dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': airplane
'1': alarm clock
'2': angel
'3': ant
'4': apple
'5': arm
'6': armchair
'7': ashtray
'8': axe
'9': backpack
'10': banana
'11': barn
'12': baseball bat
'13': basket
'14': bathtub
'15': bear (animal)
'16': bed
'17': bee
'18': beer-mug
'19': bell
'20': bench
'21': bicycle
'22': binoculars
'23': blimp
'24': book
'25': bookshelf
'26': boomerang
'27': bottle opener
'28': bowl
'29': brain
'30': bread
'31': bridge
'32': bulldozer
'33': bus
'34': bush
'35': butterfly
'36': cabinet
'37': cactus
'38': cake
'39': calculator
'40': camel
'41': camera
'42': candle
'43': cannon
'44': canoe
'45': car (sedan)
'46': carrot
'47': castle
'48': cat
'49': cell phone
'50': chair
'51': chandelier
'52': church
'53': cigarette
'54': cloud
'55': comb
'56': computer monitor
'57': computer-mouse
'58': couch
'59': cow
'60': crab
'61': crane (machine)
'62': crocodile
'63': crown
'64': cup
'65': diamond
'66': dog
'67': dolphin
'68': donut
'69': door
'70': door handle
'71': dragon
'72': duck
'73': ear
'74': elephant
'75': envelope
'76': eye
'77': eyeglasses
'78': face
'79': fan
'80': feather
'81': fire hydrant
'82': fish
'83': flashlight
'84': floor lamp
'85': flower with stem
'86': flying bird
'87': flying saucer
'88': foot
'89': fork
'90': frog
'91': frying-pan
'92': giraffe
'93': grapes
'94': grenade
'95': guitar
'96': hamburger
'97': hammer
'98': hand
'99': harp
'100': hat
'101': head
'102': head-phones
'103': hedgehog
'104': helicopter
'105': helmet
'106': horse
'107': hot air balloon
'108': hot-dog
'109': hourglass
'110': house
'111': human-skeleton
'112': ice-cream-cone
'113': ipod
'114': kangaroo
'115': key
'116': keyboard
'117': knife
'118': ladder
'119': laptop
'120': leaf
'121': lightbulb
'122': lighter
'123': lion
'124': lobster
'125': loudspeaker
'126': mailbox
'127': megaphone
'128': mermaid
'129': microphone
'130': microscope
'131': monkey
'132': moon
'133': mosquito
'134': motorbike
'135': mouse (animal)
'136': mouth
'137': mug
'138': mushroom
'139': nose
'140': octopus
'141': owl
'142': palm tree
'143': panda
'144': paper clip
'145': parachute
'146': parking meter
'147': parrot
'148': pear
'149': pen
'150': penguin
'151': person sitting
'152': person walking
'153': piano
'154': pickup truck
'155': pig
'156': pigeon
'157': pineapple
'158': pipe (for smoking)
'159': pizza
'160': potted plant
'161': power outlet
'162': present
'163': pretzel
'164': pumpkin
'165': purse
'166': rabbit
'167': race car
'168': radio
'169': rainbow
'170': revolver
'171': rifle
'172': rollerblades
'173': rooster
'174': sailboat
'175': santa claus
'176': satellite
'177': satellite dish
'178': saxophone
'179': scissors
'180': scorpion
'181': screwdriver
'182': sea turtle
'183': seagull
'184': shark
'185': sheep
'186': ship
'187': shoe
'188': shovel
'189': skateboard
'190': skull
'191': skyscraper
'192': snail
'193': snake
'194': snowboard
'195': snowman
'196': socks
'197': space shuttle
'198': speed-boat
'199': spider
'200': sponge bob
'201': spoon
'202': squirrel
'203': standing bird
'204': stapler
'205': strawberry
'206': streetlight
'207': submarine
'208': suitcase
'209': sun
'210': suv
'211': swan
'212': sword
'213': syringe
'214': t-shirt
'215': table
'216': tablelamp
'217': teacup
'218': teapot
'219': teddy-bear
'220': telephone
'221': tennis-racket
'222': tent
'223': tiger
'224': tire
'225': toilet
'226': tomato
'227': tooth
'228': toothbrush
'229': tractor
'230': traffic light
'231': train
'232': tree
'233': trombone
'234': trousers
'235': truck
'236': trumpet
'237': tv
'238': umbrella
'239': van
'240': vase
'241': violin
'242': walkie talkie
'243': wheel
'244': wheelbarrow
'245': windmill
'246': wine-bottle
'247': wineglass
'248': wrist-watch
'249': zebra
splits:
- name: train
num_bytes: 480609419
num_examples: 16000
- name: validation
num_bytes: 59693656
num_examples: 2000
- name: test
num_bytes: 60354461
num_examples: 2000
download_size: 589082694
dataset_size: 600657536
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
Dataset Card for TU Berline Dataset
This dataset card aims to provide comprehensive information about the TU Berlin dataset, a collection of hand-drawn sketches used for training and evaluating sketch classification models.
Dataset Details
Dataset Description
The TU Berlin dataset is a large-scale collection of hand-drawn sketches curated by the research team at TU Berlin. The dataset includes 20,000 unique sketches across 250 object categories, contributed by participants from around the world. The primary purpose of this dataset is to facilitate research in the field of computer vision, particularly for tasks related to sketch recognition and classification.
- Curated by: TU Berlin research team
- Shared by [optional]: TU Berlin
Dataset Sources
- Source: TU Berlin Dataset Source
- Paper: TU Berlin Dataset Paper
Uses
Direct Use
The dataset is intended for use in developing and evaluating sketch recognition algorithms. It is suitable for tasks such as:
- Training sketch classification models
- Evaluating the performance of sketch recognition systems
- Conducting research in computer vision and machine learning related to hand-drawn images
Out-of-Scope Use
The dataset is not suitable for use cases that require high-resolution images or photographs. It is also not intended for tasks unrelated to sketch recognition, such as natural image classification.
Dataset Structure
The dataset is organized into categories, each containing a collection of hand-drawn sketches. Each sketch is a black-and-white image representing an object from one of the predefined categories.
- Number of Categories: 250
- Number of Sketches: 20,000
Dataset Splits
I downloaded the TU Berlin dataset and split it into train set, validation set, and test set.
- Train Set:
- Number of Examples: 16,000
- Size: 480,609,419 bytes
- Validation Set:
- Number of Examples: 2,000
- Size: 59,693,656 bytes
- Test Set:
- Number of Examples: 2,000
- Size: 60,354,461 bytes
- Download Size: 589,085,954 bytes
- Total Dataset Size: 600,657,536 bytes
The data was split using the following code:
from sklearn.model_selection import train_test_split
train_data, temp_data = train_test_split(metadata, test_size=0.2, random_state=42)
val_data, test_data = train_test_split(temp_data, test_size=0.5, random_state=42)
Citation
BibTeX:
@article{eitz2012hdhso,
author={Eitz, Mathias and Hays, James and Alexa, Marc},
title={How Do Humans Sketch Objects?},
journal={ACM Trans. Graph. (Proc. SIGGRAPH)},
year={2012},
volume={31},
number={4},
pages = {44:1--44:10}
}