuple = GPTNeoXForTokenClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase( self , A , A , A ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : str = GPTNeoXForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , use_cache=A ) UpperCAmelCase : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : Any = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : Dict = model(A , attention_mask=A , output_hidden_states=A ) UpperCAmelCase : Any = output_from_no_past["""hidden_states"""][0] UpperCAmelCase : List[str] = model( A , attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowercase = (GPTNeoXForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : str = GPTNeoXModelTester(self ) UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=A , hidden_size=64 , num_attention_heads=8 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A , A , A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(A , A , A ) def _lowercase( self ) -> Optional[Any]: # This regression test was failing with PyTorch < 1.3 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(A , A , A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(A , A , A ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def _lowercase( self ) -> Any: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def _lowercase( self ) -> Optional[int]: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Dict = GPTNeoXModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : Any = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = GPTNeoXModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : Optional[Any] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[Any] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : str = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: UpperCAmelCase : int = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(A ) UpperCAmelCase : List[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(A ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCAmelCase : List[str] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" UpperCAmelCase : Union[str, Any] = model.generate(**A , do_sample=A , max_new_tokens=20 ) UpperCAmelCase : Tuple = tokenizer.batch_decode(A )[0] self.assertEqual(A , A )
265
1
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(snake_case__ ): return ext raise Exception( F'Unable to determine file format from file extension {path}. ' F'Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}' ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = pipeline( task=args.task ,model=args.model if args.model else None ,config=args.config ,tokenizer=args.tokenizer ,device=args.device ,) _SCREAMING_SNAKE_CASE = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format _SCREAMING_SNAKE_CASE = PipelineDataFormat.from_str( format=snake_case__ ,output_path=args.output ,input_path=args.input ,column=args.column if args.column else nlp.default_input_names ,overwrite=args.overwrite ,) return RunCommand(snake_case__ ,snake_case__ ) class __UpperCAmelCase (_UpperCAmelCase ): def __init__( self: Optional[Any] , UpperCAmelCase_: Pipeline , UpperCAmelCase_: PipelineDataFormat ): '''simple docstring''' _SCREAMING_SNAKE_CASE = nlp _SCREAMING_SNAKE_CASE = reader @staticmethod def UpperCamelCase ( UpperCAmelCase_: ArgumentParser ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=UpperCAmelCase_ , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=UpperCAmelCase_ , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=UpperCAmelCase_ , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=UpperCAmelCase_ , help="""Name or path to the model's config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=UpperCAmelCase_ , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=UpperCAmelCase_ , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=UpperCAmelCase_ , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=UpperCAmelCase_ , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._nlp, [] for entry in self._reader: _SCREAMING_SNAKE_CASE = nlp(**UpperCAmelCase_ ) if self._reader.is_multi_columns else nlp(UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): outputs.append(UpperCAmelCase_ ) else: outputs += output # Saving data if self._nlp.binary_output: _SCREAMING_SNAKE_CASE = self._reader.save_binary(UpperCAmelCase_ ) logger.warning(F'Current pipeline requires output to be in binary format, saving at {binary_path}' ) else: self._reader.save(UpperCAmelCase_ )
125
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __lowerCamelCase ( snake_case__ ,snake_case__="shi-labs/oneformer_demo" ) -> Union[str, Any]: """simple docstring""" with open(hf_hub_download(snake_case__ ,snake_case__ ,repo_type="""dataset""" ) ,"""r""" ) as f: _SCREAMING_SNAKE_CASE = json.load(snake_case__ ) _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for key, info in class_info.items(): _SCREAMING_SNAKE_CASE = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(snake_case__ ) ) _SCREAMING_SNAKE_CASE = thing_ids _SCREAMING_SNAKE_CASE = class_names return metadata class __UpperCAmelCase (unittest.TestCase ): def __init__( self: List[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[Any]=7 , UpperCAmelCase_: Union[str, Any]=3 , UpperCAmelCase_: Optional[int]=30 , UpperCAmelCase_: List[str]=400 , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: Tuple=True , UpperCAmelCase_: Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_: int=[0.5, 0.5, 0.5] , UpperCAmelCase_: List[str]=10 , UpperCAmelCase_: Optional[int]=False , UpperCAmelCase_: Optional[int]=255 , UpperCAmelCase_: Tuple="shi-labs/oneformer_demo" , UpperCAmelCase_: Union[str, Any]="ade20k_panoptic.json" , UpperCAmelCase_: Union[str, Any]=10 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = min_resolution _SCREAMING_SNAKE_CASE = max_resolution _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = image_mean _SCREAMING_SNAKE_CASE = image_std _SCREAMING_SNAKE_CASE = class_info_file _SCREAMING_SNAKE_CASE = prepare_metadata(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = num_text _SCREAMING_SNAKE_CASE = repo_path # for the post_process_functions _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 10 _SCREAMING_SNAKE_CASE = 10 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = do_reduce_labels _SCREAMING_SNAKE_CASE = ignore_index def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase ( self: int , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: List[str]=False ): '''simple docstring''' if not batched: _SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(UpperCAmelCase_ , Image.Image ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.size else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: _SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * h / w ) _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] elif w > h: _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] _SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * w / h ) else: _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] else: _SCREAMING_SNAKE_CASE = [] for image in image_inputs: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _SCREAMING_SNAKE_CASE = max(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : item[0] )[0] _SCREAMING_SNAKE_CASE = max(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : item[1] )[1] return expected_height, expected_width def UpperCamelCase ( self: Any ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __snake_case : int = image_processing_class def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = OneFormerImageProcessorTester(self ) @property def UpperCamelCase ( self: int ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """image_std""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """ignore_index""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """class_info_file""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """num_text""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """repo_path""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """metadata""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_reduce_labels""" ) ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image_processor( UpperCAmelCase_ , ["""semantic"""] * len(UpperCAmelCase_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image_processor( UpperCAmelCase_ , ["""semantic"""] * len(UpperCAmelCase_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image_processor( UpperCAmelCase_ , ["""semantic"""] * len(UpperCAmelCase_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Tuple=False , UpperCAmelCase_: Any=False , UpperCAmelCase_: str="np" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _SCREAMING_SNAKE_CASE = self.image_processing_tester.num_labels _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCAmelCase_ ) if with_segmentation_maps: _SCREAMING_SNAKE_CASE = num_labels if is_instance_map: _SCREAMING_SNAKE_CASE = list(range(UpperCAmelCase_ ) ) * 2 _SCREAMING_SNAKE_CASE = dict(enumerate(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _SCREAMING_SNAKE_CASE = [Image.fromarray(UpperCAmelCase_ ) for annotation in annotations] _SCREAMING_SNAKE_CASE = image_processor( UpperCAmelCase_ , ["""semantic"""] * len(UpperCAmelCase_ ) , UpperCAmelCase_ , return_tensors="""pt""" , instance_id_to_semantic_id=UpperCAmelCase_ , pad_and_return_pixel_mask=UpperCAmelCase_ , ) return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Any ): '''simple docstring''' def common(UpperCAmelCase_: List[str]=False , UpperCAmelCase_: Optional[int]=None ): _SCREAMING_SNAKE_CASE = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCAmelCase_ , is_instance_map=UpperCAmelCase_ , segmentation_type=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = inputs["""mask_labels"""] _SCREAMING_SNAKE_CASE = inputs["""class_labels"""] _SCREAMING_SNAKE_CASE = inputs["""pixel_values"""] _SCREAMING_SNAKE_CASE = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCAmelCase_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCAmelCase_ ) common(is_instance_map=UpperCAmelCase_ , segmentation_type="""pil""" ) common(is_instance_map=UpperCAmelCase_ , segmentation_type="""pil""" ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.zeros((20, 50) ) _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = binary_mask_to_rle(UpperCAmelCase_ ) self.assertEqual(len(UpperCAmelCase_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_fake_oneformer_outputs() _SCREAMING_SNAKE_CASE = fature_extractor.post_process_semantic_segmentation(UpperCAmelCase_ ) self.assertEqual(len(UpperCAmelCase_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _SCREAMING_SNAKE_CASE = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _SCREAMING_SNAKE_CASE = fature_extractor.post_process_semantic_segmentation(UpperCAmelCase_ , target_sizes=UpperCAmelCase_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_fake_oneformer_outputs() _SCREAMING_SNAKE_CASE = image_processor.post_process_instance_segmentation(UpperCAmelCase_ , threshold=0 ) self.assertTrue(len(UpperCAmelCase_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , UpperCAmelCase_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) _SCREAMING_SNAKE_CASE = self.image_processing_tester.get_fake_oneformer_outputs() _SCREAMING_SNAKE_CASE = image_processor.post_process_panoptic_segmentation(UpperCAmelCase_ , threshold=0 ) self.assertTrue(len(UpperCAmelCase_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , UpperCAmelCase_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
125
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_:str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Union[str, Any] = {"""vocab_file""": """spiece.model"""} SCREAMING_SNAKE_CASE_:Optional[Any] = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } SCREAMING_SNAKE_CASE_:List[Any] = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } SCREAMING_SNAKE_CASE_:int = """▁""" class SCREAMING_SNAKE_CASE__ ( _lowercase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, lowerCamelCase__, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=False, lowerCamelCase__="[CLS]", lowerCamelCase__="[SEP]", lowerCamelCase__="<unk>", lowerCamelCase__="[SEP]", lowerCamelCase__="<pad>", lowerCamelCase__="[CLS]", lowerCamelCase__="[MASK]", lowerCamelCase__ = None, **lowerCamelCase__, ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. A : Any = ( AddedToken(_SCREAMING_SNAKE_CASE, lstrip=_SCREAMING_SNAKE_CASE, rstrip=_SCREAMING_SNAKE_CASE, normalized=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) else mask_token ) A : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE, remove_space=_SCREAMING_SNAKE_CASE, keep_accents=_SCREAMING_SNAKE_CASE, bos_token=_SCREAMING_SNAKE_CASE, eos_token=_SCREAMING_SNAKE_CASE, unk_token=_SCREAMING_SNAKE_CASE, sep_token=_SCREAMING_SNAKE_CASE, pad_token=_SCREAMING_SNAKE_CASE, cls_token=_SCREAMING_SNAKE_CASE, mask_token=_SCREAMING_SNAKE_CASE, sp_model_kwargs=self.sp_model_kwargs, **_SCREAMING_SNAKE_CASE, ) A : Tuple = do_lower_case A : Optional[int] = remove_space A : str = keep_accents A : Optional[Any] = vocab_file A : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def _lowerCAmelCase ( self ): return len(self.sp_model ) def _lowerCAmelCase ( self ): A : List[str] = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): A : int = self.__dict__.copy() A : Tuple = None return state def __setstate__( self, lowerCamelCase__ ): A : int = d # for backward compatibility if not hasattr(self, """sp_model_kwargs""" ): A : Optional[Any] = {} A : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self, lowerCamelCase__ ): if self.remove_space: A : Optional[int] = ''' '''.join(inputs.strip().split() ) else: A : Any = inputs A : List[Any] = outputs.replace("""``""", """\"""" ).replace("""\'\'""", """\"""" ) if not self.keep_accents: A : int = unicodedata.normalize("""NFKD""", _SCREAMING_SNAKE_CASE ) A : List[str] = ''''''.join([c for c in outputs if not unicodedata.combining(_SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: A : Any = outputs.lower() return outputs def _lowerCAmelCase ( self, lowerCamelCase__ ): A : int = self.preprocess_text(_SCREAMING_SNAKE_CASE ) A : int = self.sp_model.encode(_SCREAMING_SNAKE_CASE, out_type=_SCREAMING_SNAKE_CASE ) A : str = [] for piece in pieces: if len(_SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): A : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_SCREAMING_SNAKE_CASE, """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A : Optional[Any] = cur_pieces[1:] else: A : List[str] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_SCREAMING_SNAKE_CASE ) else: new_pieces.append(_SCREAMING_SNAKE_CASE ) return new_pieces def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : str = [] A : Any = '''''' A : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token A : int = True A : Any = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) A : Union[str, Any] = False out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): A : List[Any] = [self.sep_token_id] A : str = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE, token_ids_a=_SCREAMING_SNAKE_CASE, already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): A : Any = [self.sep_token_id] A : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A : List[Any] = os.path.join( _SCREAMING_SNAKE_CASE, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE, """wb""" ) as fi: A : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
116
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase = None lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase = { '''vocab_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/spiece.model''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json''', }, } lowerCamelCase = { '''google/fnet-base''': 512, '''google/fnet-large''': 512, } lowerCamelCase = '''▁''' class _a ( _lowercase): _a : List[str] = VOCAB_FILES_NAMES _a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _a : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Union[str, Any] = ['''input_ids''', '''token_type_ids'''] _a : Dict = FNetTokenizer def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : Optional[Any]=False , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : Optional[int]=True , _SCREAMING_SNAKE_CASE : List[Any]="<unk>" , _SCREAMING_SNAKE_CASE : str="[SEP]" , _SCREAMING_SNAKE_CASE : str="<pad>" , _SCREAMING_SNAKE_CASE : Union[str, Any]="[CLS]" , _SCREAMING_SNAKE_CASE : List[str]="[MASK]" , **_SCREAMING_SNAKE_CASE : str , )-> Any: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCAmelCase__ : List[str] = ( AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE , normalized=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token ) super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Optional[int] = do_lower_case lowerCAmelCase__ : Any = remove_space lowerCAmelCase__ : Union[str, Any] = keep_accents lowerCAmelCase__ : int = vocab_file lowerCAmelCase__ : List[str] = False if not self.vocab_file else True def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None )-> List[int]: lowerCAmelCase__ : Optional[int] = [self.sep_token_id] lowerCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : Optional[List[int]] = None )-> List[int]: lowerCAmelCase__ : List[Any] = [self.sep_token_id] lowerCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None )-> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ : Optional[Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
131
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any]=False ) -> List[str]: """simple docstring""" __lowerCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple=False ) -> Tuple: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: __lowerCamelCase = '' else: __lowerCamelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCamelCase = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) __lowerCamelCase = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCamelCase = in_proj_bias[: config.hidden_size] __lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCamelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCamelCase = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> Dict: """simple docstring""" __lowerCamelCase = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] ) -> str: """simple docstring""" __lowerCamelCase = dct.pop(UpperCamelCase__ ) __lowerCamelCase = val def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int ) -> Any: """simple docstring""" __lowerCamelCase = ViTMSNConfig() __lowerCamelCase = 1000 __lowerCamelCase = 'datasets/huggingface/label-files' __lowerCamelCase = 'imagenet-1k-id2label.json' __lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ ) , 'r' ) ) __lowerCamelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __lowerCamelCase = 384 __lowerCamelCase = 1536 __lowerCamelCase = 6 elif "l16" in checkpoint_url: __lowerCamelCase = 1024 __lowerCamelCase = 4096 __lowerCamelCase = 24 __lowerCamelCase = 16 __lowerCamelCase = 0.1 elif "b4" in checkpoint_url: __lowerCamelCase = 4 elif "l7" in checkpoint_url: __lowerCamelCase = 7 __lowerCamelCase = 1024 __lowerCamelCase = 4096 __lowerCamelCase = 24 __lowerCamelCase = 16 __lowerCamelCase = 0.1 __lowerCamelCase = ViTMSNModel(UpperCamelCase__ ) __lowerCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' )['target_encoder'] __lowerCamelCase = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCamelCase__ ) __lowerCamelCase = create_rename_keys(UpperCamelCase__ , base_model=UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ , base_model=UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() __lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) __lowerCamelCase = ViTImageProcessor( size=config.image_size , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ ) __lowerCamelCase = image_processor(images=UpperCamelCase__ , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) __lowerCamelCase = model(**UpperCamelCase__ ) __lowerCamelCase = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __lowerCamelCase = torch.tensor([[-1.09_15, -1.48_76, -1.18_09]] ) elif "b16" in checkpoint_url: __lowerCamelCase = torch.tensor([[14.28_89, -18.90_45, 11.72_81]] ) elif "l16" in checkpoint_url: __lowerCamelCase = torch.tensor([[41.50_28, -22.86_81, 45.64_75]] ) elif "b4" in checkpoint_url: __lowerCamelCase = torch.tensor([[-4.38_68, 5.29_32, -0.41_37]] ) else: __lowerCamelCase = torch.tensor([[-0.17_92, -0.64_65, 2.42_63]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase__ , atol=1E-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __A = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
348
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) snake_case_ = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) snake_case_ = "question" snake_case_ = "context" snake_case_ = "answers" @property def lowercase_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
348
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """facebook/timesformer""": """https://huggingface.co/facebook/timesformer/resolve/main/config.json""", } class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = """timesformer""" def __init__( self :int , lowerCamelCase_ :str=224 , lowerCamelCase_ :Tuple=16 , lowerCamelCase_ :List[str]=3 , lowerCamelCase_ :List[str]=8 , lowerCamelCase_ :List[Any]=768 , lowerCamelCase_ :str=12 , lowerCamelCase_ :str=12 , lowerCamelCase_ :List[Any]=3_072 , lowerCamelCase_ :int="gelu" , lowerCamelCase_ :str=0.0 , lowerCamelCase_ :Tuple=0.0 , lowerCamelCase_ :Optional[int]=0.02 , lowerCamelCase_ :List[str]=1e-6 , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :Optional[int]="divided_space_time" , lowerCamelCase_ :Any=0 , **lowerCamelCase_ :Tuple , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : List[Any] =image_size lowerCamelCase__ : Any =patch_size lowerCamelCase__ : Any =num_channels lowerCamelCase__ : Optional[int] =num_frames lowerCamelCase__ : int =hidden_size lowerCamelCase__ : Any =num_hidden_layers lowerCamelCase__ : Optional[int] =num_attention_heads lowerCamelCase__ : int =intermediate_size lowerCamelCase__ : Any =hidden_act lowerCamelCase__ : List[Any] =hidden_dropout_prob lowerCamelCase__ : Optional[int] =attention_probs_dropout_prob lowerCamelCase__ : int =initializer_range lowerCamelCase__ : List[Any] =layer_norm_eps lowerCamelCase__ : Union[str, Any] =qkv_bias lowerCamelCase__ : Tuple =attention_type lowerCamelCase__ : List[str] =drop_path_rate
126
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase = logging.get_logger(__name__) class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""pixel_values"""] def __init__( self :Union[str, Any] , lowerCamelCase_ :bool = True , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :int = 0.9 , lowerCamelCase_ :PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase_ :bool = True , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :Union[int, float] = 1 / 255 , lowerCamelCase_ :bool = True , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , **lowerCamelCase_ :Tuple , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : str =size if size is not None else {'shortest_edge': 224} lowerCamelCase__ : List[str] =get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase__ : str =get_size_dict(lowerCamelCase_ , param_name='crop_size' ) lowerCamelCase__ : Tuple =do_resize lowerCamelCase__ : List[Any] =size lowerCamelCase__ : List[str] =crop_pct lowerCamelCase__ : Union[str, Any] =resample lowerCamelCase__ : List[str] =do_center_crop lowerCamelCase__ : List[str] =crop_size lowerCamelCase__ : List[Any] =do_rescale lowerCamelCase__ : List[str] =rescale_factor lowerCamelCase__ : Tuple =do_normalize lowerCamelCase__ : int =image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase__ : List[Any] =image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase__ ( self :Any , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Dict[str, int] , lowerCamelCase_ :Optional[float] = None , lowerCamelCase_ :PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :Any , ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: lowerCamelCase__ : Optional[int] =int(size['shortest_edge'] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowerCamelCase__ : Union[str, Any] =int(size['height'] / crop_pct ) else: lowerCamelCase__ : Any =(int(size['height'] / crop_pct ), int(size['width'] / crop_pct )) else: raise ValueError('Invalid size for resize: {}'.format(lowerCamelCase_ ) ) lowerCamelCase__ : Tuple =get_resize_output_image_size(lowerCamelCase_ , size=lowerCamelCase_ , default_to_square=lowerCamelCase_ ) else: if "shortest_edge" in size: lowerCamelCase__ : str =get_resize_output_image_size(lowerCamelCase_ , size=size['shortest_edge'] , default_to_square=lowerCamelCase_ ) elif "height" in size and "width" in size: lowerCamelCase__ : Union[str, Any] =(size['height'], size['width']) else: raise ValueError('Invalid size for resize: {}'.format(lowerCamelCase_ ) ) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :Any , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Dict[str, int] , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :str , ): """simple docstring""" lowerCamelCase__ : Tuple =get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(lowerCamelCase_ , size=(size['height'], size['width']) , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :int , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Union[int, float] , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :List[str] , ): """simple docstring""" return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :List[Any] , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Union[float, List[float]] , lowerCamelCase_ :Union[float, List[float]] , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :Tuple , ): """simple docstring""" return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :Any , lowerCamelCase_ :ImageInput , lowerCamelCase_ :bool = None , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :int = None , lowerCamelCase_ :PILImageResampling = None , lowerCamelCase_ :bool = None , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :bool = None , lowerCamelCase_ :float = None , lowerCamelCase_ :bool = None , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase_ :List[str] , ): """simple docstring""" lowerCamelCase__ : Dict =do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : Union[str, Any] =crop_pct if crop_pct is not None else self.crop_pct lowerCamelCase__ : Tuple =resample if resample is not None else self.resample lowerCamelCase__ : Any =do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase__ : Optional[Any] =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : Optional[int] =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : Optional[Any] =do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ : List[str] =image_mean if image_mean is not None else self.image_mean lowerCamelCase__ : List[Any] =image_std if image_std is not None else self.image_std lowerCamelCase__ : int =size if size is not None else self.size lowerCamelCase__ : Tuple =get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) lowerCamelCase__ : Dict =crop_size if crop_size is not None else self.crop_size lowerCamelCase__ : str =get_size_dict(lowerCamelCase_ , param_name='crop_size' ) lowerCamelCase__ : Dict =make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_pct is None: raise ValueError('Crop_pct must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase__ : List[str] =[to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: lowerCamelCase__ : Tuple =[self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , crop_pct=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_center_crop: lowerCamelCase__ : Union[str, Any] =[self.center_crop(image=lowerCamelCase_ , size=lowerCamelCase_ ) for image in images] if do_rescale: lowerCamelCase__ : str =[self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: lowerCamelCase__ : Optional[Any] =[self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] lowerCamelCase__ : Optional[Any] =[to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] lowerCamelCase__ : List[str] ={'pixel_values': images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
126
1
'''simple docstring''' from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : List[str] ) -> List[Any]: """simple docstring""" a : Optional[int] = u for i in range(1 , __a ): a : Optional[Any] = temp * (u - i) return temp def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: """simple docstring""" a : Dict = int(input('enter the numbers of values: ' ) ) a : list[list[float]] = [] for _ in range(__a ): y.append([] ) for i in range(__a ): for j in range(__a ): y[i].append(__a ) a : str = 0 print('enter the values of parameters in a list: ' ) a : int = list(map(__a , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(__a ): a : Union[str, Any] = float(input() ) a : int = int(input('enter the value to interpolate: ' ) ) a : List[Any] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __a ): for j in range(n - i ): a : int = y[j + 1][i - 1] - y[j][i - 1] a : str = y[0][0] for i in range(1 , __a ): summ += (ucal(__a , __a ) * y[0][i]) / math.factorial(__a ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
350
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ UpperCamelCase : Optional[Any] = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ UpperCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple="auto" , UpperCAmelCase_ : Any=-1 , UpperCAmelCase_ : Optional[int]=0.9 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : int=5_0_0 , UpperCAmelCase_ : int="gpt2-large" , UpperCAmelCase_ : Tuple=-1 , UpperCAmelCase_ : Dict=1_0_2_4 , UpperCAmelCase_ : List[str]=2_5 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=2_5 , ): """simple docstring""" a : List[str] = compute_mauve( p_text=UpperCAmelCase_ , q_text=UpperCAmelCase_ , p_features=UpperCAmelCase_ , q_features=UpperCAmelCase_ , p_tokens=UpperCAmelCase_ , q_tokens=UpperCAmelCase_ , num_buckets=UpperCAmelCase_ , pca_max_data=UpperCAmelCase_ , kmeans_explained_var=UpperCAmelCase_ , kmeans_num_redo=UpperCAmelCase_ , kmeans_max_iter=UpperCAmelCase_ , featurize_model_name=UpperCAmelCase_ , device_id=UpperCAmelCase_ , max_text_length=UpperCAmelCase_ , divergence_curve_discretization_size=UpperCAmelCase_ , mauve_scaling_factor=UpperCAmelCase_ , verbose=UpperCAmelCase_ , seed=UpperCAmelCase_ , ) return out
345
0
def __lowercase ( __lowerCAmelCase : str ): return "".join(chr(ord(__lowerCAmelCase ) - 3_2 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
240
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['image_processor', 'tokenizer'] __a ='LayoutLMv3ImageProcessor' __a =('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Tuple , __a : int=None , __a : Union[str, Any]=None , **__a : Optional[Any] ): _a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) _a = kwargs.pop("feature_extractor" ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__( self : Any , __a : List[str] , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __a : Union[List[List[int]], List[List[List[int]]]] = None , __a : Optional[Union[List[int], List[List[int]]]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : Dict , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor _a = self.image_processor(images=__a , return_tensors=__a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__a , __a ): _a = [text] # add batch dimension (as the image processor always adds a batch dimension) _a = features["words"] _a = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) # add pixel values _a = features.pop("pixel_values" ) if return_overflowing_tokens is True: _a = self.get_overflowing_images(__a , encoded_inputs["overflow_to_sample_mapping"] ) _a = images return encoded_inputs def UpperCamelCase__ ( self : Optional[int] , __a : str , __a : List[Any] ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__a ) != len(__a ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f' {len(__a )} and {len(__a )}' ) return images_with_overflow def UpperCamelCase__ ( self : int , *__a : str , **__a : Tuple ): return self.tokenizer.batch_decode(*__a , **__a ) def UpperCamelCase__ ( self : str , *__a : List[Any] , **__a : List[str] ): return self.tokenizer.decode(*__a , **__a ) @property def UpperCamelCase__ ( self : Tuple ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCamelCase__ ( self : int ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def UpperCamelCase__ ( self : List[str] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
63
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int=1_3 , SCREAMING_SNAKE_CASE__ : List[str]=7 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=9_9 , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : List[str]=3_2 , SCREAMING_SNAKE_CASE__ : Dict=5 , SCREAMING_SNAKE_CASE__ : Tuple=4 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : str=5_1_2 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : List[Any]="last" , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=0 , ) -> List[str]: a_ : List[Any] = parent a_ : int = batch_size a_ : Union[str, Any] = seq_length a_ : Union[str, Any] = is_training a_ : Optional[int] = use_input_lengths a_ : List[Any] = use_token_type_ids a_ : str = use_labels a_ : List[str] = gelu_activation a_ : Tuple = sinusoidal_embeddings a_ : Optional[Any] = causal a_ : Union[str, Any] = asm a_ : Dict = n_langs a_ : Tuple = vocab_size a_ : Optional[int] = n_special a_ : Optional[Any] = hidden_size a_ : int = num_hidden_layers a_ : int = num_attention_heads a_ : int = hidden_dropout_prob a_ : Dict = attention_probs_dropout_prob a_ : int = max_position_embeddings a_ : Dict = type_sequence_label_size a_ : List[Any] = initializer_range a_ : List[Any] = num_labels a_ : Dict = num_choices a_ : Optional[int] = summary_type a_ : int = use_proj a_ : Dict = scope a_ : Any = bos_token_id def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: a_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) a_ : List[Any] = None if self.use_input_lengths: a_ : Any = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length a_ : Optional[Any] = None if self.use_token_type_ids: a_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) a_ : int = None a_ : List[Any] = None a_ : Tuple = None if self.use_labels: a_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() a_ : Any = ids_tensor([self.batch_size] , self.num_choices ) a_ : Tuple = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[int]: a_ : Dict = XLMModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : int = model(SCREAMING_SNAKE_CASE__ , lengths=SCREAMING_SNAKE_CASE__ , langs=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = model(SCREAMING_SNAKE_CASE__ , langs=SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Any: a_ : Tuple = XLMWithLMHeadModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : str = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , ) -> List[str]: a_ : Tuple = XLMForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : int = model(SCREAMING_SNAKE_CASE__ ) a_ : int = model(SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ ) a_ : str = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , ) -> Dict: a_ : str = XLMForQuestionAnswering(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Optional[int] = model(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = model( SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , cls_index=SCREAMING_SNAKE_CASE__ , is_impossible=SCREAMING_SNAKE_CASE__ , p_mask=SCREAMING_SNAKE_CASE__ , ) a_ : Optional[Any] = model( SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , cls_index=SCREAMING_SNAKE_CASE__ , is_impossible=SCREAMING_SNAKE_CASE__ , ) ((a_) , ) : Dict = result_with_labels.to_tuple() a_ : str = model(SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ ) ((a_) , ) : List[str] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , ) -> int: a_ : str = XLMForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Dict = model(SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> List[Any]: a_ : Optional[Any] = self.num_labels a_ : Dict = XLMForTokenClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Tuple = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Union[str, Any]: a_ : List[Any] = self.num_choices a_ : Optional[int] = XLMForMultipleChoice(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ : List[str] = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: a_ : List[Any] = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : Tuple = config_and_inputs a_ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case__ : int = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) snake_case__ : Optional[int] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable snake_case__ : List[Any] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any]=False ) -> List[Any]: a_ : Optional[Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": a_ : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : str ) -> Any: a_ : Any = XLMModelTester(self ) a_ : List[str] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , emb_dim=3_7 ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : str ) -> str: a_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: a_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: a_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: a_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: a_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : int=1 ) -> int: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual( [isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for iter_attentions in attentions] , [True] * len(SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(SCREAMING_SNAKE_CASE__ ): # adds PAD dummy token a_ : int = min_length + idx + 1 a_ : str = min_length + idx + 1 a_ : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(SCREAMING_SNAKE_CASE__ ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : Any=1 ) -> int: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual( [isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for iter_hidden_states in hidden_states] , [True] * len(SCREAMING_SNAKE_CASE__ ) , ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(SCREAMING_SNAKE_CASE__ ): # adds PAD dummy token a_ : List[str] = min_length + idx + 1 a_ : Dict = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(SCREAMING_SNAKE_CASE__ ) , ) pass @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : List[Any] = XLMModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: a_ : Tuple = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) # the president a_ : List[str] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference a_ : Dict = model.generate(SCREAMING_SNAKE_CASE__ , do_sample=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , SCREAMING_SNAKE_CASE__ )
120
def SCREAMING_SNAKE_CASE_ ( __A : int , __A : int ) -> int: """simple docstring""" while b: a_ , a_ : int = b, a % b return a def SCREAMING_SNAKE_CASE_ ( __A : int , __A : int ) -> int: """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(__A , a % b ) def SCREAMING_SNAKE_CASE_ ( ) -> str: """simple docstring""" print(F"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(F"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(F"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(F"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(F"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(F"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(F"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(F"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(F"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(F"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
120
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart _SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } _SCREAMING_SNAKE_CASE = { 'facebook/bart-base': 10_24, 'facebook/bart-large': 10_24, 'facebook/bart-large-mnli': 10_24, 'facebook/bart-large-cnn': 10_24, 'facebook/bart-large-xsum': 10_24, 'yjernite/bart_eli5': 10_24, } @lru_cache() def __a(): '''simple docstring''' _lowerCAmelCase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) _lowerCAmelCase = bs[:] _lowerCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 _lowerCAmelCase = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def __a(SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' _lowerCAmelCase = set() _lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase = char return pairs class lowerCAmelCase_ ( UpperCAmelCase__ ): __lowerCamelCase : List[Any] = VOCAB_FILES_NAMES __lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="replace" , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=False , **_lowerCAmelCase , ) -> Dict: _lowerCAmelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else bos_token _lowerCAmelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else eos_token _lowerCAmelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else sep_token _lowerCAmelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else cls_token _lowerCAmelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else unk_token _lowerCAmelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , **snake_case_ , ) with open(snake_case_ , encoding="utf-8" ) as vocab_handle: _lowerCAmelCase = json.load(snake_case_ ) _lowerCAmelCase = {v: k for k, v in self.encoder.items()} _lowerCAmelCase = errors # how to handle errors in decoding _lowerCAmelCase = bytes_to_unicode() _lowerCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(snake_case_ , encoding="utf-8" ) as merges_handle: _lowerCAmelCase = merges_handle.read().split("\n" )[1:-1] _lowerCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] _lowerCAmelCase = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _lowerCAmelCase = {} _lowerCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCAmelCase = re.compile(r"\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def _snake_case ( self ) -> int: return len(self.encoder ) def _snake_case ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self , _lowerCAmelCase ) -> str: if token in self.cache: return self.cache[token] _lowerCAmelCase = tuple(snake_case_ ) _lowerCAmelCase = get_pairs(snake_case_ ) if not pairs: return token while True: _lowerCAmelCase = min(snake_case_ , key=lambda _lowerCAmelCase : self.bpe_ranks.get(snake_case_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase = bigram _lowerCAmelCase = [] _lowerCAmelCase = 0 while i < len(snake_case_ ): try: _lowerCAmelCase = word.index(snake_case_ , snake_case_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase = j if word[i] == first and i < len(snake_case_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase = tuple(snake_case_ ) _lowerCAmelCase = new_word if len(snake_case_ ) == 1: break else: _lowerCAmelCase = get_pairs(snake_case_ ) _lowerCAmelCase = ' '.join(snake_case_ ) _lowerCAmelCase = word return word def _snake_case ( self , _lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = [] for token in re.findall(self.pat , snake_case_ ): _lowerCAmelCase = ''.join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case_ ).split(" " ) ) return bpe_tokens def _snake_case ( self , _lowerCAmelCase ) -> int: return self.encoder.get(snake_case_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self , _lowerCAmelCase ) -> Optional[Any]: return self.decoder.get(snake_case_ ) def _snake_case ( self , _lowerCAmelCase ) -> Any: _lowerCAmelCase = ''.join(snake_case_ ) _lowerCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> int: if not os.path.isdir(snake_case_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _lowerCAmelCase = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(snake_case_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case_ , ensure_ascii=snake_case_ ) + "\n" ) _lowerCAmelCase = 0 with open(snake_case_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) _lowerCAmelCase = token_index writer.write(" ".join(snake_case_ ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Any: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] _lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> Tuple: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Any: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=False , **_lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case_ ) > 0 and not text[0].isspace()): _lowerCAmelCase = ' ' + text return (text, kwargs)
158
"""simple docstring""" from heapq import heappop, heappush import numpy as np def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): """simple docstring""" A_ , A_ : List[str] = grid.shape A_ : Optional[int] = [-1, 1, 0, 0] A_ : str = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] A_ , A_ : List[Any] = [(0, source)], set() A_ : Optional[Any] = np.full((rows, cols) , np.inf ) A_ : int = 0 A_ : Optional[int] = np.empty((rows, cols) , dtype=_UpperCAmelCase ) A_ : Optional[int] = None while queue: ((A_) , (A_)) : str = heappop(_UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: A_ : int = [] while (x, y) != source: path.append((x, y) ) A_ , A_ : List[Any] = predecessors[x, y] path.append(_UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_UpperCAmelCase ) ): A_ , A_ : Tuple = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: A_ : Union[str, Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_UpperCAmelCase , (dist + 1, (nx, ny)) ) A_ : Optional[Any] = dist + 1 A_ : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
286
0
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def snake_case (A_ :Union[str, Any] , A_ :Dict , A_ :Dict=None ): '''simple docstring''' assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' a : int = nn.Parameter(snake_case_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' a : Optional[Any] = nn.Parameter(snake_case_ ) def snake_case (A_ :Optional[Any] , A_ :List[str] , A_ :Optional[Any] ): '''simple docstring''' a : str = np.asarray(weights[0] ) a : List[str] = np.asarray(weights[1] ) a : Optional[Any] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(snake_case_ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(snake_case_ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case_ ) , ) set_param( torch_layer.output.dense , torch.tensor(snake_case_ ).view(-1 , snake_case_ ).contiguous().transpose(0 , 1 ) , ) def snake_case (A_ :Union[str, Any] , A_ :Union[str, Any] , A_ :str ): '''simple docstring''' a : str = np.asarray(weights[0] ) a : int = np.asarray(weights[1] ) a : List[str] = np.asarray(weights[2] ) a : Any = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(snake_case_ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(snake_case_ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(snake_case_ ).transpose(1 , 2 ).contiguous().view(-1 , snake_case_ ) , ) set_param( torch_layer.output.dense , torch.tensor(snake_case_ ).view(-1 , snake_case_ ).contiguous().transpose(0 , 1 ) , ) def snake_case (A_ :Optional[Any] , A_ :Optional[Any] , A_ :int ): '''simple docstring''' a : Optional[int] = weights[0][0][0] a : Union[str, Any] = np.asarray(layer_norm_a[0] ) a : Optional[Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(snake_case_ ) , torch.tensor(snake_case_ ) , ) # lsh weights + output a : Any = weights[0][1] if len(snake_case_ ) < 4: set_layer_weights_in_torch_lsh(snake_case_ , torch_block.attention , snake_case_ ) else: set_layer_weights_in_torch_local(snake_case_ , torch_block.attention , snake_case_ ) # intermediate weighs a : Optional[Any] = weights[2][0][1][2] # Chunked Feed Forward if len(snake_case_ ) == 4: a : int = intermediate_weights[2] # layernorm 2 a : List[Any] = np.asarray(intermediate_weights[0][0] ) a : str = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(snake_case_ ) , torch.tensor(snake_case_ ) , ) # intermediate dense a : Union[str, Any] = np.asarray(intermediate_weights[1][0] ) a : str = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(snake_case_ ).transpose(0 , 1 ).contiguous() , torch.tensor(snake_case_ ) , ) # intermediate out a : Union[str, Any] = np.asarray(intermediate_weights[4][0] ) a : List[str] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(snake_case_ ).transpose(0 , 1 ).contiguous() , torch.tensor(snake_case_ ) , ) def snake_case (A_ :int , A_ :Optional[int] , A_ :Tuple ): '''simple docstring''' a : List[str] = torch_model.reformer # word embeds a : Optional[int] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(snake_case_ ) , ) if isinstance(weights[3] , snake_case_ ): a : Union[str, Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): a : List[Any] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' a : List[str] = nn.Parameter(torch.tensor(snake_case_ ) ) a : Optional[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( snake_case_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): a : Optional[int] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(snake_case_ , snake_case_ , snake_case_ ) # output layer norm a : Optional[Any] = np.asarray(weights[7][0] ) a : Optional[int] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(snake_case_ ) , torch.tensor(snake_case_ ) , ) # output embeddings a : Tuple = np.asarray(weights[9][0] ) a : Any = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(snake_case_ ).transpose(0 , 1 ).contiguous() , torch.tensor(snake_case_ ) , ) def snake_case (A_ :Tuple , A_ :Optional[Any] , A_ :Optional[int] ): '''simple docstring''' a : str = ReformerConfig.from_json_file(snake_case_ ) print(f'''Building PyTorch model from configuration: {config}''' ) a : Dict = ReformerModelWithLMHead(snake_case_ ) with open(snake_case_ , 'rb' ) as f: a : List[Any] = pickle.load(snake_case_ )['weights'] set_model_weights_in_torch(snake_case_ , snake_case_ , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , snake_case_ ) if __name__ == "__main__": _UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase : Any = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
370
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class snake_case ( unittest.TestCase ): def __init__( self : List[str] , A : Union[str, Any] , A : Optional[Any]=1_3 , A : List[Any]=3_0 , A : List[Any]=2 , A : Optional[Any]=3 , A : Union[str, Any]=True , A : Union[str, Any]=True , A : Optional[int]=3_2 , A : Tuple=5 , A : List[str]=4 , A : List[Any]=3_7 , A : Optional[Any]="gelu" , A : Any=0.1 , A : Tuple=0.1 , A : Optional[int]=1_0 , A : Union[str, Any]=0.02 , ): '''simple docstring''' a : Optional[Any] = parent a : Tuple = batch_size a : int = image_size a : str = patch_size a : List[str] = num_channels a : List[str] = is_training a : List[str] = use_labels a : Optional[int] = hidden_size a : Optional[Any] = num_hidden_layers a : Optional[int] = num_attention_heads a : str = intermediate_size a : List[str] = hidden_act a : List[str] = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : List[Any] = type_sequence_label_size a : Optional[Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a : Optional[int] = (image_size // patch_size) ** 2 a : List[Any] = num_patches + 1 def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' a : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a : str = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCamelCase__ ( self : Union[str, Any] , A : str , A : Union[str, Any] ): '''simple docstring''' a : Tuple = FlaxViTModel(config=A ) a : int = model(A ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) a : Optional[Any] = (self.image_size, self.image_size) a : List[str] = (self.patch_size, self.patch_size) a : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCamelCase__ ( self : Tuple , A : Dict , A : Optional[int] ): '''simple docstring''' a : Optional[Any] = self.type_sequence_label_size a : List[Any] = FlaxViTForImageClassification(config=A ) a : Tuple = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a : Dict = 1 a : Tuple = FlaxViTForImageClassification(A ) a : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a : Optional[int] = model(A ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a : Optional[int] = self.prepare_config_and_inputs() ( ( a ), ( a ), ) : Dict = config_and_inputs a : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class snake_case ( UpperCAmelCase , unittest.TestCase ): __magic_name__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCamelCase__ ( self : Any ): '''simple docstring''' a : Any = FlaxViTModelTester(self ) a : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' a, a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Tuple = model_class(A ) a : str = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : List[str] = [*signature.parameters.keys()] a : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , A ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' a, a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a : List[Any] = self._prepare_for_class(A , A ) a : Tuple = model_class(A ) @jax.jit def model_jitted(A : Tuple , **A : int ): return model(pixel_values=A , **A ) with self.subTest('JIT Enabled' ): a : List[str] = model_jitted(**A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): a : List[str] = model_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: a : List[str] = model_class_name.from_pretrained('google/vit-base-patch16-224' ) a : Optional[Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(A )
186
0
def _A ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] ): UpperCamelCase :Tuple = len(SCREAMING_SNAKE_CASE__ ) print('''The following activities are selected:''' ) # The first activity is always selected UpperCamelCase :Dict = 0 print(SCREAMING_SNAKE_CASE__ , end=''',''' ) # Consider rest of the activities for j in range(SCREAMING_SNAKE_CASE__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(SCREAMING_SNAKE_CASE__ , end=''',''' ) UpperCamelCase :List[str] = j if __name__ == "__main__": import doctest doctest.testmod() __snake_case = [1, 3, 0, 5, 8, 5] __snake_case = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
259
def _A ( ): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def _A ( SCREAMING_SNAKE_CASE__ : int ): UpperCamelCase :Optional[int] = 1 UpperCamelCase :List[Any] = 2 while i * i <= n: UpperCamelCase :str = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _A ( ): return next(i for i in triangle_number_generator() if count_divisors(SCREAMING_SNAKE_CASE__ ) > 500 ) if __name__ == "__main__": print(solution())
259
1
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer snake_case_ : str = logging.get_logger(__name__) snake_case_ : Optional[int] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} snake_case_ : Union[str, Any] = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } snake_case_ : Tuple = {'allegro/herbert-base-cased': 514} snake_case_ : Tuple = {} class lowercase__ ( lowercase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = HerbertTokenizer def __init__( self : Optional[int] ,lowerCamelCase__ : List[str]=None ,lowerCamelCase__ : Dict=None ,lowerCamelCase__ : Tuple=None ,lowerCamelCase__ : int="<s>" ,lowerCamelCase__ : Dict="<unk>" ,lowerCamelCase__ : List[str]="<pad>" ,lowerCamelCase__ : Union[str, Any]="<mask>" ,lowerCamelCase__ : str="</s>" ,**lowerCamelCase__ : Tuple ,): '''simple docstring''' super().__init__( lowerCamelCase__ ,lowerCamelCase__ ,tokenizer_file=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,**lowerCamelCase__ ,) def UpperCamelCase_ ( self : int ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : Optional[int] = [self.cls_token_id] _UpperCamelCase : Optional[int] = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ ,token_ids_a=lowerCamelCase__ ,already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): '''simple docstring''' _UpperCamelCase : List[str] = self._tokenizer.model.save(lowerCamelCase__ ,name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
236
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable snake_case_ : Any = { 'configuration_gpt_neox_japanese': ['GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXJapaneseConfig'], 'tokenization_gpt_neox_japanese': ['GPTNeoXJapaneseTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ 'GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXJapaneseForCausalLM', 'GPTNeoXJapaneseLayer', 'GPTNeoXJapaneseModel', 'GPTNeoXJapanesePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys snake_case_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
236
1
'''simple docstring''' import heapq def _lowerCAmelCase ( _UpperCamelCase : str ) -> set[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__UpperCamelCase , [-1 * len(__UpperCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices _SCREAMING_SNAKE_CASE =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _SCREAMING_SNAKE_CASE =heapq.heappop(__UpperCamelCase )[1][0] chosen_vertices.add(__UpperCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _SCREAMING_SNAKE_CASE =elem[1][1].index(__UpperCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__UpperCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : str = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
47
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
241
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) __UpperCamelCase : Optional[int] = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
364
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple=7 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Optional[int]=18 , lowerCamelCase__ : Any=30 , lowerCamelCase__ : int=400 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=False , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=True , lowerCamelCase__ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase__ : str=[0.5, 0.5, 0.5] , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = parent UpperCamelCase__ : Dict = batch_size UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : int = image_size UpperCamelCase__ : str = min_resolution UpperCamelCase__ : str = max_resolution UpperCamelCase__ : Tuple = do_resize UpperCamelCase__ : str = size if size is not None else {'''height''': 18, '''width''': 20} UpperCamelCase__ : Optional[Any] = do_thumbnail UpperCamelCase__ : int = do_align_axis UpperCamelCase__ : List[Any] = do_pad UpperCamelCase__ : List[Any] = do_normalize UpperCamelCase__ : Dict = image_mean UpperCamelCase__ : List[Any] = image_std def UpperCAmelCase__ ( self : List[Any] ) -> Any: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: Tuple = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : str ) -> int: '''simple docstring''' UpperCamelCase__ : int = DonutImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_thumbnail''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_pad''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_std''' ) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) UpperCamelCase__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def UpperCAmelCase__ ( self : Any ) -> str: '''simple docstring''' pass @is_flaky() def UpperCAmelCase__ ( self : Optional[int] ) -> Any: '''simple docstring''' UpperCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input UpperCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[str] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input UpperCamelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[Any] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def UpperCAmelCase__ ( self : str ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input UpperCamelCase__ : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[str] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
51
0
def UpperCamelCase_( _snake_case : int , _snake_case : list[int] , _snake_case : int ): """simple docstring""" def count_of_possible_combinations(_snake_case : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_snake_case ) def UpperCamelCase_( _snake_case : int , _snake_case : list[int] , _snake_case : int ): """simple docstring""" def count_of_possible_combinations_with_dp_array( _snake_case : int , _snake_case : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __a =sum( count_of_possible_combinations_with_dp_array(target - item , _snake_case ) for item in array ) __a =answer return answer __a =[-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : int , _snake_case : list[int] , _snake_case : int ): """simple docstring""" __a =[0] * (target + 1) __a =1 for i in range(1 , target + 1 ): for j in range(_snake_case ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = 3 _lowerCAmelCase : Dict = 5 _lowerCAmelCase : Dict = [1, 2, 5] print(combination_sum_iv(n, array, target))
218
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'instructblip_vision_model' def __init__( self , __snake_case=1408 , __snake_case=6144 , __snake_case=39 , __snake_case=16 , __snake_case=224 , __snake_case=14 , __snake_case="gelu" , __snake_case=1e-6 , __snake_case=0.0 , __snake_case=1e-10 , __snake_case=True , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =intermediate_size __a =num_hidden_layers __a =num_attention_heads __a =patch_size __a =image_size __a =initializer_range __a =attention_dropout __a =layer_norm_eps __a =hidden_act __a =qkv_bias @classmethod def __magic_name__ ( cls , __snake_case , **__snake_case ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__snake_case ) __a , __a =cls.get_config_dict(__snake_case , **__snake_case ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __a =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__snake_case , **__snake_case ) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'instructblip_qformer' def __init__( self , __snake_case=3_0522 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=2 , __snake_case=1408 , **__snake_case , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=__snake_case , **__snake_case ) __a =vocab_size __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_act __a =intermediate_size __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =initializer_range __a =layer_norm_eps __a =position_embedding_type __a =cross_attention_frequency __a =encoder_hidden_size @classmethod def __magic_name__ ( cls , __snake_case , **__snake_case ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__snake_case ) __a , __a =cls.get_config_dict(__snake_case , **__snake_case ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __a =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__snake_case , **__snake_case ) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'instructblip' SCREAMING_SNAKE_CASE = True def __init__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=32 , **__snake_case ) -> str: '''simple docstring''' super().__init__(**__snake_case ) if vision_config is None: __a ={} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __a ={} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __a ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __a =InstructBlipVisionConfig(**__snake_case ) __a =InstructBlipQFormerConfig(**__snake_case ) __a =text_config['model_type'] if 'model_type' in text_config else 'opt' __a =CONFIG_MAPPING[text_model_type](**__snake_case ) __a =self.text_config.tie_word_embeddings __a =self.text_config.is_encoder_decoder __a =num_query_tokens __a =self.vision_config.hidden_size __a =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a =1.0 __a =0.02 @classmethod def __magic_name__ ( cls , __snake_case , __snake_case , __snake_case , **__snake_case , ) -> Optional[Any]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__snake_case , ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =copy.deepcopy(self.__dict__ ) __a =self.vision_config.to_dict() __a =self.qformer_config.to_dict() __a =self.text_config.to_dict() __a =self.__class__.model_type return output
218
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = "lxmert" a__ = {} def __init__( self : Optional[int] , __lowerCamelCase : List[Any]=3_05_22 , __lowerCamelCase : List[Any]=7_68 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : str=95_00 , __lowerCamelCase : str=16_00 , __lowerCamelCase : Optional[Any]=4_00 , __lowerCamelCase : Tuple=30_72 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : str=5_12 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Union[str, Any]=1e-12 , __lowerCamelCase : Union[str, Any]=9 , __lowerCamelCase : Dict=5 , __lowerCamelCase : Optional[int]=5 , __lowerCamelCase : List[Any]=20_48 , __lowerCamelCase : str=4 , __lowerCamelCase : str=6.67 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Any=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[Any]=True , **__lowerCamelCase : Union[str, Any] , ) -> List[Any]: A : Dict = vocab_size A : Any = hidden_size A : int = num_attention_heads A : Union[str, Any] = hidden_act A : List[Any] = intermediate_size A : Optional[int] = hidden_dropout_prob A : Dict = attention_probs_dropout_prob A : Optional[int] = max_position_embeddings A : Optional[int] = type_vocab_size A : Optional[Any] = initializer_range A : str = layer_norm_eps A : List[str] = num_qa_labels A : Optional[int] = num_object_labels A : int = num_attr_labels A : List[str] = l_layers A : Tuple = x_layers A : List[Any] = r_layers A : Union[str, Any] = visual_feat_dim A : List[Any] = visual_pos_dim A : str = visual_loss_normalizer A : Tuple = task_matched A : Union[str, Any] = task_mask_lm A : Tuple = task_obj_predict A : List[Any] = task_qa A : Tuple = visual_obj_loss A : Dict = visual_attr_loss A : Optional[int] = visual_feat_loss A : Optional[Any] = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**__lowerCamelCase )
256
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class lowerCamelCase_ ( _A ,_A ): '''simple docstring''' a__ = "resnet" a__ = ["basic", "bottleneck"] def __init__( self : Tuple , __lowerCamelCase : int=3 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Union[str, Any]=[2_56, 5_12, 10_24, 20_48] , __lowerCamelCase : Tuple=[3, 4, 6, 3] , __lowerCamelCase : Optional[Any]="bottleneck" , __lowerCamelCase : Dict="relu" , __lowerCamelCase : Tuple=False , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple , ) -> Optional[Any]: super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) A : Any = num_channels A : Union[str, Any] = embedding_size A : Any = hidden_sizes A : List[str] = depths A : Union[str, Any] = layer_type A : Any = hidden_act A : Any = downsample_in_first_stage A : Any = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(__lowerCamelCase ) + 1 )] A , A : int = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names ) class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self : str ) -> float: return 1e-3
256
1
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _a = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
17
import math import os import sys def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = '''''' try: with open(snake_case , '''rb''' ) as binary_file: __SCREAMING_SNAKE_CASE : int = binary_file.read() for dat in data: __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" lexicon.pop(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = last_match_id if math.loga(snake_case ).is_integer(): for curr_key in lexicon: __SCREAMING_SNAKE_CASE : int = '''0''' + lexicon[curr_key] __SCREAMING_SNAKE_CASE : List[str] = bin(snake_case )[2:] def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = {'''0''': '''0''', '''1''': '''1'''} __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = '''''', '''''' __SCREAMING_SNAKE_CASE : Optional[Any] = len(snake_case ) for i in range(len(snake_case ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __SCREAMING_SNAKE_CASE : Any = lexicon[curr_string] result += last_match_id add_key_to_lexicon(snake_case , snake_case , snake_case , snake_case ) index += 1 __SCREAMING_SNAKE_CASE : Tuple = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __SCREAMING_SNAKE_CASE : Dict = lexicon[curr_string] result += last_match_id return result def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.getsize(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = bin(snake_case )[2:] __SCREAMING_SNAKE_CASE : int = len(snake_case ) return "0" * (length_length - 1) + file_length_binary + compressed def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 8 try: with open(snake_case , '''wb''' ) as opened_file: __SCREAMING_SNAKE_CASE : Optional[int] = [ to_write[i : i + byte_length] for i in range(0 , len(snake_case ) , snake_case ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(snake_case , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = read_file_binary(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = compress_data(snake_case ) __SCREAMING_SNAKE_CASE : Dict = add_file_length(snake_case , snake_case ) write_file_binary(snake_case , snake_case ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
303
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if (ksize % 2) == 0: UpperCAmelCase = ksize + 1 UpperCAmelCase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_snake_case ): for x in range(_snake_case ): # distance from center UpperCAmelCase = x - ksize // 2 UpperCAmelCase = y - ksize // 2 # degree to radiant UpperCAmelCase = theta / 180 * np.pi UpperCAmelCase = np.cos(_theta ) UpperCAmelCase = np.sin(_theta ) # get kernel x UpperCAmelCase = cos_theta * px + sin_theta * py # get kernel y UpperCAmelCase = -sin_theta * px + cos_theta * py # fill kernel UpperCAmelCase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _UpperCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value _UpperCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _UpperCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _UpperCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _UpperCamelCase = out / out.max() * 255 _UpperCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
361
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _UpperCamelCase = {"""UserAgent""": UserAgent().random} def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = script.contents[0] UpperCAmelCase = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowerCamelCase__ : def __init__( self ,A ): UpperCAmelCase = F'''https://www.instagram.com/{username}/''' UpperCAmelCase = self.get_json() def _UpperCamelCase ( self ): UpperCAmelCase = requests.get(self.url ,headers=A ).text UpperCAmelCase = BeautifulSoup(A ,"""html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def _UpperCamelCase ( self ): return self.user_data["username"] @property def _UpperCamelCase ( self ): return self.user_data["full_name"] @property def _UpperCamelCase ( self ): return self.user_data["biography"] @property def _UpperCamelCase ( self ): return self.user_data["business_email"] @property def _UpperCamelCase ( self ): return self.user_data["external_url"] @property def _UpperCamelCase ( self ): return self.user_data["edge_followed_by"]["count"] @property def _UpperCamelCase ( self ): return self.user_data["edge_follow"]["count"] @property def _UpperCamelCase ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _UpperCamelCase ( self ): return self.user_data["profile_pic_url_hd"] @property def _UpperCamelCase ( self ): return self.user_data["is_verified"] @property def _UpperCamelCase ( self ): return self.user_data["is_private"] def _a ( _snake_case = "github" ): """simple docstring""" import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions UpperCAmelCase = InstagramUser(_snake_case ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _snake_case ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = InstagramUser("""github""") print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
234
0
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = len(snake_case_ ) _A : int = len(snake_case_ ) _A : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) _A : list = [] for char_count in range(snake_case_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(snake_case_ ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
26
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class lowercase ( UpperCamelCase__ ): _a = "fnet" def __init__( self , _a=3_2000 , _a=768 , _a=12 , _a=3072 , _a="gelu_new" , _a=0.1 , _a=512 , _a=4 , _a=0.02 , _a=1e-12 , _a=False , _a=512 , _a=3 , _a=1 , _a=2 , **_a , ) -> int: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _A : Any = vocab_size _A : str = max_position_embeddings _A : Optional[Any] = hidden_size _A : List[str] = num_hidden_layers _A : List[str] = intermediate_size _A : List[Any] = hidden_act _A : List[str] = hidden_dropout_prob _A : List[str] = initializer_range _A : List[Any] = type_vocab_size _A : List[Any] = layer_norm_eps _A : List[str] = use_tpu_fourier_optimizations _A : str = tpu_short_seq_length
26
1
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowercase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : int = MvpTokenizer UpperCAmelCase : List[Any] = MvpTokenizerFast UpperCAmelCase : Optional[int] = True UpperCAmelCase : Tuple = filter_roberta_detectors def lowerCAmelCase_ ( self : Optional[Any] ): super().setUp() _A = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _A = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) _A = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _A = {'unk_token': '<unk>'} _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def lowerCAmelCase_ ( self : Optional[Any] , **_UpperCAmelCase : Tuple ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCAmelCase_ ( self : Optional[Any] , **_UpperCAmelCase : Dict ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Union[str, Any] ): return "lower newer", "lower newer" @cached_property def lowerCAmelCase_ ( self : Tuple ): return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def lowerCAmelCase_ ( self : Optional[int] ): return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def lowerCAmelCase_ ( self : Optional[int] ): _A = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _A = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _A = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors='pt' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _A = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) # Test that special tokens are reset @require_torch def lowerCAmelCase_ ( self : Union[str, Any] ): _A = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _A = tokenizer(__snake_case , padding=__snake_case , return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' , __snake_case ) self.assertIn('attention_mask' , __snake_case ) self.assertNotIn('labels' , __snake_case ) self.assertNotIn('decoder_attention_mask' , __snake_case ) @require_torch def lowerCAmelCase_ ( self : Any ): _A = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _A = tokenizer(text_target=__snake_case , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def lowerCAmelCase_ ( self : int ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _A = tokenizer( ['I am a small frog' * 1_024, 'I am a small frog'] , padding=__snake_case , truncation=__snake_case , return_tensors='pt' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def lowerCAmelCase_ ( self : List[Any] ): _A = ['A long paragraph for summarization.'] _A = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _A = tokenizer(__snake_case , text_target=__snake_case , return_tensors='pt' ) _A = inputs['input_ids'] _A = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCAmelCase_ ( self : Union[str, Any] ): pass def lowerCAmelCase_ ( self : Tuple ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) _A = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) _A = 'A, <mask> AllenNLP sentence.' _A = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) _A = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _A = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _A = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( __snake_case , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
371
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _snake_case ( _snake_case : int = 8 ) -> str: '''simple docstring''' _A = ascii_letters + digits + punctuation return "".join(secrets.choice(_snake_case ) for _ in range(_snake_case ) ) def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' i -= len(_snake_case ) _A = i // 3 _A = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _A = ( chars_incl + random(_snake_case , quotient + remainder ) + random(_snake_case , _snake_case ) + random(_snake_case , _snake_case ) ) _A = list(_snake_case ) shuffle(_snake_case ) return "".join(_snake_case ) # random is a generalised function for letters, characters and numbers def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' return "".join(secrets.choice(_snake_case ) for _ in range(_snake_case ) ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] ) -> int: '''simple docstring''' pass # Put your code here... def _snake_case ( _snake_case : Any , _snake_case : str ) -> Dict: '''simple docstring''' pass # Put your code here... def _snake_case ( _snake_case : Union[str, Any] , _snake_case : int ) -> int: '''simple docstring''' pass # Put your code here... def _snake_case ( _snake_case : str , _snake_case : int = 8 ) -> bool: '''simple docstring''' if len(_snake_case ) < min_length: # Your Password must be at least 8 characters long return False _A = any(char in ascii_uppercase for char in password ) _A = any(char in ascii_lowercase for char in password ) _A = any(char in digits for char in password ) _A = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _snake_case ( ) -> Optional[Any]: '''simple docstring''' _A = int(input('Please indicate the max length of your password: ' ).strip() ) _A = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(_snake_case ) ) print( 'Alternative Password generated:' , alternative_password_generator(_snake_case , _snake_case ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
271
0
"""simple docstring""" # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : Union[str, Any] = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
165
"""simple docstring""" def A ( snake_case__ = 10_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1, 1 SCREAMING_SNAKE_CASE__ = 2 while True: SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = fa + fa SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = fa, f index += 1 for _ in str(snake_case__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
165
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Optional[int] = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'lxmert' SCREAMING_SNAKE_CASE = {} def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: int=3_0522 , _SCREAMING_SNAKE_CASE: Any=768 , _SCREAMING_SNAKE_CASE: Optional[int]=12 , _SCREAMING_SNAKE_CASE: Tuple=9500 , _SCREAMING_SNAKE_CASE: List[Any]=1600 , _SCREAMING_SNAKE_CASE: Dict=400 , _SCREAMING_SNAKE_CASE: str=3072 , _SCREAMING_SNAKE_CASE: int="gelu" , _SCREAMING_SNAKE_CASE: str=0.1 , _SCREAMING_SNAKE_CASE: List[str]=0.1 , _SCREAMING_SNAKE_CASE: str=512 , _SCREAMING_SNAKE_CASE: List[str]=2 , _SCREAMING_SNAKE_CASE: List[str]=0.02 , _SCREAMING_SNAKE_CASE: Union[str, Any]=1e-12 , _SCREAMING_SNAKE_CASE: Union[str, Any]=9 , _SCREAMING_SNAKE_CASE: List[Any]=5 , _SCREAMING_SNAKE_CASE: Dict=5 , _SCREAMING_SNAKE_CASE: List[Any]=2048 , _SCREAMING_SNAKE_CASE: List[str]=4 , _SCREAMING_SNAKE_CASE: Any=6.67 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Any=True , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: List[Any]=True , _SCREAMING_SNAKE_CASE: str=True , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , **_SCREAMING_SNAKE_CASE: List[str] , ) -> int: """simple docstring""" __lowerCAmelCase : Union[str, Any] = vocab_size __lowerCAmelCase : Any = hidden_size __lowerCAmelCase : Tuple = num_attention_heads __lowerCAmelCase : str = hidden_act __lowerCAmelCase : List[str] = intermediate_size __lowerCAmelCase : str = hidden_dropout_prob __lowerCAmelCase : Optional[int] = attention_probs_dropout_prob __lowerCAmelCase : Any = max_position_embeddings __lowerCAmelCase : str = type_vocab_size __lowerCAmelCase : List[Any] = initializer_range __lowerCAmelCase : int = layer_norm_eps __lowerCAmelCase : Dict = num_qa_labels __lowerCAmelCase : Optional[Any] = num_object_labels __lowerCAmelCase : List[Any] = num_attr_labels __lowerCAmelCase : Tuple = l_layers __lowerCAmelCase : List[str] = x_layers __lowerCAmelCase : Any = r_layers __lowerCAmelCase : Any = visual_feat_dim __lowerCAmelCase : str = visual_pos_dim __lowerCAmelCase : Optional[int] = visual_loss_normalizer __lowerCAmelCase : List[Any] = task_matched __lowerCAmelCase : Optional[int] = task_mask_lm __lowerCAmelCase : Optional[int] = task_obj_predict __lowerCAmelCase : Any = task_qa __lowerCAmelCase : List[Any] = visual_obj_loss __lowerCAmelCase : Optional[Any] = visual_attr_loss __lowerCAmelCase : Union[str, Any] = visual_feat_loss __lowerCAmelCase : List[Any] = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**_SCREAMING_SNAKE_CASE)
58
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
58
1
'''simple docstring''' from __future__ import annotations import math def _UpperCamelCase ( __A , __A , __A , __A , __A ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if not scores: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , ) ) def _UpperCamelCase ( ) -> None: '''simple docstring''' UpperCamelCase__ = [90, 23, 6, 33, 21, 65, 123, 34423] UpperCamelCase__ = math.log(len(__A ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , __A , __A , __A )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
80
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Dict = ['pixel_values'] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = True , **_UpperCamelCase , ): """simple docstring""" super().__init__(**_UpperCamelCase ) _lowercase : Dict = size if size is not None else {"shortest_edge": 224} _lowercase : List[Any] = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) _lowercase : Union[str, Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowercase : Tuple = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name="crop_size" ) _lowercase : List[str] = do_resize _lowercase : Dict = size _lowercase : Any = resample _lowercase : int = do_center_crop _lowercase : Optional[Any] = crop_size _lowercase : Tuple = do_rescale _lowercase : Any = rescale_factor _lowercase : Union[str, Any] = do_normalize _lowercase : List[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowercase : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD _lowercase : Optional[int] = do_convert_rgb def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" _lowercase : int = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _lowercase : List[str] = get_resize_output_image_size(_UpperCamelCase , size=size["shortest_edge"] , default_to_square=_UpperCamelCase ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" _lowercase : int = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCamelCase , size=(size["height"], size["width"]) , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ): """simple docstring""" _lowercase : Tuple = do_resize if do_resize is not None else self.do_resize _lowercase : Union[str, Any] = size if size is not None else self.size _lowercase : Optional[int] = get_size_dict(_UpperCamelCase , param_name="size" , default_to_square=_UpperCamelCase ) _lowercase : List[Any] = resample if resample is not None else self.resample _lowercase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size _lowercase : Tuple = get_size_dict(_UpperCamelCase , param_name="crop_size" , default_to_square=_UpperCamelCase ) _lowercase : Any = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean _lowercase : Dict = image_std if image_std is not None else self.image_std _lowercase : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowercase : str = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowercase : List[Any] = [convert_to_rgb(_UpperCamelCase ) for image in images] # All transformations expect numpy arrays. _lowercase : List[Any] = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: _lowercase : Optional[Any] = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: _lowercase : Optional[int] = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: _lowercase : Any = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: _lowercase : List[Any] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] _lowercase : List[Any] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] _lowercase : Dict = {"pixel_values": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
250
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''T''') class snake_case__(Generic[T] ): """simple docstring""" lowercase_ = 42 # Cache store of keys lowercase_ = 42 # References of the keys in cache lowercase_ = 1_0 # Maximum capacity of cache def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : int ): lowercase__ : List[str] = deque() lowercase__ : List[str] = set() if not n: lowercase__ : List[str] = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: lowercase__ : List[Any] = n def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase__ : List[Any] = self.dq_store.pop() self.key_reference.remove(SCREAMING_SNAKE_CASE ) else: self.dq_store.remove(SCREAMING_SNAKE_CASE ) self.dq_store.appendleft(SCREAMING_SNAKE_CASE ) self.key_reference.add(SCREAMING_SNAKE_CASE ) def snake_case ( self : Any ): for k in self.dq_store: print(SCREAMING_SNAKE_CASE ) def __repr__( self : Union[str, Any] ): return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
121
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 6_5_0, """eval_accuracy""": 0.6, """eval_loss""": 0.9}, }, { """framework""": """tensorflow""", """script""": """run_tf.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 0.9}, }, ] ) class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : Union[str, Any] ): if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=SCREAMING_SNAKE_CASE , ) assert hasattr(self , "env" ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : str=1 ): # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-single""" , instance_count=SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=SCREAMING_SNAKE_CASE , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : str ): TrainingJobAnalytics(SCREAMING_SNAKE_CASE ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) def snake_case ( self : str ): # create estimator lowercase__ : Optional[int] = self.create_estimator() # run training estimator.fit() # result dataframe lowercase__ : Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowercase__ : str = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowercase__ : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowercase__ : Any = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , SCREAMING_SNAKE_CASE )
121
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class _snake_case ( _a ): _A : Any = '''data2vec-text''' def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=30_522 ,SCREAMING_SNAKE_CASE__ : List[Any]=768 ,SCREAMING_SNAKE_CASE__ : List[Any]=12 ,SCREAMING_SNAKE_CASE__ : Optional[int]=12 ,SCREAMING_SNAKE_CASE__ : int=3_072 ,SCREAMING_SNAKE_CASE__ : Dict="gelu" ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : str=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=512 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 ,SCREAMING_SNAKE_CASE__ : Any=0.02 ,SCREAMING_SNAKE_CASE__ : List[str]=1e-12 ,SCREAMING_SNAKE_CASE__ : List[str]=1 ,SCREAMING_SNAKE_CASE__ : str=0 ,SCREAMING_SNAKE_CASE__ : List[str]=2 ,SCREAMING_SNAKE_CASE__ : Optional[Any]="absolute" ,SCREAMING_SNAKE_CASE__ : List[Any]=True ,SCREAMING_SNAKE_CASE__ : int=None ,**SCREAMING_SNAKE_CASE__ : Tuple ,): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = vocab_size SCREAMING_SNAKE_CASE:str = hidden_size SCREAMING_SNAKE_CASE:List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE:List[Any] = num_attention_heads SCREAMING_SNAKE_CASE:Tuple = hidden_act SCREAMING_SNAKE_CASE:Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE:Any = hidden_dropout_prob SCREAMING_SNAKE_CASE:List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE:Any = max_position_embeddings SCREAMING_SNAKE_CASE:Optional[int] = type_vocab_size SCREAMING_SNAKE_CASE:Any = initializer_range SCREAMING_SNAKE_CASE:Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE:List[str] = position_embedding_type SCREAMING_SNAKE_CASE:List[Any] = use_cache SCREAMING_SNAKE_CASE:int = classifier_dropout class _snake_case ( _a ): @property def __UpperCamelCase ( self : Union[str, Any] ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE:Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE:str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
139
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union A_ = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class _snake_case : _A : str _A : Optional[str] = None _A : Optional[Union[str, int]] = None _A : Optional[Union[str, int]] = None _A : Optional[Union[str, int]] = None def __UpperCamelCase ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[str] = _str_to_version_tuple(self.version_str ) def __repr__( self : Optional[Any] ): return F'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def __UpperCamelCase ( self : List[Any] ): return self.major, self.minor, self.patch def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int ): if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): return Version(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): return other raise TypeError(F'''{other} (type {type(SCREAMING_SNAKE_CASE__ )}) cannot be compared to version.''' ) def __eq__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[str] ): try: SCREAMING_SNAKE_CASE:List[str] = self._validate_operand(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : int ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ): SCREAMING_SNAKE_CASE:Tuple = self._validate_operand(SCREAMING_SNAKE_CASE__ ) return self.tuple < other.tuple def __hash__( self : Union[str, Any] ): return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __UpperCamelCase ( cls : str ,SCREAMING_SNAKE_CASE__ : str ): SCREAMING_SNAKE_CASE:str = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __UpperCamelCase ( self : Tuple ): return self.version_str def A_ ( snake_case ): SCREAMING_SNAKE_CASE:int = _VERSION_REG.match(snake_case ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(snake_case ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def A_ ( snake_case ): return ".".join(str(snake_case ) for v in version_tuple )
139
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase : Union[str, Any] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
362
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase : Dict = logging.get_logger(__name__) lowerCAmelCase : Any = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase : int = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } lowerCAmelCase : Tuple = { 'google/realm-cc-news-pretrained-embedder': 5_12, 'google/realm-cc-news-pretrained-encoder': 5_12, 'google/realm-cc-news-pretrained-scorer': 5_12, 'google/realm-cc-news-pretrained-openqa': 5_12, 'google/realm-orqa-nq-openqa': 5_12, 'google/realm-orqa-nq-reader': 5_12, 'google/realm-orqa-wq-openqa': 5_12, 'google/realm-orqa-wq-reader': 5_12, } lowerCAmelCase : Union[str, Any] = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = RealmTokenizer def __init__( self , A_=None , A_=None , A_=True , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_=True , A_=None , **A_ , )-> Tuple: '''simple docstring''' super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , A_ ) != do_lower_case or normalizer_state.get('strip_accents' , A_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , A_ ) != tokenize_chinese_chars ): UpperCamelCase = getattr(A_ , normalizer_state.pop('type' ) ) UpperCamelCase = do_lower_case UpperCamelCase = strip_accents UpperCamelCase = tokenize_chinese_chars UpperCamelCase = normalizer_class(**A_ ) UpperCamelCase = do_lower_case def UpperCAmelCase_ ( self , A_ , **A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = PaddingStrategy.MAX_LENGTH UpperCamelCase = text UpperCamelCase = kwargs.pop('text_pair' , A_ ) UpperCamelCase = kwargs.pop('return_tensors' , A_ ) UpperCamelCase = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(A_ ): if batch_text_pair is not None: UpperCamelCase = batch_text_pair[idx] else: UpperCamelCase = None UpperCamelCase = super().__call__(A_ , A_ , return_tensors=A_ , **A_ ) UpperCamelCase = encoded_candidates.get('input_ids' ) UpperCamelCase = encoded_candidates.get('attention_mask' ) UpperCamelCase = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(A_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(A_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(A_ ) UpperCamelCase = {key: item for key, item in output_data.items() if len(A_ ) != 0} return BatchEncoding(A_ , tensor_type=A_ ) def UpperCAmelCase_ ( self , A_ , A_=None )-> Any: '''simple docstring''' UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self , A_ , A_ = None )-> List[int]: '''simple docstring''' UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self , A_ , A_ = None )-> Tuple[str]: '''simple docstring''' UpperCamelCase = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
251
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class __lowercase (_snake_case ): _UpperCamelCase = """dpt""" def __init__( self , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1e-12 , A_=384 , A_=16 , A_=3 , A_=False , A_=True , A_=[2, 5, 8, 11] , A_="project" , A_=[4, 2, 1, 0.5] , A_=[96, 192, 384, 768] , A_=256 , A_=-1 , A_=False , A_=True , A_=0.4 , A_=255 , A_=0.1 , A_=[1, 1024, 24, 24] , A_=[0, 1] , A_=None , **A_ , ) ->Tuple: '''simple docstring''' super().__init__(**__snake_case ) __lowerCAmelCase : int = hidden_size __lowerCAmelCase : Union[str, Any] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) __lowerCAmelCase : Optional[int] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } __lowerCAmelCase : Any = BitConfig(**__snake_case ) elif isinstance(__snake_case , __snake_case ): logger.info('''Initializing the config with a `BiT` backbone.''' ) __lowerCAmelCase : Tuple = BitConfig(**__snake_case ) elif isinstance(__snake_case , __snake_case ): __lowerCAmelCase : Optional[int] = backbone_config else: raise ValueError( f"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) __lowerCAmelCase : Optional[int] = backbone_featmap_shape __lowerCAmelCase : Optional[int] = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: __lowerCAmelCase : List[str] = None __lowerCAmelCase : List[str] = None __lowerCAmelCase : List[Any] = [] __lowerCAmelCase : Any = num_hidden_layers __lowerCAmelCase : str = num_attention_heads __lowerCAmelCase : int = intermediate_size __lowerCAmelCase : int = hidden_act __lowerCAmelCase : int = hidden_dropout_prob __lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : int = layer_norm_eps __lowerCAmelCase : Optional[Any] = image_size __lowerCAmelCase : List[Any] = patch_size __lowerCAmelCase : Optional[int] = num_channels __lowerCAmelCase : str = qkv_bias __lowerCAmelCase : List[str] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) __lowerCAmelCase : List[str] = readout_type __lowerCAmelCase : Union[str, Any] = reassemble_factors __lowerCAmelCase : List[Any] = neck_hidden_sizes __lowerCAmelCase : Dict = fusion_hidden_size __lowerCAmelCase : int = head_in_index __lowerCAmelCase : int = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __lowerCAmelCase : Optional[Any] = use_auxiliary_head __lowerCAmelCase : Optional[int] = auxiliary_loss_weight __lowerCAmelCase : Optional[Any] = semantic_loss_ignore_index __lowerCAmelCase : List[Any] = semantic_classifier_dropout def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __lowerCAmelCase : str = self.backbone_config.to_dict() __lowerCAmelCase : Dict = self.__class__.model_type return output
275
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase__ : '''simple docstring''' def __init__( self , __snake_case , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case="resnet50" , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=True , __snake_case=True , ): _SCREAMING_SNAKE_CASE : Tuple = parent _SCREAMING_SNAKE_CASE : Optional[int] = out_indices if out_indices is not None else [4] _SCREAMING_SNAKE_CASE : str = stage_names _SCREAMING_SNAKE_CASE : List[str] = out_features _SCREAMING_SNAKE_CASE : int = backbone _SCREAMING_SNAKE_CASE : Any = batch_size _SCREAMING_SNAKE_CASE : List[str] = image_size _SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels _SCREAMING_SNAKE_CASE : int = use_pretrained_backbone _SCREAMING_SNAKE_CASE : Optional[Any] = is_training def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : List[Any] = self.get_config() return config, pixel_values def UpperCAmelCase_ ( self ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Optional[int] = TimmBackbone(config=__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[Any] = model(__snake_case ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = config_and_inputs _SCREAMING_SNAKE_CASE : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase__ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = (TimmBackbone,) if is_torch_available() else () A_ : Tuple = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} A_ : Optional[Any] = False A_ : List[Any] = False A_ : Dict = False A_ : int = False def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Any = TimmBackboneModelTester(self ) _SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def UpperCAmelCase_ ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[int] = """resnet18""" _SCREAMING_SNAKE_CASE : Tuple = """microsoft/resnet-18""" _SCREAMING_SNAKE_CASE : List[str] = AutoBackbone.from_pretrained(__snake_case , use_timm_backbone=__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = AutoBackbone.from_pretrained(__snake_case ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) _SCREAMING_SNAKE_CASE : Optional[Any] = AutoBackbone.from_pretrained(__snake_case , use_timm_backbone=__snake_case , out_indices=[1, 2, 3] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = AutoBackbone.from_pretrained(__snake_case , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""Safetensors is not supported by timm.""" ) def UpperCAmelCase_ ( self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : List[str] = model_class(__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE : int = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Tuple = True _SCREAMING_SNAKE_CASE : List[str] = self.has_attentions # no need to test all models as different heads yield the same functionality _SCREAMING_SNAKE_CASE : str = self.all_model_classes[0] _SCREAMING_SNAKE_CASE : str = model_class(__snake_case ) model.to(__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : Tuple = model(**__snake_case ) _SCREAMING_SNAKE_CASE : Optional[Any] = outputs[0][-1] # Encoder-/Decoder-only models _SCREAMING_SNAKE_CASE : str = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _SCREAMING_SNAKE_CASE : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__snake_case ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : str = model_class(__snake_case ) model.to(__snake_case ) model.eval() _SCREAMING_SNAKE_CASE : List[str] = model(**__snake_case ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None _SCREAMING_SNAKE_CASE : Union[str, Any] = copy.deepcopy(__snake_case ) _SCREAMING_SNAKE_CASE : Optional[Any] = None _SCREAMING_SNAKE_CASE : Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() _SCREAMING_SNAKE_CASE : Optional[Any] = model(**__snake_case ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights _SCREAMING_SNAKE_CASE : str = copy.deepcopy(__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = False _SCREAMING_SNAKE_CASE : Optional[int] = model_class(__snake_case ) model.to(__snake_case ) model.eval() _SCREAMING_SNAKE_CASE : List[Any] = model(**__snake_case )
200
0
from __future__ import annotations import math def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if num <= 0: A_ : Optional[int] = f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = [True] * (num + 1) A_ : Tuple = [] A_ : Union[str, Any] = 2 A_ : Any = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE ): if sieve[i] is True: A_ : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
65
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Any: '''simple docstring''' A_ : Dict = '''hf-internal-testing/tiny-random-t5''' A_ : str = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = tokenizer('''This is me''' , return_tensors='''pt''' ) A_ : Tuple = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) A_ : Dict = model.generate(**_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) A_ : str = model_reloaded.generate(**_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : List[str] = '''hf-internal-testing/tiny-random-t5''' A_ : Dict = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_SCREAMING_SNAKE_CASE ): model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ : List[str] = model.reverse_bettertransformer() model.save_pretrained(_SCREAMING_SNAKE_CASE )
65
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Dict = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
185
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer a_ : str = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} a_ : List[str] = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } a_ : Any = { "yjernite/retribert-base-uncased": 5_1_2, } a_ : Tuple = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = RetriBertTokenizer _lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self , __magic_name__=None , __magic_name__=None , __magic_name__=True , __magic_name__="[UNK]" , __magic_name__="[SEP]" , __magic_name__="[PAD]" , __magic_name__="[CLS]" , __magic_name__="[MASK]" , __magic_name__=True , __magic_name__=None , **__magic_name__ , ) -> Tuple: super().__init__( __magic_name__ , tokenizer_file=__magic_name__ , do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , tokenize_chinese_chars=__magic_name__ , strip_accents=__magic_name__ , **__magic_name__ , ) _a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __magic_name__ ) != do_lower_case or normalizer_state.get('strip_accents' , __magic_name__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __magic_name__ ) != tokenize_chinese_chars ): _a = getattr(__magic_name__ , normalizer_state.pop('type' ) ) _a = do_lower_case _a = strip_accents _a = tokenize_chinese_chars _a = normalizer_class(**__magic_name__ ) _a = do_lower_case def __UpperCAmelCase ( self , __magic_name__ , __magic_name__=None ) -> Union[str, Any]: _a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ )
168
0
def __lowercase ( lowerCamelCase : int ): UpperCamelCase_ : int = abs(lowerCamelCase ) UpperCamelCase_ : Any = 0 while n > 0: res += n % 10 n //= 10 return res def __lowercase ( lowerCamelCase : int ): UpperCamelCase_ : Any = abs(lowerCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __lowercase ( lowerCamelCase : int ): return sum(int(lowerCamelCase ) for c in str(abs(lowerCamelCase ) ) ) def __lowercase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCamelCase : Callable , lowerCamelCase : int ) -> None: UpperCamelCase_ : Any = F"{func.__name__}({value})" UpperCamelCase_ : int = timeit(F"__main__.{call}" , setup='import __main__' ) print(F"{call:56} = {func(lowerCamelCase )} -- {timing:.4f} seconds" ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(lowerCamelCase , lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
50
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any]=1024 ): UpperCamelCase_, UpperCamelCase_ : int = [], [] UpperCamelCase_ : Dict = list(zip(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_, UpperCamelCase_ : int = sorted_examples[0] def is_too_big(lowerCamelCase : str ): return tok(lowerCamelCase , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCamelCase_ : Optional[Any] = new_src + ' ' + src UpperCamelCase_ : int = new_tgt + ' ' + tgt if is_too_big(lowerCamelCase ) or is_too_big(lowerCamelCase ): # cant fit, finalize example finished_src.append(lowerCamelCase ) finished_tgt.append(lowerCamelCase ) UpperCamelCase_, UpperCamelCase_ : Dict = src, tgt else: # can fit, keep adding UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(lowerCamelCase ) finished_tgt.append(lowerCamelCase ) return finished_src, finished_tgt def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : Path , lowerCamelCase : Tuple , lowerCamelCase : Dict ): UpperCamelCase_ : List[Any] = Path(lowerCamelCase ) save_path.mkdir(exist_ok=lowerCamelCase ) for split in ["train"]: UpperCamelCase_, UpperCamelCase_ : Any = data_dir / F"{split}.source", data_dir / F"{split}.target" UpperCamelCase_ : List[Any] = [x.rstrip() for x in Path(lowerCamelCase ).open().readlines()] UpperCamelCase_ : Optional[int] = [x.rstrip() for x in Path(lowerCamelCase ).open().readlines()] UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = pack_examples(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(F"packed {split} split from {len(lowerCamelCase )} examples -> {len(lowerCamelCase )}." ) Path(save_path / F"{split}.source" ).open('w' ).write('\n'.join(lowerCamelCase ) ) Path(save_path / F"{split}.target" ).open('w' ).write('\n'.join(lowerCamelCase ) ) for split in ["val", "test"]: UpperCamelCase_, UpperCamelCase_ : Any = data_dir / F"{split}.source", data_dir / F"{split}.target" shutil.copyfile(lowerCamelCase , save_path / F"{split}.source" ) shutil.copyfile(lowerCamelCase , save_path / F"{split}.target" ) def __lowercase ( ): UpperCamelCase_ : int = argparse.ArgumentParser() parser.add_argument('--tok_name' , type=lowerCamelCase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=lowerCamelCase , default=128 ) parser.add_argument('--data_dir' , type=lowerCamelCase ) parser.add_argument('--save_path' , type=lowerCamelCase ) UpperCamelCase_ : Tuple = parser.parse_args() UpperCamelCase_ : Optional[int] = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(lowerCamelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
50
1
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _a = logging.get_logger(__name__) class __lowerCamelCase : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None @staticmethod def UpperCamelCase ( ): """simple docstring""" raise NotImplementedError def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" raise NotImplementedError def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" raise NotImplementedError def UpperCamelCase ( self ): """simple docstring""" if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def UpperCamelCase ( cls ): """simple docstring""" return F"""`pip install {cls.pip_package or cls.name}`""" class __lowerCamelCase ( lowercase_): """simple docstring""" UpperCamelCase__ = "optuna" @staticmethod def UpperCamelCase ( ): """simple docstring""" return is_optuna_available() def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return run_hp_search_optuna(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return default_hp_space_optuna(lowerCamelCase_ ) class __lowerCamelCase ( lowercase_): """simple docstring""" UpperCamelCase__ = "ray" UpperCamelCase__ = "\'ray[tune]\'" @staticmethod def UpperCamelCase ( ): """simple docstring""" return is_ray_available() def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return run_hp_search_ray(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return default_hp_space_ray(lowerCamelCase_ ) class __lowerCamelCase ( lowercase_): """simple docstring""" UpperCamelCase__ = "sigopt" @staticmethod def UpperCamelCase ( ): """simple docstring""" return is_sigopt_available() def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return run_hp_search_sigopt(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return default_hp_space_sigopt(lowerCamelCase_ ) class __lowerCamelCase ( lowercase_): """simple docstring""" UpperCamelCase__ = "wandb" @staticmethod def UpperCamelCase ( ): """simple docstring""" return is_wandb_available() def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return run_hp_search_wandb(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return default_hp_space_wandb(lowerCamelCase_ ) _a = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def __A ( )-> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowerCamelCase_ ) > 0: _UpperCAmelCase = available_backends[0].name if len(lowerCamelCase_ ) > 1: logger.info( F"""{len(lowerCamelCase_ )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( F""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
39
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase_ ( *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[str] ): '''simple docstring''' pass def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowerCamelCase_ ( self : Any , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = DepthEstimationPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , lowerCamelCase_ ) import datasets SCREAMING_SNAKE_CASE : List[str] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) SCREAMING_SNAKE_CASE : Any = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] , lowerCamelCase_ , ) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' pass @slow @require_torch def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = """Intel/dpt-large""" SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline("""depth-estimation""" , model=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) SCREAMING_SNAKE_CASE : str = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 ) @require_torch def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
323
0
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar _lowercase : List[Any] = TypeVar("_T") class __SCREAMING_SNAKE_CASE ( Generic[_T] ): '''simple docstring''' def __init__( self : Any, lowerCamelCase : str = None )-> None: lowerCamelCase__ : Tuple =list(iterable or [] ) lowerCamelCase__ : int =[] def __len__( self : str )-> int: return len(self._stacka ) + len(self._stacka ) def __repr__( self : List[str] )-> str: return F'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def snake_case ( self : List[Any], lowerCamelCase : str )-> None: self._stacka.append(lowerCamelCase ) def snake_case ( self : Optional[Any] )-> _T: lowerCamelCase__ : Optional[int] =self._stacka.pop lowerCamelCase__ : List[str] =self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
366
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict, lowerCamelCase : str, lowerCamelCase : Dict=13, lowerCamelCase : Optional[Any]=7, lowerCamelCase : List[Any]=True, lowerCamelCase : Dict=True, lowerCamelCase : List[Any]=True, lowerCamelCase : Optional[int]=True, lowerCamelCase : int=99, lowerCamelCase : Optional[int]=[1, 1, 2], lowerCamelCase : str=1, lowerCamelCase : List[Any]=32, lowerCamelCase : str=4, lowerCamelCase : Dict=8, lowerCamelCase : List[Any]=37, lowerCamelCase : Optional[int]="gelu_new", lowerCamelCase : Union[str, Any]=0.1, lowerCamelCase : List[Any]=0.1, lowerCamelCase : List[Any]=0.0, lowerCamelCase : Dict=512, lowerCamelCase : Dict=3, lowerCamelCase : str=0.02, lowerCamelCase : str=3, lowerCamelCase : Optional[int]=4, lowerCamelCase : List[str]=None, lowerCamelCase : Tuple=False, )-> Union[str, Any]: lowerCamelCase__ : int =parent lowerCamelCase__ : Dict =batch_size lowerCamelCase__ : Dict =seq_length lowerCamelCase__ : Any =is_training lowerCamelCase__ : int =use_input_mask lowerCamelCase__ : Tuple =use_token_type_ids lowerCamelCase__ : int =use_labels lowerCamelCase__ : Tuple =vocab_size lowerCamelCase__ : Union[str, Any] =block_sizes lowerCamelCase__ : Any =num_decoder_layers lowerCamelCase__ : Optional[Any] =d_model lowerCamelCase__ : List[str] =n_head lowerCamelCase__ : List[Any] =d_head lowerCamelCase__ : Dict =d_inner lowerCamelCase__ : Dict =hidden_act lowerCamelCase__ : List[str] =hidden_dropout lowerCamelCase__ : Union[str, Any] =attention_dropout lowerCamelCase__ : Union[str, Any] =activation_dropout lowerCamelCase__ : Dict =max_position_embeddings lowerCamelCase__ : Dict =type_vocab_size lowerCamelCase__ : Union[str, Any] =2 lowerCamelCase__ : Optional[int] =num_labels lowerCamelCase__ : List[str] =num_choices lowerCamelCase__ : Tuple =scope lowerCamelCase__ : Optional[int] =initializer_std # Used in the tests to check the size of the first attention layer lowerCamelCase__ : List[str] =n_head # Used in the tests to check the size of the first hidden state lowerCamelCase__ : Tuple =self.d_model # Used in the tests to check the number of output hidden states/attentions lowerCamelCase__ : List[Any] =sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowerCamelCase__ : Union[str, Any] =self.num_hidden_layers + 2 def snake_case ( self : int )-> List[Any]: lowerCamelCase__ : Dict =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Union[str, Any] =None if self.use_input_mask: lowerCamelCase__ : Any =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : int =None if self.use_token_type_ids: lowerCamelCase__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : List[str] =None lowerCamelCase__ : Union[str, Any] =None lowerCamelCase__ : List[str] =None if self.use_labels: lowerCamelCase__ : List[Any] =ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : Optional[Any] =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : Union[str, Any] =ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : Optional[int] =FunnelConfig( vocab_size=self.vocab_size, block_sizes=self.block_sizes, num_decoder_layers=self.num_decoder_layers, d_model=self.d_model, n_head=self.n_head, d_head=self.d_head, d_inner=self.d_inner, hidden_act=self.hidden_act, hidden_dropout=self.hidden_dropout, attention_dropout=self.attention_dropout, activation_dropout=self.activation_dropout, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_std=self.initializer_std, ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def snake_case ( self : List[Any], lowerCamelCase : Optional[Any], lowerCamelCase : Optional[int], lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Dict, )-> Union[str, Any]: lowerCamelCase__ : Tuple =TFFunnelModel(config=lowerCamelCase ) lowerCamelCase__ : Dict ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase__ : Tuple =model(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =[input_ids, input_mask] lowerCamelCase__ : List[Any] =model(lowerCamelCase ) lowerCamelCase__ : Any =model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model) ) lowerCamelCase__ : int =False lowerCamelCase__ : Any =TFFunnelModel(config=lowerCamelCase ) lowerCamelCase__ : str =model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model) ) lowerCamelCase__ : Dict =False lowerCamelCase__ : Optional[int] =TFFunnelModel(config=lowerCamelCase ) lowerCamelCase__ : Tuple =model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model) ) def snake_case ( self : Tuple, lowerCamelCase : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Union[str, Any], lowerCamelCase : str, lowerCamelCase : Optional[Any], lowerCamelCase : Tuple, lowerCamelCase : Dict, )-> Optional[Any]: lowerCamelCase__ : List[str] =TFFunnelBaseModel(config=lowerCamelCase ) lowerCamelCase__ : str ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase__ : Union[str, Any] =model(lowerCamelCase ) lowerCamelCase__ : Tuple =[input_ids, input_mask] lowerCamelCase__ : Any =model(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 2, self.d_model) ) lowerCamelCase__ : List[Any] =False lowerCamelCase__ : Dict =TFFunnelBaseModel(config=lowerCamelCase ) lowerCamelCase__ : int =model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 3, self.d_model) ) lowerCamelCase__ : Union[str, Any] =False lowerCamelCase__ : Optional[Any] =TFFunnelBaseModel(config=lowerCamelCase ) lowerCamelCase__ : str =model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 2, self.d_model) ) def snake_case ( self : str, lowerCamelCase : Dict, lowerCamelCase : Dict, lowerCamelCase : List[Any], lowerCamelCase : Dict, lowerCamelCase : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : List[Any], )-> List[Any]: lowerCamelCase__ : List[str] =TFFunnelForPreTraining(config=lowerCamelCase ) lowerCamelCase__ : List[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase__ : Union[str, Any] =model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length) ) def snake_case ( self : str, lowerCamelCase : Tuple, lowerCamelCase : str, lowerCamelCase : List[Any], lowerCamelCase : List[Any], lowerCamelCase : str, lowerCamelCase : Tuple, lowerCamelCase : int, )-> List[Any]: lowerCamelCase__ : Union[str, Any] =TFFunnelForMaskedLM(config=lowerCamelCase ) lowerCamelCase__ : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase__ : List[Any] =model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : Optional[int], lowerCamelCase : Tuple, lowerCamelCase : Any, lowerCamelCase : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : Dict, )-> Union[str, Any]: lowerCamelCase__ : Optional[Any] =self.num_labels lowerCamelCase__ : Tuple =TFFunnelForSequenceClassification(config=lowerCamelCase ) lowerCamelCase__ : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase__ : List[str] =model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case ( self : Union[str, Any], lowerCamelCase : str, lowerCamelCase : Dict, lowerCamelCase : Dict, lowerCamelCase : Dict, lowerCamelCase : Optional[Any], lowerCamelCase : int, lowerCamelCase : Tuple, )-> int: lowerCamelCase__ : int =self.num_choices lowerCamelCase__ : List[Any] =TFFunnelForMultipleChoice(config=lowerCamelCase ) lowerCamelCase__ : int =tf.tile(tf.expand_dims(lowerCamelCase, 1 ), (1, self.num_choices, 1) ) lowerCamelCase__ : Union[str, Any] =tf.tile(tf.expand_dims(lowerCamelCase, 1 ), (1, self.num_choices, 1) ) lowerCamelCase__ : Optional[Any] =tf.tile(tf.expand_dims(lowerCamelCase, 1 ), (1, self.num_choices, 1) ) lowerCamelCase__ : Union[str, Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowerCamelCase__ : str =model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def snake_case ( self : str, lowerCamelCase : Dict, lowerCamelCase : Optional[Any], lowerCamelCase : Any, lowerCamelCase : str, lowerCamelCase : Union[str, Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, )-> Optional[int]: lowerCamelCase__ : Optional[Any] =self.num_labels lowerCamelCase__ : Optional[Any] =TFFunnelForTokenClassification(config=lowerCamelCase ) lowerCamelCase__ : Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase__ : Union[str, Any] =model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self : Optional[int], lowerCamelCase : Dict, lowerCamelCase : str, lowerCamelCase : Union[str, Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Union[str, Any], lowerCamelCase : str, lowerCamelCase : Optional[int], )-> Tuple: lowerCamelCase__ : Tuple =TFFunnelForQuestionAnswering(config=lowerCamelCase ) lowerCamelCase__ : Union[str, Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase__ : Optional[int] =model(lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def snake_case ( self : int )-> List[str]: lowerCamelCase__ : List[Any] =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Tuple =config_and_inputs lowerCamelCase__ : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _a = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) _a = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) _a = False _a = False def snake_case ( self : str )-> Tuple: lowerCamelCase__ : Any =TFFunnelModelTester(self ) lowerCamelCase__ : Any =ConfigTester(self, config_class=lowerCamelCase ) def snake_case ( self : List[str] )-> Tuple: self.config_tester.run_common_tests() def snake_case ( self : str )-> List[Any]: lowerCamelCase__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def snake_case ( self : str )-> Dict: lowerCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase ) def snake_case ( self : int )-> List[Any]: lowerCamelCase__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def snake_case ( self : Dict )-> Any: lowerCamelCase__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) def snake_case ( self : Tuple )-> Optional[Any]: lowerCamelCase__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase ) @require_tf class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _a = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) _a = False _a = False def snake_case ( self : int )-> Tuple: lowerCamelCase__ : Union[str, Any] =TFFunnelModelTester(self, base=lowerCamelCase ) lowerCamelCase__ : Tuple =ConfigTester(self, config_class=lowerCamelCase ) def snake_case ( self : Any )-> Any: self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] )-> Optional[Any]: lowerCamelCase__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCamelCase ) def snake_case ( self : Union[str, Any] )-> int: lowerCamelCase__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase ) def snake_case ( self : List[str] )-> Optional[int]: lowerCamelCase__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase )
272
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : str=3 , lowerCAmelCase : int=30 , lowerCAmelCase : int=400 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=None , lowerCAmelCase : Any=True , lowerCAmelCase : int=[0.5, 0.5, 0.5] , lowerCAmelCase : Any=[0.5, 0.5, 0.5] , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[Any]=1 / 255 , lowerCAmelCase : Tuple=True , ): lowerCAmelCase = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_normalize lowerCAmelCase = image_mean lowerCAmelCase = image_std lowerCAmelCase = do_rescale lowerCAmelCase = rescale_factor lowerCAmelCase = do_pad def __lowercase ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __lowercase ( self : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int=False ): if not batched: lowerCAmelCase = image_inputs[0] if isinstance(lowerCAmelCase , Image.Image ): lowerCAmelCase , lowerCAmelCase = image.size else: lowerCAmelCase , lowerCAmelCase = image.shape[1], image.shape[2] if w < h: lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase = self.size["""shortest_edge"""] elif w > h: lowerCAmelCase = self.size["""shortest_edge"""] lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase = self.size["""shortest_edge"""] lowerCAmelCase = self.size["""shortest_edge"""] else: lowerCAmelCase = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase = max(lowerCAmelCase , key=lambda lowerCAmelCase : item[0] )[0] lowerCAmelCase = max(lowerCAmelCase , key=lambda lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( _lowerCamelCase , unittest.TestCase ): _a = YolosImageProcessor if is_vision_available() else None def __lowercase ( self : Optional[int] ): lowerCAmelCase = YolosImageProcessingTester(self ) @property def __lowercase ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """size""" ) ) def __lowercase ( self : Tuple ): lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase ) lowerCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase ) def __lowercase ( self : str ): pass def __lowercase ( self : str ): lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase ) lowerCAmelCase = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : Tuple ): lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : str ): lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values lowerCAmelCase , lowerCAmelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : str ): lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) lowerCAmelCase = self.image_processing_class(do_resize=lowerCAmelCase , do_normalize=lowerCAmelCase , do_rescale=lowerCAmelCase ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowerCAmelCase = image_processing_a.pad(lowerCAmelCase , return_tensors="""pt""" ) lowerCAmelCase = image_processing_a(lowerCAmelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def __lowercase ( self : str ): lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase = json.loads(f.read() ) lowerCAmelCase = {"""image_id""": 3_9769, """annotations""": target} # encode them lowerCAmelCase = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) lowerCAmelCase = image_processing(images=lowerCAmelCase , annotations=lowerCAmelCase , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCAmelCase ) lowerCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCAmelCase , atol=1e-4 ) ) # verify area lowerCAmelCase = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCAmelCase ) ) # verify boxes lowerCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCAmelCase ) lowerCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCAmelCase , atol=1e-3 ) ) # verify image_id lowerCAmelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCAmelCase ) ) # verify is_crowd lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCAmelCase ) ) # verify class_labels lowerCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCAmelCase ) ) # verify orig_size lowerCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCAmelCase ) ) # verify size lowerCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCAmelCase ) ) @slow def __lowercase ( self : int ): lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase = json.loads(f.read() ) lowerCAmelCase = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} lowerCAmelCase = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase = YolosImageProcessor(format="""coco_panoptic""" ) lowerCAmelCase = image_processing(images=lowerCAmelCase , annotations=lowerCAmelCase , masks_path=lowerCAmelCase , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCAmelCase ) lowerCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCAmelCase , atol=1e-4 ) ) # verify area lowerCAmelCase = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCAmelCase ) ) # verify boxes lowerCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCAmelCase ) lowerCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCAmelCase , atol=1e-3 ) ) # verify image_id lowerCAmelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCAmelCase ) ) # verify is_crowd lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCAmelCase ) ) # verify class_labels lowerCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCAmelCase ) ) # verify masks lowerCAmelCase = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowerCAmelCase ) # verify orig_size lowerCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCAmelCase ) ) # verify size lowerCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCAmelCase ) )
155
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class a ( unittest.TestCase ): """simple docstring""" def __init__( self: Optional[Any] , UpperCamelCase: Any , UpperCamelCase: Optional[int]=7 , UpperCamelCase: str=3 , UpperCamelCase: int=30 , UpperCamelCase: int=4_00 , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: Tuple=None , UpperCamelCase: Any=True , UpperCamelCase: int=[0.5, 0.5, 0.5] , UpperCamelCase: Any=[0.5, 0.5, 0.5] , UpperCamelCase: Optional[Any]=True , UpperCamelCase: List[Any]=1 / 2_55 , UpperCamelCase: Tuple=True , ): """simple docstring""" A__ = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase ( self: Any , UpperCamelCase: List[str] , UpperCamelCase: int=False ): """simple docstring""" if not batched: A__ = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size["""shortest_edge"""] * h / w ) A__ = self.size["""shortest_edge"""] elif w > h: A__ = self.size["""shortest_edge"""] A__ = int(self.size["""shortest_edge"""] * w / h ) else: A__ = self.size["""shortest_edge"""] A__ = self.size["""shortest_edge"""] else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] A__ = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a ( _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = YolosImageProcessor if is_vision_available() else None def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = YolosImageProcessingTester(self ) @property def UpperCamelCase ( self: Optional[int] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase , """size""" ) ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" pass def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCamelCase , return_tensors="""pt""" ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) A__ = self.image_processing_class(do_resize=UpperCamelCase , do_normalize=UpperCamelCase , do_rescale=UpperCamelCase ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors A__ = image_processing_a.pad(UpperCamelCase , return_tensors="""pt""" ) A__ = image_processing_a(UpperCamelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def UpperCamelCase ( self: str ): """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: A__ = json.loads(f.read() ) A__ = {"""image_id""": 3_97_69, """annotations""": target} # encode them A__ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) A__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , return_tensors="""pt""" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area A__ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase ) A__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) ) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) ) @slow def UpperCamelCase ( self: int ): """simple docstring""" A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: A__ = json.loads(f.read() ) A__ = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} A__ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them A__ = YolosImageProcessor(format="""coco_panoptic""" ) A__ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , masks_path=UpperCamelCase , return_tensors="""pt""" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area A__ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase ) A__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase ) ) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase ) ) # verify masks A__ = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCamelCase ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase ) )
335
0
from __future__ import annotations _A =10 def lowerCamelCase__ ( a__ : list[int] ) -> list[int]: UpperCamelCase_ = 1 UpperCamelCase_ = max(lowerCAmelCase__ ) while placement <= max_digit: # declare and initialize empty buckets UpperCamelCase_ = [[] for _ in range(lowerCAmelCase__ )] # split list_of_ints between the buckets for i in list_of_ints: UpperCamelCase_ = int((i / placement) % RADIX ) buckets[tmp].append(lowerCAmelCase__ ) # put each buckets' contents into list_of_ints UpperCamelCase_ = 0 for b in range(lowerCAmelCase__ ): for i in buckets[b]: UpperCamelCase_ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
366
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowerCamelCase__ ( a__ : Dataset , a__ : Dict[str, str] ) -> int: UpperCamelCase_ = args.log_outputs UpperCamelCase_ = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric UpperCamelCase_ = load_metric("""wer""" ) UpperCamelCase_ = load_metric("""cer""" ) # compute metrics UpperCamelCase_ = wer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) UpperCamelCase_ = cer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) # print & log results UpperCamelCase_ = f'''WER: {wer_result}\nCER: {cer_result}''' print(a__ ) with open(f'''{dataset_id}_eval_results.txt''' , """w""" ) as f: f.write(a__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCamelCase_ = f'''log_{dataset_id}_predictions.txt''' UpperCamelCase_ = f'''log_{dataset_id}_targets.txt''' with open(a__ , """w""" ) as p, open(a__ , """w""" ) as t: # mapping function to write output def write_to_file(a__ : List[str] , a__ : Any ): p.write(f'''{i}''' + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(f'''{i}''' + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(a__ , with_indices=a__ ) def lowerCamelCase__ ( a__ : str ) -> str: UpperCamelCase_ = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCamelCase_ = re.sub(a__ , """""" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCamelCase_ = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: UpperCamelCase_ = """ """.join(text.split(a__ ) ) return text def lowerCamelCase__ ( a__ : Optional[int] ) -> Union[str, Any]: # load dataset UpperCamelCase_ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=a__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCamelCase_ = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCamelCase_ = feature_extractor.sampling_rate # resample audio UpperCamelCase_ = dataset.cast_column("""audio""" , Audio(sampling_rate=a__ ) ) # load eval pipeline if args.device is None: UpperCamelCase_ = 0 if torch.cuda.is_available() else -1 UpperCamelCase_ = pipeline("""automatic-speech-recognition""" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(a__ : Optional[Any] ): UpperCamelCase_ = asr( batch["""audio"""]["""array"""] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCamelCase_ = prediction["""text"""] UpperCamelCase_ = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples UpperCamelCase_ = dataset.map(a__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(a__ , a__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) _A = parser.parse_args() main(args)
261
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowercase ( ) -> List[str]: __SCREAMING_SNAKE_CASE = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' __SCREAMING_SNAKE_CASE = Image.open(requests.get(a__ , stream=a__ ).raw ).convert('RGB' ) return image def __lowercase ( a__ ) -> Dict: __SCREAMING_SNAKE_CASE = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def __lowercase ( a__ , a__ , a__ ) -> int: __SCREAMING_SNAKE_CASE = dct.pop(a__ ) __SCREAMING_SNAKE_CASE = val def __lowercase ( a__ , a__ ) -> Optional[int]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __SCREAMING_SNAKE_CASE = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict __SCREAMING_SNAKE_CASE = torch.cat((q_bias, torch.zeros_like(a__ , requires_grad=a__ ), v_bias) ) __SCREAMING_SNAKE_CASE = qkv_bias def __lowercase ( a__ , a__ ) -> int: __SCREAMING_SNAKE_CASE = 3_64 if 'coco' in model_name else 2_24 __SCREAMING_SNAKE_CASE = BlipaVisionConfig(image_size=a__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=a__ ).to_dict() elif "opt-6.7b" in model_name: __SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=a__ ).to_dict() elif "t5-xl" in model_name: __SCREAMING_SNAKE_CASE = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __SCREAMING_SNAKE_CASE = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() __SCREAMING_SNAKE_CASE = BlipaConfig(vision_config=a__ , text_config=a__ ) return config, image_size @torch.no_grad() def __lowercase ( a__ , a__=None , a__=False ) -> Any: __SCREAMING_SNAKE_CASE = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) __SCREAMING_SNAKE_CASE = tokenizer('\n' , add_special_tokens=a__ ).input_ids[0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_blipa_config(a__ , eos_token_id=a__ ) __SCREAMING_SNAKE_CASE = BlipaForConditionalGeneration(a__ ).eval() __SCREAMING_SNAKE_CASE = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = model_name_to_original[model_name] # load original model print('Loading original model...' ) __SCREAMING_SNAKE_CASE = 'cuda' if torch.cuda.is_available() else 'cpu' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = load_model_and_preprocess( name=a__ , model_type=a__ , is_eval=a__ , device=a__ ) original_model.eval() print('Done!' ) # update state dict keys __SCREAMING_SNAKE_CASE = original_model.state_dict() __SCREAMING_SNAKE_CASE = create_rename_keys(a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __SCREAMING_SNAKE_CASE = state_dict.pop(a__ ) if key.startswith('Qformer.bert' ): __SCREAMING_SNAKE_CASE = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: __SCREAMING_SNAKE_CASE = key.replace('self' , 'attention' ) if "opt_proj" in key: __SCREAMING_SNAKE_CASE = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: __SCREAMING_SNAKE_CASE = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): __SCREAMING_SNAKE_CASE = key.replace('opt' , 'language' ) if key.startswith('t5' ): __SCREAMING_SNAKE_CASE = key.replace('t5' , 'language' ) __SCREAMING_SNAKE_CASE = val # read in qv biases read_in_q_v_bias(a__ , a__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hf_model.load_state_dict(a__ , strict=a__ ) assert len(a__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __SCREAMING_SNAKE_CASE = load_demo_image() __SCREAMING_SNAKE_CASE = vis_processors['eval'](a__ ).unsqueeze(0 ).to(a__ ) __SCREAMING_SNAKE_CASE = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(a__ ) # create processor __SCREAMING_SNAKE_CASE = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=a__ , image_std=a__ ) __SCREAMING_SNAKE_CASE = BlipaProcessor(image_processor=a__ , tokenizer=a__ ) __SCREAMING_SNAKE_CASE = processor(images=a__ , return_tensors='pt' ).pixel_values.to(a__ ) # make sure processor creates exact same pixel values assert torch.allclose(a__ , a__ ) original_model.to(a__ ) hf_model.to(a__ ) with torch.no_grad(): if "opt" in model_name: __SCREAMING_SNAKE_CASE = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits __SCREAMING_SNAKE_CASE = hf_model(a__ , a__ ).logits else: __SCREAMING_SNAKE_CASE = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits __SCREAMING_SNAKE_CASE = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) __SCREAMING_SNAKE_CASE = hf_model(a__ , a__ , labels=a__ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __SCREAMING_SNAKE_CASE = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=a__ ) assert torch.allclose(logits[0, :3, :3] , a__ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": __SCREAMING_SNAKE_CASE = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=a__ ) else: # cast to same type __SCREAMING_SNAKE_CASE = logits.dtype assert torch.allclose(original_logits.to(a__ ) , a__ , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) __SCREAMING_SNAKE_CASE = '' __SCREAMING_SNAKE_CASE = tokenizer(a__ , return_tensors='pt' ).input_ids.to(a__ ) __SCREAMING_SNAKE_CASE = original_model.generate({'image': original_pixel_values} ) __SCREAMING_SNAKE_CASE = hf_model.generate( a__ , a__ , do_sample=a__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , a__ ) __SCREAMING_SNAKE_CASE = input_ids.shape[1] __SCREAMING_SNAKE_CASE = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=a__ ) __SCREAMING_SNAKE_CASE = [text.strip() for text in output_text] print('HF generation:' , a__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(a__ ) hf_model.save_pretrained(a__ ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase__ : Dict =argparse.ArgumentParser() lowerCAmelCase__ : Union[str, Any] =[ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) lowerCAmelCase__ : int =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
257
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __lowercase ( a__ ) -> Tuple: __SCREAMING_SNAKE_CASE = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def __lowercase ( a__ ) -> int: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = emb.weight.shape __SCREAMING_SNAKE_CASE = nn.Linear(a__ , a__ , bias=a__ ) __SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def __lowercase ( a__ ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = torch.load(a__ , map_location='cpu' ) __SCREAMING_SNAKE_CASE = mam_aaa['args'] or mam_aaa['cfg']['model'] __SCREAMING_SNAKE_CASE = mam_aaa['model'] remove_ignore_keys_(a__ ) __SCREAMING_SNAKE_CASE = state_dict['encoder.embed_tokens.weight'].shape[0] __SCREAMING_SNAKE_CASE = MaMaaaConfig( vocab_size=a__ , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) __SCREAMING_SNAKE_CASE = state_dict['decoder.embed_tokens.weight'] __SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(a__ ) model.model.load_state_dict(a__ , strict=a__ ) __SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase__ : Optional[int] =parser.parse_args() lowerCAmelCase__ : Tuple =convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
257
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: _lowercase: Optional[int] = None _lowercase: str = logging.get_logger(__name__) _lowercase: Optional[int] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _lowercase: Tuple = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } _lowercase: Optional[int] = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off _lowercase: Union[str, Any] = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = VOCAB_FILES_NAMES __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = PRETRAINED_VOCAB_FILES_MAP __A = ["input_ids", "attention_mask"] __A = MBartTokenizer __A = [] __A = [] def __init__(self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<mask>" , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ , ): """simple docstring""" a = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( vocab_file=lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) a = vocab_file a = False if not self.vocab_file else True a = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) a = { lang_code: self.convert_tokens_to_ids(lowerCamelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } a = src_lang if src_lang is not None else "en_XX" a = self.convert_tokens_to_ids(self._src_lang ) a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase_ (self ): """simple docstring""" return self._src_lang @src_lang.setter def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) a = src_lang a = self(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) a = self.convert_tokens_to_ids(lowerCamelCase_ ) a = tgt_lang_id return inputs def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = "en_XX" , lowerCamelCase_ = None , lowerCamelCase_ = "ro_RO" , **lowerCamelCase_ , ): """simple docstring""" a = src_lang a = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ (self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = self.convert_tokens_to_ids(lowerCamelCase_ ) a = [] a = [self.eos_token_id, self.cur_lang_code] a = self.convert_ids_to_tokens(self.prefix_tokens ) a = self.convert_ids_to_tokens(self.suffix_tokens ) a = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = self.convert_tokens_to_ids(lowerCamelCase_ ) a = [] a = [self.eos_token_id, self.cur_lang_code] a = self.convert_ids_to_tokens(self.prefix_tokens ) a = self.convert_ids_to_tokens(self.suffix_tokens ) a = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return a = os.path.join( lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file , lowerCamelCase_ ) return (out_vocab_file,)
71
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
71
1
import math def UpperCamelCase( __UpperCamelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase( __UpperCamelCase : float = 0.1 ): lowerCAmelCase_ : Optional[Any] = 3 lowerCAmelCase_ : List[str] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 ,(j + 2) * (j + 2) ,j + 1 ): primes += is_prime(__UpperCamelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
103
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = process _UpperCAmelCase = params def __len__( self ) -> Union[str, Any]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = self.dataset[i] _UpperCAmelCase = self.process(_SCREAMING_SNAKE_CASE , **self.params ) return processed class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = loader _UpperCAmelCase = infer _UpperCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _UpperCAmelCase = None _UpperCAmelCase = loader_batch_size # Internal bookkeeping _UpperCAmelCase = None _UpperCAmelCase = None def __len__( self ) -> Any: """simple docstring""" return len(self.loader ) def __iter__( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) return self def UpperCAmelCase__ ( self ) -> int: """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _UpperCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _UpperCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Convert ModelOutput to tuple first _UpperCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _UpperCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _UpperCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _UpperCAmelCase = self._loader_batch_data.__class__(_SCREAMING_SNAKE_CASE ) self._loader_batch_index += 1 return result def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _UpperCAmelCase = next(self.iterator ) _UpperCAmelCase = self.infer(_SCREAMING_SNAKE_CASE , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _UpperCAmelCase = processed else: _UpperCAmelCase = list(processed.keys() )[0] _UpperCAmelCase = processed[key] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _UpperCAmelCase = processed _UpperCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __iter__( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) _UpperCAmelCase = None return self def UpperCAmelCase__ ( self ) -> int: """simple docstring""" if self.subiterator is None: _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _UpperCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) _UpperCAmelCase = next(self.subiterator ) return processed class __a ( UpperCAmelCase ): def __iter__( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) return self def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = False _UpperCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _UpperCAmelCase = self.loader_batch_item() _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) if is_last: return accumulator while not is_last: _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _UpperCAmelCase = processed else: _UpperCAmelCase = list(processed.keys() )[0] _UpperCAmelCase = processed[key] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCAmelCase = observed_batch_size _UpperCAmelCase = processed _UpperCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _UpperCAmelCase = self.loader_batch_item() _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) if is_last: return accumulator else: _UpperCAmelCase = processed _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) return accumulator class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = key def __len__( self ) -> Optional[int]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return self.dataset[i][self.key] class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = keya _UpperCAmelCase = keya def __len__( self ) -> Optional[int]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
329
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default="""cifar10""", metadata={"""help""": """Name of a dataset from the datasets package"""} ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """The column name of the images in the files."""} ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """A folder containing the training data."""} ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """A folder containing the validation data."""} ) lowerCamelCase__ = field( default=0.15, metadata={"""help""": """Percent to split off of train for validation."""} ) lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) }, ) lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) }, ) def A_ ( self ): _lowerCamelCase : List[str] = {} if self.train_dir is not None: _lowerCamelCase : Optional[Any] = self.train_dir if self.validation_dir is not None: _lowerCamelCase : Any = self.validation_dir _lowerCamelCase : Optional[int] = data_files if data_files else None @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) }, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) }, ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) lowerCamelCase__ = field( default="""main""", metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""}, ) lowerCamelCase__ = field(default=lowercase, metadata={"""help""": """Name or path of preprocessor config."""} ) lowerCamelCase__ = field( default=lowercase, metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) }, ) lowerCamelCase__ = field( default=0.75, metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) lowerCamelCase__ = field( default=lowercase, metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = field( default=1e-3, metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowerCamelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCamelCase : Tuple = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _lowerCamelCase : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _lowerCamelCase : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _lowerCamelCase : List[Any] = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: _lowerCamelCase : Optional[int] = ds['train'].train_test_split(data_args.train_val_split ) _lowerCamelCase : Any = split['train'] _lowerCamelCase : List[str] = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : int = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _lowerCamelCase : Optional[int] = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: _lowerCamelCase : Optional[int] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: _lowerCamelCase : Any = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _lowerCamelCase : Tuple = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: _lowerCamelCase : Any = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: _lowerCamelCase : List[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: _lowerCamelCase : Optional[Any] = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _lowerCamelCase : List[Any] = ViTMAEForPreTraining(lowercase__ ) if training_args.do_train: _lowerCamelCase : Any = ds['train'].column_names else: _lowerCamelCase : Union[str, Any] = ds['validation'].column_names if data_args.image_column_name is not None: _lowerCamelCase : int = data_args.image_column_name elif "image" in column_names: _lowerCamelCase : int = 'image' elif "img" in column_names: _lowerCamelCase : int = 'img' else: _lowerCamelCase : List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _lowerCamelCase : Optional[int] = image_processor.size['shortest_edge'] else: _lowerCamelCase : Any = (image_processor.size['height'], image_processor.size['width']) _lowerCamelCase : Union[str, Any] = Compose( [ Lambda(lambda lowercase__ : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ ): _lowerCamelCase : Any = [transforms(lowercase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _lowerCamelCase : Optional[Any] = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _lowerCamelCase : List[str] = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Compute absolute learning rate _lowerCamelCase : Any = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _lowerCamelCase : Tuple = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer _lowerCamelCase : Dict = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: _lowerCamelCase : Dict = None if training_args.resume_from_checkpoint is not None: _lowerCamelCase : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCamelCase : Any = last_checkpoint _lowerCamelCase : Optional[Any] = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCamelCase : Union[str, Any] = trainer.evaluate() trainer.log_metrics('eval' , lowercase__ ) trainer.save_metrics('eval' , lowercase__ ) # Write model card and (optionally) push to hub _lowerCamelCase : List[str] = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def _snake_case ( lowercase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
12
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCamelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCamelCase__ = """summarizer""" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSeqaSeqLM lowerCamelCase__ = ["""text"""] lowerCamelCase__ = ["""text"""] def A_ ( self , lowercase ): return self.pre_processor(lowercase , return_tensors='pt' , truncation=lowercase ) def A_ ( self , lowercase ): return self.model.generate(**lowercase )[0] def A_ ( self , lowercase ): return self.pre_processor.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
12
1
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> int: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_input_mask __UpperCamelCase =use_token_type_ids __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =num_labels __UpperCamelCase =num_choices __UpperCamelCase =scope def _a ( self ) -> Dict: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self ) -> int: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , use_stable_embedding=A_ , ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =OpenLlamaModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =True __UpperCamelCase =OpenLlamaModel(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) __UpperCamelCase =model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , ) __UpperCamelCase =model(A_ , attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Union[str, Any]: __UpperCamelCase =OpenLlamaForCausalLM(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> List[Any]: __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =OpenLlamaForCausalLM(config=A_ ) model.to(A_ ) model.eval() # first forward pass __UpperCamelCase =model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , use_cache=A_ , ) __UpperCamelCase =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase =ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCamelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase =torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCamelCase =model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , output_hidden_states=A_ , )['hidden_states'][0] __UpperCamelCase =model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )['hidden_states'][0] # select random slice __UpperCamelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase =output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1E-3 ) ) def _a ( self ) -> List[str]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) UpperCAmelCase__ : List[Any] = (OpenLlamaForCausalLM,) if is_torch_available() else () UpperCAmelCase__ : str = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Optional[int] = False def _a ( self ) -> List[str]: __UpperCamelCase =OpenLlamaModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Tuple: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase =type self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Dict: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =3 __UpperCamelCase =input_dict['input_ids'] __UpperCamelCase =input_ids.ne(1 ).to(A_ ) __UpperCamelCase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCamelCase =OpenLlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self ) -> Tuple: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =3 __UpperCamelCase ='single_label_classification' __UpperCamelCase =input_dict['input_ids'] __UpperCamelCase =input_ids.ne(1 ).to(A_ ) __UpperCamelCase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCamelCase =OpenLlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self ) -> Tuple: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =3 __UpperCamelCase ='multi_label_classification' __UpperCamelCase =input_dict['input_ids'] __UpperCamelCase =input_ids.ne(1 ).to(A_ ) __UpperCamelCase =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCamelCase =OpenLlamaForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def _a ( self ) -> List[Any]: pass @parameterized.expand([('linear',), ('dynamic',)] ) def _a ( self , A_ ) -> Tuple: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =ids_tensor([1, 10] , config.vocab_size ) __UpperCamelCase =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase =OpenLlamaModel(A_ ) original_model.to(A_ ) original_model.eval() __UpperCamelCase =original_model(A_ ).last_hidden_state __UpperCamelCase =original_model(A_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase ={'type': scaling_type, 'factor': 10.0} __UpperCamelCase =OpenLlamaModel(A_ ) scaled_model.to(A_ ) scaled_model.eval() __UpperCamelCase =scaled_model(A_ ).last_hidden_state __UpperCamelCase =scaled_model(A_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A_ , A_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(A_ , A_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A_ , A_ , atol=1E-5 ) )
62
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
62
1
import math import sys def _a ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" if number != int(SCREAMING_SNAKE_CASE ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 UpperCamelCase__ : Tuple = [-1] * (number + 1) UpperCamelCase__ : Tuple = 0 for i in range(1 , number + 1 ): UpperCamelCase__ : Optional[Any] = sys.maxsize UpperCamelCase__ : Optional[Any] = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): UpperCamelCase__ : int = 1 + answers[i - (j**2)] UpperCamelCase__ : int = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
51
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _a ( SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : int=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class __magic_name__ : A: str = field( metadata={"help": "The csv file to plot."} , ) A: bool = field( default=__lowerCAmelCase , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) A: bool = field( default=__lowerCAmelCase , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) A: bool = field( default=__lowerCAmelCase , metadata={"help": "Disable logarithmic scale when plotting"} , ) A: bool = field( default=__lowerCAmelCase , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) A: Optional[str] = field( default=__lowerCAmelCase , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) A: Optional[List[str]] = list_field( default=__lowerCAmelCase , metadata={"help": "List of model names that are used instead of the ones in the csv file."}) def _a ( SCREAMING_SNAKE_CASE : Any ): """simple docstring""" try: int(SCREAMING_SNAKE_CASE ) return True except ValueError: return False def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" try: float(SCREAMING_SNAKE_CASE ) return True except ValueError: return False class __magic_name__ : def __init__( self : Any , lowerCamelCase__ : Dict ) -> Dict: '''simple docstring''' UpperCamelCase__ : int = args UpperCamelCase__ : Any = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: UpperCamelCase__ : Union[str, Any] = csv.DictReader(lowerCamelCase__ ) for row in reader: UpperCamelCase__ : Union[str, Any] = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None UpperCamelCase__ : Any = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None UpperCamelCase__ : Any = float(row['''result'''] ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : str = plt.subplots() UpperCamelCase__ : Dict = '''Time usage''' if self.args.is_time else '''Memory usage''' UpperCamelCase__ : int = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): UpperCamelCase__ : Tuple = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) UpperCamelCase__ : Tuple = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) UpperCamelCase__ : Dict = self.result_dict[model_name]['''result'''] ((UpperCamelCase__) , (UpperCamelCase__)) : int = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) UpperCamelCase__ : Optional[int] = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: UpperCamelCase__ : Optional[Any] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=lowerCamelCase__ , ) else: UpperCamelCase__ : Tuple = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((UpperCamelCase__) , (UpperCamelCase__)) : str = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) UpperCamelCase__ : Optional[Any] = np.asarray(lowerCamelCase__ , lowerCamelCase__ )[: len(lowerCamelCase__ )] plt.scatter( lowerCamelCase__ , lowerCamelCase__ , label=F"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(lowerCamelCase__ , lowerCamelCase__ , '''--''' ) title_str += F" {label_model_name} vs." UpperCamelCase__ : Optional[Any] = title_str[:-4] UpperCamelCase__ : List[Any] = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(lowerCamelCase__ ) plt.xlabel(lowerCamelCase__ ) plt.ylabel(lowerCamelCase__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def _a ( ): """simple docstring""" UpperCamelCase__ : Optional[Any] = HfArgumentParser(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = parser.parse_args_into_dataclasses()[0] UpperCamelCase__ : Dict = Plot(args=SCREAMING_SNAKE_CASE ) plot.plot() if __name__ == "__main__": main()
51
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 A : Optional[Any] = 1 A : Any = 1 while repunit: A : Tuple = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowerCAmelCase_ ( snake_case__ = 100_0000 ): '''simple docstring''' A : int = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(snake_case__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'''{solution() = }''')
3
import re from filelock import FileLock try: import nltk UpperCAmelCase__ : Tuple = True except (ImportError, ModuleNotFoundError): UpperCAmelCase__ : Optional[Any] = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __lowercase ( _A ) -> str: re.sub("""<n>""" , """""" , _A ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_A ) )
245
0
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase (a_ :int = 200_0000) -> int: lowercase :list[int] = [0] lowercase :int for idx in range(1 , ceil(sqrt(target * 2) * 1.1)): triangle_numbers.append(triangle_numbers[-1] + idx) # we want this to be as close as possible to target lowercase :int = 0 # the area corresponding to the grid that gives the product closest to target lowercase :int = 0 # an estimate of b, using the quadratic formula lowercase :float # the largest integer less than b_estimate lowercase :int # the largest integer less than b_estimate lowercase :int # the triangle number corresponding to b_floor lowercase :int # the triangle number corresponding to b_ceil lowercase :int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1): lowercase :Union[str, Any] = (-1 + sqrt(1 + 8 * target / triangle_a)) / 2 lowercase :Optional[int] = floor(a_) lowercase :Optional[Any] = ceil(a_) lowercase :List[Any] = triangle_numbers[b_floor] lowercase :Dict = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a) < abs( target - best_product): lowercase :Optional[Any] = triangle_b_first_guess * triangle_a lowercase :Dict = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a) < abs( target - best_product): lowercase :str = triangle_b_second_guess * triangle_a lowercase :Any = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
172
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class __magic_name__ ( __UpperCAmelCase ): def __init__( self : int , snake_case__ : Dict=None , snake_case__ : List[str]=None , *snake_case__ : str , **snake_case__ : Optional[Any] ): '''simple docstring''' super().__init__(*snake_case__ , **snake_case__ ) if config is None: assert isinstance(self.model , snake_case__ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f""" {self.model.__class__}""" ) lowercase :int = self.model.config else: lowercase :str = config lowercase :Dict = data_args lowercase :int = self.config.tgt_vocab_size if isinstance(self.config , snake_case__ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ''' padding..''' ) if self.args.label_smoothing == 0: lowercase :List[str] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowercase :Union[str, Any] = label_smoothed_nll_loss def __snake_case ( self : Union[str, Any] , snake_case__ : int ): '''simple docstring''' if self.optimizer is None: lowercase :Optional[int] = ['''bias''', '''LayerNorm.weight'''] lowercase :int = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] lowercase :List[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowercase :Union[str, Any] = Adafactor lowercase :Dict = {'''scale_parameter''': False, '''relative_step''': False} else: lowercase :List[str] = AdamW lowercase :Union[str, Any] = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } lowercase :Tuple = self.args.learning_rate if self.sharded_ddp: lowercase :Union[str, Any] = OSS( params=snake_case__ , optim=snake_case__ , **snake_case__ , ) else: lowercase :Dict = optimizer_cls(snake_case__ , **snake_case__ ) if self.lr_scheduler is None: lowercase :List[Any] = self._get_lr_scheduler(snake_case__ ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def __snake_case ( self : Any , snake_case__ : List[str] ): '''simple docstring''' lowercase :Tuple = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowercase :Dict = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowercase :str = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: lowercase :int = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=snake_case__ ) return scheduler def __snake_case ( self : Tuple ): '''simple docstring''' if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __snake_case ( self : Any , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Tuple ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowercase :List[Any] = model(**snake_case__ , use_cache=snake_case__ )[0] lowercase :Dict = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models lowercase , lowercase :str = model(**snake_case__ , labels=snake_case__ , use_cache=snake_case__ )[:2] else: # compute label smoothed loss lowercase :str = model(**snake_case__ , use_cache=snake_case__ )[0] lowercase :Tuple = torch.nn.functional.log_softmax(snake_case__ , dim=-1 ) lowercase , lowercase :Optional[int] = self.loss_fn(snake_case__ , snake_case__ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def __snake_case ( self : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Any ): '''simple docstring''' lowercase :List[str] = inputs.pop('''labels''' ) lowercase , lowercase :Union[str, Any] = self._compute_loss(snake_case__ , snake_case__ , snake_case__ ) return loss def __snake_case ( self : List[str] , snake_case__ : nn.Module , snake_case__ : Dict[str, Union[torch.Tensor, Any]] , snake_case__ : bool , snake_case__ : Optional[List[str]] = None , ): '''simple docstring''' lowercase :List[str] = self._prepare_inputs(snake_case__ ) lowercase :Optional[Any] = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowercase :Optional[Any] = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **snake_case__ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowercase :int = self._pad_tensors_to_max_len(snake_case__ , gen_kwargs['''max_length'''] ) lowercase :Any = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data lowercase , lowercase :List[str] = self._compute_loss(snake_case__ , snake_case__ , snake_case__ ) lowercase :List[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowercase :Any = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowercase :Tuple = self._pad_tensors_to_max_len(snake_case__ , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def __snake_case ( self : int , snake_case__ : List[Any] , snake_case__ : Any ): '''simple docstring''' lowercase :Union[str, Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' f""" padded to `max_length`={max_length}""" ) lowercase :Optional[Any] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) lowercase :Any = tensor return padded_tensor
172
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCamelCase : Union[str, Any] = "src/diffusers" # Matches is_xxx_available() lowerCamelCase : Dict = re.compile(r"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla lowerCamelCase : Union[str, Any] = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") lowerCamelCase : Any = "\n{0} = None\n" lowerCamelCase : List[str] = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" lowerCamelCase : str = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' lowerCamelCase_ = _re_backend.findall(lowercase ) if len(lowercase ) == 0: return None return "_and_".join(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with open(os.path.join(lowercase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCamelCase_ = f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase_ = 0 lowerCamelCase_ = {} # Go through the end of the file while line_index < len(lowercase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase_ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 lowerCamelCase_ = [] # Until we unindent, add backend objects to the list while line_index < len(lowercase ) and len(lines[line_index] ) > 1: lowerCamelCase_ = lines[line_index] lowerCamelCase_ = _re_single_line_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowercase ) > 0: lowerCamelCase_ = objects else: line_index += 1 return backend_specific_objects def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : str ): '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(lowercase ) elif name.islower(): return DUMMY_FUNCTION.format(lowercase , lowercase ) else: return DUMMY_CLASS.format(lowercase , lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int]=None ): '''simple docstring''' if backend_specific_objects is None: lowerCamelCase_ = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase_ = {} for backend, objects in backend_specific_objects.items(): lowerCamelCase_ = '[' + ', '.join(f"""\"{b}\"""" for b in backend.split('_and_' ) ) + ']' lowerCamelCase_ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowercase , lowercase ) for o in objects] ) lowerCamelCase_ = dummy_file return dummy_files def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int]=False ): '''simple docstring''' lowerCamelCase_ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase_ = {'torch': 'pt'} # Locate actual dummy modules and read their content. lowerCamelCase_ = os.path.join(lowercase , 'utils' ) lowerCamelCase_ = { backend: os.path.join(lowercase , f"""dummy_{short_names.get(lowercase , lowercase )}_objects.py""" ) for backend in dummy_files.keys() } lowerCamelCase_ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowercase ): with open(lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCamelCase_ = f.read() else: lowerCamelCase_ = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"""Updating diffusers.utils.dummy_{short_names.get(lowercase , lowercase )}_objects.py as the main """ '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' f"""diffusers.utils.dummy_{short_names.get(lowercase , lowercase )}_objects.py. Run `make fix-copies` """ 'to fix this.' ) if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCamelCase : Tuple = parser.parse_args() check_dummies(args.fix_and_overwrite)
204
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class A: '''simple docstring''' def __init__( self : str , A_ : Optional[Any] , ) -> str: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = 2 lowerCamelCase_ = 99 lowerCamelCase_ = 0 lowerCamelCase_ = 32 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.02 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = 'last' lowerCamelCase_ = True lowerCamelCase_ = None lowerCamelCase_ = 0 def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) lowerCamelCase_ = None if self.use_input_lengths: lowerCamelCase_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a__ ( self : int , A_ : List[str] , A_ : List[Any] , A_ : str , A_ : List[Any] , A_ : int , A_ : Tuple , A_ : Optional[int] , A_ : Optional[int] , A_ : str , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFFlaubertModel(config=A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} lowerCamelCase_ = model(A_ ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : Tuple , A_ : List[str] , A_ : int , A_ : List[Any] , A_ : Any , A_ : Any , A_ : Dict , A_ : str , A_ : List[Any] , A_ : Union[str, Any] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = TFFlaubertWithLMHeadModel(A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : str , A_ : Tuple , A_ : Any , A_ : Any , A_ : List[Any] , A_ : Dict , A_ : List[Any] , A_ : Union[str, Any] , A_ : Optional[int] , A_ : List[Any] , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFFlaubertForQuestionAnsweringSimple(A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[int] , A_ : List[Any] , A_ : str , A_ : List[str] , A_ : Dict , A_ : Optional[Any] , A_ : Tuple , A_ : str , A_ : Optional[int] , A_ : Tuple , ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFFlaubertForSequenceClassification(A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'lengths': input_lengths} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : Dict , A_ : Optional[Any] , A_ : List[Any] , A_ : int , A_ : Any , A_ : Union[str, Any] , A_ : str , A_ : Any , A_ : Union[str, Any] , A_ : List[str] , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFFlaubertForTokenClassification(config=A_ ) lowerCamelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : List[Any] , A_ : Optional[int] , A_ : List[Any] , A_ : Optional[int] , A_ : Tuple , A_ : Union[str, Any] , A_ : int , A_ : str , A_ : Tuple , A_ : str , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.num_choices lowerCamelCase_ = TFFlaubertForMultipleChoice(config=A_ ) lowerCamelCase_ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False def a__ ( self : Union[str, Any] , A_ : Any , A_ : List[Any] , A_ : Union[str, Any] , A_ : str , A_ : List[str] ) -> Optional[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = TFFlaubertModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , emb_dim=37 ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) lowerCamelCase_ = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" lowerCamelCase_ = model(A_ )[0] lowerCamelCase_ = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. lowerCamelCase_ = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
204
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar SCREAMING_SNAKE_CASE : Union[str, Any] = TypeVar('''T''') class __lowerCamelCase ( Generic[T] ): def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = data _lowerCAmelCase = None def __str__(self ): '''simple docstring''' return f"""{self.data}""" class __lowerCamelCase ( Generic[T] ): def __init__(self ): '''simple docstring''' _lowerCAmelCase = None def __iter__(self ): '''simple docstring''' _lowerCAmelCase = self.top while node: yield node.data _lowerCAmelCase = node.next def __str__(self ): '''simple docstring''' return "->".join([str(lowerCamelCase ) for item in self] ) def __len__(self ): '''simple docstring''' return len(tuple(iter(self ) ) ) def A__ (self ): '''simple docstring''' return self.top is None def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = Node(lowerCamelCase ) if not self.is_empty(): _lowerCAmelCase = self.top _lowerCAmelCase = node def A__ (self ): '''simple docstring''' if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , lowerCamelCase ) _lowerCAmelCase = self.top _lowerCAmelCase = self.top.next return pop_node.data def A__ (self ): '''simple docstring''' if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def A__ (self ): '''simple docstring''' _lowerCAmelCase = None if __name__ == "__main__": from doctest import testmod testmod()
317
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE : list[int] = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE : set[int] = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __UpperCAmelCase ( snake_case_ : list[int] , snake_case_ : tuple[int, ...] ) -> str | None: """simple docstring""" _lowerCAmelCase = "" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(snake_case_ ) , snake_case_ ): _lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case_ ) return decoded def __UpperCAmelCase ( snake_case_ : list[int] ) -> list[str]: """simple docstring""" _lowerCAmelCase = [] for key in product(snake_case_ , repeat=3 ): _lowerCAmelCase = try_key(snake_case_ , snake_case_ ) if encoded is not None: possibles.append(snake_case_ ) return possibles def __UpperCAmelCase ( snake_case_ : list[str] , snake_case_ : str ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def __UpperCAmelCase ( snake_case_ : str = "p059_cipher.txt" ) -> int: """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = Path(snake_case_ ).parent.joinpath(snake_case_ ).read_text(encoding="""utf-8""" ) _lowerCAmelCase = [int(snake_case_ ) for number in data.strip().split(""",""" )] _lowerCAmelCase = filter_valid_chars(snake_case_ ) for common_word in COMMON_WORDS: _lowerCAmelCase = filter_common_word(snake_case_ , snake_case_ ) if len(snake_case_ ) == 1: break _lowerCAmelCase = possibles[0] return sum(ord(snake_case_ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
317
1
'''simple docstring''' def _A ( A__ ): """simple docstring""" if not isinstance(A__ , A__ ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
104
'''simple docstring''' from heapq import heappop, heappush import numpy as np def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) -> tuple[float | int, list[tuple[int, int]]]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = grid.shape lowerCamelCase__ : List[str] = [-1, 1, 0, 0] lowerCamelCase__ : Dict = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowerCamelCase__ , lowerCamelCase__ : Any = [(0, source)], set() lowerCamelCase__ : Tuple = np.full((rows, cols) , np.inf ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Optional[int] = np.empty((rows, cols) , dtype=UpperCamelCase ) lowerCamelCase__ : str = None while queue: ((lowerCamelCase__) , (lowerCamelCase__)) : List[str] = heappop(UpperCamelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowerCamelCase__ : Optional[int] = [] while (x, y) != source: path.append((x, y) ) lowerCamelCase__ , lowerCamelCase__ : List[Any] = predecessors[x, y] path.append(UpperCamelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(UpperCamelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowerCamelCase__ : Any = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(UpperCamelCase , (dist + 1, (nx, ny)) ) lowerCamelCase__ : Union[str, Any] = dist + 1 lowerCamelCase__ : List[str] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
41
0
'''simple docstring''' from jiwer import compute_measures import datasets lowerCAmelCase :List[Any] = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' lowerCAmelCase :Tuple = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' lowerCAmelCase :Union[str, Any] = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self : Any ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def __lowerCAmelCase ( self : str , _A : Optional[Any]=None , _A : Any=None , _A : Union[str, Any]=False ) -> Optional[Any]: if concatenate_texts: return compute_measures(__UpperCamelCase , __UpperCamelCase )["wer"] else: __magic_name__ : Optional[int] = 0 __magic_name__ : Tuple = 0 for prediction, reference in zip(__UpperCamelCase , __UpperCamelCase ): __magic_name__ : List[str] = compute_measures(__UpperCamelCase , __UpperCamelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
360
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __lowerCAmelCase ( self : Dict ) -> List[str]: torch.manual_seed(0 ) __magic_name__ : Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def __lowerCAmelCase ( self : str ) -> Any: __magic_name__ : Union[str, Any] = self.dummy_uncond_unet __magic_name__ : str = KarrasVeScheduler() __magic_name__ : List[Any] = KarrasVePipeline(unet=_A , scheduler=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __magic_name__ : Dict = torch.manual_seed(0 ) __magic_name__ : int = pipe(num_inference_steps=2 , generator=_A , output_type='numpy' ).images __magic_name__ : Any = torch.manual_seed(0 ) __magic_name__ : str = pipe(num_inference_steps=2 , generator=_A , output_type='numpy' , return_dict=_A )[0] __magic_name__ : int = image[0, -3:, -3:, -1] __magic_name__ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __magic_name__ : List[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[Any] ) -> str: __magic_name__ : Optional[int] = 'google/ncsnpp-celebahq-256' __magic_name__ : List[str] = UNetaDModel.from_pretrained(_A ) __magic_name__ : int = KarrasVeScheduler() __magic_name__ : str = KarrasVePipeline(unet=_A , scheduler=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __magic_name__ : Any = torch.manual_seed(0 ) __magic_name__ : Union[str, Any] = pipe(num_inference_steps=20 , generator=_A , output_type='numpy' ).images __magic_name__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __magic_name__ : int = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
275
0
'''simple docstring''' import requests lowercase : List[str] = 'YOUR API KEY' def lowerCAmelCase_ ( snake_case__ , snake_case__ = giphy_api_key ): '''simple docstring''' A : str = '''+'''.join(query.split() ) A : Optional[Any] = F'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}' A : Any = requests.get(snake_case__ ).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
3
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCamelCase_ : List[str] = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
81
0
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
21
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _lowercase : Optional[List[str]] = None _lowercase : str = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _lowercase : Optional[int] = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class __magic_name__ : UpperCamelCase__ = True UpperCamelCase__ = None # Automatically constructed UpperCamelCase__ = "PIL.Image.Image" UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()}) UpperCamelCase__ = field(default='''Image''', init=_UpperCAmelCase, repr=_UpperCAmelCase) def __call__( self : Tuple ): return self.pa_type def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowercase_ , lowercase_ ): lowercase_ : int = np.array(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): return {"path": value, "bytes": None} elif isinstance(lowercase_ , lowercase_ ): return {"path": None, "bytes": value} elif isinstance(lowercase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowercase_ ) elif isinstance(lowercase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowercase_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : dict , lowercase_ : List[str]=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: lowercase_ : Union[str, Any] = {} lowercase_ , lowercase_ : List[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowercase_ ): lowercase_ : int = PIL.Image.open(lowercase_ ) else: lowercase_ : str = path.split("""::""" )[-1] try: lowercase_ : Any = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase_ : Optional[Any] = token_per_repo_id.get(lowercase_ ) except ValueError: lowercase_ : str = None with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f: lowercase_ : Dict = BytesIO(f.read() ) lowercase_ : Optional[Any] = PIL.Image.open(bytes_ ) else: lowercase_ : Any = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def SCREAMING_SNAKE_CASE_ ( self : int ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Any = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase_ : Optional[int] = storage.field("""bytes""" ) else: lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase_ : Dict = storage.field("""path""" ) else: lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase_ : Optional[int] = pa.array( [encode_np_array(np.array(lowercase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase_ : Tuple = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Tuple = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(lowercase_ : Optional[Any] ): with xopen(lowercase_ , """rb""" ) as f: lowercase_ : int = f.read() return bytes_ lowercase_ : Optional[Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ : Any = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase_ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> bytes: lowercase_ : Tuple = BytesIO() if image.format in list_image_compression_formats(): lowercase_ : int = image.format else: lowercase_ : int = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(UpperCAmelCase__ , format=UpperCAmelCase__ ) return buffer.getvalue() def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> dict: if hasattr(UpperCAmelCase__ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) lowercase_ : List[Any] = array.dtype lowercase_ : int = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowercase_ : Dict = dtype.kind lowercase_ : List[Any] = dtype.itemsize lowercase_ : Any = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase_ : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase_ : str = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase_ : str = dtype_byteorder + dtype_kind + str(UpperCAmelCase__ ) lowercase_ : Optional[Any] = np.dtype(UpperCAmelCase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) lowercase_ : Optional[int] = PIL.Image.fromarray(array.astype(UpperCAmelCase__ ) ) return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: lowercase_ , lowercase_ : Dict = first_non_null_value(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCAmelCase__ , np.ndarray ): lowercase_ : Union[str, Any] = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowercase_ : int = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] else: return objs else: return objs
21
1
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : str =logging.get_logger(__name__) lowerCAmelCase : List[str] ={ '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } lowerCAmelCase : List[Any] ={ '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } lowerCAmelCase : int ='''</w>''' lowerCAmelCase : Union[str, Any] ='''@@ ''' def UpperCAmelCase_ ( __lowerCamelCase : Optional[int] ): lowercase_ :List[str] = set() lowercase_ :List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase_ :int = char return pairs # Speech2Text2 has no max input length lowerCAmelCase : List[str] ={'''facebook/s2t-wav2vec2-large-en-de''': 1_024} class a_ ( _lowerCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ["input_ids", "attention_mask"] def __init__( self : Dict , lowercase : List[Any] , lowercase : Tuple="<s>" , lowercase : Union[str, Any]="<pad>" , lowercase : Optional[int]="</s>" , lowercase : Tuple="<unk>" , lowercase : int=False , lowercase : Tuple=None , **lowercase : Dict , ): """simple docstring""" super().__init__( unk_token=lowercase , bos_token=lowercase , eos_token=lowercase , pad_token=lowercase , do_lower_case=lowercase , **lowercase , ) lowercase_ :Any = do_lower_case with open(lowercase , encoding="utf-8" ) as vocab_handle: lowercase_ :Dict = json.load(lowercase ) lowercase_ :Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F'No merges files provided. {self.__class__.__name__} can only be used for decoding.' ) lowercase_ :Any = None lowercase_ :int = None else: with open(lowercase , encoding="utf-8" ) as merges_handle: lowercase_ :List[str] = merges_handle.read().split("\n" )[:-1] lowercase_ :Optional[int] = [tuple(merge.split()[:2] ) for merge in merges] lowercase_ :List[str] = dict(zip(lowercase , range(len(lowercase ) ) ) ) lowercase_ :str = {} @property def lowercase__ ( self : List[Any] ): """simple docstring""" return len(self.decoder ) def lowercase__ ( self : int ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : Union[str, Any] , lowercase : Tuple ): """simple docstring""" lowercase_ :List[str] = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowercase_ :Dict = get_pairs(lowercase ) if not pairs: return token while True: lowercase_ :Any = min(lowercase , key=lambda lowercase : self.bpe_ranks.get(lowercase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowercase_ , lowercase_ :Optional[int] = bigram lowercase_ :Tuple = [] lowercase_ :Optional[int] = 0 while i < len(lowercase ): try: lowercase_ :List[Any] = word.index(lowercase , lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase_ :Union[str, Any] = j if word[i] == first and i < len(lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase_ :Optional[Any] = tuple(lowercase ) lowercase_ :Tuple = new_word if len(lowercase ) == 1: break else: lowercase_ :Tuple = get_pairs(lowercase ) lowercase_ :Any = " ".join(lowercase ) if word == "\n " + BPE_TOKEN_MERGES: lowercase_ :int = "\n" + BPE_TOKEN_MERGES if word.endswith(lowercase ): lowercase_ :int = word.replace(lowercase , "" ) lowercase_ :Dict = word.replace(" " , lowercase ) lowercase_ :int = word return word def lowercase__ ( self : Optional[int] , lowercase : List[str] ): """simple docstring""" if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding." ) if self.do_lower_case: lowercase_ :List[Any] = text.lower() lowercase_ :Tuple = text.split() lowercase_ :int = [] for token in text: if token: split_tokens.extend(list(self.bpe(lowercase ).split(" " ) ) ) return split_tokens def lowercase__ ( self : Any , lowercase : str ): """simple docstring""" return self.encoder.get(lowercase , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Tuple , lowercase : int ): """simple docstring""" lowercase_ :Any = self.decoder.get(lowercase , self.unk_token ) return result def lowercase__ ( self : int , lowercase : List[str] ): """simple docstring""" lowercase_ :Optional[Any] = " ".join(lowercase ) # make sure @@ tokens are concatenated lowercase_ :int = "".join(string.split(lowercase ) ) return string def lowercase__ ( self : Tuple , lowercase : str , lowercase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase_ :str = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase_ :List[Any] = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowercase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase , ensure_ascii=lowercase ) + "\n" ) lowercase_ :Tuple = 0 if self.bpe_ranks is None: return (vocab_file,) with open(lowercase , "w" , encoding="utf-8" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) lowercase_ :Optional[Any] = token_index writer.write(" ".join(lowercase ) + "\n" ) index += 1 return (vocab_file, merges_file)
223
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[Any] ={ '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
223
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class _lowercase : """simple docstring""" def __init__( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Dict=13 , UpperCamelCase__ : Tuple=7 , UpperCamelCase__ : Any=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : Dict=64 , UpperCamelCase__ : Optional[int]=5 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : str=37 , UpperCamelCase__ : int="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Any=512 , UpperCamelCase__ : str=16 , UpperCamelCase__ : str=2 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : Optional[Any]=None , ) -> str: '''simple docstring''' __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_input_mask __UpperCamelCase =use_token_type_ids __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =num_labels __UpperCamelCase =num_choices __UpperCamelCase =scope __UpperCamelCase =vocab_size - 1 def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self : Dict ) -> List[Any]: '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase =True return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ) -> Any: '''simple docstring''' __UpperCamelCase =GPTNeoXModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) __UpperCamelCase =model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ) -> str: '''simple docstring''' __UpperCamelCase =True __UpperCamelCase =GPTNeoXModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> List[Any]: '''simple docstring''' __UpperCamelCase =GPTNeoXForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple ) -> Tuple: '''simple docstring''' __UpperCamelCase =self.num_labels __UpperCamelCase =GPTNeoXForQuestionAnswering(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ) -> str: '''simple docstring''' __UpperCamelCase =self.num_labels __UpperCamelCase =GPTNeoXForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =self.num_labels __UpperCamelCase =GPTNeoXForTokenClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] ) -> Dict: '''simple docstring''' __UpperCamelCase =True __UpperCamelCase =GPTNeoXForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ ) __UpperCamelCase =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase =ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCamelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase =torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ ) __UpperCamelCase =output_from_no_past['''hidden_states'''][0] __UpperCamelCase =model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )['''hidden_states'''][0] # select random slice __UpperCamelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase =output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-3 ) ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowercase ( __a , __a , __a , unittest.TestCase ): """simple docstring""" lowercase__ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowercase__ = (GPTNeoXForCausalLM,) if is_torch_available() else () lowercase__ = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase_ ( self : int ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =GPTNeoXModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=64 , num_attention_heads=8 ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Dict ) -> List[Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_decoder() __UpperCamelCase =None self.model_tester.create_and_check_model_as_decoder(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def UpperCAmelCase_ ( self : str ) -> Any: '''simple docstring''' __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def UpperCAmelCase_ ( self : Union[str, Any] , UpperCamelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =ids_tensor([1, 10] , config.vocab_size ) __UpperCamelCase =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase =GPTNeoXModel(UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) original_model.eval() __UpperCamelCase =original_model(UpperCamelCase__ ).last_hidden_state __UpperCamelCase =original_model(UpperCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase ={'''type''': scaling_type, '''factor''': 10.0} __UpperCamelCase =GPTNeoXModel(UpperCamelCase__ ) scaled_model.to(UpperCamelCase__ ) scaled_model.eval() __UpperCamelCase =scaled_model(UpperCamelCase__ ).last_hidden_state __UpperCamelCase =scaled_model(UpperCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-5 ) ) @require_torch class _lowercase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: __UpperCamelCase =GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(UpperCamelCase__ ) __UpperCamelCase =tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(UpperCamelCase__ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __UpperCamelCase ='''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' __UpperCamelCase =model.generate(**UpperCamelCase__ , do_sample=UpperCamelCase__ , max_new_tokens=20 ) __UpperCamelCase =tokenizer.batch_decode(UpperCamelCase__ )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
85
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _lowercase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' __UpperCamelCase ='''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() __UpperCamelCase =dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) __UpperCamelCase ={ '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } __UpperCamelCase ={ '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCamelCase =os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) # load decoder from hub __UpperCamelCase ='''hf-internal-testing/ngram-beam-search-decoder''' def UpperCAmelCase_ ( self : Tuple , **UpperCamelCase__ : Tuple ) -> List[str]: '''simple docstring''' __UpperCamelCase =self.add_kwargs_tokens_map.copy() kwargs.update(UpperCamelCase__ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] , **UpperCamelCase__ : List[Any] ) -> Any: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[Any] , **UpperCamelCase__ : Union[str, Any] ) -> str: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_decoder() __UpperCamelCase =WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCamelCase__ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: '''simple docstring''' __UpperCamelCase =WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __UpperCamelCase =WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' __UpperCamelCase =self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(UpperCamelCase__ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=UpperCamelCase__ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: '''simple docstring''' __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_decoder() __UpperCamelCase =WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) __UpperCamelCase =floats_list((3, 1000) ) __UpperCamelCase =feature_extractor(UpperCamelCase__ , return_tensors='''np''' ) __UpperCamelCase =processor(UpperCamelCase__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: '''simple docstring''' __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_decoder() __UpperCamelCase =WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) __UpperCamelCase ='''This is a test string''' __UpperCamelCase =processor(text=UpperCamelCase__ ) __UpperCamelCase =tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase_ ( self : Union[str, Any] , UpperCamelCase__ : List[str]=(2, 10, 16) , UpperCamelCase__ : Union[str, Any]=77 ) -> int: '''simple docstring''' np.random.seed(UpperCamelCase__ ) return np.random.rand(*UpperCamelCase__ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_decoder() __UpperCamelCase =WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) __UpperCamelCase =self._get_dummy_logits(shape=(10, 16) , seed=13 ) __UpperCamelCase =processor.decode(UpperCamelCase__ ) __UpperCamelCase =decoder.decode_beams(UpperCamelCase__ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_decoder() __UpperCamelCase =WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) __UpperCamelCase =self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __UpperCamelCase =processor.batch_decode(UpperCamelCase__ ) else: with get_context(UpperCamelCase__ ).Pool() as pool: __UpperCamelCase =processor.batch_decode(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =list(UpperCamelCase__ ) with get_context('''fork''' ).Pool() as p: __UpperCamelCase =decoder.decode_beams_batch(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =[], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(UpperCamelCase__ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(UpperCamelCase__ , decoded_processor.logit_score ) self.assertListEqual(UpperCamelCase__ , decoded_processor.lm_score ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: '''simple docstring''' __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_decoder() __UpperCamelCase =WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) __UpperCamelCase =self._get_dummy_logits() __UpperCamelCase =15 __UpperCamelCase =-20.0 __UpperCamelCase =-4.0 __UpperCamelCase =processor.batch_decode( UpperCamelCase__ , beam_width=UpperCamelCase__ , beam_prune_logp=UpperCamelCase__ , token_min_logp=UpperCamelCase__ , ) __UpperCamelCase =decoded_processor_out.text __UpperCamelCase =list(UpperCamelCase__ ) with get_context('''fork''' ).Pool() as pool: __UpperCamelCase =decoder.decode_beams_batch( UpperCamelCase__ , UpperCamelCase__ , beam_width=UpperCamelCase__ , beam_prune_logp=UpperCamelCase__ , token_min_logp=UpperCamelCase__ , ) __UpperCamelCase =[d[0][0] for d in decoded_decoder_out] __UpperCamelCase =[d[0][2] for d in decoded_decoder_out] __UpperCamelCase =[d[0][3] for d in decoded_decoder_out] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , UpperCamelCase__ ) self.assertTrue(np.array_equal(UpperCamelCase__ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] , UpperCamelCase__ , atol=1E-3 ) ) self.assertTrue(np.array_equal(UpperCamelCase__ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] , UpperCamelCase__ , atol=1E-3 ) ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_decoder() __UpperCamelCase =WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) __UpperCamelCase =self._get_dummy_logits() __UpperCamelCase =2.0 __UpperCamelCase =5.0 __UpperCamelCase =-20.0 __UpperCamelCase =True __UpperCamelCase =processor.batch_decode( UpperCamelCase__ , alpha=UpperCamelCase__ , beta=UpperCamelCase__ , unk_score_offset=UpperCamelCase__ , lm_score_boundary=UpperCamelCase__ , ) __UpperCamelCase =decoded_processor_out.text __UpperCamelCase =list(UpperCamelCase__ ) decoder.reset_params( alpha=UpperCamelCase__ , beta=UpperCamelCase__ , unk_score_offset=UpperCamelCase__ , lm_score_boundary=UpperCamelCase__ , ) with get_context('''fork''' ).Pool() as pool: __UpperCamelCase =decoder.decode_beams_batch( UpperCamelCase__ , UpperCamelCase__ , ) __UpperCamelCase =[d[0][0] for d in decoded_decoder_out] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , UpperCamelCase__ ) __UpperCamelCase =processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __UpperCamelCase =processor.decoder.model_container[processor.decoder._model_key] __UpperCamelCase =Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __UpperCamelCase =os.listdir(UpperCamelCase__ ) __UpperCamelCase =['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase =snapshot_download('''hf-internal-testing/processor_with_lm''' ) __UpperCamelCase =WavaVecaProcessorWithLM.from_pretrained(UpperCamelCase__ ) __UpperCamelCase =processor.decoder.model_container[processor.decoder._model_key] __UpperCamelCase =Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() __UpperCamelCase =os.listdir(UpperCamelCase__ ) __UpperCamelCase =os.listdir(UpperCamelCase__ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' __UpperCamelCase =WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __UpperCamelCase =AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __UpperCamelCase =floats_list((3, 1000) ) __UpperCamelCase =processor_wavaveca(UpperCamelCase__ , return_tensors='''np''' ) __UpperCamelCase =processor_auto(UpperCamelCase__ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __UpperCamelCase =self._get_dummy_logits() __UpperCamelCase =processor_wavaveca.batch_decode(UpperCamelCase__ ) __UpperCamelCase =processor_auto.batch_decode(UpperCamelCase__ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_decoder() __UpperCamelCase =WavaVecaProcessorWithLM(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , decoder=UpperCamelCase__ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def UpperCAmelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ) -> int: '''simple docstring''' __UpperCamelCase =[d[key] for d in offsets] return retrieved_list def UpperCAmelCase_ ( self : Dict ) -> List[str]: '''simple docstring''' __UpperCamelCase =WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __UpperCamelCase =self._get_dummy_logits()[0] __UpperCamelCase =processor.decode(UpperCamelCase__ , output_word_offsets=UpperCamelCase__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) __UpperCamelCase =self._get_dummy_logits() __UpperCamelCase =processor.batch_decode(UpperCamelCase__ , output_word_offsets=UpperCamelCase__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(UpperCamelCase__ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' import torch __UpperCamelCase =load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=UpperCamelCase__ ) __UpperCamelCase =ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16000 ) ) __UpperCamelCase =iter(UpperCamelCase__ ) __UpperCamelCase =next(UpperCamelCase__ ) __UpperCamelCase =AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) __UpperCamelCase =WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __UpperCamelCase =processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): __UpperCamelCase =model(UpperCamelCase__ ).logits.cpu().numpy() __UpperCamelCase =processor.decode(logits[0] , output_word_offsets=UpperCamelCase__ ) __UpperCamelCase =model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __UpperCamelCase =[ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] __UpperCamelCase ='''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(UpperCamelCase__ , '''word''' ) ) , UpperCamelCase__ ) self.assertEqual(''' '''.join(self.get_from_offsets(UpperCamelCase__ , '''word''' ) ) , output.text ) # output times __UpperCamelCase =torch.tensor(self.get_from_offsets(UpperCamelCase__ , '''start_time''' ) ) __UpperCamelCase =torch.tensor(self.get_from_offsets(UpperCamelCase__ , '''end_time''' ) ) # fmt: off __UpperCamelCase =torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) __UpperCamelCase =torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=0.01 ) ) self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=0.01 ) )
85
1
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _lowerCamelCase( a ): __a = torch.exp(a ) __a = torch.sum(a , dim=1 ) # sum of exp(x_i) __a = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(a ) - B / A class snake_case__ ( nn.Module ): def __init__( self , lowerCamelCase ): super().__init__() __a = config.output_attentions __a = config.output_hidden_states __a = nn.ModuleList([BertLayer(lowerCamelCase ) for _ in range(config.num_hidden_layers )] ) __a = nn.ModuleList([BertHighway(lowerCamelCase ) for _ in range(config.num_hidden_layers )] ) __a = [-1 for _ in range(config.num_hidden_layers )] def a__ ( self , lowerCamelCase ): if (type(lowerCamelCase ) is float) or (type(lowerCamelCase ) is int): for i in range(len(self.early_exit_entropy ) ): __a = x else: __a = x def a__ ( self , lowerCamelCase ): __a = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def a__ ( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ): __a = () __a = () __a = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __a = all_hidden_states + (hidden_states,) __a = layer_module( lowerCamelCase , lowerCamelCase , head_mask[i] , lowerCamelCase , lowerCamelCase ) __a = layer_outputs[0] if self.output_attentions: __a = all_attentions + (layer_outputs[1],) __a = (hidden_states,) if self.output_hidden_states: __a = current_outputs + (all_hidden_states,) if self.output_attentions: __a = current_outputs + (all_attentions,) __a = self.highway[i](lowerCamelCase ) # logits, pooled_output if not self.training: __a = highway_exit[0] __a = entropy(lowerCamelCase ) __a = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __a = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __a = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(lowerCamelCase , i + 1 ) else: __a = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __a = all_hidden_states + (hidden_states,) __a = (hidden_states,) if self.output_hidden_states: __a = outputs + (all_hidden_states,) if self.output_attentions: __a = outputs + (all_attentions,) __a = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """, snake_case_, ) class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase ): super().__init__(lowerCamelCase ) __a = config __a = BertEmbeddings(lowerCamelCase ) __a = DeeBertEncoder(lowerCamelCase ) __a = BertPooler(lowerCamelCase ) self.init_weights() def a__ ( self ): self.encoder.init_highway_pooler(self.pooler ) def a__ ( self ): return self.embeddings.word_embeddings def a__ ( self , lowerCamelCase ): __a = value def a__ ( self , lowerCamelCase ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(lowerCamelCase ) @add_start_docstrings_to_model_forward(lowerCamelCase ) def a__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __a = input_ids.size() elif inputs_embeds is not None: __a = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __a = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __a = torch.ones(lowerCamelCase , device=lowerCamelCase ) if encoder_attention_mask is None: __a = torch.ones(lowerCamelCase , device=lowerCamelCase ) if token_type_ids is None: __a = torch.zeros(lowerCamelCase , dtype=torch.long , device=lowerCamelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __a = self.get_extended_attention_mask(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __a = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __a = encoder_attention_mask[:, None, None, :] __a = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __a = (1.0 - encoder_extended_attention_mask) * -1_0000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __a = self.get_head_mask(lowerCamelCase , self.config.num_hidden_layers ) __a = self.embeddings( input_ids=lowerCamelCase , position_ids=lowerCamelCase , token_type_ids=lowerCamelCase , inputs_embeds=lowerCamelCase ) __a = self.encoder( lowerCamelCase , attention_mask=lowerCamelCase , head_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , ) __a = encoder_outputs[0] __a = self.pooler(lowerCamelCase ) __a = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase , lowerCamelCase ): __a = message __a = exit_layer # start from 1! class snake_case__ ( nn.Module ): def __init__( self , lowerCamelCase ): super().__init__() __a = BertPooler(lowerCamelCase ) __a = nn.Dropout(config.hidden_dropout_prob ) __a = nn.Linear(config.hidden_size , config.num_labels ) def a__ ( self , lowerCamelCase ): # Pooler __a = encoder_outputs[0] __a = self.pooler(lowerCamelCase ) # "return" pooler_output # BertModel __a = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __a = bmodel_output[1] __a = self.dropout(lowerCamelCase ) __a = self.classifier(lowerCamelCase ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """, snake_case_, ) class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase ): super().__init__(lowerCamelCase ) __a = config.num_labels __a = config.num_hidden_layers __a = DeeBertModel(lowerCamelCase ) __a = nn.Dropout(config.hidden_dropout_prob ) __a = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCamelCase ) def a__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=-1 , lowerCamelCase=False , ): __a = self.num_layers try: __a = self.bert( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , position_ids=lowerCamelCase , head_mask=lowerCamelCase , inputs_embeds=lowerCamelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __a = outputs[1] __a = self.dropout(lowerCamelCase ) __a = self.classifier(lowerCamelCase ) __a = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __a = e.message __a = e.exit_layer __a = outputs[0] if not self.training: __a = entropy(lowerCamelCase ) __a = [] __a = [] if labels is not None: if self.num_labels == 1: # We are doing regression __a = MSELoss() __a = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __a = CrossEntropyLoss() __a = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __a = [] for highway_exit in outputs[-1]: __a = highway_exit[0] if not self.training: highway_logits_all.append(lowerCamelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __a = MSELoss() __a = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __a = CrossEntropyLoss() __a = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowerCamelCase ) if train_highway: __a = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __a = (loss,) + outputs if not self.training: __a = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __a = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
261
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin SCREAMING_SNAKE_CASE__:Any = random.Random() if is_torch_available(): import torch def _lowerCamelCase( a , a=1.0 , a=None , a=None ): if rng is None: __a = global_rng __a = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=400 , lowerCamelCase=2000 , lowerCamelCase=1 , lowerCamelCase=0.0 , lowerCamelCase=16000 , lowerCamelCase=True , lowerCamelCase=True , ): __a = parent __a = batch_size __a = min_seq_length __a = max_seq_length __a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a = feature_size __a = padding_value __a = sampling_rate __a = return_attention_mask __a = do_normalize def a__ ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , lowerCamelCase=False , lowerCamelCase=False ): def _flatten(lowerCamelCase ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: __a = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __a = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case__ ( snake_case_, unittest.TestCase ): _snake_case : str = ASTFeatureExtractor def a__ ( self ): __a = ASTFeatureExtractionTester(self ) def a__ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input __a = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values __a = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched __a = feat_extract(lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values __a = feat_extract(lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __a = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a = np.asarray(lowerCamelCase ) __a = feat_extract(lowerCamelCase , return_tensors="np" ).input_values __a = feat_extract(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) @require_torch def a__ ( self ): import torch __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a = np.random.rand(100 ).astype(np.floataa ) __a = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __a = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __a = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def a__ ( self , lowerCamelCase ): from datasets import load_dataset __a = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __a = ds.sort("id" ).select(range(lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def a__ ( self ): # fmt: off __a = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on __a = self._load_datasamples(1 ) __a = ASTFeatureExtractor() __a = feature_extractor(lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCamelCase , atol=1E-4 ) )
261
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Any: '''simple docstring''' __lowercase = data def __iter__(self ) -> Optional[Any]: '''simple docstring''' for element in self.data: yield element def _lowerCAmelCase ( lowerCamelCase_ : List[Any]=True ): __lowercase = Accelerator(even_batches=lowerCamelCase_ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def _lowerCAmelCase ( lowerCamelCase_ : Accelerator , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : bool = False ): if iterable: __lowercase = DummyIterableDataset(torch.as_tensor(range(lowerCamelCase_ ) ) ) else: __lowercase = TensorDataset(torch.as_tensor(range(lowerCamelCase_ ) ) ) __lowercase = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ ) __lowercase = accelerator.prepare(lowerCamelCase_ ) return dl def _lowerCAmelCase ( lowerCamelCase_ : Accelerator , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : List[int] , lowerCamelCase_ : List[int] , ): __lowercase = create_dataloader(accelerator=lowerCamelCase_ , dataset_size=lowerCamelCase_ , batch_size=lowerCamelCase_ ) __lowercase = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def _lowerCAmelCase ( ): __lowercase = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( lowerCamelCase_ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( lowerCamelCase_ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def _lowerCAmelCase ( ): __lowercase = create_accelerator(even_batches=lowerCamelCase_ ) verify_dataloader_batch_sizes( lowerCamelCase_ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( lowerCamelCase_ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def _lowerCAmelCase ( ): __lowercase = create_accelerator(even_batches=lowerCamelCase_ ) __lowercase = torch.nn.Linear(1 , 1 ) __lowercase = accelerator.prepare(lowerCamelCase_ ) __lowercase = create_dataloader(lowerCamelCase_ , dataset_size=3 , batch_size=1 ) __lowercase = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(lowerCamelCase_ ): __lowercase = ddp_model(batch[0].float() ) __lowercase = output.sum() loss.backward() batch_idxs.append(lowerCamelCase_ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def _lowerCAmelCase ( lowerCamelCase_ : List[str] ): with warnings.catch_warnings(record=lowerCamelCase_ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , lowerCamelCase_ ) assert "only supported for multi-GPU" in str(w[-1].message ) def _lowerCAmelCase ( ): __lowercase = True __lowercase = False __lowercase = create_accelerator(even_batches=lowerCamelCase_ ) __lowercase = torch.nn.Linear(1 , 1 ) __lowercase = accelerator.prepare(lowerCamelCase_ ) __lowercase = create_dataloader(lowerCamelCase_ , dataset_size=3 , batch_size=1 ) __lowercase = create_dataloader(lowerCamelCase_ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCamelCase_ ): __lowercase = train_dl.batch_sampler.even_batches __lowercase = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def _lowerCAmelCase ( ): __lowercase = True __lowercase = False __lowercase = create_accelerator(even_batches=lowerCamelCase_ ) __lowercase = torch.nn.Linear(1 , 1 ) __lowercase = accelerator.prepare(lowerCamelCase_ ) create_dataloader(lowerCamelCase_ , dataset_size=3 , batch_size=1 , iterable=lowerCamelCase_ ) __lowercase = create_dataloader(lowerCamelCase_ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('''ignore''' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCamelCase_ ): __lowercase = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def _lowerCAmelCase ( ): __lowercase = create_accelerator() __lowercase = torch.nn.Linear(1 , 1 ) __lowercase = accelerator.prepare(lowerCamelCase_ ) create_dataloader(lowerCamelCase_ , dataset_size=3 , batch_size=1 , iterable=lowerCamelCase_ ) with warnings.catch_warnings(record=lowerCamelCase_ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCamelCase_ ): pass assert issubclass(w[-1].category , lowerCamelCase_ ) assert "only supported for map-style datasets" in str(w[-1].message ) def _lowerCAmelCase ( ): __lowercase = create_accelerator() accelerator.print('''Test that even_batches variable ensures uniform batches across processes''' ) test_default_ensures_even_batch_sizes() accelerator.print('''Run tests with even_batches disabled''' ) test_can_disable_even_batches() accelerator.print('''Test joining uneven inputs''' ) test_can_join_uneven_inputs() accelerator.print('''Test overriding even_batches when joining uneven inputs''' ) test_join_can_override_even_batches() accelerator.print('''Test overriding even_batches for mixed dataloader types''' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('''Test join with non DDP distributed raises warning''' ) __lowercase = accelerator.state.distributed_type __lowercase = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(lowerCamelCase_ ) __lowercase = original_state if __name__ == "__main__": main()
217
'''simple docstring''' _SCREAMING_SNAKE_CASE = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def _lowerCAmelCase ( lowerCamelCase_ : dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] ): __lowercase = set() # keep track of all the paths to be checked __lowercase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __lowercase = queue.pop(0 ) # get the last node from the path __lowercase = path[-1] if node not in explored: __lowercase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __lowercase = list(lowerCamelCase_ ) new_path.append(lowerCamelCase_ ) queue.append(lowerCamelCase_ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowerCamelCase_ ) # in case there's no path between the 2 nodes return [] def _lowerCAmelCase ( lowerCamelCase_ : dict , lowerCamelCase_ : str , lowerCamelCase_ : str ): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __lowercase = [start] __lowercase = set(lowerCamelCase_ ) # Keep tab on distances from `start` node. __lowercase = {start: 0, target: -1} while queue: __lowercase = queue.pop(0 ) if node == target: __lowercase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowerCamelCase_ ) queue.append(lowerCamelCase_ ) __lowercase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
217
1
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib _UpperCamelCase = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } _UpperCamelCase = logging.WARNING def lowerCAmelCase__( ) -> int: __snake_case : Dict = os.getenv("DATASETS_VERBOSITY" , UpperCamelCase_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def lowerCAmelCase__( ) -> str: return __name__.split("." )[0] def lowerCAmelCase__( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def lowerCAmelCase__( ) -> None: __snake_case : int = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowerCAmelCase__( ) -> None: __snake_case : str = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowerCAmelCase__( lowercase : Optional[str] = None ) -> logging.Logger: if name is None: __snake_case : Any = _get_library_name() return logging.getLogger(UpperCamelCase_ ) def lowerCAmelCase__( ) -> int: return _get_library_root_logger().getEffectiveLevel() def lowerCAmelCase__( lowercase : int ) -> None: _get_library_root_logger().setLevel(UpperCamelCase_ ) def lowerCAmelCase__( ) -> Any: return set_verbosity(UpperCamelCase_ ) def lowerCAmelCase__( ) -> Optional[int]: return set_verbosity(UpperCamelCase_ ) def lowerCAmelCase__( ) -> Optional[Any]: return set_verbosity(UpperCamelCase_ ) def lowerCAmelCase__( ) -> str: return set_verbosity(UpperCamelCase_ ) def lowerCAmelCase__( ) -> None: __snake_case : List[str] = False def lowerCAmelCase__( ) -> None: __snake_case : Dict = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _lowerCamelCase : """simple docstring""" def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: # pylint: disable=unused-argument '''simple docstring''' __snake_case : List[Any] = args[0] if args else None def __iter__( self ) -> int: '''simple docstring''' return iter(self._iterator ) def __getattr__( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' def empty_fn(*UpperCAmelCase , **UpperCAmelCase ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> Tuple: '''simple docstring''' return self def __exit__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: '''simple docstring''' return _UpperCamelCase = True class _lowerCamelCase : """simple docstring""" def __call__( self , *UpperCAmelCase , UpperCAmelCase=False , **UpperCAmelCase ) -> int: '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*UpperCAmelCase__ , **UpperCAmelCase__ ) else: return EmptyTqdm(*UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Any: '''simple docstring''' __snake_case : Any = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() _UpperCamelCase = _tqdm_cls() def lowerCAmelCase__( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def lowerCAmelCase__( ) -> Optional[int]: global _tqdm_active __snake_case : List[str] = True def lowerCAmelCase__( ) -> List[Any]: global _tqdm_active __snake_case : str = False
326
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict, *, # begin keyword-only arguments UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ): __lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase__ ) __lowercase = len(self.symbols ) def __eq__( self : List[str], UpperCAmelCase__ : Dict ): return self.indices == other.indices def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ): return len(self.symbols ) def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ): return sym in self.indices @classmethod def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = cls() d.add_from_file(UpperCAmelCase__ ) return d def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ): if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(UpperCAmelCase__ ) self.count.append(UpperCAmelCase__ ) return idx def _lowercase ( self : Any, UpperCAmelCase__ : str ): return 0 def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): try: with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd: self.add_from_file(UpperCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(UpperCAmelCase__ ) for line in lines[indices_start_line:]: try: __lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase ,__lowercase = line.rsplit(" ", 1 ) else: __lowercase = False __lowercase = int(UpperCAmelCase__ ) __lowercase = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(UpperCAmelCase__ ) ) self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def _A ( UpperCamelCase_ : int) -> str: '''simple docstring''' __lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items()) __lowercase = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowercase = d[k] # restore return da def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]: '''simple docstring''' if not os.path.exists(UpperCamelCase_): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""") os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) print(F"""Writing results to {pytorch_dump_folder_path}""") # handle various types of models __lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""") __lowercase = torch.load(UpperCamelCase_, map_location="cpu") __lowercase = chkpt["cfg"]["model"] # dicts __lowercase = os.path.join(UpperCamelCase_, "dict.txt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {dict_file} does not exist!""") __lowercase = Dictionary.load(UpperCamelCase_) __lowercase = rewrite_dict_keys(src_dict.indices) __lowercase = len(UpperCamelCase_) __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"]) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # merges_file (bpecodes) __lowercase = os.path.join(UpperCamelCase_, "bpecodes") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""") __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"]) shutil.copyfile(UpperCamelCase_, UpperCamelCase_) # model config __lowercase = os.path.join(UpperCamelCase_, "config.json") __lowercase = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # tokenizer config __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) __lowercase = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F"""Generating {biogpt_tokenizer_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # model __lowercase = chkpt["model"] # remove unneeded keys __lowercase = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase_, UpperCamelCase_) __lowercase = list(model_state_dict.keys()) for layer_name in layer_names: if layer_name.endswith("output_projection.weight"): __lowercase = model_state_dict.pop(UpperCamelCase_) else: __lowercase = model_state_dict.pop(UpperCamelCase_) __lowercase = BioGptConfig.from_pretrained(UpperCamelCase_) __lowercase = BioGptForCausalLM(UpperCamelCase_) # check that it loads ok model_new.load_state_dict(UpperCamelCase_) # save __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) print(F"""Generating {pytorch_weights_dump_path}""") torch.save(UpperCamelCase_, UpperCamelCase_) print("Conversion is done!") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
17
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' lowercase : int ="""openai/whisper-base""" lowercase : Optional[int] =( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) lowercase : List[str] ="""transcriber""" lowercase : str =WhisperProcessor lowercase : Optional[Any] =WhisperForConditionalGeneration lowercase : List[Any] =["""audio"""] lowercase : List[str] =["""text"""] def UpperCamelCase ( self , UpperCamelCase_ ): return self.pre_processor(UpperCamelCase_ , return_tensors='''pt''' ).input_features def UpperCamelCase ( self , UpperCamelCase_ ): return self.model.generate(inputs=UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ ): return self.pre_processor.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )[0]
356
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def UpperCamelCase ( _a ) -> Union[str, Any]: '''simple docstring''' return getitem, k def UpperCamelCase ( _a , _a ) -> int: '''simple docstring''' return setitem, k, v def UpperCamelCase ( _a ) -> int: '''simple docstring''' return delitem, k def UpperCamelCase ( _a , _a , *_a ) -> Any: '''simple docstring''' try: return fun(_a , *_a ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE : List[Any] = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) SCREAMING_SNAKE_CASE : Tuple = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] SCREAMING_SNAKE_CASE : Any = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] SCREAMING_SNAKE_CASE : Union[str, Any] = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] SCREAMING_SNAKE_CASE : Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE : int = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def UpperCamelCase ( _a ) -> List[str]: '''simple docstring''' lowercase_ :Optional[Any] = HashMap(initial_block_size=4 ) lowercase_ :Optional[int] = {} for _, (fun, *args) in enumerate(_a ): lowercase_ , lowercase_ :List[str] = _run_operation(_a , _a , *_a ) lowercase_ , lowercase_ :List[str] = _run_operation(_a , _a , *_a ) assert my_res == py_res assert str(_a ) == str(_a ) assert set(_a ) == set(_a ) assert len(_a ) == len(_a ) assert set(my.items() ) == set(py.items() ) def UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' def is_public(_a ) -> bool: return not name.startswith('''_''' ) lowercase_ :Dict = {name for name in dir({} ) if is_public(_a )} lowercase_ :Dict = {name for name in dir(HashMap() ) if is_public(_a )} assert dict_public_names > hash_public_names
252
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : Any = logging.get_logger() @dataclass class __lowerCAmelCase : _lowercase : nn.Module _lowercase : List[nn.Module] = field(default_factory=UpperCamelCase__) _lowercase : list = field(default_factory=UpperCamelCase__) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : Tuple =len(list(m.modules() ) ) == 1 or isinstance(lowerCAmelCase__ , nn.Convad ) or isinstance(lowerCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCAmelCase__ ) [x.remove() for x in self.handles] return self @property def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' return list(filter(lambda lowerCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __lowerCAmelCase : _lowercase : nn.Module _lowercase : nn.Module _lowercase : int = 0 _lowercase : List = field(default_factory=UpperCamelCase__) _lowercase : List = field(default_factory=UpperCamelCase__) def __call__( self , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' a__ : Any =Tracker(self.dest )(lowerCAmelCase__ ).parametrized a__ : List[str] =Tracker(self.src )(lowerCAmelCase__ ).parametrized a__ : Tuple =list(filter(lambda lowerCAmelCase__ : type(lowerCAmelCase__ ) not in self.src_skip , lowerCAmelCase__ ) ) a__ : Any =list(filter(lambda lowerCAmelCase__ : type(lowerCAmelCase__ ) not in self.dest_skip , lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise Exception( F'''Numbers of operations are different. Source module has {len(lowerCAmelCase__ )} operations while''' F''' destination module has {len(lowerCAmelCase__ )}.''' ) for dest_m, src_m in zip(lowerCAmelCase__ , lowerCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : ResNetConfig , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : bool = True ): """simple docstring""" print(f'''Converting {name}...''' ) with torch.no_grad(): a__ : Tuple =timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ).eval() a__ : str =ResNetForImageClassification(SCREAMING_SNAKE_CASE ).eval() a__ : List[str] =ModuleTransfer(src=SCREAMING_SNAKE_CASE , dest=SCREAMING_SNAKE_CASE ) a__ : Optional[Any] =torch.randn((1, 3, 224, 224) ) module_transfer(SCREAMING_SNAKE_CASE ) assert torch.allclose(from_model(SCREAMING_SNAKE_CASE ) , our_model(SCREAMING_SNAKE_CASE ).logits ), "The model logits don't match the original one." a__ : Union[str, Any] =f'''resnet{"-".join(name.split("resnet" ) )}''' print(SCREAMING_SNAKE_CASE ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=SCREAMING_SNAKE_CASE , ) # we can use the convnext one a__ : Optional[int] =AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=SCREAMING_SNAKE_CASE , ) print(f'''Pushed {checkpoint_name}''' ) def _A ( SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : str = None , SCREAMING_SNAKE_CASE : bool = True ): """simple docstring""" a__ : int ="imagenet-1k-id2label.json" a__ : List[str] =1_000 a__ : List[Any] =(1, num_labels) a__ : str ="huggingface/label-files" a__ : Optional[int] =num_labels a__ : Union[str, Any] =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) a__ : str ={int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} a__ : int =idalabel a__ : Dict ={v: k for k, v in idalabel.items()} a__ : str =partial(SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE ) a__ : Optional[Any] ={ "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(SCREAMING_SNAKE_CASE , names_to_config[model_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return config, expected_shape if __name__ == "__main__": UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) UpperCAmelCase : str = parser.parse_args() UpperCAmelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
95
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : List[Any] ={ '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] =[ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys a__ : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
53
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase : List[str] = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
110
from __future__ import annotations def A ( lowercase , lowercase ) -> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((UpperCamelCase) , (UpperCamelCase)) = extended_euclid(lowercase , a % b ) UpperCamelCase = a // b return (y, x - k * y) def A ( lowercase , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' ((UpperCamelCase) , (UpperCamelCase)) = extended_euclid(lowercase , lowercase ) UpperCamelCase = na * na UpperCamelCase = ra * x * na + ra * y * na return (n % m + m) % m def A ( lowercase , lowercase ) -> int: '''simple docstring''' ((UpperCamelCase) , (UpperCamelCase)) = extended_euclid(lowercase , lowercase ) if b < 0: UpperCamelCase = (b % n + n) % n return b def A ( lowercase , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase , UpperCamelCase = invert_modulo(lowercase , lowercase ), invert_modulo(lowercase , lowercase ) UpperCamelCase = na * na UpperCamelCase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
110
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class UpperCAmelCase ( A_ ): A__ : Tuple = "roformer" def __init__(self : int , snake_case__ : Optional[Any]=5_00_00 , snake_case__ : Optional[int]=None , snake_case__ : Any=7_68 , snake_case__ : Optional[int]=12 , snake_case__ : Optional[int]=12 , snake_case__ : Union[str, Any]=30_72 , snake_case__ : Optional[int]="gelu" , snake_case__ : int=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Tuple=15_36 , snake_case__ : List[str]=2 , snake_case__ : str=0.02 , snake_case__ : Dict=1e-12 , snake_case__ : Any=0 , snake_case__ : str=False , snake_case__ : Dict=True , **snake_case__ : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) snake_case : List[Any] = vocab_size snake_case : Any = hidden_size if embedding_size is None else embedding_size snake_case : Tuple = hidden_size snake_case : str = num_hidden_layers snake_case : int = num_attention_heads snake_case : Optional[int] = hidden_act snake_case : Optional[int] = intermediate_size snake_case : int = hidden_dropout_prob snake_case : List[str] = attention_probs_dropout_prob snake_case : str = max_position_embeddings snake_case : Union[str, Any] = type_vocab_size snake_case : List[Any] = initializer_range snake_case : Optional[int] = layer_norm_eps snake_case : Optional[Any] = rotary_value snake_case : Union[str, Any] = use_cache class UpperCAmelCase ( A_ ): @property def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case : Any = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case : Tuple = {0: "batch", 1: "sequence"} snake_case : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
59
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ (__snake_case ): def __init__( self , *a , **a): warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , a , ) super().__init__(*a , **a)
214
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : List[str] =["pixel_values"] def __init__( self : Any , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : int = 0.9 , lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : Union[int, float] = 1 / 2_55 , lowerCAmelCase : bool = True , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , **lowerCAmelCase : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**lowerCAmelCase ) __lowerCAmelCase : List[str] = size if size is not None else {"""shortest_edge""": 2_24} __lowerCAmelCase : str = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) __lowerCAmelCase : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} __lowerCAmelCase : Any = get_size_dict(lowerCAmelCase , param_name="""crop_size""" ) __lowerCAmelCase : Tuple = do_resize __lowerCAmelCase : Tuple = size __lowerCAmelCase : Union[str, Any] = crop_pct __lowerCAmelCase : List[Any] = resample __lowerCAmelCase : Any = do_center_crop __lowerCAmelCase : int = crop_size __lowerCAmelCase : Tuple = do_rescale __lowerCAmelCase : int = rescale_factor __lowerCAmelCase : int = do_normalize __lowerCAmelCase : Any = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase : Optional[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : Optional[float] = None , lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" __lowerCAmelCase : int = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: __lowerCAmelCase : Any = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __lowerCAmelCase : str = int(size["""height"""] / crop_pct ) else: __lowerCAmelCase : List[Any] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowerCAmelCase ) ) __lowerCAmelCase : Any = get_resize_output_image_size(lowerCAmelCase , size=lowerCAmelCase , default_to_square=lowerCAmelCase ) else: if "shortest_edge" in size: __lowerCAmelCase : Tuple = get_resize_output_image_size(lowerCAmelCase , size=size["""shortest_edge"""] , default_to_square=lowerCAmelCase ) elif "height" in size and "width" in size: __lowerCAmelCase : List[str] = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowerCAmelCase ) ) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowerCAmelCase : Any = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase , **lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[int, float] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Optional[int] , ) -> Tuple: """simple docstring""" return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : int , ) -> np.ndarray: """simple docstring""" return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : ImageInput , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : int = None , lowerCAmelCase : PILImageResampling = None , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : bool = None , lowerCAmelCase : float = None , lowerCAmelCase : bool = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase : int , ) -> PIL.Image.Image: """simple docstring""" __lowerCAmelCase : int = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase : List[Any] = crop_pct if crop_pct is not None else self.crop_pct __lowerCAmelCase : Any = resample if resample is not None else self.resample __lowerCAmelCase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase : int = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase : Dict = image_std if image_std is not None else self.image_std __lowerCAmelCase : Dict = size if size is not None else self.size __lowerCAmelCase : Tuple = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) __lowerCAmelCase : Tuple = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase : Optional[Any] = get_size_dict(lowerCAmelCase , param_name="""crop_size""" ) __lowerCAmelCase : Optional[Any] = make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __lowerCAmelCase : Any = [to_numpy_array(lowerCAmelCase ) for image in images] if do_resize: __lowerCAmelCase : str = [self.resize(image=lowerCAmelCase , size=lowerCAmelCase , crop_pct=lowerCAmelCase , resample=lowerCAmelCase ) for image in images] if do_center_crop: __lowerCAmelCase : Any = [self.center_crop(image=lowerCAmelCase , size=lowerCAmelCase ) for image in images] if do_rescale: __lowerCAmelCase : int = [self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) for image in images] if do_normalize: __lowerCAmelCase : List[str] = [self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) for image in images] __lowerCAmelCase : Union[str, Any] = [to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) for image in images] __lowerCAmelCase : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase )
139
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def snake_case_ (__A : Optional[int] , __A : Any ) -> Any: __lowerCAmelCase : Union[str, Any] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''encoder.deit.blocks.{i}.norm1.weight''', f'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.norm1.bias''', f'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.weight''', f'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.bias''', f'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.norm2.weight''', f'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.norm2.bias''', f'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.weight''', f'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.bias''', f'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc2.weight''', f'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.mlp.fc2.bias''', f'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def snake_case_ (__A : List[str] , __A : str ) -> Optional[Any]: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __lowerCAmelCase : Optional[Any] = state_dict.pop(f'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) __lowerCAmelCase : Tuple = in_proj_weight[ : encoder_config.hidden_size, : ] __lowerCAmelCase : str = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __lowerCAmelCase : str = in_proj_weight[ -encoder_config.hidden_size :, : ] def snake_case_ (__A : Union[str, Any] , __A : str , __A : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase : Any = dct.pop(__A ) __lowerCAmelCase : str = val def snake_case_ (__A : int ) -> Tuple: if "handwritten" in checkpoint_url: __lowerCAmelCase : Tuple = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __lowerCAmelCase : Optional[Any] = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" __lowerCAmelCase : Dict = Image.open(requests.get(__A , stream=__A ).raw ).convert("""RGB""" ) return im @torch.no_grad() def snake_case_ (__A : Any , __A : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase : List[Any] = ViTConfig(image_size=3_8_4 , qkv_bias=__A ) __lowerCAmelCase : List[Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __lowerCAmelCase : Union[str, Any] = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __lowerCAmelCase : Any = 1_0_2_4 __lowerCAmelCase : Any = 4_0_9_6 __lowerCAmelCase : Optional[int] = 2_4 __lowerCAmelCase : str = 1_6 __lowerCAmelCase : List[Any] = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __lowerCAmelCase : Tuple = False __lowerCAmelCase : Union[str, Any] = """relu""" __lowerCAmelCase : List[Any] = 1_0_2_4 __lowerCAmelCase : Any = True __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Dict = False # load HuggingFace model __lowerCAmelCase : Dict = ViTModel(__A , add_pooling_layer=__A ) __lowerCAmelCase : Union[str, Any] = TrOCRForCausalLM(__A ) __lowerCAmelCase : Any = VisionEncoderDecoderModel(encoder=__A , decoder=__A ) model.eval() # load state_dict of original model, rename some keys __lowerCAmelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(__A , map_location="""cpu""" , check_hash=__A )["""model"""] __lowerCAmelCase : Any = create_rename_keys(__A , __A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_q_k_v(__A , __A ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __lowerCAmelCase : Tuple = state_dict.pop(__A ) if key.startswith("""decoder""" ) and "output_projection" not in key: __lowerCAmelCase : str = val else: __lowerCAmelCase : Tuple = val # load state dict model.load_state_dict(__A ) # Check outputs on an image __lowerCAmelCase : List[Any] = ViTImageProcessor(size=encoder_config.image_size ) __lowerCAmelCase : List[str] = RobertaTokenizer.from_pretrained("""roberta-large""" ) __lowerCAmelCase : List[Any] = TrOCRProcessor(__A , __A ) __lowerCAmelCase : List[str] = processor(images=prepare_img(__A ) , return_tensors="""pt""" ).pixel_values # verify logits __lowerCAmelCase : List[str] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __lowerCAmelCase : List[str] = model(pixel_values=__A , decoder_input_ids=__A ) __lowerCAmelCase : Optional[Any] = outputs.logits __lowerCAmelCase : Union[str, Any] = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __lowerCAmelCase : Dict = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: __lowerCAmelCase : List[Any] = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: __lowerCAmelCase : Tuple = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: __lowerCAmelCase : List[Any] = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , __A , atol=1e-3 ), "First elements of logits not as expected" Path(__A ).mkdir(exist_ok=__A ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __UpperCAmelCase = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
139
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] ): '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( lowerCamelCase__ : Tuple ): '''simple docstring''' lowerCamelCase = create_tensor(lowerCamelCase__ ) lowerCamelCase = gather(lowerCamelCase__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = [state.process_index] lowerCamelCase = gather_object(lowerCamelCase__ ) assert len(lowerCamelCase__ ) == state.num_processes, f'{gathered_obj}, {len(lowerCamelCase__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), f'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( lowerCamelCase__ : Optional[int] ): '''simple docstring''' lowerCamelCase = create_tensor(lowerCamelCase__ ) lowerCamelCase = broadcast(lowerCamelCase__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __lowerCamelCase ( lowerCamelCase__ : Tuple ): '''simple docstring''' if state.is_main_process: lowerCamelCase = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowerCamelCase = torch.arange(state.num_processes ).to(state.device ) lowerCamelCase = pad_across_processes(lowerCamelCase__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' if state.num_processes != 2: return lowerCamelCase = create_tensor(lowerCamelCase__ ) lowerCamelCase = reduce(lowerCamelCase__ , """sum""" ) lowerCamelCase = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ ), f'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( lowerCamelCase__ : Any ): '''simple docstring''' if state.num_processes != 2: return lowerCamelCase = create_tensor(lowerCamelCase__ ) lowerCamelCase = reduce(lowerCamelCase__ , """mean""" ) lowerCamelCase = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ ), f'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' main() def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = PartialState() state.print(f'State: {state}' ) state.print("""testing gather""" ) test_gather(lowerCamelCase__ ) state.print("""testing gather_object""" ) test_gather_object(lowerCamelCase__ ) state.print("""testing broadcast""" ) test_broadcast(lowerCamelCase__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(lowerCamelCase__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(lowerCamelCase__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(lowerCamelCase__ ) if __name__ == "__main__": main()
252
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Any = ["image_processor", "tokenizer"] UpperCamelCase : Dict = "BridgeTowerImageProcessor" UpperCamelCase : List[Any] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , A , A ) -> Optional[int]: '''simple docstring''' super().__init__(A , A ) def __call__( self , A , A = None , A = True , A = False , A = None , A = None , A = 0 , A = None , A = None , A = None , A = False , A = False , A = False , A = False , A = True , A = None , **A , ) -> BatchEncoding: '''simple docstring''' lowerCamelCase = self.tokenizer( text=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_token_type_ids=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_length=A , verbose=A , return_tensors=A , **A , ) # add pixel_values + pixel_mask lowerCamelCase = self.image_processor( A , return_tensors=A , do_normalize=A , do_center_crop=A , **A ) encoding.update(A ) return encoding def __A ( self , *A , **A ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*A , **A ) def __A ( self , *A , **A ) -> Optional[int]: '''simple docstring''' return self.tokenizer.decode(*A , **A ) @property def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = self.tokenizer.model_input_names lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
252
1
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __UpperCamelCase = 128022 __UpperCamelCase = 128028 @require_sentencepiece class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = MaMaaaTokenizer SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : str = True def __A ( self ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] SCREAMING_SNAKE_CASE = dict(zip(_a , range(len(_a ) ) ) ) SCREAMING_SNAKE_CASE = Path(self.tmpdirname ) save_json(_a , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_a , save_dir / VOCAB_FILES_NAMES['spm_file'] ) SCREAMING_SNAKE_CASE = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self , **lowerCAmelCase__ ) -> List[str]: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_a ) def __A ( self , lowerCAmelCase__ ) -> Optional[Any]: return ( "This is a test", "This is a test", ) def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = '</s>' SCREAMING_SNAKE_CASE = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<s>' ) self.assertEqual(len(_a ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('Skip this test while all models are still to be uploaded.' ) def __A ( self ) -> Optional[int]: pass def __A ( self ) -> str: SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test' ) self.assertListEqual(_a , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [2, 3, 4, 5, 6] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(_a , ['▁This', '▁is', '▁a', '▁t', 'est'] ) SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_string(_a ) self.assertEqual(_a , 'This is a test' ) @slow def __A ( self ) -> Optional[Any]: # fmt: off SCREAMING_SNAKE_CASE = {'input_ids': [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='facebook/m2m100_418M' , revision='c168bae485c864188cf9aa0e4108b0b6934dc91e' , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = '''facebook/m2m100_418M''' SCREAMING_SNAKE_CASE_ : Any = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] SCREAMING_SNAKE_CASE_ : Any = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off SCREAMING_SNAKE_CASE_ : int = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def __A ( cls ) -> str: SCREAMING_SNAKE_CASE = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en' , tgt_lang='fr' ) SCREAMING_SNAKE_CASE = 1 return cls def __A ( self ) -> Dict: self.assertEqual(self.tokenizer.get_lang_id('ar' ) , 128_006 ) self.assertEqual(self.tokenizer.get_lang_id('en' ) , 128_022 ) self.assertEqual(self.tokenizer.get_lang_id('ro' ) , 128_076 ) self.assertEqual(self.tokenizer.get_lang_id('mr' ) , 128_063 ) def __A ( self ) -> int: SCREAMING_SNAKE_CASE = self.tokenizer.get_vocab() self.assertEqual(len(_a ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['<unk>'] , 3 ) self.assertIn(self.tokenizer.get_lang_token('en' ) , _a ) def __A ( self ) -> int: SCREAMING_SNAKE_CASE = 'en' SCREAMING_SNAKE_CASE = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _a ) def __A ( self ) -> Any: self.assertIn(_a , self.tokenizer.all_special_ids ) # fmt: off SCREAMING_SNAKE_CASE = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on SCREAMING_SNAKE_CASE = self.tokenizer.decode(_a , skip_special_tokens=_a ) SCREAMING_SNAKE_CASE = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_a ) self.assertEqual(_a , _a ) self.assertNotIn(self.tokenizer.eos_token , _a ) def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_a ) SCREAMING_SNAKE_CASE = MaMaaaTokenizer.from_pretrained(_a ) self.assertDictEqual(new_tok.lang_token_to_id , _a ) @require_torch def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = 'en' SCREAMING_SNAKE_CASE = 'fr' SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_a , return_tensors='pt' ) SCREAMING_SNAKE_CASE = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: SCREAMING_SNAKE_CASE = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = 'mr' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) SCREAMING_SNAKE_CASE = 'zh' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = 'mr' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) SCREAMING_SNAKE_CASE = 'zh' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.tokenizer._build_translation_inputs('A test' , return_tensors='pt' , src_lang='en' , tgt_lang='ar' ) self.assertEqual( nested_simplify(_a ) , { # en_XX, A, test, EOS 'input_ids': [[128_022, 58, 4_183, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 128_006, } , )
363
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = ShapEImgaImgPipeline SCREAMING_SNAKE_CASE_ : Any = ["""image"""] SCREAMING_SNAKE_CASE_ : Optional[int] = ["""image"""] SCREAMING_SNAKE_CASE_ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] SCREAMING_SNAKE_CASE_ : Any = False @property def __A ( self ) -> Tuple: return 32 @property def __A ( self ) -> Optional[int]: return 32 @property def __A ( self ) -> List[str]: return self.time_input_dim * 4 @property def __A ( self ) -> Union[str, Any]: return 8 @property def __A ( self ) -> Any: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE = CLIPVisionModel(lowerCAmelCase__ ) return model @property def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = CLIPImageProcessor( crop_size=224 , do_center_crop=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ , do_resize=lowerCAmelCase__ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def __A ( self ) -> str: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } SCREAMING_SNAKE_CASE = PriorTransformer(**lowerCAmelCase__ ) return model @property def __A ( self ) -> List[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE = ShapERenderer(**lowerCAmelCase__ ) return model def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = self.dummy_prior SCREAMING_SNAKE_CASE = self.dummy_image_encoder SCREAMING_SNAKE_CASE = self.dummy_image_processor SCREAMING_SNAKE_CASE = self.dummy_renderer SCREAMING_SNAKE_CASE = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> List[str]: SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if str(lowerCAmelCase__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = 'cpu' SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = output.images[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Union[str, Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = torch_device == 'cpu' SCREAMING_SNAKE_CASE = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__ ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) SCREAMING_SNAKE_CASE = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
38
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowercase : List[Any] = logging.get_logger(__name__) # General docstring lowercase : List[str] = "MobileNetV1Config" # Base docstring lowercase : int = "google/mobilenet_v1_1.0_224" lowercase : List[str] = [1, 1024, 7, 7] # Image classification docstring lowercase : Any = "google/mobilenet_v1_1.0_224" lowercase : Tuple = "tabby, tabby cat" lowercase : str = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def SCREAMING_SNAKE_CASE__ ( __A , __A , __A=None ) -> Dict: _snake_case = {} if isinstance(lowercase__ , lowercase__ ): _snake_case = model.mobilenet_va else: _snake_case = model _snake_case = 'MobilenetV1/Conv2d_0/' _snake_case = backbone.conv_stem.convolution.weight _snake_case = backbone.conv_stem.normalization.bias _snake_case = backbone.conv_stem.normalization.weight _snake_case = backbone.conv_stem.normalization.running_mean _snake_case = backbone.conv_stem.normalization.running_var for i in range(13 ): _snake_case = i + 1 _snake_case = i * 2 _snake_case = backbone.layer[pt_index] _snake_case = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' _snake_case = pointer.convolution.weight _snake_case = pointer.normalization.bias _snake_case = pointer.normalization.weight _snake_case = pointer.normalization.running_mean _snake_case = pointer.normalization.running_var _snake_case = backbone.layer[pt_index + 1] _snake_case = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' _snake_case = pointer.convolution.weight _snake_case = pointer.normalization.bias _snake_case = pointer.normalization.weight _snake_case = pointer.normalization.running_mean _snake_case = pointer.normalization.running_var if isinstance(lowercase__ , lowercase__ ): _snake_case = 'MobilenetV1/Logits/Conv2d_1c_1x1/' _snake_case = model.classifier.weight _snake_case = model.classifier.bias return tf_to_pt_map def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Optional[int]: try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model _snake_case = tf.train.list_variables(lowercase__ ) _snake_case = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) _snake_case = tf.train.load_variable(lowercase__ , lowercase__ ) _snake_case = array # Build TF to PyTorch weights loading map _snake_case = _build_tf_to_pytorch_map(lowercase__ , lowercase__ , lowercase__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue _snake_case = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) _snake_case = np.transpose(lowercase__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer _snake_case = array.squeeze().transpose() else: _snake_case = np.transpose(lowercase__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) _snake_case = torch.from_numpy(lowercase__ ) tf_weights.pop(lowercase__ , lowercase__ ) tf_weights.pop(name + '/RMSProp' , lowercase__ ) tf_weights.pop(name + '/RMSProp_1' , lowercase__ ) tf_weights.pop(name + '/ExponentialMovingAverage' , lowercase__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Optional[Any]: _snake_case , _snake_case = features.shape[-2:] _snake_case , _snake_case = conv_layer.stride _snake_case , _snake_case = conv_layer.kernel_size if in_height % stride_height == 0: _snake_case = max(kernel_height - stride_height , 0 ) else: _snake_case = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: _snake_case = max(kernel_width - stride_width , 0 ) else: _snake_case = max(kernel_width - (in_width % stride_width) , 0 ) _snake_case = pad_along_width // 2 _snake_case = pad_along_width - pad_left _snake_case = pad_along_height // 2 _snake_case = pad_along_height - pad_top _snake_case = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowercase__ , lowercase__ , 'constant' , 0.0 ) class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = False , lowerCAmelCase_ = True , lowerCAmelCase_ = True , ): """simple docstring""" super().__init__() _snake_case = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) _snake_case = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _snake_case = nn.Convad( in_channels=__lowercase , out_channels=__lowercase , kernel_size=__lowercase , stride=__lowercase , padding=__lowercase , groups=__lowercase , bias=__lowercase , padding_mode='zeros' , ) if use_normalization: _snake_case = nn.BatchNormad( num_features=__lowercase , eps=config.layer_norm_eps , momentum=0.9997 , affine=__lowercase , track_running_stats=__lowercase , ) else: _snake_case = None if use_activation: if isinstance(__lowercase , __lowercase ): _snake_case = ACTaFN[use_activation] elif isinstance(config.hidden_act , __lowercase ): _snake_case = ACTaFN[config.hidden_act] else: _snake_case = config.hidden_act else: _snake_case = None def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if self.config.tf_padding: _snake_case = apply_tf_padding(__lowercase , self.convolution ) _snake_case = self.convolution(__lowercase ) if self.normalization is not None: _snake_case = self.normalization(__lowercase ) if self.activation is not None: _snake_case = self.activation(__lowercase ) return features class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = MobileNetVaConfig __lowercase = load_tf_weights_in_mobilenet_va __lowercase = """mobilenet_v1""" __lowercase = """pixel_values""" __lowercase = False def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if isinstance(__lowercase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowercase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowercase : List[str] = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" lowercase : Optional[Any] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , _lowerCamelCase , ) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = True ): """simple docstring""" super().__init__(__lowercase ) _snake_case = config _snake_case = 32 _snake_case = max(int(depth * config.depth_multiplier ) , config.min_depth ) _snake_case = MobileNetVaConvLayer( __lowercase , in_channels=config.num_channels , out_channels=__lowercase , kernel_size=3 , stride=2 , ) _snake_case = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _snake_case = nn.ModuleList() for i in range(13 ): _snake_case = out_channels if strides[i] == 2 or i == 0: depth *= 2 _snake_case = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( __lowercase , in_channels=__lowercase , out_channels=__lowercase , kernel_size=3 , stride=strides[i] , groups=__lowercase , ) ) self.layer.append( MobileNetVaConvLayer( __lowercase , in_channels=__lowercase , out_channels=__lowercase , kernel_size=1 , ) ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(__lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCamelCase ( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ): """simple docstring""" _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) _snake_case = self.conv_stem(__lowercase ) _snake_case = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _snake_case = layer_module(__lowercase ) if output_hidden_states: _snake_case = all_hidden_states + (hidden_states,) _snake_case = hidden_states if self.pooler is not None: _snake_case = torch.flatten(self.pooler(__lowercase ) , start_dim=1 ) else: _snake_case = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowercase , pooler_output=__lowercase , hidden_states=__lowercase , ) @add_start_docstrings( """\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n """ , _lowerCamelCase , ) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ): """simple docstring""" super().__init__(__lowercase ) _snake_case = config.num_labels _snake_case = MobileNetVaModel(__lowercase ) _snake_case = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _snake_case = nn.Dropout(config.classifier_dropout_prob , inplace=__lowercase ) _snake_case = nn.Linear(__lowercase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCamelCase ( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ): """simple docstring""" _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.mobilenet_va(__lowercase , output_hidden_states=__lowercase , return_dict=__lowercase ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(self.dropout(__lowercase ) ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(__lowercase , __lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(__lowercase , __lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__lowercase , logits=__lowercase , hidden_states=outputs.hidden_states , )
42
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : List[Any] ): '''simple docstring''' if isinstance(lowercase__, (list, tuple) ) and isinstance(videos[0], (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase__, (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase__ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class lowerCAmelCase ( A ): lowerCAmelCase_ = ["pixel_values"] def __init__( self : Union[str, Any] , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 255 , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Optional[Any] , ): """simple docstring""" super().__init__(**__lowercase ) __lowercase =size if size is not None else {'shortest_edge': 224} __lowercase =get_size_dict(__lowercase , default_to_square=__lowercase ) __lowercase =crop_size if crop_size is not None else {'height': 224, 'width': 224} __lowercase =get_size_dict(__lowercase , param_name='crop_size' ) __lowercase =do_resize __lowercase =size __lowercase =do_center_crop __lowercase =crop_size __lowercase =resample __lowercase =do_rescale __lowercase =rescale_factor __lowercase =do_normalize __lowercase =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase =image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case ( self : int , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ): """simple docstring""" __lowercase =get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" in size: __lowercase =get_resize_output_image_size(__lowercase , size['shortest_edge'] , default_to_square=__lowercase ) elif "height" in size and "width" in size: __lowercase =(size['height'], size['width']) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def snake_case ( self : Dict , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ): """simple docstring""" __lowercase =get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__lowercase , size=(size['height'], size['width']) , data_format=__lowercase , **__lowercase ) def snake_case ( self : str , __lowercase : np.ndarray , __lowercase : Union[int, float] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ): """simple docstring""" return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def snake_case ( self : Dict , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ): """simple docstring""" return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def snake_case ( self : Optional[Any] , __lowercase : ImageInput , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : bool = None , __lowercase : float = None , __lowercase : bool = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , ): """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowercase =to_numpy_array(__lowercase ) if do_resize: __lowercase =self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) if do_center_crop: __lowercase =self.center_crop(__lowercase , size=__lowercase ) if do_rescale: __lowercase =self.rescale(image=__lowercase , scale=__lowercase ) if do_normalize: __lowercase =self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) __lowercase =to_channel_dimension_format(__lowercase , __lowercase ) return image def snake_case ( self : Union[str, Any] , __lowercase : ImageInput , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : bool = None , __lowercase : float = None , __lowercase : bool = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : ChannelDimension = ChannelDimension.FIRST , **__lowercase : Tuple , ): """simple docstring""" __lowercase =do_resize if do_resize is not None else self.do_resize __lowercase =resample if resample is not None else self.resample __lowercase =do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase =do_rescale if do_rescale is not None else self.do_rescale __lowercase =rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase =do_normalize if do_normalize is not None else self.do_normalize __lowercase =image_mean if image_mean is not None else self.image_mean __lowercase =image_std if image_std is not None else self.image_std __lowercase =size if size is not None else self.size __lowercase =get_size_dict(__lowercase , default_to_square=__lowercase ) __lowercase =crop_size if crop_size is not None else self.crop_size __lowercase =get_size_dict(__lowercase , param_name='crop_size' ) if not valid_images(__lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) __lowercase =make_batched(__lowercase ) __lowercase =[ [ self._preprocess_image( image=__lowercase , do_resize=__lowercase , size=__lowercase , resample=__lowercase , do_center_crop=__lowercase , crop_size=__lowercase , do_rescale=__lowercase , rescale_factor=__lowercase , do_normalize=__lowercase , image_mean=__lowercase , image_std=__lowercase , data_format=__lowercase , ) for img in video ] for video in videos ] __lowercase ={'pixel_values': videos} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
141
0
from __future__ import annotations class UpperCamelCase : def __init__( self , UpperCAmelCase__=None ): A__ = data A__ = None def __repr__( self ): A__ = [] A__ = self while temp: string_rep.append(F"""{temp.data}""" ) A__ = temp.next return "->".join(UpperCAmelCase__ ) def UpperCamelCase ( _A : list )-> Dict: """simple docstring""" if not elements_list: raise Exception("The Elements List is empty" ) A__ = A__ = Node(elements_list[0] ) for i in range(1 , len(_A ) ): A__ = Node(elements_list[i] ) A__ = current.next return head def UpperCamelCase ( _A : Node )-> None: """simple docstring""" if head_node is not None and isinstance(_A , _A ): print_reverse(head_node.next ) print(head_node.data ) def UpperCamelCase ( )-> Tuple: """simple docstring""" from doctest import testmod testmod() A__ = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(_A ) print("Elements in Reverse:" ) print_reverse(_A ) if __name__ == "__main__": main()
198
from manim import * class UpperCamelCase ( _UpperCAmelCase ): def __A ( self ): A__ = Rectangle(height=0.5 , width=0.5 ) A__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) A__ = [mem.copy() for i in range(6 )] A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = VGroup(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = Text("CPU" , font_size=24 ) A__ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase__ ) A__ = [mem.copy() for i in range(4 )] A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = Text("GPU" , font_size=24 ) A__ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase__ ) A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = Text("Model" , font_size=24 ) A__ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase__ ) A__ = [] for i, rect in enumerate(UpperCAmelCase__ ): rect.set_stroke(UpperCAmelCase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) A__ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCAmelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=UpperCAmelCase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=UpperCAmelCase__ , buff=0.0 ) self.add(UpperCAmelCase__ ) cpu_targs.append(UpperCAmelCase__ ) A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) A__ = Text("Loaded Checkpoint" , font_size=24 ) A__ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , aligned_edge=UpperCAmelCase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) A__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A__ = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(UpperCAmelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) A__ = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase__ ) , Write(UpperCAmelCase__ ) ) self.play(Write(UpperCAmelCase__ , run_time=1 ) , Create(UpperCAmelCase__ , run_time=1 ) ) A__ = [] A__ = [] for i, rect in enumerate(UpperCAmelCase__ ): A__ = fill.copy().set_fill(UpperCAmelCase__ , opacity=0.7 ) target.move_to(UpperCAmelCase__ ) first_animations.append(GrowFromCenter(UpperCAmelCase__ , run_time=1 ) ) A__ = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(UpperCAmelCase__ , run_time=1.5 ) ) self.play(*UpperCAmelCase__ ) self.play(*UpperCAmelCase__ ) self.wait()
198
1
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils ) UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) UpperCAmelCase : Optional[int] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase : Any = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase : Tuple = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(f"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" ) UpperCAmelCase : str = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(snake_case , env=os.environ.copy() ) if __name__ == "__main__": a : Union[str, Any] = Accelerator() a : str = (accelerator.state.process_index + 2, 10) a : List[str] = torch.randint(0, 10, shape).to(accelerator.device) a : Optional[int] = "" a : int = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." a : List[Any] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." a : List[str] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
311
'''simple docstring''' import argparse import copy def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = {} with open(__magic_name__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: UpperCAmelCase : List[Any] = [] _list.append([line.split()[1], line.split()[2]] ) UpperCAmelCase : Tuple = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: UpperCAmelCase : Any = [] _list.append([line.split()[0], line.split()[2]] ) UpperCAmelCase : int = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' with open(__magic_name__ ) as f: UpperCAmelCase : List[str] = f.read(1 ) UpperCAmelCase : List[Any] = start_node UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : Any = start_node UpperCAmelCase : Optional[Any] = 0 while visiting not in first_solution: UpperCAmelCase : Optional[Any] = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__magic_name__ ) and k[0] not in first_solution: UpperCAmelCase : Tuple = k[1] UpperCAmelCase : Dict = k[0] first_solution.append(__magic_name__ ) UpperCAmelCase : int = distance_of_first_solution + int(__magic_name__ ) UpperCAmelCase : str = best_node first_solution.append(__magic_name__ ) UpperCAmelCase : int = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 UpperCAmelCase : str = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [] for n in solution[1:-1]: UpperCAmelCase : Any = solution.index(__magic_name__ ) for kn in solution[1:-1]: UpperCAmelCase : Dict = solution.index(__magic_name__ ) if n == kn: continue UpperCAmelCase : Tuple = copy.deepcopy(__magic_name__ ) UpperCAmelCase : Optional[int] = kn UpperCAmelCase : List[str] = n UpperCAmelCase : str = 0 for k in _tmp[:-1]: UpperCAmelCase : List[Any] = _tmp[_tmp.index(__magic_name__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: UpperCAmelCase : List[Any] = distance + int(i[1] ) _tmp.append(__magic_name__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) UpperCAmelCase : List[str] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __magic_name__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[Any] = 1 UpperCAmelCase : List[str] = first_solution UpperCAmelCase : str = [] UpperCAmelCase : Union[str, Any] = distance_of_first_solution UpperCAmelCase : Union[str, Any] = solution while count <= iters: UpperCAmelCase : int = find_neighborhood(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = 0 UpperCAmelCase : List[str] = neighborhood[index_of_best_solution] UpperCAmelCase : Dict = len(__magic_name__ ) - 1 UpperCAmelCase : Dict = False while not found: UpperCAmelCase : List[Any] = 0 while i < len(__magic_name__ ): if best_solution[i] != solution[i]: UpperCAmelCase : int = best_solution[i] UpperCAmelCase : Optional[int] = solution[i] break UpperCAmelCase : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) UpperCAmelCase : List[str] = True UpperCAmelCase : List[Any] = best_solution[:-1] UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: UpperCAmelCase : Union[str, Any] = cost UpperCAmelCase : Tuple = solution else: UpperCAmelCase : Optional[Any] = index_of_best_solution + 1 UpperCAmelCase : str = neighborhood[index_of_best_solution] if len(__magic_name__ ) >= size: tabu_list.pop(0 ) UpperCAmelCase : int = count + 1 return best_solution_ever, best_cost def lowercase ( __magic_name__=None ): '''simple docstring''' UpperCAmelCase : Dict = generate_neighbours(args.File ) UpperCAmelCase , UpperCAmelCase : Any = generate_first_solution( args.File , __magic_name__ ) UpperCAmelCase , UpperCAmelCase : Any = tabu_search( __magic_name__ , __magic_name__ , __magic_name__ , args.Iterations , args.Size , ) print(F"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
311
1
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __SCREAMING_SNAKE_CASE :List[str] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' ,safety_checker=_lowercase ,cache_dir=_lowercase ) __SCREAMING_SNAKE_CASE :int = [t[-1] for t in os.walk(os.path.join(_lowercase ,os.listdir(_lowercase )[0] ,'''snapshots''' ) )] __SCREAMING_SNAKE_CASE :Any = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' ,safety_checker=_lowercase ) __SCREAMING_SNAKE_CASE :Optional[int] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE :Dict = 4 __SCREAMING_SNAKE_CASE :Tuple = jax.device_count() __SCREAMING_SNAKE_CASE :Any = num_samples * [prompt] __SCREAMING_SNAKE_CASE :List[Any] = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng __SCREAMING_SNAKE_CASE :Any = replicate(_lowercase ) __SCREAMING_SNAKE_CASE :List[str] = jax.random.split(_lowercase ,_lowercase ) __SCREAMING_SNAKE_CASE :Optional[int] = shard(_lowercase ) __SCREAMING_SNAKE_CASE :Any = pipeline(_lowercase ,_lowercase ,_lowercase ,_lowercase ,jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1E-3 assert np.abs(np.abs(_lowercase ,dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 __SCREAMING_SNAKE_CASE :Any = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''flax''' ,safety_checker=_lowercase ) __SCREAMING_SNAKE_CASE :Tuple = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __SCREAMING_SNAKE_CASE :int = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE :Optional[Any] = 50 __SCREAMING_SNAKE_CASE :List[str] = jax.device_count() __SCREAMING_SNAKE_CASE :int = num_samples * [prompt] __SCREAMING_SNAKE_CASE :int = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng __SCREAMING_SNAKE_CASE :Union[str, Any] = replicate(_lowercase ) __SCREAMING_SNAKE_CASE :str = jax.random.split(_lowercase ,_lowercase ) __SCREAMING_SNAKE_CASE :Tuple = shard(_lowercase ) __SCREAMING_SNAKE_CASE :Tuple = pipeline(_lowercase ,_lowercase ,_lowercase ,_lowercase ,jit=_lowercase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1E-3 assert np.abs((np.abs(_lowercase ,dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,safety_checker=_lowercase ) __SCREAMING_SNAKE_CASE :int = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __SCREAMING_SNAKE_CASE :Dict = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE :Optional[int] = 50 __SCREAMING_SNAKE_CASE :Optional[Any] = jax.device_count() __SCREAMING_SNAKE_CASE :Optional[int] = num_samples * [prompt] __SCREAMING_SNAKE_CASE :str = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng __SCREAMING_SNAKE_CASE :int = replicate(_lowercase ) __SCREAMING_SNAKE_CASE :Optional[int] = jax.random.split(_lowercase ,_lowercase ) __SCREAMING_SNAKE_CASE :Optional[int] = shard(_lowercase ) __SCREAMING_SNAKE_CASE :str = pipeline(_lowercase ,_lowercase ,_lowercase ,_lowercase ,jit=_lowercase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1E-3 assert np.abs((np.abs(_lowercase ,dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ) __SCREAMING_SNAKE_CASE :int = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE :List[str] = 50 __SCREAMING_SNAKE_CASE :Tuple = jax.device_count() __SCREAMING_SNAKE_CASE :List[Any] = num_samples * [prompt] __SCREAMING_SNAKE_CASE :List[str] = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng __SCREAMING_SNAKE_CASE :Optional[Any] = replicate(_lowercase ) __SCREAMING_SNAKE_CASE :Dict = jax.random.split(_lowercase ,_lowercase ) __SCREAMING_SNAKE_CASE :Optional[int] = shard(_lowercase ) __SCREAMING_SNAKE_CASE :Union[str, Any] = pipeline(_lowercase ,_lowercase ,_lowercase ,_lowercase ,jit=_lowercase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1E-3 assert np.abs((np.abs(_lowercase ,dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,set_alpha_to_one=_lowercase ,steps_offset=1 ,) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :List[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,scheduler=_lowercase ,safety_checker=_lowercase ,) __SCREAMING_SNAKE_CASE :Any = scheduler.create_state() __SCREAMING_SNAKE_CASE :Any = scheduler_state __SCREAMING_SNAKE_CASE :Optional[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE :Optional[int] = 50 __SCREAMING_SNAKE_CASE :List[str] = jax.device_count() __SCREAMING_SNAKE_CASE :Dict = num_samples * [prompt] __SCREAMING_SNAKE_CASE :Dict = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng __SCREAMING_SNAKE_CASE :Any = replicate(_lowercase ) __SCREAMING_SNAKE_CASE :Optional[Any] = jax.random.split(_lowercase ,_lowercase ) __SCREAMING_SNAKE_CASE :Any = shard(_lowercase ) __SCREAMING_SNAKE_CASE :List[str] = pipeline(_lowercase ,_lowercase ,_lowercase ,_lowercase ,jit=_lowercase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1E-3 assert np.abs((np.abs(_lowercase ,dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __SCREAMING_SNAKE_CASE :Any = jax.device_count() __SCREAMING_SNAKE_CASE :Optional[Any] = num_samples * [prompt] __SCREAMING_SNAKE_CASE :Union[str, Any] = jax.random.split(jax.random.PRNGKey(0 ) ,_lowercase ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :List[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,safety_checker=_lowercase ,) __SCREAMING_SNAKE_CASE :Union[str, Any] = replicate(_lowercase ) __SCREAMING_SNAKE_CASE :Tuple = pipeline.prepare_inputs(_lowercase ) __SCREAMING_SNAKE_CASE :List[Any] = shard(_lowercase ) __SCREAMING_SNAKE_CASE :Tuple = pipeline(_lowercase ,_lowercase ,_lowercase ,jit=_lowercase ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) __SCREAMING_SNAKE_CASE :str = images[2, 0, 2_56, 10:17, 1] # With memory efficient attention __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,safety_checker=_lowercase ,use_memory_efficient_attention=_lowercase ,) __SCREAMING_SNAKE_CASE :str = replicate(_lowercase ) __SCREAMING_SNAKE_CASE :int = pipeline.prepare_inputs(_lowercase ) __SCREAMING_SNAKE_CASE :Dict = shard(_lowercase ) __SCREAMING_SNAKE_CASE :Optional[Any] = pipeline(_lowercase ,_lowercase ,_lowercase ,jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 5_12, 5_12, 3) __SCREAMING_SNAKE_CASE :List[str] = images[2, 0, 2_56, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
366
"""simple docstring""" from itertools import product def __lowerCamelCase ( a_ : int , a_ : int ) -> list[int]: __SCREAMING_SNAKE_CASE :Tuple = sides_number __SCREAMING_SNAKE_CASE :List[Any] = max_face_number * dice_number __SCREAMING_SNAKE_CASE :List[Any] = [0] * (max_total + 1) __SCREAMING_SNAKE_CASE :Optional[int] = 1 __SCREAMING_SNAKE_CASE :Tuple = range(a_ , max_face_number + 1 ) for dice_numbers in product(a_ , repeat=a_ ): __SCREAMING_SNAKE_CASE :Any = sum(a_ ) totals_frequencies[total] += 1 return totals_frequencies def __lowerCamelCase ( ) -> float: __SCREAMING_SNAKE_CASE :Dict = total_frequency_distribution( sides_number=4 , dice_number=9 ) __SCREAMING_SNAKE_CASE :Union[str, Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) __SCREAMING_SNAKE_CASE :Optional[Any] = 0 __SCREAMING_SNAKE_CASE :Any = 9 __SCREAMING_SNAKE_CASE :List[str] = 4 * 9 __SCREAMING_SNAKE_CASE :Dict = 6 for peter_total in range(a_ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __SCREAMING_SNAKE_CASE :List[str] = (4**9) * (6**6) __SCREAMING_SNAKE_CASE :Union[str, Any] = peter_wins_count / total_games_number __SCREAMING_SNAKE_CASE :str = round(a_ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'{solution() = }')
239
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE__ ( __A ) -> List[Any]: return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) lowercase : List[str] = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class __UpperCAmelCase ( _lowerCamelCase ): @staticmethod def lowerCamelCase ( lowerCAmelCase_ ): """simple docstring""" _snake_case = parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=_UpperCamelCase , required=_UpperCamelCase , help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' , type=_UpperCamelCase , required=_UpperCamelCase , help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' , type=_UpperCamelCase , required=_UpperCamelCase , help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' , type=_UpperCamelCase , default='' , help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' , type=_UpperCamelCase , default=_UpperCamelCase , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=_UpperCamelCase ) def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ , ): """simple docstring""" _snake_case = logging.get_logger('transformers-cli/converting' ) self._logger.info(F'Loading model {model_type}' ) _snake_case = model_type _snake_case = tf_checkpoint _snake_case = pytorch_dump_output _snake_case = config _snake_case = finetuning_task_name def lowerCamelCase ( self ): """simple docstring""" if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) if "ckpt" in self._tf_checkpoint.lower(): _snake_case = self._tf_checkpoint _snake_case = '' else: _snake_case = self._tf_checkpoint _snake_case = '' convert_transfo_xl_checkpoint_to_pytorch( _UpperCamelCase , self._config , self._pytorch_dump_output , _UpperCamelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
42
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') snake_case__ : Optional[int] = parser.parse_args() if args.model_type == "bert": snake_case__ : Dict = BertForMaskedLM.from_pretrained(args.model_name) snake_case__ : Union[str, Any] = 'bert' else: raise ValueError('args.model_type should be "bert".') snake_case__ : Optional[int] = model.state_dict() snake_case__ : List[Any] = {} for w in ["word_embeddings", "position_embeddings"]: snake_case__ : Tuple = state_dict[f'{prefix}.embeddings.{w}.weight'] for w in ["weight", "bias"]: snake_case__ : Optional[Any] = state_dict[f'{prefix}.embeddings.LayerNorm.{w}'] snake_case__ : int = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: snake_case__ : Union[str, Any] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}' ] snake_case__ : Dict = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}' ] snake_case__ : int = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}' ] snake_case__ : int = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}' ] snake_case__ : Optional[int] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}' ] snake_case__ : Optional[Any] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}' ] snake_case__ : List[str] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}' ] snake_case__ : int = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}' ] std_idx += 1 snake_case__ : Optional[int] = state_dict['cls.predictions.decoder.weight'] snake_case__ : str = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: snake_case__ : int = state_dict[f'cls.predictions.transform.dense.{w}'] snake_case__ : Optional[int] = state_dict[f'cls.predictions.transform.LayerNorm.{w}'] print(f'N layers selected for distillation: {std_idx}') print(f'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(f'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
117
0
from __future__ import annotations from math import pi def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> dict[str, float]: if (inductance, frequency, reactance).count(0) != 1: raise ValueError("One and only one argument must be 0") if inductance < 0: raise ValueError("Inductance cannot be negative") if frequency < 0: raise ValueError("Frequency cannot be negative") if reactance < 0: raise ValueError("Inductive reactance cannot be negative") if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0") if __name__ == "__main__": import doctest doctest.testmod()
180
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : int = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class a__ ( UpperCamelCase__ ): a : Optional[Any] = """sew-d""" def __init__( self , A=32 , A=768 , A=12 , A=12 , A=3072 , A=2 , A=512 , A=256 , A=True , A=True , A=("p2c", "c2p") , A="layer_norm" , A="gelu_python" , A=0.1 , A=0.1 , A=0.1 , A=0.0 , A=0.1 , A=0.0_2 , A=1e-7 , A=1e-5 , A="group" , A="gelu" , A=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , A=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A=False , A=128 , A=16 , A=True , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A="mean" , A=False , A=False , A=256 , A=0 , A=1 , A=2 , **A , ) -> Dict: '''simple docstring''' super().__init__(**A , pad_token_id=A , bos_token_id=A , eos_token_id=A ) a = hidden_size a = feat_extract_norm a = feat_extract_activation a = list(A ) a = list(A ) a = list(A ) a = conv_bias a = num_conv_pos_embeddings a = num_conv_pos_embedding_groups a = len(self.conv_dim ) a = num_hidden_layers a = intermediate_size a = squeeze_factor a = max_position_embeddings a = position_buckets a = share_att_key a = relative_attention a = norm_rel_ebd a = list(A ) a = hidden_act a = num_attention_heads a = hidden_dropout a = attention_dropout a = activation_dropout a = feat_proj_dropout a = final_dropout a = layer_norm_eps a = feature_layer_norm_eps a = initializer_range a = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a = apply_spec_augment a = mask_time_prob a = mask_time_length a = mask_time_min_masks a = mask_feature_prob a = mask_feature_length a = mask_feature_min_masks # ctc loss a = ctc_loss_reduction a = ctc_zero_infinity # sequence classification a = use_weighted_layer_sum a = classifier_proj_size @property def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
180
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = SwinConfig(image_size=192 ) if "base" in model_name: _UpperCAmelCase = 6 _UpperCAmelCase = 128 _UpperCAmelCase = (2, 2, 18, 2) _UpperCAmelCase = (4, 8, 16, 32) elif "large" in model_name: _UpperCAmelCase = 12 _UpperCAmelCase = 192 _UpperCAmelCase = (2, 2, 18, 2) _UpperCAmelCase = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) _UpperCAmelCase = window_size _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads return config def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' if "encoder.mask_token" in name: _UpperCAmelCase = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: _UpperCAmelCase = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: _UpperCAmelCase = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: _UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: _UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _UpperCAmelCase = 'layernorm.weight' if name == "encoder.norm.bias": _UpperCAmelCase = 'layernorm.bias' if "decoder" in name: pass else: _UpperCAmelCase = 'swin.' + name return name def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _UpperCAmelCase = orig_state_dict.pop(__SCREAMING_SNAKE_CASE ) if "attn_mask" in key: pass elif "qkv" in key: _UpperCAmelCase = key.split('''.''' ) _UpperCAmelCase = int(key_split[2] ) _UpperCAmelCase = int(key_split[4] ) _UpperCAmelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCAmelCase = val[:dim, :] _UpperCAmelCase = val[ dim : dim * 2, : ] _UpperCAmelCase = val[-dim:, :] else: _UpperCAmelCase = val[ :dim ] _UpperCAmelCase = val[ dim : dim * 2 ] _UpperCAmelCase = val[ -dim: ] else: _UpperCAmelCase = val return orig_state_dict def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = torch.load(__SCREAMING_SNAKE_CASE , map_location='''cpu''' )['model'] _UpperCAmelCase = get_swin_config(__SCREAMING_SNAKE_CASE ) _UpperCAmelCase = SwinForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = convert_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) _UpperCAmelCase = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) _UpperCAmelCase = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) with torch.no_grad(): _UpperCAmelCase = model(**__SCREAMING_SNAKE_CASE ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: print(f'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(f'microsoft/{model_name}' ) image_processor.push_to_hub(f'microsoft/{model_name}' ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A : Any = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
260
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __SCREAMING_SNAKE_CASE =None __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __SCREAMING_SNAKE_CASE ={ "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __SCREAMING_SNAKE_CASE ={ "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off __SCREAMING_SNAKE_CASE =["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ['input_ids', 'attention_mask'] lowercase = MBartTokenizer lowercase = [] lowercase = [] def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase="<s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="</s>" ,__UpperCamelCase="<s>" ,__UpperCamelCase="<unk>" ,__UpperCamelCase="<pad>" ,__UpperCamelCase="<mask>" ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,**__UpperCamelCase ,) -> List[str]: '''simple docstring''' lowercase_ : str = AddedToken(__UpperCamelCase ,lstrip=__UpperCamelCase ,rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ) else mask_token super().__init__( vocab_file=__UpperCamelCase ,tokenizer_file=__UpperCamelCase ,bos_token=__UpperCamelCase ,eos_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,unk_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,src_lang=__UpperCamelCase ,tgt_lang=__UpperCamelCase ,additional_special_tokens=__UpperCamelCase ,**__UpperCamelCase ,) lowercase_ : str = vocab_file lowercase_ : Optional[Any] = False if not self.vocab_file else True lowercase_ : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowercase_ : List[Any] = { lang_code: self.convert_tokens_to_ids(__UpperCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowercase_ : Dict = src_lang if src_lang is not None else 'en_XX' lowercase_ : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang ) lowercase_ : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : List[Any] = [self.sep_token_id] lowercase_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowercase_ : Dict = src_lang lowercase_ : List[Any] = self(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ,return_tensors=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : Optional[Any] = self.convert_tokens_to_ids(__UpperCamelCase ) lowercase_ : Dict = tgt_lang_id return inputs def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = "en_XX" ,__UpperCamelCase = None ,__UpperCamelCase = "ro_RO" ,**__UpperCamelCase ,) -> BatchEncoding: '''simple docstring''' lowercase_ : Union[str, Any] = src_lang lowercase_ : List[Any] = tgt_lang return super().prepare_seqaseq_batch(__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : Any = self.convert_tokens_to_ids(__UpperCamelCase ) lowercase_ : Optional[Any] = [] lowercase_ : int = [self.eos_token_id, self.cur_lang_code] lowercase_ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase_ : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> None: '''simple docstring''' lowercase_ : Optional[int] = self.convert_tokens_to_ids(__UpperCamelCase ) lowercase_ : str = [] lowercase_ : Dict = [self.eos_token_id, self.cur_lang_code] lowercase_ : str = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase_ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase_ : int = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return lowercase_ : Tuple = os.path.join( __UpperCamelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file ,__UpperCamelCase ) return (out_vocab_file,)
213
0
class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Union[str, Any]: _lowerCAmelCase =data _lowerCAmelCase =previous _lowerCAmelCase =next_node def __str__( self ) -> str: return f'''{self.data}''' def _lowerCAmelCase ( self ) -> int: return self.data def _lowerCAmelCase ( self ) -> Union[str, Any]: return self.next def _lowerCAmelCase ( self ) -> Dict: return self.previous class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase ) -> Optional[Any]: _lowerCAmelCase =head def __iter__( self ) -> Union[str, Any]: return self def _lowerCAmelCase ( self ) -> List[Any]: if not self.current: raise StopIteration else: _lowerCAmelCase =self.current.get_data() _lowerCAmelCase =self.current.get_next() return value class lowerCamelCase__ : '''simple docstring''' def __init__( self ) -> Tuple: _lowerCAmelCase =None # First node in list _lowerCAmelCase =None # Last node in list def __str__( self ) -> Union[str, Any]: _lowerCAmelCase =self.head _lowerCAmelCase =[] while current is not None: nodes.append(current.get_data() ) _lowerCAmelCase =current.get_next() return " ".join(str(__UpperCAmelCase ) for node in nodes ) def __contains__( self , __UpperCAmelCase ) -> Optional[Any]: _lowerCAmelCase =self.head while current: if current.get_data() == value: return True _lowerCAmelCase =current.get_next() return False def __iter__( self ) -> int: return LinkedListIterator(self.head ) def _lowerCAmelCase ( self ) -> Optional[int]: if self.head: return self.head.get_data() return None def _lowerCAmelCase ( self ) -> int: if self.tail: return self.tail.get_data() return None def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None: if self.head is None: _lowerCAmelCase =node _lowerCAmelCase =node else: self.insert_before_node(self.head , __UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None: if self.head is None: self.set_head(__UpperCAmelCase ) else: self.insert_after_node(self.tail , __UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None: _lowerCAmelCase =Node(__UpperCAmelCase ) if self.head is None: self.set_head(__UpperCAmelCase ) else: self.set_tail(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: _lowerCAmelCase =node _lowerCAmelCase =node.previous if node.get_previous() is None: _lowerCAmelCase =node_to_insert else: _lowerCAmelCase =node_to_insert _lowerCAmelCase =node_to_insert def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: _lowerCAmelCase =node _lowerCAmelCase =node.next if node.get_next() is None: _lowerCAmelCase =node_to_insert else: _lowerCAmelCase =node_to_insert _lowerCAmelCase =node_to_insert def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: _lowerCAmelCase =1 _lowerCAmelCase =Node(__UpperCAmelCase ) _lowerCAmelCase =self.head while node: if current_position == position: self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase ) return current_position += 1 _lowerCAmelCase =node.next self.insert_after_node(self.tail , __UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Node: _lowerCAmelCase =self.head while node: if node.get_data() == item: return node _lowerCAmelCase =node.get_next() raise Exception("""Node not found""" ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Dict: if (node := self.get_node(__UpperCAmelCase )) is not None: if node == self.head: _lowerCAmelCase =self.head.get_next() if node == self.tail: _lowerCAmelCase =self.tail.get_previous() self.remove_node_pointers(__UpperCAmelCase ) @staticmethod def _lowerCAmelCase ( __UpperCAmelCase ) -> None: if node.get_next(): _lowerCAmelCase =node.previous if node.get_previous(): _lowerCAmelCase =node.next _lowerCAmelCase =None _lowerCAmelCase =None def _lowerCAmelCase ( self ) -> Optional[Any]: return self.head is None def _lowerCamelCase() -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = '''cvt''' def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 1_92, 3_84] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1e-12 , **__UpperCAmelCase , ) -> Optional[Any]: super().__init__(**__UpperCAmelCase ) _lowerCAmelCase =num_channels _lowerCAmelCase =patch_sizes _lowerCAmelCase =patch_stride _lowerCAmelCase =patch_padding _lowerCAmelCase =embed_dim _lowerCAmelCase =num_heads _lowerCAmelCase =depth _lowerCAmelCase =mlp_ratio _lowerCAmelCase =attention_drop_rate _lowerCAmelCase =drop_rate _lowerCAmelCase =drop_path_rate _lowerCAmelCase =qkv_bias _lowerCAmelCase =cls_token _lowerCAmelCase =qkv_projection_method _lowerCAmelCase =kernel_qkv _lowerCAmelCase =padding_kv _lowerCAmelCase =stride_kv _lowerCAmelCase =padding_q _lowerCAmelCase =stride_q _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps
341
0
def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: List[Any] = 0 for i in range(1 , 1_0_0_1 ): total += i**i return str(lowerCAmelCase__ )[-1_0:] if __name__ == "__main__": print(solution())
147
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: List[str] , lowerCAmelCase__: Optional[Any]=[] ): """simple docstring""" UpperCAmelCase_: Union[str, Any] = size[0] - overlap_pixels * 2 UpperCAmelCase_: Dict = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels UpperCAmelCase_: Union[str, Any] = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_5_5 UpperCAmelCase_: Optional[int] = np.pad(lowerCAmelCase__ , mode="""linear_ramp""" , pad_width=lowerCAmelCase__ , end_values=0 ) if "l" in remove_borders: UpperCAmelCase_: List[Any] = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: UpperCAmelCase_: Optional[Any] = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: UpperCAmelCase_: Optional[int] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: UpperCAmelCase_: int = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: str , lowerCAmelCase__: Union[str, Any] ): """simple docstring""" return max(lowerCAmelCase__ , min(lowerCAmelCase__ , lowerCAmelCase__ ) ) def lowerCAmelCase_ (lowerCAmelCase__: [int] , lowerCAmelCase__: [int] , lowerCAmelCase__: [int] ): """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowerCAmelCase_ (lowerCAmelCase__: [int] , lowerCAmelCase__: int , lowerCAmelCase__: [int] ): """simple docstring""" UpperCAmelCase_: str = list(lowerCAmelCase__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap UpperCAmelCase_: int = clamp_rect(lowerCAmelCase__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: List[str] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: Optional[Any] = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(lowerCAmelCase__ , (original_slice, 0) ) return result def lowerCAmelCase_ (lowerCAmelCase__: Dict , lowerCAmelCase__: Dict ): """simple docstring""" UpperCAmelCase_: Dict = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) UpperCAmelCase_: Optional[int] = tile.crop(lowerCAmelCase__ ) return tile def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: str = n % d return n - divisor class _a ( _lowerCAmelCase ): def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 350, ) -> str: super().__init__( vae=SCREAMING_SNAKE_CASE_, text_encoder=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_, unet=SCREAMING_SNAKE_CASE_, low_res_scheduler=SCREAMING_SNAKE_CASE_, scheduler=SCREAMING_SNAKE_CASE_, max_noise_level=SCREAMING_SNAKE_CASE_, ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Dict: torch.manual_seed(0 ) UpperCAmelCase_: Dict = ( min(image.size[0] - (tile_size + original_image_slice), x * tile_size ), min(image.size[1] - (tile_size + original_image_slice), y * tile_size ), min(image.size[0], (x + 1) * tile_size ), min(image.size[1], (y + 1) * tile_size ), ) UpperCAmelCase_: Tuple = add_overlap_rect(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, image.size ) UpperCAmelCase_: List[str] = image.crop(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] UpperCAmelCase_: List[Any] = translated_slice_x - (original_image_slice / 2) UpperCAmelCase_: str = max(0, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = squeeze_tile(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = to_input.size UpperCAmelCase_: Any = to_input.resize((tile_size, tile_size), Image.BICUBIC ) UpperCAmelCase_: str = super(SCREAMING_SNAKE_CASE_, self ).__call__(image=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ).images[0] UpperCAmelCase_: Optional[int] = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4), Image.BICUBIC ) UpperCAmelCase_: int = unsqueeze_tile(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4), Image.BICUBIC ) UpperCAmelCase_: Union[str, Any] = [] if x == 0: remove_borders.append("""l""" ) elif crop_rect[2] == image.size[0]: remove_borders.append("""r""" ) if y == 0: remove_borders.append("""t""" ) elif crop_rect[3] == image.size[1]: remove_borders.append("""b""" ) UpperCAmelCase_: Tuple = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]), tile_border * 4, remove_borders=SCREAMING_SNAKE_CASE_ ), mode="""L""", ) final_image.paste( SCREAMING_SNAKE_CASE_, (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4), SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 75, SCREAMING_SNAKE_CASE_ = 9.0, SCREAMING_SNAKE_CASE_ = 50, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = 0.0, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = 128, SCREAMING_SNAKE_CASE_ = 32, SCREAMING_SNAKE_CASE_ = 32, ) -> Dict: UpperCAmelCase_: int = Image.new("""RGB""", (image.size[0] * 4, image.size[1] * 4) ) UpperCAmelCase_: str = math.ceil(image.size[0] / tile_size ) UpperCAmelCase_: int = math.ceil(image.size[1] / tile_size ) UpperCAmelCase_: Dict = tcx * tcy UpperCAmelCase_: Optional[Any] = 0 for y in range(SCREAMING_SNAKE_CASE_ ): for x in range(SCREAMING_SNAKE_CASE_ ): self._process_tile( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, prompt=SCREAMING_SNAKE_CASE_, num_inference_steps=SCREAMING_SNAKE_CASE_, guidance_scale=SCREAMING_SNAKE_CASE_, noise_level=SCREAMING_SNAKE_CASE_, negative_prompt=SCREAMING_SNAKE_CASE_, num_images_per_prompt=SCREAMING_SNAKE_CASE_, eta=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, latents=SCREAMING_SNAKE_CASE_, ) current_count += 1 if callback is not None: callback({"""progress""": current_count / total_tile_count, """image""": final_image} ) return final_image def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: Tuple = """stabilityai/stable-diffusion-x4-upscaler""" UpperCAmelCase_: Union[str, Any] = StableDiffusionTiledUpscalePipeline.from_pretrained(lowerCAmelCase__ , revision="""fp16""" , torch_dtype=torch.floataa ) UpperCAmelCase_: str = pipe.to("""cuda""" ) UpperCAmelCase_: List[str] = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" ) def callback(lowerCAmelCase__: Dict ): print(F'progress: {obj["progress"]:.4f}' ) obj["image"].save("""diffusers_library_progress.jpg""" ) UpperCAmelCase_: Optional[int] = pipe(image=lowerCAmelCase__ , prompt="""Black font, white background, vector""" , noise_level=4_0 , callback=lowerCAmelCase__ ) final_image.save("""diffusers_library.jpg""" ) if __name__ == "__main__": main()
147
1
'''simple docstring''' import collections import importlib.util import os import re from pathlib import Path a : Optional[int] = 'src/transformers' # Matches is_xxx_available() a : Optional[int] = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} a : int = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a : Tuple = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available a : Optional[Any] = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") a : Optional[Any] = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a : Any = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", a : List[Any] = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], a : List[str] = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo a : List[str] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: a : Union[str, Any] = re.compile(r'^\s*try:') # Catches a line with else: a : Any = re.compile(r'^\s*else:') def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' if _re_test_backend.search(__UpperCAmelCase ) is None: return None snake_case_ = [b[0] for b in _re_backend.findall(__UpperCAmelCase )] backends.sort() return "_and_".join(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' with open(__UpperCAmelCase, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: snake_case_ = f.readlines() snake_case_ = 0 while line_index < len(__UpperCAmelCase ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__UpperCAmelCase ): return None # First grab the objects without a specific backend in _import_structure snake_case_ = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: snake_case_ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__UpperCAmelCase ): snake_case_ = _re_one_line_import_struct.search(__UpperCAmelCase ).groups()[0] snake_case_ = re.findall('''\[([^\]]+)\]''', __UpperCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue snake_case_ = _re_import_struct_key_value.search(__UpperCAmelCase ) if single_line_import_search is not None: snake_case_ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 snake_case_ = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case_ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): snake_case_ = lines[line_index] if _re_import_struct_add_one.search(__UpperCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(__UpperCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__UpperCAmelCase ) is not None: snake_case_ = _re_import_struct_add_many.search(__UpperCAmelCase ).groups()[0].split(''', ''' ) snake_case_ = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif _re_between_brackets.search(__UpperCAmelCase ) is not None: snake_case_ = _re_between_brackets.search(__UpperCAmelCase ).groups()[0].split(''', ''' ) snake_case_ = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif _re_quote_object.search(__UpperCAmelCase ) is not None: objects.append(_re_quote_object.search(__UpperCAmelCase ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 snake_case_ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case_ = [] while ( line_index < len(__UpperCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): snake_case_ = lines[line_index] snake_case_ = _re_import.search(__UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case_ = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(__UpperCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. snake_case_ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): snake_case_ = lines[line_index] snake_case_ = _re_import.search(__UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case_ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' def find_duplicates(__UpperCAmelCase ): return [k for k, v in collections.Counter(__UpperCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case_ = [] for key in import_dict_objects.keys(): snake_case_ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) snake_case_ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case_ = '''base imports''' if key == '''none''' else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def __magic_name__ ( ) -> Tuple: '''simple docstring''' snake_case_ = [] for root, _, files in os.walk(__UpperCAmelCase ): if "__init__.py" in files: snake_case_ = os.path.join(__UpperCAmelCase, '''__init__.py''' ) snake_case_ = parse_init(__UpperCAmelCase ) if objects is not None: snake_case_ = analyze_results(*__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: snake_case_ = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append('''\n'''.join(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: raise ValueError('''\n\n'''.join(__UpperCAmelCase ) ) def __magic_name__ ( ) -> Dict: '''simple docstring''' snake_case_ = [] for path, directories, files in os.walk(__UpperCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(__UpperCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__UpperCAmelCase ) / folder).glob('''*.py''' ) ) ) == 0: continue snake_case_ = str((Path(__UpperCAmelCase ) / folder).relative_to(__UpperCAmelCase ) ) snake_case_ = short_path.replace(os.path.sep, '''.''' ) submodules.append(__UpperCAmelCase ) for fname in files: if fname == "__init__.py": continue snake_case_ = str((Path(__UpperCAmelCase ) / fname).relative_to(__UpperCAmelCase ) ) snake_case_ = short_path.replace('''.py''', '''''' ).replace(os.path.sep, '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(__UpperCAmelCase ) return submodules a : Dict = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' snake_case_ = importlib.util.spec_from_file_location( '''transformers''', os.path.join(__UpperCAmelCase, '''__init__.py''' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) snake_case_ = spec.loader.load_module() snake_case_ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__UpperCAmelCase ) > 0: snake_case_ = '''\n'''.join(F"- {module}" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' F"{list_of_modules}\n" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
72
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset a : int = 'bert-base-cased' a : Optional[int] = 'google/pegasus-xsum' a : Optional[int] = [' Sam ate lunch today.', 'Sams lunch ingredients.'] a : int = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] a : Dict = 'patrickvonplaten/t5-tiny-random' a : Any = 'sshleifer/bart-tiny-random' a : Union[str, Any] = 'sshleifer/tiny-mbart' a : Optional[int] = 'sshleifer/tiny-marian-en-de' def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' snake_case_ = '''\n'''.join(__UpperCAmelCase ) Path(__UpperCAmelCase ).open('''w''' ).writelines(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(__UpperCAmelCase, F"{split}.source" ), __UpperCAmelCase ) _dump_articles(os.path.join(__UpperCAmelCase, F"{split}.target" ), __UpperCAmelCase ) return tmp_dir class a ( _lowerCamelCase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def A_ ( self : int , lowercase_ : Optional[Any] ): snake_case_ = AutoTokenizer.from_pretrained(lowercase_ ) snake_case_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) snake_case_ = max(len(tokenizer.encode(lowercase_ ) ) for a in ARTICLES ) snake_case_ = max(len(tokenizer.encode(lowercase_ ) ) for a in SUMMARIES ) snake_case_ = 4 snake_case_ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated snake_case_ ,snake_case_ = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. snake_case_ = SeqaSeqDataset( lowercase_ , data_dir=lowercase_ , type_path='''train''' , max_source_length=lowercase_ , max_target_length=lowercase_ , src_lang=lowercase_ , tgt_lang=lowercase_ , ) snake_case_ = DataLoader(lowercase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowercase_ , lowercase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place snake_case_ = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def A_ ( self : Union[str, Any] , lowercase_ : Dict ): snake_case_ = AutoTokenizer.from_pretrained(lowercase_ ) snake_case_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) snake_case_ = max(len(tokenizer.encode(lowercase_ ) ) for a in ARTICLES ) snake_case_ = max(len(tokenizer.encode(lowercase_ ) ) for a in SUMMARIES ) snake_case_ = 4 snake_case_ = LegacySeqaSeqDataset( lowercase_ , data_dir=lowercase_ , type_path='''train''' , max_source_length=20 , max_target_length=lowercase_ , ) snake_case_ = DataLoader(lowercase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def A_ ( self : Any ): snake_case_ = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) snake_case_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) snake_case_ = tmp_dir.joinpath('''train.source''' ).open().readlines() snake_case_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowercase_ , lowercase_ , 128 , lowercase_ ) snake_case_ = {x.name for x in tmp_dir.iterdir()} snake_case_ = {x.name for x in save_dir.iterdir()} snake_case_ = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowercase_ ) < len(lowercase_ ) assert len(lowercase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowercase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def A_ ( self : Any ): if not FAIRSEQ_AVAILABLE: return snake_case_ ,snake_case_ ,snake_case_ = self._get_dataset(max_len=64 ) snake_case_ = 64 snake_case_ = ds.make_dynamic_sampler(lowercase_ , required_batch_size_multiple=lowercase_ ) snake_case_ = [len(lowercase_ ) for x in batch_sampler] assert len(set(lowercase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowercase_ ) == len(lowercase_ ) # no dropped or added examples snake_case_ = DataLoader(lowercase_ , batch_sampler=lowercase_ , collate_fn=ds.collate_fn , num_workers=2 ) snake_case_ = [] snake_case_ = [] for batch in data_loader: snake_case_ = batch['''input_ids'''].shape snake_case_ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple snake_case_ = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(lowercase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowercase_ ) assert num_src_per_batch[0] == max(lowercase_ ) if failures: raise AssertionError(F"too many tokens in {len(lowercase_ )} batches" ) def A_ ( self : List[str] ): snake_case_ ,snake_case_ ,snake_case_ = self._get_dataset(max_len=512 ) snake_case_ = 2 snake_case_ = ds.make_sortish_sampler(lowercase_ , shuffle=lowercase_ ) snake_case_ = DataLoader(lowercase_ , batch_size=lowercase_ , collate_fn=ds.collate_fn , num_workers=2 ) snake_case_ = DataLoader(lowercase_ , batch_size=lowercase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowercase_ ) snake_case_ = tokenizer.pad_token_id def count_pad_tokens(lowercase_ : Any , lowercase_ : int="input_ids" ): return [batch[k].eq(lowercase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowercase_ , k='''labels''' ) ) < sum(count_pad_tokens(lowercase_ , k='''labels''' ) ) assert sum(count_pad_tokens(lowercase_ ) ) < sum(count_pad_tokens(lowercase_ ) ) assert len(lowercase_ ) == len(lowercase_ ) def A_ ( self : List[str] , lowercase_ : Tuple=1000 , lowercase_ : Optional[Any]=128 ): if os.getenv('''USE_REAL_DATA''' , lowercase_ ): snake_case_ = '''examples/seq2seq/wmt_en_ro''' snake_case_ = max_len * 2 * 64 if not Path(lowercase_ ).joinpath('''train.len''' ).exists(): save_len_file(lowercase_ , lowercase_ ) else: snake_case_ = '''examples/seq2seq/test_data/wmt_en_ro''' snake_case_ = max_len * 4 save_len_file(lowercase_ , lowercase_ ) snake_case_ = AutoTokenizer.from_pretrained(lowercase_ ) snake_case_ = SeqaSeqDataset( lowercase_ , data_dir=lowercase_ , type_path='''train''' , max_source_length=lowercase_ , max_target_length=lowercase_ , n_obs=lowercase_ , ) return ds, max_tokens, tokenizer def A_ ( self : Any ): snake_case_ ,snake_case_ ,snake_case_ = self._get_dataset() snake_case_ = set(DistributedSortishSampler(lowercase_ , 256 , num_replicas=2 , rank=0 , add_extra_examples=lowercase_ ) ) snake_case_ = set(DistributedSortishSampler(lowercase_ , 256 , num_replicas=2 , rank=1 , add_extra_examples=lowercase_ ) ) assert idsa.intersection(lowercase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def A_ ( self : List[str] , lowercase_ : Optional[Any] ): snake_case_ = AutoTokenizer.from_pretrained(lowercase_ , use_fast=lowercase_ ) if tok_name == MBART_TINY: snake_case_ = SeqaSeqDataset( lowercase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) snake_case_ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: snake_case_ = SeqaSeqDataset( lowercase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) snake_case_ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowercase_ ) == 1 if tok_name == BART_TINY else len(lowercase_ ) == 0
72
1
from typing import TYPE_CHECKING from ...utils import _LazyModule A__ : Dict = {'''tokenization_byt5''': ['''ByT5Tokenizer''']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__ : Optional[Any] = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } A__ : Dict = logging.get_logger(__name__) class __snake_case ( UpperCamelCase_ ): _a = '''mask2former''' _a = ['''swin'''] _a = {'''hidden_size''': '''hidden_dim'''} def __init__( self : Any , A_ : Optional[Dict] = None , A_ : int = 2_5_6 , A_ : int = 2_5_6 , A_ : int = 2_5_6 , A_ : int = 1_0_2_4 , A_ : str = "relu" , A_ : int = 6 , A_ : int = 1_0 , A_ : int = 8 , A_ : float = 0.0 , A_ : int = 2_0_4_8 , A_ : bool = False , A_ : bool = False , A_ : int = 4 , A_ : int = 2_5_5 , A_ : int = 1_0_0 , A_ : float = 0.1 , A_ : float = 2.0 , A_ : float = 5.0 , A_ : float = 5.0 , A_ : int = 1_2_5_4_4 , A_ : float = 3.0 , A_ : float = 0.75 , A_ : float = 0.02 , A_ : float = 1.0 , A_ : bool = True , A_ : List[int] = [4, 8, 1_6, 3_2] , A_ : bool = None , **A_ : Dict , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''') lowerCAmelCase_ : int = CONFIG_MAPPING['''swin''']( image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=A_ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(A_ , A_): lowerCAmelCase_ : List[Any] = backbone_config.pop('''model_type''') lowerCAmelCase_ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ : List[Any] = config_class.from_dict(A_) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ F"""Supported model types: {",".join(self.backbones_supported)}""") lowerCAmelCase_ : List[Any] = backbone_config lowerCAmelCase_ : str = feature_size lowerCAmelCase_ : Optional[Any] = mask_feature_size lowerCAmelCase_ : int = hidden_dim lowerCAmelCase_ : int = encoder_feedforward_dim lowerCAmelCase_ : Optional[int] = activation_function lowerCAmelCase_ : Any = encoder_layers lowerCAmelCase_ : Optional[Any] = decoder_layers lowerCAmelCase_ : Optional[Any] = num_attention_heads lowerCAmelCase_ : Optional[int] = dropout lowerCAmelCase_ : List[str] = dim_feedforward lowerCAmelCase_ : Optional[Any] = pre_norm lowerCAmelCase_ : List[str] = enforce_input_projection lowerCAmelCase_ : Tuple = common_stride lowerCAmelCase_ : Optional[Any] = ignore_value lowerCAmelCase_ : Optional[Any] = num_queries lowerCAmelCase_ : int = no_object_weight lowerCAmelCase_ : Tuple = class_weight lowerCAmelCase_ : int = mask_weight lowerCAmelCase_ : Dict = dice_weight lowerCAmelCase_ : str = train_num_points lowerCAmelCase_ : Dict = oversample_ratio lowerCAmelCase_ : Tuple = importance_sample_ratio lowerCAmelCase_ : List[str] = init_std lowerCAmelCase_ : List[str] = init_xavier_std lowerCAmelCase_ : Optional[Any] = use_auxiliary_loss lowerCAmelCase_ : List[Any] = feature_strides lowerCAmelCase_ : int = output_auxiliary_logits lowerCAmelCase_ : Optional[Any] = decoder_layers super().__init__(**A_) @classmethod def UpperCAmelCase__ ( cls : List[str] , A_ : PretrainedConfig , **A_ : List[Any]): return cls( backbone_config=A_ , **A_ , ) def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : str = copy.deepcopy(self.__dict__) lowerCAmelCase_ : Dict = self.backbone_config.to_dict() lowerCAmelCase_ : Optional[int] = self.__class__.model_type return output
103
1
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase = False ) -> bool: """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''' ) # array bounds provided by analysis snake_case__ : List[Any] = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] snake_case__ : Optional[int] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_UpperCAmelCase , 1 ): if n < _p: # then we have our last prime to check snake_case__ : Any = primes[:idx] break snake_case__ : Any = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case__ : Optional[int] = False for r in range(_UpperCAmelCase ): snake_case__ : str = pow(_UpperCAmelCase , d * 2**r , _UpperCAmelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case__ : Union[str, Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _lowerCAmelCase ( ) -> None: """simple docstring""" assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
350
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A__ = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ['''DPTFeatureExtractor'''] A__ = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
44
0
from __future__ import annotations from typing import Any class UpperCAmelCase : def __init__(self : int , snake_case__ : Tuple ) -> None: '''simple docstring''' snake_case : Tuple = num_of_nodes snake_case : list[list[int]] = [] snake_case : dict[int, int] = {} def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : int ) -> None: '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Optional[Any] ) -> int: '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Dict ) -> None: '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: snake_case : str = self.find_component(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Dict ) -> None: '''simple docstring''' if component_size[u_node] <= component_size[v_node]: snake_case : Union[str, Any] = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCAmelCase__ ) elif component_size[u_node] >= component_size[v_node]: snake_case : List[str] = self.find_component(lowerCAmelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> None: '''simple docstring''' snake_case : Tuple = [] snake_case : int = 0 snake_case : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) snake_case : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: snake_case : Optional[int] = edge snake_case : Optional[int] = self.m_component[u] snake_case : Dict = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): snake_case : Optional[int] = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case : int = edge snake_case : str = self.m_component[u] snake_case : Optional[int] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 snake_case : Dict = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def UpperCamelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
59
import math from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __a ( __UpperCamelCase ): __lowercase : Optional[int] = 'data2vec-audio' def __init__( self , lowerCAmelCase__=32 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3_072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1E-5 , lowerCAmelCase__="gelu" , lowerCAmelCase__=(512, 512, 512, 512, 512, 512, 512) , lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__=False , lowerCAmelCase__=16 , lowerCAmelCase__=19 , lowerCAmelCase__=5 , lowerCAmelCase__=0.0_5 , lowerCAmelCase__=10 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=10 , lowerCAmelCase__=0 , lowerCAmelCase__="sum" , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=256 , lowerCAmelCase__=(512, 512, 512, 512, 1_500) , lowerCAmelCase__=(5, 3, 3, 1, 1) , lowerCAmelCase__=(1, 2, 3, 1, 1) , lowerCAmelCase__=512 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) lowercase__: int = hidden_size lowercase__: str = feat_extract_activation lowercase__: List[Any] = list(lowerCAmelCase__ ) lowercase__: Optional[int] = list(lowerCAmelCase__ ) lowercase__: int = list(lowerCAmelCase__ ) lowercase__: Union[str, Any] = conv_bias lowercase__: int = num_conv_pos_embeddings lowercase__: List[str] = num_conv_pos_embedding_groups lowercase__: List[Any] = conv_pos_kernel_size lowercase__: Optional[Any] = len(self.conv_dim ) lowercase__: List[str] = num_hidden_layers lowercase__: List[str] = intermediate_size lowercase__: Tuple = hidden_act lowercase__: Any = num_attention_heads lowercase__: Optional[int] = hidden_dropout lowercase__: List[str] = attention_dropout lowercase__: int = activation_dropout lowercase__: Dict = feat_proj_dropout lowercase__: str = final_dropout lowercase__: List[str] = layerdrop lowercase__: str = layer_norm_eps lowercase__: Union[str, Any] = initializer_range lowercase__: Union[str, Any] = vocab_size lowercase__: Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__: List[str] = mask_time_prob lowercase__: Tuple = mask_time_length lowercase__: List[Any] = mask_time_min_masks lowercase__: Optional[int] = mask_feature_prob lowercase__: Union[str, Any] = mask_feature_length lowercase__: List[str] = mask_feature_min_masks # ctc loss lowercase__: Union[str, Any] = ctc_loss_reduction lowercase__: str = ctc_zero_infinity # adapter lowercase__: str = add_adapter lowercase__: List[Any] = adapter_kernel_size lowercase__: Tuple = adapter_stride lowercase__: Dict = num_adapter_layers lowercase__: Optional[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__: List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__: int = list(lowerCAmelCase__ ) lowercase__: Dict = list(lowerCAmelCase__ ) lowercase__: int = list(lowerCAmelCase__ ) lowercase__: str = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' return math.prod(self.conv_stride )
196
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _snake_case : Any = False class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : str ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe.dual_guided( prompt='first prompt' , image=__lowerCamelCase , text_to_image_strength=0.75 , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) __lowerCAmelCase = VersatileDiffusionPipeline.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __lowerCAmelCase = generator.manual_seed(0 ) __lowerCAmelCase = pipe.dual_guided( prompt='first prompt' , image=__lowerCamelCase , text_to_image_strength=0.75 , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __lowerCAmelCase = '''cyberpunk 2077''' __lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe.dual_guided( prompt=__lowerCamelCase , image=__lowerCamelCase , text_to_image_strength=0.75 , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images __lowerCAmelCase = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 __lowerCAmelCase = '''A painting of a squirrel eating a burger ''' __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe.text_to_image( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' ).images __lowerCAmelCase = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 __lowerCAmelCase = pipe.image_variation(__lowerCamelCase , generator=__lowerCamelCase , output_type='numpy' ).images __lowerCAmelCase = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
356
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Any ) -> Optional[int]: __lowerCAmelCase = 1_0 def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = [1, 2, 3, 4] __lowerCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Optional[Any]: __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' __lowerCAmelCase , __lowerCAmelCase = process_story(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , [] ) def lowercase ( self : Any ) -> str: __lowerCAmelCase = '' __lowerCAmelCase , __lowerCAmelCase = process_story(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , [] ) self.assertEqual(lowerCAmelCase_ , [] ) def lowercase ( self : int ) -> int: __lowerCAmelCase = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) __lowerCAmelCase , __lowerCAmelCase = process_story(lowerCAmelCase_ ) __lowerCAmelCase = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = ['It was the best of times.'] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Any: __lowerCAmelCase = torch.tensor([1, 2, 3, 4] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 0 ).numpy() , expected.numpy() ) def lowercase ( self : List[Any] ) -> Optional[int]: __lowerCAmelCase = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 2_3 ).numpy() , expected.numpy() ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 1 ).numpy() , expected.numpy() ) def lowercase ( self : Optional[Any] ) -> Optional[int]: __lowerCAmelCase = 1_0_1 __lowerCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) __lowerCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __lowerCAmelCase = compute_token_type_ids(lowerCAmelCase_ , lowerCAmelCase_ ) np.testing.assert_array_equal(lowerCAmelCase_ , lowerCAmelCase_ )
207
0
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , **UpperCAmelCase ) -> int: requires_backends(self , ["""bs4"""] ) super().__init__(**UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> List[str]: _snake_case = [] _snake_case = [] _snake_case = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _snake_case = parent.find_all(child.name , recursive=UpperCAmelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(UpperCAmelCase ) else next(i for i, s in enumerate(UpperCAmelCase , 1 ) if s is child ) ) _snake_case = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def lowercase (self , UpperCAmelCase ) -> Tuple: _snake_case = BeautifulSoup(UpperCAmelCase , """html.parser""" ) _snake_case = [] _snake_case = [] _snake_case = [] for element in html_code.descendants: if type(UpperCAmelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _snake_case = html.unescape(UpperCAmelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(UpperCAmelCase ) _snake_case, _snake_case = self.xpath_soup(UpperCAmelCase ) stringaxtag_seq.append(UpperCAmelCase ) stringaxsubs_seq.append(UpperCAmelCase ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: _snake_case = """""" for tagname, subs in zip(UpperCAmelCase , UpperCAmelCase ): xpath += f"""/{tagname}""" if subs != 0: xpath += f"""[{subs}]""" return xpath def __call__(self , UpperCAmelCase ) -> BatchFeature: _snake_case = False # Check that strings has a valid type if isinstance(UpperCAmelCase , UpperCAmelCase ): _snake_case = True elif isinstance(UpperCAmelCase , (list, tuple) ): if len(UpperCAmelCase ) == 0 or isinstance(html_strings[0] , UpperCAmelCase ): _snake_case = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ f"""but is of type {type(UpperCAmelCase )}.""" ) _snake_case = bool(isinstance(UpperCAmelCase , (list, tuple) ) and (isinstance(html_strings[0] , UpperCAmelCase )) ) if not is_batched: _snake_case = [html_strings] # Get nodes + xpaths _snake_case = [] _snake_case = [] for html_string in html_strings: _snake_case, _snake_case, _snake_case = self.get_three_from_single(UpperCAmelCase ) nodes.append(UpperCAmelCase ) _snake_case = [] for node, tag_list, sub_list in zip(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case = self.construct_xpath(UpperCAmelCase , UpperCAmelCase ) xpath_strings.append(UpperCAmelCase ) xpaths.append(UpperCAmelCase ) # return as Dict _snake_case = {"""nodes""": nodes, """xpaths""": xpaths} _snake_case = BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) return encoded_inputs
341
'''simple docstring''' from scipy.stats import spearmanr import datasets __lowerCAmelCase = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __lowerCAmelCase = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __lowerCAmelCase = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]: _snake_case = spearmanr(UpperCAmelCase , UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
341
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def snake_case_ (UpperCamelCase : Dict ): '''simple docstring''' _a , _a = image.size _a , _a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _a = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) _a = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0 _a = image[None].transpose(0 , 3 , 1 , 2 ) _a = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class A ( __SCREAMING_SNAKE_CASE ): def __init__( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__() self.register_modules(vqvae=_a , unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self : List[str] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : List[Any] = 1 , lowerCAmelCase_ : Union[str, Any] = 1_00 , lowerCAmelCase_ : List[Any] = 0.0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Tuple = "pil" , lowerCAmelCase_ : int = True , ) -> Union[str, Any]: """simple docstring""" if isinstance(_a , PIL.Image.Image ): _a = 1 elif isinstance(_a , torch.Tensor ): _a = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_a )}' ) if isinstance(_a , PIL.Image.Image ): _a = preprocess(_a ) _a , _a = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _a = (batch_size, self.unet.config.in_channels // 2, height, width) _a = next(self.unet.parameters() ).dtype _a = randn_tensor(_a , generator=_a , device=self.device , dtype=_a ) _a = image.to(device=self.device , dtype=_a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_a , device=self.device ) _a = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta for t in self.progress_bar(_a ): # concat latents and low resolution image in the channel dimension. _a = torch.cat([latents, image] , dim=1 ) _a = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual _a = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # decode the image latents with the VQVAE _a = self.vqvae.decode(_a ).sample _a = torch.clamp(_a , -1.0 , 1.0 ) _a = image / 2 + 0.5 _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
361
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class A ( _a ): def __init__( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]=10_24 , lowerCAmelCase_ : Optional[Any]=10_24 , lowerCAmelCase_ : Tuple=3.6 ) -> List[Any]: """simple docstring""" _a = tokenizer _a = tokenizer.bos_token_id _a = dataset _a = seq_length _a = seq_length * chars_per_token * num_of_sequences def __iter__( self : Any ) -> int: """simple docstring""" _a = iter(self.dataset ) _a = True while more_examples: _a , _a = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(lowerCAmelCase_ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: _a = False break _a = tokenizer(lowerCAmelCase_ , truncation=lowerCAmelCase_ )['''input_ids'''] _a = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(lowerCAmelCase_ ) , self.seq_length ): _a = all_token_ids[i : i + self.seq_length] if len(lowerCAmelCase_ ) == self.seq_length: yield torch.tensor(lowerCAmelCase_ ) def snake_case_ (UpperCamelCase : int ): '''simple docstring''' _a = {'''streaming''': True} _a = load_dataset(args.dataset_name , split='''train''' , **UpperCamelCase ) _a = ConstantLengthDataset(UpperCamelCase , UpperCamelCase , seq_length=args.seq_length ) _a = DataLoader(UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def snake_case_ (UpperCamelCase : int ): '''simple docstring''' model.eval() _a = [] for step, batch in enumerate(UpperCamelCase ): with torch.no_grad(): _a = model(UpperCamelCase , labels=UpperCamelCase ) _a = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _a = torch.mean(torch.cat(UpperCamelCase ) ) try: _a = torch.exp(UpperCamelCase ) except OverflowError: _a = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _snake_case : List[str] = Accelerator() # Parse configuration _snake_case : List[str] = HfArgumentParser(EvaluationArguments) _snake_case : Optional[int] = parser.parse_args() set_seed(args.seed) # Logging _snake_case : Any = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _snake_case : Dict = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _snake_case : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _snake_case : List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. _snake_case , _snake_case : Optional[int] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _snake_case , _snake_case : int = evaluate(args) logger.info(F'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
179
0
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __magic_name__ = pytest.mark.integration __magic_name__ = {"comet"} __magic_name__ = importlib.util.find_spec("fairseq") is not None __magic_name__ = {"code_eval"} __magic_name__ = os.name == "nt" __magic_name__ = {"bertscore", "frugalscore", "perplexity"} __magic_name__ = importlib.util.find_spec("transformers") is not None def _lowerCAmelCase ( UpperCamelCase_ ): @wraps(_UpperCAmelCase ) def wrapper(self , UpperCamelCase_ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , _UpperCAmelCase ) return wrapper def _lowerCAmelCase ( UpperCamelCase_ ): @wraps(_UpperCAmelCase ) def wrapper(self , UpperCamelCase_ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , _UpperCAmelCase ) return wrapper def _lowerCAmelCase ( UpperCamelCase_ ): @wraps(_UpperCAmelCase ) def wrapper(self , UpperCamelCase_ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , _UpperCAmelCase ) return wrapper def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( __a , __a , __a ) @local class SCREAMING_SNAKE_CASE_ ( parameterized.TestCase ): """simple docstring""" __lowercase : Dict = {} __lowercase : Optional[Any] = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""") @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""") def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = """[...]""" __SCREAMING_SNAKE_CASE = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , lowerCAmelCase__)).module_path) __SCREAMING_SNAKE_CASE = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCAmelCase__) # check parameters __SCREAMING_SNAKE_CASE = inspect.signature(metric._compute).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values())) # no **kwargs # run doctest with self.patch_intensive_calls(lowerCAmelCase__ , metric_module.__name__): with self.use_local_metrics(): try: __SCREAMING_SNAKE_CASE = doctest.testmod(lowerCAmelCase__ , verbose=lowerCAmelCase__ , raise_on_error=lowerCAmelCase__) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0) self.assertGreater(results.attempted , 1) @slow def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = """[...]""" __SCREAMING_SNAKE_CASE = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , lowerCAmelCase__)).module_path) # run doctest with self.use_local_metrics(): __SCREAMING_SNAKE_CASE = doctest.testmod(lowerCAmelCase__ , verbose=lowerCAmelCase__ , raise_on_error=lowerCAmelCase__) self.assertEqual(results.failed , 0) self.assertGreater(results.attempted , 1) @contextmanager def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCAmelCase__): yield else: yield @contextmanager def snake_case_ ( self): def load_local_metric(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__): return load_metric(os.path.join("""metrics""" , lowerCAmelCase__) , *lowerCAmelCase__ , **lowerCAmelCase__) with patch("""datasets.load_metric""") as mock_load_metric: __SCREAMING_SNAKE_CASE = load_local_metric yield @classmethod def snake_case_ ( cls , lowerCAmelCase__): def wrapper(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = contextmanager(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def _lowerCAmelCase ( UpperCamelCase_ ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" def snake_case_ ( self , lowerCAmelCase__): assert len(input_dict["""input_ids"""]) == 2 return np.array([1.03, 1.04]) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: __SCREAMING_SNAKE_CASE = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def _lowerCAmelCase ( UpperCamelCase_ ): import torch def bert_cos_score_idf(UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_UpperCAmelCase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: __SCREAMING_SNAKE_CASE = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def _lowerCAmelCase ( UpperCamelCase_ ): def load_from_checkpoint(UpperCamelCase_ ): class SCREAMING_SNAKE_CASE_ : """simple docstring""" def snake_case_ ( self , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__): assert len(lowerCAmelCase__) == 2 __SCREAMING_SNAKE_CASE = [0.19, 0.92] return scores, sum(lowerCAmelCase__) / len(lowerCAmelCase__) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: __SCREAMING_SNAKE_CASE = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: __SCREAMING_SNAKE_CASE = load_from_checkpoint yield def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) __SCREAMING_SNAKE_CASE = """ERROR""" __SCREAMING_SNAKE_CASE = f"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}" with pytest.raises(_UpperCAmelCase , match=re.escape(_UpperCAmelCase ) ): metric.compute(predictions=[] , references=[] , scheme=_UpperCAmelCase )
100
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder UpperCAmelCase__ = datasets.utils.logging.get_logger(__name__) class __lowerCAmelCase ( folder_based_builder.FolderBasedBuilderConfig ): UpperCamelCase = None UpperCamelCase = None class __lowerCAmelCase ( folder_based_builder.FolderBasedBuilder ): UpperCamelCase = datasets.Audio() UpperCamelCase = '''audio''' UpperCamelCase = AudioFolderConfig UpperCamelCase = 42 # definition at the bottom of the script UpperCamelCase = AudioClassification(audio_column='''audio''' , label_column='''label''' ) UpperCAmelCase__ = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] UpperCAmelCase__ = AUDIO_EXTENSIONS
339
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) a = {'''vocab_file''': '''sentencepiece.bpe.model'''} a = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } a = { '''camembert-base''': 512, } a = '''▁''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = VOCAB_FILES_NAMES UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : List[Any]="</s>" , _UpperCAmelCase : Tuple="</s>" , _UpperCAmelCase : int="<s>" , _UpperCAmelCase : Optional[Any]="<unk>" , _UpperCAmelCase : List[str]="<pad>" , _UpperCAmelCase : Dict="<mask>" , _UpperCAmelCase : str=["<s>NOTUSED", "</s>NOTUSED"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : List[str] , ): # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCAmelCase ) ) _A = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> _A = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3} _A = len(self.fairseq_tokens_to_ids ) _A = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def lowerCAmelCase_ ( self : str , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase_ ( self : str ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def lowerCAmelCase_ ( self : Any ): _A = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase_ ( self : int , _UpperCAmelCase : str ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_UpperCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : List[str] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : List[str] ): _A = [] _A = '' _A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCAmelCase ) + token _A = True _A = [] else: current_sub_tokens.append(_UpperCAmelCase ) _A = False out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string.strip() def __getstate__( self : str ): _A = self.__dict__.copy() _A = None return state def __setstate__( self : str , _UpperCAmelCase : Optional[int] ): _A = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , 'wb' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,)
271
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home a = HUGGINGFACE_HUB_CACHE a = '''config.json''' a = '''diffusion_pytorch_model.bin''' a = '''diffusion_flax_model.msgpack''' a = '''model.onnx''' a = '''diffusion_pytorch_model.safetensors''' a = '''weights.pb''' a = '''https://huggingface.co''' a = default_cache_path a = '''diffusers_modules''' a = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) a = ['''fp16''', '''non-ema'''] a = '''.self_attn'''
271
1
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __A =argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) __A =parser.parse_args() __A =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __A =CLIPImageProcessor() __A =CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') __A =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
163
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase__ = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
104
0
from __future__ import annotations import pandas as pd def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [0] * no_of_processes SCREAMING_SNAKE_CASE_ = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = burst_time[i] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 9_9_9_9_9_9_9_9_9 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = False # Process until all processes are completed while complete != no_of_processes: for j in range(__UpperCamelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: SCREAMING_SNAKE_CASE_ = remaining_time[j] SCREAMING_SNAKE_CASE_ = j SCREAMING_SNAKE_CASE_ = True if not check: increment_time += 1 continue remaining_time[short] -= 1 SCREAMING_SNAKE_CASE_ = remaining_time[short] if minm == 0: SCREAMING_SNAKE_CASE_ = 9_9_9_9_9_9_9_9_9 if remaining_time[short] == 0: complete += 1 SCREAMING_SNAKE_CASE_ = False # Find finish time of current process SCREAMING_SNAKE_CASE_ = increment_time + 1 # Calculate waiting time SCREAMING_SNAKE_CASE_ = finish_time - arrival_time[short] SCREAMING_SNAKE_CASE_ = finar - burst_time[short] if waiting_time[short] < 0: SCREAMING_SNAKE_CASE_ = 0 # Increment time increment_time += 1 return waiting_time def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [0] * no_of_processes for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = burst_time[i] + waiting_time[i] return turn_around_time def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = total_waiting_time + waiting_time[i] SCREAMING_SNAKE_CASE_ = total_turn_around_time + turn_around_time[i] print(F'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print("Average turn around time =" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("Enter how many process you want to analyze") A : int = int(input()) A : Union[str, Any] = [0] * no_of_processes A : Optional[int] = [0] * no_of_processes A : List[Any] = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("Enter the arrival time and burst time for process:--" + str(i + 1)) A : Tuple = map(int, input().split()) A : Any = calculate_waitingtime(arrival_time, burst_time, no_of_processes) A : List[str] = burst_time A : Optional[Any] = no_of_processes A : Any = waiting_time A : List[str] = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) A : Any = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ "Process", "BurstTime", "ArrivalTime", "WaitingTime", "TurnAroundTime", ], ) # Printing the dataFrame pd.set_option("display.max_rows", fcfs.shape[0] + 1) print(fcfs)
355
from collections import deque class lowerCamelCase : """simple docstring""" def __init__( self : str , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> None: SCREAMING_SNAKE_CASE_ = process_name # process name SCREAMING_SNAKE_CASE_ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time SCREAMING_SNAKE_CASE_ = arrival_time SCREAMING_SNAKE_CASE_ = burst_time # remaining burst time SCREAMING_SNAKE_CASE_ = 0 # total time of the process wait in ready queue SCREAMING_SNAKE_CASE_ = 0 # time from arrival time to completion time class lowerCamelCase : """simple docstring""" def __init__( self : Tuple , __magic_name__ : int , __magic_name__ : list[int] , __magic_name__ : deque[Process] , __magic_name__ : int , ) -> None: # total number of mlfq's queues SCREAMING_SNAKE_CASE_ = number_of_queues # time slice of queues that round robin algorithm applied SCREAMING_SNAKE_CASE_ = time_slices # unfinished process is in this ready_queue SCREAMING_SNAKE_CASE_ = queue # current time SCREAMING_SNAKE_CASE_ = current_time # finished process is in this sequence queue SCREAMING_SNAKE_CASE_ = deque() def __A ( self : Dict ) -> list[str]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __A ( self : List[str] , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __A ( self : List[str] , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __A ( self : Tuple , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def __A ( self : str , __magic_name__ : deque[Process] ) -> list[int]: return [q.burst_time for q in queue] def __A ( self : Optional[Any] , __magic_name__ : Process ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __A ( self : Optional[Any] , __magic_name__ : deque[Process] ) -> deque[Process]: SCREAMING_SNAKE_CASE_ = deque() # sequence deque of finished process while len(__magic_name__ ) != 0: SCREAMING_SNAKE_CASE_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__magic_name__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 SCREAMING_SNAKE_CASE_ = 0 # set the process's turnaround time because it is finished SCREAMING_SNAKE_CASE_ = self.current_time - cp.arrival_time # set the completion time SCREAMING_SNAKE_CASE_ = self.current_time # add the process to queue that has finished queue finished.append(__magic_name__ ) self.finish_queue.extend(__magic_name__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __A ( self : Any , __magic_name__ : deque[Process] , __magic_name__ : int ) -> tuple[deque[Process], deque[Process]]: SCREAMING_SNAKE_CASE_ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__magic_name__ ) ): SCREAMING_SNAKE_CASE_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__magic_name__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time SCREAMING_SNAKE_CASE_ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__magic_name__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished SCREAMING_SNAKE_CASE_ = 0 # set the finish time SCREAMING_SNAKE_CASE_ = self.current_time # update the process' turnaround time because it is finished SCREAMING_SNAKE_CASE_ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__magic_name__ ) self.finish_queue.extend(__magic_name__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __A ( self : Any ) -> deque[Process]: # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A : Dict = Process("P1", 0, 53) A : str = Process("P2", 0, 17) A : List[Any] = Process("P3", 0, 68) A : List[str] = Process("P4", 0, 24) A : Dict = 3 A : Any = [17, 25] A : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) A : Union[str, Any] = Process("P1", 0, 53) A : Any = Process("P2", 0, 17) A : Dict = Process("P3", 0, 68) A : List[str] = Process("P4", 0, 24) A : Optional[int] = 3 A : int = [17, 25] A : Union[str, Any] = deque([Pa, Pa, Pa, Pa]) A : Tuple = MLFQ(number_of_queues, time_slices, queue, 0) A : Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( f"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( f"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
305
0