Datasets:
Tasks:
Image-to-Text
Formats:
parquet
Sub-tasks:
image-captioning
Languages:
English
Size:
100K - 1M
language: | |
- en | |
pretty_name: COCO2017 | |
size_categories: | |
- 100K<n<1M | |
task_categories: | |
- image-to-text | |
task_ids: | |
- image-captioning | |
tags: | |
- coco | |
- image-captioning | |
dataset_info: | |
features: | |
- name: license | |
dtype: int64 | |
- name: file_name | |
dtype: string | |
- name: coco_url | |
dtype: string | |
- name: height | |
dtype: int64 | |
- name: width | |
dtype: int64 | |
- name: date_captured | |
dtype: string | |
- name: flickr_url | |
dtype: string | |
- name: image_id | |
dtype: int64 | |
- name: ids | |
sequence: int64 | |
- name: captions | |
sequence: string | |
splits: | |
- name: train | |
num_bytes: 64026361 | |
num_examples: 118287 | |
- name: validation | |
num_bytes: 2684731 | |
num_examples: 5000 | |
download_size: 30170127 | |
dataset_size: 66711092 | |
# coco2017 | |
Image-text pairs from [MS COCO2017](https://cocodataset.org/#download). | |
## Data origin | |
* Data originates from [cocodataset.org](http://images.cocodataset.org/annotations/annotations_trainval2017.zip) | |
* While `coco-karpathy` uses a dense format (with several sentences and sendids per row), `coco-karpathy-long` uses a long format with one `sentence` (aka caption) and `sendid` per row. `coco-karpathy-long` uses the first five sentences and therefore is five times as long as `coco-karpathy`. | |
* `phiyodr/coco2017`: One row corresponds one image with several sentences. | |
* `phiyodr/coco2017-long`: One row correspond one sentence (aka caption). There are 5 rows (sometimes more) with the same image details. | |
## Format | |
```python | |
DatasetDict({ | |
train: Dataset({ | |
features: ['license', 'file_name', 'coco_url', 'height', 'width', 'date_captured', 'flickr_url', 'image_id', 'ids', 'captions'], | |
num_rows: 118287 | |
}) | |
validation: Dataset({ | |
features: ['license', 'file_name', 'coco_url', 'height', 'width', 'date_captured', 'flickr_url', 'image_id', 'ids', 'captions'], | |
num_rows: 5000 | |
}) | |
}) | |
``` | |
## Usage | |
* Download image data and unzip | |
```bash | |
cd PATH_TO_IMAGE_FOLDER | |
wget http://images.cocodataset.org/zips/train2017.zip | |
wget http://images.cocodataset.org/zips/val2017.zip | |
#wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip # zip not needed: everything you need is in load_dataset("phiyodr/coco2017") | |
unzip train2017.zip | |
unzip val2017.zip | |
``` | |
* Load dataset in Python | |
```python | |
import os | |
from datasets import load_dataset | |
PATH_TO_IMAGE_FOLDER = "COCO2017" | |
def create_full_path(example): | |
"""Create full path to image using `base_path` to COCO2017 folder.""" | |
example["image_path"] = os.path.join(PATH_TO_IMAGE_FOLDER, example["file_name"]) | |
return example | |
dataset = load_dataset("phiyodr/coco2017") | |
dataset = dataset.map(create_full_path) | |
``` |