Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Hebrew
Libraries:
Datasets
pandas
text
stringlengths
40
1.63k
โŒ€
source
stringclasses
2 values
label
int64
0
1
verb
stringclasses
20 values
tweet_id
stringlengths
18
19
โŒ€
ื‘ื ื•ืกืฃ, ื‘ื ื™ื’ื•ื“ ืœืจื•ื‘ ืกื•ื’ื™ ื”ืฆืžืจ ืื• ื”ื‘ื“, ื”ืžื•ืคืงื™ื ืžืกื™ื‘ื™ื ืžื”ื—ื™, ื ื™ืชืŸ ืœื›ื‘ืก ืื•ืชื• ื‘ื›ื‘ื™ืกื” ื™ื“ื ื™ืช ื•ืื™ืŸ ืฆื•ืจืš ื‘ื ื™ืงื•ื™ ื™ื‘ืฉ
wikipedia
0
ืœื›ื‘ืก
null
ืžื˜ืจืชื• ื”ื™ื™ืชื” ืœื‘ืฆืข ืชื”ืœื™ืš ื›ื™ื‘ื•ืก ื™ืขื™ืœ ื™ื•ืชืจ, ื‘ื‘ื’ื“ื™ื ืฉื”ื™ื” ืงืฉื” ื™ื•ืชืจ ืœื›ื‘ืก ื‘ืขื–ืจืช ื›ื•ื— ื–ืจื•ืขื•ืช ื”ื™ื“ื™ื™ื
wikipedia
0
ืœื›ื‘ืก
null
ืื™ืกื•ืจ ื›ื‘ื™ืกื”, ื’ื™ืœื•ื— ื•ืชืกืคื•ืจืช ื—ื›ืžื™ื ืืกืจื• ืœื›ื‘ืก, ืœื’ืœื— ื•ืœื”ืกืชืคืจ ื‘ื—ื•ืœ ื”ืžื•ืขื“
wikipedia
0
ืœื›ื‘ืก
null
ื‘ื›ืœื, ื”ืืกื™ืจื•ืช ื”ื•ื›ืจื—ื• ืœื›ื‘ืก ืืช ืžื“ื™ ื”ืืกื™ืจื™ื ื”ื’ื‘ืจื™ื ืฉื”ื™ื• ืžืœื•ื›ืœื›ื™ื ื‘ืฆื•ืื”
wikipedia
0
ืœื›ื‘ืก
null
ื“ื™ื ื™ ื”ืื‘ืœื•ืช ืขืœ ืื‘ืœื™ื ื—ืœื™ื ืชืฉืขื” ืื™ืกื•ืจื™ื: ืœื”ืกืชืคืจ ืœื›ื‘ืก ื‘ื’ื“ื™ื ืœื”ืชืจื—ืฅ ืœืกื•ืš ืืช ื”ื’ื•ืฃ ื‘ืฉืžืŸ ืœืžื˜ืจืช ื”ื ืื” ืชืฉืžื™ืฉ ื”ืžื™ื˜ื” ืœื ืขื•ืœ ื ืขืœื™ื™ื ืžืขื•ืจ ืœืขืฉื•ืช ืžืœืื›ื” ืœืœืžื•ื“ ืชื•ืจื” ืื™ืกื•ืจ ืฉืžื—ื” ื›ืžื• ื›ืŸ ื—ืœื™ื ืขืœ ื”ืื‘ืœ ืฉื ื™ ื—ื™ื•ื‘ื™ื: ืœื”ืคื•ืš (ื‘ืœืฉื•ืŸ ื”ื”ืœื›ื”: ืœื›ืคื•ืช) ืืช ื›ืœ ื”ืžื™ื˜ื•ืช ื‘ื‘ื™ืช ืœืขื˜ื•ืฃ ืืช ื”ื’ื•ืฃ ืชืกืคื•ืจืช ื”ืžืงื•ืจ ืœื›ืš ืฉื”ืื‘ืœ ืืกื•ืจ ื‘ืชืกืคื•ืจืช ื”ื•ื ืžื”ืื–ื”ืจื” ืฉื”ื–ื”ื™ืจ ืžืฉื” ืจื‘ื ื• ืืช ืืœืขื–ืจ ื•ืื™ืชืžืจ ื‘ื ื™ ืื”ืจื•ืŸ, ื›ืžื•ืช ืื—ื™ื”ื ื ื“ื‘ ื•ืื‘ื™ื”ื•ื:
wikipedia
0
ืœื›ื‘ืก
null
ื“ื™ื ื™ื ืฉื ื•ื”ื’ ื”ืžื ื•ื“ื” ืืกื•ืจ ืœืžื ื•ื“ื” ืœื”ืกืชืคืจ ืื• ืœื›ื‘ืก ืืช ื‘ื’ื“ื™ื• ื›ืžื• ื“ื™ื ื™ ื”ืื‘ืœ, ืืš ืžื•ืชืจ ืœื• ืœืœืžื•ื“ ื•ืœืœืžื“ ืขื ืื—ืจื™ื
wikipedia
0
ืœื›ื‘ืก
null
ื“ืขืชื ืฉืœ ื”ืชื•ืกืคื•ืช ื”ื™ื ื›ื™ ื”ื›ืœืœ ืื•ืžืจ ื‘ืขื™ืงืจื• ืฉืื™ืŸ ืœืชืœื•ืช ืื•ืชื• ื‘ืžืงื•ื ืฉื”ื™ื ืœื ื ืžืฆืื” ื‘ื•, ืืš ืื™ืŸ ื”ื™ื ืกื™ื‘ื” ืœื•ืžืจ ืฉื™ืฉ ืœืชืœื•ืช ืืช ื”ื‘ืขื™ื” ื‘ืจืฉื•ืช ืฉื”ื™ื ื ืžืฆืื” ื‘ื•, ื•ืœื›ืŸ ืืฉื” ืฉื”ืฉืื™ืœื” ืœื—ื‘ืจืชื” ื‘ื’ื“ ื•ืœืื—ืจ ื”ื”ืฉืืœื” ื ืžืฆื ื‘ื‘ื’ื“ ื“ื ืื• ืœื›ืœื•ืš ืื—ืจ, ื”ืžืฉืื™ืœื” ืื™ื ื ื” ื™ื›ื•ืœื” ืœื“ืจื•ืฉ ืžื”ืฉื•ืืœืช ืœื ืงื•ืช ืื• ืœื›ื‘ืก ืืช ื”ื‘ื’ื“ ื‘ื˜ืขื ื” ืฉื”ื“ื ื ืžืฆื ื‘ืจืฉื•ืชื”, ืžื›ื™ื•ื•ืŸ ืฉื”ื›ืœืœ ืจืง ืื•ืžืจ ืฉืื™ืŸ ืœืชืœื•ืช ืืช ื”ื‘ืขื™ื” ื‘ืžืงื•ื ืฉื”ื™ื ืœื ื ืžืฆืื” ื‘ื•, ืืš ื’ื ืื™ืŸ ืœื”ื•ื›ื™ื— ืฉื”ื™ื ืงืฉื•ืจื” ืœืžืงื•ื ื‘ื• ื”ื™ื ื ืžืฆืื”
wikipedia
0
ืœื›ื‘ืก
null
ื™ืฉ ืœื›ื‘ืก ื•ืœื”ื—ืœื™ืฃ ื‘ื’ื“ื™ ืขื‘ื•ื“ื” ื•ื—ืœื•ืงื™ ืžืขื‘ื“ื” ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช, ืžื•ืžืœืฅ ืžื“ื™ ื™ื•ื
wikipedia
0
ืœื›ื‘ืก
null
ื›ื‘ื™ืกื”, ืจื—ื™ืฆื” ื•ืกื™ื›ื” ื”ืžืงื•ืจ ืœื›ืš ืฉื”ืื‘ืœ ืืกื•ืจ ืœื›ื‘ืก ื‘ื’ื“ื™ื• ื•ืœืจื—ื•ืฅ ื’ื•ืคื• ื•ืœืกื•ืš ื”ื•ื ืžื”ืคืกื•ืง ืฉืžื›ืืŸ ืœื•ืžื“ื™ื ืฉื™ืฉ ืœืงื™ื™ื ื“ื™ืŸ ืื‘ืœื•ืช ื‘ืœื‘ื™ืฉืช ื”ื‘ื’ื“ื™ื ื•ืœื ืœื”ื—ืœื™ืฃ ืœื‘ื’ื“ื™ื ื—ื“ืฉื™ื ื•ืžื’ื•ื”ืฆื™ื
wikipedia
0
ืœื›ื‘ืก
null
ื›ื‘ื™ืกื”: ืžืฉื•ื ืฉืจื•ื‘ ื“ื™ืจื•ืช ื”ืฉื™ืจื•ืช ืœืื•ืžื™ ืื™ื ื ืขืจื•ื›ื•ืช ืœืงืœื™ื˜ืช ื‘ื ื•ืช ื‘ื•ื“ื“ื•ืช ื”ืขืžื•ืชื•ืช ืžืกื™ื™ืขื•ืช ื‘ืขื–ืจื” ื›ืœื›ืœื™ืช ืื• ืžืฆื™ืืช ืžืขื ื” ืœืžืงื•ื ืฉื”ื‘ื ื•ืช ื™ื•ื›ืœื• ืœื›ื‘ืก ื‘ื”ื ืืช ื‘ื’ื“ื™ื”ืŸ
wikipedia
0
ืœื›ื‘ืก
null
ืžื™ืžื™ ื”ื™ืžื” ืžืชืืคื™ื™ื ื™ื ื‘ืขืจืš ื”ื’ื‘ื” ื’ื‘ื•ื” (ื‘ืกื™ืกื™) ื•ืขืฉื™ืจื™ื ื‘ืžืœื—ื™ื ื›ื“ื•ื’ืžืช ื ืชืจืŸ ืคื—ืžืชื™, ื”ืžืฉืžืฉื™ื ื›ื—ื•ืžืจื™ ื—ื™ื˜ื•ื™ ื•ื ื™ืงื•ื™ (ื ื™ืชืŸ ืœื›ื‘ืก ื‘ื’ื“ื™ื ื‘ืžื™ืžื™ ื”ื™ืžื” ืœืœื ืฆื•ืจืš ื‘ืกื‘ื•ืŸ)
wikipedia
0
ืœื›ื‘ืก
null
ืžืžืืžืจื™ื• ื‘ื”ืœื›ื” ื”ืฉื•ืชืคื™ื ื‘ื—ืฆืจ ืจืฉืื™ื ืœืžื ื•ืข ื–ื” ืžื–ื” ืฉื™ืžื•ืฉ ื‘ื—ืฆืจ ืœืฆืจื›ื™ื ืฉื•ื ื™ื, ืื‘ืœ ืื™ื ื ื™ื›ื•ืœื™ื ืœืžื ื•ืข ืžืŸ ื”ืฉื›ื ื•ืช ื”ืฉื•ืชืคื•ืช ื‘ื—ืฆืจ ืœื›ื‘ืก ื‘ื”, ื›ื™ ืื™ืŸ ื–ื” ื›ื‘ื•ื“ืŸ ืฉืœ ื‘ื ื•ืช ื™ืฉืจืืœ ืœื›ื‘ืก ื‘ืจืฉื•ืช ื”ืจื‘ื™ื
wikipedia
0
ืœื›ื‘ืก
null
ื ืื•ืกื™ืงื” ื™ืจื“ื” ืœื—ื•ืฃ ื”ื™ื ืขื ื‘ื ื•ืช ืœื•ื•ื™ื™ืชื” ื‘ืžื˜ืจื” ืœื›ื‘ืก ืืช ื›ื‘ื™ืกืช ื”ืืจืžื•ืŸ
wikipedia
0
ืœื›ื‘ืก
null
ื ืืกืจ ืขืœ ื”ืžืฆื•ืจืข ืœืฉืื•ืœ ื‘ืฉืœื•ื ื›ืœ ืื“ื, ื•ื›ืŸ ื ืืกืจ ืขืœื™ื• ืœื›ื‘ืก ื•ืœื”ืกืชืคืจ ืืคื™ืœื• ืœื›ื‘ื•ื“ ืฉื‘ืช ื•ื™ื•ื ื˜ื•ื‘
wikipedia
0
ืœื›ื‘ืก
null
ืชืคืงื™ื“ื™ ืžื’ื“ืจ ืขื ื”ืงืžืช ื”ืงื‘ื•ืฆื•ืช ื”ืจืืฉื•ื ื•ืช ื“ื’ื ื™ื” ื•ื›ื ืจืช ืกื™ืจื‘ื• ืชื—ื™ืœื” ื”ื’ื‘ืจื™ื ืœืงื‘ืœ ื ืฉื™ื ื›ื—ื‘ืจื•ืช ืฉื•ื•ืช-ืžืขืžื“ ื•ืจืง ืฉื‘ื™ืชืช ื”ื ืฉื™ื ืฉื”ืคืกื™ืงื• ืœื›ื‘ืก ื•ืœื‘ืฉืœ ืœื”ื ื”ื›ืจื™ื—ื” ืื•ืชื ืœืงื‘ืœืŸ ื›ื—ื‘ืจื•ืช
wikipedia
0
ืœื›ื‘ืก
null
(ืœืžืฉืœ: ืœืžื” ืœื ื›ืชื•ื‘ ืฉืืกื•ืจ ืœื›ื‘ืก ืžืงืœ ื“ื™ื ืžื™ื˜ ื‘ืžื›ื•ื ืช ื›ื‘ื™ืกื”? ืœืžื” ืœื ื›ืชื•ื‘ ืฉืืกื•ืจ ืœื”ื ื™ื— ืขืœ ืคื˜ื™ืคื•ืŸ ื ื™ื™ืจ ื–ื›ื•ื›ื™ืช ื‘ืฉืขื” ืฉื™ืฉ ืžืกื‘ื™ื‘ ื“ืœืง ื•ื—ื•ืžืจื™ ื ืคืฅ?)
wikipedia
0
ืœื›ื‘ืก
null
ืื’ื“ื” ืื—ืจืช ืžืกืคืจืช ื›ื™ ื”ื™ื ื”ื•ืจืชื” ืœืžื›ื‘ืกื” ืฉืœื” ืœื›ื‘ืก ืจืง ืืช ื”ื—ืœืงื™ื ื”ืžืœื•ื›ืœื›ื™ื ื‘ื™ื•ืชืจ ื‘ืฉืžืœืชื” ื›ื“ื™ ืœื—ืกื•ืš ื›ืกืฃ ืขืœ ืกื‘ื•ืŸ
wikipedia
0
ืœื›ื‘ืก
null
ืื™ื™ื ื• ื”ืขืฆื•ื‘ื” ืžืกืจื‘ืช ืœื”ืชื—ืชืŸ ืขื ื•ื™ื ื•ืžื•ื™ื ืŸ ื•ืื•ืžืจืช ื›ื™ ืื™ืŸ ื‘ืจืฆื•ื ื” ืœื‘ืฉืœ, ืœื›ื‘ืก ื•ืœืฉืžืฉ ื›ืชื›ืฉื™ื˜ ืœืžื›ืฉืฃ ื”ื–ืงืŸ ื•ื”ืžื›ื•ืขืจ
wikipedia
0
ืœื›ื‘ืก
null
ืืžื ื ื™ืฉ ืฆื•ืจืš ืœื›ื‘ืก ืืช ื”ืžื’ื‘ืช ืžื“ื™ ืคืขื, ืืš ื‘ื›ื‘ื™ืกื” ืžืจื•ื›ื–ืช ื ื™ืชืŸ ืœื—ืกื•ืš ื‘ื”ื•ืฆืื•ืช
wikipedia
0
ืœื›ื‘ืก
null
ื‘ืื•ืชื• ื—ื•ื“ืฉ ื”ื•ื‘ืื• ืคืœื•ื’ืช ืขื‘ื•ื“ื” ื™ื”ื•ื“ื™ืช ืฉืœ 20 ืขื“ 40 ื ืฉื™ื ืขืœ ืžื ืช ืœืžื™ื™ืŸ, ืœื›ื‘ืก ื•ืœืชืงืŸ ืืช ื”ื‘ื’ื“ื™ื
wikipedia
0
ืœื›ื‘ืก
null
ื‘ื”ื™ืขื“ืจ ืืคืฉืจื•ืช ืœื›ื‘ืก ื‘ื’ื“ื™ื ืื–ืœ ืžืœืื™ ื”ื‘ื’ื“ื™ื ืžื”ื—ื ื•ื™ื•ืช ื•ืจื‘ื™ื ื”ืกืชื•ื‘ื‘ื• ื‘ื‘ื’ื“ื™ื ืžืœื•ื›ืœื›ื™ื
wikipedia
0
ืœื›ื‘ืก
null
ื‘ืžื”ืœืš ื”ื”ืคืœื’ื” ืกื™ืจื‘ื” ืœื—ืœื•ืง ืืช ื”ืžื–ื•ืŸ ืฉืขืžื“ ืœืจืฉื•ืชื” ืขื ื”ืจืขื‘ื™ื ื•ื›ืžื• ื›ืŸ ื”ืฉืชืžืฉื” ื‘ืžื™ื ื”ืžืขื˜ื™ื ื›ื“ื™ ืœื›ื‘ืก ืืช ื‘ื’ื“ื™ื” ื‘ืขื•ื“ ื”ื ื•ืกืขื™ื ื’ื•ื•ืขื™ื ื‘ืฆืžื
wikipedia
0
ืœื›ื‘ืก
null
ื‘ืžื”ืœืš ื”ืกืคืจ ืฉื•ืœื— ื’ืจื’ ืœืื™ื–ื‘ืœื” ืžืกืคืจ ืžื›ืชื‘ื™ื ืฉื‘ื”ื ื”ื•ื ืžื‘ืงืฉ (ื‘ืฉื ืื™ืžื•) ืœื›ื‘ืก ืืช ื›ื‘ื™ืกืชื•, ืืš ืื™ื–ื‘ืœื” ืื™ื ื” ืžืงื™ื™ืžืช ืืช ื”ื‘ืงืฉื”
wikipedia
0
ืœื›ื‘ืก
null
ื’'ืœื™ืœื” ืžืชืงืฉื” ืœื ืงื•ืช, ืœื›ื‘ืก ื•ืœื”ื›ื™ืŸ ืื•ื›ืœ ืžื›ื™ื•ื•ืŸ ืฉื”ื‘ื™ืช ื”ื™ืฉืŸ ืกื•ื‘ืœ ืžื”ื–ื ื—ื” ื•ืื™ื ื• ืžื—ื•ื‘ืจ ืœื—ืฉืžืœ
wikipedia
0
ืœื›ื‘ืก
null
ื“ื ืฉืœ ืงื•ืจื‘ืŸ ื—ื˜ืืช ืฉื›ื‘ืจ ื”ื•ื›ื ืก ืœื›ืœื™ ืœืฆื•ืจืš ื–ืจื™ืงืชื• ืขืœ ื”ืžื–ื‘ื—, ื•ื‘ื˜ืจื ื ื–ืจืง ืขืœ ื”ืžื–ื‘ื— ื ื™ืชื– ืขืœ ื‘ื’ื“ ื›ืœืฉื”ื• ืฉืจืื•ื™ ืœืงื‘ืœ ื˜ื•ืžืื” (ืœืื• ื“ื•ื•ืงื ื‘ื’ื“ ื›ื”ื•ื ื”) - ืžืฆื•ื•ื” ืœื›ื‘ืก ืืช ื”ื‘ื’ื“ ื‘ืชื—ื•ืžื™ ื”ืขื–ืจื”, ื›ืš ืฉื”ื“ื ื™ืฉืืจ ื‘ืžืชื—ื ื”ืžืงื“ืฉ ื•ืœื ื™ื•ืฆื ืžืžื ื•
wikipedia
0
ืœื›ื‘ืก
null
ื“ื ื™ืืœ ืคื™ืก ืžืชื•ืืจ ื›ืขื•ื‘ื“ ื‘ืžื›ื‘ืกื” ืฉื ื”ื›ื™ืจ ืืช ื“ื ื™ืืœ ืœืื—ืจ ืฉื”ื’ื™ืขื” ืœื›ื‘ืก ื‘ืžืงื•ื
wikipedia
0
ืœื›ื‘ืก
null
ื”ืื ื’ืœื™ื ื”ืžื”ื•ืงืฆืขื™ื, ืฉืœื ื™ื›ืœื• ืœื—ืฉื•ื‘ ืขืœ ื›ืš ืฉื™ื’ืขื• ื‘ื™ื“ื™ื”ื ื‘ื ืงื ื™ืงื™ื•ืช ื”ืฉืžื ื•ื ื™ื•ืช, ื”ื™ื• ืจื’ื™ืœื™ื ืœืื›ื•ืœ ืื•ืชืŸ ืขื ื›ืคืคื•ืช, ืืš ืœื ื™ื›ืœื• ืœื›ื‘ืก ืืช ื›ืคืคื•ืชื™ื”ื ื‘ืฉืœ ื”ืฉื‘ื™ืชื” - ืžื” ืฉื’ืจื ืœื™ืจื™ื“ื” ื‘ืžื›ื™ืจื•ืช ื”ื ืงื ื™ืงื™ื•ืช ื‘ื›ืœ ืื ื’ืœื™ื”
wikipedia
0
ืœื›ื‘ืก
null
ื”ื•ื•ื™ื›ื•ื— ื‘ื™ืŸ ืžืœื›ื™ืŸ ืœื—ื‘ืจื™ ื”ืงื‘ื•ืฆื” ื”ื™ื” ืžืื•ื“ ืกื•ืขืจ, ื•ืขืœ ื–ืืช ื›ืชื‘ื” ื‘ืจืฅ ื‘ื–ื™ื›ืจื•ื ื•ืชื™ื”: ืื™ืŸ ืื ื• ืจื•ืฆื•ืช ืจืง ืœืขื‘ื•ื“ ื‘ื‘ื™ืช ื•ืœื”ื™ื•ืช ืžืคื•ื˜ืžื•ืช, ื•ืจืง ืœื›ื‘ืก ื•ืœืชืงืŸ..
wikipedia
0
ืœื›ื‘ืก
null
ื”ื—ืกืจื•ื ื•ืช ืฉืœ ื”ืชื—ื‘ื•ืฉื•ืช ื”ืจื‘-ืคืขืžื™ื•ืช ื”ื ื”ืฆื•ืจืš ืœื›ื‘ืก ืื•ืชืŸ, ื•ื›ืŸ ื”ืฆื•ืจืš ืœืฉืžื•ืจ ืื•ืชืŸ ื‘ืชื™ืง ื™ื™ืขื•ื“ื™ ืื˜ื•ื ืœืžื™ื ื•ืœืจื™ื— ื‘ืžื™ื“ื” ื•ื”ืŸ ืžื•ื—ืœืคื•ืช ืžื—ื•ืฅ ืœื‘ื™ืช
wikipedia
0
ืœื›ื‘ืก
null
ื”ื™ื ืžื•ื“ืขืช ืœื›ืš, ืฉืœื™ืœื“ื” ื™ืฉ ืจืง ื—ืฆืื™ืช ื•ื—ื•ืœืฆื” ื•ื›ืืฉืจ ืฆืจื™ืš ืœื›ื‘ืก ืื•ืชืŸ ืื™ืŸ ืœื” ืฉื•ื ืžืขืจื›ืช ื‘ื’ื“ื™ื ืื—ืจืช ืœื”ื—ืœืคื”, ืืš ืชื’ื•ื‘ืชื” ืœื›ืš ื”ื™ื ื”ืฉืชืื•ืช, ืื™ืš ื–ื” ืฉืœื—ื” ืื•ืชื” ืืžื” ื‘ืœืชื™ ืžืฆื•ื™ื“ืช ื›ื”ืœื›ื”, ืคืกื™ืงื” ื‘ื™ืงื•ืจืชื™ืช, ื”ืžื›ืื™ื‘ื” ืœื™ืœื“ื” ื•ืคื•ื’ืขืช ื‘ื”
wikipedia
0
ืœื›ื‘ืก
null
ื”ื™ื ืกื™ืคืจื” ืฉื›ื“ื™ ืœื”ื›ื ื™ืก ืืช ื‘ืชื” ืœื’ืŸ ื”ื™ื” ืขืœื™ื” ืœื”ืชื ื“ื‘ ืœื›ื‘ืก ืืช ื‘ื’ื“ื™ ื›ืœ ื”ื™ืœื“ื™ื ืฉื‘ื•, ืžืฉื•ื ืฉืœื ื”ื™ื™ืชื” ื™ื›ื•ืœื” ืœืขืžื•ื“ ื‘ืชืฉืœื•ื ื”ื ื“ืจืฉ ืžื”ื”ื•ืจื™ื
wikipedia
0
ืœื›ื‘ืก
null
ื”ื™ื” ืขืœื™ื”ืŸ ืœื‘ืฉืœ ืื•ื›ืœ ืœื”ืจื‘ื” ืื ืฉื™ื - ืœืœื ืžืฆืจื›ื™ื, ืœื›ื‘ืก, ืœื ืงื•ืช ื•ืœืืจื’ืŸ ืืช ื›ืœ ื”ืฉื™ืจื•ืชื™ื - ืœืœื ืชื ืื™ื ืžื™ื ื™ืžืœื™ื™ื ืœื›ืš
wikipedia
0
ืœื›ื‘ืก
null
ืื—ืจื™ื ื˜ืขื ื• ืฉืœืžืจื•ืช ืฉื”ืชื™ืื•ืจ ืฉืœ ืฉื™ืžื•ืฉ ื‘ืกืžื™ื ื•ืกืงืก ื”ื•ื ืจื™ืืœื™ืกื˜ื™, ืืกื•ืจ ืœื›ื‘ืก ืืช ื”ื›ื‘ื™ืกื” ื”ืžืœื•ื›ืœื›ืช ืœืขื™ื ื™ ื›ืœ, ืชื™ืื•ืจ ืฉืื™ื ื• ืžื•ืขื™ืœ ืœื—ื‘ืจื™ ื”ืงื”ื™ืœื” ืฉืžื‘ืงืฉื™ื ื”ื’ื ื” ืขืœ ื–ื›ื•ื™ื•ืช ื”ืื–ืจื— ื‘ืžื™ื•ื—ื“ ื‘ืขืช ืฉื”ืžื™ืขื•ื˜ ื ืื‘ืง ืขืœ ื–ื›ื•ื™ื•ืช ืื–ืจื— ืœืงื”ื™ืœื”
wikipedia
1
ืœื›ื‘ืก
null
ื”ื›ื‘ื•ื“ ืฉืœื” ืืœ ื”ื™ืœื“ื™ื, ื‘ืžืงืจื” ื”ื–ื”, ื‘ื ืœื™ื“ื™ ื‘ื™ื˜ื•ื™ ื‘ื”ืฆื’ืช ื”ืขื•ืœื ื›ืคื™ ืฉื”ื™ื ืชื•ืคืกืช ืืช ื”ืืžืช ืฉื‘ื• โ€“ ื”ืกืคืจื•ืช ืื™ืŸ ืžื˜ืจืชื” ืœื›ื‘ืก ืขื‘ื•ืจ ื”ื™ืœื“ื™ื ืืช ื”ืžืฆื™ืื•ืช ืœื›ื“ื™ ืคื™ืกื•ืช ื”ื ื™ืชื ื•ืช ืœืขื™ื›ื•ืœ ืงืœ, ืืœื ืคื™ืกื•ืช ื”ืžืกื™ื™ืขื•ืช ืœื”ื‘ื ืช ื”ืžืฆื™ืื•ืช ื”ืื ื•ืฉื™ืช ืฉืžืกื‘ื™ื‘ื
wikipedia
1
ืœื›ื‘ืก
null
null
twitter
0
ืœื›ื‘ืก
1536747267582984192
null
twitter
0
ืœื›ื‘ืก
1491420596890406912
null
twitter
0
ืœื›ื‘ืก
1576953159003832322
null
twitter
0
ืœื›ื‘ืก
1537331311634948096
null
twitter
0
ืœื›ื‘ืก
1561059548164771841
null
twitter
0
ืœื›ื‘ืก
1538851864497868800
null
twitter
0
ืœื›ื‘ืก
1514992693683933190
null
twitter
0
ืœื›ื‘ืก
1534927932086489090
null
twitter
0
ืœื›ื‘ืก
1538227916189929473
null
twitter
0
ืœื›ื‘ืก
1493713224189063173
null
twitter
0
ืœื›ื‘ืก
1576093649439363073
null
twitter
0
ืœื›ื‘ืก
1525351270483214336
null
twitter
0
ืœื›ื‘ืก
1508828477079924752
null
twitter
0
ืœื›ื‘ืก
1504482199256506373
null
twitter
0
ืœื›ื‘ืก
1538074600730394624
null
twitter
0
ืœื›ื‘ืก
1590825129877327873
null
twitter
0
ืœื›ื‘ืก
1508798788999294981
null
twitter
0
ืœื›ื‘ืก
1508429838595637254
null
twitter
0
ืœื›ื‘ืก
1526458769751912448
null
twitter
0
ืœื›ื‘ืก
1521238579107840002
null
twitter
0
ืœื›ื‘ืก
1510565168517988359
null
twitter
0
ืœื›ื‘ืก
1491379457781018626
null
twitter
0
ืœื›ื‘ืก
1549768061682679810
null
twitter
0
ืœื›ื‘ืก
1519951300154298368
null
twitter
0
ืœื›ื‘ืก
1507242233988358144
null
twitter
0
ืœื›ื‘ืก
1543844669343383553
null
twitter
0
ืœื›ื‘ืก
1547803699891777536
null
twitter
0
ืœื›ื‘ืก
1506547423446978560
null
twitter
0
ืœื›ื‘ืก
1532449061604933661
null
twitter
0
ืœื›ื‘ืก
1503485990941437954
null
twitter
0
ืœื›ื‘ืก
1573245313455988738
null
twitter
0
ืœื›ื‘ืก
1588449313533067265
null
twitter
0
ืœื›ื‘ืก
1552656265758666754
null
twitter
0
ืœื›ื‘ืก
1538402481662832640
null
twitter
0
ืœื›ื‘ืก
1492777228530294784
null
twitter
0
ืœื›ื‘ืก
1587072721074196481
null
twitter
0
ืœื›ื‘ืก
1585505643741454336
null
twitter
0
ืœื›ื‘ืก
1514249093538795527
null
twitter
0
ืœื›ื‘ืก
1555461604237627398
null
twitter
0
ืœื›ื‘ืก
1546035121370923008
null
twitter
0
ืœื›ื‘ืก
1530141884236156931
null
twitter
0
ืœื›ื‘ืก
1560621078631747587
null
twitter
0
ืœื›ื‘ืก
1590433395594518528
null
twitter
0
ืœื›ื‘ืก
1565630601482362880
null
twitter
0
ืœื›ื‘ืก
1510372461682044936
null
twitter
0
ืœื›ื‘ืก
1582135208924454912
null
twitter
0
ืœื›ื‘ืก
1503594886209097728
null
twitter
0
ืœื›ื‘ืก
1517801547018686465
null
twitter
0
ืœื›ื‘ืก
1564498666483814400
null
twitter
0
ืœื›ื‘ืก
1554435041954091008
null
twitter
0
ืœื›ื‘ืก
1494598763939348480
null
twitter
0
ืœื›ื‘ืก
1579163419005313025
null
twitter
0
ืœื›ื‘ืก
1581597741276286978
null
twitter
0
ืœื›ื‘ืก
1566156184729653251
null
twitter
0
ืœื›ื‘ืก
1498005184861163520
null
twitter
0
ืœื›ื‘ืก
1550922086134210560
null
twitter
0
ืœื›ื‘ืก
1530105219992133633
null
twitter
0
ืœื›ื‘ืก
1561327427250438144
null
twitter
0
ืœื›ื‘ืก
1585309075625373696
null
twitter
0
ืœื›ื‘ืก
1582984744463060994
null
twitter
0
ืœื›ื‘ืก
1527197102463500289
null
twitter
0
ืœื›ื‘ืก
1497510533037178886
null
twitter
0
ืœื›ื‘ืก
1527161009244348417
null
twitter
0
ืœื›ื‘ืก
1521769049285349377
null
twitter
0
ืœื›ื‘ืก
1510351342526738439
null
twitter
0
ืœื›ื‘ืก
1576953629898330112

Dataset Card for "HebrewMetaphors"

Dataset Summary

A common dataset for text classification task is IMDb. Large Movie Review Dataset. This is a dataset for binary sentiment classification. The first step in our project was to create a Hebrew dataset with an IMDB-like structure but different in that, in addition to the sentences we have, there will also be verb names, and a classification of whether the verb name is literal or metaphorical in the given sentence. Using an API, sentences that contained the verbs we selected were pulled from Twitter and Wikipedia and Prodigy was used to classify them. The accuracy of the classification was confirmed by having two different persons classify each line twice.

Supported Tasks and Leaderboards

Classification

Languages

Hebrew

Dataset Structure

The IMDb dataset is a json file with objects containing the text of the review, and a number 0 or 1 which is a negative or positive review

For example:

{
    "label": 1, //(pos)
    "text": "A wonderful little production ... "
}, {
    "label": 0, //(neg)
    "text": ""It actually pains me to say it, but this movie was horrible on every level ..."
}

After retrieving data from Wikipedia and Twitter, classifying and processing, we received the following data:

{'text': 'ืžืชื—ื™ืœ ืœืืžืฅ ืœืฉืœื•ื— ืืช ื”ื‘ื’ื“ื™ื ืœืžื›ื‘ืกื” ืื—ืจื™ ื˜ื™ื•ืœ ืœื—ื•ืœ ื›ื™ ืœืžื™ ื™ืฉ ื›ื•ื— ืœื›ื‘ืก ื›ืœ ื›ืš ื”ืจื‘ื” ื‘ื’ื“ื™ื ืื—ืจื™ ื—ื•ืคืฉ',
 'source': 'twitter',
 'label': 0,
 'verb': 'ืœื›ื‘ืก',
 'tweet_id': '1546803262065606658'},
 
{'text': ' ื‘ื™ื ื’ ื‘ื•ื ื’ ืžื’ื™ื— ืžืŸ ื”ืžืขืจื‘ ื•ืžืชื—ื™ืœ ืœื–ืจื•ืข ื”ืจืก ื‘ืžืžืœื›ืช ืขื•ืฅ',
 'source': 'wikipedia',
 'label': 1, //(Metaphor)
 'verb': 'ืœื–ืจื•ืข',
 'tweet_id': None},
 
 {'text': 'ื”ื ื™ืฉืชืžืฉื• ื‘ืžืขืจื‘ืœ ื›ื“ื™ ืœื”ืคื ื•ืช ืืช ื”ืžื˜ื•ืก ืœืฉื“ื” ื”ืชืขื•ืคื” ืฉื”ื ื™ื‘ื—ืจื• ื•ื›ืš ืœืฉื“ื•ื“ ืื•ืชื•',
 'source': 'wikipedia',
 'label': 0, //(Literal)
 'verb': 'ืœืฉื“ื•ื“',
 'tweet_id': None}

As you can see, we have the following fields:

  • 'text': A sentence in Hebrew that was taken from Wikipedia or Twitter that included the verb name.
  • 'source': There are two possible sources for this text: 'twitter' or 'wikipedia'.
  • 'label': Classification of whether the verb name is literal ('label': 0) or metaphorical ('label': 1) in the given sentence.
  • 'verb': A verb name in Hebrew on which the text is labeled.
  • 'tweet_id': If the text was taken from Twitter, the tweet's id, or None if it was retrieved from Wikipedia.

In the next section we will explain how we created the dataset.

Data Statistics

Verb After Agreement Between Taggers Disagreements because of different answers Disagreements because of different ignores Total Literals After Agreement Total Metaphors After Agreement Split For Train Set Split For Validation Set Split For Test Set
lakhalom_twitter 131 42 42 26 105 83 21 27
lakhalom_wiki 93 53 69 34 59 58 16 19
lakhatokh_twitter 220 41 40 100 120 140 36 44
lakhatokh_wiki 288 54 6 286 2 182 47 59
lauf_twitter 166 8 29 14 152 104 28 34
lauf_wiki 172 11 67 161 11 108 28 36
lefareq_twitter 70 109 71 21 49 43 12 15
lefareq_wiki 96 48 213 89 7 60 16 20
lehadliq_twitter 270 14 19 194 76 172 43 55
lehadliq_wiki 375 13 13 370 5 239 61 75
lekhabes_twitter 203 2 26 155 48 129 33 41
lekhabes_wiki 55 1 0 51 4 34 9 12
lekhofef_twitter 289 7 11 18 271 183 47 59
lekhofef_wiki 107 3 6 73 34 67 18 22
lerasek_twitter 141 6 4 18 123 89 23 29
lerasek_wiki 154 3 12 110 44 98 25 31
levashel_twitter 280 3 19 264 16 177 46 57
levashel_wiki 228 3 19 221 7 144 37 47
limkhoq_twitter 222 16 22 123 99 141 36 45
limkhoq_wiki 212 11 29 109 103 134 35 43
liqpots_twitter 178 18 25 77 101 112 29 37
liqpots_wiki 168 6 28 163 5 107 27 34
liqroa_twitter 261 26 16 36 225 166 42 53
liqroa_wiki 226 18 19 147 79 143 37 46
liqtsor_twitter 256 18 28 43 213 163 41 52
liqtsor_wiki 167 11 2 99 68 106 27 34
lirqod_twitter 187 14 31 138 49 119 30 38
lirqod_wiki 214 18 34 211 3 135 35 44
lishbor_twitter 185 8 30 38 147 117 30 38
lishbor_wiki 244 6 50 69 175 156 39 49
lishdod_twitter 163 21 16 91 72 102 27 34
lishdod_wiki 209 2 4 209 0 133 34 42
lishtot_twitter 275 6 20 219 56 175 44 56
lishtot_wiki 192 7 2 192 0 122 31 39
litkhon_twitter 280 13 20 44 236 178 45 57
litkhon_wiki 87 0 0 85 2 54 15 18
litpor_twitter 193 4 13 26 167 122 31 40
litpor_wiki 178 2 14 153 25 113 29 36
lizroa_twitter 246 3 51 11 235 156 40 50
lizroa_wiki 127 2 171 67 60 80 21 26
total 7808 651 1291 4555 3253 4944 1271 1593

Contributions

Created by Doron Ben-chorin, Matan Ben-chorin, Tomer Tzipori, Guided by Dr. Oren Mishali. This is our project as part of computer engineering studies in the Faculty of Electrical Engineering combined with Computer Science at Technion, Israel Institute of Technology. For more cooperation, please contact email:

Doron Ben-chorin: doronbh7@gmail.com

Matan Ben-chorin: matan.bh1@gmail.com

Tomer Tzipori: TomerTzipori@gmail.com

Downloads last month
56
Edit dataset card

Models trained or fine-tuned on tdklab/HebrewMetaphors