spk
stringclasses
125 values
age
stringclasses
25 values
gender
stringclasses
2 values
utt_name
stringlengths
9
9
audio
audioduration (s)
1.59
20.4
utt_text
stringlengths
3
61
utt_accuracy
int64
3
10
utt_completeness
float64
6.7
10
utt_fluency
int64
1
10
utt_prosodic
int64
1
10
utt_total
int64
2
10
words
sequencelengths
1
10
words_accuracy
sequencelengths
1
10
words_stress
sequencelengths
1
10
words_total
sequencelengths
1
10
phones
sequencelengths
1
10
phones_godness
sequencelengths
1
10
duration
float64
1.59
20.4
0001
6
m
000010011
WE CALL IT BEAR
8
10
9
9
8
[ "WE", "CALL", "IT", "BEAR" ]
[ 10, 10, 10, 6 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 6 ]
[ [ "W", "IY0" ], [ "K", "AO0", "L" ], [ "IH0", "T" ], [ "B", "EH0", "R" ] ]
[ [ 2, 2 ], [ 2, 1.8, 1.8 ], [ 2, 2 ], [ 2, 1, 1 ] ]
2.58
0001
6
m
000010035
ZERO THREE FIVE ONE
8
10
9
9
8
[ "ZERO", "THREE", "FIVE", "ONE" ]
[ 8, 8, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 7, 8, 10, 10 ]
[ [ "Z", "IH1", "R", "OW0" ], [ "TH", "R", "IY0" ], [ "F", "AY0", "V" ], [ "W", "AH0", "N" ] ]
[ [ 2, 1.4, 1.4, 2 ], [ 1.2, 2, 2 ], [ 2, 2, 1.8 ], [ 2, 2, 2 ] ]
3.43
0001
6
m
000010053
THREE TWO TWO SEVEN
9
10
10
10
9
[ "THREE", "TWO", "TWO", "SEVEN" ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ [ "TH", "R", "IY0" ], [ "T", "UW0" ], [ "T", "UW0" ], [ "S", "EH1", "V", "N" ] ]
[ [ 1.8, 2, 2 ], [ 2, 1.8 ], [ 2, 1.8 ], [ 2, 2, 2, 2 ] ]
3.35
0001
6
m
000010063
ELEPHANTS TAI GOOSE
10
10
9
9
9
[ "ELEPHANTS", "TAI", "GOOSE" ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ [ "EH1", "L", "IH0", "F", "AH0", "N", "T", "S" ], [ "T", "AY0" ], [ "G", "UW0", "S" ] ]
[ [ 2, 2, 2, 2, 1.8, 2, 2, 2 ], [ 2, 2 ], [ 2, 2, 2 ] ]
3.319
0001
6
m
000010069
TOM GIVES UP BOXING
9
10
9
10
9
[ "TOM", "GIVES", "UP", "BOXING" ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ [ "T", "AA0", "M" ], [ "G", "IH0", "V", "Z" ], [ "AH0", "P" ], [ "B", "AA1", "K", "S", "IH0", "NG" ] ]
[ [ 2, 2, 2 ], [ 2, 2, 2, 1.8 ], [ 2, 2 ], [ 2, 2, 2, 2, 2, 2 ] ]
3.01
0001
6
m
000010075
HE HATES SHOOTING
9
10
9
9
9
[ "HE", "HATES", "SHOOTING" ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ [ "HH", "IY0" ], [ "HH", "EY0", "T", "S" ], [ "SH", "UW1", "T", "IH0", "NG" ] ]
[ [ 2, 1.8 ], [ 2, 2, 2, 2 ], [ 2, 2, 2, 2, 2 ] ]
2.59
0001
6
m
000010089
MANDY HAS A BIG ARM
10
10
9
9
9
[ "MANDY", "HAS", "A", "BIG", "ARM" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "M", "AE1", "N", "D", "IY0" ], [ "HH", "AE0", "Z" ], [ "AH0" ], [ "B", "IH0", "G" ], [ "AA0", "R", "M" ] ]
[ [ 2, 2, 2, 2, 2 ], [ 2, 2, 2 ], [ 2 ], [ 2, 2, 2 ], [ 2, 1.6, 2 ] ]
3.08
0001
6
m
000010095
LOOK AT ANN'S PANTS
10
10
9
9
9
[ "LOOK", "AT", "ANN'S", "PANTS" ]
[ 10, 10, 8, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 8, 10 ]
[ [ "L", "UH0", "K" ], [ "AE0", "T" ], [ "AE0", "N", "Z" ], [ "P", "AE0", "N", "T", "S" ] ]
[ [ 2, 2, 2 ], [ 2, 2 ], [ 2, 2, 1.4 ], [ 2, 2, 2, 1.8, 1.8 ] ]
2.97
0001
6
m
000010106
WHAT ABOUT THE BUS
9
10
9
8
8
[ "WHAT", "ABOUT", "THE", "BUS" ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ [ "W", "AH0", "T" ], [ "AH0", "B", "AW1", "T" ], [ "DH", "AH0" ], [ "B", "AH0", "S" ] ]
[ [ 2, 1.8, 2 ], [ 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 2, 2 ] ]
2.13
0001
6
m
000010113
THEN HE WENT TO THEME PARK
6
10
9
8
5
[ "THEN", "HE", "WENT", "TO", "THEME", "PARK" ]
[ 10, 8, 10, 10, 2, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 8, 10, 10, 3, 10 ]
[ [ "DH", "EH0", "N" ], [ "HH", "IY0" ], [ "W", "EH0", "N", "T" ], [ "T", "UW0" ], [ "TH", "IY0", "M" ], [ "P", "AA0", "R", "K" ] ]
[ [ 2, 2, 2 ], [ 1, 2 ], [ 2, 2, 2, 2 ], [ 2, 2 ], [ 1.2, 0, 1.6 ], [ 2, 2, 1.8, 2 ] ]
3.002
0001
6
m
000010115
LET'S GO TO THE RESTROOM
9
10
9
9
9
[ "LET'S", "GO", "TO", "THE", "RESTROOM" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "L", "EH0", "T", "S" ], [ "G", "OW0" ], [ "T", "UW0" ], [ "DH", "AH0" ], [ "R", "EH1", "S", "T", "R", "UW0", "M" ] ]
[ [ 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2, 2, 2, 2, 2, 1.8 ] ]
3
0001
6
m
000010121
THEN MIKE WALKS TO COFFEE
9
10
9
9
8
[ "THEN", "MIKE", "WALKS", "TO", "COFFEE" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "DH", "EH0", "N" ], [ "M", "AY0", "K" ], [ "W", "AO0", "K", "S" ], [ "T", "UW0" ], [ "K", "AO1", "F", "IY0" ] ]
[ [ 2, 2, 2 ], [ 2, 2, 2 ], [ 2, 1.8, 2, 2 ], [ 2, 2 ], [ 2, 1.2, 1.6, 1.6 ] ]
3.31
0001
6
m
000010122
SO MARY WENT ON TO STUDY
9
10
9
9
9
[ "SO", "MARY", "WENT", "ON", "TO", "STUDY" ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ [ "S", "OW0" ], [ "M", "AE1", "R", "IH0" ], [ "W", "EH0", "N", "T" ], [ "AA0", "N" ], [ "T", "UW0" ], [ "S", "T", "AH1", "D", "IY0" ] ]
[ [ 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2, 1.8, 2, 2 ] ]
3.42
0001
6
m
000010133
KATE GOT THE TOMATO
8
10
8
8
8
[ "KATE", "GOT", "THE", "TOMATO" ]
[ 8, 10, 10, 8 ]
[ 10, 10, 10, 10 ]
[ 8, 10, 10, 8 ]
[ [ "K", "EH0", "T" ], [ "G", "AA0", "T" ], [ "DH", "AH0" ], [ "T", "AH0", "M", "EY1", "T", "OW0" ] ]
[ [ 2, 1.6, 1.8 ], [ 2, 1.6, 2 ], [ 2, 2 ], [ 2, 2, 2, 1, 1.8, 2 ] ]
2.88
0001
6
m
000010135
TINA LOVES EGGPLANT
8
10
9
9
8
[ "TINA", "LOVES", "EGGPLANT" ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ [ "T", "IY1", "N", "AH0" ], [ "L", "AH0", "V", "Z" ], [ "EH1", "G", "P", "L", "AE0", "N", "T" ] ]
[ [ 2, 2, 2, 2 ], [ 2, 2, 2, 1.6 ], [ 1.6, 2, 2, 2, 2, 2, 2 ] ]
3.222
0001
6
m
000010140
DORA IS NOT A CLEANER
8
10
9
9
8
[ "DORA", "IS", "NOT", "A", "CLEANER" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "D", "AO1", "R", "AH0" ], [ "IH0", "Z" ], [ "N", "AA0", "T" ], [ "AH0" ], [ "K", "L", "IY1", "N", "ER0" ] ]
[ [ 2, 1.8, 2, 2 ], [ 2, 2 ], [ 2, 1.6, 2 ], [ 2 ], [ 2, 2, 2, 2, 2 ] ]
3.325
0001
6
m
000010145
MARK LIVED IN NEW YORK
9
10
9
9
9
[ "MARK", "LIVED", "IN", "NEW", "YORK" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "M", "AA0", "R", "K" ], [ "L", "IH0", "V", "D" ], [ "IH0", "N" ], [ "N", "UW0" ], [ "Y", "AO0", "K" ] ]
[ [ 2, 2, 1.8, 1.6 ], [ 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2, 2 ] ]
3.49
0001
6
m
000010149
BOB LIVES IN CAIRO NOW
8
10
9
8
8
[ "BOB", "LIVES", "IN", "CAIRO", "NOW" ]
[ 10, 10, 10, 8, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 8, 10 ]
[ [ "B", "AA0", "B" ], [ "L", "IH0", "V", "Z" ], [ "IH0", "N" ], [ "K", "AY1", "R", "OW0" ], [ "N", "AW0" ] ]
[ [ 2, 1.4, 2 ], [ 2, 2, 2, 1.6 ], [ 2, 2 ], [ 2, 1.6, 1.6, 1.4 ], [ 2, 2 ] ]
3.28
0001
6
m
000010168
BYE
10
10
10
10
10
[ "BYE" ]
[ 10 ]
[ 10 ]
[ 10 ]
[ [ "B", "AY0" ] ]
[ [ 2, 2 ] ]
1.67
0001
6
m
000010173
TREES
9
10
10
9
9
[ "TREES" ]
[ 8 ]
[ 10 ]
[ 8 ]
[ [ "T", "R", "IY0", "Z" ] ]
[ [ 2, 2, 2, 1.2 ] ]
2.059
0005
6
m
000050003
MIKE LIKES THE WHITE ONE
8
10
6
7
7
[ "MIKE", "LIKES", "THE", "WHITE", "ONE" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "M", "AY0", "K" ], [ "L", "AY0", "K", "S" ], [ "DH", "AH0" ], [ "W", "AY0", "T" ], [ "W", "AH0", "N" ] ]
[ [ 2, 2, 2 ], [ 2, 2, 2, 2 ], [ 1.6, 2 ], [ 2, 2, 2 ], [ 2, 2, 2 ] ]
4.343
0005
6
m
000050010
ITS NAME IS SAY
7
10
7
7
7
[ "ITS", "NAME", "IS", "SAY" ]
[ 10, 10, 7, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 7, 10 ]
[ [ "IH0", "T", "S" ], [ "N", "EY0", "M" ], [ "IH0", "Z" ], [ "S", "EY0" ] ]
[ [ 2, 2, 2 ], [ 2, 2, 2 ], [ 0.8, 1.4 ], [ 2, 1.4 ] ]
3.047
0005
6
m
000050024
BILLY LOVES AMERICA
7
10
6
6
6
[ "BILLY", "LOVES", "AMERICA" ]
[ 10, 8, 10 ]
[ 10, 10, 10 ]
[ 10, 8, 10 ]
[ [ "B", "IH1", "L", "IY0" ], [ "L", "AH0", "V", "Z" ], [ "AH0", "M", "EH1", "R", "IH0", "K", "AH0" ] ]
[ [ 2, 2, 2, 2 ], [ 2, 2, 1.8, 1.4 ], [ 2, 2, 2, 2, 2, 1.2, 2 ] ]
3.839
0005
6
m
000050028
TWO TWO EIGHT SEVEN
8
10
8
8
8
[ "TWO", "TWO", "EIGHT", "SEVEN" ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ [ "T", "UW0" ], [ "T", "UW0" ], [ "EY0", "T" ], [ "S", "EH1", "V", "N" ] ]
[ [ 2, 1.8 ], [ 2, 1.8 ], [ 2, 2 ], [ 2, 2, 1.8, 2 ] ]
2.723
0005
6
m
000050038
FOUR FIVE FOUR SEVEN
7
10
8
7
7
[ "FOUR", "FIVE", "FOUR", "SEVEN" ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ [ "F", "AO0", "R" ], [ "F", "AY0", "V" ], [ "F", "AO0", "R" ], [ "S", "EH1", "V", "N" ] ]
[ [ 2, 2, 1.8 ], [ 2, 2, 1.8 ], [ 2, 2, 1.8 ], [ 2, 1.8, 1.8, 2 ] ]
2.877
0005
6
m
000050040
FIVE THREE NINE ZERO
8
10
8
7
8
[ "FIVE", "THREE", "NINE", "ZERO" ]
[ 10, 8, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 8, 10, 10 ]
[ [ "F", "AY0", "V" ], [ "TH", "R", "IY0" ], [ "N", "AY0", "N" ], [ "Z", "IH", "AH1", "OW0" ] ]
[ [ 2, 2, 1.6 ], [ 1.6, 2, 1.8 ], [ 2, 2, 2 ], [ 2, 1.8, 1.8, 2 ] ]
2.762
0005
6
m
000050047
SIX FIVE THREE
7
10
8
7
7
[ "SIX", "FIVE", "THREE" ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ [ "S", "IH0", "K", "S" ], [ "F", "AY0", "V" ], [ "TH", "R", "IY0" ] ]
[ [ 2, 2, 2, 2 ], [ 2, 2, 1.8 ], [ 1.4, 2, 2 ] ]
2.254
0005
6
m
000050049
TWO FIVE EIGHT
7
10
9
8
7
[ "TWO", "FIVE", "EIGHT" ]
[ 10, 8, 10 ]
[ 10, 10, 10 ]
[ 10, 8, 10 ]
[ [ "T", "UW0" ], [ "F", "AY0", "V" ], [ "EY0", "T" ] ]
[ [ 2, 2 ], [ 2, 2, 1.4 ], [ 2, 1.8 ] ]
2.129
0005
6
m
000050055
WE LESS MEAT
9
10
8
8
8
[ "WE", "LESS", "MEAT" ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ [ "W", "IY0" ], [ "L", "EH0", "S" ], [ "M", "IY0", "T" ] ]
[ [ 2, 2 ], [ 2, 1.6, 2 ], [ 2, 2, 2 ] ]
2.238
0005
6
m
000050078
DOSE MIKE LIKE THE HAMBURGER
7
10
7
6
7
[ "DOSE", "MIKE", "LIKE", "THE", "HAMBURGER" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "D", "OW0", "S" ], [ "M", "AY0", "K" ], [ "L", "AY0", "K" ], [ "DH", "AH0" ], [ "HH", "AE1", "M", "B", "ER0", "G", "ER0" ] ]
[ [ 2, 1.6, 2 ], [ 1.6, 1.4, 2 ], [ 2, 2, 2 ], [ 2, 2 ], [ 2, 2, 2, 2, 2, 2, 2 ] ]
3.87
0005
6
m
000050079
ANNIE WANT HAVE SOME PRETTIES
7
10
6
6
6
[ "ANNIE", "WANT", "HAVE", "SOME", "PRETTIES" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 9, 10, 10, 10 ]
[ [ "AE1", "N", "IH0" ], [ "W", "AA0", "N", "T" ], [ "HH", "AE0", "V" ], [ "S", "AH0", "M" ], [ "P", "R", "IH1", "T", "IY0", "S" ] ]
[ [ 1.8, 2, 2 ], [ 2, 1.6, 1.8, 2 ], [ 2, 2, 1.8 ], [ 2, 2, 2 ], [ 2, 2, 2, 2, 2, 2 ] ]
4.641
0005
6
m
000050083
KATE'S GOT SOME GREY
6
7.5
7
7
5
[ "KATE'S", "GOT", "SOME", "GREY" ]
[ 8, 10, 10, 0 ]
[ 10, 10, 10, 10 ]
[ 8, 10, 10, 2 ]
[ [ "K", "EH0", "IY0", "T", "Z" ], [ "G", "AA0", "T" ], [ "S", "AH0", "M" ], [ "G", "R", "EY0" ] ]
[ [ 2, 2, 2, 1.8, 1.2 ], [ 2, 1.6, 2 ], [ 2, 2, 2 ], [ 0.4, 0.4, 0.4 ] ]
2.435
0005
6
m
000050095
LOOK AT JOHN'S SWEATER
7
10
6
7
7
[ "LOOK", "AT", "JOHN'S", "SWEATER" ]
[ 10, 10, 5, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 6, 10 ]
[ [ "L", "UH0", "K" ], [ "AE0", "T" ], [ "JH", "AA0", "N", "Z" ], [ "S", "W", "EH1", "T", "ER0" ] ]
[ [ 2, 2, 2 ], [ 2, 2 ], [ 2, 1, 1.6, 1.2 ], [ 1.6, 2, 2, 2, 2 ] ]
2.901
0005
6
m
000050099
TIM HAS A BEAUTIFUL TELL
7
10
8
6
7
[ "TIM", "HAS", "A", "BEAUTIFUL", "TELL" ]
[ 10, 10, 10, 10, 3 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 4 ]
[ [ "T", "IH0", "M" ], [ "HH", "AE0", "Z" ], [ "AH0" ], [ "B", "Y", "UW1", "T", "IH0", "F", "L" ], [ "T", "EH0", "L" ] ]
[ [ 2, 1.8, 2 ], [ 2, 2, 1.8 ], [ 2 ], [ 2, 2, 2, 2, 2, 2, 2 ], [ 2, 1.2, 0.8 ] ]
2.85
0005
6
m
000050100
JIM LIKES YOUR BLUE SHORE
8
10
8
7
7
[ "JIM", "LIKES", "YOUR", "BLUE", "SHORE" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "JH", "IH1", "M" ], [ "L", "AY0", "K", "S" ], [ "Y", "ER0" ], [ "B", "L", "UW0" ], [ "SH", "AO0", "R" ] ]
[ [ 2, 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 1.6 ], [ 2, 2, 2 ], [ 2, 2, 1.8 ] ]
2.92
0005
6
m
000050114
ANNIE WENT WALKING THEM PARK
8
10
8
6
7
[ "ANNIE", "WENT", "WALKING", "THEM", "PARK" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "AE1", "N", "IH0" ], [ "W", "EH0", "N", "T" ], [ "W", "AO1", "K", "IH0", "NG" ], [ "DH", "EH0", "M" ], [ "P", "AA0", "R", "K" ] ]
[ [ 2, 2, 2 ], [ 2, 1.6, 1.6, 2 ], [ 2, 2, 2, 2, 2 ], [ 2, 1.4, 1.4 ], [ 2, 2, 1.8, 2 ] ]
3.909
0005
6
m
000050118
LAYLA CAN SEE THE HOMETOWN
6
10
7
6
5
[ "LAYLA", "CAN", "SEE", "THE", "HOMETOWN" ]
[ 10, 10, 10, 10, 3 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 4 ]
[ [ "L", "EY1", "L", "AA0" ], [ "K", "AE0", "N" ], [ "S", "IY0" ], [ "DH", "AH0" ], [ "HH", "OW1", "M", "T", "AW0", "N" ] ]
[ [ 1.2, 1.2, 2, 2 ], [ 2, 2, 1.8 ], [ 2, 1.6 ], [ 2, 2 ], [ 2, 2, 2, 2, 0.4, 1.6 ] ]
3.559
0005
6
m
000050122
SO TINA WENT ON TO WASHROOM
6
10
6
5
5
[ "SO", "TINA", "WENT", "ON", "TO", "WASHROOM" ]
[ 10, 10, 2, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 3, 10, 10, 10 ]
[ [ "S", "OW0" ], [ "T", "IY1", "N", "AH0" ], [ "W", "EH0", "N", "T" ], [ "AA0", "N" ], [ "T", "UW0" ], [ "W", "AA1", "SH", "R", "UW0", "M" ] ]
[ [ 2, 2 ], [ 2, 2, 2, 2 ], [ 1.6, 0.4, 0.8, 1.8 ], [ 1.8, 2 ], [ 2, 1.8 ], [ 2, 1.2, 2, 2, 2, 2 ] ]
4.654
0005
6
m
000050174
ALL WITH HIM
8
10
7
6
7
[ "ALL", "WITH", "HIM" ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ [ "AO0", "L" ], [ "W", "IH0", "TH" ], [ "HH", "IH0", "M" ] ]
[ [ 1.6, 2 ], [ 2, 2, 1.6 ], [ 1.8, 2, 2 ] ]
1.942
0005
6
m
000050175
GOOD JOB
9
10
9
7
8
[ "GOOD", "JOB" ]
[ 10, 10 ]
[ 10, 10 ]
[ 10, 10 ]
[ [ "G", "UH0", "D" ], [ "JH", "AA0", "B" ] ]
[ [ 2, 1.2, 2 ], [ 2, 1.4, 2 ] ]
1.59
0006
6
f
000060015
JAYME IS GOING TO SEE HEN
9
10
9
9
9
[ "JAYME", "IS", "GOING", "TO", "SEE", "HEN" ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ [ "JH", "EY1", "M", "IY0" ], [ "IH0", "Z" ], [ "G", "OW0", "IH0", "NG" ], [ "T", "UW0" ], [ "S", "IY0" ], [ "HH", "EH0", "N" ] ]
[ [ 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2, 2 ] ]
3.31
0006
6
f
000060020
DORA IS COME FROM JAPAN
9
10
9
8
8
[ "DORA", "IS", "COME", "FROM", "JAPAN" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "D", "AO1", "R", "AH0" ], [ "IH0", "Z" ], [ "K", "AH0", "M" ], [ "F", "R", "AH0", "M" ], [ "JH", "AH0", "P", "AE1", "N" ] ]
[ [ 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 2, 2 ], [ 2, 2, 1.4, 2 ], [ 2, 2, 2, 2, 2 ] ]
3.26
0006
6
f
000060029
SIX ONE SIX ZERO
9
10
9
9
9
[ "SIX", "ONE", "SIX", "ZERO" ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ [ "S", "IH0", "K", "S" ], [ "W", "AH0", "N" ], [ "S", "IH0", "K", "S" ], [ "Z", "IH1", "R", "OW0" ] ]
[ [ 2, 2, 2, 2 ], [ 2, 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 1.6, 1.6, 2 ] ]
3.4
0006
6
f
000060031
FIVE TWO FOUR SEVEN
9
10
9
9
9
[ "FIVE", "TWO", "FOUR", "SEVEN" ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ [ "F", "AY0", "V" ], [ "T", "UW0" ], [ "F", "AO0", "R" ], [ "S", "EH1", "V", "N" ] ]
[ [ 2, 2, 2 ], [ 2, 2 ], [ 2, 2, 2 ], [ 2, 2, 2, 2 ] ]
3.26
0006
6
f
000060049
ZERO THREE FIVE
8
10
9
9
8
[ "ZERO", "THREE", "FIVE" ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ [ "Z", "IH1", "R", "OW0" ], [ "TH", "R", "IY0" ], [ "F", "AY0", "V" ] ]
[ [ 2, 1.6, 1.6, 2 ], [ 2, 2, 2 ], [ 2, 2, 1.6 ] ]
3.12
0006
6
f
000060056
PHONE PARTS TICKETS
10
10
9
9
9
[ "PHONE", "PARTS", "TICKETS" ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ [ "F", "OW0", "N" ], [ "P", "AA0", "R", "T", "S" ], [ "T", "IH1", "K", "IH0", "T", "S" ] ]
[ [ 2, 2, 2 ], [ 2, 2, 2, 2, 2 ], [ 2, 2, 2, 2, 2, 2 ] ]
2.834
0006
6
f
000060077
ANN ATE A LITTLE DOG
9
10
9
9
9
[ "ANN", "ATE", "A", "LITTLE", "DOG" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "AE0", "N" ], [ "EY0", "T" ], [ "AH0" ], [ "L", "IH1", "T", "L" ], [ "D", "AO0", "G" ] ]
[ [ 2, 2 ], [ 2, 2 ], [ 2 ], [ 2, 2, 2, 2 ], [ 2, 2, 2 ] ]
3.05
0006
6
f
000060081
DOES LAYLA LIKE THE JAM
10
10
10
9
9
[ "DOES", "LAYLA", "LIKE", "THE", "JAM" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "D", "AH0", "Z" ], [ "L", "EY1", "L", "AA0" ], [ "L", "AY0", "K" ], [ "DH", "AH0" ], [ "JH", "AE0", "M" ] ]
[ [ 2, 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2, 2 ], [ 2, 2 ], [ 2, 2, 2 ] ]
3.031
0006
6
f
000060082
KATE LIKES LAMB
9
10
9
9
9
[ "KATE", "LIKES", "LAMB" ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ [ "K", "EH0", "T" ], [ "L", "AY0", "K", "S" ], [ "L", "AE0", "M" ] ]
[ [ 2, 1.8, 2 ], [ 2, 2, 2, 2 ], [ 2, 2, 2 ] ]
3
0006
6
f
000060083
MARK GOT SOME NOODLES
10
10
9
9
9
[ "MARK", "GOT", "SOME", "NOODLES" ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ [ "M", "AA0", "R", "K" ], [ "G", "AA0", "T" ], [ "S", "AH0", "M" ], [ "N", "UW1", "D", "L", "Z" ] ]
[ [ 2, 2, 2, 2 ], [ 2, 1.8, 2 ], [ 2, 2, 2 ], [ 2, 2, 2, 2, 1.6 ] ]
2.82
0006
6
f
000060094
TOM LIKES THE OLD SWEATER
10
10
9
9
9
[ "TOM", "LIKES", "THE", "OLD", "SWEATER" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "T", "AA0", "M" ], [ "L", "AY0", "K", "S" ], [ "DH", "AH0" ], [ "OW0", "L", "D" ], [ "S", "W", "EH1", "T", "ER0" ] ]
[ [ 2, 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 2, 2 ], [ 2, 2, 1.8, 1.6, 1.6 ] ]
3.18
0006
6
f
000060102
BOB NEEDS NEW BOOTS
10
10
10
9
9
[ "BOB", "NEEDS", "NEW", "BOOTS" ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ [ "B", "AA0", "B" ], [ "N", "IY0", "D", "Z" ], [ "N", "UW0" ], [ "B", "UW0", "T", "S" ] ]
[ [ 2, 2, 2 ], [ 2, 2, 1.8, 1.8 ], [ 2, 2 ], [ 2, 2, 2, 2 ] ]
3.037
0006
6
f
000060106
TOM CAN SEE THE MOTOR CYCLE
10
10
10
9
9
[ "TOM", "CAN", "SEE", "THE", "MOTOR", "CYCLE" ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ [ "T", "AA0", "M" ], [ "K", "AE0", "N" ], [ "S", "IY0" ], [ "DH", "AH0" ], [ "M", "OW1", "T", "ER0" ], [ "S", "AY1", "K", "L" ] ]
[ [ 2, 2, 2 ], [ 2, 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2, 2, 2 ] ]
3.23
0006
6
f
000060111
HE LEFT THE FRUIT STAND
10
10
9
8
9
[ "HE", "LEFT", "THE", "FRUIT", "STAND" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "HH", "IY0" ], [ "L", "EH0", "F", "T" ], [ "DH", "AH0" ], [ "F", "R", "UW0", "T" ], [ "S", "T", "AE0", "N", "D" ] ]
[ [ 1.6, 1.8 ], [ 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2, 2, 2, 2 ] ]
3.27
0006
6
f
000060113
LET'S GO TO THE GYM
10
10
9
8
9
[ "LET'S", "GO", "TO", "THE", "GYM" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "L", "EH0", "T", "S" ], [ "G", "OW0" ], [ "T", "UW0" ], [ "DH", "AH0" ], [ "JH", "IH0", "M" ] ]
[ [ 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2, 2 ] ]
2.44
0006
6
f
000060116
SO MARK WHEN TO THE PET SHOP
10
10
10
9
9
[ "SO", "MARK", "WHEN", "TO", "THE", "PET", "SHOP" ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ [ "S", "OW0" ], [ "M", "AA0", "R", "K" ], [ "W", "EH0", "N" ], [ "T", "UW0" ], [ "DH", "AH0" ], [ "P", "EH0", "T" ], [ "SH", "AA0", "P" ] ]
[ [ 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2, 2 ], [ 2, 2, 2 ] ]
3.08
0006
6
f
000060124
SO ALICE WENT ON TO VILLAGE
9
10
8
9
9
[ "SO", "ALICE", "WENT", "ON", "TO", "VILLAGE" ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ [ "S", "OW0" ], [ "AE1", "L", "IH0", "S" ], [ "W", "EH0", "N", "T" ], [ "AA0", "N" ], [ "T", "UW0" ], [ "V", "IH1", "L", "IH0", "JH" ] ]
[ [ 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2, 2, 2 ], [ 1.8, 2 ], [ 2, 2 ], [ 2, 2, 2, 2, 2 ] ]
3.579
0006
6
f
000060130
NO THAT'S TOMATO
10
10
9
9
9
[ "NO", "THAT'S", "TOMATO" ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ [ "N", "OW0" ], [ "DH", "AE0", "T", "S" ], [ "T", "AH0", "M", "EY1", "T", "OW0" ] ]
[ [ 2, 2 ], [ 1.6, 2, 2, 2 ], [ 2, 2, 2, 2, 2, 2 ] ]
3
0006
6
f
000060136
I'M NOT A ACTOR
9
10
9
8
9
[ "I'M", "NOT", "A", "ACTOR" ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ [ "AY0", "M" ], [ "N", "AA0", "T" ], [ "AH0" ], [ "AE1", "K", "T", "ER0" ] ]
[ [ 2, 2 ], [ 2, 1.8, 2 ], [ 2 ], [ 2, 2, 2, 2 ] ]
2.59
0006
6
f
000060153
WHAT LOVELY CLEAN TEETH
9
10
9
8
9
[ "WHAT", "LOVELY", "CLEAN", "TEETH" ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ [ "W", "AH0", "T" ], [ "L", "AH1", "V", "L", "IY0" ], [ "K", "L", "IY0", "N" ], [ "T", "IY0", "TH" ] ]
[ [ 2, 2, 2 ], [ 2, 2, 2, 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2, 1.8 ] ]
3.12
0026
6
f
000260001
LAYLA LOVE BROWN
6
10
8
8
6
[ "LAYLA", "LOVE", "BROWN" ]
[ 5, 8, 10 ]
[ 10, 10, 10 ]
[ 6, 8, 10 ]
[ [ "L", "EY1", "L", "AA0" ], [ "L", "AH0", "V" ], [ "B", "R", "AW0", "N" ] ]
[ [ 2, 0.4, 2, 2 ], [ 2, 2, 1 ], [ 2, 2, 1.8, 2 ] ]
2.382
0026
6
f
000260011
ANDY CAN SEE THE HEN
8
10
8
9
8
[ "ANDY", "CAN", "SEE", "THE", "HEN" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "AE0", "N", "D", "IH0" ], [ "K", "AE0", "N" ], [ "S", "IY0" ], [ "DH", "AH0" ], [ "HH", "EH0", "N" ] ]
[ [ 1.8, 2, 2, 2 ], [ 2, 1.8, 2 ], [ 2, 2 ], [ 1.8, 2 ], [ 2, 2, 2 ] ]
3.181
0026
6
f
000260015
JOHN IS GOING TO SEE COW
9
10
9
9
9
[ "JOHN", "IS", "GOING", "TO", "SEE", "COW" ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ [ "JH", "AH0", "N" ], [ "IH0", "Z" ], [ "G", "OW0", "IH0", "NG" ], [ "T", "UW0" ], [ "S", "IY0" ], [ "K", "AW0" ] ]
[ [ 2, 2, 2 ], [ 2, 1.8 ], [ 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2 ] ]
3.22
0026
6
f
000260032
ONE ONE ZERO EIGHT
8
10
9
9
8
[ "ONE", "ONE", "ZERO", "EIGHT" ]
[ 8, 8, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 8, 8, 10, 10 ]
[ [ "W", "AH0", "N" ], [ "W", "AH0", "N" ], [ "Z", "IH1", "ER0", "OW0" ], [ "EY0", "T" ] ]
[ [ 2, 1.8, 2 ], [ 2, 1.8, 2 ], [ 2, 1.4, 1.4, 2 ], [ 2, 2 ] ]
2.93
0026
6
f
000260033
THREE ONE SEVEN NINE
9
10
9
9
8
[ "THREE", "ONE", "SEVEN", "NINE" ]
[ 10, 8, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 8, 10, 10 ]
[ [ "TH", "R", "IY0" ], [ "W", "AH0", "N" ], [ "S", "EH1", "V", "N" ], [ "N", "AY0", "N" ] ]
[ [ 1.8, 2, 2 ], [ 2, 1.8, 2 ], [ 2, 2, 2, 2 ], [ 2, 2, 2 ] ]
2.89
0026
6
f
000260039
EIGHT ZERO SIX TWO
9
10
9
9
9
[ "EIGHT", "ZERO", "SIX", "TWO" ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ [ "EY0", "T" ], [ "Z", "IH1", "ER0", "OW0" ], [ "S", "IH0", "K", "S" ], [ "T", "UW0" ] ]
[ [ 2, 2 ], [ 2, 1.6, 1.6, 2 ], [ 2, 2, 2, 2 ], [ 2, 2 ] ]
2.955
0026
6
f
000260048
THREE ZERO EIGHT SEVEN
9
10
9
9
8
[ "THREE", "ZERO", "EIGHT", "SEVEN" ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ [ "TH", "R", "IY0" ], [ "Z", "IH1", "ER0", "OW0" ], [ "EY0", "T" ], [ "S", "EH1", "V", "N" ] ]
[ [ 1.8, 2, 2 ], [ 2, 1.4, 1.4, 2 ], [ 2, 2 ], [ 2, 2, 2, 2 ] ]
2.552
0026
6
f
000260050
ZERO EIGHT THREE ONE
9
10
9
9
9
[ "ZERO", "EIGHT", "THREE", "ONE" ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ [ "Z", "IH1", "ER0", "OW0" ], [ "EY0", "T" ], [ "TH", "R", "IY0" ], [ "W", "AH0", "N" ] ]
[ [ 2, 2, 1.4, 2 ], [ 2, 2 ], [ 1.8, 2, 2 ], [ 2, 2, 2 ] ]
2.57
0026
6
f
000260052
SIX EIGHT SIX SEVEN
10
10
9
9
9
[ "SIX", "EIGHT", "SIX", "SEVEN" ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ [ "S", "IH0", "K", "S" ], [ "EY0", "T" ], [ "S", "IH0", "K", "S" ], [ "S", "EH1", "V", "N" ] ]
[ [ 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2, 2, 2 ] ]
3.48
0026
6
f
000260069
TEDDY GIVES UP SHOOTING
7
10
8
8
7
[ "TEDDY", "GIVES", "UP", "SHOOTING" ]
[ 5, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 6, 10, 10, 10 ]
[ [ "T", "EH1", "D", "IY0" ], [ "G", "IH0", "V", "Z" ], [ "AH0", "P" ], [ "SH", "UW1", "T", "IH0", "NG" ] ]
[ [ 2, 0.2, 2, 2 ], [ 2, 2, 2, 1.6 ], [ 2, 2 ], [ 2, 2, 2, 2, 2 ] ]
3.35
0026
6
f
000260075
HE LIKES RACING
9
10
9
8
8
[ "HE", "LIKES", "RACING" ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ 10, 10, 10 ]
[ [ "HH", "IY0" ], [ "L", "AY0", "K", "S" ], [ "R", "EY1", "S", "IH0", "NG" ] ]
[ [ 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2, 2, 2, 2 ] ]
2.41
0026
6
f
000260091
DORA LIKES YOUR RED JEANS
8
10
9
8
8
[ "DORA", "LIKES", "YOUR", "RED", "JEANS" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "D", "AO1", "R", "AH0" ], [ "L", "AY0", "K", "S" ], [ "Y", "UH", "AH0" ], [ "R", "EH0", "D" ], [ "JH", "IY0", "N", "Z" ] ]
[ [ 2, 2, 2, 1.4 ], [ 2, 2, 2, 1.6 ], [ 2, 1.8, 1.8 ], [ 2, 2, 2 ], [ 2, 2, 2, 1.6 ] ]
3.3
0026
6
f
000260095
BOB LOVES THE NEW CLOTH
8
10
9
9
8
[ "BOB", "LOVES", "THE", "NEW", "CLOTH" ]
[ 10, 10, 10, 10, 8 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 9, 10, 10, 8 ]
[ [ "B", "AH0", "B" ], [ "L", "AH0", "V", "Z" ], [ "DH", "AH0" ], [ "N", "Y", "UW0" ], [ "K", "L", "AH0", "TH" ] ]
[ [ 2, 1.8, 2 ], [ 2, 2, 2, 1.6 ], [ 2, 2 ], [ 2, 2, 2 ], [ 2, 2, 1, 2 ] ]
3.2
0026
6
f
000260096
JOHN NEEDS NEW T SHIRT
9
10
9
9
9
[ "JOHN", "NEEDS", "NEW", "T", "SHIRT" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "JH", "AH0", "N" ], [ "N", "IY0", "D", "Z" ], [ "N", "Y", "UW0" ], [ "T", "IY0" ], [ "SH", "ER0", "T" ] ]
[ [ 2, 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2, 2 ], [ 2, 2 ], [ 2, 2, 2 ] ]
3.39
0026
6
f
000260112
THEN LILLY WALKS TO MUSIC ROOM
9
10
9
9
9
[ "THEN", "LILLY", "WALKS", "TO", "MUSIC", "ROOM" ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ [ "DH", "EH0", "N" ], [ "L", "IH1", "L", "IY0" ], [ "W", "AO0", "K", "S" ], [ "T", "UW0" ], [ "M", "Y", "UW1", "Z", "IH0", "K" ], [ "R", "UH0", "M" ] ]
[ [ 2, 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 1.8, 2, 2 ], [ 2, 2 ], [ 2, 2, 2, 2, 2, 2 ], [ 2, 2, 2 ] ]
3.88
0026
6
f
000260115
THEN TIM WALKS TO THEM PARK
9
10
8
8
8
[ "THEN", "TIM", "WALKS", "TO", "THEM", "PARK" ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ [ "DH", "EH0", "N" ], [ "T", "IH0", "M" ], [ "W", "AO0", "K", "S" ], [ "T", "UW0" ], [ "DH", "EH0", "M" ], [ "P", "AA0", "R", "K" ] ]
[ [ 1.6, 2, 2 ], [ 2, 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 1.2, 2 ], [ 2, 2, 2, 2 ] ]
4.18
0026
6
f
000260121
THEN MANDY WALKS TO RESTROOM
9
10
9
9
9
[ "THEN", "MANDY", "WALKS", "TO", "RESTROOM" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "DH", "EH0", "N" ], [ "M", "AE1", "N", "D", "IY0" ], [ "W", "AO0", "K", "S" ], [ "T", "UW0" ], [ "R", "EH1", "S", "T", "R", "UH0", "M" ] ]
[ [ 2, 2, 2 ], [ 2, 2, 2, 2, 2 ], [ 2, 1.8, 2, 2 ], [ 2, 2 ], [ 2, 2, 2, 2, 2, 2, 2 ] ]
3.82
0026
6
f
000260126
DO YOU WANT THE PEA
9
10
9
9
9
[ "DO", "YOU", "WANT", "THE", "PEA" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "D", "UH0" ], [ "Y", "UW0" ], [ "W", "AA0", "N", "T" ], [ "DH", "AH0" ], [ "P", "IY0" ] ]
[ [ 2, 2 ], [ 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 2 ] ]
2.38
0026
6
f
000260133
ANDY GOT THE MUSHROOM
10
10
9
9
9
[ "ANDY", "GOT", "THE", "MUSHROOM" ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ [ "AE0", "N", "D", "IH0" ], [ "G", "AH0", "T" ], [ "DH", "AH0" ], [ "M", "AH1", "SH", "R", "UH0", "M" ] ]
[ [ 2, 2, 2, 2 ], [ 2, 2, 1.8 ], [ 1.6, 2 ], [ 2, 2, 2, 2, 2, 2 ] ]
2.65
0026
6
f
000260166
NOW FOR THE PARTY
9
10
9
9
9
[ "NOW", "FOR", "THE", "PARTY" ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ 10, 10, 10, 10 ]
[ [ "N", "AW0" ], [ "F", "AO0", "R" ], [ "DH", "AH0" ], [ "P", "AA1", "R", "T", "IY0" ] ]
[ [ 2, 2 ], [ 2, 2, 2 ], [ 1.6, 2 ], [ 2, 2, 2, 2, 2 ] ]
2.56
0036
21
f
000360013
IT'S JUST SO HARD TO PICTURE
9
10
9
9
9
[ "IT'S", "JUST", "SO", "HARD", "TO", "PICTURE" ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ [ "IH0", "T", "S" ], [ "JH", "AH0", "S", "T" ], [ "S", "OW0" ], [ "HH", "AA0", "R", "D" ], [ "T", "UW0" ], [ "P", "IH1", "K", "CH", "ER0" ] ]
[ [ 2, 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 2, 2, 2, 2 ] ]
3.3
0036
21
f
000360034
WE SPEAK OUT WHEN WE FEEL WE SHOULD SPEAK OUT
9
10
9
8
8
[ "WE", "SPEAK", "OUT", "WHEN", "WE", "FEEL", "WE", "SHOULD", "SPEAK", "OUT" ]
[ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10 ]
[ [ "W", "IY0" ], [ "S", "P", "IY0", "K" ], [ "AW0", "T" ], [ "W", "EH0", "N" ], [ "W", "IY0" ], [ "F", "IY0", "L" ], [ "W", "IY0" ], [ "SH", "UH0", "D" ], [ "S", "P", "IY0", "K" ], [ "AW0", "T" ] ]
[ [ 2, 2 ], [ 2, 2, 2, 2 ], [ 1.8, 2 ], [ 2, 2, 2 ], [ 2, 2 ], [ 2, 1.8, 2 ], [ 2, 2 ], [ 2, 2, 2 ], [ 2, 2, 2, 2 ], [ 1.8, 2 ] ]
4.22
0036
21
f
000360036
I COULD DO WITH A BREAK
9
10
9
8
8
[ "I", "COULD", "DO", "WITH", "A", "BREAK" ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ [ "AY0" ], [ "K", "UH0", "D" ], [ "D", "UH0" ], [ "W", "IH0", "DH" ], [ "AH0" ], [ "B", "R", "EY0", "K" ] ]
[ [ 2 ], [ 2, 2, 2 ], [ 2, 1.6 ], [ 2, 2, 2 ], [ 2 ], [ 2, 2, 2, 2 ] ]
2.957
0036
21
f
000360132
IT IS ALWAYS SO NICE TO SEE YOU
9
10
9
8
8
[ "IT", "IS", "ALWAYS", "SO", "NICE", "TO", "SEE", "YOU" ]
[ 10, 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10, 10 ]
[ [ "IH0", "T" ], [ "IH0", "Z" ], [ "AO1", "L", "W", "EY0", "Z" ], [ "S", "OW0" ], [ "N", "AY0", "S" ], [ "T", "UW0" ], [ "S", "IY0" ], [ "Y", "UW0" ] ]
[ [ 2, 2 ], [ 2, 2 ], [ 2, 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 1.8 ] ]
3.28
0036
21
f
000360133
UNFORTUNATELY NO ONE IS ALLOW TO SAY
8
10
9
8
8
[ "UNFORTUNATELY", "NO", "ONE", "IS", "ALLOW", "TO", "SAY" ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ [ "AH0", "N", "F", "AO1", "CH", "AH0", "N", "AH0", "T", "L", "IY0" ], [ "N", "OW0" ], [ "W", "AH0", "N" ], [ "IH0", "Z" ], [ "AH0", "L", "AW1" ], [ "T", "UW0" ], [ "S", "EY0" ] ]
[ [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 2, 2 ], [ 2, 1.8 ], [ 2, 2, 1.8 ], [ 2, 2 ], [ 2, 2 ] ]
4.519
0036
21
f
000360161
ALMOST TIME FOR A HAIRCUT
7
10
9
8
7
[ "ALMOST", "TIME", "FOR", "A", "HAIRCUT" ]
[ 10, 10, 10, 10, 10 ]
[ 5, 10, 10, 10, 10 ]
[ 9, 10, 10, 10, 10 ]
[ [ "AO1", "L", "M", "OW0", "S", "T" ], [ "T", "AY0", "M" ], [ "F", "AO0" ], [ "AH0" ], [ "HH", "EH1", "R", "K", "AH0", "T" ] ]
[ [ 2, 2, 2, 2, 2, 1.8 ], [ 2, 2, 2 ], [ 2, 2 ], [ 2 ], [ 2, 1.8, 1.8, 2, 2, 2 ] ]
3.089
0036
21
f
000360190
SO YOU WANT TO BE MORE PRODUCTIVE
9
10
8
7
8
[ "SO", "YOU", "WANT", "TO", "BE", "MORE", "PRODUCTIVE" ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ [ "S", "OW0" ], [ "Y", "UW0" ], [ "W", "AA0", "N", "T" ], [ "T", "UW0" ], [ "B", "IY0" ], [ "M", "AO0" ], [ "P", "R", "AH0", "D", "AH1", "K", "T", "IH0", "V" ] ]
[ [ 2, 2 ], [ 2, 2 ], [ 2, 2, 2, 1.8 ], [ 2, 2 ], [ 2, 1.8 ], [ 2, 2 ], [ 2, 2, 1.8, 2, 2, 2, 2, 2, 2 ] ]
3.78
0036
21
f
000360210
STARTING CAN NOT BE BETTER THAN THIS
9
10
9
8
8
[ "STARTING", "CAN", "NOT", "BE", "BETTER", "THAN", "THIS" ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ [ "S", "T", "AA1", "R", "T", "IH0", "NG" ], [ "K", "AE0", "N" ], [ "N", "AH0", "T" ], [ "B", "IY0" ], [ "B", "EH1", "T", "ER0" ], [ "DH", "AE0", "N" ], [ "DH", "IH0", "S" ] ]
[ [ 2, 2, 2, 2, 2, 2, 2 ], [ 2, 2, 2 ], [ 2, 2, 2 ], [ 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2, 2 ], [ 2, 2, 2 ] ]
3.268
0036
21
f
000360223
I KEEP IT TO BE AMUSED BY THE STUPIDITY
7
10
8
8
7
[ "I", "KEEP", "IT", "TO", "BE", "AMUSED", "BY", "THE", "STUPIDITY" ]
[ 10, 10, 10, 10, 10, 5, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 6, 10, 10, 10 ]
[ [ "AY0" ], [ "K", "IY0", "P" ], [ "IH0", "T" ], [ "T", "UW0" ], [ "B", "IY0" ], [ "AH0", "M", "Y", "UW1", "Z", "D" ], [ "B", "AY0" ], [ "DH", "AH0" ], [ "S", "T", "Y", "UW0", "P", "IH1", "D", "AH0", "T", "IY0" ] ]
[ [ 1.8 ], [ 2, 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 0.8, 1.6, 1.6, 0.8, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2, 1.8, 2, 2, 2, 2, 2, 2, 2 ] ]
4.021
0036
21
f
000360241
AFTER THAT I BE READY TO GO
8
10
8
8
8
[ "AFTER", "THAT", "I", "BE", "READY", "TO", "GO" ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ [ "AA1", "F", "T", "AH0" ], [ "DH", "AE0", "T" ], [ "AY0" ], [ "B", "IY0" ], [ "R", "EH1", "D", "IY0" ], [ "T", "UW0" ], [ "G", "OW0" ] ]
[ [ 2, 2, 2, 2 ], [ 1.6, 2, 2 ], [ 2 ], [ 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 1.8 ] ]
3.24
0036
21
f
000360264
I THANK YOU FOR YOUR SYMPATHY BECAUSE IT COUNTS
7
10
8
8
7
[ "I", "THANK", "YOU", "FOR", "YOUR", "SYMPATHY", "BECAUSE", "IT", "COUNTS" ]
[ 10, 10, 10, 10, 10, 10, 10, 10, 8 ]
[ 10, 10, 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10, 10, 8 ]
[ [ "AY0" ], [ "TH", "AE0", "NG", "K" ], [ "Y", "UW0" ], [ "F", "AO0" ], [ "Y", "AO0" ], [ "S", "IH1", "M", "P", "AH0", "TH", "IY0" ], [ "B", "IH0", "K", "AH1", "Z" ], [ "IH0", "T" ], [ "K", "AW0", "N", "T", "S" ] ]
[ [ 2 ], [ 1.4, 2, 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2, 2, 1.6, 1.6, 1.6, 2 ], [ 2, 2, 2, 2, 1.8 ], [ 2, 2 ], [ 2, 1.8, 2, 2, 2 ] ]
4.556
0036
21
f
000360283
OFF THE CHAIN I BET
8
10
9
8
8
[ "OFF", "THE", "CHAIN", "I", "BET" ]
[ 10, 10, 10, 10, 8 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 8 ]
[ [ "AH0", "F" ], [ "DH", "AH0" ], [ "CH", "EY0", "N" ], [ "AY0" ], [ "B", "EH0", "T" ] ]
[ [ 2, 2 ], [ 1.4, 2 ], [ 2, 1.8, 2 ], [ 2 ], [ 2, 1, 2 ] ]
2.59
0036
21
f
000360313
HE NODDED HIS HEAD AND SMILED
8
10
9
8
8
[ "HE", "NODDED", "HIS", "HEAD", "AND", "SMILED" ]
[ 10, 5, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10 ]
[ 10, 6, 10, 10, 10, 10 ]
[ [ "HH", "IY0" ], [ "N", "AH1", "D", "IH0", "D" ], [ "HH", "IH0", "Z" ], [ "HH", "EH0", "D" ], [ "AE0", "N", "D" ], [ "S", "M", "AY0", "L", "D" ] ]
[ [ 2, 2 ], [ 2, 0.6, 2, 2, 2 ], [ 2, 2, 1.6 ], [ 2, 1.8, 2 ], [ 2, 2, 2 ], [ 2, 2, 1.6, 2, 2 ] ]
3.53
0036
21
f
000360314
BUT TELL ME THE TRUTH
9
10
9
8
8
[ "BUT", "TELL", "ME", "THE", "TRUTH" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "B", "AH0", "T" ], [ "T", "EH0", "L" ], [ "M", "IY0" ], [ "DH", "AH0" ], [ "T", "R", "UW0", "TH" ] ]
[ [ 2, 2, 2 ], [ 2, 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2, 2, 2 ] ]
2.64
0036
21
f
000360332
THE FIRST QUESTION WAS AN OBVIOUS ONE
9
10
9
8
8
[ "THE", "FIRST", "QUESTION", "WAS", "AN", "OBVIOUS", "ONE" ]
[ 10, 10, 10, 8, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 8, 10, 10, 10 ]
[ [ "DH", "AH0" ], [ "F", "ER0", "S", "T" ], [ "K", "W", "EH1", "S", "CH", "AH0", "N" ], [ "W", "AH0", "Z" ], [ "AE0", "N" ], [ "AH1", "B", "V", "IH", "AH0", "S" ], [ "W", "AH0", "N" ] ]
[ [ 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2, 2, 2, 2, 2, 2 ], [ 2, 1.8, 1.8 ], [ 2, 2 ], [ 2, 2, 1.2, 1.2, 1.2, 2 ], [ 2, 2, 2 ] ]
4.16
0036
21
f
000360334
THE SHOCK WAS TOO MUCH FOR HIM
9
10
9
8
8
[ "THE", "SHOCK", "WAS", "TOO", "MUCH", "FOR", "HIM" ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10 ]
[ [ "DH", "AH0" ], [ "SH", "AH0", "K" ], [ "W", "AH0", "Z" ], [ "T", "UW0" ], [ "M", "AH0", "CH" ], [ "F", "AO0" ], [ "HH", "IH0", "M" ] ]
[ [ 2, 2 ], [ 2, 2, 2 ], [ 2, 2, 1.8 ], [ 2, 2 ], [ 2, 2, 2 ], [ 2, 2 ], [ 2, 2, 2 ] ]
3.057
0036
21
f
000360339
HE KNOWS HE'S ABOUT TO GET INTO FIGHT
8
10
9
8
8
[ "HE", "KNOWS", "HE'S", "ABOUT", "TO", "GET", "INTO", "FIGHT" ]
[ 10, 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10, 10 ]
[ [ "HH", "IY0" ], [ "N", "OW0", "Z" ], [ "HH", "IY0", "Z" ], [ "AH0", "B", "AW1", "T" ], [ "T", "UW0" ], [ "G", "EH0", "T" ], [ "IH1", "N", "T", "UW0" ], [ "F", "AY0", "T" ] ]
[ [ 2, 2 ], [ 2, 2, 1.6 ], [ 2, 2, 1.6 ], [ 2, 2, 1.8, 2 ], [ 2, 2 ], [ 1.6, 2, 2 ], [ 2, 2, 2, 2 ], [ 2, 2, 2 ] ]
3.8
0036
21
f
000360343
HE WAS ALWAYS READY TO DO ANYTHING WHATEVER
9
10
9
8
8
[ "HE", "WAS", "ALWAYS", "READY", "TO", "DO", "ANYTHING", "WHATEVER" ]
[ 10, 10, 10, 10, 10, 10, 10, 8 ]
[ 10, 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10, 8 ]
[ [ "HH", "IY0" ], [ "W", "AH0", "Z" ], [ "AO1", "L", "W", "EY0", "Z" ], [ "R", "EH1", "D", "IY0" ], [ "T", "UW0" ], [ "D", "UH0" ], [ "EH1", "N", "IY0", "TH", "IH0", "NG" ], [ "W", "AH0", "T", "EH1", "V", "ER0" ] ]
[ [ 2, 2 ], [ 2, 1.8, 2 ], [ 2, 2, 2, 2, 1.8 ], [ 2, 2, 2, 2 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2, 2, 1.6, 2, 2 ], [ 2, 1.8, 2, 2, 1.4, 2 ] ]
4
0036
21
f
000360360
THE LONG AND THE SHORT OF IT IS THIS
7
10
9
8
7
[ "THE", "LONG", "AND", "THE", "SHORT", "OF", "IT", "IS", "THIS" ]
[ 10, 10, 10, 10, 10, 6, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10, 6, 10, 10, 10 ]
[ [ "DH", "AH0" ], [ "L", "AH0", "NG" ], [ "AE0", "N", "D" ], [ "DH", "AH0" ], [ "SH", "AO0", "T" ], [ "AH0", "V" ], [ "IH0", "T" ], [ "IH0", "Z" ], [ "DH", "IH0", "S" ] ]
[ [ 2, 2 ], [ 2, 2, 2 ], [ 2, 2, 2 ], [ 1.2, 1.2 ], [ 2, 1.8, 2 ], [ 2, 1.2 ], [ 2, 2 ], [ 2, 1.4 ], [ 2, 2, 2 ] ]
3.87
0036
21
f
000360378
YOU WANT TO BE LOVE
9
10
9
8
8
[ "YOU", "WANT", "TO", "BE", "LOVE" ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ 10, 10, 10, 10, 10 ]
[ [ "Y", "UW0" ], [ "W", "AH0", "N", "T" ], [ "T", "UW0" ], [ "B", "IY0" ], [ "L", "AH0", "V" ] ]
[ [ 2, 2 ], [ 2, 2, 2, 1.8 ], [ 2, 2 ], [ 2, 2 ], [ 2, 2, 1.8 ] ]
2.26

speechocean762: A non-native English corpus for pronunciation scoring task

How to use?

you can load data using

speechocean762_dataset = load_dataset('seba3y/speechocean762')
>> speechocean762_dataset
DatasetDict({
    train: Dataset({
        features: ['spk', 'age', 'gender', 'utt_name', 'audio', 'utt_text', 'utt_accuracy', 'utt_completeness', 'utt_fluency', 'utt_prosodic', 'utt_total', 'words', 'words_accuracy', 'words_stress', 'words_total', 'phones', 'phones_godness'],
        num_rows: 2500
    })
    test: Dataset({
        features: ['spk', 'age', 'gender', 'utt_name', 'audio', 'utt_text', 'utt_accuracy', 'utt_completeness', 'utt_fluency', 'utt_prosodic', 'utt_total', 'words', 'words_accuracy', 'words_stress', 'words_total', 'phones', 'phones_godness'],
        num_rows: 2500
    })
})

Features are ordered as following:

1- Demographic featurs: 'spk', 'age', 'gender', 'utt_name'

2- Sentence-level featurs: 'audio', 'utt_text', 'utt_accuracy', 'utt_completeness', 'utt_fluency', 'utt_prosodic', 'utt_total'

3- Word-level featurs: 'words', 'words_accuracy', 'words_stress', 'words_total'

4- Phoneme-level featurs: 'phones', 'phones_godness'

>> speechocean762_dataset['train'][0]
{'spk': '0001',
 'age': 6,
 'gender': 'm',
 'utt_name': '000010011',
 'audio': {'path': '/content/speechocean762/WAVE/SPEAKER0001/000010011.WAV',
  'array': array([-9.46044922e-04, -2.38037109e-03, -1.31225586e-03, ...,
         -9.15527344e-05,  3.05175781e-04, -2.44140625e-04]),
  'sampling_rate': 16000},
 'utt_text': 'WE CALL IT BEAR',
 'utt_accuracy': 8,
 'utt_completeness': 10.0,
 'utt_fluency': 9,
 'utt_prosodic': 9,
 'utt_total': 8,
 'words': "['WE', 'CALL', 'IT', 'BEAR']",
 'words_accuracy': '[10, 10, 10, 6]',
 'words_stress': '[10, 10, 10, 10]',
 'words_total': '[10, 10, 10, 6]',
 'phones': "[['W', 'IY0'], ['K', 'AO0', 'L'], ['IH0', 'T'], ['B', 'EH0', 'R']]",
 'phones_godness': '[[2.0, 2.0], [2.0, 1.8, 1.8], [2.0, 2.0], [2.0, 1.0, 1.0]]'}

For word-level features, the 'words' in each sample is a list containing words, while 'words_accuracy', 'words_stress', and 'words_total' are lists of the same length as the words. The mapping is such that the first word corresponds to the first value in 'words_accuracy', and so on. On the other hand, for phoneme-level features, the 'phones' in each sample is a 2D list, with each sublist corresponding to a single word

Introduction

Pronunciation scoring is a crucial technology in computer-assisted language learning (CALL) systems. The pronunciation quality scores might be given at phoneme-level, word-level, and sentence-level for a typical pronunciation scoring task.

This corpus aims to provide a free public dataset for the pronunciation scoring task. Key features:

  • It is available for free download for both commercial and non-commercial purposes.
  • The speaker variety encompasses young children and adults.
  • The manual annotations are in multiple aspects at sentence-level, word-level and phoneme-level.

This corpus consists of 5000 English sentences. All the speakers are non-native, and their mother tongue is Mandarin. Half of the speakers are Children, and the others are adults. The information of age and gender are provided.

Five experts made the scores. To avoid subjective bias, each expert scores independently under the same metric.

The scoring metric

The experts score at three levels: phoneme-level, word-level, and sentence-level.

Phoneme level

Score the pronunciation goodness of each phoneme within the words.

Score range: 0-2

  • 2: pronunciation is correct
  • 1: pronunciation is right but has a heavy accent
  • 0: pronunciation is incorrect or missed

Word level

Score the accuracy and stress of each word's pronunciation.

Accuracy

Score range: 0 - 10

  • 10: The pronunciation of the word is perfect
  • 7-9: Most phones in this word are pronounced correctly but have accents
  • 4-6: Less than 30% of phones in this word are wrongly pronounced
  • 2-3: More than 30% of phones in this word are wrongly pronounced. In another case, the word is mispronounced as some other word. For example, the student mispronounced the word "bag" as "bike"
  • 1: The pronunciation is hard to distinguish
  • 0: no voice

Stress

Score range: {5, 10}

  • 10: The stress is correct, or this is a mono-syllable word
  • 5: The stress is wrong

Sentence level

Score the accuracy, fluency, completeness and prosodic at the sentence level.

Accuracy

Score range: 0 - 10

  • 9-10: The overall pronunciation of the sentence is excellent, with accurate phonology and no obvious pronunciation mistakes
  • 7-8: The overall pronunciation of the sentence is good, with a few pronunciation mistakes
  • 5-6: The overall pronunciation of the sentence is understandable, with many pronunciation mistakes and accent, but it does not affect the understanding of basic meanings
  • 3-4: Poor, clumsy and rigid pronunciation of the sentence as a whole, with serious pronunciation mistakes
  • 0-2: Extremely poor pronunciation and only one or two words are recognizable

Completeness

Score range: 0.0 - 1.0 The percentage of the words with good pronunciation.

Fluency

Score range: 0 - 10

  • 8-10: Fluent without noticeable pauses or stammering
  • 6-7: Fluent in general, with a few pauses, repetition, and stammering
  • 4-5: the speech is a little influent, with many pauses, repetition, and stammering
  • 0-3: intermittent, very influent speech, with lots of pauses, repetition, and stammering

Prosodic

Score range: 0 - 10

  • 9-10: Correct intonation at a stable speaking speed, speak with cadence, and can speak like a native
  • 7-8: Nearly correct intonation at a stable speaking speed, nearly smooth and coherent, but with little stammering and few pauses
  • 5-6: Unstable speech speed, many stammering and pauses with a poor sense of rhythm
  • 3-4: Unstable speech speed, speak too fast or too slow, without the sense of rhythm
  • 0-2: Poor intonation and lots of stammering and pauses, unable to read a complete sentence

Data structure

The following tree shows the file structure of this corpus on github:

β”œβ”€β”€ scores.json
β”œβ”€β”€ scores-detail.json
β”œβ”€β”€ train
β”‚   β”œβ”€β”€ spk2age
β”‚   β”œβ”€β”€ spk2gender
β”‚   β”œβ”€β”€ spk2utt
β”‚   β”œβ”€β”€ text
β”‚   β”œβ”€β”€ utt2spk
β”‚   └── wav.scp
β”œβ”€β”€ test
β”‚   β”œβ”€β”€ spk2age
β”‚   β”œβ”€β”€ spk2gender
β”‚   β”œβ”€β”€ spk2utt
β”‚   β”œβ”€β”€ text
β”‚   β”œβ”€β”€ utt2spk
β”‚   └── wav.scp
└── WAVE
    β”œβ”€β”€ SPEAKER0001
    β”‚   β”œβ”€β”€ 000010011.WAV
    β”‚   β”œβ”€β”€ 000010035.WAV
    β”‚   β”œβ”€β”€ ...
    β”‚   └── 000010173.WAV
    β”œβ”€β”€ SPEAKER0003
    β”‚   β”œβ”€β”€ 000030012.WAV
    β”‚   β”œβ”€β”€ 000030024.WAV
    β”‚   β”œβ”€β”€ ...
    β”‚   └── 000030175.WAV
    └── SPEAKER0005
        β”œβ”€β”€ 000050003.WAV
        β”œβ”€β”€ 000050010.WAV
        β”œβ”€β”€ ...
        └── 000050175.WAV

There are two datasets: train and test, and both are in Kaldi's data directory style.

The scores are stored in scores.json. Here is an example:

{
    "000010011": {                                     # utt-id
        "text": "WE CALL IT BEAR",                     # transcript text
        "accuracy": 8,                                 # sentence-level accuracy score
        "completeness": 10.0,                          # sentence-level completeness score
        "fluency": 9,                                  # sentence-level fluency score
        "prosodic": 9,                                 # sentence-level prosodic score
        "total": 8,                                    # sentence-level total score
        "words": [
            {
                "accuracy": 10,                        # word-level accuracy score
                "stress": 10,                          # word-level stress score
                "total": 10,                           # word-level total score
                "text": "WE",                          # the word text
                "phones": "W IY0",                     # phones of the word                        
                "phones-accuracy": [2.0, 2.0]          # phoneme-level accuracy score
            },
            {
                "accuracy": 10,
                "stress": 10,
                "total": 10,
                "text": "CALL",
                "phones": "K AO0 L",
                "phones-accuracy": [2.0, 1.8, 1.8]
            },
            {
                "accuracy": 10,
                "stress": 10,
                "total": 10,
                "text": "IT",
                "phones": "IH0 T",
                "phones-accuracy": [2.0, 2.0]
            },
            {
                "accuracy": 6,
                "stress": 10,
                "total": 6,
                "text": "BEAR",
                "phones": "B EH0 R",
                "phones-accuracy": [2.0, 1.0, 1.0]
            }
        ]
    },
    ...
}

For the phones with an accuracy score lower than 0.5, an extra "mispronunciations" block indicates which phoneme the current phone was actually pronounced. An example:

{
    "text": "LISA",
    "accuracy": 5,
    "phones": ["L", "IY1", "S", "AH0"],
    "phones-accuracy": [0.4, 2, 2, 1.2],
    "mispronunciations": [
        {
            "canonical-phone": "L",
            "index": 0,
            "pronounced-phone": "D"
        }
    ],
    "stress": 10,
    "total": 6
}

The file scores.json is processed from scores-detail.json. The two JSON files are almost the same, but scores-detail.json has the five experts' original scores, while the scores of scores.json were the average or median scores.

An example item in scores-detail.json:

{
    "000010011": {

        "text": "WE CALL IT BEAR",
        "accuracy": [7.0, 9.0, 8.0, 8.0, 9.0],
        "completeness": [1.0, 1.0, 1.0, 1.0, 1.0],
        "fluency": [10.0, 9.0, 8.0, 8.0, 10.0],
        "prosodic": [10.0, 9.0, 7.0, 8.0, 9.0],
        "total": [7.6, 9.0, 7.9, 8.0, 9.1],
        "words": [
            {
                "accuracy": [10.0, 10.0, 10.0, 10.0, 10.0],
                "stress": [10.0, 10.0, 10.0, 10.0, 10.0],
                "total": [10.0, 10.0, 10.0, 10.0, 10.0],
                "text": "WE",
                "ref-phones": "W IY0",
                "phones": ["W IY0", "W IY0", "W IY0", "W IY0", "W IY0"]
            },
            {
                "accuracy": [10.0, 8.0, 10.0, 10.0, 8.0],
                "stress": [10.0, 10.0, 10.0, 10.0, 10.0],
                "total": [10.0, 8.4, 10.0, 10.0, 8.4],
                "text": "CALL",
                "ref-phones": "K AO0 L",
                "phones": ["K AO0 L", "K {AO0} L", "K AO0 L", "K AO0 L", "K AO0 {L}"],
            },
            {
                "accuracy": [10.0, 10.0, 10.0, 10.0, 10.0],
                "stress": [10.0, 10.0, 10.0, 10.0, 10.0],
                "total": [10.0, 10.0, 10.0, 10.0, 10.0],
                "text": "IT",
                "ref-phones": "IH0 T",
                "phones": ["IH0 T", "IH0 T", "IH0 T", "IH0 T", "IH0 T"]
            },
            {
                "accuracy": [3.0, 7.0, 10.0, 2.0, 6.0],
                "stress": [10.0, 10.0, 10.0, 10.0, 10.0],
                "phones": ["B (EH0) (R)", "B {EH0} {R}", "B EH0 R", "B (EH0) (R)", "B EH0 [L] R"],
                "total": [4.4, 7.6, 10.0, 3.6, 6.8],
                "text": "BEAR",
                "ref-phones": "B EH0 R"
            }
        ],
    },
    ...
}

In scores-detail.json, the phoneme-level scores are notated in the following convenient notation:

  • for score 2, do not use any symbol
  • for score 1, use "{}" symbol
  • for score 0, use "()" symbol
  • for the inserted phone, use the "[]" symbol

For example, "B (EH) R" means the score of EH is 0 while the scores of B and R are both 2, "B EH [L] R" mean there is an unexpected phone "L" and the other phones are scored 2.

Citation

Please cite our paper if you find this work useful:

@inproceedings{zhang2021speechocean762,
  title={speechocean762: An Open-Source Non-native English Speech Corpus For Pronunciation Assessment},
  author={Zhang, Junbo and Zhang, Zhiwen and Wang, Yongqing and Yan, Zhiyong and Song, Qiong and Huang, Yukai and Li, Ke and Povey, Daniel and Wang, Yujun},
  booktitle={Proc. Interspeech 2021},
  year={2021}
}
Downloads last month
54
Edit dataset card