prvInSpace commited on
Commit
d037432
1 Parent(s): b379045

Upload banc-trawsgrifiadau-bangor.py

Browse files
Files changed (1) hide show
  1. banc-trawsgrifiadau-bangor.py +103 -0
banc-trawsgrifiadau-bangor.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Huggingface Dataset version of Banc Trawsgrifiadau Bangor"""
2
+
3
+
4
+ import os
5
+ import datasets
6
+
7
+
8
+ # TODO: Add BibTeX citation
9
+ _CITATION = """\
10
+ }
11
+ """
12
+ _DESCRIPTION = """Huggingface Dataset version of Banc Trawsgrifiadau Bangor"""
13
+ _HOMEPAGE = "https://git.techiaith.bangor.ac.uk/data-porth-technolegau-iaith/banc-trawsgrifiadau-bangor"
14
+ _LICENSE = "Creative Commons Zero v1.0 Universal"
15
+ _URL = "https://huggingface.co/datasets/prvInSpace/banc-trawsgrifiadau-bangor/resolve/main"
16
+
17
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
18
+
19
+
20
+ class BancTrawsgrifiadauBangor(datasets.GeneratorBasedBuilder):
21
+ """Huggingface Dataset version of Banc Trawsgrifiadau Bangor"""
22
+
23
+ VERSION = datasets.Version("1.0.0")
24
+
25
+ def _info(self):
26
+ features = datasets.Features(
27
+ {
28
+ "audio_filename": datasets.Value("string"),
29
+ "audio_filesize": datasets.Value("string"),
30
+ "transcript": datasets.Value("string"),
31
+ "duration": datasets.Value("int64"),
32
+ "audio": datasets.features.Audio(sampling_rate=16_000)
33
+ # These are the features of your dataset like images, labels ...
34
+ }
35
+ )
36
+ return datasets.DatasetInfo(
37
+ # This is the description that will appear on the datasets page.
38
+ description=_DESCRIPTION,
39
+ # This defines the different columns of the dataset and their types
40
+ # Here we define them above because they are different between the two configurations
41
+ features=features,
42
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
43
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
44
+ # supervised_keys=("sentence", "label"),
45
+ # Homepage of the dataset for documentation
46
+ homepage=_HOMEPAGE,
47
+ # License for the dataset if available
48
+ license=_LICENSE,
49
+ # Citation for the dataset
50
+ citation=_CITATION,
51
+ )
52
+
53
+ def _split_generators(self, dl_manager):
54
+
55
+ # Download the clips
56
+ data_dir = dl_manager.download_and_extract(
57
+ f"{_URL}/clips.zip")
58
+
59
+ # Generate the splits
60
+ return [
61
+ datasets.SplitGenerator(
62
+ name="clips",
63
+ # These kwargs will be passed to _generate_examples
64
+ gen_kwargs={
65
+ "filepath": dl_manager.download(f"{_URL}/clips.tsv"),
66
+ "path_to_clips": os.path.join(data_dir, "clips")
67
+ },
68
+ ),
69
+ datasets.SplitGenerator(
70
+ name=datasets.Split.TRAIN,
71
+ # These kwargs will be passed to _generate_examples
72
+ gen_kwargs={
73
+ "filepath": dl_manager.download(f"{_URL}/train.tsv"),
74
+ "path_to_clips": os.path.join(data_dir, "clips")
75
+ },
76
+ ),
77
+ datasets.SplitGenerator(
78
+ name=datasets.Split.TEST,
79
+ # These kwargs will be passed to _generate_examples
80
+ gen_kwargs={
81
+ "filepath": dl_manager.download(f"{_URL}/test.tsv"),
82
+ "path_to_clips": os.path.join(data_dir, "clips")
83
+ },
84
+ ),
85
+ ]
86
+
87
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
88
+ def _generate_examples(self, filepath, path_to_clips):
89
+ print(path_to_clips)
90
+ import csv
91
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
92
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
93
+ with open(filepath, encoding="utf-8") as f:
94
+ reader = csv.DictReader(f, delimiter="\t")
95
+ for row in reader:
96
+ path = f'{path_to_clips}/{row["audio_filename"]}'
97
+
98
+ # Add the audio data
99
+ with open(path, "rb") as file:
100
+ row['audio'] = {
101
+ 'path': path, 'bytes': file.read()
102
+ }
103
+ yield path, row