Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
json
Sub-tasks:
named-entity-recognition
Languages:
Romanian
Size:
1K - 10K
Tags:
legal
License:
import os | |
from glob import glob | |
from pathlib import Path | |
from typing import List | |
import numpy as np | |
import pandas as pd | |
from spacy.lang.ro import Romanian | |
pd.set_option('display.max_colwidth', None) | |
pd.set_option('display.max_columns', None) | |
base_path = Path("legalnero-data") | |
tokenizer = Romanian().tokenizer | |
def process_document(ann_file: str, text_file: Path, metadata: dict, tokenizer) -> List[dict]: | |
"""Processes one document (.ann file and .txt file) and returns a list of annotated sentences""" | |
# read the ann file into a df | |
ann_df = pd.read_csv(ann_file, sep="\t", header=None, names=["id", "entity_with_span", "entity_text"]) | |
sentences = open(text_file, 'r').readlines() | |
# split into individual columns | |
ann_df[["entity", "start", "end"]] = ann_df["entity_with_span"].str.split(" ", expand=True) | |
ann_df.start = ann_df.start.astype(int) | |
ann_df.end = ann_df.end.astype(int) | |
not_found_entities = 0 | |
annotated_sentences = [] | |
current_start_index = 2 # somehow, here they start with 2 (who knows why) | |
for sentence in sentences: | |
ann_sent = {**metadata} | |
doc = tokenizer(sentence) | |
doc_start_index = current_start_index | |
doc_end_index = current_start_index + len(sentence) | |
current_start_index = doc_end_index + 1 | |
relevant_annotations = ann_df[(ann_df.start >= doc_start_index) & (ann_df.end <= doc_end_index)] | |
for _, row in relevant_annotations.iterrows(): | |
sent_start_index = row["start"] - doc_start_index | |
sent_end_index = row["end"] - doc_start_index | |
char_span = doc.char_span(sent_start_index, sent_end_index, label=row["entity"], alignment_mode="expand") | |
# ent_span = Span(doc, char_span.start, char_span.end, row["entity"]) | |
if char_span: | |
doc.set_ents([char_span]) | |
else: | |
not_found_entities += 1 | |
print(f"Could not find entity `{row['entity_text']}` in sentence `{sentence}`") | |
ann_sent["words"] = [str(tok) for tok in doc] | |
ann_sent["ner"] = [tok.ent_iob_ + "-" + tok.ent_type_ if tok.ent_type_ else "O" for tok in doc] | |
annotated_sentences.append(ann_sent) | |
if not_found_entities > 0: | |
# NOTE: does not find entities only in 2 cases in total | |
print(f"Did not find entities in {not_found_entities} cases") | |
return annotated_sentences | |
def read_to_df(): | |
"""Reads the different documents and saves metadata""" | |
ann_files = glob(str(base_path / "ann_LEGAL_PER_LOC_ORG_TIME" / "*.ann")) | |
sentences = [] | |
file_names = [] | |
for ann_file in ann_files: | |
file_name = Path(ann_file).stem | |
text_file = base_path / "text" / f"{file_name}.txt" | |
file_names.append(file_name) | |
metadata = { | |
"file_name": file_name, | |
} | |
sentences.extend(process_document(ann_file, text_file, metadata, tokenizer)) | |
return pd.DataFrame(sentences), file_names | |
df, file_names = read_to_df() | |
# last word is either "\n" or "-----" ==> remove | |
df.words = df.words.apply(lambda x: x[:-1]) | |
df.ner = df.ner.apply(lambda x: x[:-1]) | |
# remove rows with containing only one word | |
df = df[df.words.map(len) > 1] | |
print(f"The final tagset (in IOB notation) is the following: `{list(df.ner.explode().unique())}`") | |
# split by file_name | |
num_fn = len(file_names) | |
train_fn, validation_fn, test_fn = np.split(np.array(file_names), [int(.8 * num_fn), int(.9 * num_fn)]) | |
# Num file_names for each split: train (296), validation (37), test (37) | |
print(len(train_fn), len(validation_fn), len(test_fn)) | |
train = df[df.file_name.isin(train_fn)] | |
validation = df[df.file_name.isin(validation_fn)] | |
test = df[df.file_name.isin(test_fn)] | |
# Num samples for each split: train (7552), validation (966), test (907) | |
print(len(train.index), len(validation.index), len(test.index)) | |
# save splits | |
def save_splits_to_jsonl(config_name): | |
# save to jsonl files for huggingface | |
if config_name: os.makedirs(config_name, exist_ok=True) | |
train.to_json(os.path.join(config_name, "train.jsonl"), lines=True, orient="records", force_ascii=False) | |
validation.to_json(os.path.join(config_name, "validation.jsonl"), lines=True, orient="records", force_ascii=False) | |
test.to_json(os.path.join(config_name, "test.jsonl"), lines=True, orient="records", force_ascii=False) | |
save_splits_to_jsonl("") | |