id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
9745155
# USAGE # python /home/nmorales/cxgn/DroneImageScripts/ImageProcess/RemoveBackground.py --image_path /folder/mypic.png --outfile_path /export/mychoppedimages/outimage.png # import the necessary packages import argparse import imutils import cv2 import numpy as np import math # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image_path", required=True, help="image path") ap.add_argument("-o", "--outfile_path", required=True, help="file path directory where the output will be saved") ap.add_argument("-t", "--lower_threshold", required=True, help="lower threshold value to remove from image") ap.add_argument("-l", "--upper_threshold", required=True, help="upper threshold value to remove from image") args = vars(ap.parse_args()) input_image = args["image_path"] outfile_path = args["outfile_path"] upper_thresh = args["upper_threshold"] lower_thresh = args["lower_threshold"] src = cv2.imread(input_image, cv2.IMREAD_GRAYSCALE) th, dst = cv2.threshold(src, int(float(lower_thresh)), int(float(upper_thresh)), cv2.THRESH_TOZERO) #cv2.imshow("Result", dst) cv2.imwrite(outfile_path, dst) #cv2.waitKey(0)
StarcoderdataPython
11367794
<reponame>tdiprima/code class itemproperty(object): def __init__(self, fget=None, fset=None, fdel=None, doc=None): if doc is None and fget is not None and hasattr(fget, "__doc__"): doc = fget.__doc__ self._get = fget self._set = fset self._del = fdel self.__doc__ = doc def __get__(self, instance, owner): if instance is None: return self else: return bounditemproperty(self, instance) def __set__(self, instance, value): raise AttributeError("can't set attribute") def __delete__(self, instance): raise AttributeError("can't delete attribute") def getter(self, fget): return itemproperty(fget, self._set, self._del, self.__doc__) def setter(self, fset): return itemproperty(self._get, fset, self._del, self.__doc__) def deleter(self, fdel): return itemproperty(self._get, self._set, fdel, self.__doc__) class bounditemproperty(object): def __init__(self, item_property, instance): self.__item_property = item_property self.__instance = instance def __getitem__(self, key): fget = self.__item_property._get if fget is None: raise AttributeError("unreadable attribute item") return fget(self.__instance, key) def __setitem__(self, key, value): fset = self.__item_property._set if fset is None: raise AttributeError("can't set attribute item") fset(self.__instance, key, value) def __delitem__(self, key): fdel = self.__item_property._del if fdel is None: raise AttributeError("can't delete attribute item") fdel(self.__instance, key) if __name__ == "__main__": class Element(object): def __init__(self, tag, value=None): self.tag = tag self.value = value self.children = {} @itemproperty def xpath(self, path): """Get or set the value at a relative path.""" path = path.split('/') element = self for tag in path: if tag in element.children: element = element.children[tag] else: raise KeyError('path does not exist') return element.value @xpath.setter def xpath(self, path, value): path = path.split('/') element = self for tag in path: element = element.children.setdefault(tag, Element(tag)) element.value = value @xpath.deleter def xpath(self, path): path = path.split('/') element = self for tag in path[:-1]: if tag in element.children: element = element.children[tag] else: raise KeyError('path does not exist') tag = path[-1] if tag in element.children: del element.children[tag] else: raise KeyError('path does not exist') tree = Element('root') tree.xpath['unladen/swallow'] = 'african' assert tree.xpath['unladen/swallow'] == 'african' assert tree.children['unladen'].xpath['swallow'] == 'african' assert tree.children['unladen'].children['swallow'].value == 'african' tree.xpath['unladen/swallow'] = 'european' assert tree.xpath['unladen/swallow'] == 'european' assert len(tree.children) == 1 assert len(tree.children['unladen'].children) == 1 tree.xpath['unladen/swallow/airspeed'] = 42 assert tree.xpath['unladen/swallow'] == 'european' assert tree.xpath['unladen/swallow/airspeed'] == 42 del tree.xpath['unladen/swallow'] assert 'swallow' not in tree.children['unladen'].children try: tree.xpath['unladen/swallow/airspeed'] except KeyError: pass else: assert False
StarcoderdataPython
6610117
<filename>bbcprc/old/files.py import contextlib import os def with_suffix(root, suffix=None): for f in os.listdir(root): if not suffix or f.endswith(suffix): yield os.path.join(root, f) @contextlib.contextmanager def delete_on_fail(fname, mode='wb', open=open, delete=True): with open(fname, mode) as fp: try: yield fp except Exception: if delete: try: os.remove(fname) except Exception: pass raise
StarcoderdataPython
11207087
# Copyright 2022 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module containing the different models available in the lightweightMMM lib. Currently this file contains a main model with three possible options for processing the media data. Which essentially grants the possibility of building three different models. - Adstock - Hill-Adstock - Carryover """ from typing import Any, Callable, Mapping, Optional import frozendict import jax.numpy as jnp import numpyro from numpyro import distributions as dist from lightweight_mmm import media_transforms def transform_adstock(media_data: jnp.ndarray, normalise: bool = True) -> jnp.ndarray: """Transforms the input data with the adstock function and exponent. Args: media_data: Media data to be transformed. normalise: Whether to normalise the output values. Returns: The transformed media data. """ with numpyro.plate("lag_weight_plate", media_data.shape[1]): lag_weight = numpyro.sample("lag_weight", dist.Beta(concentration1=2., concentration0=1.)) with numpyro.plate("exponent_plate", media_data.shape[1]): exponent = numpyro.sample("exponent", dist.Beta(concentration1=9., concentration0=1.)) adstock = media_transforms.adstock( data=media_data, lag_weight=lag_weight, normalise=normalise) return media_transforms.apply_exponent_safe(data=adstock, exponent=exponent) def transform_hill_adstock(media_data: jnp.ndarray, normalise: bool = True) -> jnp.ndarray: """Transforms the input data with the adstock and hill functions. Args: media_data: Media data to be transformed. normalise: Whether to normalise the output values. Returns: The transformed media data. """ with numpyro.plate("lag_weight_plate", media_data.shape[1]): lag_weight = numpyro.sample("lag_weight", dist.Beta(concentration1=2., concentration0=1.)) with numpyro.plate("half_max_effective_concentration_plate", media_data.shape[1]): half_max_effective_concentration = numpyro.sample( "half_max_effective_concentration", dist.Gamma(concentration=1., rate=1.)) with numpyro.plate("slope_plate", media_data.shape[1]): slope = numpyro.sample("slope", dist.Gamma(concentration=1., rate=1.)) return media_transforms.hill( data=media_transforms.adstock( data=media_data, lag_weight=lag_weight, normalise=normalise), half_max_effective_concentration=half_max_effective_concentration, slope=slope) def transform_carryover(media_data: jnp.ndarray, number_lags: int = 13) -> jnp.ndarray: """Transforms the input data with the carryover function and exponent. Args: media_data: Media data to be transformed. number_lags: Number of lags for the carryover function. Returns: The transformed media data. """ with numpyro.plate("ad_effect_retention_rate_plate", media_data.shape[1]): ad_effect_retention_rate = numpyro.sample( "ad_effect_retention_rate", dist.Beta(concentration1=1., concentration0=1.)) with numpyro.plate("peak_effect_delay_plate", media_data.shape[1]): peak_effect_delay = numpyro.sample("peak_effect_delay", dist.HalfNormal(scale=2.)) with numpyro.plate("exponent_plate", media_data.shape[1]): exponent = numpyro.sample("exponent", dist.Beta(concentration1=9., concentration0=1.)) carryover = media_transforms.carryover( data=media_data, ad_effect_retention_rate=ad_effect_retention_rate, peak_effect_delay=peak_effect_delay, number_lags=number_lags) return media_transforms.apply_exponent_safe(data=carryover, exponent=exponent) def media_mix_model(media_data: jnp.ndarray, target_data: jnp.ndarray, cost_prior: jnp.ndarray, degrees_seasonality: int, frequency: int, transform_function: Callable[[jnp.array], jnp.array], transform_kwargs: Mapping[str, Any] = frozendict.frozendict(), weekday_seasonality: bool = False, extra_features: Optional[jnp.array] = None) -> None: """Media mix model. Args: media_data: Media data to be be used in the model. target_data: Target data for the model. cost_prior: Cost prior for each of the media channels. degrees_seasonality: Number of degrees of seasonality to use. frequency: Frequency of the time span which was used to aggregate the data. Eg. if weekly data then frequency is 52. transform_function: Function to use to transform the media data in the model. Currently the following are supported: 'transform_adstock', 'transform_carryover' and 'transform_hill_adstock'. transform_kwargs: Any extra keyword arguments to pass to the transform function. For example the adstock function can take a boolean to noramlise output or not. weekday_seasonality: In case of daily data you can estimate a weekday (7) parameter. extra_features: Extra features data to include in the model. """ data_size = media_data.shape[0] intercept = numpyro.sample("intercept", dist.Normal(loc=0., scale=2.)) sigma = numpyro.sample("sigma", dist.Gamma(concentration=1., rate=1.)) beta_trend = numpyro.sample("beta_trend", dist.Normal(loc=0., scale=1.)) expo_trend = numpyro.sample("expo_trend", dist.Beta(concentration1=1., concentration0=1.)) with numpyro.plate("media_plate", media_data.shape[1]) as i: beta_media = numpyro.sample("beta_media", dist.HalfNormal(scale=cost_prior[i])) with numpyro.plate("gamma_seasonality_plate", 2): with numpyro.plate("seasonality_plate", degrees_seasonality): gamma_seasonality = numpyro.sample("gamma_seasonality", dist.Normal(loc=0., scale=1.)) if weekday_seasonality: with numpyro.plate("weekday_plate", 7): weekday = numpyro.sample("weekday", dist.Normal(loc=0., scale=.5)) weekday_series = weekday[jnp.arange(data_size) % 7] media_transformed = numpyro.deterministic( name="media_transformed", value=transform_function(media_data, **transform_kwargs)) seasonality = media_transforms.calculate_seasonality( number_periods=data_size, degrees=degrees_seasonality, frequency=frequency, gamma_seasonality=gamma_seasonality) # expo_trend is B(1, 1) so that the exponent on time is in [.5, 1.5]. prediction = ( intercept + beta_trend * jnp.arange(data_size) ** (expo_trend + 0.5) + seasonality + media_transformed.dot(beta_media)) if extra_features is not None: with numpyro.plate("extra_features_plate", extra_features.shape[1]): beta_extra_features = numpyro.sample("beta_extra_features", dist.Normal(loc=0., scale=1.)) prediction += extra_features.dot(beta_extra_features) if weekday_seasonality: prediction += weekday_series mu = numpyro.deterministic(name="mu", value=prediction) numpyro.sample( name="target", fn=dist.Normal(loc=mu, scale=sigma), obs=target_data)
StarcoderdataPython
24685
<gh_stars>1-10 import gzip import numpy as np import os import pandas as pd import shutil import sys import tarfile import urllib import zipfile from scipy.sparse import vstack from sklearn import datasets from sklearn.externals.joblib import Memory if sys.version_info[0] >= 3: from urllib.request import urlretrieve else: from urllib import urlretrieve mem = Memory("./mycache") @mem.cache def get_higgs(num_rows=None): url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/00280/HIGGS.csv.gz' filename = 'HIGGS.csv' if not os.path.isfile(filename): urlretrieve(url, filename + '.gz') with gzip.open(filename + '.gz', 'rb') as f_in: with open(filename, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) higgs = pd.read_csv(filename) X = higgs.iloc[:, 1:].values y = higgs.iloc[:, 0].values if num_rows is not None: X = X[0:num_rows] y = y[0:num_rows] return X, y @mem.cache def get_cover_type(num_rows=None): data = datasets.fetch_covtype() X = data.data y = data.target if num_rows is not None: X = X[0:num_rows] y = y[0:num_rows] return X, y @mem.cache def get_synthetic_regression(num_rows=None): if num_rows is None: num_rows = 10000000 return datasets.make_regression(n_samples=num_rows, bias=100, noise=1.0) @mem.cache def get_year(num_rows=None): url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/00203/YearPredictionMSD.txt.zip' filename = 'YearPredictionMSD.txt' if not os.path.isfile(filename): urlretrieve(url, filename + '.zip') zip_ref = zipfile.ZipFile(filename + '.zip', 'r') zip_ref.extractall() zip_ref.close() year = pd.read_csv('YearPredictionMSD.txt', header=None) X = year.iloc[:, 1:].values y = year.iloc[:, 0].values if num_rows is not None: X = X[0:num_rows] y = y[0:num_rows] return X, y @mem.cache def get_url(num_rows=None): url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/url/url_svmlight.tar.gz' filename = 'url_svmlight.tar.gz' if not os.path.isfile(filename): urlretrieve(url, filename) tar = tarfile.open(filename, "r:gz") tar.extractall() tar.close() num_files = 120 files = ['url_svmlight/Day{}.svm'.format(day) for day in range(num_files)] data = datasets.load_svmlight_files(files) X = vstack(data[::2]) y = np.concatenate(data[1::2]) y[y < 0.0] = 0.0 if num_rows is not None: X = X[0:num_rows] y = y[0:num_rows] return X, y
StarcoderdataPython
4925091
from typing import Optional from .event import Event from .event import NONAME from .output import Output, ConsoleOutput, FileOutput class Core(Output): project: str env: str console_output: Optional[ConsoleOutput] file_output: Optional[FileOutput] """ Core 维护着日志系统的输出器(包括命令行输出器和文件输出器),保持全局配置 """ def __init__(self, opts: Optional[dict]): self.project = NONAME self.env = NONAME self.console_output = None self.file_output = None if opts is None: return if "project" in opts: self.project = str(opts["project"]) if "env" in opts: self.env = str(opts["env"]) if "console" in opts: self.console_output = ConsoleOutput(opts["console"]) if "file" in opts: self.file_output = FileOutput(opts["file"]) def append_event(self, event: Event) -> None: if self.console_output is not None: self.console_output.append_event(event) if self.file_output is not None: self.file_output.append_event(event) def create_event(self) -> Event: e = Event() e.project = self.project e.env = self.env e.output = self return e class CoreProvider(object): """ CoreProvider 封装一层 Core 为 Logger 切换 Core 成为可能 """ core: Core def get_core(self) -> Core: return self.core
StarcoderdataPython
306285
<gh_stars>10-100 class TestDemo: print('testing')
StarcoderdataPython
16705
from systems.plugins.index import BaseProvider import os class Provider(BaseProvider('task', 'upload')): def execute(self, results, params): file_path = self.get_path(self.field_file) if not os.path.exists(file_path): self.command.error("Upload task provider file {} does not exist".format(file_path)) ssh = self._get_ssh() ssh.upload(file_path, self.field_remote_path, mode = self.field_mode, owner = self.field_owner, group = self.field_group )
StarcoderdataPython
3241909
<reponame>shantanusharma/bigmler<filename>bigmler/whizzml/dispatcher.py # -*- coding: utf-8 -*- # # Copyright 2016-2020 BigML # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """BigMLer whizzml main processing Functions to process the whizzml options """ import sys import os import bigmler.utils as u from bigmler.whizzml.package import create_package from bigmler.dispatcher import SESSIONS_LOG, clear_log_files from bigmler.command import get_context COMMAND_LOG = ".bigmler_whizzml" DIRS_LOG = ".bigmler_whizzml_dir_stack" LOG_FILES = [COMMAND_LOG, DIRS_LOG, u.NEW_DIRS_LOG] SETTINGS = { "command_log": COMMAND_LOG, "sessions_log": SESSIONS_LOG, "dirs_log": DIRS_LOG} def whizzml_dispatcher(args=sys.argv[1:]): """Main processing of the parsed options for BigMLer whizzml """ # If --clear-logs the log files are cleared if "--clear-logs" in args: clear_log_files(LOG_FILES) command_args, command, api, _, resume = get_context(args, SETTINGS) # package_dir if command_args.package_dir is not None: command_args.package_dir = os.path.expanduser(command_args.package_dir) create_package(command_args, api, command, resume=resume) else: sys.exit("You must use the --package-dir flag pointing to the" " directory where the metadata.json file is. Type\n" " bigmler whizzml --help\n" " to see all the available options.")
StarcoderdataPython
6626215
# Copyright (c) 2015 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'targets': [ { 'target_name': 'test-compile-as-managed', 'type': 'executable', 'msvs_settings': { 'VCCLCompilerTool': { 'CompileAsManaged': 'true', 'ExceptionHandling': '0' # /clr is incompatible with /EHs } }, 'sources': ['compile-as-managed.cc'], }, { 'target_name': 'test-compile-as-unmanaged', 'type': 'executable', 'msvs_settings': { 'VCCLCompilerTool': { 'CompileAsManaged': 'false', } }, 'sources': ['compile-as-managed.cc'], }, ] }
StarcoderdataPython
3251813
# See https://github.com/confluentinc/confluent-kafka-python from confluent_kafka.admin import AdminClient, NewTopic app_settings = { "bootstrap.servers": "TODO", "topics": [ "topic1", "topic2", ], } a = AdminClient({"bootstrap.servers": app_settings["bootstrap.servers"]}) # Note: In a multi-cluster production scenario, it is more typical to use a replication_factor of 3 for durability. new_topics = [NewTopic(topic, num_partitions=3, replication_factor=1) for topic in app_settings["topics"]] # Call create_topics to asynchronously create topics. A dict of <topic,future> is returned. fs = a.create_topics(new_topics) # Wait for each operation to finish. for topic, f in fs.items(): try: f.result() # The result itself is None print(f"Topic {topic} created") except Exception as e: print(f"Failed to create topic {topic}: {e}")
StarcoderdataPython
4884236
<reponame>ezekielkibiego/projects254 # Generated by Django 2.2.24 on 2022-02-12 12:17 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Project', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=50)), ('image', models.ImageField(upload_to='images')), ('description', models.TextField(max_length=600)), ('techs_used', models.TextField(max_length=100, null=True)), ('url', models.URLField(null=True)), ('link', models.URLField(null=True)), ('date', models.DateTimeField(auto_now_add=True, null=True)), ], ), ]
StarcoderdataPython
6422045
<reponame>gembcior/FortressTools<filename>src/fortresstools/command/__init__.py<gh_stars>0 from .base import UnsupportedExecutor from .dir import * from .git import * from .cmake import * from .pip import * from .venv import * from .rsync import * from .svn import * from .test import *
StarcoderdataPython
6618548
<reponame>baggakunal/learning-python<filename>src/prime_number.py from math import sqrt def is_prime(num: int) -> bool: if num < 2: return False for i in range(2, int(sqrt(num)) + 1): if num % i == 0: return False return True def main(): print([n for n in range(101) if is_prime(n)]) if __name__ == '__main__': main()
StarcoderdataPython
3458579
from svbench.io_tools import * from svbench.quant_tools import * from svbench.loaders import *
StarcoderdataPython
9659937
<reponame>MaciejTe/integration # Copyright 2021 Northern.tech AS # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. "define factories from where to create namespaces" from .docker_compose_manager import ( DockerComposeStandardSetup, DockerComposeMonitorCommercialSetup, DockerComposeDockerClientSetup, DockerComposeRofsClientSetup, DockerComposeLegacyClientSetup, DockerComposeSignedArtifactClientSetup, DockerComposeShortLivedTokenSetup, DockerComposeFailoverServerSetup, DockerComposeEnterpriseSetup, DockerComposeCustomSetup, DockerComposeCompatibilitySetup, DockerComposeMTLSSetup, DockerComposeMenderClient_2_5, ) from .kubernetes_manager import KubernetesEnterpriseSetup, isK8S class ContainerManagerFactory: def getStandardSetup(self, name=None, num_clients=1): """Standard setup consisting on all core backend services and optionally clients The num_clients define how many QEMU Mender clients will be spawn. """ pass def getMonitorCommercialSetup(self, name=None, num_clients=1): """Monitor client setup consisting on all core backend services and monitor-client The num_clients define how many QEMU Mender clients will be spawn. """ pass def getDockerClientSetup(self, name=None): """Standard setup with one Docker client instead of QEMU one""" pass def getRofsClientSetup(self, name=None): """Standard setup with one QEMU Read-Only FS client instead of standard R/W""" pass def getLegacyClientSetup(self, name=None): """Setup with one Mender client v1.7""" pass def getSignedArtifactClientSetup(self, name=None): """Standard setup with pre-installed verification key in the client""" pass def getShortLivedTokenSetup(self, name=None): """Standard setup on which deviceauth has a short lived token (expire timeout = 0)""" pass def getFailoverServerSetup(self, name=None): """Setup with two servers and one client. First server (A) behaves as usual, whereas the second server (B) should not expect any clients. Client is initially set up against server A. """ pass def getEnterpriseSetup(self, name=None, num_clients=0): """Setup with enterprise versions for the applicable services""" pass def getEnterpriseSMTPSetup(self, name=None): """Enterprise setup with SMTP enabled""" pass def getCustomSetup(self, name=None): """A noop setup for tests that use custom setups It only implements teardown() for these tests to still have a way for the framework to clean after them (most importantly on errors). """ pass class DockerComposeManagerFactory(ContainerManagerFactory): def getStandardSetup(self, name=None, num_clients=1): return DockerComposeStandardSetup(name, num_clients) def getMonitorCommercialSetup(self, name=None, num_clients=0): return DockerComposeMonitorCommercialSetup(name, num_clients) def getDockerClientSetup(self, name=None): return DockerComposeDockerClientSetup(name) def getRofsClientSetup(self, name=None): return DockerComposeRofsClientSetup(name) def getLegacyClientSetup(self, name=None): return DockerComposeLegacyClientSetup(name) def getSignedArtifactClientSetup(self, name=None): return DockerComposeSignedArtifactClientSetup(name) def getShortLivedTokenSetup(self, name=None): return DockerComposeShortLivedTokenSetup(name) def getFailoverServerSetup(self, name=None): return DockerComposeFailoverServerSetup(name) def getEnterpriseSetup(self, name=None, num_clients=0): return DockerComposeEnterpriseSetup(name, num_clients) def getCompatibilitySetup(self, name=None, **kwargs): return DockerComposeCompatibilitySetup(name, **kwargs) def getMTLSSetup(self, name=None, **kwargs): return DockerComposeMTLSSetup(name, **kwargs) def getMenderClient_2_5(self, name=None, **kwargs): return DockerComposeMenderClient_2_5(name, **kwargs) def getCustomSetup(self, name=None): return DockerComposeCustomSetup(name) class KubernetesManagerFactory(ContainerManagerFactory): def getEnterpriseSetup(self, name=None, num_clients=0): return KubernetesEnterpriseSetup(name, num_clients) def getMonitorCommercialSetup(self, name=None, num_clients=0): return KubernetesEnterpriseSetup(name, num_clients) def get_factory(): if isK8S(): return KubernetesManagerFactory() else: return DockerComposeManagerFactory()
StarcoderdataPython
5128469
from .alexnet import AlexNetV1, AlexNetV2, AlexNetV3 from .resnet import ResNet from .resnet2plus1d import ResNet2Plus1d from .resnet3d import ResNet3d from .resnet3d_csn import ResNet3dCSN from .resnet3d_slowfast import ResNet3dSlowFast from .resnet3d_slowonly import ResNet3dSlowOnly from .resnet_tin import ResNetTIN from .resnet_tsm import ResNetTSM __all__ = [ 'ResNet', 'ResNet3d', 'ResNetTSM', 'ResNet2Plus1d', 'ResNet3dSlowFast', 'ResNet3dSlowOnly', 'ResNet3dCSN', 'ResNetTIN', 'AlexNetV1', 'AlexNetV2', 'AlexNetV3' ]
StarcoderdataPython
8034011
<reponame>marici/recipebook # -*- coding: utf-8 -*- ''' The MIT License Copyright (c) 2009 Marici, Inc. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' from datetime import datetime from django.conf import settings from django.core import urlresolvers, serializers from django.http import HttpResponse, Http404, HttpResponseForbidden from django.template import loader, Context, RequestContext from django.shortcuts import get_object_or_404, render_to_response from django.contrib.auth.decorators import login_required from django.contrib.sites.models import Site from maricilib.django.decorators import postmethod from maricilib.django.shortcuts import render_to_response_of_class from maricilib.django.core.paginator import Paginator from maricilib.django.apps.taskqueue.queue import get_taskqueue from maricilib.django.apps.taskqueue.tasks import SendEmailTask from recipes.models import Contest, Recipe per_page = 10 def show_current_contest_list(request, page=1): ''' 募集中のお題を表示します。募集中とは、以下のものを指します。 * contest.publised_atが現在時刻より大きい * contest.closed_atが現在時刻より小さい @param page: ページ (デフォルトは1) @context page_obj: object_listにクエリセットを含むPageオブジェクト @return: 200レスポンス (成功) ''' contests = Contest.objects.get_current_contests() page_obj = Paginator(contests, per_page).page(page) d = {'current': True, 'title': u'レシピを募集中のお題', 'page_obj': page_obj} return render_to_response('recipes/contests.html', d, RequestContext(request)) def show_closed_contest_list(request, page=1): ''' 募集が終了したお題を表示します。募集が終了したとは、以下のものを指します。 * contest.publised_atが現在時刻より小さい * contest.closed_atが現在時刻より小さい @param page: ページ (デフォルトは1) @context page_obj: object_listにクエリセットを含むPageオブジェクト @return: 200レスポンス (成功) ''' contests = Contest.objects.get_closed_contests_qs() page_obj = Paginator(contests, per_page).page(page) d = {'current': False, 'title': u'募集終了したお題', 'page_obj': page_obj} return render_to_response('recipes/contests.html', d, RequestContext(request)) def show_contest(request, contest_id=None): ''' お題の詳細を表示します。 is_publishedが現在時刻より小さいお題は表示できません。 @param page: ページ (デフォルトは1) @context contest: Contestインスタンス @context contests: 全ての募集中のお題 @return: 404レスポンス (お題が存在しないか、published_atが未来の場合) @return: 200レスポンス (成功) ''' contest = get_object_or_404(Contest, pk=contest_id) if not contest.is_published(): raise Http404 contests = Contest.objects.get_current_contests() d = {'contest': contest, 'contests': contests} if contest.is_really_finished(): award_recipes = contest.get_awarded_recipes() d['top_award_recipes'] = award_recipes[:2] d['award_recipes'] = award_recipes[2:] return render_to_response('recipes/contest.html', d, RequestContext(request)) def show_recipes(request, contest_id=None, page=1): ''' お題に対するレシピの一覧を新しい順に表示します。 対象になるのは以下のレシピです。 * recipe.contest が指定されたお題 * is_draftがFalse @param contest_id: お題ID @param page: ページ (デフォルトは1) @context page_obj: object_listにRecipeインスタンスを持つPageオブジェクト @return: 400レスポンス (お題が存在しないか、TODO: published_atが未来の場合) @return: 200レスポンス (成功) ''' contest = get_object_or_404(Contest, pk=contest_id) recipes = contest.recipe_set.filter(is_draft=False) page_obj = Paginator(recipes, per_page).page(page) links = [{'url': urlresolvers.reverse('recipes-contests-show', kwargs={'contest_id': contest.id}), 'name': contest.name}] d = {'title': u'%s に投稿されたレシピ一覧' % contest.name, 'page_obj': page_obj, 'links': links} return render_to_response('recipes/recipes.html', d, RequestContext(request)) @postmethod @login_required def submit_recipe(request, contest_id=None, recipe_id=None): ''' 指定されたIDのお題に指定されたIDのレシピを投稿します。 投稿されたレシピは、recipe.contest = contestとなります。 レシピの作成者でなければ投稿を行うことはできません。 また、既にお題にひもづいているレシピを再投稿することはできません。 @param contest_id: ContestインスタンスのID @param recipe_id: RecipeインスタンスのID @return: 200レスポンス (成功。JSONを返す) @return: 302レスポンス (ログインしていない場合。ログインページへ) @return: 403レスポンス (recipe.context != None or request.user != recipe.user の場合) @return: 404レスポンス (指定されたIDのRecipe, Contestインスタンスが存在しない場合) ''' contest = get_object_or_404(Contest, pk=contest_id) recipe = get_object_or_404(Recipe, pk=recipe_id) if recipe.user != request.user or recipe.contest: return render_to_response_of_class(HttpResponseForbidden, '403.html') recipe.contest = contest recipe.save() data = serializers.serialize('json', [recipe]) return HttpResponse(data, mimetype='application/javascript') def search_contests(request, query=None, page=1): ''' お題を検索します。 @param query: 検索文字列 @param page: 表示ページ デフォルトは1 @context page_obj: object_listに結果を含むオブジェクト @return: 200レスポンス (成功) ''' query = query or request.GET['query'] title = u'%s のコンテスト検索結果' % query queries = query.split() contests = Contest.objects.search(queries, page=page, per_page=per_page) page_obj = Paginator(contests.get('object_list'), per_page).page(page) links = [{'name': u'全体から検索', 'url': urlresolvers.reverse('gp-search', kwargs={'query': query})}] return render_to_response('recipes/contests.html', {'page_obj': page_obj, 'title': title, 'links': links}, RequestContext(request)) @postmethod @login_required def mail_recipe_template(request, contest_id=None): ''' レシピテンプレートをPOSTのalter_emailで指定されたアドレスにメールで送信します。 ログインユーザだけが行うことができます。 alter_emailの値がprofile.alter_emailと異なる場合はprofile.alter_emailを変更します。 @param contest_id: お題ID @return: 302レスポンス (ログインページへ。ログインしていない場合) @return: 404レスポンス (指定されたIDのお題が存在しない場合) @return: 200レスポンス (レシピのJSONデータを返す。成功した場合) ''' site = Site.objects.get_current() profile = request.user.get_profile() contest = get_object_or_404(Contest, pk=contest_id) if contest_id else None email = request.POST.get('alter_email', profile.alter_email) if email != profile.alter_email: profile.alter_email = email if profile.has_available_token(): profile.token_issued_at = datetime.now() else: profile.issue_recipe_token() profile.save() c = Context({'user': request.user, 'contest': contest, 'token': profile.recipe_token}) t = loader.get_template('recipes/email/recipe_template.txt') if contest: subject = u'[%s] %s へのレシピ投稿' % (site.name, contest.name) else: subject = u'[%s] レシピ投稿' % site.name body = t.render(c) task = SendEmailTask(dict(subject=subject, body=body, from_address=settings.EMAIL_FROM, to_list=[email])) get_taskqueue().send_task(task, queue_name=settings.QUEUENAME_EMAIL) json = serializers.serialize('json', []) return HttpResponse(json, mimetype='application/json')
StarcoderdataPython
6665419
<reponame>sbruch/xe-ndcg-experiments<filename>lib.py<gh_stars>1-10 import math import numpy as np import random import lightgbm as gbm class SplitConfig(object): def __init__(self, population_pct, sample_size, transformations=None): """Creates a split configuration. Args: population_pct: (float) The percentage of the original dataset to use as the population. sample_size: (int) The number of queries to sample from the population to form the split. transformations: list of `Transformation` objects to apply to sampled queries. """ self.population_pct = population_pct self.sample_size = sample_size self.transformations = transformations if self.transformations is None: self.transformations = [] class Collection(object): """Data structure that holds a collection of queries.""" def __init__(self, paths): self.features = {} self.relevances = {} for path in paths: for line in open(path, "r"): items = line.split() rel = int(items[0]) qid = int(items[1].split(":")[1]) if qid not in self.features: self.features[qid] = [] self.relevances[qid] = [] self.features[qid].append( np.array([float(s.split(':')[1]) for s in items[2:]])) self.relevances[qid].append(rel) self.qids = [x for x, _ in self.features.items()] @property def num_queries(self): return len(self.qids) def generate_splits(self, configs, params=None): """Generates splits for training and evaluation. Args: configs: list of `SplitConfig` objects. params: (dict) Parameters to pass to LightGBM.Dataset. Returns: List of `lightgbm.Dataset` objects. """ # Randomly shuffle the query IDs. random.shuffle(self.qids) # Gather query IDs for each split population. population_qids = [] lower = 0 for pct in [c.population_pct for c in configs]: upper = int(lower + pct * self.num_queries + 1) if upper >= self.num_queries: upper = self.num_queries population_qids.append(self.qids[lower:upper]) lower = upper # Sample queries to form each split. split_qids = [] for sample_size in [c.sample_size for c in configs]: split_qids.append(np.random.choice( population_qids[len(split_qids)], sample_size)) # List of datasets to return datasets = [] for qids in split_qids: # Create a deep copy of features and relevances. relevances = [np.copy(self.relevances[qid]) for qid in qids] features = [np.copy(self.features[qid]) for qid in qids] for transform in configs[len(datasets)].transformations: features, relevances = transform.apply(features, relevances) groups = [len(rels) for rels in relevances] relevances = np.concatenate(relevances) features = np.concatenate(features).reshape([len(relevances), -1]) if len(datasets) == 0: dataset = gbm.Dataset(data=features, label=relevances, group=groups, params=params, silent=True, free_raw_data=False) else: dataset = gbm.Dataset(data=features, label=relevances, group=groups, reference=datasets[0], silent=True, free_raw_data=False) datasets.append(dataset) return datasets class Transformation(object): def apply(self, features, relevances): """Applies a transformation. Args: features: A 3D ndarray. relevances: A 2D ndarray. Returns: A tuple consisting of new features and relevances. """ raise NotImplementedError class PerturbLabels(Transformation): def __init__(self, factor, dist): """Creates a `Transformation` to perturb labels. Args: factor: (float) Percentage of labels to perturb per query. dist: list of floats. The probabilities associated with each label. """ self.factor = factor self.dist = dist def apply(self, features, relevances): for idx, rels in enumerate(relevances): labels = np.random.choice(len(self.dist), len(rels), p=self.dist) v = np.random.rand(len(rels)) relevances[idx] = np.where(np.less(v, self.factor), labels, rels) return features, relevances class AugmentListByExternalNegativeSamples(Transformation): def __init__(self, factor): """ Creates a `Transformation` to augment lists by sampling negative examples from other queries. Args: factor: (float) Factor by which each list will be augmented. """ self.factor = factor def apply(self, features, relevances): extra_features = [] for idx in range(len(features)): size = int(self.factor * len(features[idx])) v = np.random.randint(0, len(features) - 1, size) indices = np.where(np.less(v, idx), v, v + 1) extras = [] for r in indices: b = np.random.randint(0, len(features[r])) extras.append(np.copy(features[r][b])) extra_features.append(extras) for idx in range(len(features)): features[idx] = np.append(features[idx], extra_features[idx]) relevances[idx] = np.append( relevances[idx], np.zeros(len(extra_features[idx]))) return features, relevances class GenerateClicks(Transformation): def __init__(self, impressions, click_prob): """ Creates a `Transformation` to generate clicks using a random ranker. Args: impressions: (int) Number of impressions per query. click_prob: list of floats. Click probability given relevance. """ self.impressions = impressions self.click_prob = click_prob def apply(self, features, relevances): _features = [] _relevances = [] for idx in range(len(features)): indices = np.arange(len(features[idx])) for _ in range(self.impressions): np.random.shuffle(indices) v = np.random.rand(len(indices)) f = [] clicked = False for i in indices: f.append(np.copy(features[idx][i])) if v[i] <= self.click_prob[relevances[idx][i]]: clicked = True break r = np.zeros(len(f)) if clicked: r[-1] = 1 _features.append(f) _relevances.append(r) return _features, _relevances class NDCG(object): def __init__(self, cutoffs): self.cutoffs = cutoffs def eval(self, preds, data): """Computes NDCG at rank cutoff. Args: preds: list of floats. data: A `lightgbm.Dataset` object. """ # Transform the relevance labels and predictions to the correct shape. relevances = [] scores = [] idx = 0 for group in data.group: relevances.append(data.label[idx:idx + group]) scores.append(preds[idx:idx + group]) idx += group ndcg_at = {} count = 0 for s, r in zip(scores, relevances): # Skip queries with no relevant documents. if sum(r) == 0: continue count += 1 sorted_by_scores = [i for _,i in sorted(zip(s,r), key=lambda p: p[0], reverse=True)] gains_scores = [pow(2, i) - 1. for i in sorted_by_scores] gains_rels = sorted(gains_scores, reverse=True) discounts = [1./math.log(i+2, 2) for i, _ in enumerate(sorted_by_scores)] for cutoff in self.cutoffs: dcg = sum([g*d for g, d in zip(gains_scores[:cutoff], discounts[:cutoff])]) max_dcg = sum([g*d for g, d in zip(gains_rels[:cutoff], discounts[:cutoff])]) if cutoff not in ndcg_at: ndcg_at[cutoff] = 0. ndcg_at[cutoff] += dcg / max_dcg results = [] for cutoff in self.cutoffs: results.append(('ndcg@{}'.format(cutoff), ndcg_at[cutoff]/count, True)) return results
StarcoderdataPython
372799
#!/usr/bin/env python3 # pylint: disable=missing-docstring,too-many-public-methods import pathlib import shutil import tempfile import time import unittest import uuid from typing import List, Optional # pylint: disable=unused-import import zmq import persizmq import persizmq.filter class TestContext: def __init__(self, base_url: str = "inproc://persizmq_test") -> None: self.url = base_url + str(uuid.uuid4()) self.context = zmq.Context() self.publisher = self.context.socket(zmq.PUB) # pylint: disable=no-member self.subscribers = [] # type: List[zmq.Socket] self.tmp_dir = None # type: Optional[pathlib.Path] def subscriber(self) -> zmq.Socket: """ Creates a new subscriber that listens to whatever the publisher of this instance publishes. The subscriber will be closed by this instance. :return: zmq subscriber """ subscriber = self.context.socket(zmq.SUB) # pylint: disable=no-member self.subscribers.append(subscriber) subscriber.setsockopt_string(zmq.SUBSCRIBE, "") # pylint: disable=no-member subscriber.connect(self.url) return subscriber def __enter__(self): self.tmp_dir = pathlib.Path(tempfile.mkdtemp()) self.publisher.bind(self.url) return self def __exit__(self, exc_type, exc_val, exc_tb): for subscriber in self.subscribers: subscriber.close() shutil.rmtree(self.tmp_dir.as_posix()) self.publisher.close() self.context.term() class TestThreadedSubscriber(unittest.TestCase): def test_operational(self): with TestContext() as ctx: with ctx.subscriber() as subscriber: thread_sub = persizmq.ThreadedSubscriber( callback=lambda msg: None, subscriber=subscriber, on_exception=lambda exc: None) # Threaded subscriber is already operational after the constructor. self.assertTrue(thread_sub.operational) with thread_sub: self.assertTrue(thread_sub.operational) # Threaded subscriber is not operational after exiting the context. self.assertFalse(thread_sub.operational) def test_a_message(self): with TestContext() as ctx: with ctx.subscriber() as subscriber: class Helper: def __init__(self): self.msg_received = None def callback(self, msg: bytes): self.msg_received = msg helper = Helper() thread_sub = persizmq.ThreadedSubscriber( callback=helper.callback, subscriber=subscriber, on_exception=lambda exc: None) with thread_sub: ctx.publisher.send(b"0001") time.sleep(0.01) self.assertEqual(b"0001", helper.msg_received) def test_exception(self): with TestContext() as ctx: with ctx.subscriber() as subscriber: def callback(msg: bytes) -> None: # pylint: disable=unused-argument raise Exception("Here I come!") exception = None def on_exception(exc): nonlocal exception exception = exc thread_sub = persizmq.ThreadedSubscriber( callback=callback, subscriber=subscriber, on_exception=on_exception) with thread_sub: ctx.publisher.send(b"0002") time.sleep(0.01) self.assertIsNotNone(exception) self.assertEqual("Here I come!", str(exception)) class TestPersistentSubscriber(unittest.TestCase): def test_no_message_received(self): with TestContext() as ctx: with ctx.subscriber() as subscriber: storage = persizmq.PersistentStorage(persistent_dir=ctx.tmp_dir.as_posix()) thread_sub = persizmq.ThreadedSubscriber( callback=storage.add_message, subscriber=subscriber, on_exception=lambda exc: None) with thread_sub: msg = storage.front() self.assertIsNone(msg) self.assertFalse(storage.pop_front()) def test_a_message(self): with TestContext() as ctx: with ctx.subscriber() as subscriber: storage = persizmq.PersistentStorage(persistent_dir=ctx.tmp_dir.as_posix()) thread_sub = persizmq.ThreadedSubscriber( callback=storage.add_message, subscriber=subscriber, on_exception=lambda exc: None) with thread_sub: ctx.publisher.send(b"1984") time.sleep(0.01) msg = storage.front() self.assertIsNotNone(msg) assert isinstance(msg, bytes) self.assertEqual(b"1984", msg) self.assertTrue(storage.pop_front()) msg = storage.front() self.assertIsNone(msg) self.assertFalse(storage.pop_front()) def test_multiple_messages(self): with TestContext() as ctx: with ctx.subscriber() as subscriber: storage = persizmq.PersistentStorage(persistent_dir=ctx.tmp_dir.as_posix()) thread_sub = persizmq.ThreadedSubscriber( callback=storage.add_message, subscriber=subscriber, on_exception=lambda exc: None) with thread_sub: # publish a message ctx.publisher.send(b"1985") time.sleep(0.01) msg = storage.front() self.assertIsNotNone(msg) assert isinstance(msg, bytes) self.assertEqual(b"1985", msg) self.assertTrue(storage.pop_front()) msg = storage.front() self.assertIsNone(msg) self.assertFalse(storage.pop_front()) # publish two in a row ctx.publisher.send(b"1986") ctx.publisher.send(b"1987") time.sleep(0.01) msg = storage.front() self.assertIsNotNone(msg) assert isinstance(msg, bytes) self.assertEqual(b"1986", msg) # ask for the same front msg = storage.front() self.assertIsNotNone(msg) assert isinstance(msg, bytes) self.assertEqual(b"1986", msg) self.assertTrue(storage.pop_front()) # publish a third one ctx.publisher.send(b"1988") time.sleep(0.01) # check the second one msg = storage.front() self.assertIsNotNone(msg) assert isinstance(msg, bytes) self.assertEqual(b"1987", msg) self.assertTrue(storage.pop_front()) # check the third one msg = storage.front() self.assertIsNotNone(msg) assert isinstance(msg, bytes) self.assertEqual(b"1988", msg) self.assertTrue(storage.pop_front()) def test_persistency(self): with TestContext() as ctx: with ctx.subscriber() as subscriber: storage = persizmq.PersistentStorage(persistent_dir=ctx.tmp_dir.as_posix()) thread_sub = persizmq.ThreadedSubscriber( callback=storage.add_message, subscriber=subscriber, on_exception=lambda exc: None) with thread_sub: # publish a message ctx.publisher.send(b"1985") time.sleep(0.01) # simulate a restart with ctx.subscriber() as subscriber: storage = persizmq.PersistentStorage(persistent_dir=ctx.tmp_dir.as_posix()) thread_sub = persizmq.ThreadedSubscriber( callback=storage.add_message, subscriber=subscriber, on_exception=lambda exc: None) with thread_sub: msg = storage.front() self.assertIsNotNone(msg) assert isinstance(msg, bytes) self.assertEqual(b"1985", msg) self.assertTrue(storage.pop_front()) msg = storage.front() self.assertIsNone(msg) self.assertFalse(storage.pop_front()) def test_order(self): with TestContext() as ctx: with ctx.subscriber() as subscriber: storage = persizmq.PersistentStorage(persistent_dir=ctx.tmp_dir.as_posix()) thread_sub = persizmq.ThreadedSubscriber( callback=storage.add_message, subscriber=subscriber, on_exception=lambda exc: None) with thread_sub: # Make sure the correct order is kept even for a lot of messages. for i in range(2000, 2020): ctx.publisher.send("{}".format(i).encode()) time.sleep(0.01) # simulate a restart with ctx.subscriber() as subscriber: storage = persizmq.PersistentStorage(persistent_dir=ctx.tmp_dir.as_posix()) thread_sub = persizmq.ThreadedSubscriber( callback=storage.add_message, subscriber=subscriber, on_exception=lambda exc: None) with thread_sub: for i in range(2000, 2020): msg = storage.front() self.assertIsNotNone(msg) assert isinstance(msg, bytes) self.assertEqual("{}".format(i).encode(), msg) self.assertTrue(storage.pop_front()) class TestFilters(unittest.TestCase): def test_that_it_works(self): # pylint: disable=too-many-statements with TestContext() as ctx: with ctx.subscriber() as subscriber: pers_dir_filter = ctx.tmp_dir / 'filter' storage = persizmq.PersistentStorage(persistent_dir=ctx.tmp_dir) thread_sub = persizmq.ThreadedSubscriber( subscriber=subscriber, callback=lambda msg: None, on_exception=lambda exc: None) thread_sub.callback = \ lambda msg: storage.add_message( persizmq.filter.MinPeriod(min_period=1, persistent_dir=pers_dir_filter)(msg)) with thread_sub: # Send two messages. ctx.publisher.send(b"3000") ctx.publisher.send(b"3001") time.sleep(0.01) # Make sure only one arrived. msg = storage.front() self.assertIsNotNone(msg) assert isinstance(msg, bytes) self.assertEqual(b"3000", msg) self.assertTrue(storage.pop_front()) msg = storage.front() self.assertIsNone(msg) # Rebuild the persistent subscriber. del storage del thread_sub storage = persizmq.PersistentStorage(persistent_dir=ctx.tmp_dir) thread_sub = persizmq.ThreadedSubscriber( subscriber=subscriber, callback=lambda msg: None, on_exception=lambda exc: None) thread_sub.callback = lambda msg: storage.add_message( persizmq.filter.MinPeriod(min_period=10, persistent_dir=pers_dir_filter)(msg)) with thread_sub: # Send one message and make sure that the last timestamp was correctly loaded # (the new message must be rejected). ctx.publisher.send(b"3002") time.sleep(0.01) msg = storage.front() self.assertIsNone(msg) thread_sub.callback = lambda msg: storage.add_message(persizmq.filter.MaxSize(max_size=1000)(msg)) # Generate a too large message and check that it is rejected. ctx.publisher.send(b"x" * 1001) time.sleep(0.01) msg = storage.front() self.assertIsNone(msg) class TestPersistentLatest(unittest.TestCase): def test_that_it_works(self): with TestContext() as ctx: with ctx.subscriber() as subscriber: persi_latest = persizmq.PersistentLatestStorage(persistent_dir=ctx.tmp_dir) thread_sub = persizmq.ThreadedSubscriber( callback=persi_latest.add_message, subscriber=subscriber, on_exception=lambda exc: None) with thread_sub: # Make sure only the newest one is kept. self.assertFalse(persi_latest.new_message) ctx.publisher.send(b"4000") time.sleep(0.01) self.assertTrue(persi_latest.new_message) ctx.publisher.send(b"4001") time.sleep(0.01) self.assertTrue(persi_latest.new_message) msg = persi_latest.message() self.assertIsNotNone(msg) assert isinstance(msg, bytes) self.assertEqual(b"4001", msg) self.assertFalse(persi_latest.new_message) # The same for lots of messages. for i in range(4010, 4020): ctx.publisher.send("{}".format(i).encode()) time.sleep(0.01) msg = persi_latest.message() self.assertIsNotNone(msg) assert isinstance(msg, bytes) self.assertEqual(b"4019", msg) self.assertFalse(persi_latest.new_message) if __name__ == '__main__': unittest.main()
StarcoderdataPython
9696920
# ai.py # # Author: <NAME> # Created On: 21 Feb 2019 import numpy as np from . import astar SEARCH_TARGET = 0 MOVE = 1 class AI: def __init__(self, player): self.player = player self.path = [] self.state = SEARCH_TARGET self.weight_self = 3 self.weight_enemy = 6 self.weight_crossroad = 3 self.map_positions = np.empty((0, 0)) self.bomb_times = np.empty((0, 0)) def __update_map_positions(self, map): if map.size != self.map_positions.shape: width, height = map.size self.map_positions = np.empty((width, height, 2)) self.map_positions[:, :, 0] = np.arange(width) \ .reshape(1, width).repeat(height, 0) self.map_positions[:, :, 1] = np.arange(height) \ .reshape(height, 1).repeat(width, 1) def __update_bomb_times(self, bombs, map): if map.size != self.bomb_times.shape: self.bomb_times = np.empty(map.size, dtype=np.int) self.bomb_times[:, :] = 1e16 # define the four diections west, east, south, north directions = np.array([(1, 0), (-1, 0), (0, 1), (0, -1)]) for bomb in bombs: pos = bomb.pos self.bomb_times[pos[0], pos[1]] = bomb.time for dir in directions: # try to spread the explosions as far as possible for delta in range(1, bomb.range): npos = pos + dir * delta # check if the position is valid, if not stop explosion # spread here if not map.is_valid(npos) or map.is_blocked(npos) or \ map.has_explosion(npos): break self.bomb_times[pos[0], pos[1]] = bomb.time def update(self, world): self.player.drop_bomb = False self.player.move[:] = 0 if self.state == MOVE: if self.path: next_pos = self.path.pop(0) if world.map.is_blocked(next_pos) or world.map.has_explosion(next_pos): self.path = [] self.state = SEARCH_TARGET next_pos = np.array(next_pos, dtype=np.int) self.player.move = next_pos - self.player.pos else: self.player.drop_bomb = True self.state = SEARCH_TARGET if self.state == SEARCH_TARGET: # init score board, each tile gets a score the maximum is chosen as # target score = np.zeros(world.map.size) # get mask of tiles which are not blocked unblock = ~world.map.blocked width, height = score.shape # create array of tile positions, create lazily self.__update_map_positions(world.map) self.__update_bomb_times(world.bombs, world.map) # calculate distances of this player to all other tiles (manhatten) self_dist = np.abs(self.map_positions - self.player.pos).sum(2) # normalize distances into interval [0,1] self_dist /= self_dist.max() # make shortest distances have greates value self_dist -= 1 self_dist *= -1 # check if there are any other players than this one if len(world.players) > 1: # calculate distances of all enemies to all other tiles enemy_dist = [] for enemy in world.players: # check if this player is not the one controlled by ai if enemy.id != self.player.id: diff = self.map_positions - enemy.pos dist = np.abs(diff).sum(2) enemy_dist.append(dist) # convert distance to numpy array enemy_dist = np.array(enemy_dist) # find element wise minimum of all player distances enemy_dist = np.min(enemy_dist, axis=0) # normalize distances into interval [0,1] enemy_dist /= enemy_dist.max() # make shortest distances have greates value enemy_dist -= 1 enemy_dist *= -1 else: # no enemies, distances are zero enemy_dist = np.zeros((width, height)) # detect how many neighbouring unblocked tiles each tile has crossroads = np.zeros((width, height)) # add +1 if left neighbour is not blocked crossroads[1:, :] += unblock[:-1, :] * 1 # add +1 if right neighbour is not blocked crossroads[:-1, :] += unblock[1:, :] * 1 # add +1 if upper neighbour is not blocked crossroads[:, 1:] += unblock[:, :-1] * 1 # add +1 if lower neighbour is not blocked crossroads[:, :-1] += unblock[:, 1:] * 1 # normalize into interval [0,1] crossroads /= 4 # calculate score as weighted sum score += self.weight_self * self_dist score += self.weight_enemy * enemy_dist score += self.weight_crossroad * crossroads # set all blocked tiles to zero score[world.map.blocked] = 0 def is_valid(node, path): return world.map.is_valid(node) and \ not world.map.is_blocked(node) and \ not world.map.has_explosion(node) and \ self.bomb_times[node[0], node[1]] - len(path) - 1 > 0 found = False iterations = 0 while not found and iterations < 10: # retrieve tile with maximum score target = np.unravel_index(np.argmax(score), score.shape) # set score to 0 score[target[0], target[1]] = 0 # search path with astar self.path = astar.search(self.player.pos, target, is_valid=is_valid) if self.path: self.state = MOVE found = True iterations += 1 if not found: print('No path found!')
StarcoderdataPython
6537889
#!/usr/bin/env python2 import random import math import copy from Spell import * class Pokemon: def __init__(self, name, baseHp, lifePerLevel, attack, attackPerLevel, baseDef, defencePerLevel, spells, elements): self.level = 1 self.exp = 0 self.name = name self.baseHp = baseHp self.lifePerLevel = lifePerLevel self.defencePerLevel = defencePerLevel self.spells = spells self.attackPerLevel = attackPerLevel self.baseDef = baseDef self.pokeid = 0 self.attack = attack self.active_pokemon = self.pokeid self.battle = None self.life = self.getMaxLife() self.username = self.name self.elements = elements def getActivePokemon(self): return self def hasAlivePokemon(self): return False def removePokemon(self, pokemon): self.active_pokemon = None def addSpell(self, spell): self.spells.append(spell) def getSpells(self): return self.spells def getSpell(self, name): for e in self.spells: if e.name == name: return e return False def expForNextLevel(self): # return 1.2 * (self.level**3) - 15 * (self.level**2) + 100 * self.level - 140 return 1.25 * (self.level**3) + 50 def gainExp(self, fromPokemon): self.addExp(self.calcGainedExp(fromPokemon)) def calcGainedExp(self, fromPokemon): return 200 * fromPokemon.level / 7 def addExp(self, exp): self.exp += exp needed = self.expForNextLevel() while self.exp >= needed: self.exp = self.exp - needed self.level += 1 self.life = self.getMaxLife() def getMaxLife(self): return self.lifePerLevel * self.level + self.baseHp def getAttack(self): return self.attackPerLevel * self.level + self.attack def getDefence(self): return self.defencePerLevel * self.level + self.baseDef def str(self): spells = "" for elem in self.spells: if len(spells) != 0: spells += ", " spells += elem.name elements = "" for elem in self.elements: if len(elements) != 0: elements += ", " elements += elem.name return "(pokeId(" + str(self.pokeid) + "), Nom(" + self.name + "), Niveau(" + str(self.level) + "), Attaque(" + str(self.getAttack()) + "), VieMax(" + str(self.getMaxLife()) + "), Defense(" + str(self.getDefence()) + "), Sorts: (" + spells + "), Exp: (" + str(self.exp) + " / " + str(self.expForNextLevel()) + "), Elements(" + elements + "))" def fight(self, spellName, defencer): spell = self.getSpell(spellName) if spell == False: return "Sort '" + spellName + "' introuvable." rep = spell.use(self, defencer) return rep[0] + self.name + " utilise " + spell.name + " (" + spell.element.name + ") et fait " + str(rep[1]) + " dommages a " + defencer.name + " (pv: " + str(defencer.life) + " / " + str(defencer.getMaxLife()) + ")" class PokemonsManager: def __init__(self): self.pokemons = [ Pokemon("ZeratoR", 140, 6, 10, 1, 5, 0.1, [ Spell("Son_Pere", 10, 90, elementsManager.get("Feu")), Spell("Mute", 15, 50, elementsManager.get("Feu")), Spell("Rend_l'argent", 50, 100, elementsManager.get("Feu")), Spell("Dailymotion_drop", 100, 100, elementsManager.get("Feu")) ], [ elementsManager.get("Feu") ]), Pokemon("Noxer", 80, 6, 5, 1, 0.5, 0.2, [ Spell("Ventre_devoreur", 30, 80, elementsManager.get("Terre")), Spell("Millenium", 50, 80, elementsManager.get("Terre")) ], [ elementsManager.get("Terre") ]), Pokemon("Furiie", 100, 4, 10, 1, 2, 0.05, [ Spell("Cri_strident", 20, 100, elementsManager.get("Eau")), Spell("League_of_legends", 100, 20, elementsManager.get("Terre")), Spell("Bisous", 20, 50, elementsManager.get("Eau")) ], [ elementsManager.get("Eau") ]), Pokemon("MisterMV", 140, 6, 9, 1, 0.1, 0.1, [ Spell("SAUCISSON", 10, 100, elementsManager.get("Terre")), Spell("Speedrun", 20, 80, elementsManager.get("Feu")), Spell("Jeu_a_la_pisse", 100, 30, elementsManager.get("Terre")) ], [ elementsManager.get("Terre") ]), Pokemon("<NAME>", 100, 5, 20, 1, 0.1, 0.1, [ Spell("LEEEEEROY_JENKINS", 5000, 10, elementsManager.get("Feu")) ], [ elementsManager.get("Feu") ]), Pokemon("AlexMog", 180, 5, 20, 1, 3, 0.5, [ Spell("Tardbecile", 30, 100, elementsManager.get("Eau")), Spell("Equilibrage_ratte", 70, 10, elementsManager.get("Eau")), Spell("Blague_de_merde", 50, 30, elementsManager.get("Eau")) ], [ elementsManager.get("Eau") ]), Pokemon("Demoneth", 160, 5, 10, 1, 4, 0.2, [ Spell("Molotov_sur_orange", 20, 50, elementsManager.get("Feu")), Spell("Live_o_maniaque", 15, 100, elementsManager.get("Feu")), Spell("La_co_marche", 100, 10, elementsManager.get("Feu")) ], [ elementsManager.get("Feu") ]) ] def getRandom(self): ret = copy.copy(self.pokemons[random.randint(0, len(self.pokemons) - 1)]) return ret def getFromName(self, name): for elem in self.pokemons: if elem.name == name: return elem return False global pokemonsManager pokemonsManager = PokemonsManager()
StarcoderdataPython
6502011
from attr import Factory, NOTHING from prettyprinter.prettyprinter import pretty_call_alt, register_pretty def is_instance_of_attrs_class(value): cls = type(value) try: cls.__attrs_attrs__ except AttributeError: return False return True def pretty_attrs(value, ctx): cls = type(value) attributes = cls.__attrs_attrs__ kwargs = [] for attribute in attributes: if not attribute.repr: continue display_attr = False if attribute.default == NOTHING: display_attr = True elif isinstance(attribute.default, Factory): default_value = ( attribute.default.factory(value) if attribute.default.takes_self else attribute.default.factory() ) if default_value != getattr(value, attribute.name): display_attr = True else: if attribute.default != getattr(value, attribute.name): display_attr = True if display_attr: kwargs.append((attribute.name, getattr(value, attribute.name))) return pretty_call_alt(ctx, cls, kwargs=kwargs) def install(): register_pretty(predicate=is_instance_of_attrs_class)(pretty_attrs)
StarcoderdataPython
11287236
# -*- coding: utf-8 -*- # Copyright (c) 2019 - 2021 Geode-solutions # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os, sys, platform if sys.version_info >= (3,8,0) and platform.system() == "Windows": for path in [x.strip() for x in os.environ['PATH'].split(';') if x]: os.add_dll_directory(path) import opengeode import opengeode_io_py_model as model_io def test_brep_cube(brep): # Number of components if brep.nb_corners() != 8: raise ValueError("[Test] Number of corners is not correct" ) if brep.nb_lines() != 12: raise ValueError("[Test] Number of lines is not correct" ) if brep.nb_surfaces() != 6: raise ValueError("[Test] Number of surfaces is not correct" ) if brep.nb_blocks() != 1: raise ValueError("[Test] Number of blocks is not correct" ) # Number of vertices and elements in components for c in brep.corners(): if c.mesh().nb_vertices() != 1: raise ValueError("[Test] Number of vertices in corners should be 1" ) for l in brep.lines(): if l.mesh().nb_vertices() != 5: raise ValueError("[Test] Number of vertices in lines should be 5" ) if l.mesh().nb_edges() != 4: raise ValueError("[Test] Number of edges in lines should be 4" ) for s in brep.surfaces(): if s.mesh().nb_vertices() != 29: raise ValueError("[Test] Number of vertices in surfaces should be 29" ) if s.mesh().nb_polygons() != 40: raise ValueError("[Test] Number of polygons in surfaces should be 40" ) for b in brep.blocks(): if b.mesh().nb_vertices() != 131: raise ValueError("[Test] Number of vertices in blocks should be 131" ) if b.mesh().nb_polyhedra() != 364: raise ValueError("[Test] Number of polyhedra in blocks should be 364" ) # Number of component boundaries and incidences for c in brep.corners(): if brep.nb_boundaries( c.id() ) != 0: raise ValueError("[Test] Number of corner boundary should be 0" ) if brep.nb_incidences( c.id() ) != 3: raise ValueError("[Test] Number of corner incidences should be 3" ) for l in brep.lines(): if brep.nb_boundaries( l.id() ) != 2: raise ValueError("[Test] Number of line boundary should be 2" ) if brep.nb_incidences( l.id() ) != 2: raise ValueError("[Test] Number of line incidences should be 2" ) for s in brep.surfaces(): if brep.nb_boundaries( s.id() ) != 4: raise ValueError("[Test] Number of surface boundary should be 4" ) if brep.nb_incidences( s.id() ) != 1: raise ValueError("[Test] Number of surface incidences should be 1" ) for b in brep.blocks(): if brep.nb_boundaries( b.id() ) != 6: raise ValueError("[Test] Number of block boundary should be 6" ) if brep.nb_incidences( b.id() ) != 0: raise ValueError("[Test] Number of block incidences should be 0" ) def test_brep_cone(brep): # Number of components if brep.nb_corners() != 6: raise ValueError("[Test] Number of corners is not correct") if brep.nb_lines() != 13: raise ValueError("[Test] Number of lines is not correct") if brep.nb_surfaces() != 12: raise ValueError("[Test] Number of surfaces is not correct") if brep.nb_blocks() != 4: raise ValueError("[Test] Number of blocks is not correct") # Number of vertices and elements in components for c in brep.corners(): if c.mesh().nb_vertices() != 1: raise ValueError("[Test] Number of vertices in corners should be 1") for l in brep.lines(): if l.mesh().nb_vertices() == 0: raise ValueError("[Test] Number of vertices in lines should not be null") if l.mesh().nb_edges() == 0: raise ValueError("[Test] Number of edges in lines should not be null") for s in brep.surfaces(): if s.mesh().nb_vertices() == 0: raise ValueError("[Test] Number of vertices in surfaces should not be null") if s.mesh().nb_polygons() == 0: raise ValueError("[Test] Number of polygons in surfaces should not be null") for b in brep.blocks(): if b.mesh().nb_vertices() == 0: raise ValueError("[Test] Number of vertices in blocks should not be null") if b.mesh().nb_polyhedra() == 0: raise ValueError("[Test] Number of polyhedra in blocks should not be null") # Number of component boundaries and incidences for c in brep.corners(): if brep.nb_boundaries( c.id() ) != 0: raise ValueError("[Test] Number of corner boundary should be 0" ) if brep.nb_incidences( c.id() ) != 4 and brep.nb_incidences( c.id() ) != 5: raise ValueError("[Test] Number of corner incidences should be 4 or 5" ) for l in brep.lines(): if brep.nb_boundaries( l.id() ) != 2: raise ValueError("[Test] Number of line boundary should be 2" ) if brep.nb_incidences( l.id() ) < 2 or brep.nb_incidences( l.id() ) > 4: raise ValueError("[Test] Number of line incidences should be 2, 3 or 4" ) for s in brep.surfaces(): if brep.nb_boundaries( s.id() ) != 3: raise ValueError("[Test] Number of surface boundary should be 3" ) if brep.nb_incidences( s.id() ) != 1 and brep.nb_incidences( s.id() ) != 2: raise ValueError("[Test] Number of surface incidences should be 1 or 2" ) for b in brep.blocks(): if brep.nb_boundaries( b.id() ) != 4: raise ValueError("[Test] Number of block boundary should be 4" ) if brep.nb_incidences( b.id() ) != 0: raise ValueError("[Test] Number of block incidences should be 0" ) if __name__ == '__main__': model_io.initialize_model_io() test_dir = os.path.dirname(__file__) data_dir = os.path.abspath(os.path.join(test_dir, "../../../../tests/data")) brep_cube = opengeode.load_brep( os.path.join(data_dir, "cube_v22.msh" )) test_brep_cube(brep_cube) opengeode.save_brep(brep_cube, "cube_v22.og_brep") reloaded_brep_cube = opengeode.load_brep("cube_v22.og_brep") test_brep_cube(reloaded_brep_cube) brep_cone = opengeode.load_brep(os.path.join(data_dir, "cone_v4.msh" )) test_brep_cone(brep_cone) opengeode.save_brep(brep_cone, "cone_v4.og_brep") reloaded_brep_cone = opengeode.load_brep("cone_v4.og_brep") test_brep_cone(reloaded_brep_cone)
StarcoderdataPython
6649675
<reponame>ethansaxenian/RosettaDecode LONGMONTHS = (1, 3, 5, 7, 8, 10, 12) # Jan Mar May Jul Aug Oct Dec def fiveweekendspermonth2(start=START, stop=STOP): return [date(yr, month, 31) for yr in range(START.year, STOP.year) for month in LONGMONTHS if date(yr, month, 31).timetuple()[6] == 6 # Sunday ] dates2 = fiveweekendspermonth2() assert dates2 == dates
StarcoderdataPython
328889
from manim import * class s08b_Algorithms_Activity(Scene): def construct(self): # Actors. title = Text("Algorithms") subtitle = Text("(Activity)").scale(0.75) # Positioning. title.shift(0.50*UP) subtitle.next_to(title, DOWN) # Animations. actors = [title, subtitle] for actor in actors: self.play(Write(actor)) self.wait(0.5) # Cleanup. self.wait(0.5) self.play(*[FadeOut(actor) for actor in actors])
StarcoderdataPython
6656577
# Copyright (c) 2012-2021, <NAME> <<EMAIL>> # All rights reserved. # # See LICENSE file for full license. from .aws import Action as BaseAction from .aws import BaseARN service_name = "Amazon Elastic File System" prefix = "elasticfilesystem" class Action(BaseAction): def __init__(self, action: str = None) -> None: super().__init__(prefix, action) class ARN(BaseARN): def __init__(self, resource: str = "", region: str = "", account: str = "") -> None: super().__init__( service=prefix, resource=resource, region=region, account=account ) Backup = Action("Backup") ClientMount = Action("ClientMount") ClientRootAccess = Action("ClientRootAccess") ClientWrite = Action("ClientWrite") CreateAccessPoint = Action("CreateAccessPoint") CreateFileSystem = Action("CreateFileSystem") CreateMountTarget = Action("CreateMountTarget") CreateTags = Action("CreateTags") DeleteAccessPoint = Action("DeleteAccessPoint") DeleteFileSystem = Action("DeleteFileSystem") DeleteFileSystemPolicy = Action("DeleteFileSystemPolicy") DeleteMountTarget = Action("DeleteMountTarget") DeleteTags = Action("DeleteTags") DescribeAccessPoints = Action("DescribeAccessPoints") DescribeBackupPolicy = Action("DescribeBackupPolicy") DescribeFileSystemPolicy = Action("DescribeFileSystemPolicy") DescribeFileSystems = Action("DescribeFileSystems") DescribeLifecycleConfiguration = Action("DescribeLifecycleConfiguration") DescribeMountTargetSecurityGroups = Action("DescribeMountTargetSecurityGroups") DescribeMountTargets = Action("DescribeMountTargets") DescribeTags = Action("DescribeTags") ListTagsForResource = Action("ListTagsForResource") ModifyMountTargetSecurityGroups = Action("ModifyMountTargetSecurityGroups") PutBackupPolicy = Action("PutBackupPolicy") PutFileSystemPolicy = Action("PutFileSystemPolicy") PutLifecycleConfiguration = Action("PutLifecycleConfiguration") Restore = Action("Restore") TagResource = Action("TagResource") UntagResource = Action("UntagResource") UpdateFileSystem = Action("UpdateFileSystem")
StarcoderdataPython
1850660
<filename>libs/helpers.py from ncclient import manager from lxml import etree def get_running_config(ip, port, uname, pw, device_params): session = manager.connect(host=ip, port=port, username=uname, password=pw, device_params=device_params, hostkey_verify=False) config = session.get_config(source='running').data_xml config_tree = etree.fromstring(config.encode('UTF-8')) return config_tree
StarcoderdataPython
3519367
# -*- coding:utf-8 -*- from conf import * from utils import * import abc class CNNModel(metaclass=abc.ABCMeta): def __init__(self, param): # input_shape = x_train.shape[1:] self.param = param self.train_poison = None self.test_poison = None self.classifier = None def init(self, data): self.input_shape = data.x_train.shape[1:] self.min_ = data.min_ self.max_ = data.max_ def set_learning_phase(self, learning_phase): K.set_learning_phase(learning_phase) @abc.abstractmethod def init_model(self): pass def predict_acc(self, x, y, is_poison, type_str): # Evaluate the classifier on the test set self.test_preds = np.argmax(self.classifier.predict(x), axis=1) self.test_acc = np.sum(self.test_preds == np.argmax(y, axis=1)) / y.shape[0] print("\n%s accuracy: %.2f%%" % (type_str, self.test_acc * 100)) # Evaluate the classifier on poisonous data in test set # self.poison_preds = np.argmax(self.classifier.predict(x[is_poison]), axis=1) self.poison_preds = self.test_preds[is_poison] self.poison_acc = np.sum(self.poison_preds == np.argmax(y[is_poison], axis=1)) / max(is_poison.sum(),1) print("\nPoisonous %s set accuracy (i.e. effectiveness of poison): %.2f%%" % (type_str, self.poison_acc * 100)) # Evaluate the classifier on clean data # self.clean_preds = np.argmax(self.classifier.predict(x[is_poison == 0]), axis=1) self.clean_preds = self.test_preds[is_poison==0] self.clean_acc = np.sum(self.clean_preds == np.argmax(y[is_poison == 0], axis=1)) / y[is_poison == 0].shape[0] print("\nClean %s set accuracy: %.2f%%" % (type_str, self.clean_acc * 100)) # when result_dict is not empty, start record experiment results # to validate backdoor insert effectiveness # check whether the backdoor data with poison label is predicted by the model with poison label def predict(self, data): # Evaluate the classifier on the train set self.predict_acc(data.x_train, data.y_train, data.is_poison_train, 'train') # visualize predict # for i in range(3): # data.visiualize_img_by_idx(np.where(np.array(data.is_poison_train) == 1)[0][i], self.poison_preds[i]) # Evaluate the classifier on the test set self.predict_acc(data.x_test, data.y_test, data.is_poison_test, 'test') ''' # visualize predict for i in range(3): print(np.where(np.array(data.is_poison_test) == 1)[0][i]) data.visiualize_img_by_idx(np.where(np.array(data.is_poison_test) == 1)[0][i], self.poison_preds[i], False) ''' def predict_robust(self, x, y, is_poison, type_str=''): self.test_preds = np.argmax(self.classifier.predict(x), axis=1) self.test_acc = np.sum(self.test_preds == np.argmax(y, axis=1)) / y.shape[0] print("\n%s accuracy: %.2f%%" % (type_str, self.test_acc * 100)) # Evaluate the classifier on poisonous data in test set # self.poison_preds = np.argmax(self.classifier.predict(x[is_poison]), axis=1) self.poison_preds = self.test_preds[is_poison] self.poison_acc = np.sum(self.poison_preds == np.argmax(y[is_poison], axis=1)) / max(is_poison.sum(),1) print("\nPoisonous %s set accuracy (i.e. effectiveness of poison): %.2f%%" % (type_str, self.poison_acc * 100)) # Evaluate the classifier on clean data # self.clean_preds = np.argmax(self.classifier.predict(x[is_poison == 0]), axis=1) self.clean_preds = self.test_preds[is_poison==0] self.clean_acc = np.sum(self.clean_preds == np.argmax(y[is_poison == 0], axis=1)) / y[is_poison == 0].shape[0] print("\nClean %s set accuracy: %.2f%%" % (type_str, self.clean_acc * 100)) def set_param(self, param): self.classifier.param = param self.param = param def get_train_poison(self): return self.train_poison def set_train_poison(self, poison): self.train_poison = poison def get_test_poison(self): return self.test_poison def set_test_poison(self, poison): self.test_poison = poison def predict_instance(self, x): return self.classifier.predict(x)[0] def get_input_shape(self): return self.input_shape def set_input_shape(self, input_shape): self.input_shape = input_shape def get_classifier(self): return self.classifier def set_classifier(self, classifier): self.classifier = classifier def get_input_tensor(self): return self.classifier.get_input_tensor() def get_output_tensor(self): return self.classifier.get_output_tensor() @abc.abstractmethod def get_dense_tensor(self): pass
StarcoderdataPython
115214
<filename>yj_anova_test.py #coding:utf-8 from scipy import stats import numpy as np from pandas import Series,DataFrame from openpyxl import load_workbook import math import uuid import os def chart(data_ws,result_ws): pass def _produc_random_value(mean,stdrange): b = np.random.uniform(*stdrange) a = b/math.sqrt(2) x1,x2 = mean-a, mean+a return x1,x2,b def _set_od_value(ws,row,x1,x2): if row % 2 == 1: ws['F'+str(row)]=x1 ws['F'+str(row+1)]=x2 def _get_mean_value(ws,row): if row % 2 == 1: return ws['G'+str(row)].value else: return ws['G'+str(row-1)].value def _get_stdev_value(ws,row): if row % 2 == 1: return ws['H'+str(row)].value else: return ws['H'+str(row-1)].value def _set_stdev_value(ws,row,stdev): if row % 2 == 1: ws['H'+str(row)] = stdev def _get_one_row(ws,row): time = ws['A'+str(row)].value organ = ws['B'+str(row)].value sp = ws['C'+str(row)].value c = ws['D'+str(row)].value rep = ws['E'+str(row)].value od = ws['F'+str(row)].value mean = _get_mean_value(ws,row) stdev = _get_stdev_value(ws,row) return Series([time,organ,sp,c,rep,float(od),float(mean),stdev],\ index=['time','organ','sp','c','rep','od','mean','stdev']) def get_whole_dataframe(ws): data={} for i in range(3,ws.max_row+1): data[i]=_get_one_row(ws,i) return DataFrame(data).T def _fill_data_ws(ws,stdrange): for i in range(3,ws.max_row+1,2): mean = _get_mean_value(ws,i) x1,x2,b=_produc_random_value(mean,stdrange) _set_od_value(ws,i,x1,x2) _set_stdev_value(ws,i,b) def _set_p_talbe_header(ws,result_ws): for i in range(3,ws.max_row+1,10): group = [] for j in range(i,i+10,2): gname=ws['A'+str(j)].value+'_'+\ ws['B'+str(j)].value+'_'+\ ws['C'+str(j)].value+'_'+\ str(ws['D'+str(j)].value) group.append(gname) for k in range(5): result_ws['B'+str(i+k+1)]=group[k] result_ws[chr(ord('C')+k)+str(i)]=group[k] # for i in range(3,ws.max_row+1,20): # group = [] # for j in range(i,i+10,2): # gname=ws['A'+str(j)].value+'_'+\ # ws['B'+str(j)].value+'_'+\ # ws['C'+str(j)].value+'_'+\ # ws['C'+str(j+10)].value+'_'+\ # str(ws['D'+str(j)].value) # group.append(gname) # for k in range(5): # result_ws['J'+str(i+2*k+6)] = group[k] def produce_p_table(ws,result_ws): df = get_whole_dataframe(ws) _set_p_talbe_header(ws,result_ws) for (time,organ,sp),group_l1 in df.groupby(['time','organ','sp']): group_l2 = [g for c,g in group_l1.groupby(['c'])] i = group_l2[0].index[0] for m in range(5): for n in range(m+1,5): g1 = group_l2[m] g2 = group_l2[n] f,p = stats.f_oneway(g1['od'],g2['od']) result_ws[chr(ord('C')+m)+str(i+1+n)]=p # for (time,organ,c),group_l1 in df.groupby(['time','organ','c']): # group_l2 = [g for c,g in group_l1.groupby(['sp'])] # i = group_l2[0].index[0] # g1 = group_l2[0] # g2 = group_l2[1] # f,p = stats.f_oneway(g1['od'],g2['od']) # result_ws['K'+str(i+6)]=p def calc(data_ws,result_ws): _fill_data_ws(data_ws,(0.1,0.6)) for i in range(3,data_ws.max_row+1,10): group=[] for j in range(i,i+10,2): gname=data_ws['A'+str(j)].value+'_'+\ data_ws['B'+str(j)].value+'_'+\ data_ws['C'+str(j)].value+'_'+\ str(data_ws['D'+str(j)].value) group.append([gname,Series([data_ws['F'+str(j)].value,\ data_ws['F'+str(j+1)].value])]) for k in range(5): result_ws['B'+str(i+k+1)]=group[k][0] result_ws[chr(ord('C')+k)+str(i)]=group[k][0] for m in range(5): for n in range(m,5): args = [group[m][1],group[n][1]] f,p = stats.f_oneway(*args) result_ws[chr(ord('C')+m)+str(i+1+n)]=p def main(): wb = load_workbook(filename = 'data/PODz.xlsx') salt = wb.get_sheet_by_name('salt') alkali = wb.get_sheet_by_name('alkali') salt_result = wb.create_sheet(title="salt_result") alkali_result = wb.create_sheet(title="alkali_result") calc(salt,salt_result) calc(alkali,alkali_result) wb.save(filename = 'data/PODz_result.xlsx') print('处理完成!') def test(data_file,result_file): wb = load_workbook(data_file) sheetnames = wb.get_sheet_names() for name in sheetnames: sheet = wb.get_sheet_by_name(name) result_sheet = wb.create_sheet(title='result_'+name) r = input(name+'->请输入标准差范围(以英文逗号隔开):') x,y = r.split(',') x,y = float(x),float(y) _fill_data_ws(sheet, (x,y)) print(name+"->填充随机值完成!") produce_p_table(sheet, result_sheet) print(name+"->计算P值完成!") # salt = wb.get_sheet_by_name('salt') # alkali = wb.get_sheet_by_name('alkali') # salt_result = wb.create_sheet(title='salt_result') # alkali_result = wb.create_sheet(title="alkali_result") # _fill_data_ws(salt, stdrange) # _fill_data_ws(alkali, stdrange) # produce_p_table(salt, salt_result) # produce_p_table(alkali, alkali_result) wb.save(result_file) def add_tags(result_file): wb = load_workbook(result_file) if __name__ == "__main__": # main() data_file = 'data2/ggb (copy).xlsx' result_file = data_file.split('.')[0]+'_result('\ +str(uuid.uuid1())[:8]+').xlsx' test(data_file,result_file) print(data_file+':处理完成!')
StarcoderdataPython
4886512
<gh_stars>0 """ Swagger documentation. """ INDEX = { "responses": { "200": { "description": "A greeting." } }, }
StarcoderdataPython
8060658
# -*- coding: utf-8 -*- from django.shortcuts import HttpResponse, render_to_response from django.http import HttpResponseRedirect from django.contrib.admin.views.decorators import staff_member_required from django.utils.translation import ugettext as _ from grappelli.models.bookmarks import Bookmark, BookmarkItem from grappelli.settings import ADMIN_TITLE, ADMIN_URL def add_bookmark(request): """ Add Site to Bookmarks. """ if request.method == 'POST': if request.POST.get('path') and request.POST.get('title'): next = request.POST.get('path') try: bookmark = Bookmark.objects.get(user=request.user) except Bookmark.DoesNotExist: bookmark = Bookmark(user=request.user) bookmark.save() try: bookmarkitem = BookmarkItem.objects.get(bookmark=bookmark, link=request.POST.get('path')) msg = _('Site is already bookmarked.') except BookmarkItem.DoesNotExist: try: bookmarkitem = BookmarkItem(bookmark=bookmark, title=request.POST.get('title'), link=request.POST.get('path')) bookmarkitem.save() msg = _('Site was added to Bookmarks.') except: msg = _('Error: Site could not be added to Bookmarks.') else: msg = _('Error: Site could not be added to Bookmarks.') next = request.POST.get('path') else: msg = _('Error: Site could not be added to Bookmarks.') next = ADMIN_URL # MESSAGE & REDIRECT request.user.message_set.create(message=msg) return HttpResponseRedirect(next) add_bookmark = staff_member_required(add_bookmark) def remove_bookmark(request): """ Remove Site from Bookmarks. """ if request.GET: if request.GET.get('path'): next = request.GET.get('path') try: bookmarkitem = BookmarkItem.objects.get(bookmark__user=request.user, link=request.GET.get('path')) bookmarkitem.delete() msg = _('Site was removed from Bookmarks.') except BookmarkItem.DoesNotExist: msg = _('Error: Site could not be removed from Bookmarks.') else: msg = _('Error: Site could not be removed from Bookmarks.') next = ADMIN_URL else: msg = _('Error: Site could not be removed from Bookmarks.') # MESSAGE & REDIRECT request.user.message_set.create(message=msg) return HttpResponseRedirect(next) remove_bookmark = staff_member_required(remove_bookmark) def get_bookmark(request): """ Get Bookmarks for the currently logged-in User (AJAX request). """ if request.method == 'GET': if request.GET.get('path'): object_list = BookmarkItem.objects.filter(bookmark__user=request.user).order_by('order') try: bookmark = Bookmark.objects.get(user=request.user) except Bookmark.DoesNotExist: bookmark = Bookmark(user=request.user) bookmark.save() try: BookmarkItem.objects.get(bookmark__user=request.user, link=request.GET.get('path')) is_bookmark = True except BookmarkItem.DoesNotExist: is_bookmark = False else: object_list = "" is_bookmark = "" else: object_list = "" is_bookmark = "" return render_to_response('admin/includes_grappelli/bookmarks.html', { 'object_list': object_list, 'bookmark': bookmark, 'is_bookmark': is_bookmark, 'admin_title': ADMIN_TITLE, 'path': request.GET.get('path', ''), }) get_bookmark = staff_member_required(get_bookmark)
StarcoderdataPython
9605754
<reponame>mohibeyki/remoteAPI<filename>remoteAPI/exceptions.py #!/usr/bin/env python3 from rest_framework import status class ServiceError(Exception): """ Base class for microservice errors Typically a Http response is generated from this. """ def __init__(self, type, message, suggested_http_status=None): super().__init__(message) self.type = type self.message = message self.suggested_http_status = suggested_http_status class BadRequestError(ServiceError): """ Is raised when an invalid request comes from client """ def __init__(self, type, message, suggested_http_status=None): super().__init__(type, message, suggested_http_status or status.HTTP_400_BAD_REQUEST) class NotFoundError(ServiceError): """ Is raised when a requested entity does not exist """ def __init__(self, type, message): super().__init__(type, message, status.HTTP_404_NOT_FOUND) class ServerError(ServiceError): """ Is raised when an internal server error occurs """ def __init__(self, type='server_error', message='Unknown error; please try again later', suggested_http_status=None): super().__init__(type, message, suggested_http_status or status.HTTP_500_INTERNAL_SERVER_ERROR) class ApiCallError(ServiceError): """ Is raised when a valid (expected) error status is returned from a remote API call. """ def __init__(self, type, message, status): super().__init__(type, message, status)
StarcoderdataPython
389815
<filename>DD/IP/TEMPLATES/Session 3/propContours.py ############################################ ## PROJECT CELL ## Image Processing Workshop ############################################ ## Import OpenCV import numpy import cv2 ############################################ ## Read the image img = cv2.imread('map.png') ## Do the processing gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray,170,255,0) ##find the contours contours,hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) ##select any contour #i = ##find the co-ordinates of centroid of the contour #M = cv2.moments(contours[i]) #cx = int(M['m10']/M['m00']) #cy = int(M['m01']/M['m00']) ##find the area of the contour cv2.drawContours(img,contours,i,(0,0,255),3) cv2.imshow('contours',img) ############################################ ############################################ ## Close and exit cv2.waitKey(0) cv2.destroyAllWindows() ############################################
StarcoderdataPython
6544032
import pandas as pd import numpy as np import altair as alt import streamlit as st import sys, argparse, logging import json def spell(spell_inputs): mana = spell_inputs x_col = st.selectbox("Select x axis for line chart", mana.columns) xcol_string = x_col + ":O" if st.checkbox("Show as continuous?", key="line_chart_x_is_cont"): xcol_string = x_col + ":Q" y_col = st.selectbox("Select y axis for line chart", mana.columns) z_col = st.selectbox("Select z axis for line chart", mana.columns) if st.checkbox("Show chart?", key="line_chart_show"): chart = ( alt.Chart(mana) .mark_line(point=True) .encode(x=xcol_string, y=y_col, color=z_col, tooltip=list(mana.columns)) .interactive() .properties(title="Line Chart for " + x_col + "," + y_col) .configure_title(fontSize=20,) .configure_axis(labelFontSize=20, titleFontSize=20) .configure_legend(labelFontSize=20, titleFontSize=20) ) st.altair_chart(chart, use_container_width=True) return None, mana
StarcoderdataPython
1819465
#!/usr/bin/env Python3 ''' TypeLoader backend functionality '''
StarcoderdataPython
3460864
<reponame>danmar3/twodlearn<gh_stars>0 # *********************************************************************** # General purpose optimizer # # Wrote by: <NAME> (<EMAIL>) # Modern Heuristics Research Group (MHRG) # Virginia Commonwealth University (VCU), Richmond, VA # http://www.people.vcu.edu/~mmanic/ # # *********************************************************************** from __future__ import division from __future__ import print_function import os try: import queue except ImportError: import Queue as queue import shutil import warnings import threading import collections import numpy as np from time import time import tensorflow as tf import twodlearn as tdl from twodlearn import monitoring from tqdm import tqdm try: from types import SimpleNamespace except ImportError: from argparse import Namespace as SimpleNamespace class DataFeeder: def __init__(self, feed_train, feed_valid=None): self.train_feeder = feed_train if feed_valid is None: self.valid_feeder = None else: self.valid_feeder = feed_valid def stop(self): # self.train_feeder.stop() # if self.valid_feeder is not None: # self.valid_feeder.stop() return def __del__(self): self.stop() def feed_train(self): return self.train_feeder() def feed_valid(self): return self.valid_feeder() class ConstantLr(object): def __init__(self, value): self.placeholder = tf.placeholder(tf.float32) self.value = value def __call__(self, step, global_step): return self.value class OptimizationManager: ''' Performs a standard mini-batch training with validation evaluation ''' def _init_options(self, options): default = {'progress/window_size': 50, 'progress/reset_multiplier': 10, 'progress/max_trials': 20} options = tdl.core.check_defaults(options, default) return options def __init__(self, session, optimizer=None, step_op=None, monitor_manager=None, n_logging=100, saver=None, options=None, optimizer_op=None): self.session = session self.optimizer = optimizer self.step_op = step_op if optimizer_op is not None: warnings.warn('optimizer_op is deprecated, specify optimizer and ' 'step_op instead') self.optimizer = None self.step_op = optimizer_op self.monitor_manager = monitor_manager self.n_logging = n_logging self.n_steps = 0 self.saver = saver self.options = self._init_options(options) def check_progress(self, step, xp): """Check if progress was made in the last call to the optimizer Args: step (int): current optimizer step. xp (list): list of outputs from the training monitors. Returns: bool: variables were reset. """ if (self.monitor_manager is None) or (self.saver is None): return False if len(self.monitor_manager.train.monitors) == 1: monitor = self.monitor_manager.train.monitors[0] xp = xp[0] else: # TODO: add a way to specify which monitor is measuring performance # of the optimization process return False if ((self.options['progress/window_size'] < step) and (monitor.min is not np.inf) and (len(self.saver.checkpoints) > 1)): mean = monitor.mean(self.options['progress/window_size']) if (self.options['progress/reset_multiplier']*(mean - monitor.min) < (xp - monitor.min)): print('Optimizer seems to have diverged from previous ' 'sub-optimal region ({}). Resetting...' ''.format(xp)) self.saver.restore() return True return False def check_nan(self, step, xp): """Check if the result from the optimizer includes Nan values. Args: step (int): current step of the optimizer. xp (list): list of outputs from the optimizer Returns: bool: True if variables were reset. """ if any([np.isnan(oi).any() for oi in xp if oi is not None]): if self.saver is None: raise ValueError( 'Optimization returned NaN at step {}.' 'No checkpoint saver to restore state.'.format(step)) else: print('Optimization returned NaN at step {}.' 'Restoring last checkpoint'.format(step)) self.saver.restore() return True return False def run_step(self, step, ops, feed_dict): """Run a step of the optimizer. Args: step (type): Description of parameter `step`. ops (type): Description of parameter `ops`. feed_dict (type): Description of parameter `feed_dict`. Returns: type: Description of returned object. """ step_op, train_ops, monitor_ops = ops n_trials = 0 while True: out = self.session.run([step_op] + train_ops + monitor_ops, feed_dict=feed_dict) # check number of trials n_trials += 1 if n_trials > self.options['progress/max_trials']: return out # Check for NaN if self.check_nan(step, xp=out): continue # check for progress if self.check_progress(step=step, xp=out[1:1 + len(train_ops)]): continue break return out def run(self, n_train_steps, feed_train=None, n_valid_steps=1, valid_eval_freq=1, feed_valid=None, monitor_training=True): if feed_train is None: def feed_train(): return None if feed_valid is None: def feed_valid(): return None data_feeder = DataFeeder(feed_train, feed_valid) if self.monitor_manager: train_monitors = self.monitor_manager.train.tf_monitors train_ops = [m.op for m in train_monitors] valid_monitors = self.monitor_manager.valid.tf_monitors valid_ops = [m.op for m in valid_monitors] else: train_monitors = [] train_ops = [] valid_monitors = [] valid_ops = [] if monitor_training and self.monitor_manager: monitor_monitors = self.monitor_manager.monitoring.tf_monitors monitor_ops = [m.op for m in monitor_monitors] else: monitor_monitors = [] monitor_ops = [] # safer function if self.saver is not None: self.saver.reset() # run optimizer try: for step in range(1, n_train_steps): # Run optimization step out = self.run_step( step=step, ops=(self.step_op, train_ops, monitor_ops), feed_dict=data_feeder.feed_train()) self.n_steps += 1 # feed data to monitors if train_ops: train_output = out[1:1 + len(train_ops)] for i, monitor in enumerate(train_monitors): monitor.feed(train_output[i], self.n_steps) if monitor_ops: monitor_output = out[1 + len(train_ops):] for i, monitor in enumerate(monitor_monitors): monitor.feed(monitor_output[i], self.n_steps) # file loggers self.monitor_manager.train.write_data() self.monitor_manager.monitoring.write_data() # run validation evaluation if valid_ops and (step % valid_eval_freq == 0): for step_valid in range(0, n_valid_steps): valid_output = self.session.run( valid_ops, feed_dict=data_feeder.feed_valid()) for i, monitor in enumerate(valid_monitors): monitor.feed(valid_output[i], self.n_steps) # file loggers self.monitor_manager.valid.write_data() # saver function if (self.saver is not None): self.saver.add_checkpoint(step) # log if (step % self.n_logging == 0) and self.monitor_manager: # print information train_info = [(m.name, m.mean()) for m in train_monitors] valid_info = [(m.name, m.mean()) for m in valid_monitors] # log information in files # self.monitor_manager.train.write_stats() # self.monitor_manager.valid.write_stats() # self.monitor_manager.monitoring.write_stats() print("{} | {} | {}".format(step, train_info, valid_info)) finally: # clean up data_feeder.stop() self.monitor_manager.flush() if self.saver is not None: self.saver.restore() self.saver.save() class Optimizer(tdl.core.TdlModel): _submodels = ['learning_rate', 'monitor_manager', 'optimizer', 'saver'] def _init_options(self, options): default = {'progress/window_size': 50, 'progress/reset_multiplier': 10, 'progress/max_trials': 20} options = tdl.core.check_defaults(options, default) return options @tdl.core.InputArgument def session(self, value): return (value if value is not None else tf.get_default_session() if tf.get_default_session() is not None else tf.InteractiveSession()) @tdl.core.InputArgument def log_folder(self, value): if value is None: if tdl.core.is_property_set(self, 'monitor_manager'): value = self.monitor_manager.log_folder else: value = 'tmp/monitors/' return value def _monitor_from_dict(self, value): train = (value if 'train' not in value else value['train'] if isinstance(value['train'], dict) else {'train': value['train']}) valid = (None if 'valid' not in value else value['valid'] if isinstance(value['value'], dict) else {'valid': value['valid']}) monitor = (None if 'monitoring' not in value else value['monitoring'] if isinstance(value['monitoring'], dict) else {'monitoring': value['monitoring']}) return monitoring.SimpleTrainingMonitor( train_vars=train, valid_vars=valid, monitoring_vars=monitor, log_folder=self.log_folder) @tdl.core.Submodel def monitor_manager(self, value): tdl.core.assert_initialized_if_available( self, 'monitor_manager', ['log_folder']) if value is None: value = {'train': {'train/loss': self.loss}} monitor_manager = (self._monitor_from_dict(value) if isinstance(value, dict) else value) loss_monitor = filter( lambda monitor: (tf.convert_to_tensor(monitor.op) == tf.convert_to_tensor(self.loss)), monitor_manager.train.monitors) if not loss_monitor: monitor_manager.train.add_monitor( monitoring.OpMonitor(self.loss, name=self.loss.name)) return monitor_manager @tdl.core.LazzyProperty def loss_monitor(self): return list(filter(lambda monitor: monitor.op == self.loss, self.monitor_manager.train.monitors))[0] @tdl.core.Submodel def learning_rate(self, value): if value is None: return ConstantLr(0.02) else: return value @tdl.core.Submodel def optimizer(self, value): if value is None: Optimizer = tf.train.AdamOptimizer elif callable(value): Optimizer = value else: return value if hasattr(self.learning_rate, 'placeholder'): optimizer = Optimizer(learning_rate=self.learning_rate.placeholder) else: optimizer = Optimizer(learning_rate=self.learning_rate) return optimizer @tdl.core.Submodel def step_op(self, _): step_op = self.optimizer.minimize(tf.convert_to_tensor(self.loss), var_list=self.var_list) self.reset() return step_op @property def var_optim(self): '''Variables created by the optimizer''' vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.scope) for var in self.var_list: var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=var.name.split(':')[0]) vars += [vi for vi in var_list if vi is not var] return vars def reset(self): '''Reset optimizer variables (var_optim)''' list(map(lambda x: x.initializer.run(), self.var_optim)) @tdl.core.Submodel def saver(self, value): tdl.core.assert_initialized(self, 'saver', ['monitor_manager']) if value != 'default': return value if self.monitor_manager is None: return None monitor = (self.monitor_manager.valid.monitors[0] if self.monitor_manager.valid.monitors else self.monitor_manager.train.monitors[0]) return EarlyStopping( monitor=monitor, var_list=self.var_list, logger_path=self.monitor_manager.log_folder, session=self.session) def __init__(self, loss, var_list, session=None, metrics=None, n_logging=100, log_folder=None, options=None, **kargs): self.loss = tf.convert_to_tensor(loss) self.var_list = (var_list if var_list is not None else tf.trainable_variables()) self.n_logging = n_logging self.n_steps = 0 if 'saver' not in kargs: kargs['saver'] = 'default' if metrics is not None and 'monitor_manager' in kargs: raise ValueError('cannot specify metrics and monitor_manager ' 'at the same time') metrics = (kargs['monitor_manager'] if 'monitor_manager' in kargs else metrics) kargs = {key: val for key, val in kargs.items() if key is not 'monitor_manager'} if log_folder is not None: kargs['log_folder'] = log_folder super(Optimizer, self).__init__(session=session, monitor_manager=metrics, options=options, **kargs) def feed_train(self): return dict() def check_progress(self, step, xp): """Check if progress was made in the last call to the optimizer Args: step (int): current optimizer step. xp (list): list of outputs from the training monitors. Returns: bool: variables were reset. """ if (self.monitor_manager is None) or (self.saver is None): return False monitor = self.loss_monitor xp = xp[self.loss] if ((self.options['progress/window_size'] < step) and (monitor.min is not np.inf) and self.saver.checkpoints): mean = monitor.mean(self.options['progress/window_size']) if (self.options['progress/reset_multiplier']*(mean - monitor.min) < (xp - monitor.min)): print('Optimizer seems to have diverged from previous ' 'sub-optimal region ({}). Resetting...' ''.format(xp)) self.saver.restore() return True return False def check_nan(self, step, xp): """Check if the result from the optimizer includes Nan values. Args: step (int): current step of the optimizer. xp (list): list of outputs from the optimizer Returns: bool: True if variables were reset. """ if any([np.isnan(oi).any() for oi in xp if oi is not None]): if self.saver is None: print('Optimization returned NaN at step {}.' 'Re-initializing variables'.format(step)) self.session.run([v.initializer for v in self.var_list]) else: print('Optimization returned NaN at step {}.' 'Restoring last checkpoint'.format(step)) if self.saver.checkpoints: self.saver.restore() else: self.session.run([v.initializer for v in self.var_list]) return True return False def run_step(self, step, ops, feed_dict): """Run a step of the optimizer. Args: step (type): Description of parameter `step`. ops (type): Description of parameter `ops`. feed_dict (type): Description of parameter `feed_dict`. Returns: type: Description of returned object. """ if isinstance(self.learning_rate, ConstantLr): feed_dict[self.learning_rate.placeholder] = \ self.learning_rate(step, self.n_steps) n_trials = 0 while True: output = self.session.run(ops, feed_dict=feed_dict) output = {op: output[idx] for idx, op in enumerate(ops)} # check number of trials n_trials += 1 if n_trials > self.options['progress/max_trials']: self.session.run([v.initializer for v in self.var_list]) output = self.session.run(ops, feed_dict=feed_dict) output = {op: output[idx] for idx, op in enumerate(ops)} return output # Check for NaN if self.check_nan(step, xp=output.values()): continue # check for progress if self.check_progress(step=step, xp=output): continue break return output def run(self, n_train_steps, feed_train=None, n_valid_steps=1, valid_eval_freq=1, feed_valid=None, monitor_training=True): if feed_train is None: def feed_train(): return dict() if feed_valid is None: def feed_valid(): return dict() data_feeder = DataFeeder(feed_train, feed_valid) if self.monitor_manager: train_monitors = self.monitor_manager.train.tf_monitors train_ops = [m.op for m in train_monitors] valid_monitors = self.monitor_manager.valid.tf_monitors valid_ops = [m.op for m in valid_monitors] else: train_monitors = [] train_ops = [] valid_monitors = [] valid_ops = [] if monitor_training and self.monitor_manager: monitor_monitors = self.monitor_manager.monitoring.tf_monitors monitor_ops = [m.op for m in monitor_monitors] else: monitor_monitors = [] monitor_ops = [] # saver function if self.saver is not None: self.saver.reset() # run optimizer try: for step in tqdm(range(1, n_train_steps)): # Run optimization step xp = self.run_step( step=step, ops=[self.step_op] + train_ops + monitor_ops, feed_dict=data_feeder.feed_train()) self.n_steps += 1 # feed data to monitors if train_ops: for i, monitor in enumerate(train_monitors): monitor.feed(xp[monitor.op], self.n_steps) if monitor_ops: for i, monitor in enumerate(monitor_monitors): monitor.feed(xp[monitor.op], self.n_steps) # file loggers self.monitor_manager.train.write_data() self.monitor_manager.monitoring.write_data() # run validation evaluation if valid_ops and (step % valid_eval_freq == 0): for step_valid in range(0, n_valid_steps): valid_output = self.session.run( valid_ops, feed_dict=data_feeder.feed_valid()) for i, monitor in enumerate(valid_monitors): monitor.feed(valid_output[i], self.n_steps) # file loggers self.monitor_manager.valid.write_data() # saver function if (self.saver is not None): self.saver.add_checkpoint(step) # log if (step % self.n_logging == 0) and self.monitor_manager: # print information train_info = [(m.name, m.mean()) for m in train_monitors] valid_info = [(m.name, m.mean()) for m in valid_monitors] # log information in files print("{} | {} | {}".format(step, train_info, valid_info)) finally: # clean up data_feeder.stop() self.monitor_manager.flush() if self.saver is not None: if self.saver.checkpoints: self.saver.restore() self.saver.save() class SimpleSaver(tdl.core.TdlObject): @property def checkpoints(self): return None def __init__(self, var_list, logger_path, session): self.session = session self.var_list = var_list super(SimpleSaver, self).__init__(save={'logger_path': logger_path}) @tdl.core.EncapsulatedMethod def save(self, locals, value): self._saver = tf.train.Saver(var_list=self.var_list) self._saver_id = 0 self._logger_path = os.path.join(value['logger_path'], 'optimizer') if os.path.exists(self._logger_path): shutil.rmtree(self._logger_path) os.makedirs(self._logger_path) @save.eval def save(self, locals): print('saving weights in {}'.format(self._logger_path)) saver_path = os.path.join(self._logger_path, 'var_checkpoint') self._saver.save( sess=self.session, save_path=saver_path, global_step=self._saver_id) self._saver_id += 1 def add_checkpoint(self, step): return def reset(self): return def restore_file(self): saver_path = os.path.join(self._logger_path, 'var_checkpoint-{}'.format(self._saver_id-1)) self._saver.restore(self.session, saver_path) class EarlyStoppingV2(tdl.core.TdlObject): @property def checkpoints(self): return self._checkpoints @property def optimizer(self): return self._optimizer @property def session(self): return self.optimizer.session @tdl.core.Submodel def objective(self, value): if isinstance(value, monitoring.TrainingMonitor): return value else: valid_match = filter(lambda x: x.op == value, self.optimizer.monitor_manager.valid.monitors) if valid_match: return valid_match[0] else: raise ValueError('{} not found in set of valid monitors.' ''.format(value)) @tdl.core.EncapsulatedMethod def restore(self, local, value): local.placeholders = {var: tf.placeholder(tf.float32) for var in self.optimizer.var_list} assign_vars = [var.assign(local.placeholders[var]) for var in self.optimizer.var_list] local.assign_vars = tf.group(assign_vars) @restore.eval def restore(self, local): ckpt = self.checkpoints[-1] feed_dict = {local.placeholders[var]: ckpt[var] for var in self.optimizer.var_list} self.session.run(local.assign_vars, feed_dict=feed_dict) def reset(self): self.check_progress.local.best_value = np.nan def __init__(self, optimizer, objective, minimize=True): self._optimizer = optimizer super(type(self), self).__init__(objective=objective) def __bool__(self): return len(self.checkpoints) > 0 class EarlyStopping(tdl.core.TdlObject): @property def checkpoints(self): return self._ckpts def _init_options(self, options): default = {'start_steps': 300, 'ckpts_dt': 5.0, 'window_size': 50} options = tdl.core.check_defaults(options, default) return options def __init__(self, monitor, var_list, logger_path, session, check_func=None, options=None): self.monitor = monitor self.session = session self.var_list = var_list self.options = self._init_options(options) super(EarlyStopping, self).__init__(save={'logger_path': logger_path}) if check_func is not None: raise NotImplementedError('Custom check_func not yet implemented.' 'Use None for the moment.') self.check_func = (check_func if check_func is not None else self.check_lower) def check_progress(self, step, monitor): if ((self.options['window_size'] < step) and (monitor.min is not np.inf) and (len(self._ckpts) > 1)): mean = monitor.mean(self.options['window_size']) current_value = monitor.current_value if 10*(mean - monitor.min) < (current_value - monitor.min): # pdb.set_trace() print('Optimizer seems to have diverged from previous ' 'sub-optimal region ({}). Resetting...' ''.format(current_value)) self.restore() @tdl.core.EncapsulatedMethod def check_lower(self, local, value): local.time_last_ckpt = time() local.best_value = np.nan @check_lower.eval def check_lower(self, local, step): current_value = self.monitor.mean(self.options['window_size']) save = (True if local.best_value is np.nan else current_value < local.best_value) save = ((time() - local.time_last_ckpt) > self.options['ckpts_dt'] and (step > self.options['start_steps']) and save) if save: print(np.abs(local.best_value - current_value) / (self.monitor.max - self.monitor.min)) local.time_last_ckpt = time() local.best_value = current_value return save def check_greather(self, local): current_value = self.monitor.mean(self.options['window_size']) save = (True if local.best_value is np.nan else local.best_value < current_value) save = ((time() - local.time_last_ckpt) > self.options['ckpts_dt'] and save) if save: print(np.abs(local.best_value - current_value) / (self.monitor.max - self.monitor.min)) local.time_last_ckpt = time() local.best_value = current_value return save @tdl.core.EncapsulatedMethod def add_checkpoint(self, local, value): self._ckpts = collections.deque(maxlen=10) @add_checkpoint.eval def add_checkpoint(self, local, step): if self.check_func(step): print('checkpoint created') values = self.session.run(self.var_list) vars = {var: value for var, value in zip(self.var_list, values)} self._ckpts.append(vars) @tdl.core.EncapsulatedMethod def restore(self, local, value): local.placeholders = {var: tf.placeholder(tf.float32) for var in self.var_list} set_vars = [var.assign(local.placeholders[var]) for var in self.var_list] local.set_vars = tf.group(set_vars) @restore.eval def restore(self, local): ckpt = self._ckpts[-1] feed_dict = {local.placeholders[var]: ckpt[var] for var in self.var_list} self.session.run(local.set_vars, feed_dict=feed_dict) def reset(self): self.check_lower.local.best_value = np.nan @tdl.core.EncapsulatedMethod def save(self, locals, value): self._saver = tf.train.Saver(var_list=self.var_list) self._saver_id = 0 self._logger_path = os.path.join(value['logger_path'], 'optimizer') if os.path.exists(self._logger_path): shutil.rmtree(self._logger_path) os.makedirs(self._logger_path) self._save_time = time() @save.eval def save(self, locals): print('saving weights in {}'.format(self._logger_path)) saver_path = os.path.join(self._logger_path, 'var_checkpoint') self._saver.save( sess=self.session, save_path=saver_path, global_step=self._saver_id) self._saver_id += 1 def restore_file(self): saver_path = os.path.join(self._logger_path, 'var_checkpoint-{}'.format(self._saver_id-1)) self._saver.restore(self.session, saver_path)
StarcoderdataPython
178866
def _longest_common_subsequence(s1: str, s2: str) -> int: """ Let m and n be the lengths of two strings. Build L[m+1][n+1] from the bottom up. Note: L[i][j] contains length of LCS of X[0..i-1] and Y[0..j-1] Runtime: O(mn) Space Complexity: O(mn) """ m, n = len(s1), len(s2) L = [[0] * (n + 1) for i in range(m + 1)] for i in range(1, m + 1): for j in range(1, n + 1): if s1[i - 1] == s2[j - 1]: L[i][j] = L[i - 1][j - 1] + 1 else: L[i][j] = max(L[i - 1][j], L[i][j - 1]) return L[m][n] def longest_common_subsequence(s1: str, s2: str) -> int: """ Space-optimized version of LCS. Let m and n be the lengths of two strings. Runtime: O(mn) Space Complexity: O(min(m, n)) """ m, n = len(s1), len(s2) if m < n: s1, s2 = s2, s1 L = [0] * (n + 1) for a in s1: prev_row, prev_row_col = 0, 0 for j, b in enumerate(s2): prev_row, prev_row_col = L[j + 1], prev_row if a == b: L[j + 1] = prev_row_col + 1 else: L[j + 1] = max(L[j], prev_row) return L[-1]
StarcoderdataPython
1845176
<gh_stars>0 import asterid as ad def asterid_dm_to_dendropy_dm(D, ts): pdm = dendropy.PhylogeneticDistanceMatrix() pdm.taxon_namespace = dendropy.TaxonNamespace() pdm._mapped_taxa = set() for i in range(len(ts)): for j in enumerate(ts): si = ts[i] sj = ts[j] dij = D[i, j] xi = pdm.taxon_namespace.get_taxon(si) if not xi: xi = dendropy.Taxon(si) pdm.taxon_namespace.add_taxon(xi) pdm._mapped_taxa.add(xi) pdm._taxon_phylogenetic_distances[xi] = {} xj = pdm.taxon_namespace.get_taxon(sj) if not xj: xj = dendropy.Taxon(sj) pdm.taxon_namespace.add_taxon(xj) pdm._mapped_taxa.add(xj) pdm._taxon_phylogenetic_distances[xj] = {} dij = float(dij) pdm._taxon_phylogenetic_distances[xi][xj] = dij return pdm
StarcoderdataPython
3254314
<filename>cogs/misc.py import datetime import asyncio import strawpy import random import re import sys import subprocess from PythonGists import PythonGists from appuselfbot import bot_prefix from discord.ext import commands from cogs.utils.checks import * '''Module for miscellaneous commands''' class Misc: def __init__(self, bot): self.bot = bot self.regionals = {'a': '\N{REGIONAL INDICATOR SYMBOL LETTER A}', 'b': '\N{REGIONAL INDICATOR SYMBOL LETTER B}', 'c': '\N{REGIONAL INDICATOR SYMBOL LETTER C}', 'd': '\N{REGIONAL INDICATOR SYMBOL LETTER D}', 'e': '\N{REGIONAL INDICATOR SYMBOL LETTER E}', 'f': '\N{REGIONAL INDICATOR SYMBOL LETTER F}', 'g': '\N{REGIONAL INDICATOR SYMBOL LETTER G}', 'h': '\N{REGIONAL INDICATOR SYMBOL LETTER H}', 'i': '\N{REGIONAL INDICATOR SYMBOL LETTER I}', 'j': '\N{REGIONAL INDICATOR SYMBOL LETTER J}', 'k': '\N{REGIONAL INDICATOR SYMBOL LETTER K}', 'l': '\N{REGIONAL INDICATOR SYMBOL LETTER L}', 'm': '\N{REGIONAL INDICATOR SYMBOL LETTER M}', 'n': '\N{REGIONAL INDICATOR SYMBOL LETTER N}', 'o': '\N{REGIONAL INDICATOR SYMBOL LETTER O}', 'p': '\N{REGIONAL INDICATOR SYMBOL LETTER P}', 'q': '\N{REGIONAL INDICATOR SYMBOL LETTER Q}', 'r': '\N{REGIONAL INDICATOR SYMBOL LETTER R}', 's': '\N{REGIONAL INDICATOR SYMBOL LETTER S}', 't': '\N{REGIONAL INDICATOR SYMBOL LETTER T}', 'u': '\N{REGIONAL INDICATOR SYMBOL LETTER U}', 'v': '\N{REGIONAL INDICATOR SYMBOL LETTER V}', 'w': '\N{REGIONAL INDICATOR SYMBOL LETTER W}', 'x': '\N{REGIONAL INDICATOR SYMBOL LETTER X}', 'y': '\N{REGIONAL INDICATOR SYMBOL LETTER Y}', 'z': '\N{REGIONAL INDICATOR SYMBOL LETTER Z}', '0': '0⃣', '1': '1⃣', '2': '2⃣', '3': '3⃣', '4': '4⃣', '5': '5⃣', '6': '6⃣', '7': '7⃣', '8': '8⃣', '9': '9⃣'} @commands.command(pass_context=True) async def about(self, ctx): """Links to the bot's github page.""" if embed_perms(ctx.message) and ctx.message.content[7:] != 'short': em = discord.Embed(color=0xad2929, title='\ud83e\udd16 Appu\'s Discord Selfbot', description='**Features:**\n- Custom commands/reactions\n- Save last x images in a channel to your computer\n- Keyword notifier\n' '- Set/cycle your game status and your avatar\n- Google web and image search\n- MyAnimeList search\n- Spoiler tagging\n' '- Server info commands\n- Quoting, calculator, creating polls, and much more') em.add_field(name='\ud83d\udd17 Link to download', value='[Github link](https://github.com/appu1232/Discord-Selfbot/tree/master)') em.add_field(name='\ud83c\udfa5Quick examples:', value='[Simple commands](http://i.imgur.com/3H9zpop.gif)') em.set_footer(text='Made by appu1232#2569', icon_url='https://i.imgur.com/RHagTDg.png') await self.bot.send_message(ctx.message.channel, content=None, embed=em) else: await self.bot.send_message(ctx.message.channel, 'https://github.com/appu1232/Selfbot-for-Discord') await self.bot.delete_message(ctx.message) @commands.group(aliases=['status'], pass_context=True) async def stats(self, ctx): """Bot stats.""" uptime = (datetime.datetime.now() - self.bot.uptime) hours, rem = divmod(int(uptime.total_seconds()), 3600) minutes, seconds = divmod(rem, 60) days, hours = divmod(hours, 24) if days: time = '%s days, %s hours, %s minutes, and %s seconds' % (days, hours, minutes, seconds) else: time = '%s hours, %s minutes, and %s seconds' % (hours, minutes, seconds) try: game = self.bot.game except: game = 'None' if embed_perms(ctx.message): em = discord.Embed(title='Bot Stats', color=0x32441c) em.add_field(name=u'\U0001F553 Uptime', value=time, inline=False) em.add_field(name=u'\U0001F4E4 Messages sent', value=str(self.bot.icount)) em.add_field(name=u'\U0001F4E5 Messages recieved', value=str(self.bot.message_count)) em.add_field(name=u'\u2757 Mentions', value=str(self.bot.mention_count)) em.add_field(name=u'\u2694 Servers', value=str(len(self.bot.servers))) em.add_field(name=u'\u270F Keywords logged', value=str(self.bot.keyword_log)) em.add_field(name=u'\U0001F3AE Game', value=game) mem_usage = '{:.2f} MiB'.format(__import__('psutil').Process().memory_full_info().uss / 1024**2) em.add_field(name=u'\U0001F4BE Memory usage:', value=mem_usage) em.set_footer(text='Selfbot made by appu1232#2569') try: g = git.cmd.Git(working_dir=os.getcwd()) g.execute(["git", "fetch", "origin", "master"]) version = g.execute(["git", "rev-list", "--right-only", "--count", "master...origin/master"]) commits = g.execute(["git", "rev-list", "--max-count=%s" % version, "origin/master"]) if version == '0': status = 'Up to date.' else: latest = g.execute(["git", "log", "--pretty=oneline", "--abbrev-commit", "--stat", "--pretty", "-%s" % version, "origin/master"]) gist_latest = PythonGists.Gist(description='Latest changes for the selfbot.', content=latest, name='latest.txt') if version == '1': status = 'Behind by 1 release. [Latest update.](%s)' % gist_latest else: status = '%s releases behind. [Latest updates.](%s)' % (version, gist_latest) em.add_field(name=u'\U0001f4bb Update status:', value=status) except: raise await self.bot.send_message(ctx.message.channel, content=None, embed=em) else: msg = '**Bot Stats:** ```Uptime: %s\nMessages Sent: %s\nMessages Recieved: %s\nMentions: %s\nServers: %s\nKeywords logged: %s\nGame: %s```' % (time, str(self.bot.icount), str(self.bot.message_count), str(self.bot.mention_count), str(len(self.bot.servers)), str(self.bot.keyword_log), game) await self.bot.send_message(ctx.message.channel, bot_prefix + msg) await self.bot.delete_message(ctx.message) # Embeds the message @commands.command(pass_context=True) async def embed(self, ctx): """Embed given text. Ex: Do >embed for more help""" if ctx.message.content[6:].strip(): if embed_perms(ctx.message): msg = ctx.message.content[6:].strip() title = description = image = thumbnail = color = footer = author = None embed_values = msg.split('|') for i in embed_values: if i.strip().lower().startswith('title='): title = i.strip()[6:].strip() elif i.strip().lower().startswith('description='): description = i.strip()[12:].strip() elif i.strip().lower().startswith('desc='): description = i.strip()[5:].strip() elif i.strip().lower().startswith('image='): image = i.strip()[6:].strip() elif i.strip().lower().startswith('thumbnail='): thumbnail = i.strip()[10:].strip() elif i.strip().lower().startswith('colour='): color = i.strip()[7:].strip() elif i.strip().lower().startswith('color='): color = i.strip()[6:].strip() elif i.strip().lower().startswith('footer='): footer = i.strip()[7:].strip() elif i.strip().lower().startswith('author='): author = i.strip()[7:].strip() if color: if not color.startswith('0x'): color = '0x' + color if color: em = discord.Embed(title=title, description=description, color=int(color, 16)) else: em = discord.Embed(title=title, description=description) for i in embed_values: if i.strip().lower().startswith('field='): field_inline = True field = i.strip().lstrip('field=') field_name, field_value = field.split('value=') if 'inline=' in field_value: field_value, field_inline = field_value.split('inline=') if 'false' in field_inline.lower() or 'no' in field_inline.lower(): field_inline = False field_name = field_name.strip().lstrip('name=') em.add_field(name=field_name, value=field_value.strip(), inline=field_inline) if author: if 'icon=' in author: text, icon = author.split('icon=') em.set_author(name=text.strip()[5:], icon_url=icon) else: em.set_author(name=author) if image: em.set_image(url=image) if thumbnail: em.set_thumbnail(url=thumbnail) if footer: if 'icon=' in footer: text, icon = footer.split('icon=') em.set_footer(text=text.strip()[5:], icon_url=icon) else: em.set_footer(text=footer) await self.bot.send_message(ctx.message.channel, content=None, embed=em) else: await self.bot.send_message(ctx.message.channel, bot_prefix + 'No embed permissions in this channel.') else: msg = '**How to use the >embed command:**\n**Example:** >embed title=test this | description=some words | color=3AB35E | field=name=test value=test\n\n**You do NOT need to specify every property, only the ones you want.**\n**All properties and the syntax:**\ntitle=words\ndescription=words\ncolor=hexvalue\nimage=url_to_image (must be https)\nthumbnail=url_to_image\nauthor=words **OR** author=name=words icon=url_to_image\nfooter=words **OR** footer=name=words icon=url_to_image\nfield=name=words value=words (you can add as many fields as you want)\n\n**NOTE:** After the command is sent, the bot will delete your message and replace it with the embed. Make sure you have it saved or else you\'ll have to type it all again if the embed isn\'t how you want it.' await self.bot.send_message(ctx.message.channel, bot_prefix + msg) await self.bot.delete_message(ctx.message) @commands.command(pass_context=True) async def game(self, ctx): """Set playing status. Ex: >game napping >help game for more info Your game status will not show for yourself, only other people can see it. This is a limitation of how the client works and how the api interacts with the client. To set a rotating game status, do >game game1 | game2 | game3 | etc. It will then prompt you with an interval in seconds to wait before changing the game and after that the order in which to change (in order or random) Ex: >game with matches | sleeping | watching anime""" if ctx.message.content[6:]: game = str(ctx.message.clean_content[6:]) # Cycle games if more than one game is given. if ' | ' in ctx.message.content[6:]: await self.bot.send_message(ctx.message.channel, bot_prefix + 'Input interval in seconds to wait before changing to the next game (``n`` to cancel):') def check(msg): return msg.content.isdigit() or msg.content.lower().strip() == 'n' def check2(msg): return msg.content == 'random' or msg.content.lower().strip() == 'r' or msg.content.lower().strip() == 'order' or msg.content.lower().strip() == 'o' reply = await self.bot.wait_for_message(author=ctx.message.author, check=check, timeout=60) if not reply: return if reply.content.lower().strip() == 'n': return await self.bot.send_message(ctx.message.channel, bot_prefix + 'Cancelled') elif reply.content.strip().isdigit(): interval = int(reply.content.strip()) if interval >= 10: self.bot.game_interval = interval games = game.split(' | ') if len(games) != 2: await self.bot.send_message(ctx.message.channel, bot_prefix + 'Change game in order or randomly? Input ``o`` for order or ``r`` for random:') s = await self.bot.wait_for_message(author=ctx.message.author, check=check2, timeout=60) if not s: return if s.content.strip() == 'r' or s.content.strip() == 'random': await self.bot.send_message(ctx.message.channel, bot_prefix + 'Game set. Game will randomly change every ``%s`` seconds' % reply.content.strip()) loop_type = 'random' else: loop_type = 'ordered' else: loop_type = 'ordered' if loop_type == 'ordered': await self.bot.send_message(ctx.message.channel, bot_prefix + 'Game set. Game will change every ``%s`` seconds' % reply.content.strip()) games = {'games': game.split(' | '), 'interval': interval, 'type': loop_type} with open('settings/games.json', 'w') as g: json.dump(games, g, indent=4) self.bot.game = game.split(' | ')[0] else: return await self.bot.send_message(ctx.message.channel, bot_prefix + 'Cancelled. Interval is too short. Must be at least 10 seconds.') # Set game if only one game is given. else: self.bot.game_interval = None self.bot.game = game games = {'games': str(self.bot.game), 'interval': '0', 'type': 'none'} with open('settings/games.json', 'w') as g: json.dump(games, g, indent=4) await self.bot.change_presence(game=discord.Game(name=game)) await self.bot.send_message(ctx.message.channel, bot_prefix + 'Game set as: ``Playing %s``' % ctx.message.content[6:]) # Remove game status. else: self.bot.game_interval = None self.bot.game = None await self.bot.change_presence(game=None) await self.bot.send_message(ctx.message.channel, bot_prefix + 'Set playing status off') if os.path.isfile('settings/games.json'): os.remove('settings/games.json') @commands.group(aliases=['avatars'], pass_context=True) async def avatar(self, ctx): """Rotate avatars. See README for more info.""" if ctx.invoked_subcommand is None: with open('settings/avatars.json', 'r+') as a: avi_config = json.load(a) if avi_config['password'] == '': return await self.bot.send_message(ctx.message.channel, bot_prefix + 'Cycling avatars requires you to input your password. Your password will not be sent anywhere and no one will have access to it. Enter your password with``>avatar password <password>`` Make sure you are in a private channel where no one can see!') if avi_config['interval'] != '0': self.bot.avatar = None self.bot.avatar_interval = None avi_config['interval'] = '0' with open('settings/avatars.json', 'w') as avi: json.dump(avi_config, avi, indent=4) await self.bot.send_message(ctx.message.channel, bot_prefix + 'Disabled cycling of avatars.') else: if os.listdir('avatars'): await self.bot.send_message(ctx.message.channel, bot_prefix + 'Enabled cycling of avatars. Input interval in seconds to wait before changing avatars (``n`` to cancel):') def check(msg): return msg.content.isdigit() or msg.content.lower().strip() == 'n' def check2(msg): return msg.content == 'random' or msg.content.lower().strip() == 'r' or msg.content.lower().strip() == 'order' or msg.content.lower().strip() == 'o' interval = await self.bot.wait_for_message(author=ctx.message.author, check=check, timeout=60) if not interval: return if interval.content.lower().strip() == 'n': return await self.bot.send_message(ctx.message.channel, bot_prefix + 'Cancelled.') elif int(interval.content) < 1800: return await self.bot.send_message(ctx.message.channel, bot_prefix + 'Cancelled. Interval is too short. Must be at least 1800 seconds (30 minutes).') else: avi_config['interval'] = int(interval.content) if len(os.listdir('avatars')) != 2: await self.bot.send_message(ctx.message.channel, bot_prefix + 'Change avatars in order or randomly? Input ``o`` for order or ``r`` for random:') cycle_type = await self.bot.wait_for_message(author=ctx.message.author, check=check2, timeout=60) if not cycle_type: return if cycle_type.content.strip() == 'r' or cycle_type.content.strip() == 'random': await self.bot.send_message(ctx.message.channel, bot_prefix + 'Avatar cycling enabled. Avatar will randomly change every ``%s`` seconds' % interval.content.strip()) loop_type = 'random' else: loop_type = 'ordered' else: loop_type = 'ordered' avi_config['type'] = loop_type if loop_type == 'ordered': await self.bot.send_message(ctx.message.channel, bot_prefix + 'Avatar cycling enabled. Avatar will change every ``%s`` seconds' % interval.content.strip()) with open('settings/avatars.json', 'r+') as avi: avi.seek(0) avi.truncate() json.dump(avi_config, avi, indent=4) self.bot.avatar_interval = interval.content self.bot.avatar = random.choice(os.listdir('avatars')) else: await self.bot.send_message(ctx.message.channel, bot_prefix + 'No images found under ``avatars``. Please add images (.jpg .jpeg and .png types only) to that folder and try again.') @avatar.command(aliases=['pass', 'pw'], pass_context=True) async def password(self, ctx, *, msg): """Set your discord acc password to rotate avatars. See README for more info.""" with open('settings/avatars.json', 'r+') as a: avi_config = json.load(a) avi_config['password'] = msg.strip().strip('"').lstrip('<').rstrip('>') a.seek(0) a.truncate() json.dump(avi_config, a, indent=4) await self.bot.delete_message(ctx.message) return await self.bot.send_message(ctx.message.channel, bot_prefix + 'Password set. Do ``>avatar`` to toggle cycling avatars.') @commands.command(pass_context=True) async def choose(self, ctx, *, choices: str): """Choose randomly from the options you give. >choose this | that""" await self.bot.send_message(ctx.message.channel, bot_prefix + 'I choose: ``{}``'.format(random.choice(choices.split("|")))) @commands.command(pass_context=True) async def emoji(self, ctx, *, msg): """Get url of emoji (across any server). Ex: >emoji :smug:""" url = None exact_match = False for server in self.bot.servers: for emoji in server.emojis: if msg.strip().lower() in str(emoji): url = emoji.url if msg.strip() == str(emoji).split(':')[1]: url = emoji.url exact_match = True break if exact_match: break if embed_perms(ctx.message) and url: em = discord.Embed() em.set_image(url=url) await self.bot.send_message(ctx.message.channel, content=None, embed=em) elif not embed_perms(ctx.message) and url: await self.bot.send_message(ctx.message.channel, url) else: await self.bot.send_message(ctx.message.channel, bot_prefix + 'Could not find emoji.') return await self.bot.delete_message(ctx.message) @commands.command(pass_context=True) async def ping(self, ctx): """Get response time.""" msgtime = ctx.message.timestamp.now() await self.bot.send_message(ctx.message.channel, bot_prefix + ' pong') now = datetime.datetime.now() ping = now - msgtime if embed_perms(ctx.message): pong = discord.Embed(title='Response Time:', description=str(ping), color=0x7A0000) pong.set_thumbnail(url='http://odysseedupixel.fr/wp-content/gallery/pong/pong.jpg') await self.bot.send_message(ctx.message.channel, content=None, embed=pong) else: await self.bot.send_message(ctx.message.channel, bot_prefix + '``Response Time: %s``' % str(ping)) @commands.command(pass_context=True) async def quote(self, ctx, *, msg: str = None): """Quote the last message sent in the channel. >help quote for more info. >quote - quotes the last message sent in the channel. >quote <words> - tries to search for a message sent recently that contains the given words and quotes it. >quote <message_id> - quotes the given message. (Enable developer mode to copy message ids).""" result = None if msg: length = len(self.bot.all_log[ctx.message.channel.id + ' ' + ctx.message.server.id]) if length < 201: size = length else: size = 200 for i in range(length-2, length-size, -1): search = self.bot.all_log[ctx.message.channel.id + ' ' + ctx.message.server.id][i] if ctx.message.clean_content[6:].lower().strip() in search[0].clean_content.lower() and (search[0].author != ctx.message.author or search[0].content[:7] != '>quote '): result = [search[0], search[0].author, search[0].timestamp] break if ctx.message.clean_content[6:].strip() == search[0].id: result = [search[0], search[0].author, search[0].timestamp] break else: search = self.bot.all_log[ctx.message.channel.id + ' ' + ctx.message.server.id][-2] result = [search[0], search[0].author, search[0].timestamp] if result: await self.bot.delete_message(ctx.message) if embed_perms(ctx.message) and result[0].content: em = discord.Embed(description=result[0].content, timestamp=result[2], color=0xbc0b0b) em.set_author(name=result[1].name, icon_url=result[1].avatar_url) await self.bot.send_message(ctx.message.channel, embed=em) else: await self.bot.send_message(ctx.message.channel, '%s - %s```%s```' % (result[1].name, result[2], result[0].content)) else: await self.bot.send_message(ctx.message.channel, bot_prefix + 'No quote found.') await self.bot.delete_message(ctx.message) @commands.command(pass_context=True) async def poll(self, ctx, *, msg): """Create a strawpoll. Ex: >poll Favorite color = Blue | Red | Green""" try: options = [op.strip() for op in msg.split('|')] if '=' in options[0]: title, options[0] = options[0].split('=') options[0] = options[0].strip() else: title = 'Poll by %s' % ctx.message.author.name except: return await self.bot.send_message(ctx.message.channel, bot_prefix + 'Invalid Syntax. Example use: ``>poll Favorite color = Blue | Red | Green | Purple``') poll = strawpy.create_poll(title.strip(), options) await self.bot.send_message(ctx.message.channel, bot_prefix + poll.url) @commands.command(pass_context=True) async def calc(self, ctx, *, msg): """Simple calculator. Ex: >calc 2+2""" equation = msg.strip().replace('^', '**') if '=' in equation: left = eval(equation.split('=')[0]) right = eval(equation.split('=')[1]) answer = str(left == right) else: answer = str(eval(equation)) if embed_perms(ctx.message): em = discord.Embed(color=0xD3D3D3, title='Calculator') em.add_field(name='Input:', value=msg.replace('**', '^'), inline=False) em.add_field(name='Output:', value=answer, inline=False) await self.bot.send_message(ctx.message.channel, content=None, embed=em) await self.bot.delete_message(ctx.message) else: await self.bot.send_message(ctx.message.channel, bot_prefix + answer) @commands.command(pass_context=True) async def l2g(self, ctx, *, msg: str): """Creates a googleitfor.me link. Ex: >l2g how do i become cool.""" lmgtfy = 'http://googleitfor.me/?q=' words = msg.lower().strip().split(' ') for word in words: lmgtfy += word + '+' await self.bot.send_message(ctx.message.channel, bot_prefix + lmgtfy[:-1]) await self.bot.delete_message(ctx.message) @commands.command(pass_context=True) async def d(self, ctx): """Deletes the last message sent or n messages sent. Ex: >d 5""" # If number of seconds/messages are specified if len(ctx.message.content.lower().strip()) > 2: if ctx.message.content[3] == '!': killmsg = self.bot.self_log[ctx.message.channel.id][len(self.bot.self_log[ctx.message.channel.id]) - 2] timer = int(ctx.message.content[4:].lower().strip()) # Animated countdown because screw rate limit amirite destroy = await self.bot.edit_message(ctx.message, bot_prefix + 'The above message will self-destruct in:') msg = await self.bot.send_message(ctx.message.channel, '``%s |``' % timer) for i in range(0, timer, 4): if timer - 1 - i == 0: await self.bot.delete_message(destroy) msg = await self.bot.edit_message(msg, '``0``') break else: msg = await self.bot.edit_message(msg, '``%s |``' % int(timer - 1 - i)) await asyncio.sleep(1) if timer - 1 - i != 0: if timer - 2 - i == 0: await self.bot.delete_message(destroy) msg = await self.bot.edit_message(msg, '``0``') break else: msg = await self.bot.edit_message(msg, '``%s /``' % int(timer - 2 - i)) await asyncio.sleep(1) if timer - 2 - i != 0: if timer - 3 - i == 0: await self.bot.delete_message(destroy) msg = await self.bot.edit_message(msg, '``0``') break else: msg = await self.bot.edit_message(msg, '``%s -``' % int(timer - 3 - i)) await asyncio.sleep(1) if timer - 3 - i != 0: if timer - 4 - i == 0: await self.bot.delete_message(destroy) msg = await self.bot.edit_message(msg, '``0``') break else: msg = await self.bot.edit_message(msg, '``%s \ ``' % int(timer - 4 - i)) await asyncio.sleep(1) await self.bot.edit_message(msg, ':bomb:') await asyncio.sleep(.5) await self.bot.edit_message(msg, ':fire:') await self.bot.edit_message(killmsg, ':fire:') await asyncio.sleep(.5) await self.bot.delete_message(msg) await self.bot.delete_message(killmsg) else: await self.bot.delete_message(self.bot.self_log[ctx.message.channel.id].pop()) for i in range(0, int(ctx.message.content[3:])): try: await self.bot.delete_message(self.bot.self_log[ctx.message.channel.id].pop()) except: pass # If no number specified, delete message immediately else: await self.bot.delete_message(self.bot.self_log[ctx.message.channel.id].pop()) await self.bot.delete_message(self.bot.self_log[ctx.message.channel.id].pop()) @commands.command(pass_context=True) async def spoiler(self, ctx, *, msg : str): """Spoiler tag. Ex: >spoiler Some book | They get married.""" try: if " | " in msg: spoiled_work, spoiler = msg.lower().split(" | ", 1) else: spoiled_work, _, spoiler = msg.lower().partition(" ") await self.bot.edit_message(ctx.message, bot_prefix + 'Spoiler for `' + spoiled_work + '`: \n`' + ''.join(map(lambda c: chr(ord('a') + (((ord(c) - ord('a')) + 13) % 26)) if c >= 'a' and c <= 'z' else c, spoiler)) + '`\n' + bot_prefix + 'Use http://rot13.com to decode') except: await self.bot.send_message(ctx.message.channel, bot_prefix + 'Could not encrypt spoiler.') @commands.group(pass_context=True) async def gist(self, ctx): """Posts to gist""" if ctx.invoked_subcommand is None: url = PythonGists.Gist(description='Created in channel: {} in server: {}'.format(ctx.message.channel, ctx.message.server), content=ctx.message.content[6:], name='Output') await self.bot.send_message(ctx.message.channel, bot_prefix + 'Gist output: ' + url) await self.bot.delete_message(ctx.message) @gist.command(pass_context=True) async def file(self, ctx, *, msg): """Create gist of file""" try: with open(msg) as fp: output = fp.read() url = PythonGists.Gist(description='Created in channel: {} in server: {}'.format(ctx.message.channel, ctx.message.server), content=output, name=msg.replace('/', '.')) await self.bot.send_message(ctx.message.channel, bot_prefix + 'Gist output: ' + url) except: await self.bot.send_message(ctx.message.channel, bot_prefix + 'File not found.') finally: await self.bot.delete_message(ctx.message) @commands.command(pass_context=True) async def regional(self, ctx, *, msg): """Replace letters with regional indicator emojis""" await self.bot.delete_message(ctx.message) msg = list(msg) regional_list = [self.regionals[x.lower()] if x.isalnum() else x for x in msg] regional_output = ' '.join(regional_list) await self.bot.send_message(ctx.message.channel, regional_output) @commands.command(pass_context=True) async def space(self, ctx, *, msg): """Add n spaces between each letter. Ex: >space 2 thicc""" await self.bot.delete_message(ctx.message) if msg.split(' ', 1)[0].isdigit(): spaces = int(msg.split(' ', 1)[0]) * ' ' msg = msg.split(' ', 1)[1].strip() else: spaces = ' ' msg = list(msg) spaced_message = '{}'.format(spaces).join(msg) await self.bot.send_message(ctx.message.channel, spaced_message) @commands.command(pass_context=True) async def react(self, ctx, msg: str, id: int = None): """Add letter(s) as reaction to previous message. Ex: >react hot""" await self.bot.delete_message(ctx.message) reactions = [] if id: limit = 25 else: limit = 1 for i in msg: if i.isalnum(): reactions.append(self.regionals[i.lower()]) else: reactions.append(i) async for message in self.bot.logs_from(ctx.message.channel, limit=limit): if (not id and message.id != ctx.message.id) or (str(id) == message.id): for i in reactions: await self.bot.add_reaction(message, i) def setup(bot): bot.add_cog(Misc(bot))
StarcoderdataPython
1786879
<filename>polyA/fill_consensus_position_matrix.py from typing import Dict, List, Tuple from .matrices import ConsensusMatrixContainer from .performance import timeit @timeit() def fill_consensus_position_matrix( row_count: int, column_count: int, start_all: int, subfams: List[str], chroms: List[str], starts: List[int], stops: List[int], consensus_starts: List[int], strands: List[str], ) -> ConsensusMatrixContainer: """ Fills matrix that holds the consensus position for each subfam at that position in the alignment. Walks along the alignments one nucleotide at a time adding the consensus position to the matrix. At same time, fills ActiveCells. input: column_count: number of columns in alignment matrix - will be same number of columns in consensus_matrix row_count: number of rows in matrices start_all: min start position on chromosome/target sequences for whole alignment subfams: actual subfamily/consensus sequences from alignment chroms: actual target/chromosome sequences from alignment starts: start positions for all competing alignments (on target) stops: stop positions for all competing alignments (on target) consensus_starts: where alignment starts in the subfam/consensus sequence strands: what strand each of the alignments are on - reverse strand will count down instead of up output: ConsensusMatrixContainer >>> subs = ["", ".AA", "TT-"] >>> chrs = ["", ".AA", "TTT"] >>> strts = [0, 1, 0] >>> stps = [0, 2, 2] >>> con_strts = [-1, 0, 10] >>> strandss = ["", "+", "-"] >>> active, con_mat = fill_consensus_position_matrix(3, 3, 0, subs, chrs, strts, stps, con_strts, strandss) >>> con_mat {(1, 2): 0, (1, 3): 1, (2, 1): 10, (2, 2): 9, (2, 3): 9, (0, 0): 0, (0, 1): 0, (0, 2): 0} >>> active {2: [0, 1, 2], 3: [0, 1, 2], 1: [0, 2], 0: [0]} """ active_cells: Dict[int, List[int]] = {} consensus_matrix: Dict[Tuple[int, int], int] = {} # start at 1 to ignore 'skip state' for row_index in range(1, row_count): if strands[row_index] == "+": consensus_pos = consensus_starts[row_index] - 1 col_index: int = starts[row_index] - start_all + 1 seq_index: int = 0 while col_index < stops[row_index] + 1 - start_all + 1: # consensus pos only advances when there is not a gap in the subfam seq if subfams[row_index][seq_index] != "-": consensus_pos += 1 consensus_matrix[row_index, col_index] = consensus_pos # matrix position only advances when there is not a gap in the chrom seq if chroms[row_index][seq_index] != "-": if col_index in active_cells: active_cells[col_index].append(row_index) else: active_cells[col_index] = [0, row_index] col_index += 1 seq_index += 1 else: # reverse strand consensus_pos2 = consensus_starts[row_index] + 1 col_index2: int = starts[row_index] - start_all + 1 seq_index2: int = 0 while col_index2 < stops[row_index] + 1 - start_all + 1: if subfams[row_index][seq_index2] != "-": consensus_pos2 -= 1 consensus_matrix[row_index, col_index2] = consensus_pos2 if chroms[row_index][seq_index2] != "-": if col_index2 in active_cells: active_cells[col_index2].append(row_index) else: active_cells[col_index2] = [0, row_index] col_index2 += 1 seq_index2 += 1 for i in range(column_count): consensus_matrix[0, i] = 0 if i not in active_cells: active_cells[i] = [0] return ConsensusMatrixContainer(active_cells, consensus_matrix)
StarcoderdataPython
5089534
<reponame>lelechen63/idinvert_pytorch import numpy as np import cv2, PIL.Image # show image in Jupyter Notebook (work inside loop) from io import BytesIO from IPython.display import display, Image def show_img_arr(arr, bgr_mode = False): if bgr_mode is True: arr = cv2.cvtColor(arr, cv2.COLOR_BGR2RGB) im = PIL.Image.fromarray(arr) bio = BytesIO() im.save(bio, format='png') display(Image(bio.getvalue(), format='png')) # show depth array in Jupyter Notebook (work inside loop) def show_depth_arr(depth_map): depth_max = np.max(depth_map) depth_min = np.min(depth_map) depth_map = (depth_map - depth_min)/(depth_max - depth_min)*255 show_img_arr(depth_map.astype(np.uint8)) # rotate verts along y axis def rotate_verts_y(verts, y): verts_mean = np.mean(verts, axis = 0) verts = verts - verts_mean angle = y*np.math.pi/180 R = np.array([[np.cos(angle), 0, np.sin(angle)], [0, 1, 0], [-np.sin(angle), 0, np.cos(angle)]]) verts = np.tensordot(R, verts.T, axes = 1).T + verts_mean return verts # rotate verts along x axis def rotate_verts_x(verts, x): verts_mean = np.mean(verts, axis = 0) verts = verts - verts_mean angle = x*np.math.pi/180 R = np.array([[1, 0, 0], [0, np.cos(angle), -np.sin(angle)], [0, np.sin(angle), np.cos(angle)]]) verts = np.tensordot(R, verts.T, axes = 1).T + verts_mean return verts # rotate verts along z axis def rotate_verts_z(verts, z): verts_mean = np.mean(verts, axis = 0) verts = verts - verts_mean angle = z*np.math.pi/180 R = np.array([[np.cos(angle), -np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0, 0, 1]]) verts = np.tensordot(R, verts.T, axes = 1).T + verts_mean return verts
StarcoderdataPython
8016443
<filename>caldavclientlibrary/protocol/url.py ## # Copyright (c) 2007-2016 Apple Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## import os import urllib class URL(object): eAbsolute = 0 eRelative = 1 eLastPath = 2 URLEscape = '%' URLReserved = "/?:@&=" URLUnreserved = ( # Allowable URL chars 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 0 - 15 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 16 - 31 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, # 32 - 47 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, # 48 - 63 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 64 - 79 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, # 80 - 95 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 96 - 111 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, # 112 - 127 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 128 - 143 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 144 - 159 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 160 - 175 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 176 - 191 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 192 - 207 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 208 - 223 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 224 - 239 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 240 - 255 ) URLCharacter = ( # Allowable URL chars -- all 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 0 - 15 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 16 - 31 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 32 - 47 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, # 48 - 63 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 64 - 79 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, # 80 - 95 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 96 - 111 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, # 112 - 127 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 128 - 143 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 144 - 159 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 160 - 175 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 176 - 191 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 192 - 207 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 208 - 223 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 224 - 239 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 240 - 255 ) URLXCharacter = ( # Allowable URL chars (all) # RFC2732 uses '[...]' for IPv6 addressing - [] are now allowed 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 0 - 15 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 16 - 31 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 32 - 47 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, # 48 - 63 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 64 - 79 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, # 80 - 95 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 96 - 111 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, # 112 - 127 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 128 - 143 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 144 - 159 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 160 - 175 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 176 - 191 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 192 - 207 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 208 - 223 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 224 - 239 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 240 - 255 ) URLSchemeDoubleSlash = ("http", "https", "webcal",) def __init__(self, url=None, scheme=None, server=None, path=None, extended=None, decode=False): self.scheme = "" self.server = "" self.path = "" self.extended = "" if not url: self.scheme = scheme self.server = server self.path = path if self.path and decode: self.path = urllib.unquote(self.path) self.extended = extended if self.extended and decode: self.extended = urllib.unquote_plus(self.extended) else: self._parse(url, decode) def __str__(self): return "URL: %s" % (self.toString(),) def __repr__(self): return "URL: %s" % (self.toString(),) def __cmp__(self, other): return cmp(self.toString(), other.toString()) def absoluteURL(self): return self.toString() def relativeURL(self): return self.toString(conversion=URL.eRelative) def toString(self, conversion=eAbsolute, encode=True): result = "" # Add scheme & host if not relative if conversion == URL.eAbsolute and self.scheme and self.server: result += self.scheme + ":" if self.scheme in URL.URLSchemeDoubleSlash: result += "//" result += self.server # Get path (or last part of it if required) if self.path and conversion == URL.eLastPath: path = self.path[self.path.rfind("/"):] else: path = self.path # Now encode if required if path: result += (urllib.quote(path) if encode else path) if self.extended: result += (urllib.quote_plus(self.extended, "?&=") if encode else self.extended) return result def equal(self, comp): # Compare each component if self.scheme != comp.scheme: return False if self.server != comp.server: return False # Ignore trailing slash if self.path.rstrip("/") != comp.path.rstrip("/"): return False return True def equalRelative(self, comp): # Must be relative if comp.server: return False if not self.path and not comp.path: return True if not self.path or not comp.path: return False # Just compare paths, ignore trailing slash return self.path.rstrip("/") == comp.path.rstrip("/") def dirname(self): if self.path: newpath = os.path.dirname(self.path.rstrip("/")) + "/" return URL(scheme=self.scheme, server=self.server, path=newpath) def _parse(self, url, decode=False): # Strip off main scheme if url.lower().startswith("url:"): url = url[4:] # Special - if it starts with "/" its a relative HTTP url if url[0] == '/': self.scheme = "http" self.server = None self._parsePath(url, decode) else: # Get protocol scheme self.scheme = url[:url.find(":")].lower() url = url[len(self.scheme):] if self.scheme in URL.URLSchemeDoubleSlash: assert(url.startswith("://")) # Look for server splits = url[3:].split("/", 1) self.server = splits[0] if len(splits) == 2: self._parsePath("/" + splits[1], decode) elif self.scheme in ("mailto", "urn",): assert(url.startswith(":")) # Look for server self.server = url[1:] def _parsePath(self, path, decode=False): # Look for extended bits splits = path.split("?", 1) self.path = splits[0] if decode: self.path = urllib.unquote(self.path) if len(splits) == 2: self.extended = "?" + splits[1] if decode: self.extended = urllib.unquote_plus(self.extended)
StarcoderdataPython
3525205
<filename>prepare_verbs.py import jsonpickle as jp from utils import open_file, write_file, collator jp.set_encoder_options('simplejson', sort_keys=True, indent=4, ensure_ascii=False) content = open_file('input/monlam_verbs.json') json = jp.decode(content) dadrag = open_file('input/dadrag_syllables.txt').strip().split('\n') entries = [] for inflected, context in json.items(): # a few entries don't have any content in monlam_verbs.json and are filtered here # like : ལྷོགས་ | ༡བྱ་ཚིག 1. ༡བརྡ་རྙིང་། རློགས། 2. ཀློགས། that parses into "ལྷོགས": [] if context == []: continue possible_verbs = [] for verb in context: # inflected verbs if 'བྱ་ཚིག' in verb.keys(): possible_verbs.append(verb['བྱ་ཚིག']) # non-inflected verbs (གཟུགས་མི་འགྱུར་བ།) else: possible_verbs.append(inflected) # de-duplicate the verbs possible_verbs = list(set(possible_verbs)) # add an entry for every possible verb if inflected in dadrag: for verb in possible_verbs: entries.append((inflected+'ད', '/'+verb)) else: for verb in possible_verbs: if inflected == verb: entries.append((inflected, '=')) else: entries.append((inflected, '/'+verb)) tib_sorted = sorted(entries, key=lambda x: collator.getSortKey(x[0])) lines = ['{} {}'.format(inflected, lemma) for inflected, lemma in tib_sorted] write_file('output/parsed_verbs.txt', '\n'.join(lines))
StarcoderdataPython

Dataset Card for "code_20b2"

More Information needed

Downloads last month
404
Edit dataset card