Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
bc14321
1 Parent(s): 167c717

Delete loading script

Browse files
Files changed (1) hide show
  1. squad_v2.py +0 -133
squad_v2.py DELETED
@@ -1,133 +0,0 @@
1
- """TODO(squad_v2): Add a description here."""
2
-
3
-
4
- import json
5
-
6
- import datasets
7
- from datasets.tasks import QuestionAnsweringExtractive
8
-
9
-
10
- # TODO(squad_v2): BibTeX citation
11
- _CITATION = """\
12
- @article{2016arXiv160605250R,
13
- author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
14
- Konstantin and {Liang}, Percy},
15
- title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
16
- journal = {arXiv e-prints},
17
- year = 2016,
18
- eid = {arXiv:1606.05250},
19
- pages = {arXiv:1606.05250},
20
- archivePrefix = {arXiv},
21
- eprint = {1606.05250},
22
- }
23
- """
24
-
25
- _DESCRIPTION = """\
26
- combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers
27
- to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but
28
- also determine when no answer is supported by the paragraph and abstain from answering.
29
- """
30
-
31
- _URL = "https://rajpurkar.github.io/SQuAD-explorer/dataset/"
32
- _URLS = {
33
- "train": _URL + "train-v2.0.json",
34
- "dev": _URL + "dev-v2.0.json",
35
- }
36
-
37
-
38
- class SquadV2Config(datasets.BuilderConfig):
39
- """BuilderConfig for SQUAD."""
40
-
41
- def __init__(self, **kwargs):
42
- """BuilderConfig for SQUADV2.
43
-
44
- Args:
45
- **kwargs: keyword arguments forwarded to super.
46
- """
47
- super(SquadV2Config, self).__init__(**kwargs)
48
-
49
-
50
- class SquadV2(datasets.GeneratorBasedBuilder):
51
- """TODO(squad_v2): Short description of my dataset."""
52
-
53
- # TODO(squad_v2): Set up version.
54
- BUILDER_CONFIGS = [
55
- SquadV2Config(name="squad_v2", version=datasets.Version("2.0.0"), description="SQuAD plaint text version 2"),
56
- ]
57
-
58
- def _info(self):
59
- # TODO(squad_v2): Specifies the datasets.DatasetInfo object
60
- return datasets.DatasetInfo(
61
- # This is the description that will appear on the datasets page.
62
- description=_DESCRIPTION,
63
- # datasets.features.FeatureConnectors
64
- features=datasets.Features(
65
- {
66
- "id": datasets.Value("string"),
67
- "title": datasets.Value("string"),
68
- "context": datasets.Value("string"),
69
- "question": datasets.Value("string"),
70
- "answers": datasets.features.Sequence(
71
- {
72
- "text": datasets.Value("string"),
73
- "answer_start": datasets.Value("int32"),
74
- }
75
- ),
76
- # These are the features of your dataset like images, labels ...
77
- }
78
- ),
79
- # If there's a common (input, target) tuple from the features,
80
- # specify them here. They'll be used if as_supervised=True in
81
- # builder.as_dataset.
82
- supervised_keys=None,
83
- # Homepage of the dataset for documentation
84
- homepage="https://rajpurkar.github.io/SQuAD-explorer/",
85
- citation=_CITATION,
86
- task_templates=[
87
- QuestionAnsweringExtractive(
88
- question_column="question", context_column="context", answers_column="answers"
89
- )
90
- ],
91
- )
92
-
93
- def _split_generators(self, dl_manager):
94
- """Returns SplitGenerators."""
95
- # TODO(squad_v2): Downloads the data and defines the splits
96
- # dl_manager is a datasets.download.DownloadManager that can be used to
97
- # download and extract URLs
98
- urls_to_download = _URLS
99
- downloaded_files = dl_manager.download_and_extract(urls_to_download)
100
-
101
- return [
102
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
103
- datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
104
- ]
105
-
106
- def _generate_examples(self, filepath):
107
- """Yields examples."""
108
- # TODO(squad_v2): Yields (key, example) tuples from the dataset
109
- with open(filepath, encoding="utf-8") as f:
110
- squad = json.load(f)
111
- for example in squad["data"]:
112
- title = example.get("title", "")
113
- for paragraph in example["paragraphs"]:
114
- context = paragraph["context"] # do not strip leading blank spaces GH-2585
115
- for qa in paragraph["qas"]:
116
- question = qa["question"]
117
- id_ = qa["id"]
118
-
119
- answer_starts = [answer["answer_start"] for answer in qa["answers"]]
120
- answers = [answer["text"] for answer in qa["answers"]]
121
-
122
- # Features currently used are "context", "question", and "answers".
123
- # Others are extracted here for the ease of future expansions.
124
- yield id_, {
125
- "title": title,
126
- "context": context,
127
- "question": question,
128
- "id": id_,
129
- "answers": {
130
- "answer_start": answer_starts,
131
- "text": answers,
132
- },
133
- }