Files changed (1) hide show
  1. ulysses_ner_br.py +352 -0
ulysses_ner_br.py ADDED
@@ -0,0 +1,352 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ '''Ulysses-Ner dataset'''
4
+
5
+ import datasets
6
+ import os
7
+
8
+ from pathlib import Path
9
+
10
+ # Também dá para criar uma citação para o C corpus
11
+ _CITATION_PL_CORPUS = """
12
+ @InProceedings{10.1007\/978-3-030-98305-5_1,
13
+ author="Albuquerque, Hidelberg O.
14
+ and Costa, Rosimeire
15
+ and Silvestre, Gabriel
16
+ and Souza, Ellen
17
+ and da Silva, N{\\'a}dia F. F.
18
+ and Vit{\\'o}rio, Douglas
19
+ and Moriyama, Gyovana
20
+ and Martins, Lucas
21
+ and Soezima, Luiza
22
+ and Nunes, Augusto
23
+ and Siqueira, Felipe
24
+ and Tarrega, Jo{\~a}o P.
25
+ and Beinotti, Joao V.
26
+ and Dias, Marcio
27
+ and Silva, Matheus
28
+ and Gardini, Miguel
29
+ and Silva, Vinicius
30
+ and de Carvalho, Andr{\\'e} C. P. L. F.
31
+ and Oliveira, Adriano L. I.",
32
+ editor="Pinheiro, Vl{\\'a}dia
33
+ and Gamallo, Pablo
34
+ and Amaro, Raquel
35
+ and Scarton, Carolina
36
+ and Batista, Fernando
37
+ and Silva, Diego
38
+ and Magro, Catarina
39
+ and Pinto, Hugo",
40
+ title="UlyssesNER-Br: A Corpus of Brazilian Legislative Documents for Named Entity Recognition",
41
+ booktitle="Computational Processing of the Portuguese Language",
42
+ year="2022",
43
+ publisher="Springer International Publishing",
44
+ address="Cham",
45
+ pages="3--14",
46
+ abstract="The amount of legislative documents produced within the past decade has risen dramatically, making it difficult for law practitioners to consult and update legislation. Named Entity Recognition (NER) systems have the untapped potential to extract information from legal documents, which can improve information retrieval and decision-making processes. We introduce the UlyssesNER-Br, a corpus of Brazilian Legislative Documents for NER with quality baselines. The presented corpus consists of bills and legislative consultations from Brazilian Chamber of Deputies. We implemented Conditional Random Field (CRF) and Hidden Markov Model (HMM) models, and the promising F1-score of 80.8{\%} in the analysis by categories and 81.04{\%} in the analysis by types, was achieved with the CRF model. The entities with the best average F1-score results were ``FUNDlei'' and ``DATA'', and the ones with the worst results were ``EVENTO'' and ``PESSOAgrupoind''. The corpus was also evaluated using a BiLSTM-CRF and Glove architectures provided by the pioneering state-of-the-art paper, achieving F1-score of 76.89{\%} in the analysis by categories and 59.67{\%} in the analysis by types.",
47
+ isbn="978-3-030-98305-5"
48
+ }
49
+ """
50
+
51
+ _DESCRIPTION = """
52
+ The amount of legislative documents produced within the past decade has risen dramatically, making it difficult for law practitioners to consult and update legislation.
53
+ Named Entity Recognition (NER) systems have the untapped potential to extract information from legal documents, which can improve information retrieval and decision-making processes.
54
+ We introduce the UlyssesNER-Br, a corpus of Brazilian Legislative Documents for NER with quality baselines.
55
+ The presented corpus consists of bills and legislative consultations from Brazilian Chamber of Deputies.
56
+ We implemented Conditional Random Field (CRF) and Hidden Markov Model (HMM) models, and the promising F1-score of 80.8% in the analysis by categories and 81.04 in the analysis by types, was achieved with the CRF model. The entities with the best average F1-score results were “FUNDlei” and “DATA”, and the ones with the worst results were “EVENTO” and “PESSOAgrupoind”. The corpus was also evaluated using a BiLSTM-CRF and Glove architectures provided by the pioneering state-of-the-art paper, achieving F1-score of 76.89% in the analysis by categories and 59.67% in the analysis by types.
57
+
58
+ Keywords: Annotation Schema · Named Entity Recognition · Legal Information Retrieval.
59
+ """
60
+
61
+ _URL = 'https://github.com/ulysses-camara/ulysses-ner-br'
62
+ _HOMEPAGE = 'https://github.com/ulysses-camara'
63
+ _LICENSE = ''
64
+
65
+ _URLS = {
66
+ 'pl_corpus_categorias' : {
67
+ 'train' : 'https://raw.githubusercontent.com/ulysses-camara/ulysses-ner-br/main/annotated-corpora/PL_corpus_conll/pl_corpus_categorias/train.txt',
68
+ 'valid' : 'https://raw.githubusercontent.com/ulysses-camara/ulysses-ner-br/main/annotated-corpora/PL_corpus_conll/pl_corpus_categorias/valid.txt',
69
+ 'test' : 'https://raw.githubusercontent.com/ulysses-camara/ulysses-ner-br/main/annotated-corpora/PL_corpus_conll/pl_corpus_categorias/test.txt',
70
+ },
71
+ 'pl_corpus_tipos' : {
72
+ 'train' : 'https://raw.githubusercontent.com/ulysses-camara/ulysses-ner-br/main/annotated-corpora/PL_corpus_conll/pl_corpus_tipos/train.txt',
73
+ 'valid' : 'https://raw.githubusercontent.com/ulysses-camara/ulysses-ner-br/main/annotated-corpora/PL_corpus_conll/pl_corpus_tipos/valid.txt',
74
+ 'test' : 'https://raw.githubusercontent.com/ulysses-camara/ulysses-ner-br/main/annotated-corpora/PL_corpus_conll/pl_corpus_tipos/test.txt',
75
+ },
76
+ 'c_corpus_categorias' : {
77
+ 'train' : 'https://raw.githubusercontent.com/ulysses-camara/ulysses-ner-br/main/annotated-corpora/C_corpus_conll/c_corpus_categorias/train.txt',
78
+ 'valid' : 'https://raw.githubusercontent.com/ulysses-camara/ulysses-ner-br/main/annotated-corpora/C_corpus_conll/c_corpus_categorias/valid.txt',
79
+ 'test' : 'https://raw.githubusercontent.com/ulysses-camara/ulysses-ner-br/main/annotated-corpora/C_corpus_conll/c_corpus_categorias/test.txt',
80
+ },
81
+ 'c_corpus_tipos' : {
82
+ 'train' : 'https://raw.githubusercontent.com/ulysses-camara/ulysses-ner-br/main/annotated-corpora/C_corpus_conll/c_corpus_tipos/train.txt',
83
+ 'valid' : 'https://raw.githubusercontent.com/ulysses-camara/ulysses-ner-br/main/annotated-corpora/C_corpus_conll/c_corpus_tipos/valid.txt',
84
+ 'test' : 'https://raw.githubusercontent.com/ulysses-camara/ulysses-ner-br/main/annotated-corpora/C_corpus_conll/c_corpus_tipos/test.txt',
85
+ },
86
+ }
87
+
88
+ # https://github.com/huggingface/datasets/blob/main/templates/new_dataset_script.py
89
+ # https://huggingface.co/docs/datasets/v3.0.0/dataset_script
90
+ # https://huggingface.co/docs/datasets/v3.0.0/share
91
+ # https://huggingface.co/docs/datasets/v3.0.0/repository_structure
92
+ # https://huggingface.co/docs/hub/repositories-pull-requests-discussions#pull-requests-advanced-usage
93
+ # https://github.com/ulysses-camara/ulysses-ner-br/tree/main/annotated-corpora
94
+ # pl_corpus_categorias
95
+ # pl_corpus_tipos
96
+ # c_corpus_categorias
97
+ # c_corpus_tipos
98
+
99
+
100
+ class UlyssesNerBrConfig(datasets.BuilderConfig):
101
+ '''Builder Config for UlyssesNER-Br'''
102
+
103
+ def __init__(self, features, data_url, citation, url, version, label_classes=("False", "True"), **kwargs):
104
+ """BuilderConfig for UlyssesNER-Br.
105
+
106
+ Args:
107
+ features: *list[string]*, list of the features that will appear in the
108
+ feature dict. Should not include "label".
109
+ data_url: *string*, url to download the zip file from.
110
+ citation: *string*, citation for the data set.
111
+ url: *string*, url for information about the data set.
112
+ label_classes: *list[string]*, the list of classes for the label if the
113
+ label is present as a string. Non-string labels will be cast to either
114
+ 'False' or 'True'.
115
+ **kwargs: keyword arguments forwarded to super.
116
+ """
117
+
118
+ # Version history:
119
+ # 1.0.2: Fixed non-nondeterminism in ReCoRD.
120
+ # 1.0.1: Change from the pre-release trial version of SuperGLUE (v1.9) to
121
+ # the full release (v2.0).
122
+ # 1.0.0: S3 (new shuffling, sharding and slicing mechanism).
123
+ # 0.0.2: Initial version.
124
+ super().__init__(version=version, **kwargs)
125
+ self.features = features
126
+ self.label_classes = label_classes
127
+ self.data_url = data_url
128
+ self.citation = citation
129
+ self.url = url
130
+
131
+
132
+ class UlyssesNerBr(datasets.GeneratorBasedBuilder):
133
+
134
+ VERSION = datasets.Version("1.0.0")
135
+
136
+ # BUILDER_CONFIG_CLASS = UlyssesNerBrConfig
137
+ BUILDER_CONFIG_CLASS = datasets.BuilderConfig
138
+
139
+ BUILDER_CONFIGS = [
140
+ datasets.BuilderConfig(
141
+ name='pl_corpus_categorias',
142
+ version=VERSION,
143
+ description=''
144
+ ),
145
+ datasets.BuilderConfig(
146
+ name='pl_corpus_tipos',
147
+ version=VERSION,
148
+ description=''
149
+ ),
150
+ datasets.BuilderConfig(
151
+ name='c_corpus_categorias',
152
+ version=VERSION,
153
+ description=''
154
+ ),
155
+ datasets.BuilderConfig(
156
+ name='c_corpus_tipos',
157
+ version=VERSION,
158
+ description=''
159
+ )
160
+ ]
161
+
162
+ DEFAULT_CONFIG_NAME = 'pl_corpus_categorias'
163
+
164
+ def _info(self):
165
+
166
+ if self.config.name == 'pl_corpus_categorias' \
167
+ or self.config.name == 'c_corpus_categorias' :
168
+ features = datasets.Features(
169
+ {
170
+ 'id' : datasets.Value('string'),
171
+ 'tokens' : datasets.Sequence(datasets.Value('string')),
172
+ 'ner_tags' : datasets.Sequence(
173
+ datasets.features.ClassLabel(
174
+ names=[
175
+ 'O',
176
+ 'B-DATA',
177
+ 'I-DATA',
178
+ 'B-PESSOA',
179
+ 'I-PESSOA',
180
+ 'B-ORGANIZACAO',
181
+ 'I-ORGANIZACAO',
182
+ 'B-FUNDAMENTO',
183
+ 'I-FUNDAMENTO',
184
+ 'B-LOCAL',
185
+ 'I-LOCAL',
186
+ 'B-PRODUTODELEI',
187
+ 'I-PRODUTODELEI',
188
+ 'B-EVENTO',
189
+ 'I-EVENTO',
190
+ ]
191
+ )
192
+ ),
193
+ }
194
+ )
195
+ elif self.config.name == 'pl_corpus_tipos':
196
+ features = datasets.Features(
197
+ {
198
+ 'id' : datasets.Value('string'),
199
+ 'tokens' : datasets.Sequence(datasets.Value('string')),
200
+ 'ner_tags' : datasets.Sequence(
201
+ datasets.features.ClassLabel(
202
+ names=[
203
+ 'O',
204
+ 'B-DATA',
205
+ 'I-DATA',
206
+ 'B-PESSOAgrupocargo',
207
+ 'I-PESSOAgrupocargo',
208
+ 'B-PESSOAindividual',
209
+ 'I-PESSOAindividual',
210
+ 'B-PESSOAcargo',
211
+ 'I-PESSOAcargo',
212
+ 'B-ORGgovernamental',
213
+ 'I-ORGgovernamental',
214
+ 'B-ORGnaogovernamental',
215
+ 'I-ORGnaogovernamental',
216
+ 'B-ORGpartido',
217
+ 'I-ORGpartido',
218
+ 'B-FUNDlei',
219
+ 'I-FUNDlei',
220
+ 'B-FUNDprojetodelei',
221
+ 'I-FUNDprojetodelei',
222
+ 'B-FUNDapelido',
223
+ 'I-FUNDapelido',
224
+ 'B-LOCALconcreto',
225
+ 'I-LOCALconcreto',
226
+ 'B-LOCALvirtual',
227
+ 'I-LOCALvirtual',
228
+ 'B-PRODUTOprograma',
229
+ 'I-PRODUTOprograma',
230
+ 'B-PRODUTOsistema',
231
+ 'I-PRODUTOsistema',
232
+ 'B-PRODUTOoutros',
233
+ 'I-PRODUTOoutros',
234
+ 'B-EVENTO',
235
+ 'I-EVENTO',
236
+ ]
237
+ )
238
+ ),
239
+ }
240
+ )
241
+ elif self.config.name == 'c_corpus_tipos' :
242
+ features = datasets.Features(
243
+ {
244
+ 'id' : datasets.Value('string'),
245
+ 'tokens' : datasets.Sequence(datasets.Value('string')),
246
+ 'ner_tags' : datasets.Sequence(
247
+ datasets.features.ClassLabel(
248
+ names=[
249
+ 'O',
250
+ 'B-DATA',
251
+ 'I-DATA',
252
+ 'B-EVENTO',
253
+ 'I-EVENTO',
254
+ 'B-FUNDapelido',
255
+ 'I-FUNDapelido',
256
+ 'B-FUNDlei',
257
+ 'I-FUNDlei',
258
+ 'B-FUNDprojetodelei',
259
+ 'I-FUNDprojetodelei',
260
+ 'B-LOCALconcreto',
261
+ 'I-LOCALconcreto',
262
+ 'B-LOCALvirtual',
263
+ 'I-LOCALvirtual',
264
+ 'B-ORGgovernamental',
265
+ 'I-ORGgovernamental',
266
+ 'B-ORGnaogovernamental',
267
+ 'I-ORGnaogovernamental',
268
+ 'B-ORGpartido',
269
+ 'I-ORGpartido',
270
+ 'B-PESSOAcargo',
271
+ 'I-PESSOAcargo',
272
+ 'B-PESSOAgrupocargo',
273
+ 'I-PESSOAgrupocargo',
274
+ 'B-PESSOAgrupoind',
275
+ 'I-PESSOAgrupoind',
276
+ 'B-PESSOAindividual',
277
+ 'I-PESSOAindividual',
278
+ 'B-PRODUTOoutros',
279
+ 'I-PRODUTOoutros',
280
+ 'B-PRODUTOprograma',
281
+ 'I-PRODUTOprograma',
282
+ 'B-PRODUTOsistema',
283
+ 'I-PRODUTOsistema',
284
+ ]
285
+ )
286
+ ),
287
+ }
288
+ )
289
+
290
+ return datasets.DatasetInfo(
291
+ description=_DESCRIPTION,
292
+ features=features,
293
+ supervised_keys=None,
294
+ homepage=_HOMEPAGE,
295
+ citation=_CITATION_PL_CORPUS
296
+ )
297
+
298
+ def _split_generators(self, dl_manager: datasets.DownloadManager | datasets.StreamingDownloadManager):
299
+ '''
300
+ '''
301
+ urls = _URLS[self.config.name]
302
+
303
+ data_fir = dl_manager.download_and_extract(urls)
304
+
305
+ return [
306
+ datasets.SplitGenerator(
307
+ name=datasets.Split.TRAIN,
308
+ gen_kwargs={
309
+ 'filepath' : data_fir['train'],
310
+ 'split' : 'train',
311
+ }
312
+ ),
313
+ datasets.SplitGenerator(
314
+ name=datasets.Split.VALIDATION,
315
+ gen_kwargs={
316
+ 'filepath' : data_fir['valid'],
317
+ 'split' : 'validation',
318
+ }
319
+ ),
320
+ datasets.SplitGenerator(
321
+ name=datasets.Split.TEST,
322
+ gen_kwargs={
323
+ 'filepath' : data_fir['test'],
324
+ 'split' : 'test',
325
+ }
326
+ ),
327
+ ]
328
+
329
+ def _generate_examples(self, filepath, split):
330
+
331
+ guid = 0
332
+ sentence = list()
333
+ label = list()
334
+ with open(filepath, encoding='utf-8') as file :
335
+
336
+ for line in file:
337
+ splited = line.strip()
338
+ if line == '' or line == '\n':
339
+ if sentence:
340
+ yield guid, {
341
+ 'id' : str(guid),
342
+ 'tokens' : sentence,
343
+ 'ner_tags' : label,
344
+ }
345
+ guid += 1
346
+ sentence = list()
347
+ label = list()
348
+ else:
349
+ splited = line.split(' ')
350
+ sentence.append(splited[0])
351
+ label.append(splited[1])
352
+