image_uri
stringlengths 117
118
| image_label
stringclasses 10
values | image_issues
listlengths 0
3
|
---|---|---|
6 | [] |
|
6 | [] |
|
6 | [] |
|
8 | [] |
|
4 | [
{
"confidence": 0.8005166,
"description": null,
"duplicate_group_id": null,
"issue_type": "dark"
}
] |
|
3 | [] |
|
6 | [] |
|
0 | [
{
"confidence": 0.77802473,
"description": "6",
"duplicate_group_id": null,
"issue_type": "mislabels"
}
] |
|
2 | [] |
|
6 | [] |
|
6 | [] |
|
1 | [
{
"confidence": 0.8552861,
"description": null,
"duplicate_group_id": null,
"issue_type": "dark"
}
] |
|
8 | [] |
|
1 | [] |
|
4 | [] |
|
7 | [] |
|
2 | [] |
|
9 | [] |
|
2 | [] |
|
1 | [
{
"confidence": 0.8410859,
"description": null,
"duplicate_group_id": null,
"issue_type": "dark"
}
] |
|
4 | [] |
|
5 | [] |
|
6 | [] |
|
7 | [] |
|
4 | [] |
|
1 | [
{
"confidence": 0.8335664,
"description": null,
"duplicate_group_id": null,
"issue_type": "dark"
}
] |
|
3 | [
{
"confidence": 0.813212,
"description": null,
"duplicate_group_id": "6176a7ea-4d5e-4c4a-ad99-1f349aed43b6",
"issue_type": "duplicates"
}
] |
|
6 | [] |
|
8 | [] |
|
9 | [] |
|
5 | [] |
|
9 | [] |
|
4 | [] |
|
0 | [] |
|
4 | [] |
|
3 | [] |
|
3 | [] |
|
7 | [] |
|
7 | [] |
|
8 | [
{
"confidence": 0.813212,
"description": null,
"duplicate_group_id": "6176a7ea-4d5e-4c4a-ad99-1f349aed43b6",
"issue_type": "duplicates"
}
] |
|
0 | [] |
|
6 | [] |
|
5 | [] |
|
6 | [] |
|
2 | [] |
|
9 | [] |
|
4 | [] |
|
0 | [] |
|
2 | [] |
|
6 | [] |
|
2 | [] |
|
8 | [] |
|
3 | [] |
|
4 | [] |
|
1 | [
{
"confidence": 0.839468,
"description": null,
"duplicate_group_id": "6d9a281f-826d-4668-b752-6ab605127a05",
"issue_type": "duplicates"
}
] |
|
5 | [] |
|
0 | [] |
|
9 | [
{
"confidence": 0.7749995,
"description": "3",
"duplicate_group_id": null,
"issue_type": "mislabels"
}
] |
|
8 | [] |
|
3 | [
{
"confidence": 0.813212,
"description": null,
"duplicate_group_id": "6176a7ea-4d5e-4c4a-ad99-1f349aed43b6",
"issue_type": "duplicates"
}
] |
|
6 | [] |
|
5 | [] |
|
5 | [
{
"confidence": 0.76975924,
"description": "3",
"duplicate_group_id": null,
"issue_type": "mislabels"
},
{
"confidence": 0.813212,
"description": null,
"duplicate_group_id": "6176a7ea-4d5e-4c4a-ad99-1f349aed43b6",
"issue_type": "duplicates"
}
] |
|
0 | [] |
|
5 | [] |
|
4 | [] |
|
7 | [] |
|
4 | [] |
|
5 | [] |
|
9 | [] |
|
0 | [] |
|
6 | [] |
|
2 | [
{
"confidence": 0.99,
"description": "5",
"duplicate_group_id": null,
"issue_type": "mislabels"
},
{
"confidence": 0.813212,
"description": null,
"duplicate_group_id": "6176a7ea-4d5e-4c4a-ad99-1f349aed43b6",
"issue_type": "duplicates"
}
] |
|
4 | [] |
|
4 | [] |
|
2 | [] |
|
4 | [] |
|
1 | [
{
"confidence": 0.813344,
"description": null,
"duplicate_group_id": "caf7b52b-3b66-446a-a5a1-0a83e64c97aa",
"issue_type": "duplicates"
},
{
"confidence": 0.8167598,
"description": null,
"duplicate_group_id": null,
"issue_type": "dark"
}
] |
|
2 | [] |
|
8 | [
{
"confidence": 0.785931,
"description": "9",
"duplicate_group_id": null,
"issue_type": "mislabels"
}
] |
|
3 | [] |
|
0 | [] |
|
4 | [] |
|
9 | [] |
|
0 | [] |
|
7 | [] |
|
0 | [] |
|
8 | [] |
|
0 | [] |
|
7 | [
{
"confidence": 0.8097236,
"description": null,
"duplicate_group_id": null,
"issue_type": "dark"
}
] |
|
2 | [] |
|
5 | [] |
|
0 | [] |
|
2 | [] |
|
8 | [
{
"confidence": 0.813212,
"description": null,
"duplicate_group_id": "6176a7ea-4d5e-4c4a-ad99-1f349aed43b6",
"issue_type": "duplicates"
}
] |
|
1 | [
{
"confidence": 0.8226494,
"description": null,
"duplicate_group_id": null,
"issue_type": "dark"
}
] |
|
5 | [] |
|
5 | [] |
|
9 | [] |
|
7 | [] |
Mnist-VL-Enriched
An enriched version of the Mnist Dataset with image captions, bounding boxes, and label issues! With this additional information, the Mnist dataset can be extended to various tasks such as image retrieval or visual question answering.
The label issues help curate a cleaner and leaner dataset.
Description
The dataset consists of 3 columns:
image_uri
: The uri of original of the image from the Mnist dataset.label
: Label for the image, provided by the authors of the Mnist dataset.image_issues
: Quality issues found using Visual Layer enrichment process, such as duplicate, mislabeled, dark, blurry, bright, and outlier images.
Usage
This dataset can be used with the Hugging Face Datasets library:
import datasets
ds = datasets.load_dataset("visual-layer/mnist-vl-enriched")
Interactive Visualization
Visual Layer provides a platform to interactively visualize a dataset and highlight quality issues such as duplicates, mislabels, outliers, etc. Check it out here. No sign-up required.
License & Disclaimer
We provide no warranty on the dataset, and the user takes full responsibility for the usage of the dataset. By using the dataset, you agree to the terms of the Mnist dataset license.
About Visual Layer
- Downloads last month
- 31
Data Sourcing report
No elements in this dataset have been identified as either opted-out, or opted-in, by their creator.