mmnga/codegemma-1.1-7b-it-gguf
Updated
•
1.45k
input
stringlengths 0
929
| output
stringlengths 0
10.3k
| task
stringclasses 3
values | index
int64 0
5.38k
| liscence
stringclasses 4
values | source
stringclasses 15
values | instruction
stringlengths 13
3.45k
|
---|---|---|---|---|---|---|
import pandas as pd
df_receipt.head(10) | code_generation | 0 | MIT | datascience_100_knocks_python | pandasでレシート明細データ(df_receipt)から全項目の先頭10件を表示し、どのようなデータを保有しているか目視で確認せよ。 |
|
import pandas as pd
df_receipt[['sales_ymd', 'customer_id', 'product_cd', 'amount']].head(10) | code_generation | 1 | MIT | datascience_100_knocks_python | pandasでレシート明細データ(df_receipt)から売上年月日(sales_ymd)、顧客ID(customer_id)、商品コード(product_cd)、売上金額(amount)の順に列を指定し、10件表示せよ。 |
|
import pandas as pd
df_receipt[['sales_ymd', 'customer_id', 'product_cd', 'amount']]. \
rename(columns={'sales_ymd': 'sales_date'}).head(10) | code_generation | 2 | MIT | datascience_100_knocks_python | pandasでレシート明細データ(df_receipt)から売上年月日(sales_ymd)、顧客ID(customer_id)、商品コード(product_cd)、売上金額(amount)の順に列を指定し、10件表示せよ。ただし、sales_ymdsales_dateに項目名を変更しながら抽出すること。 |
|
import pandas as pd
# コード例1(queryを使う場合)
df_receipt[['sales_ymd', 'customer_id', 'product_cd', 'amount']]. \
query('customer_id == "CS018205000001"')
# コード例1(queryを使わない場合)
df = df_receipt[['sales_ymd', 'customer_id', 'product_cd', 'amount']]
df[df['customer_id'] == 'CS018205000001'] | code_generation | 3 | MIT | datascience_100_knocks_python | pandasでレシート明細データ(df_receipt)から売上日(sales_ymd)、顧客ID(customer_id)、商品コード(product_cd)、売上金額(amount)の順に列を指定し、以下の条件を満たすデータを抽出せよ。 |
|
import pandas as pd
df_receipt[['sales_ymd', 'customer_id', 'product_cd', 'amount']] \
.query('customer_id == "CS018205000001" & amount >= 1000') | code_generation | 4 | MIT | datascience_100_knocks_python | pandasを用いてシート明細データ(df_receipt)から売上日(sales_ymd)、顧客ID(customer_id)、商品コード(product_cd)、売上金額(amount)の順に列を指定し、以下の全ての条件を満たすデータを抽出せよ。
顧客ID(customer_id)が"CS018205000001"
売上金額(amount)が1,000以上 |
|
df_receipt[['sales_ymd', 'customer_id', 'product_cd', 'quantity', 'amount']].\
query('customer_id == "CS018205000001" & (amount >= 1000 | quantity >=5)') | code_generation | 5 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)から売上日(sales_ymd)、顧客ID(customer_id)、商品コード(product_cd)、売上数量(quantity)、売上金額(amount)の順に列を指定し、以下の全ての条件を満たすデータを抽出せよ。
顧客ID(customer_id)が"CS018205000001"
売上金額(amount)が1,000以上または売上数量(quantity)が5以上 |
|
import pandas as pd
df_receipt[['sales_ymd', 'customer_id', 'product_cd', 'amount']] \
.query('customer_id == "CS018205000001" & 1000 <= amount <= 2000') | code_generation | 6 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)から売上日(sales_ymd)、顧客ID(customer_id)、商品コード(product_cd)、売上金額(amount)の順に列を指定し、以下の全ての条件を満たすデータを抽出せよ。
顧客ID(customer_id)が"CS018205000001"
売上金額(amount)が1,000以上2,000以下 |
|
import pandas as pd
df_receipt[['sales_ymd', 'customer_id', 'product_cd', 'amount']] \
.query('customer_id == "CS018205000001" & product_cd != "P071401019"') | code_generation | 7 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)から売上日(sales_ymd)、顧客ID(customer_id)、商品コード(product_cd)、売上金額(amount)の順に列を指定し、以下の全ての条件を満たすデータを抽出せよ。
顧客ID(customer_id)が"CS018205000001"
商品コード(product_cd)が"P071401019"以外 |
|
import pandas as pd
df_store.query('prefecture_cd != "13" & floor_area <= 900') | code_generation | 8 | MIT | datascience_100_knocks_python | pandasを用いて以下の処理において、出力結果を変えずにORをANDに書き換えよ。
df_store.query('not(prefecture_cd == "13" | floor_area > 900)') |
|
import pandas as pd
df_store.query("store_cd.str.startswith('S14')", engine='python').head(10) | code_generation | 9 | MIT | datascience_100_knocks_python | pandasを用いて店舗データ(df_store)から、店舗コード(store_cd)が"S14"で始まるものだけ全項目抽出し、10件表示せよ。 |
|
import pandas as pd
df_customer.query("customer_id.str.endswith('1')", engine='python').head(10) | code_generation | 10 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)から顧客ID(customer_id)の末尾が1のものだけ全項目抽出し、10件表示せよ。 |
|
import pandas as pd
df_store.query("address.str.contains('横浜市')", engine='python') | code_generation | 11 | MIT | datascience_100_knocks_python | pandasを用いて店舗データ(df_store)から、住所 (address) に"横浜市"が含まれるものだけ全項目表示せよ。 |
|
import pandas as pd
df_customer.query("status_cd.str.contains(r'^[A-F]')",
engine='python').head(10) | code_generation | 12 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)から、ステータスコード(status_cd)の先頭がアルファベットのA〜Fで始まるデータを全項目抽出し、10件表示せよ。 |
|
import pandas as pd
# regexのオプションをつけることもできる(Falseにすれば正規表現ではなくそのままの文字列として扱われる)
df_customer.query("status_cd.str.contains(r'[1-9]$', regex=True)",
engine='python').head(10) | code_generation | 13 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)から、ステータスコード(status_cd)の末尾が数字の1〜9で終わるデータを全項目抽出し、10件表示せよ。 |
|
import pandas as pd
df_customer.query("status_cd.str.contains(r'^[A-F].*[1-9]$')",
engine='python').head(10) | code_generation | 14 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)から、ステータスコード(status_cd)の先頭がアルファベットのA〜Fで始まり、末尾が数字の1〜9で終わるデータを全項目抽出し、10件表示せよ。 |
|
import pandas as pd
df_store.query("tel_no.str.contains(r'^[0-9]{3}-[0-9]{3}-[0-9]{4}$')",
engine='python') | code_generation | 15 | MIT | datascience_100_knocks_python | pandasを用いて店舗データ(df_store)から、電話番号(tel_no)が3桁-3桁-4桁のデータを全項目表示せよ。 |
|
import pandas as pd
df_customer.sort_values('birth_day').head(10) | code_generation | 16 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)を生年月日(birth_day)で高齢順にソートし、先頭から全項目を10件表示せよ。 |
|
import pandas as pd
df_customer.sort_values('birth_day', ascending=False).head(10) | code_generation | 17 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)を生年月日(birth_day)で若い順にソートし、先頭から全項目を10件表示せよ。 |
|
import pandas as pd
df_tmp = pd.concat([df_receipt[['customer_id', 'amount']]
,df_receipt['amount'].rank(method='min',
ascending=False)], axis=1)
df_tmp.columns = ['customer_id', 'amount', 'ranking']
df_tmp.sort_values('ranking').head(10) | code_generation | 18 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)に対し、1件あたりの売上金額(amount)が高い順にランクを付与し、先頭から10件表示せよ。項目は顧客ID(customer_id)、売上金額(amount)、付与したランクを表示させること。なお、売上金額(amount)が等しい場合は同一順位を付与するものとする。 |
|
import pandas as pd
df_tmp = pd.concat([df_receipt[['customer_id', 'amount']]
,df_receipt['amount'].rank(method='first',
ascending=False)], axis=1)
df_tmp.columns = ['customer_id', 'amount', 'ranking']
df_tmp.sort_values('ranking').head(10) | code_generation | 19 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)に対し、1件あたりの売上金額(amount)が高い順にランクを付与し、先頭から10件表示せよ。項目は顧客ID(customer_id)、売上金額(amount)、付与したランクを表示させレシート明細データ(df_receipt)に対し、1件あたりの売上金額(amount)が高い順にランクを付与し、先頭から10件表示せよ。項目は顧客ID(customer_id)、売上金額(amount)、付与したランクを表示させること。なお、売上金額(amount)が等しい場合でも別順位を付与すること。 |
|
import pandas as pd
len(df_receipt) | code_generation | 20 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)に対し、件数をカウントせよ。 |
|
import pandas as pd
len(df_receipt['customer_id'].unique()) | code_generation | 21 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の顧客ID(customer_id)に対し、ユニーク件数をカウントせよ。 |
|
import pandas as pd
# コード例1
df_receipt.groupby('store_cd').agg({'amount':'sum',
'quantity':'sum'}).reset_index()
# コード例2
df_receipt.groupby('store_cd')[['amount','quantity']].agg('sum').reset_index() | code_generation | 22 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)に対し、店舗コード(store_cd)ごとに売上金額(amount)と売上数量(quantity)を合計せよ。 |
|
import pandas as pd
df_receipt.groupby('customer_id').agg({'sales_ymd': 'max'}).reset_index().head(10) | code_generation | 23 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)に対し、顧客ID(customer_id)ごとに最も新しい売上年月日(sales_ymd)を求め、10件表示せよ。 |
|
import pandas as pd
df_receipt.groupby('customer_id').sales_ymd.min().reset_index().head(10) | code_generation | 24 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)に対し、顧客ID(customer_id)ごとに最も古い売上年月日(sales_ymd)を求め、10件表示せよ。 |
|
import pandas as pd
df_tmp = df_receipt.groupby('customer_id'). \
agg({'sales_ymd':['max','min']}).reset_index()
# マルチインデックス(項目)の階層を"_"でつなぎながら1階層のインデックス(項目)にする
# df_tmp.columns = ['customer_id', 'sales_ymd_max', 'sales_ymd_min'] としても良い
df_tmp.columns = ["_".join(pair) for pair in df_tmp.columns]
df_tmp.query('sales_ymd_max != sales_ymd_min').head(10) | code_generation | 25 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)に対し、顧客ID(customer_id)ごとに最も新しい売上年月日(sales_ymd)と古い売上年月日を求め、両者が異なるデータを10件表示せよ。 |
|
import pandas as pd
df_receipt.groupby('store_cd').agg({'amount':'mean'}).reset_index(). \
sort_values('amount', ascending=False).head(5) | code_generation | 26 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)に対し、店舗コード(store_cd)ごとに売上金額(amount)の平均を計算し、降順でTOP5を表示せよ。 |
|
import pandas as pd
df_receipt.groupby('store_cd').agg({'amount':'median'}).reset_index(). \
sort_values('amount', ascending=False).head(5) | code_generation | 27 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)に対し、店舗コード(store_cd)ごとに売上金額(amount)の中央値を計算し、降順でTOP5を表示せよ。 |
|
import pandas as pd
df_receipt.groupby('store_cd').product_cd. \
apply(lambda x: x.mode()).reset_index().head(10) | code_generation | 28 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)に対し、店舗コード(store_cd)ごとに商品コード(product_cd)の最頻値を求め、10件表示させよ。 |
|
import pandas as pd
df_receipt.groupby('store_cd').amount.var(ddof=0).reset_index(). \
sort_values('amount', ascending=False).head(5) | code_generation | 29 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)に対し、店舗コード(store_cd)ごとに売上金額(amount)の分散を計算し、降順で5件表示せよ。 |
|
import pandas as pd
df_receipt.groupby('store_cd').amount.std(ddof=0).reset_index(). \
sort_values('amount', ascending=False).head(5)
TIPS:
PandasとNumpyでddofのデフォルト値が異なることに注意しましょう
Pandas:
DataFrame.std(self, axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
Numpy:
numpy.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=) | code_generation | 30 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)に対し、店舗コード(store_cd)ごとに売上金額(amount)の標準偏差を計算し、降順で5件表示せよ。 |
|
import pandas as pd
# コード例1
np.percentile(df_receipt['amount'], q=np.arange(1, 5) * 25)
# コード例2
df_receipt.amount.quantile(q=np.arange(1, 5) / 4) | code_generation | 31 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上金額(amount)について、25%刻みでパーセンタイル値を求めよ。 |
|
import pandas as pd
df_receipt.groupby('store_cd').amount.mean(). \
reset_index().query('amount >= 330') | code_generation | 32 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)に対し、店舗コード(store_cd)ごとに売上金額(amount)の平均を計算し、330以上のものを抽出せよ。 |
|
import pandas as pd
# コード例1: queryを使わない書き方
df_receipt[~df_receipt['customer_id'].str.startswith("Z")]. \
groupby('customer_id').amount.sum().mean()
# コード例2: queryを使う書き方
df_receipt.query('not customer_id.str.startswith("Z")',
engine='python').groupby('customer_id').amount.sum().mean() | code_generation | 33 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)に対し、顧客ID(customer_id)ごとに売上金額(amount)を合計して全顧客の平均を求めよ。ただし、顧客IDが"Z"から始まるものは非会員を表すため、除外して計算すること。 |
|
import pandas as pd
df_amount_sum = df_receipt[~df_receipt['customer_id'].str.startswith("Z")].\
groupby('customer_id').amount.sum()
amount_mean = df_amount_sum.mean()
df_amount_sum = df_amount_sum.reset_index()
df_amount_sum[df_amount_sum['amount'] >= amount_mean].head(10) | code_generation | 34 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)に対し、顧客ID(customer_id)ごとに売上金額(amount)を合計して全顧客の平均を求め、平均以上に買い物をしている顧客を抽出し、10件表示せよ。ただし、顧客IDが"Z"から始まるものは非会員を表すため、除外して計算すること。 |
|
import pandas as pd
pd.merge(df_receipt, df_store[['store_cd','store_name']],
how='inner', on='store_cd').head(10) | code_generation | 35 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)と店舗データ(df_store)を内部結合し、レシート明細データの全項目と店舗データの店舗名(store_name)を10件表示せよ。 |
|
import pandas as pd
pd.merge(df_product
, df_category[['category_small_cd','category_small_name']]
, how='inner', on='category_small_cd').head(10) | code_generation | 36 | MIT | datascience_100_knocks_python | pandasを用いて商品データ(df_product)とカテゴリデータ(df_category)を内部結合し、商品データの全項目とカテゴリデータのカテゴリ小区分名(category_small_name)を10件表示せよ。 |
|
import pandas as pd
df_amount_sum = df_receipt.groupby('customer_id').amount.sum().reset_index()
df_tmp = df_customer. \
query('gender_cd == "1" and not customer_id.str.startswith("Z")',
engine='python')
pd.merge(df_tmp['customer_id'], df_amount_sum,
how='left', on='customer_id').fillna(0).head(10) | code_generation | 37 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)とレシート明細データ(df_receipt)から、顧客ごとの売上金額合計を求め、10件表示せよ。ただし、売上実績がない顧客については売上金額を0として表示させること。また、顧客は性別コード(gender_cd)が女性(1)であるものを対象とし、非会員(顧客IDが"Z"から始まるもの)は除外すること。 |
|
import pandas as pd
df_data = df_receipt \
.query('not customer_id.str.startswith("Z")', engine='python')
df_cnt = df_data[~df_data.duplicated(subset=['customer_id', 'sales_ymd'])] \
.groupby('customer_id').sales_ymd.count().reset_index() \
.sort_values('sales_ymd', ascending=False).head(20)
df_sum = df_data.groupby('customer_id').amount.sum().reset_index() \
.sort_values('amount', ascending=False).head(20)
pd.merge(df_cnt, df_sum, how='outer', on='customer_id') | code_generation | 38 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)から、売上日数の多い顧客の上位20件を抽出したデータと、売上金額合計の多い顧客の上位20件を抽出したデータをそれぞれ作成し、さらにその2つを完全外部結合せよ。ただし、非会員(顧客IDが"Z"から始まるもの)は除外すること。 |
|
import pandas as pd
df_store_tmp = df_store.copy()
df_product_tmp = df_product.copy()
df_store_tmp['key'] = 0
df_product_tmp['key'] = 0
len(pd.merge(df_store_tmp, df_product_tmp, how='outer', on='key')) | code_generation | 39 | MIT | datascience_100_knocks_python | pandasを用いて全ての店舗と全ての商品を組み合わせたデータを作成したい。店舗データ(df_store)と商品データ(df_product)を直積し、件数を計算せよ。 |
|
import pandas as pd
df_sales_amount_by_date = df_receipt[['sales_ymd', 'amount']].\
groupby('sales_ymd').sum().reset_index()
df_sales_amount_by_date = pd.concat([df_sales_amount_by_date,
df_sales_amount_by_date.shift()], axis=1)
df_sales_amount_by_date.columns = ['sales_ymd','amount','lag_ymd','lag_amount']
df_sales_amount_by_date['diff_amount'] = \
df_sales_amount_by_date['amount'] - df_sales_amount_by_date['lag_amount']
df_sales_amount_by_date.head(10) | code_generation | 40 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上金額(amount)を日付(sales_ymd)ごとに集計し、前回売上があった日からの売上金額増減を計算せよ。そして結果を10件表示せよ。 |
|
import pandas as pd
# コード例1:縦持ちケース
df_sales_amount_by_date = df_receipt[['sales_ymd', 'amount']]. \
groupby('sales_ymd').sum().reset_index()
for i in range(1, 4):
df_tmp = pd.concat([df_sales_amount_by_date,
df_sales_amount_by_date.shift(i)], axis=1)
if i == 1:
df_lag = df_tmp
else:
# DataFrameでappendが削除されるためappend -> concatに変更
df_lag = pd.concat([df_lag, df_tmp], axis=0)
df_lag.columns = ['sales_ymd', 'amount', 'lag_ymd', 'lag_amount']
df_lag.dropna().astype(int).sort_values(['sales_ymd','lag_ymd']).head(10)
# コード例2:横持ちケース
df_sales_amount_by_date = df_receipt[['sales_ymd', 'amount']].\
groupby('sales_ymd').sum().reset_index()
df_lag = df_sales_amount_by_date
for i in range(1, 4):
df_lag = pd.concat([df_lag, df_sales_amount_by_date.shift(i)], axis=1)
columns = [f'lag_ymd_{i}', f'lag_amount_{i}']
df_lag.columns = list(df_lag.columns)[:-len(columns)] + columns
df_lag.dropna().astype(int).sort_values(['sales_ymd']).head(10) | code_generation | 41 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上金額(amount)を日付(sales_ymd)ごとに集計し、各日付のデータに対し、前回、前々回、3回前に売上があった日のデータを結合せよ。そして結果を10件表示せよ。 |
|
import pandas as pd
# コード例1
df_tmp = pd.merge(df_receipt, df_customer, how ='inner', on="customer_id")
df_tmp['era'] = df_tmp['age'].apply(lambda x: math.floor(x / 10) * 10)
df_sales_summary = pd.pivot_table(
df_tmp, index='era',
columns='gender_cd',
values='amount',
aggfunc='sum'
).reset_index()
df_sales_summary.columns = ['era', 'male', 'female', 'unknown']
df_sales_summary
# コード例2
df_tmp = pd.merge(df_receipt, df_customer, how ='inner', on="customer_id")
df_tmp['era'] = np.floor(df_tmp['age'] / 10).astype(int) * 10
df_sales_summary = pd.pivot_table(df_tmp, index='era', columns='gender_cd',
values='amount', aggfunc='sum').reset_index()
df_sales_summary.columns = ['era', 'male', 'female', 'unknown']
df_sales_summary | code_generation | 42 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)と顧客データ(df_customer)を結合し、性別コード(gender_cd)と年代(ageから計算)ごとに売上金額(amount)を合計した売上サマリデータを作成せよ。性別コードは0が男性、1が女性、9が不明を表すものとする。
ただし、項目構成は年代、女性の売上金額、男性の売上金額、性別不明の売上金額の4項目とすること(縦に年代、横に性別のクロス集計)。また、年代は10歳ごとの階級とすること。 |
|
import pandas as pd
df_sales_summary.set_index('era'). \
stack().reset_index().replace({'female':'01','male':'00','unknown':'99'}). \
rename(columns={'level_1':'gender_cd', 0: 'amount'}) | code_generation | 43 | MIT | datascience_100_knocks_python | 売上サマリデータ(df_sales_summary)は性別の売上を横持ちさせたものである。pandasを用いてこのデータから性別を縦持ちさせ、年代、性別コード、売上金額の3項目に変換せよ。ただし、性別コードは男性を"00"、女性を"01"、不明を"99"とする。 |
|
import pandas as pd
# 以下の書き方でYYYYMMDD形式の文字列に変換できる
# pd.to_datetime(df_customer['birth_day']).dt.strftime('%Y%m%d')
pd.concat([df_customer['customer_id'],
pd.to_datetime(df_customer['birth_day']).dt.strftime('%Y%m%d')],
axis = 1).head(10) | code_generation | 44 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)の生年月日(birth_day)は日付型でデータを保有している。これをYYYYMMDD形式の文字列に変換し、顧客ID(customer_id)とともに10件表示せよ。 |
|
import pandas as pd
pd.concat([df_customer['customer_id'],
pd.to_datetime(df_customer['application_date'])], axis=1).head(10) | code_generation | 45 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)の申し込み日(application_date)はYYYYMMDD形式の文字列型でデータを保有している。これを日付型に変換し、顧客ID(customer_id)とともに10件表示せよ。 |
|
import pandas as pd
pd.concat([df_receipt[['receipt_no', 'receipt_sub_no']],
pd.to_datetime(df_receipt['sales_ymd'].astype('str'))],
axis=1).head(10) | code_generation | 46 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上日(sales_ymd)はYYYYMMDD形式の数値型でデータを保有している。これを日付型に変換し、レシート番号(receipt_no)、レシートサブ番号(receipt_sub_no)とともに10件表示せよ。 |
|
import pandas as pd
pd.concat([df_receipt[['receipt_no', 'receipt_sub_no']],
pd.to_datetime(df_receipt['sales_epoch'], unit='s').rename('sales_ymd')],
axis=1).head(10) | code_generation | 47 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上エポック秒(sales_epoch)は数値型のUNIX秒でデータを保有している。これを日付型に変換し、レシート番号(receipt_no)、レシートサブ番号(receipt_sub_no)とともに10件表示せよ。 |
|
import pandas as pd
pd.concat([df_receipt[['receipt_no', 'receipt_sub_no']],
pd.to_datetime(df_receipt['sales_epoch'],
unit='s').dt.year.rename('sales_year')],
axis=1).head(10) | code_generation | 48 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上エポック秒(sales_epoch)を日付型に変換し、「年」だけ取り出してレシート番号(receipt_no)、レシートサブ番号(receipt_sub_no)とともに10件表示せよ。 |
|
import pandas as pd
# dt.monthでも月を取得できるが、ここでは0埋め2桁で取り出すためstrftimeを利用している
df_datetime = pd.to_datetime(df_receipt['sales_epoch'],
unit='s').rename('sales_month')
pd.concat([df_receipt[['receipt_no', 'receipt_sub_no']],
df_datetime.dt.strftime('%m')],axis=1).head(10) | code_generation | 49 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上エポック秒(sales_epoch)を日付型に変換し、「月」だけ取り出してレシート番号(receipt_no)、レシートサブ番号(receipt_sub_no)とともに10件表示せよ。なお、「月」は0埋め2桁で取り出すこと。 |
|
import pandas as pd
# dt.dayでも日を取得できるが、ここでは0埋め2桁で取り出すためstrftimeを利用している
df_datetime = pd.to_datetime(df_receipt['sales_epoch'],
unit='s').rename('sales_day')
pd.concat([df_receipt[['receipt_no', 'receipt_sub_no']],
df_datetime.dt.strftime('%d')], axis=1).head(10) | code_generation | 50 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上エポック秒を日付型に変換し、「日」だけ取り出してレシート番号(receipt_no)、レシートサブ番号(receipt_sub_no)とともに10件表示せよ。なお、「日」は0埋め2桁で取り出すこと。 |
|
import pandas as pd
# コード例1
df_sales_amount = df_receipt.query('not customer_id.str.startswith("Z")',
engine='python')
df_sales_amount = df_sales_amount[['customer_id', 'amount']]. \
groupby('customer_id').sum().reset_index()
df_sales_amount['sales_flg'] = df_sales_amount['amount']. \
apply(lambda x: 1 if x > 2000 else 0)
df_sales_amount.head(10)
# コード例2(np.whereの活用)
df_sales_amount = df_receipt.query('not customer_id.str.startswith("Z")',
engine='python')
df_sales_amount = df_sales_amount[['customer_id', 'amount']]. \
groupby('customer_id').sum().reset_index()
df_sales_amount['sales_flg'] = np.where(df_sales_amount['amount'] > 2000, 1, 0)
df_sales_amount.head(10) | code_generation | 51 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上金額(amount)を顧客ID(customer_id)ごとに合計の上、売上金額合計に対して2,000円以下を0、2,000円より大きい金額を1に二値化し、顧客ID、売上金額合計とともに10件表示せよ。ただし、顧客IDが"Z"から始まるのものは非会員を表すため、除外して計算すること。 |
|
import pandas as pd
# コード例1
df_tmp = df_customer[['customer_id', 'postal_cd']].copy()
df_tmp['postal_flg'] = df_tmp['postal_cd']. \
apply(lambda x: 1 if 100 <= int(x[0:3]) <= 209 else 0)
pd.merge(df_tmp, df_receipt, how='inner', on='customer_id'). \
groupby('postal_flg').agg({'customer_id':'nunique'})
# コード例2(np.where、betweenの活用)
df_tmp = df_customer[['customer_id', 'postal_cd']].copy()
df_tmp['postal_flg'] = np.where(df_tmp['postal_cd'].str[0:3].astype(int)
.between(100, 209), 1, 0)
pd.merge(df_tmp, df_receipt, how='inner', on='customer_id'). \
groupby('postal_flg').agg({'customer_id':'nunique'}) | code_generation | 52 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)の郵便番号(postal_cd)に対し、東京(先頭3桁が100〜209のもの)を1、それ以外のものを0に二値化せよ。さらにレシート明細データ(df_receipt)と結合し、全期間において売上実績のある顧客数を、作成した二値ごとにカウントせよ。 |
|
import pandas as pd
# コード例1(固定で切り出す)
df_customer_tmp = df_customer[['customer_id', 'address']].copy()
df_customer_tmp['prefecture_cd'] = \
df_customer['address'].str[0:3].map({'埼玉県': '11',
'千葉県':'12',
'東京都':'13',
'神奈川':'14'})
df_customer_tmp.head(10)
# コード例2(正規表現を使う)
df_customer_tmp = df_customer[['customer_id', 'address']].copy()
df_customer_tmp['prefecture_cd'] = \
df_customer['address'].str.extract(r'(^.*?[都道府県])')[0].\
map({'埼玉県': '11',
'千葉県':'12',
'東京都':'13',
'神奈川県':'14'})
df_customer_tmp.head(10) | code_generation | 53 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)の住所(address)は、埼玉県、千葉県、東京都、神奈川県のいずれかとなっている。都道府県毎にコード値を作成し、顧客ID、住所とともに10件表示せよ。値は埼玉県を11、千葉県を12、東京都を13、神奈川県を14とすること。 |
|
import pandas as pd
# コード例1
df_sales_amount = df_receipt[['customer_id', 'amount']]. \
groupby('customer_id').sum().reset_index()
pct25 = np.quantile(df_sales_amount['amount'], 0.25)
pct50 = np.quantile(df_sales_amount['amount'], 0.5)
pct75 = np.quantile(df_sales_amount['amount'], 0.75)
def pct_group(x):
if x < pct25:
return 1
elif pct25 <= x < pct50:
return 2
elif pct50 <= x < pct75:
return 3
elif pct75 <= x:
return 4
df_sales_amount['pct_group'] = df_sales_amount['amount'].apply(pct_group)
df_sales_amount.head(10)
# 確認用コード
print('pct25:', pct25)
print('pct50:', pct50)
print('pct75:', pct75)
# コード例2(cutを使った例、四分位範囲も参考までに追加表示)
df_temp = df_receipt[['customer_id', 'amount']]. \
groupby('customer_id').sum().reset_index()
pct25 = np.quantile(df_sales_amount['amount'], 0.25)
pct50 = np.quantile(df_sales_amount['amount'], 0.5)
pct75 = np.quantile(df_sales_amount['amount'], 0.75)
pct_max = df_sales_amount['amount'].max()
df_temp['quantile'] = pd.cut(df_sales_amount['amount'],[0.0, pct25, pct50, pct75,pct_max+0.1], right=False)
df_temp['pct_group'] = df_temp.groupby('quantile').ngroup() + 1
df_temp.head(10)
# 参考コード(qcutを使った例、境界値の含む/含まないが逆になっており題意を満たさないが参考までに記載)
df_temp = df_receipt.groupby('customer_id')[['amount']].sum()
df_temp['quantile'], bins = \
pd.qcut(df_receipt.groupby('customer_id')['amount'].sum(), 4, retbins=True)
df_temp['pct_group'] = df_temp.groupby('quantile').ngroup() + 1
df_temp.reset_index(inplace=True)
display(df_temp.head(10))
print('quantiles:', bins) | code_generation | 54 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細(df_receipt)データの売上金額(amount)を顧客ID(customer_id)ごとに合計し、その合計金額の四分位点を求めよ。その上で、顧客ごとの売上金額合計に対して以下の基準でカテゴリ値を作成し、顧客ID、売上金額合計とともに10件表示せよ。カテゴリ値は順に1〜4とする。
最小値以上第1四分位未満 ・・・ 1を付与
第1四分位以上第2四分位未満 ・・・ 2を付与
第2四分位以上第3四分位未満 ・・・ 3を付与
第3四分位以上 ・・・ 4を付与 |
|
import pandas as pd
# コード例1
df_customer_era = df_customer[['customer_id', 'birth_day']].copy()
df_customer_era['era'] = df_customer['age']. \
apply(lambda x: min(math.floor(x / 10) * 10, 60))
df_customer_era.head(10)
# コード例2(cutの例、カテゴリは範囲で出力)
df_customer_era = df_customer[['customer_id', 'birth_day']].copy()
df_customer_era['era'] = pd.cut(df_customer['age'],
bins=[0, 10, 20, 30, 40, 50, 60, np.inf],
right=False)
df_customer_era[['customer_id', 'birth_day', 'era']].head(10) | code_generation | 55 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)の年齢(age)をもとに10歳刻みで年代を算出し、顧客ID(customer_id)、生年月日(birth_day)とともに10件表示せよ。ただし、60歳以上は全て60歳代とすること。年代を表すカテゴリ名は任意とする。 |
|
import pandas as pd
# 性別コード1桁と年代コード2桁を連結した性年代コードを生成する
df_customer_era = df_customer[['customer_id', 'birth_day']].copy()
df_customer_era['era'] = df_customer['age']. \
apply(lambda x: min(math.floor(x / 10) * 10, 60))
df_customer_era['gender_era'] = \
df_customer['gender_cd'] + df_customer_era['era'].astype('str').str.zfill(2)
df_customer_era.head(10) | code_generation | 56 | MIT | datascience_100_knocks_python | pandasを用いて性別コード(gender_cd)により、新たに性別×年代の組み合わせを表すカテゴリデータを作成し、10件表示せよ。組み合わせを表すカテゴリの値は任意とする。 |
|
import pandas as pd
# コード例1(すべてのコード値を項目化)
pd.get_dummies(df_customer[['customer_id', 'gender_cd']],
columns=['gender_cd']).head(10)
# コード例2(項目を一つ削ったり区切り文字を変えたりできる)
pd.get_dummies(df_customer[['customer_id', 'gender_cd']],
columns=['gender_cd'],
drop_first=True, prefix='gen', prefix_sep='#').head(10) | code_generation | 57 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)の性別コード(gender_cd)をダミー変数化し、顧客ID(customer_id)とともに10件表示せよ。 |
|
import pandas as pd
# skleanのpreprocessing.scaleを利用するため、データの標準偏差で計算されている
df_sales_amount = df_receipt.query('not customer_id.str.startswith("Z")',
engine='python'). \
groupby('customer_id'). \
agg({'amount':'sum'}).reset_index()
df_sales_amount['std_amount'] = preprocessing.scale(df_sales_amount['amount'])
df_sales_amount.head(10)
# コード例2(fitを行うことで、別のデータでも同じ平均・標準偏差で標準化を行える)
df_sales_amount = df_receipt.query('not customer_id.str.startswith("Z")',
engine='python'). \
groupby('customer_id'). \
agg({'amount':'sum'}).reset_index()
scaler = preprocessing.StandardScaler()
scaler.fit(df_sales_amount[['amount']])
df_sales_amount['std_amount'] = scaler.transform(df_sales_amount[['amount']])
df_sales_amount.head(10)
TIPS:
query()の引数engineで'python'か'numexpr'かを選択でき、デフォルトはインストールされていればnumexprが、無ければpythonが使われます。さらに、文字列メソッドはengine='python'でないとquery()内で使えません。 | code_generation | 58 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上金額(amount)を顧客ID(customer_id)ごとに合計し、売上金額合計を平均0、標準偏差1に標準化して顧客ID、売上金額合計とともに10件表示せよ。標準化に使用する標準偏差は、分散の平方根、もしくは不偏分散の平方根のどちらでも良いものとする。ただし、顧客IDが"Z"から始まるのものは非会員を表すため、除外して計算すること。 |
|
import pandas as pd
# コード例1
df_sales_amount = df_receipt.query('not customer_id.str.startswith("Z")',
engine='python'). \
groupby('customer_id'). \
agg({'amount':'sum'}).reset_index()
df_sales_amount['scale_amount'] = \
preprocessing.minmax_scale(df_sales_amount['amount'])
df_sales_amount.head(10)
# コード例2(fitを行うことで、別のデータでも同じ最小値・最大値で標準化を行える)
df_sales_amount = df_receipt.query('not customer_id.str.startswith("Z")',
engine='python'). \
groupby('customer_id'). \
agg({'amount':'sum'}).reset_index()
scaler = preprocessing.MinMaxScaler()
scaler.fit(df_sales_amount[['amount']])
df_sales_amount['scale_amount'] = scaler.transform(df_sales_amount[['amount']])
df_sales_amount.head(10) | code_generation | 59 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上金額(amount)を顧客ID(customer_id)ごとに合計し、売上金額合計を最小値0、最大値1に正規化して顧客ID、売上金額合計とともに10件表示せよ。ただし、顧客IDが"Z"から始まるのものは非会員を表すため、除外して計算すること。 |
|
import pandas as pd
df_sales_amount = df_receipt.query('not customer_id.str.startswith("Z")',
engine='python'). \
groupby('customer_id'). \
agg({'amount':'sum'}).reset_index()
df_sales_amount['log_amount'] = np.log10(df_sales_amount['amount'] + 0.5)
df_sales_amount.head(10) | code_generation | 60 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上金額(amount)を顧客ID(customer_id)ごとに合計し、売上金額合計を常用対数化(底10)して顧客ID、売上金額合計とともに10件表示せよ。ただし、顧客IDが"Z"から始まるのものは非会員を表すため、除外して計算すること。 |
|
import pandas as pd
df_sales_amount = df_receipt.query('not customer_id.str.startswith("Z")',
engine='python'). \
groupby('customer_id'). \
agg({'amount':'sum'}).reset_index()
df_sales_amount['log_amount'] = np.log(df_sales_amount['amount'] + 0.5)
df_sales_amount.head(10) | code_generation | 61 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上金額(amount)を顧客ID(customer_id)ごとに合計し、売上金額合計を自然対数化(底e)して顧客ID、売上金額合計とともに10件表示せよ。ただし、顧客IDが"Z"から始まるのものは非会員を表すため、除外して計算すること。 |
|
import pandas as pd
df_tmp = df_product.copy()
df_tmp['unit_profit'] = df_tmp['unit_price'] - df_tmp['unit_cost']
df_tmp.head(10) | code_generation | 62 | MIT | datascience_100_knocks_python | pandasを用いて商品データ(df_product)の単価(unit_price)と原価(unit_cost)から各商品の利益額を算出し、結果を10件表示せよ。 |
|
import pandas as pd
df_tmp = df_product.copy()
df_tmp['unit_profit_rate'] = \
(df_tmp['unit_price'] - df_tmp['unit_cost']) / df_tmp['unit_price']
df_tmp['unit_profit_rate'].mean(skipna=True) | code_generation | 63 | MIT | datascience_100_knocks_python | pandasを用いて商品データ(df_product)の単価(unit_price)と原価(unit_cost)から、各商品の利益率の全体平均を算出せよ。ただし、単価と原価には欠損が生じていることに注意せよ。 |
|
import pandas as pd
df_tmp = df_product[['product_cd', 'unit_price', 'unit_cost']].copy()
df_tmp['new_price'] = np.floor(df_tmp['unit_cost'] / 0.7)
df_tmp['new_profit_rate'] = \
(df_tmp['new_price'] - df_tmp['unit_cost']) / df_tmp['new_price']
df_tmp.head(10) | code_generation | 64 | MIT | datascience_100_knocks_python | pandasを用いて商品データ(df_product)の各商品について、利益率が30%となる新たな単価を求めよ。ただし、1円未満は切り捨てること。そして結果を10件表示させ、利益率がおよそ30%付近であることを確認せよ。ただし、単価(unit_price)と原価(unit_cost)には欠損が生じていることに注意せよ。 |
|
import pandas as pd
df_tmp = df_product[['product_cd', 'unit_price', 'unit_cost']].copy()
df_tmp['new_price'] = np.round(df_tmp['unit_cost'] / 0.7)
df_tmp['new_profit_rate'] = \
(df_tmp['new_price'] - df_tmp['unit_cost']) / df_tmp['new_price']
df_tmp.head(10) | code_generation | 65 | MIT | datascience_100_knocks_python | pandasを用いて商品データ(df_product)の各商品について、利益率が30%となる新たな単価を求めよ。今回は、1円未満を丸めること(四捨五入または偶数への丸めで良い)。そして結果を10件表示させ、利益率がおよそ30%付近であることを確認せよ。ただし、単価(unit_price)と原価(unit_cost)には欠損が生じていることに注意せよ。 |
|
import pandas as pd
df_tmp = df_product[['product_cd', 'unit_price', 'unit_cost']].copy()
df_tmp['new_price'] = np.ceil(df_tmp['unit_cost'] / 0.7)
df_tmp['new_profit_rate'] = \
(df_tmp['new_price'] - df_tmp['unit_cost']) / df_tmp['new_price']
df_tmp.head(10) | code_generation | 66 | MIT | datascience_100_knocks_python | pandasを用いて商品データ(df_product)の各商品について、利益率が30%となる新たな単価を求めよ。今回は、1円未満を切り上げること。そして結果を10件表示させ、利益率がおよそ30%付近であることを確認せよ。ただし、単価(unit_price)と原価(unit_cost)には欠損が生じていることに注意せよ。 |
|
import pandas as pd
df_tmp = df_tmp = df_product[['product_cd', 'unit_price']].copy()
df_tmp['tax_price'] = np.floor(df_tmp['unit_price'] * 1.1)
df_tmp.head(10) | code_generation | 67 | MIT | datascience_100_knocks_python | pandasを用いて商品データ(df_product)の各商品について、消費税率10%の税込み金額を求めよ。1円未満の端数は切り捨てとし、結果を10件表示せよ。ただし、単価(unit_price)には欠損が生じていることに注意せよ。 |
|
import pandas as pd
# コード例1
df_tmp_1 = df_receipt.groupby('customer_id').agg({'amount':'sum'}). \
reset_index().rename(columns={'amount':'sum_all'})
df_tmp_2 = pd.merge(df_receipt, df_product.query('category_major_cd == "07"'),
how='inner', on='product_cd').groupby('customer_id').\
agg({'amount':'sum'}).reset_index().\
rename(columns={'amount':'sum_07'})
df_tmp_3 = pd.merge(df_tmp_1, df_tmp_2, how='inner', on='customer_id')
df_tmp_3['sales_rate'] = df_tmp_3['sum_07'] / df_tmp_3['sum_all']
df_tmp_3.head(10)
# コード例2(参考、unstackと横方向のsumを使った例)
df_temp = df_receipt.merge(df_product, how='left', on='product_cd'). \
groupby(['customer_id', 'category_major_cd'])['amount'].sum().unstack()
df_temp = df_temp[df_temp['07'] > 0]
df_temp['sum_all'] = df_temp.sum(axis=1)
df_temp['sales_rate'] = df_temp['07'] / df_temp['sum_all']
# 以降はデータフレームの整形と表示のための処理
df_temp.columns.name = ''
df_temp = df_temp.reset_index()
df_temp.head(10) | code_generation | 68 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)と商品データ(df_product)を結合し、顧客毎に全商品の売上金額合計と、カテゴリ大区分コード(category_major_cd)が"07"(瓶詰缶詰)の売上金額合計を計算の上、両者の比率を求めよ。抽出対象はカテゴリ大区分コード"07"(瓶詰缶詰)の売上実績がある顧客のみとし、結果を10件表示せよ。 |
|
import pandas as pd
df_tmp = df_receipt[['customer_id', 'sales_ymd']].drop_duplicates()
df_tmp = pd.merge(df_tmp, df_customer[['customer_id', 'application_date']],
how='inner', on='customer_id')
df_tmp['sales_ymd'] = pd.to_datetime(df_tmp['sales_ymd'].astype('str'))
df_tmp['application_date'] = pd.to_datetime(df_tmp['application_date'])
df_tmp['elapsed_days'] = df_tmp['sales_ymd'] - df_tmp['application_date']
df_tmp['elapsed_days'] = df_tmp['elapsed_days'].dt.days
df_tmp.head(10) | code_generation | 69 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上日(sales_ymd)に対し、顧客データ(df_customer)の会員申込日(application_date)からの経過日数を計算し、顧客ID(customer_id)、売上日、会員申込日とともに10件表示せよ(sales_ymdは数値、application_dateは文字列でデータを保持している点に注意)。 |
|
import pandas as pd
df_tmp = df_receipt[['customer_id', 'sales_ymd']].drop_duplicates()
df_tmp = pd.merge(df_tmp, df_customer[['customer_id', 'application_date']],
how='inner', on='customer_id')
df_tmp['sales_ymd'] = pd.to_datetime(df_tmp['sales_ymd'].astype('str'))
df_tmp['application_date'] = pd.to_datetime(df_tmp['application_date'])
df_tmp['elapsed_months'] = df_tmp[['sales_ymd', 'application_date']]. \
apply(lambda x: relativedelta(x[0], x[1]).years * 12 + \
relativedelta(x[0], x[1]).months, axis=1)
df_tmp.head(10) | code_generation | 70 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上日(sales_ymd)に対し、顧客データ(df_customer)の会員申込日(application_date)からの経過月数を計算し、顧客ID(customer_id)、売上日、会員申込日とともに10件表示せよ(sales_ymdは数値、application_dateは文字列でデータを保持している点に注意)。1ヶ月未満は切り捨てること。 |
|
import pandas as pd
df_tmp = df_receipt[['customer_id', 'sales_ymd']].drop_duplicates()
df_tmp = pd.merge(df_tmp, df_customer[['customer_id', 'application_date']],
how='inner', on='customer_id')
df_tmp['sales_ymd'] = pd.to_datetime(df_tmp['sales_ymd'].astype('str'))
df_tmp['application_date'] = pd.to_datetime(df_tmp['application_date'])
df_tmp['elapsed_years'] = df_tmp[['sales_ymd', 'application_date']]. \
apply(lambda x: relativedelta(x[0], x[1]).years, axis=1)
df_tmp.head(10) | code_generation | 71 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上日(df_customer)に対し、顧客データ(df_customer)の会員申込日(application_date)からの経過年数を計算し、顧客ID(customer_id)、売上日、会員申込日とともに10件表示せよ(sales_ymdは数値、application_dateは文字列でデータを保持している点に注意)。1年未満は切り捨てること。 |
|
import pandas as pd
df_tmp = df_receipt[['customer_id', 'sales_ymd']].drop_duplicates()
df_tmp = pd.merge(df_tmp, df_customer[['customer_id', 'application_date']],
how='inner', on='customer_id')
df_tmp['sales_ymd'] = pd.to_datetime(df_tmp['sales_ymd'].astype('str'))
df_tmp['application_date'] = pd.to_datetime(df_tmp['application_date'])
df_tmp['elapsed_epoch'] = df_tmp['sales_ymd'].view(np.int64) - \
df_tmp['application_date'].view(np.int64)
df_tmp['elapsed_epoch'] = df_tmp['elapsed_epoch'] / 10**9
df_tmp.head(10) | code_generation | 72 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上日(sales_ymd)に対し、顧客データ(df_customer)の会員申込日(application_date)からのエポック秒による経過時間を計算し、顧客ID(customer_id)、売上日、会員申込日とともに10件表示せよ(なお、sales_ymdは数値、application_dateは文字列でデータを保持している点に注意)。なお、時間情報は保有していないため各日付は0時0分0秒を表すものとする。 |
|
import pandas as pd
df_tmp = df_receipt[['sales_ymd']].copy()
df_tmp['sales_ymd'] = pd.to_datetime(df_tmp['sales_ymd'].astype('str'))
df_tmp['elapsed_days'] = df_tmp['sales_ymd'].apply(lambda x:x.weekday())
df_tmp['monday'] = \
df_tmp['sales_ymd'].apply(lambda x: x - relativedelta(days=x.weekday()))
df_tmp.head(10) | code_generation | 73 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上日(sales_ymd)に対し、当該週の月曜日からの経過日数を計算し、売上日、直前の月曜日付とともに10件表示せよ(sales_ymdは数値でデータを保持している点に注意)。 |
|
import pandas as pd
df_customer.sample(frac=0.01).head(10) | code_generation | 74 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)からランダムに1%のデータを抽出し、先頭から10件表示せよ。 |
|
import pandas as pd
# sklearn.model_selection.train_test_splitを使用した例
_, df_tmp = train_test_split(df_customer, test_size=0.1,
stratify=df_customer['gender_cd'])
df_tmp.groupby('gender_cd').agg({'customer_id' : 'count'}) | code_generation | 75 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)から性別コード(gender_cd)の割合に基づきランダムに10%のデータを層化抽出し、性別コードごとに件数を集計せよ。 |
|
import pandas as pd
df_sales_amount = df_receipt.groupby('customer_id'). \
agg({'amount':'sum'}).reset_index()
df_sales_amount['log_sum_amount'] = np.log(df_sales_amount['amount'] + 0.5)
df_sales_amount['log_sum_amount_ss'] = preprocessing.scale(df_sales_amount['log_sum_amount'])
df_sales_amount.query('abs(log_sum_amount_ss) > 3').head(10) | code_generation | 76 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上金額を顧客単位に合計し、合計した売上金額の外れ値を抽出せよ。なお、外れ値は売上金額合計を対数化したうえで平均と標準偏差を計算し、その平均から3σを超えて離れたものとする(自然対数と常用対数のどちらでも可)。結果は10件表示せよ。 |
|
import pandas as pd
df_sales_amount = df_receipt.query('not customer_id.str.startswith("Z")',
engine='python'). \
groupby('customer_id'). \
agg({'amount':'sum'}).reset_index()
pct25 = np.percentile(df_sales_amount['amount'], q=25)
pct75 = np.percentile(df_sales_amount['amount'], q=75)
iqr = pct75 - pct25
amount_low = pct25 - (iqr * 1.5)
amount_hight = pct75 + (iqr * 1.5)
df_sales_amount.query('amount < @amount_low or @amount_hight < amount').head(10) | code_generation | 77 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)の売上金額(amount)を顧客単位に合計し、合計した売上金額の外れ値を抽出せよ。ただし、顧客IDが"Z"から始まるのものは非会員を表すため、除外して計算すること。なお、ここでは外れ値を第1四分位と第3四分位の差であるIQRを用いて、「第1四分位数-1.5×IQR」を下回るもの、または「第3四分位数+1.5×IQR」を超えるものとする。結果は10件表示せよ。 |
|
import pandas as pd
df_product.isnull().sum() | code_generation | 78 | MIT | datascience_100_knocks_python | pandasを用いて商品データ(df_product)の各項目に対し、欠損数を確認せよ。 |
|
import pandas as pd
df_product_1 = df_product.copy()
df_product_1.dropna(inplace=True)
print('削除前:', len(df_product))
print('削除後:', len(df_product_1)) | code_generation | 79 | MIT | datascience_100_knocks_python | pandasを用いて商品データ(df_product)のいずれかの項目に欠損が発生しているレコードを全て削除した新たな商品データを作成せよ。なお、削除前後の件数を表示させ、079で確認した件数だけ減少していることも確認すること。 |
|
import pandas as pd
# コード例1(Pandasのfillna)
df_product_2 = df_product.fillna({
'unit_price':np.round(np.nanmean(df_product['unit_price'])),
'unit_cost':np.round(np.nanmean(df_product['unit_cost']))})
df_product_2.isnull().sum()
# コード例2(scikit-learnのSimpleImputer)
imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')
imp_values = imp_mean.fit_transform(df_product[['unit_price', 'unit_cost']])
df_product_2 = df_product.copy()
df_product_2[['unit_price', 'unit_cost']] = imp_values.round()
df_product_2.isnull().sum() | code_generation | 80 | MIT | datascience_100_knocks_python | pandasを用いて単価(unit_price)と原価(unit_cost)の欠損値について、それぞれの平均値で補完した新たな商品データを作成せよ。なお、平均値については1円未満を丸めること(四捨五入または偶数への丸めで良い)。補完実施後、各項目について欠損が生じていないことも確認すること。 |
|
import pandas as pd
# コード例1(Pandasのfillna)
df_product_3 = df_product.fillna({
'unit_price':np.round(np.nanmedian(df_product['unit_price'])),
'unit_cost':np.round(np.nanmedian(df_product['unit_cost']))})
df_product_3.isnull().sum()
# コード例2(scikit-learnのSimpleImputer)
imp_mean = SimpleImputer(missing_values=np.nan, strategy='median')
imp_values = imp_mean.fit_transform(df_product[['unit_price', 'unit_cost']])
df_product_3 = df_product.copy()
df_product_3[['unit_price', 'unit_cost']] = imp_values.round()
df_product_3.isnull().sum() | code_generation | 81 | MIT | datascience_100_knocks_python | pandasを用いて単価(unit_price)と原価(unit_cost)の欠損値について、それぞれの中央値で補完した新たな商品データを作成せよ。なお、中央値については1円未満を丸めること(四捨五入または偶数への丸めで良い)。補完実施後、各項目について欠損が生じていないことも確認すること。 |
|
import pandas as pd
# コード例1
df_tmp = (df_product.groupby('category_small_cd')
.agg(median_price=('unit_price', 'median'),
median_cost=('unit_cost', 'median')).reset_index())
df_product_4 = pd.merge(df_product, df_tmp, how='inner', on='category_small_cd')
df_product_4['unit_price'] = df_product_4[['unit_price', 'median_price']]. \
apply(lambda x: np.round(x[1]) if np.isnan(x[0]) else x[0], axis=1)
df_product_4['unit_cost'] = df_product_4[['unit_cost', 'median_cost']]. \
apply(lambda x: np.round(x[1]) if np.isnan(x[0]) else x[0], axis=1)
df_product_4.isnull().sum()
# コード例2(maskの活用)
df_tmp = (df_product.groupby('category_small_cd')
.agg(median_price=('unit_price', 'median'),
median_cost=('unit_cost', 'median')).reset_index())
df_product_4 = df_product.merge(df_tmp, how='inner', on='category_small_cd')
df_product_4['unit_price'] = (df_product_4['unit_price']
.mask(df_product_4['unit_price'].isnull(),
df_product_4['median_price'].round()))
df_product_4['unit_cost'] = (df_product_4['unit_cost']
.mask(df_product_4['unit_cost'].isnull(),
df_product_4['median_cost'].round()))
df_product_4.isnull().sum()
# コード例3(fillna、transformの活用)
df_product_4 = df_product.copy()
for x in ['unit_price', 'unit_cost']:
df_product_4[x] = (df_product_4[x]
.fillna(df_product_4.groupby('category_small_cd')[x]
.transform('median')
.round()))
df_product_4.isnull().sum() | code_generation | 82 | MIT | datascience_100_knocks_python | pandasを用いて単価(unit_price)と原価(unit_cost)の欠損値について、各商品のカテゴリ小区分コード(category_small_cd)ごとに算出した中央値で補完した新たな商品データを作成せよ。なお、中央値については1円未満を丸めること(四捨五入または偶数への丸めで良い)。補完実施後、各項目について欠損が生じていないことも確認すること。 |
|
import pandas as pd
df_receipt_2019 = df_receipt.query('20190101 <= sales_ymd <= 20191231') \
.groupby('customer_id') \
.agg(amount_2019=('amount', 'sum')) \
.reset_index()
df_receipt_all = df_receipt.groupby('customer_id')\
.agg(amount_all=('amount', 'sum')) \
.reset_index()
df_sales_rate = df_customer[['customer_id']] \
.merge(df_receipt_2019, how='left', on='customer_id') \
.merge(df_receipt_all, how='left', on='customer_id')
df_sales_rate['amount_2019'] = df_sales_rate['amount_2019'].fillna(0)
df_sales_rate['amount_all'] = df_sales_rate['amount_all'].fillna(0)
df_sales_rate['amount_rate'] = \
df_sales_rate[['amount_2019','amount_all']] \
.apply(lambda x: 0 if x[0] == 0 else x[0] / x[1], axis=1)
df_sales_rate['amount_rate'] = df_sales_rate['amount_rate'].fillna(0)
df_sales_rate.query('amount_rate > 0').head(10) | code_generation | 83 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)の全顧客に対して全期間の売上金額に占める2019年売上金額の割合を計算し、新たなデータを作成せよ。ただし、売上実績がない場合は0として扱うこと。そして計算した割合が0超のものを抽出し、結果を10件表示せよ。また、作成したデータに欠損が存在しないことを確認せよ。 |
|
import pandas as pd
df_geocode_1 = df_geocode.groupby('postal_cd') \
.agg(m_longitude=('longitude', 'mean'),
m_latitude=('latitude', 'mean')).reset_index()
df_customer_1 = pd.merge(df_customer, df_geocode_1,
how='inner', on='postal_cd')
df_customer_1.head(10) | code_generation | 84 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)の全顧客に対し、郵便番号(postal_cd)を用いてジオコードデータ(df_geocode)を紐付け、新たな顧客データを作成せよ。ただし、1つの郵便番号(postal_cd)に複数の経度(longitude)、緯度(latitude)情報が紐づく場合は、経度(longitude)、緯度(latitude)の平均値を算出して使用すること。また、作成結果を確認するために結果を10件表示せよ。 |
|
import pandas as pd
# コード例1
def calc_distance(x1, y1, x2, y2):
distance = 6371 * math.acos(math.sin(math.radians(x1))
* math.sin(math.radians(x2))
+ math.cos(math.radians(x1))
* math.cos(math.radians(x2))
* math.cos(math.radians(y1) - math.radians(y2)))
return distance
df_tmp = pd.merge(df_customer_1, df_store,
how='inner',
left_on='application_store_cd',
right_on='store_cd') \
.rename(columns={'address_x':'customer_address',
'address_y':'store_address'})
df_tmp['distance'] = df_tmp[['m_latitude',
'm_longitude',
'latitude',
'longitude']] \
.apply(lambda x: calc_distance(x[0], x[1], x[2], x[3]),
axis=1)
df_tmp[['customer_id', 'customer_address',
'store_address', 'distance']].head(10)
# コード例2
def calc_distance_numpy(x1, y1, x2, y2):
x1_r = np.radians(x1)
x2_r = np.radians(x2)
y1_r = np.radians(y1)
y2_r = np.radians(y2)
return 6371 * np.arccos(np.sin(x1_r) * np.sin(x2_r)
+ np.cos(x1_r) * np.cos(x2_r)
* np.cos(y1_r - y2_r))
df_tmp = df_customer_1.merge(df_store,
how='inner',
left_on='application_store_cd',
right_on='store_cd') \
.rename(columns={'address_x':'customer_address',
'address_y':'store_address'})
df_tmp['distance'] = calc_distance_numpy(df_tmp['m_latitude'],
df_tmp['m_longitude'],
df_tmp['latitude'],
df_tmp['longitude'])
df_tmp[['customer_id', 'customer_address',
'store_address', 'distance']].head(10) | code_generation | 85 | MIT | datascience_100_knocks_python | pandasを用いて緯度経度つき顧客データに対し、会員申込店舗コード(application_store_cd)をキーに店舗データ(df_store)と結合せよ。そして申込み店舗の緯度(latitude)・経度情報(longitude)と顧客住所(address)の緯度・経度を用いて申込み店舗と顧客住所の距離(単位:km)を求め、顧客ID(customer_id)、顧客住所(address)、店舗住所(address)とともに表示せよ。計算式は以下の簡易式で良いものとするが、その他精度の高い方式を利用したライブラリを利用してもかまわない。結果は10件表示せよ。
緯度(ラジアン):ϕ経度(ラジアン):λ距離L=6371∗arccos(sinϕ1∗sinϕ2cosϕ1∗cosϕ2∗cos(λ1−λ2)) |
|
import pandas as pd
df_receipt_tmp = df_receipt.groupby('customer_id') \
.agg(sum_amount=('amount','sum')).reset_index()
df_customer_u = pd.merge(df_customer, df_receipt_tmp,
how='left',
on='customer_id')
df_customer_u['sum_amount'] = df_customer_u['sum_amount'].fillna(0)
df_customer_u = df_customer_u.sort_values(['sum_amount', 'customer_id'],
ascending=[False, True])
df_customer_u.drop_duplicates(subset=['customer_name', 'postal_cd'],
keep='first', inplace=True)
print('df_customer_cnt:', len(df_customer),
'df_customer_u_cnt:', len(df_customer_u),
'diff:', len(df_customer) - len(df_customer_u)) | code_generation | 86 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)では、異なる店舗での申込みなどにより同一顧客が複数登録されている。名前(customer_name)と郵便番号(postal_cd)が同じ顧客は同一顧客とみなして1顧客1レコードとなるように名寄せした名寄顧客データを作成し、顧客データの件数、名寄顧客データの件数、重複数を算出せよ。ただし、同一顧客に対しては売上金額合計が最も高いものを残し、売上金額合計が同一もしくは売上実績がない顧客については顧客ID(customer_id)の番号が小さいものを残すこととする。 |
|
import pandas as pd
df_customer_n = pd.merge(df_customer,
df_customer_u[['customer_name',
'postal_cd', 'customer_id']],
how='inner', on =['customer_name', 'postal_cd'])
df_customer_n.rename(columns={'customer_id_x':'customer_id',
'customer_id_y':'integration_id'}, inplace=True)
print('ID数の差', len(df_customer_n['customer_id'].unique())
- len(df_customer_n['integration_id'].unique())) | code_generation | 87 | MIT | datascience_100_knocks_python | pandasを用いて作成したデータを元に、顧客データに統合名寄IDを付与したデータを作成せよ。ただし、統合名寄IDは以下の仕様で付与するものとする。
重複していない顧客:顧客ID(customer_id)を設定
重複している顧客:前設問で抽出したレコードの顧客IDを設定
顧客IDのユニーク件数と、統合名寄IDのユニーク件数の差も確認すること。 |
|
import pandas as pd
df_sales_customer = df_receipt.groupby('customer_id') \
.agg({'amount':sum}).reset_index()
df_sales_customer = df_sales_customer.query('amount > 0')
df_tmp = pd.merge(df_customer, df_sales_customer['customer_id'],
how='inner', on='customer_id')
df_train, df_test = train_test_split(df_tmp, test_size=0.2, random_state=71)
print('学習データ割合: ', len(df_train) / len(df_tmp))
print('テストデータ割合: ', len(df_test) / len(df_tmp)) | code_generation | 88 | MIT | datascience_100_knocks_python | pandasを用いて売上実績がある顧客を、予測モデル構築のため学習用データとテスト用データに分割したい。それぞれ8:2の割合でランダムにデータを分割せよ。 |
|
import pandas as pd
# コード例1(自作関数)
df_ts_amount = df_receipt[['sales_ymd', 'amount']].copy()
df_ts_amount['sales_ym'] = df_ts_amount['sales_ymd'].astype('str').str[0:6]
df_ts_amount = df_ts_amount.groupby('sales_ym') \
.agg({'amount':'sum'}).reset_index()
# 長期間データに対する多数のデータセットもループなどで処理できるように関数化
def split_data(df, train_size, test_size, slide_window, start_point):
train_start = start_point * slide_window
test_start = train_start + train_size
return df[train_start:test_start], df[test_start:test_start + test_size]
df_train_1, df_test_1 = split_data(df_ts_amount, train_size=12,
test_size=6, slide_window=6, start_point=0)
df_train_2, df_test_2 = split_data(df_ts_amount, train_size=12,
test_size=6, slide_window=6, start_point=1)
df_train_3, df_test_3 = split_data(df_ts_amount, train_size=12,
test_size=6, slide_window=6, start_point=2)
# df_train_2とdf_train_3の表示は割愛
df_train_1
# df_test_2とdf_test_3の表示は割愛
df_test_1
# コード例2(scikit-learnのTimeSeriesSplit)
tscv = TimeSeriesSplit(gap=0, max_train_size=12, n_splits=3, test_size=6)
# TimeSeriesSplitは最新のデータが使われるように分割されるが、
# SQL、Rの解答例と同じとなるようにデータ期間を調整
# できる限り最新データを使うようにするなら不要
df_ts_amount = df_ts_amount.query('sales_ym <= "201906"')
series_list = []
for train_index, test_index in tscv.split(df_ts_amount):
series_list.append((df_ts_amount.loc[train_index],
df_ts_amount.loc[test_index]))
df_train_1, df_test_1 = series_list[0]
df_train_2, df_test_2 = series_list[1]
df_train_3, df_test_3 = series_list[2]
# df_train_2とdf_train_3の表示は割愛
df_train_1
# df_test_2とdf_test_3の表示は割愛
df_test_1 | code_generation | 89 | MIT | datascience_100_knocks_python | pandasを用いてレシート明細データ(df_receipt)は2017年1月1日〜2019年10月31日までのデータを有している。売上金額(amount)を月次で集計し、学習用に12ヶ月、テスト用に6ヶ月の時系列モデル構築用データを3セット作成せよ。 |
|
import pandas as pd
df_tmp = df_receipt.groupby('customer_id').agg({'amount':'sum'}).reset_index()
df_tmp = pd.merge(df_customer, df_tmp, how='left', on='customer_id')
df_tmp['is_buy_flag'] = np.where(df_tmp['amount'].isnull(), 0, 1)
rs = RandomUnderSampler(random_state=71)
df_down_sampling, _ = rs.fit_resample(df_tmp, df_tmp.is_buy_flag)
print('0の件数', len(df_down_sampling.query('is_buy_flag == 0')))
print('1の件数', len(df_down_sampling.query('is_buy_flag == 1'))) | code_generation | 90 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)の各顧客に対し、売上実績がある顧客数と売上実績がない顧客数が1:1となるようにアンダーサンプリングで抽出せよ。 |
|
import pandas as pd
df_gender_std = df_customer[['gender_cd', 'gender']].drop_duplicates()
df_customer_std = df_customer.drop(columns='gender')
# データの内容確認
df_customer_std.head(3)
# データの内容確認
df_gender_std.head(3) | code_generation | 91 | MIT | datascience_100_knocks_python | pandasを用いて顧客データ(df_customer)の性別について、第三正規形へと正規化せよ。 |
|
import pandas as pd
df_product_full = pd.merge(df_product, df_category[['category_small_cd',
'category_major_name',
'category_medium_name',
'category_small_name']],
how = 'inner', on = 'category_small_cd')
# データの内容確認
df_product_full.head(3) | code_generation | 92 | MIT | datascience_100_knocks_python | pandasを用いて商品データ(df_product)では各カテゴリのコード値だけを保有し、カテゴリ名は保有していない。カテゴリデータ(df_category)と組み合わせて非正規化し、カテゴリ名を保有した新たな商品データを作成せよ。 |
|
import pandas as pd
# コード例1
df_product_full.to_csv('./data/P_df_product_full_UTF-8_header.csv',
encoding='UTF-8', index=False)
# コード例2(BOM付きでExcelの文字化けを防ぐ)
df_product_full.to_csv('./data/P_df_product_full_UTF-8BOM_header.csv',
encoding='utf_8_sig', index=False) | code_generation | 93 | MIT | datascience_100_knocks_python | pandasを用いてカテゴリ名付き商品データを以下の仕様でファイル出力せよ。
ファイル形式:csv
ヘッダ有無:有り
文字エンコーディング:UTF-8
ファイル出力先:./data |
|
import pandas as pd
df_product_full.to_csv('./data/P_df_product_full_CP932_header.csv',
encoding='CP932', index=False) | code_generation | 94 | MIT | datascience_100_knocks_python | pandasを用いてカテゴリ名付き商品データを以下の仕様でファイル出力せよ。
ファイル形式:csv
ヘッダ有無:有り
文字エンコーディング:CP932
ファイル出力先:./data |
|
import pandas as pd
df_product_full.to_csv('./data/P_df_product_full_UTF-8_noh.csv',
header=False, encoding='UTF-8', index=False) | code_generation | 95 | MIT | datascience_100_knocks_python | pandasを用いてpandasを用いてカテゴリ名付き商品データを以下の仕様でファイル出力せよ。
ファイル形式:csv
ヘッダ有無:無し
文字エンコーディング:UTF-8
ファイル出力先:./data |
|
import pandas as pd
df_product_full = pd.read_csv('./data/P_df_product_full_UTF-8_header.csv',
dtype={'category_major_cd':str,
'category_medium_cd':str,
'category_small_cd':str},
encoding='UTF-8')
df_product_full.head(3) | code_generation | 96 | MIT | datascience_100_knocks_python | pandasを用いて作成した以下形式のファイルを読み込み、データを3件を表示させて正しく取り込まれていることを確認せよ。
ファイル形式:csv
ヘッダ有無:有り
文字エンコーディング:UTF-8 |
|
import pandas as pd
# コード例1(後から項目名をつける)
df_product_full = pd.read_csv('../data/P_df_product_full_UTF-8_noh.csv',
dtype={1:str,
2:str,
3:str},
encoding='UTF-8', header=None)
df_product_full.columns = ['product_cd','category_major_cd',
'category_medium_cd', 'category_small_cd',
'unit_price','unit_cost','category_major_name',
'category_medium_name', 'category_small_name']
df_product_full.head(3)
# コード例2(先に項目名を定義する)
c_names = ['product_cd','category_major_cd','category_medium_cd',
'category_small_cd','unit_price','unit_cost',
'category_major_name','category_medium_name','category_small_name']
df_product_full = pd.read_csv('../data/P_df_product_full_UTF-8_noh.csv',
names=c_names,
dtype={'category_major_cd':str,
'category_medium_cd':str,
'category_small_cd':str},
encoding='UTF-8', header=None)
df_product_full.head(3) | code_generation | 97 | MIT | datascience_100_knocks_python | pandasを用いて作成した以下形式のファイルを読み込み、データを3件を表示させて正しく取り込まれていることを確認せよ。
ファイル形式:csv
ヘッダ有無:無し
文字エンコーディング:UTF-8 |
|
import pandas as pd
df_product_full.to_csv('../data/P_df_product_full_UTF-8_header.tsv',
sep='\t', encoding='UTF-8', index=False) | code_generation | 98 | MIT | datascience_100_knocks_python | pandasを用いて作成したカテゴリ名付き商品データを以下の仕様でファイル出力せよ。
ファイル形式:tsv
ヘッダ有無:有り
文字エンコーディング:UTF-8
出力先:./data |
|
import pandas as pd
# コード例1(read_table)
df_product_full = pd.read_table('../data/P_df_product_full_UTF-8_header.tsv',
dtype={'category_major_cd':str,
'category_medium_cd':str,
'category_small_cd':str},
encoding='UTF-8')
df_product_full.head(3)
# コード例2(read_csv)
df_product_full = pd.read_csv('../data/P_df_product_full_UTF-8_header.tsv',
dtype={'category_major_cd':str,
'category_medium_cd':str,
'category_small_cd':str},
sep='\t', encoding='UTF-8')
df_product_full.head(3) | code_generation | 99 | MIT | datascience_100_knocks_python | pandasを用いて作成した以下形式のファイルを読み込み、データを3件を表示させて正しく取り込まれていることを確認せよ。
ファイル形式:tsv
ヘッダ有無:有り
文字エンコーディング:UTF-8 |
Update:
指示タスクの内訳としてはコード生成(code_generation)が1050レコード、コードの挙動確認(check_code_behavor)が150レコード、コードのバグ修正(code_fix)が4000レコードになります。 詳細な内訳は以下の通りになります。
個々のデータのライセンスは収集元のライセンスに従うため、データセット全体では混合ライセンスになります。 また、データ自体にライセンスが明記されておらず個別に権利者に言語モデル学習用途でデータセットへの掲載許諾を取ったデータに関しては AmenokakuCode Licence というライセンスを付与しています。このライセンスは、言語モデルでの学習用途に限り自由にデータを利用することを許可するものになります(そのため、データ自体を販売したり、配布することは認めていません)。
データセットについては、商用利用可能なプログラミング学習コンテンツを見つけたら今後随時追加していきたいと思います。
もし、有益なコンテンツを見つけたり、自身で作成した学習コンテンツを提供しても良いという方がおりましたら是非ご連絡下さい。
Amenokaku は古事記に登場する天迦久神(あめのかくのかみ)という鹿の神様の名前を参考にしました。