Datasets:

Modalities:
Text
Formats:
webdataset
Size:
< 1K
ArXiv:
Libraries:
Datasets
WebDataset
License:
File size: 16,417 Bytes
ed0ddac
 
f3473bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed0ddac
44eb0e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---

license: apache-2.0
configs:
- config_name: agnews
  data_files: "agnews.jsonl.tar.gz"
- config_name: AllNLI
  data_files: "AllNLI.jsonl.tar.gz"
- config_name: altlex
  data_files: "altlex.jsonl.tar.gz"
- config_name: amazon_review_2018_1m
  data_files: "amazon_review_2018_1m.jsonl.tar.gz"
- config_name: cnn_dailymail
  data_files: "cnn_dailymail.jsonl.tar.gz"
- config_name: codesearchnet
  data_files: "codesearchnet.jsonl.tar.gz"
- config_name: dureader
  data_files: "dureader.jsonl.tar.gz"
- config_name: eli5_question_answer
  data_files: "eli5_question_answer.jsonl.tar.gz"
- config_name: gooaq_pairs
  data_files: "gooaq_pairs.jsonl.tar.gz"
- config_name: hotpotqa
  data_files: "hotpotqa.jsonl.tar.gz"
- config_name: medmcqa
  data_files: "medmcqa.jsonl.tar.gz"
- config_name: miracl
  data_files: "miracl.jsonl.tar.gz"
- config_name: mr_tydi_combined
  data_files: "mr_tydi_combined.jsonl.tar.gz"
- config_name: msmarco
  data_files: "msmarco.jsonl.tar.gz"
- config_name: nq
  data_files: "nq.jsonl.tar.gz"
- config_name: quora_duplicates_triplets
  data_files: "quora_duplicates_triplets.jsonl.tar.gz"
- config_name: searchQA_top5_snippets
  data_files: "searchQA_top5_snippets.jsonl.tar.gz"
- config_name: sentence-compression
  data_files: "sentence-compression.jsonl.tar.gz"
- config_name: SimpleWiki
  data_files: "SimpleWiki.jsonl.tar.gz"
- config_name: squad_pairs
  data_files: "squad_pairs.jsonl.tar.gz"
- config_name: stackexchange_duplicate_questions_title-body_title-body
  data_files: "stackexchange_duplicate_questions_title-body_title-body.jsonl.tar.gz"
- config_name: t2ranking
  data_files: "t2ranking.jsonl.tar.gz"
- config_name: trivia
  data_files: "trivia.jsonl.tar.gz"
- config_name: xsum
  data_files: "xsum.jsonl.tar.gz"
- config_name: yahoo_answers_title_answer
  data_files: "yahoo_answers_title_answer.jsonl.tar.gz"
---


# tdro-llm/finetune_data



[![arxiv](https://img.shields.io/badge/arXiv-2408.10613-b31b1b.svg)](https://arxiv.org/abs/2408.10613) 

[![Github](https://img.shields.io/badge/GitHub-tdro-8A2BE2.svg)](https://github.com/tdro-llm/tdro)



[tDRO: Task-level Distributionally Robust Optimization for Large Language Model-based Dense Retrieval](https://arxiv.org/abs/2408.10613). Guangyuan Ma, Yongliang Ma, Xing Wu, Zhenpeng Su, Ming Zhou and Songlin Hu.



This repo contains all fine-tuning data for Large Language Model-based Dense Retrieval. Please refer to [this repo](https://github.com/tdro-llm/tdro) for details to reproduce.





A total of 25 heterogeneous retrieval fine-tuning datasets with **Hard Negatives** and **Deduplication** (with test sets) are listed as belows.



| **Dataset**                                             | **Language** | **Category**                 | **Symmetry** | **Reference**             | **Format**                                                                                                                                           | **HN Mine**                                                  | **Size** | **Deduped Size** | **Duplicates** |

|---------------------------------------------------------|--------------|------------------------------|--------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------|------------------|----------------|

| agnews                                                  | English      | News                         | Asymmetric   | [AG news corpus](http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html)            | (Title, Description, Negatives) of news articles from the AG News dataset                                                                            | bge-base-en-v1.5 mine                                        | 1157745  | 1157745          | 0              |

| AllNLI                                                  | English      | NLI                          | Symmetric    | [SNLI and MNLI](https://huggingface.co/datasets/multi_nli)             | (Anchor, Entailment_Text, Contradiction_Text) - Combination of SNLI + MultiNLI Triplets                                                              | Sentence Transformers Train HN                               | 277230   | 277230           | 0              |

| altlex                                                  | English      | Wikipedia Pair               | Symmetric    | [altlex](https://github.com/chridey/altlex/)                    | (English_Wikipedia, Simple_English_Wikipedia, Negatives) - Matched pairs                                                                             | bge-base-en-v1.5 mine                                        | 112696   | 112696           | 0              |
| amazon_review_2018_1m                                   | English      | Amazon                       | Asymmetric   | [Amazon review data (2018)](http://deepyeti.ucsd.edu/jianmo/amazon/index.html) | (Title, review, Negatives) from Amazon. Only Top 1 million samples are used here to shrink the dataset sizes.                                                                                                               | bge-base-en-v1.5 mine                                        | 1000000  | 999999           | 1              |

| cnn_dailymail                                           | English      | News                         | Asymmetric   | [CNN Dailymail Dataset](https://huggingface.co/datasets/cnn_dailymail)     | (highlight sentences, article) with all highlight sentences as one text for each news article                                                        | bge-base-en-v1.5 mine                                        | 311971   | 311971           | 0              |
| codesearchnet                                           | English      | Github                       | Asymmetric   | [CodeSearchNet](https://huggingface.co/datasets/code_search_net)             | (Comment, Code, Negatives) - pairs from opensource libraries hosted on GitHub. It contains code and documentation for several programming languages. | bge-base-en-v1.5 mine                                        | 1375067  | 1375067          | 0              |
| dureader                                                | Chinese      | Multilingual Web Collections | Asymmetric   | [DuReader Retrieval](https://github.com/baidu/DuReader/tree/master/DuReader-Retrieval)        | (Question, Answer, Negatives)                                                                                                                        | Use originally provided HN                                   | 86395    | 86395            | 0              |
| eli5_question_answer                                    | English      | Reddit                       | Asymmetric   | [ELI5](https://huggingface.co/datasets/eli5)                      | (Question, Answer, Negatives)                                                                                                                        | bge-base-en-v1.5 mine                                        | 325475   | 325390           | 85             |
| gooaq_pairs                                             | English      | Web Collections              | Asymmetric   | [GooAQ](https://github.com/allenai/gooaq)                     | (Question, Answer, Negatives) - Pairs from Google auto suggest                                                                                       | bge-base-en-v1.5 mine                                        | 3012496  | 3012347          | 149            |

| hotpotqa                                                | English      | Wikipedia QA                 | Asymmetric   | [HotpotQA](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/hotpotqa.zip)                  | (Question, Answer, Negatives)                                                                                                                        | bge-base-en-v1.5 mine                                        | 85000    | 85000            | 0              |

| medmcqa                                                 | English      | Medical                      | Asymmetric   | [MedMCQA](https://huggingface.co/datasets/openlifescienceai/medmcqa)                   | (Question, Answer, Negatives)                                                                                                                        | bge-base-en-v1.5 mine                                        | 160869   | 160865           | 4              |

| miracl                                                  | 16 languages | Multilingual Wikipedia       | Asymmetric   | [MIRACL](https://huggingface.co/datasets/miracl/miracl)                    | (Question, Answer, Negatives)                                                                                                                        | Use originally provided HN                                   | 32561    | 32405            | 156            |

| mr_tydi_combined                                        | 11 languages | Multilingual Wikipedia       | Asymmetric   | [Mr. TyDi](https://huggingface.co/datasets/castorini/mr-tydi)                  | (Question, Answer, Negatives)                                                                                                                        | Use originally provided HN                                   | 48715    | 48475            | 240            |

| msmarco                                                 | English      | Web Collections              | Asymmetric   | [MS MARCO Passages](https://github.com/microsoft/MSMARCO-Passage-Ranking)         | (Question, Answer, Negatives)                                                                                                                        | bowdpr HN by following [this link](https://github.com/ma787639046/bowdpr) | 502939   | 502854           | 85             |

| nq                                                      | English      | Wikipedia QA                 | Asymmetric   | [NQ](https://github.com/facebookresearch/DPR)                        | (Question, Answer, Negatives)                                                                                                                        | bowdpr HN by following [this link](https://github.com/ma787639046/bowdpr) | 58812    | 58800            | 12             |

| quora_duplicates_triplets                               | English      | Forum Duplicates             | Symmetric    | [QQP](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs)                       | (Question, Duplicated Question, Negatives) - Duplicate question pairs from Quora                                                                     | Sentence Transformers Train HN                               | 101762   | 97011            | 4751           |

| searchQA_top5_snippets                                  | English      | Web Collections              | Asymmetric   | [search_qa](https://huggingface.co/datasets/search_qa)                 | (Question, Top5 text snippets, Negatives) from SearchQA dataset.                                                                                     | bge-base-en-v1.5 mine                                        | 117220   | 117219           | 1              |

| sentence-compression                                    | English      | News                         | Asymmetric   | [Sentence-Compression](https://github.com/google-research-datasets/sentence-compression)      | (Long text, short text) about sentence-compression                                                                                                   | bge-base-en-v1.5 mine                                        | 180000   | 180000           | 0              |

| SimpleWiki                                              | English      | Wikipedia Pair               | Symmetric    | [SimpleWiki](https://cs.pomona.edu/~dkauchak/simplification/)                | (English_Wikipedia, Simple_English_Wikipedia, Negatives) matched pairs                                                                               | bge-base-en-v1.5 mine                                        | 102225   | 102225           | 0              |
| squad_pairs                                             | English      | Wikipedia QA                 | Asymmetric   | [SQuAD](https://huggingface.co/datasets/squad)                     | (Question, Answer, Negatives)                                                                                                                        | bge-base-en-v1.5 mine                                        | 87599    | 87595            | 4              |

| stackexchange_duplicate_questions_title-body_title-body | English      | Forum Duplicates             | Symmetric    | [Stack Exchange Data API](https://data.stackexchange.com/apple/query/fork/1456963)   | (Title-Body, Duplicated Title-Body, Negatives) - pairs of duplicate questions from StackExchange                                                     | bge-base-en-v1.5 mine                                        | 250519   | 250516           | 3              |

| t2ranking                                               | Chinese      | Multilingual Web Collections | Asymmetric   | [T2Ranking](https://github.com/THUIR/T2Ranking/)                 | (Question, Answer, Negatives)                                                                                                                        | Use originally provided HN                                   | 200376   | 200376           | 0              |

| trivia                                                  | English      | Wikipedia QA                 | Asymmetric   | [Trivia QA](https://github.com/facebookresearch/DPR)                 | (Question, Answer, Negatives)                                                                                                                        | bowdpr HN by following [this link](https://github.com/ma787639046/bowdpr) | 60380    | 60370            | 10             |

| xsum                                                    | English      | News                         | Asymmetric   | [xsum](https://huggingface.co/datasets/xsum)                      | (Summary, News Article) pairs from XSUM dataset                                                                                                      | bge-base-en-v1.5 mine                                        | 226711   | 226711           | 0              |

| yahoo_answers_title_answer                              | English      | Yahoo                        | Asymmetric   | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset)             | (Title, Answer, Negatives)                                                                                                                           | bge-base-en-v1.5 mine                                        | 1198260  | 1198018          | 242            |
| **Total Lines**                                             |              |                              |              |                           |                                                                                                                                                      |                                                              | 11073023 | 11067280         | 5743           |

## Cite
If you are interested in our work, please consider citing our paper.

```bibtex

@article{ma2024tdro,

  author       = {Guangyuan Ma and

                  Yongliang Ma and

                  Xing Wu and

                  Zhenpeng Su and

                  Ming Zhou and

                  Songlin Hu},

  title        = {Task-level Distributionally Robust Optimization for Large Language

                  Model-based Dense Retrieval},

  journal      = {CoRR},

  volume       = {abs/2408.10613},

  year         = {2024},

  url          = {https://doi.org/10.48550/arXiv.2408.10613},

  doi          = {10.48550/ARXIV.2408.10613},

  eprinttype    = {arXiv},

  eprint       = {2408.10613},

  timestamp    = {Tue, 24 Sep 2024 17:36:32 +0200},

}

```