Fix: Embeddings file ordering
#1
by
VoVoR
- opened
- images.fbin +1 -1
- main.py +212 -51
images.fbin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 24875016
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e673d5acf7f4a30f67b91d2cd3fcec73ed9b8891c61c22a3e4cda053ba8c7b6
|
3 |
size 24875016
|
main.py
CHANGED
@@ -1,72 +1,233 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
4 |
|
5 |
-
import pandas as pd
|
6 |
import numpy as np
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
10 |
|
11 |
from uform import get_model
|
12 |
from usearch.index import Index, MetricKind
|
13 |
-
from usearch.io import save_matrix, load_matrix
|
14 |
|
15 |
-
|
16 |
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
return False
|
21 |
-
try:
|
22 |
-
Image.open(path)
|
23 |
-
return True
|
24 |
-
except Exception:
|
25 |
-
return False
|
26 |
|
|
|
|
|
27 |
|
28 |
-
def trim_extension(filename: str) -> str:
|
29 |
-
return filename.rsplit('.', 1)[0]
|
30 |
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
names = sorted(f for f in listdir('images') if is_image(join('images', f)))
|
33 |
-
names = [trim_extension(f) for f in names]
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
table = table[table['photo_id'].isin(names)]
|
38 |
-
table = table.sort_values('photo_id')
|
39 |
-
table.reset_index()
|
40 |
-
table.to_csv('images.csv', index=False)
|
41 |
|
42 |
-
names = list(set(table['photo_id']).intersection(names))
|
43 |
-
names_to_delete = [f for f in listdir(
|
44 |
-
'images') if trim_extension(f) not in names]
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
if not exists('images.fbin'):
|
52 |
-
model = get_model('unum-cloud/uform-vl-english')
|
53 |
-
vectors = []
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
image_embedding = model.encode_image(image_data).detach().numpy()
|
59 |
-
vectors.append(image_embedding)
|
60 |
|
61 |
-
image_mat = np.concatenate(vectors)
|
62 |
-
save_matrix(image_mat, 'images.fbin')
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
for idx in tqdm(range(count), desc='Indexing vectors'):
|
70 |
-
index.add(idx, image_mat[idx, :].flatten())
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
import base64
|
4 |
+
import mimetypes
|
5 |
|
|
|
6 |
import numpy as np
|
7 |
+
import streamlit as st
|
8 |
+
import pandas as pd
|
9 |
+
import altair as alt
|
10 |
+
import sklearn as skl
|
11 |
+
import PIL as pil
|
12 |
|
13 |
from uform import get_model
|
14 |
from usearch.index import Index, MetricKind
|
|
|
15 |
|
16 |
+
# Managing data
|
17 |
|
18 |
+
script_path: str = os.path.dirname(os.path.abspath(__file__))
|
19 |
|
20 |
+
data_path: str = os.environ.get(
|
21 |
+
'UNSPLASH_SEARCH_PATH', os.path.join(script_path, 'dataset'))
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
view_local_images: bool = True if os.environ.get(
|
24 |
+
'STREAMLIT_SERVER_ENABLE_STATIC_SERVING') else False
|
25 |
|
|
|
|
|
26 |
|
27 |
+
image_query = bytes()
|
28 |
+
text_query = str()
|
29 |
+
results = list()
|
30 |
+
max_caption_length: int = 100
|
31 |
|
|
|
|
|
32 |
|
33 |
+
class FileNotFoundError(Exception):
|
34 |
+
pass
|
|
|
|
|
|
|
|
|
35 |
|
|
|
|
|
|
|
36 |
|
37 |
+
def img_to_data(path):
|
38 |
+
"""Convert a file (specified by a path) into a data URI."""
|
39 |
+
if not os.path.exists(path):
|
40 |
+
raise FileNotFoundError
|
41 |
+
mime, _ = mimetypes.guess_type(path)
|
42 |
+
with open(path, 'rb') as fp:
|
43 |
+
data = fp.read()
|
44 |
+
data64 = base64.b64encode(data).decode('utf-8')
|
45 |
+
return f'data:{mime}/jpg;base64,{data64}'
|
46 |
|
|
|
|
|
|
|
47 |
|
48 |
+
@st.cache_resource
|
49 |
+
def get_uform_model():
|
50 |
+
return get_model('unum-cloud/uform-vl-english')
|
|
|
|
|
51 |
|
|
|
|
|
52 |
|
53 |
+
@st.cache_resource
|
54 |
+
def get_unsplash_metadata():
|
55 |
+
path = os.path.join(data_path, 'images.csv')
|
56 |
+
assert os.path.exists(path), 'Missing metadata file'
|
57 |
+
df = pd.read_csv(path, dtype=str).fillna('')
|
58 |
+
df['photo_submitted_at'] = pd.to_datetime(
|
59 |
+
df['photo_submitted_at'], format='mixed')
|
60 |
+
return df
|
61 |
|
|
|
|
|
62 |
|
63 |
+
@st.cache_resource
|
64 |
+
def get_unsplash_usearch_index():
|
65 |
+
index = Index(ndim=256, metric=MetricKind.Cos)
|
66 |
+
path = os.path.join(data_path, 'images.usearch')
|
67 |
+
assert os.path.exists(path), 'Missing index file'
|
68 |
+
index.view(path)
|
69 |
+
return index
|
70 |
+
|
71 |
+
|
72 |
+
# GUI setup
|
73 |
+
|
74 |
+
st.set_page_config(
|
75 |
+
page_title='USearch through Unsplash',
|
76 |
+
page_icon='🐍', layout='wide',
|
77 |
+
initial_sidebar_state='collapsed',
|
78 |
+
)
|
79 |
+
|
80 |
+
st.title('USearch through Unsplash')
|
81 |
+
|
82 |
+
|
83 |
+
text_query: str = st.text_input(
|
84 |
+
'Search Bar',
|
85 |
+
placeholder='Search for Unsplash photos',
|
86 |
+
value='', key='text_query',
|
87 |
+
label_visibility='collapsed')
|
88 |
+
if not len(text_query):
|
89 |
+
text_query = None
|
90 |
+
|
91 |
+
image_query: io.BytesIO = st.file_uploader(
|
92 |
+
'Alternatively, choose an image file')
|
93 |
+
|
94 |
+
layout: str = st.radio(
|
95 |
+
'Layout',
|
96 |
+
('List', 'Grid', 'Semantics'),
|
97 |
+
horizontal=True,
|
98 |
+
label_visibility='collapsed')
|
99 |
+
|
100 |
+
columns: int = st.sidebar.slider(
|
101 |
+
'Grid Columns', min_value=1, max_value=10, value=5)
|
102 |
+
show_captions: bool = st.sidebar.checkbox('Show Captions in Grid', value=True)
|
103 |
+
max_results: int = st.sidebar.number_input(
|
104 |
+
'Max Matches', min_value=1, max_value=None, value=100)
|
105 |
+
|
106 |
+
model = get_uform_model()
|
107 |
+
table = get_unsplash_metadata()
|
108 |
+
index = get_unsplash_usearch_index()
|
109 |
+
|
110 |
+
# Search Content
|
111 |
+
|
112 |
+
if not text_query and not image_query:
|
113 |
+
results = table[:max_results]
|
114 |
+
|
115 |
+
else:
|
116 |
+
with st.spinner(f'We are searching through {len(table)} entries'):
|
117 |
+
|
118 |
+
if image_query:
|
119 |
+
image_query = pil.Image.open(image_query)
|
120 |
+
query_data = model.preprocess_image(image_query)
|
121 |
+
query_embedding = model.encode_image(query_data).detach().numpy()
|
122 |
+
else:
|
123 |
+
query_data = model.preprocess_text(text_query)
|
124 |
+
query_embedding = model.encode_text(query_data).detach().numpy()
|
125 |
+
|
126 |
+
# We don't need the text-based search, if we have AI :)
|
127 |
+
# results = table[table['photo_description'].str.contains(
|
128 |
+
# text_query)][:max_results]
|
129 |
+
matches, _, _ = index.search(
|
130 |
+
query_embedding.flatten(),
|
131 |
+
max_results,
|
132 |
+
exact=True,
|
133 |
+
)
|
134 |
+
results = table.iloc[matches]
|
135 |
+
|
136 |
+
st.success(
|
137 |
+
f'Found {len(results)} matches among {len(table)} entries!', icon='✅')
|
138 |
+
|
139 |
+
|
140 |
+
# Join metadata with images
|
141 |
+
|
142 |
+
results = results.copy().reset_index()
|
143 |
+
results['photo_image_base64'] = [
|
144 |
+
img_to_data(os.path.join(data_path, 'images', id + '.jpg'))
|
145 |
+
for id in results['photo_id']]
|
146 |
+
|
147 |
+
|
148 |
+
# Visualize Matches
|
149 |
+
|
150 |
+
if layout == 'List':
|
151 |
+
|
152 |
+
columns = [
|
153 |
+
'photo_image_base64',
|
154 |
+
'photo_description',
|
155 |
+
'ai_description',
|
156 |
+
'photographer_username',
|
157 |
+
'photo_submitted_at',
|
158 |
+
'stats_views',
|
159 |
+
'stats_downloads',
|
160 |
+
'photo_id',
|
161 |
+
'photo_url',
|
162 |
+
'photo_image_url',
|
163 |
+
]
|
164 |
+
visible_results = results[columns]
|
165 |
+
|
166 |
+
st.dataframe(
|
167 |
+
visible_results,
|
168 |
+
column_config={
|
169 |
+
'photo_id': st.column_config.TextColumn('ID'),
|
170 |
+
'photo_url': st.column_config.LinkColumn('Page'),
|
171 |
+
'photo_image_url': st.column_config.LinkColumn('Remote'),
|
172 |
+
'photo_image_base64': st.column_config.ImageColumn(
|
173 |
+
'Local',
|
174 |
+
width='large'),
|
175 |
+
'photo_submitted_at': st.column_config.DatetimeColumn(
|
176 |
+
'Time',
|
177 |
+
format='DD.MM.YYYY',
|
178 |
+
),
|
179 |
+
'photo_description': st.column_config.TextColumn('Human Text'),
|
180 |
+
'ai_description': st.column_config.TextColumn('AI Text'),
|
181 |
+
'photographer_username': st.column_config.TextColumn('Author'),
|
182 |
+
'stats_views': st.column_config.NumberColumn('Views'),
|
183 |
+
'stats_downloads': st.column_config.NumberColumn('Downloads'),
|
184 |
+
},
|
185 |
+
use_container_width=True,
|
186 |
+
hide_index=False,
|
187 |
+
height=1000,
|
188 |
+
)
|
189 |
+
|
190 |
+
elif layout == 'Semantics':
|
191 |
+
|
192 |
+
vectors = np.vstack([
|
193 |
+
index.reconstruct(id, dtype=np.float32)
|
194 |
+
for id in results['photo_id']])
|
195 |
+
|
196 |
+
tsne = skl.manifold.TSNE(
|
197 |
+
n_components=2, learning_rate='auto',
|
198 |
+
init='random', perplexity=3).fit_transform(vectors)
|
199 |
+
|
200 |
+
results['x'] = tsne[:, 0]
|
201 |
+
results['y'] = tsne[:, 1]
|
202 |
+
|
203 |
+
altair_chart = alt.Chart(results).mark_circle(size=200).encode(
|
204 |
+
x='x',
|
205 |
+
y='y',
|
206 |
+
tooltip=['photo_image_base64'],
|
207 |
+
)
|
208 |
+
st.altair_chart(altair_chart, use_container_width=True, theme='streamlit')
|
209 |
+
|
210 |
+
elif layout == 'Grid':
|
211 |
+
|
212 |
+
for n_row, row in results.reset_index().iterrows():
|
213 |
+
i = n_row % columns
|
214 |
+
if i == 0:
|
215 |
+
st.write('---')
|
216 |
+
cols = st.columns(columns, gap='large')
|
217 |
+
|
218 |
+
with cols[n_row % columns]:
|
219 |
+
id = row['photo_id']
|
220 |
+
username = row['photographer_username'].strip()
|
221 |
+
preview_path = row['photo_image_base64']
|
222 |
+
|
223 |
+
if show_captions:
|
224 |
+
description = row['photo_description'].strip()
|
225 |
+
if len(description) > max_caption_length:
|
226 |
+
description = description[:max_caption_length] + '...'
|
227 |
+
description = f'{description} \@{username}'
|
228 |
+
else:
|
229 |
+
description = ''
|
230 |
+
st.image(
|
231 |
+
preview_path,
|
232 |
+
caption=description,
|
233 |
+
use_column_width='always')
|