|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
LCCC: Large-scale Cleaned Chinese Conversation corpus (LCCC) is a large corpus of Chinese conversations. |
|
A rigorous data cleaning pipeline is designed to ensure the quality of the corpus. |
|
This pipeline involves a set of rules and several classifier-based filters. |
|
Noises such as offensive or sensitive words, special symbols, emojis, |
|
grammatically incorrect sentences, and incoherent conversations are filtered. |
|
""" |
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{wang2020chinese, |
|
title={A Large-Scale Chinese Short-Text Conversation Dataset}, |
|
author={Wang, Yida and Ke, Pei and Zheng, Yinhe and Huang, Kaili and Jiang, Yong and Zhu, Xiaoyan and Huang, Minlie}, |
|
booktitle={NLPCC}, |
|
year={2020}, |
|
url={https://arxiv.org/abs/2008.03946} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
LCCC: Large-scale Cleaned Chinese Conversation corpus (LCCC) is a large corpus of Chinese conversations. |
|
A rigorous data cleaning pipeline is designed to ensure the quality of the corpus. |
|
This pipeline involves a set of rules and several classifier-based filters. |
|
Noises such as offensive or sensitive words, special symbols, emojis, |
|
grammatically incorrect sentences, and incoherent conversations are filtered. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/thu-coai/CDial-GPT" |
|
_LICENSE = "MIT" |
|
_URLS = { |
|
"large": "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_large.jsonl.gz", |
|
"base": { |
|
"train": "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_base_train.jsonl.gz", |
|
"valid": "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_base_valid.jsonl.gz", |
|
"test": "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_base_test.jsonl.gz", |
|
}, |
|
} |
|
|
|
|
|
class LCCC(datasets.GeneratorBasedBuilder): |
|
"""Large-scale Cleaned Chinese Conversation corpus.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="large", version=VERSION, description="The large version of LCCC"), |
|
datasets.BuilderConfig(name="base", version=VERSION, description="The base version of LCCC"), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"dialog": [datasets.Value("string")], |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS[self.config.name] |
|
downloaded_data = dl_manager.download_and_extract(urls) |
|
if self.config.name == "large": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(downloaded_data), |
|
}, |
|
) |
|
] |
|
elif self.config.name == "base": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(downloaded_data["train"]), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": os.path.join(downloaded_data["test"])}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(downloaded_data["valid"]), |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, encoding="utf-8") as f: |
|
for key, row in enumerate(f): |
|
row = row.strip() |
|
if row: |
|
yield key, { |
|
"dialog": json.loads(row), |
|
} |
|
|